
ar
X

iv
:1

81
2.

04
66

8v
2 

 [
m

at
h.

A
G

] 
 2

5 
Se

p 
20

19

Homogeneous spaces, algebraic K-theory and

cohomological dimension of fields

Diego Izquierdo

Max-Planck-Institut für Mathematik

izquierd@mpim-bonn.mpg.de

Giancarlo Lucchini Arteche

Universidad de Chile

luco@uchile.cl

Abstract

Let q be a non-negative integer. We prove that a perfect field K has cohomo-

logical dimension at most q + 1 if, and only if, for any finite extension L of K and

for any homogeneous space Z under a smooth linear connected algebraic group over

L, the q-th Milnor K-theory group of L is spanned by the images of the norms

coming from finite extensions of L over which Z has a rational point. We also prove

a variant of this result for imperfect fields.

MSC Classes: primary 12G10, 19D45; secondary 11E72, 14M17.
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1. Introduction

In 1986, in the article [11], Kato and Kuzumaki stated a set of conjectures which aimed
at giving a diophantine characterization of cohomological dimension of fields. For this
purpose, they introduced some properties of fields which are variants of the classical
Ci-property and which involve Milnor K-theory and projective hypersurfaces of small
degree. They hoped that those properties would characterize fields of small cohomologi-
cal dimension.

More precisely, fix a field L and two non-negative integers q and i. Let KM
q (L) be

the q-th Milnor K-group of L. For each finite extension L′ of L, one can define a norm
morphism NL′/L : KM

q (L′) → KM
q (L) (see Section 1.7 of [9]). Thus, if Z is a scheme

of finite type over L, one can introduce the subgroup Nq(Z/L) of KM
q (L) generated by

the images of the norm morphisms NL′/L when L′ runs through the finite extensions of
L such that Z(L′) 6= ∅. One then says that the field L is Cq

i if, for each n ≥ 1, for each
finite extension L′ of L and for each hypersurface Z in Pn

L′ of degree d with di ≤ n, one
has Nq(Z/L

′) = KM
q (L′). For example, the field L is C0

i if, for each finite extension
L′ of L, every hypersurface Z in Pn

L′ of degree d with di ≤ n has a 0-cycle of degree 1.
The field L is Cq

0 if, for each tower of finite extensions L′′/L′/L, the norm morphism
NL′′/L′ : KM

q (L′′) → KM
q (L′) is surjective.

Kato and Kuzumaki conjectured that, for i ≥ 0 and q ≥ 0, a perfect field is Cq
i if,

and only if, it is of cohomological dimension at most i+ q. This conjecture generalizes a
question raised by Serre in [18] asking whether the cohomological dimension of a Ci-field
is at most i. As it was already pointed out at the end of Kato and Kuzumaki’s original
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1 Introduction

paper [11], Kato and Kuzumaki’s conjecture for i = 0 follows from the Bloch-Kato con-
jecture (which has been established by Rost and Voevodsky, cf. [15]): in other words, a
perfect field is Cq

0 if, and only if, it is of cohomological dimension at most q. However, it
turns out that the conjectures of Kato and Kuzumaki are wrong in general. For example,
Merkurjev constructed in [13] a field of characteristic 0 and of cohomological dimension 2
which did not satisfy property C0

2 . Similarly, Colliot-Thélène and Madore produced in [1]
a field of characteristic 0 and of cohomological dimension 1 which did not satisfy property
C0
1 . These counter-examples were all constructed by a method using transfinite induction

due to Merkurjev and Suslin. The conjecture of Kato and Kuzumaki is therefore still
completely open for fields that usually appear in number theory or in algebraic geometry.

In 2015, in [25], Wittenberg proved that totally imaginary number fields and p-adic
fields have the C1

1 property. In 2018, in [8], the first author also proved that, given a
positive integer n, finite extensions of C(x1, ..., xn) and of C(x1, ..., xn−1)((t)) are Cq

i for
any i, q ≥ 0 such that i+ q = n. These are essentially the only known cases of Kato and
Kuzumaki’s conjectures. In particular, the C1

1 property is still unknown for several usual
fields with cohomological dimension 2, such as the field of rational functions C((t))(x) or
the field of Laurent series C((x, y)).

In the present article, for each non negative integer q, we introduce variants of the Cq
1

property and we prove that, contrary to the Cq
1 property, they characterize the cohomo-

logical dimension of fields. More precisely, we say that a field L is Cq
HS if, for each finite

extension L′ of L and for each homogeneous space Z under a smooth linear connected
algebraic group over L′, one has Nq(Z/L

′) = KM
q (L′). Similarly, we say that a field L is

Cq
PHS (resp. Cq

Red) if, for each finite extension L′ of L and for each principal homogeneous
space Z under a smooth linear connected (resp. reductive) algebraic group over L′, one
has Nq(Z/L

′) = KM
q (L′). Our main theorem is the following (please refer to section

2 for the definitions of the cohomological dimension and the separable cohomological
dimension):

Main Theorem. Let q be a non-negative integer.

(i) A perfect field has the Cq
HS-property if, and only if, it has cohomological dimension

at most q + 1.

(ii) An imperfect field has the Cq
Red-property if, and only if, all its finite extensions have

separable cohomological dimension at most q + 1.

Remark 1.1. In fact, we will see in section 3 that the properties Cq
HS and Cq

Red are much
stronger than what is actually needed to prove that a field has cohomological dimension
at most q + 1. More precisely, we will prove that (cf. Remark 3.4):

1. A field K has cohomological dimension at most q+1 if, for any tower of finite field
extensions M/L/K and any element a ∈ L×, we have Nq(Z/L) = KM

q (L) for the
L-variety Z defined by the normic equation NM/L(x) = a.

2. A fieldK has separable cohomological dimension at most q+1 ifNq(Z/L) = KM
q (L)

for any positive integer n, any finite separable extension L/K and any PGLn,L-
torsor Z.
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1 Introduction

Our Main Theorem, together with the previous remark, unifies and significantly gen-
eralizes several results in the literature:

• The theorems of Steinberg and Springer (see Section III.2.4 of [18]), which state
that, if K is a perfect field with cohomological dimension at most one, then every
homogeneous space under a linear connected K-group has a zero-cycle of degree 1
(and even a rational point).

• A theorem of Suslin, which states that a field K of characteristic 0 has cohomo-
logical dimension at most 2 if, and only if, for any finite extension L of K and any
central simple algebra A over L, the reduced norm Nrd : A× → L× is surjective
(see Corollary 24.9 of [23] or Theorem 8.9.3 of [5]).

