
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

INCA BAT:
BLIND ASSOCIATIVE TESTING

WITH TOUCH INTERFACES

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

PATRICIO JAVIER LÓPEZ TAULIS

PROFESOR GUÍA:
JÉRÉMY BARBAY

MIEMBROS DE LA COMISIÓN:
CLAUDIO GUTIÉRREZ GALLARDO

SANDRA DE LA FUENTE GONZÁLEZ

SANTIAGO DE CHILE
2022

RESUMEN DE LA MEMORIA

PARA OPTAR AL TÍTULO DE:
Ingeniero Civil en Computación
POR: Patricio Javier López Taulis

AÑO: 2022

PROFESOR GUÍA: Jeremy Barbay

INCA BAT: PRUEBAS ASOCIATIVAS CIEGAS CON INTERFACES
TÁCTILES

Animal Computer Interaction (ACI) es un área de investigación que estudia interacciones de
animales humanos y no humanos con tecnoloǵıa. Entre otros tópicos, investigadores de ACI
en habilidades sensoriales y cognitivas en no humanos, estudian las habilidades asociativas
de estos, como entre una cantidad y un número escrito, una imagen y un dibujo, etc. Un
problema fundamental en estos estudios es el riesgo de que el investigador humano, capaz de
resolver las tareas solicitadas al sujeto de investigación, dé pistas (involuntariamente) sobre
la solución correcta. Las pruebas a ciegas disminuyen aquel riesgo, pero de forma costosa:
¿Cuánto podŕıa reducirse ese costo usando dispositivos digitales? Hemos formalizado, im-
plementado y validado una aplicación con interfaz táctil que simplifica la configuración de
pruebas a ciegas para experimentos con animales ya entrenados en el uso de pantallas táctiles.
Para formalizar y validar la aplicación, contamos con la colaboración de una investigadora de
ACI que diseñó un exitoso pero costoso sistema de pruebas ciegas no digitales, basado en un
evaluador humano externo, tarjetas de papel, grabación de sesiones y posterior recolección
de datos. La investigadora validó la usabilidad de la aplicación con cacatúas, y también los
datos recolectados, declarando que puede ser usada para validar hipótesis sobre cognición
animal aplicado en el estudio de habilidades asociativas. Además, ella declaró que la apli-
cación es ahora parte de la rutina diaria de entrenamiento de sus sujetos, dado que por sus
cualidades enriquece la calidad de vida de estos.

i

ABSTRACT FOR MEMORIA
TO APPLY TO DEGREE OF:
Ingeniero Civil en Computación
BY: Patricio Javier López Taulis
YEAR: 2022
PROFESSOR: Jeremy Barbay

INCA BAT: BLIND ASSOCIATIVE TESTING WITH TOUCH INTERFACES

Animal Computer Interaction (ACI) is the research field that studies human and non-
human interaction with technology. Among other topics, ACI researchers in non-human
sensory and cognitive abilities investigate the associative abilities of non-humans, such as
between a quantity and a written number, a picture and a drawing, etc. A core problem in
such studies is the risk for the human experimenter, able to solve the task required from the
subject, to (involuntarily) cue the subject about the correct answer. Blind testing setups
diminish such risk but are costly: How much can such cost be reduced using digital devices?
We formalized, implemented and validated a touch interface application that simplifies Blind
Testing setups for experiments of small animals already trained in the use of touch screens.
To help with both the formalization and the validation, we counted with the collaboration of
an ACI researcher who designed a successful if costly non-digital Blind Testing setup, based
on an external human evaluator, cardboard cards, session recording and slow data collection.
The ACI researcher validated the usability of the application with cockatoos and the collected
data, declaring that it can be used to validate animal cognition research hypotheses on
associative abilities. In addition, the ACI researcher declared that the application is now
part of the daily training routine of her subjects, due to its qualities for life enrichment.

ii

Con cariño para mis padres Patricia y Roberto,
para mis hermanos y amigos, a mi querida Danielle

y a todos quienes me brindaron su apoyo para cumplir esta meta:
Son mi fuente de inspiración y perserverancia.