• A result of Gille which generalizes Suslin’s theorem to positive characteristic fields
(Theorem 7 of [4]).

• Two theorems of Wittenberg, which state that p-adic fields and totally imaginary
number fields have the property C1

HS (see Corollaries 5.6 and 5.8 of [25]).

Since our result applies to all fields, our proof has to be purely algebraic and/or
geometric: contrary to the cases of p-adic fields and number fields dealt by Wittenberg,
we have to systematically avoid arithmetical arguments. In section 2, we gather some
generalities about the cohomological dimension of fields. In particular, we recall the
“good” definition of the cohomological dimension for positive characteristic fields as well
as a characterization of this invariant in terms of Milnor K-theory. In section 3, we settle
the easy direction of our main theorem: in other words, we prove that a field L having
the Cq

Red-property has separable cohomological dimension at most q+1. The core of the
article is section 4, where we prove our main theorem in three steps:

(1) We first prove that, if P is a finite Galois module over a characteristic 0 field L of
cohomological dimension ≤ q+1 and α is an element in H2(L,P ), then KM

q (L) is
spanned by the images of the norms coming from finite extensions of L trivializing
α. This requires to use the Bloch-Kato conjecture but also some properties of norm
varieties that have been established by Rost and Suslin.

(2) We then use a theorem of Steinberg and step (1) to deal with principal homogeneous
spaces over characteristic zero fields; the case of principal homogeneous spaces over
positive characteristic fields is then solved by reducing to the characteristic 0 case.

(3) We finally deal with the case of homogeneous spaces over perfect fields by using
a theorem of Springer in non-abelian cohomology which reduces us to the case
with finite solvable stabilizers. We deal with this last case by using “dévissage”
techniques in non-abelian cohomology and step (2).

Given a field L, if we denote by cd(L) and by sd(L) the cohomological dimension and
the separable cohomological dimension of L respectively, the following diagram summa-
rizes the implications we settle along the proof:
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1 Introduction

Case when L is perfect:

Cq
1

Prop. 3.2

��
cd(L) ≤ q + 1

Th. 4.11(i)
��

Cq
Red

Prop. 3.2
4<

q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q

Cq
PHS

Section 4.3
��

obvious
ks

Cq
HS

obvious

KS

Case when L is imperfect:

Cq
1

Prop. 3.2

��
∀L′/L finite, sd(L′) ≤ q + 1

Th. 4.11(ii)
��

Cq
Red

Prop. 3.2

KS

Preliminaries on Milnor K-theory

Let L be any field and let q be a non-negative integer. The q-th Milnor K-group of L is
by definition the group KM

0 (L) = Z if q = 0 and:

KM
q (L) := L× ⊗Z ...⊗Z L

×
︸ ︷︷ ︸

q times

/ 〈x1 ⊗ ...⊗ xq|∃i, j, i 6= j, xi + xj = 1〉

if q > 0. For x1, ..., xq ∈ L×, the symbol {x1, ..., xq} denotes the class of x1 ⊗ ... ⊗ xq in
KM

q (L). More generally, for r and s non-negative integers such that r + s = q, there is
a natural pairing:

KM
r (L)×KM

s (L) → KM
q (L)

which we will denote {·, ·}.

When L′ is a finite extension of L, one can construct a norm homomorphism

NL′/L : KM
q (L′) → KM

q (L),

satisfying the following properties (see Section 1.7 of [9] or section 7.3 of [5]):

• For q = 0, the map NL′/L : KM
0 (L′) → KM

0 (L) is given by multiplication by
[L′ : L].

• For q = 1, the map NL′/L : KM
1 (L′) → KM

1 (L) coincides with the usual norm
L′× → L×.

• If r and s are non-negative integers such that r + s = q, we have NL′/L({x, y}) =
{x,NL′/L(y)} for x ∈ KM

r (L) and y ∈ KM
s (L′).

• If L′′ is a finite extension of L′, we have NL′′/L = NL′/L ◦NL′′/L′ .

For each L-scheme of finite type, we denote by Nq(Z/L) the subgroup of KM
q (L) gener-

ated by the images of the maps NL′/L : KM
q (L′) → KM

q (L) when L′ runs through the
finite extensions of L such that Z(L′) 6= ∅. In particular, N0(Z/L) is the subgroup of Z
generated by the index of Z (i.e. the gcd of the degrees [L′ : L] when L′ runs through
the finite extensions of L such that Z(L′) 6= ∅).

4



2 Generalities on the cohomological dimension

2. Generalities on the cohomological dimension

We start the article by recalling the “good” definition of the cohomological dimension for
fields of any characteristic:

Definition 2.1. Let K be any field.

(i) Let ℓ be a prime number different from the characteristic of K. The ℓ-cohomological
dimension cdℓ(K) and the separable ℓ-cohomological dimension sdℓ(K) of K are
both the ℓ-cohomological dimension of the absolute Galois group of K.

(ii) (Kato, [10]; Gille, [4]). Assume that K has characteristic p > 0. Let Ωi
K be the

i-th exterior product over K of the absolute differential module Ω1
K/Z and consider

the morphism piK : Ωi
K → Ωi

K/d(Ω
i−1
K ) defined by

x
dy1
y1

∧ ... ∧ dyi
yi

7→ (xp − x)
dy1
y1

∧ ... ∧ dyi
yi

mod d(Ωi−1
K ),

for x ∈ K and y1, ..., yi ∈ K×: this morphism is well-defined by sections 9.2 and
9.4 of [5]. Let H i+1

p (K) be the cokernel of piK . The p-cohomological dimension
cdp(K) of K is the smallest integer i (or ∞ if such an integer does not exist) such
that [K : Kp] ≤ pi and H i+1

p (L) = 0 for all finite extensions L of K. The separable
p-cohomological dimension sdp(K) of K is the smallest integer i (or ∞ if such an
integer does not exist) such that H i+1

p (L) = 0 for all finite separable extensions L
of K.

(iii) The cohomological dimension cd(K) of K is the supremum of all the cdℓ(K)’s when
ℓ runs through all prime numbers. The separable cohomological dimension sd(K)
of K is the supremum of all the sdℓ(K)’s when ℓ runs through all prime numbers.

The following proposition is probably well known to experts, but we didn’t find an
appropriate reference covering the positive characteristic case:

Proposition 2.2. Let q be a non-negative integer, let ℓ be a prime number and let K be
any field.

(i) Assume that, for any tower of finite extensions M/L/K, the cokernel of the norm
NM/L : KM

q (M) → KM
q (L) has no ℓ-torsion. Then K has ℓ-cohomological dimen-

sion at most q.

(ii) Assume that, for any tower of finite separable extensions M/L/K, the cokernel of
the norm NM/L : KM

q (M) → KM
q (L) has no ℓ-torsion. Then K has separable

ℓ-cohomological dimension at most q.

Proof. The proofs of (i) and (ii) being very similar, we only prove (i).

First assume that ℓ is different from the characteristic of K. In that case, the propo-
sition is essentially a consequence of Lemma 7 of [11]. But we are going to give a full
proof since that lemma is only stated without proof. To do so, consider a finite exten-
sion L of K and a symbol {a1, ..., aq+1} ∈ KM

q+1(L). Let M be the splitting field of

the polynomial T ℓ − aq+1. Since the cokernel of NM/L : KM
q (M) → KM

q (L) has no ℓ-

torsion, we can find b ∈ KM
q (M) such that {a1, ..., aq} ≡ NM/L(b) mod ℓKM

q (L). Hence

5



2 Generalities on the cohomological dimension

{a1, ..., aq+1} ≡ NM/L({b, aq+1}) mod ℓKM
q+1(L) and {a1, ..., aq+1} ∈ ℓKM

q+1(L). By the

Bloch-Kato conjecture, we deduce that the group Hq+1(L, µ
⊗(q+1)
ℓ ) is trivial. This being

true for any finite extension L of K, Corollary I.3.3.1 and Proposition I.4.1.21 of [18]
then imply that K has ℓ-cohomological dimension at most q.

Now assume that ℓ is the characteristic of K. We first prove that Hq+1
ℓ (L) = 0

for all finite extensions L of K. We therefore consider such a finite extension L of K
and an element xdy1

y1
∧ ... ∧ dyq

yq
of Ωq

L with x ∈ L and y1, ..., yq ∈ L×. Let M be the

splitting field of the polynomial T ℓ − T − x over L. By assumption, we can find an
element z ∈ KM

q (M) such that {y1, ..., yq} ≡ NM/L(z) mod ℓKM
q (L). Now recall the

Bloch-Gabber-Kato theorem, which states that, if ν(q)L denotes the kernel of p
q
L, the

differential symbol:

ψq
L : KM

q (L)/ℓKM
q (L) → ν(q)L

{a1, ..., aq} 7→ da1
a1

∧ ... ∧ daq
aq

,

is an isomorphism (Theorem 9.5.2 of [5]). Through this isomorphism, the norm on Milnor
K-theory corresponds to the trace on modules of differential q-forms (Lemma 9.5.7 of

[5]). Hence we can find an element z′ ∈ ν(q)M such that dy1
y1

∧ ... ∧ dyq
yq

= trM/L(z
′). By

our choice of the field M , we know that the class of xz′ modulo d(Ωq−1
M ) is in the image

of pqM . We can therefore conclude that the class of xdy1
y1

∧ ... ∧ dyq
yq

modulo d(Ωq−1
L ) is in

the image of pqL by observing that the following diagram is commutative:

Ωq
M

p
q
M //

trM/L

��

Ωq
M/d(Ω

q−1
M )

trM/L

��

Ωq
L

p
q
L // Ωq

L/d(Ω
q−1
L ).

We now prove that [K : Kℓ] ≤ ℓq. Assume the contrary, so that we can find
x1, ..., xq+1 a family of q + 1 elements of K which are ℓ-independent (in the sense of
section 26 of [12]). By assumption, we can find w ∈ KM

q (K( ℓ
√
xq+1)) such that

NK( ℓ
√
xq+1)/K(w) = {x1, ..., xq}.

We then also have NKs( ℓ
√
xq+1)/Ks(w) = {x1, ..., xq}, where Ks denotes a separable clo-

sure of K. Since all finite extensions of Ks have degree a power of ℓ, Corollary 7.2.10
of [5] implies that KM

q (Ks( ℓ
√
xq+1)) is spanned, as an abelian group, by elements of

the form {b1, ..., bq} with b2, ..., bq ∈ Ks and b1 ∈ Ks( ℓ
√
xq+1). The image of such a

symbol {b1, ..., bq} by NKs( ℓ
√
xq+1)/Ks is the symbol {NKs( ℓ

√
xq+1)/Ks(b1), b2, ..., bq}, where

NKs( ℓ
√
xq+1)/Ks(b1) ∈ (Ks)ℓ(xq+1). Hence {x1, ..., xq} lies in the subgroup of KM

q (Ks)

spanned by elements of the form {c1, ..., cq} with c1 ∈ (Ks)ℓ(xq+1). In other words, by

the Bloch-Gabber-Kato theorem, dx1
x1

∧ ... ∧ dxq

xq
lies in the sub-Ks-vector space of Ωq

Ks

spanned by the dxq+1 ∧ ω with ω ∈ Ωq−1
Ks . By Theorem 26.5 of [12], this contradicts the

ℓ-independence of the family x1, ..., xq+1. ⌣̈
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3. The C
q
HS, C

q
PHS and C

q
Red properties

Let q be a non-negative integer. In the article [11], Kato and Kuzumaki introduce the
notion of Cq

1 fields: they say that a field K satisfies the Cq
1 property if, for every finite

extension L of K and for every hypersurface Z in Pn
L of degree d with d ≤ n, we have

Nq(Z/L) = KM
q (L). In this article, we are interested in the following variants of this

property:

Definition 3.1. Let q be a non-negative integer. We say that a field K has the Cq
HS

property if, for each finite extension L of K and for each homogeneous space Z under a
smooth linear connected algebraic group over L, one has Nq(Z/L) = KM

q (L). Similarly,
we say that a field K has the Cq

PHS property (resp. the Cq
Red property) if, for each finite

extension L of K and for each principal homogeneous space Z under a smooth linear
connected (resp. reductive) algebraic group over L, one has Nq(Z/L) = KM

q (L).

Of course, the Cq
HS property implies the Cq

PHS property, which itself implies the Cq
Red

property. The following proposition shows that a field satisfying those properties has
small cohomological dimension:

Proposition 3.2. Let K be a field.

(i) Assume that, for any tower of finite (resp. finite separable) extensions M/L/K
and any element a ∈ L×, we have Nq(Z/L) = KM

q (L) for the L-variety:

Z : NM/L(x) = a.

Then K has cohomological dimension (resp. separable cohomological dimension) at
most q + 1.

(ii) Assume that, for any finite separable extension L/K and any Severi-Brauer L-
variety Z, we have Nq(Z/L) = KM

q (L). Then K has separable cohomological
dimension at most q + 1.