Sin ustedes no estaŕıa hoy aqúı.

iii

Content

1 Introduction 1

2 State of the Art 3

2.1 Animal Cognition and Associative Testing 3

2.2 Blind Assosiative Testing (BAT) . 4

2.3 Animal Computer Interaction (ACI) . 5

3 Design 7

3.1 Use Cases . 9

3.2 Objects Diagram . 10

3.3 Requirements . 11

3.3.1 Blind Testing Basic Setup and Learner View 11

3.3.2 Logs Requirements . 12

3.3.3 Material Creation . 13

3.3.4 Other requirements . 14

3.4 Learner Interface . 14

3.5 Teacher Interfaces . 16

3.6 Data Model . 17

4 Implementation 18

4.1 Work Methodology . 18

4.2 Technologies . 19

iv

4.3 Frontend . 20

4.3.1 Source Code Structure . 20

4.3.2 Local Storage . 20

4.3.3 Learner View . 21

4.3.4 Teacher Views . 25

4.4 Backend . 33

4.5 Deployment . 34

5 Validation 36

5.1 Ethics . 36

5.2 Validation Process . 37

5.3 Results . 37

5.4 Analysis . 38

6 Conclusion 40

6.1 Contribution . 40

6.2 Discussion . 41

6.3 Future Developments . 42

Bibliography 44

ANNEXES 45

Annexed A Requirements 46

A.1 Blind Testing Basic Setup and Learner View 46

Annexed B InCA BAT interfaces 48

Annexed C Source Code Structure 53

C.1 Frontend Structure . 53

Annexed D Evaluation 55

v

D.1 Closed questions . 55

D.2 Open questions . 56

Annexed E Future work list 57

Annexed F Diagrams 60

F.1 InCA BAT Navigation Map . 60

vi

List of Tables

5.1 Meeting details: We had 5 meetings at the end of each sprint, from October
to December. Details of each meeting are described in second column. 37

5.2 Validation Results: The number of stars represent the level of agreement (�)
Totally disagree, (��) Disagree, (���) Neutral,(����) Agree, (�����)
Completely agree. The worst evaluated was agree and the best was completely
agree . 38

vii

List of Figures

2.1 Periodic Table game for android in Google Play store, associates chemical
element symbol (and a picture related to it) with 2 options. This game can
be categorized as picture to text or symbol to text Associative Testing. . . . 5

2.2 Math Mech game for android in Google Play store, associates an arithmetical
problem with 2 options. This game is not directly associating a symbol, picture
or a sound, but a meaning interpretation to another symbol. 5

2.3 Vocabulary Battle game for android in Google Play store, associates a picture
of photo with 2 options. This kind of Associative Test is the closest one to our
main purpose to achieve in this project. 6

3.1 InCA BCT selection view: InCA BAT Learner view is based on the card
position display of InCA BCT, showing a title on top of the view, an exit
button, and cards ordered horizontally. 8

3.2 Foam letters used by Cunha on her researches about animal cognition, teaching
how to read and write. 8

3.3 Use case diagram: Teachers (on left) can create cards and tests, configure
the learner view and retrieve logs from BAT sessions. Learners (on right),
symbolized by a parrot, can only access to play Blind Associative Test (BAT)
sessions. 9

3.4 Objects diagram for InCA BAT: this diagram describes all needed objects,
their relationship and interactions, without methods or functions. 10

3.5 Logs table part 1: this session has 5 repetitions with 3 cards (white card, dot
card, 2 dots card), 2 of them selectable (dot card and 2 dots card). TestName
is the name of the selected test,Learner is Ellie and Caregiver/Teacher (GC) is
set as Default, S+ represents the correct card and CardAudioMsg is the audio
prompt. 12

viii

3.6 Logs table part 2: this session has 5 repetitions with 3 cards (white card, dot
card, 2 dots card), 2 of them selectable (dot card and 2 dots card). From
C 0 to C 4 the names of the cards ordered from left to right, picked card
(PC) represents the index of selected card (0 to 4) and its name in PC name.
Column R is for result of picked card, Data is for exact time when touched
the card and TimeR for time reaction in milliseconds. 13

3.7 Logs table part 3: all settings that modifies BAT sessions are described in
last 11 columns of logs, these are from left to right background color, card
background color, card foreground, feedback delay (in milliseconds), card text
(enabled is true, and disabled is false), voice (same as card text), feedback
message, card height (in pixels), card width (in pixels), cards separation and
annotations. Annotations are always empty. 13

3.8 Play BAT Flowchart: This flowchart describes the Learner interaction with
the Learner interface. Comments in yellow, actions in blue, user actions in
red, internal process in green. 15

3.9 Play BAT Test Session example view: This example shows 2 cards on the
screen, with default settings (50% card separation with white background,
foreground and card background). To ensure Learner correct interaction with-
out distraction, there are limited elements on screen, such as cards and two
small buttons on bottom corner. 15

3.10 InCA BAT Main page: There are 6 buttons to access all the sections of the ap-
plication, on top left the access for About view, top right Settings, followed by
test selection, logs view, local cards management, and local test management.
On the bottom the collaboration declaration. 16