Proof. Let’s prove (i) first. The statements about the cohomological dimension and the
separable cohomological dimension can be proved in the same way, so we will only deal
with the cohomological dimension. By Proposition 2.2, we only need to prove that for
any tower of finite field extensions M/L/K, the norm NM/L : KM

q+1(M) → KM
q+1(L)

is surjective. To do so, consider a symbol {a1, ..., aq+1} ∈ KM
q+1(L). Also consider the

following variety:

Z : NM/L(x) = a1.

By assumption, one can find finite extensions L1, ..., Lr of L such that:

{

∀i ∈ {1, ..., r}, Z(Li) 6= ∅
{a2, ..., aq+1} ∈

〈
NLi/L(K

M
q (Li)) | 1 ≤ i ≤ r

〉
.

In other words:
{

∀i ∈ {1, ..., r}, ∃xi ∈ (M ⊗L Li)
×, NM⊗LLi/Li

(xi) = a1

∃(y1, ..., yr) ∈
∏r

i=1K
M
q (Li), {a2, ..., aq+1} =

∏r
i=1NLi/L(yi).

7
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Hence:

NM/L

(
r∏

i=1

NM⊗Li/M ({xi, yi})
)

=

r∏

i=1

NM⊗Li/L ({xi, yi})

=

r∏

i=1

NLi/L

(
NM⊗Li/Li

({xi, yi})
)

=
r∏

i=1

NLi/L

(
{NM⊗Li/Li

(xi), yi}
)

=

r∏

i=1

NLi/L ({a1, yi})

= {a1,
r∏

i=1

NLi/L(yi)}

= {a1, a2, ..., aq+1}

and {a1, a2, ..., aq+1} is indeed in the image of NM/L : KM
q+1(M) → KM

q+1(L).

Let’s now prove (ii). To do so, fix a prime number ℓ and first assume that ℓ is different
from the characteristic of K. Consider a finite extension L of K containing a primitive
ℓ-th root of unity and a symbol {a1, ..., aq+2} ∈ Hq+2(L,Z/ℓZ). By assumption and by
the Bloch-Kato conjecture, one can find finite extensions L1, ..., Lr of L and elements
b1 ∈ Kq(L1), ..., br ∈ Kq(Lr) such that {a1, a2}|Li = 0 for each i and {a3, ..., aq+2} =
∑r

i=1 CoresLi/L(bi). Hence {a1, ..., aq+2} =
∑r

i=1 CoresLi/L({a1, a2} ∪ bi) = 0, and the
group Hq+2(L,Z/ℓZ) is trivial. This being true for any finite extension L of K containing
a primitive ℓ-th root of unity, Corollary I.3.3.1 and Proposition I.4.1.21 of [18] then imply
that K has ℓ-cohomological dimension at most q + 1.

Let’s finally assume that K has characteristic ℓ. Fix a finite separable extension L of
K and an element xdy1

y1
∧ ... ∧ dyq+1

yq+1
of Ωq+1

L with x ∈ L and y1, ..., yq+1 ∈ L×. Consider

the cyclic central simple algebra α ∈ ℓBrL corresponding to the form xdy1
y1

through
the isomorphism of Theorem 9.2.4 of [5]. By assumption, we can find finite extensions
L1, ..., Lr of L and elements z1 ∈ KM

q (L1), ..., zr ∈ KM
q (Lr) such that α|Li = 0 for each i

and {y2, ..., yq+1} =
∏r

i NLi/L(zi). Hence, by the Bloch-Gabber-Kato theorem (Theorem

9.5.2 of [5]), we can find elements z′1 ∈ ν(q)L1 , ..., z
′
r ∈ ν(q)Lr such that dy2

y2
∧ ...∧ dyq+1

yq+1
=

∑r
i=1 trLi/L(z

′
i). We then have xdy1

y1
∧ ... ∧ dyq+1

yq+1
=
∑r

i=1 trLi/L(x
dy1
y1

∧ z′i) ∈ Im(pq+1
L ).

This proves that Hq+2
ℓ (L) = 0, as wished. ⌣̈

Remark 3.3. Since the varieties considered in Proposition 3.2(i) are, up to homoge-
nization, hypersurfaces of degree d = [M : L] in Pd

L, this shows that a Cq
1 field has

cohomological dimension at most q + 1. This fact seems to have been overlooked in
the literature: for instance, in Theorem 4.2 of [25], the assumption concerning the Cq

0

property is unnecessary.

Remark 3.4. As stated in the introduction, Proposition 3.2 shows that, in order to
check that a field has separable cohomological dimension at most q + 1, it suffices to
check one of the following conditions:

8



4 Proof of the Main Theorem

(a) For each finite extension L of K and each torsor Z under a normic torus over L,
we have Nq(Z/L) = KM

q (L).

(b) For each positive integer n, each finite extension L of K and each PGLn,L-torsor
Z, we have Nq(Z/L) = KM

q (L).

In particular, a field having the Cq
Red property has separable cohomological dimension at

most q + 1.

4. Proof of the Main Theorem

This section is devoted to the proof of the following theorem, which corresponds to the
“difficult” direction of our Main Theorem:

Theorem 4.1. Let q be a non-negative integer. Let K be a any field.

(i) If K is perfect and has cohomological dimension at most q + 1, then for any
homogeneous space Z under a smooth linear connected group over K, we have
Nq(Z/K) = KM

q (K).

(ii) If K is imperfect and all its finite extensions have separable cohomological dimen-
sion at most q + 1, we have Nq(Z/K) = KM

q (K) for any principal homogeneous
space Z under a (smooth, connected) reductive group over K.

Note that our Main Theorem immediately follows from Proposition 3.2, Theorem 4.1
and the fact that cohomological dimension, when it is finite, is preserved under finite
separable extensions.

4.1 First step: trivializing Galois cohomology classes

In this first step of the proof of theorem 4.1, we are interested in the following variant of
the groups Nq(Z/K):

Definition 4.2. Let K be a characteristic zero field and let P be a finite Galois module
over K. Fix a cohomology class α ∈ H2(K,P ). We define Nq(α/K) as the subgroup of
KM

q (K) spanned by the images of the norms coming from finite extensions L of K such
that α|L = 0 ∈ H2(L,P ).

The main result we are going to prove in this context is the following:

Theorem 4.3. Let q be a non-negative integer and let K be a field of characteristic 0.
Fix an algebraic closure K. Assume that we are given a Galois extension K∞ of K in
K such that:

(A) for each finite extension L of K and each prime number ℓ, the morphism

Hq+2(L, µ
⊗(q+1)
ℓ ) → Hq+2(LK∞, µ

⊗(q+1)
ℓ )

is injective;

(B) for each finite extension L of K and each prime number ℓ such that L contains
a primitive ℓ-th root of unity, the group ℓBr (LK∞/L) is spanned by cyclic central
algebras.

9



4 Proof of the Main Theorem

Then for any finite Galois module P over K which becomes diagonalisable over K∞ and
any cohomology class

α ∈ Ker
(
H2(K,P ) → H2(K∞, P )

)
,

we have Nq(α/K) = KM
q (K).

By taking K∞ = K and by applying the Merkurjev-Suslin theorem ([15]), we obtain
the following corollary:

Corollary 4.4. Let q be a non-negative integer and let K be a field of characteristic 0
and of cohomological dimension at most q + 1. For any finite Galois module P over K
and any cohomology class α ∈ H2(K,P ), we have Nq(α/K) = KM

q (K).

Remark 4.5. In order to prove Theorem 4.1 for perfect fields, we will only need the
previous corollary. But to deal with imperfect fields, we will need to consider other
choices for K∞ and hence we will have to use the more general Theorem 4.3.

4.1.1 The Galois module Z/ℓZ

Proposition 4.6. Let q be a non-negative integer, let ℓ be a prime number and let K
be a field of characteristic 0. Consider q + 2 elements a1, ..., aq+2 in K× such that the
symbol {a1, ..., aq+2} is trivial in KM

q+2(K)/ℓ. Set α := {a1, a2} ∈ H2(K,µ⊗2
ℓ ). Then

{a3, ..., aq+2} ∈ Nq(α/K).

Proof. We proceed by induction on q, noting that if q = 0, there is nothing to prove.
Assume then that the proposition is true for some integer q ≥ 0 and consider q + 3
elements a1, ..., aq+3 in K× such that the symbol {a1, ..., aq+3} is trivial in KM

q+3(K)/ℓ.
Observe that, if α = 0, there is nothing to prove. Hence we may and do assume that
α 6= 0.

Let Kℓ be the field fixed by an ℓ-Sylow subgroup of Gal(K/K). Since α 6= 0, a
restriction-corestriction argument shows that α|Kℓ

6= 0. Let m ∈ {2, ..., q + 2} be the
largest integer such that {a1, ..., am}|Kℓ

6= 0 ∈ Hm(Kℓ, µ
⊗m
ℓ ). According to Theorem 1.21

of [24], there exists a geometrically irreducible projective ℓ-generic splitting νm−1-variety
X for {a1, ..., am}|Kℓ

(see Definitions 1.10 and 1.20 of [24]). Moreover, by Theorem A.1
of [24], we have an exact sequence:

⊕

x∈X closed

Kℓ(x)
×

⊕
NKℓ(x)/Kℓ−−−−−−−−→ K×

ℓ

{a1,...,am}∪−−−−−−−→ KM
m+1(Kℓ)/ℓ.

Since {a1, ..., am+1}|Kℓ
= 0 ∈ Hm+1(Kℓ, µ

⊗m+1
ℓ ), we deduce that there are r closed

points x1, ..., xr in X and an element bi ∈ Kℓ(xi)
× for each i ∈ {1, ..., r} such that

am+1 =
∏r

i=1NKℓ(xi)/Kℓ
(bi).

Now, for each i, the symbol {a1, ..., am}|Kℓ(xi) is trivial in Hm(Kℓ(xi), µ
⊗m
ℓ ). By the

inductive assumption, we deduce that {a3, ..., am} ∈ Nm−2(α|Kℓ(xi)/Kℓ(xi)) for each i.
In other words, we can find some finite extensions Ki,1, ...,Ki,ri of Kℓ(xi) and an ri-tuple
(ci,1, ..., ci,ri) ∈

∏ri
j=1K

M
m−2(Ki,j) such that:

{

α|Ki,j = 0 for each j ∈ {1, ..., ri},
{a3, ..., am} =

∏ri
j=1NKi,j/Kℓ(xi)(ci,j).

10



4 Proof of the Main Theorem

We then compute:

r∏

i=1

ri∏

j=1

NKi,j/Kℓ
({ci,j , bi, am+2, ..., aq+3})

=
r∏

i=1

ri∏

j=1

NKℓ(xi)/Kℓ

(

NKi,j/Kℓ(xi)({ci,j , bi, am+2, ..., aq+3})
)

=

r∏

i=1

NKℓ(xi)/Kℓ
({a3, ..., am, bi, am+2, ..., aq+3})

= {a3, ..., aq+3}.

Hence {a3, ..., aq+3}|Kℓ
∈ Nq+1(α|Kℓ

/Kℓ). This means that there exists a finite extension
K ′ of K contained in Kℓ such that {a3, ..., aq+3}|K ′ ∈ Nq+1(α|K ′/K ′). Since ℓ does not
divide the degree of the extension K ′/K, we deduce that {a3, ..., aq+3} ∈ Nq+1(α/K).

⌣̈

As a corollary, we obtain the following particular case of Theorem 4.3:

Corollary 4.7. Let q be a non-negative integer and let ℓ be a prime number. Let K be a
field of characteristic 0. Fix an algebraic closure K. Assume that we are given a Galois
extension K∞ of K in K satisfying assumptions (A) and (B) of Theorem 4.3. Then for
any α ∈ Ker

(
H2(K,Z/ℓZ) → H2(K∞,Z/ℓZ)

)
, we have Nq(α/K) = KM

q (K).

Proof. If K contains a primitive ℓ-th root of unity, this follows immediately from the
previous proposition, the fact that α|K∞

= 0 and assumptions (A) and (B) of Theo-
rem 4.3. We may hence assume that K does not contain any primitive ℓ-th root of
unity. In that case, let ζℓ be a primitive ℓ-th root of unity in K. Then we know that
Nq(α|K(ζℓ)/K(ζℓ)) = KM

q (K(ζℓ)), so that Nq(α/K) contains [K(ζℓ) : K]KM
q (K). More-

over, for each prime number p different from ℓ, if L is a finite Galois extension of K
such that α|L = 0 and if Lp is a field fixed by a p-Sylow subgroup of Gal(L/K), then
a restriction-corestriction argument shows that α|Lp = 0, so that Nq(α/K) contains
[Lp : K]KM

q (K). We deduce that Nq(α/K) = KM
q (K). ⌣̈

4.1.2 Behaviour with respect to “dévissages”

In order to reduce Theorem 4.3 to the case studied in the previous paragraph, we will
need to carry out some “dévissages”. The following easy lemma will be very useful for
that purpose:

Lemma 4.8. Let q be a non-negative integer. Let K be a field of characteristic 0, fix an
algebraic closure K and consider an exact sequence of finite Galois modules:

0 → P → Q → R→ 0.

Let K∞ be an algebraic extension of K in K such that, for each finite extension L of K,
the morphism H2(LK∞, P ) → H2(LK∞, Q) is injective. Make the following assump-
tions:

(i) for any β ∈ Ker
(
H2(K,R) → H2(K∞, R)

)
, we have Nq(β/K) = KM

q (K);

11



4 Proof of the Main Theorem

(ii) for any finite extension L of K and for any γ ∈ Ker
(
H2(L,P ) → H2(LK∞, P )

)
,

we have Nq(γ/L) = KM
q (L).

Then, for any α ∈ Ker
(
H2(K,Q) → H2(K∞, Q)

)
, we have Nq(α/K) = KM

q (K).

Proof. Let α be an element of Ker
(
H2(K,Q) → H2(K∞, Q)

)
and take any x ∈ KM

q (K).
Let β be the image of α in H2(K,R). By assumption (i), one can then find some finite
extensions K1, ...,Kr of K and an r-tuple (x1, ..., xr) ∈

∏r
i=1K

M
q (Ki) such that:

{

β|Ki = 0 for each i ∈ {1, ..., r},
x =

∏r
i=1NKi/K(xi).

One then observes that, for each i, one can lift the class α|Ki ∈ H2(Ki, Q) to a class
γi ∈ H2(Ki, P ). Since H2(KiK∞, P ) → H2(KiK∞, Q) is injective, γi lies in fact in
Ker

(
H2(Ki, P ) → H2(KiK∞, P )

)
. By assumption (ii), one can then find some finite

extensions Ki,1, ...,Ki,ri of Ki and an ri-tuple (xi,1, ..., xi,ri) ∈
∏ri

j=1K
M
q (Ki,j) such that:

{

γi|Ki,j = 0 for each j ∈ {1, ..., ri},
xi =

∏ri
j=1NKi,j/Ki

(xi,j).

Hence x =
∏r

i=1

∏ri
j=1NKi,j/K(xi,j), and x ∈ Nq(α/K). ⌣̈

4.1.3 Proof of Theorem 4.3

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Consider a finite Galois module P over K which becomes diago-
nalizable over K∞ and a cohomology class α ∈ Ker

(
H2(K,P ) → H2(K∞, P )

)
. We want

to prove that Nq(α/K) = KM
q (K).

Given a prime number ℓ, one can write the exact sequence of Galois modules:

0 → ℓP → P → P/ℓP → 0.

Now note that, since P is diagonalizable over K∞, one can write an isomorphism of
Galois modules over K∞:

P |K∞

∼= P ′ ×
r∏

i=1

µℓsi

for some Galois module P ′ of order prime to ℓ and for some positive integers s1, ..., sr.
For each finite extension L of K, the morphism H2(LK∞, ℓP ) → H2(LK∞, P ) can
therefore be identified with the morphism H2(LK∞, P ′) × ∏r

i=1H
2(LK∞, µℓsi−1) →

H2(LK∞, P ′) ×∏r
i=1H

2(LK∞, µℓsi ), which is always injective. Hence, by carrying out
an induction on the exponent of P in which we repeatedly apply Lemma 4.8 and in which
the field K varies, we can assume that P is ℓ-torsion for some prime number ℓ.

Now consider a finite Galois extension L of K such that α|L = 0 and Gal(L/L)
acts trivially on P . Fix a prime number p and let Lp be a field fixed by a p-Sylow of
Gal(L/K). Consider the two following cases:

1st case: p 6= ℓ. Since α|L = 0, we see by a restriction-corestriction argument that
α|Lp = 0. Hence Nq(α/K) contains [Lp : K]KM

q (K).

12



4 Proof of the Main Theorem

2nd case: p = ℓ. Since Gal(L/Lp) is a p-group and since P is an Fp-vector space, we
can find a basis of P such that all the elements of Gal(L/Lp) act on P via a unipotent
upper-triangular matrix. This means that we have a dévissage of Galois modules over
Lp:

0 → Z/pZ → P → P1 → 0

0 → Z/pZ → P1 → P2 → 0

...

0 → Z/pZ → Ps−1 → Ps → 0,

with Ps = Z/pZ. Since P becomes diagonalizable over K∞, all these exact sequences
split over LpK∞. Hence, by applying Corollary 4.7 and Lemma 4.8, it follows that
Nq(α|Lp/Lp) = KM

q (Lp). Hence Nq(α/L) contains [Lp : L]K
M
q (L).

ThusNq(α/L) contains [Lp : L]K
M
q (L) for every prime p, which implies thatNq(α/L) =

KM
q (L). ⌣̈

4.2 Second step: Principal homogeneous spaces

In this second step, we prove theorem 4.1(i) for principal homogeneous spaces under
smooth connected linear groups as well as theorem 4.1(ii). We start with the character-
istic 0 case.

Proposition 4.9. Let q be a non-negative integer. Let K be a field of characteristic 0
and with cohomological dimension at most q + 1. Then for any principal homogeneous
space Z under a quasi-split reductive K-group G, we have Nq(Z/K) = KM

q (K).

Proof. Let Z be a principal homogeneous space under a quasi-split reductive K-group
G. Let z be the class of Z in H1(K,G). By Theorem 11.1 of [22], we have:

H1(K,G) =
⋃

T⊆G

Im
(
H1(K,T ) → H1(K,G)

)

where T runs over the maximal K-tori of G. Let then Tz be a maximal K-torus of G
such that z can be lifted to a class z̃ ∈ H1(K,Tz). By Ono’s lemma (Theorem 1.5.1 in
[14]), we can find an exact sequence:

0 → F → R0 → T n
z ×R1 → 0

for some positive integer n, some quasi-trivial tori R0 and R1 and some finite commutative
algebraic group F . By considering the associated cohomology exact sequence, we get an
injection:

H1(K,Tz)
n →֒ H2(K,F ).

If α ∈ H2(K,F ) stands for the image of the n-tuple (z̃, ..., z̃) ∈ H1(K,Tz)
n, then

Nq(α/K) is contained in Nq(Z/K). But by corollary 4.4, we have Nq(α/K) = KM
q (K).

Hence Nq(Z/K) = KM
q (K). ⌣̈

Theorem 4.10. Let q be a non-negative integer. Let K be a field of characteristic 0 and
with cohomological dimension at most q + 1. Then for any principal homogeneous space
Z under a connected linear K-group G, we have Nq(Z/K) = KM

q (K).

13



4 Proof of the Main Theorem

Proof. Let G a connected linear K-group, U its unipotent radical and Z a principal
homogeneous space under G. Then Z ′ = Z/U is naturally a G/U -torsor and, since H1 is
trivial for unipotent groups (cf. Proposition 6 of [18, III.2.1]), we know that every fiber
of Z → Z ′ (which is a U -torsor) has rational points. Then it is easy to see that the result
holds for Z as soon as it holds for Z ′.

Assume then that G is reductive and let Z be as above. Then there exists a quasi-
split reductive K-group H and a class [a] ∈ H1(K,H) such that G = aH (Proposition
16.4.9 of [21]). Fix an element x in KM

q (K). By Proposition 4.9, we can find some finite

extensions K1, ...,Kr of K and an r-tuple (x1, ..., xr) ∈
∏r

i=1K
M
q (Ki) such that:

{

[a]|Ki = 0 for each i ∈ {1, ..., r},
x =

∏r
i=1NKi/K(xi).

Hence for each i, the reductive group GKi is quasi-split. By applying Proposition
4.9 once again, we can find some finite extensions Ki,1, ...,Ki,ri of Ki and an ri-tuple
(xi,1, ..., xi,ri) ∈

∏ri
j=1K

M
q (Ki,j) such that:
{

Z(Ki,j) 6= ∅ for each j ∈ {1, ..., ri},
xi =

∏ri
j=1NKi,j/Ki

(xi,j).

Hence x =
∏r

i=1

∏ri
j=1NKi,j/K(xi,j), and x ∈ Nq(Z/K). ⌣̈

We now deal with fields of positive characteristic.

Theorem 4.11. Let q be a non-negative integer and let K be any field of characteristic
p > 0.

(i) If K is perfect and has cohomological dimension at most q+1, then for any principal
homogeneous space Z under a smooth linear connected group over K, we have
Nq(Z/K) = KM

q (K).

(ii) If K is imperfect and all its finite extensions have separable cohomological dimen-
sion at most q + 1, we have Nq(Z/K) = KM

q (K) for any principal homogeneous
space Z under a reductive group over K.

Proof. We start by proving (i). Let Z be a principal homogeneous space under a smooth
linear connected K-group G. Let also {u1, ..., uq} be a symbol in KM

q (K). We want to
prove that {u1, ..., uq} ∈ Nq(Z/K).

Since K is a perfect field, the triviality of H1 for unipotent groups still holds in this
case. Then, by proceeding as in the proofs of Proposition 4.9 and Theorem 4.10, we may
and do assume that G is a torus T . We can then find an isotrivial torus T̃ on the ring of
Witt vectors W (K) which lifts T . Moreover, since the map H1(W (K), T̃ ) → H1(K,T )
is an isomorphism (Theorem 11.7 of [6]), we can find a lifting Z̃ of Z to W (K). Let T̃
and Z̃ be the generic fibers of T̃ and Z̃ respectively: they are defined on the fraction
field K̃ of W (K).

By Theorem 3 of [10], the cohomological dimension of K̃ is at most q + 2. Hence,
by Theorem 4.10, we know that Nq+1(Z̃/K̃) = KM

q+1(K̃). We can therefore find r finite

extensions K̃1, ..., K̃r of K̃ and an r-tuple (x1, ..., xr) ∈
∏r

i=1K
M
q (K̃i) such that:

{

Z̃(K̃i) 6= ∅ for each i ∈ {1, ..., r},
{p, ũ1, ..., ũq} =

∏r
i=1NK̃i/K̃

(xi)

14



4 Proof of the Main Theorem

for some liftings ũ1, ..., ũq ∈ W (K)× of u1, ..., uq. Denote by k1, ..., kr the residue fields
of K̃1, ..., K̃r . By using the compatibility of the norm morphism in Milnor K-theory
with the residue maps (Proposition 7.4.1 of [5]), we deduce that {u1, ..., uq} is a prod-
uct of norms coming from the ki’s. Moreover, for each i ∈ {1, ..., n}, the restriction
morphism H1(OK̃i

, T̃ ) → H1(K̃i, T̃ ) can be identified with the inflation morphism

H1(K̃nr
i /K̃i,H

0(K̃nr
i , T̃ )) → H1(K̃i, T̃ ) and is therefore injective. This implies that

Z(ki) 6= ∅, so that {u1, ..., uq} ∈ Nq(Z/K) and (i) is proved.
We now prove (ii). Let Z be a principal homogeneous space under a reductive K-

group G. There is an exact sequence:

1 → H → G→ S → 1

in which H is semisimple and S is an isotrivial torus. Such a sequence induces a coho-
mology exact sequence:

H1(K,H) → H1(K,G) → H1(K,S).

Hence, by using a variant of Lemma 4.8 for non-abelian cohomology, we can reduce to
the case where G is a semisimple group or an isotrivial torus. But the case where G is
semisimple can itself be reduced to the case where G is an isotrivial torus by proceeding
as in the proofs of Proposition 4.9 and Theorem 4.10, by observing that Theorem 11.1
of [22] still holds for semisimple groups over imperfect fields (see Theorem 2 of [19]) and
by using the isotriviality of maximal tori of semisimple groups. We henceforth assume
that G is an isotrivial torus T . By adopting the same notations as in part (i) and by
proceeding exactly in the same way, we only need to prove that Nq+1(Z̃/K̃) = KM

q+1(K̃).

Here, the field K̃ need not have cohomological dimension at most q + 2, and hence
we cannot directly use Theorem 4.10. But we know that the torus T̃ is unramified.

Hence, by Hilbert’s Theorem 90, we know that [Z] ∈ Ker
(

H1(K̃, T̃ ) → H1(K̃nr, T̃ )
)

.

By using Ono’s lemma just as in Proposition 4.9, we see that we only need to prove
that, for any finite Galois module M over K which becomes diagonalisable over Knr

and any cohomology class α ∈ Ker
(

H2(K̃,M) → H2(K̃nr,M)
)

, we have Nq+1(α/K̃) =

KM
q+1(K̃). But since all finite extensions of K have separable cohomological dimension

at most q + 1, Lemma 1 of [4] and Theorem 3(1) of [10] imply that the restriction map

Hq+3(L, µ
⊗(q+2)
p ) → Hq+3(Lnr, µ

⊗(q+2)
p ) is injective for every finite extension L of K̃.

One can therefore apply Theorem 4.3 with K̃∞ = K̃nr, provided that one checks the
following lemma. ⌣̈

Lemma 4.12. Let K be a complete discrete valuation field of mixed characteristic (0, p).
Let k be the residue field of K and assume that K contains a primitive p-th root of unity.
Then the group pBr (K

nr/K) is spanned by cyclic central simple algebras.

Proof. By exercise 3 of section XIII.3 of [17], we have the exact sequence:

0 → Br k → Br (Knr/K) → H1(k,Q/Z) → 0.

By Albert’s theorem (Theorem 9.1.8 of [5]), every element in pBr k is represented by
a cyclic algebra. Moreover, if χ is an element in H1(k,Q/Z), then a lifting of χ in
Br (Knr/K) is given by the cyclic algebra (χ̃, π) where χ̃ ∈ H1(K,Q/Z) is the unramified
lifting of χ and π is a uniformizer in K. Hence every element in pBr (K

nr/K) is a sum
of at most two cyclic algebras. ⌣̈
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Remark 4.13. With these two first steps, we have proved that a perfect field K of
cohomological dimension at most q+1 is Cq

PHS. We have also proved part (ii) of Theorem
4.1.

4.3 Third step: Homogeneous spaces

We finally prove part (i) of Theorem 4.1. For this purpose, recall the following theorem
of Springer (Theorem 3.4 of [20]):

Theorem 4.14. Let K be a perfect field with algebraic closure K̄, let L be a K-kernel
with underlying (smooth) K̄-algebraic group Ḡ. Then for every η ∈ H2(K,L), there exists
a (smooth) finite nilpotent K̄-subgroup F̄ ⊂ Ḡ, a K-kernel F with underlying K̄-group
F̄ and an injective morphism of K-kernels F → L compatible with the inclusion F̄ ⊂ Ḡ
such that the induced relation H2(K,F ) ⊸ H2(K,L) has η in its image.

Proof of Theorem 4.1. Let K be a perfect field of cohomological dimension at most q+1
and Z a homogeneous space under a smooth linear connected K-group G. We claim
that we may assume that Z has smooth stabilizers (which of course is automatic in
characteristic 0). Indeed, consider the Frobenius twist Z(p) and the Frobenius morphism
Z → Z(p), which is surjective since Z is smooth. Since the Frobenius twist is functorial
and it does not modify rational points (cf. Exposé VIIA, §4.1 of [16]), we may replace
G by G/FrG, where FrG denotes the kernel of G → G(p). The stabilizers will be thus
replaced by the corresponding quotient by the Frobenius kernel. By Proposition 8.3 in
loc. cit. we know that some power of this construction will give smooth stabilizers.

Now, following Section 2.3 in [2], we associate to Z a gerb M and an injective mor-
phism of gerbs M → TORS(G), where TORS(G) is the trivial gerb of torsors under G.
The gerb M represents a class η ∈ H2(K,L) for some K-kernel L with smooth underly-
ing K̄-group. Springer’s Theorem tells us then that there exists an injective morphism
of gerbs MF → M with MF a finite gerb whose underlying group F̄ is smooth and
nilpotent. By Proposition 3.2 from [2], this implies the existence of a homogeneous space
ZF under G with finite nilpotent stabilizers and a (a fortiori surjective) G-morphism
ZF → Z. Since clearly NK ′/K(ZF /K) ⊂ NK ′/K(Z/K), we may and do assume that the
stabilizers of Z are finite and solvable.

Consider then the gerb M with underlying (smooth, finite, solvable) K̄-group F̄ . It
represents a class η ∈ H2(K,F ) for some finite K-kernel F . We proceed by induction
on the order of F̄ , noting that the case of order 1 corresponds to G-torsors, which are
already dealt with by Theorem 4.10.

Denote by F ′ = [F,F ] the derived subkernel of F . It is well-defined since the un-
derlying K̄-subgroup F̄ ′ is characteristic in F̄ . By the “functoriality” of non-abelian
H2 for surjective morphisms (cf. §2.2.3 in [2]), we obtain from η ∈ H2(K,F ) a class
ηab ∈ H2(K,F ab), where F ab is the finite abelian K-group (= K-kernel) naturally ob-
tained from F/F ′ (cf. for instance §1.15 of [3]).

Choose an element x ∈ KM
q (K). By Corollary 4.4, we can find some finite extensions

K1, ...,Kr of K and an r-tuple (x1, ..., xr) ∈
∏r

i=1K
M
q (Ki) such that:

{

ηab|Ki = 0 for each i ∈ {1, ..., r},
x =

∏r
i=1NKi/K(xi).
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Using for instance the cocyclic approach to the classes in H2(K,F ), we immediately see
that the triviality of ηab|Ki implies that η|Ki comes from H2(Ki, F

′). This implies in
turn that there exist Ki-gerbs Mi with underlying kernel F ′ and injective morphisms
of gerbs Mi → M which, composed with M → TORS(G), prove by Proposition 3.2 in
[2] the existence of GKi-homogeneous spaces Zi with geometric stabilizers isomorphic to
F̄ ′ and GKi-equivariant morphisms Zi → ZKi . By the inductive assumption, we deduce
that Nq(Zi/Ki) = KM

q (Ki). We can therefore find some finite extensions Ki,1, ...,Ki,ri

of Ki and an ri-tuple (xi,1, ..., xi,ri) ∈
∏ri

j=1K
M
q (Ki,j) such that:

{

Zi(Ki,j) 6= ∅ for each j ∈ {1, ..., ri},
xi =

∏ri
j=1NKi,j/Ki

(xi,j).

Hence x =
∏r

i=1

∏ri
j=1NKi,j/K(xi,j), and x ∈ Nq(Z/K). ⌣̈

Remark 4.15. In the case of fields of characteristic 0, there is a second proof of our
Main Theorem that completely avoids the use of gerbs by using the main result in [2].
This result allows to reduce the proof to the cases of homogeneous spaces of SLn with
finite stabilizer and homogeneous spaces of semisimple simply connected groups with
stabilizers of “ssu-type”. There is still some basic non-abelian cohomology to be dealt
with in the latter case, but it is much less technical (the point being that all the gerbs
are hidden in the results by Demarche and the second author). The case of SLn and
finite stabilizers is easily reduced to the case of solvable stabilizers by a restriction-
corestriction argument using the Sylow subgroups of the stabilizers. Then one can follow
the techniques on universal torsors used by Harpaz and Wittenberg in [7] in order to get
a proof by induction that completely avoids non-abelian cohomology.
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