3.11 Data model: Containing a total of 10 entities, this diagram manage Tests and
Cards (which can be 3 different types of cards) and Logs (with TestSession,
TestSessionLog and Settings). 17

4.1 Code structure directory view: InCA BAT frontend project code structure
has components that manage the views, controller that manage data model
abstraction, stores for global variables and utils for any other utilities. . . . 21

4.2 Save and persist username among sessions: in stores.js file, we imported
writable from ’svelte/store’ to use Svelte stores, and we retrieve the last
value of username saved in last session in line 3. In line 5 we export the user-
name value to use in other files. In lines 7 to 9 we update the value of local
storage, everytime variable username changes 22

4.3 Usage of store variable, example for username in Settings.svelte: we imported
username from stores and bind it in a input html tag. This will dynamically
change username value from stores, each time the username is changed in the
input. 22

ix

4.4 Learner View Pre-Start: this is the starting screen when entering to a new
BAT session. From this point is designed to be used by a Learner without
support. 23

4.5 Learner View Waiting: this view shows the background color only (white in
this example) and no cards, for 1.5 seconds that is modifiable on Settings. In
this point draft a subset of cards for next view. 23

4.6 Learner View Running: this view shows drafted cards and prompt audio from
one of the cards to be selected. Once one of the cards is selected it goes to
waiting view if there are repetitions left. Hold to exit button and Exit full
screen button on right. 23

4.7 Learner View Post-Game: When no repetitions left for current current session
we can see 3 buttons on screen and a brief summary of the test results. . . . 24

4.8 Learner View Pause: If bottom right button is pressed, we leave fullscreen view
and pause the game. If continue button is pressed, goes directly to running
view with a new drafted subset of cards and audio prompt. 24

4.9 Settings view: from left to right the Settings view are scrolling down. First
option is Number of repetitions and last option is Tests Logs cleaning. 26

4.10 Card list view: Card display view, on top left the button to access card creator.
On bottom the footer to go back, to main menu, and delete selected cards. . 27

4.11 Card Creator Selector: this is the first view when selecting to add a new card.
There are 2 options, text cards and emoji cards. Emoji cards also works for
image cards. 27

4.12 Card Creator: Example for emoji card creator selecting a monkey face emoji
on left. In the center the emoji selector with emoji searcher. On right an
example for image card creator adding a source image. 28

4.13 Test display view: main view of local test manager, on top and footer a create
button to access Test Creator. In the center of the screen all local tests are
displayed and has an option to delete it. 29

4.14 Test Creator view: First step view for Test Creator. New cards can be created
from this view or select one or more cards to create a new test. 29

4.15 Logs main view: we can see session logs from last to first in top, each one with
a brief summary and two buttons to extended summaries. 30

4.16 Logs view summary data: When clicking Show Summary Data button, it
displays a list with all test repetitions in a session, in a human readable format. 31

x

4.17 Logs view summary table: When clicking Show Summary Table button, it
displays a list with all test repetitions in a session, in table format. This
image was taken in a bigger resolution (tablet/iPad), because its not readable
on small screens. 31

4.18 Test Selection view: In this view the selected test remains for all the session
and can be selected a global or local test. When test is selected there is a
preview of it, and if card image is clicked the card sound is displayed. 32

4.19 InCA BAT API structure based on traditional MVC architecture, from top to
bottom: app directory contains views, endpoint urls (api.py), and utils (text
to speech), database folder includes connection logic and models, static folder
store generated files like sounds or images, and finally main.py, settings.py
and requirements.txt include environment and deployment configurations. . . 33

B.1 Teacher views footers. All possible footer button structures for 1 to 7: 1) Test
Selection. 2) Local Logs. 3) My Cards display. 4) Cards creator. 5) My Tests
display 6) Test creator. 7) Settings. 48

B.2 InCA BAT About view: includes a description of the project and mentions to
Parrot Kindergarten and InCA Labs. 49

B.3 Card delete examples: On left a confirmation message to delete without re-
strictions. On right a warning that does not allow to delete pictures and its
detail. 50

B.4 Card Creator: Example for text creator, on left configuring a Cheese word
with text size and position. On center same image but scrolling down to see
save button. On right, cheese card added already, removing button for save. 50

B.5 Test deletion example when clicking the icon of trash can requesting confir-
mation. 51

B.6 Test creation example: From 1 to 9 starting from top left, moving to right,
and finishing in bottom right. 1) Tests display, click on Create. 2) and 3)
Test creator, choose 5 animal cards. 4) set a text to each animal card. 5) set
a name for the test. 6) confirm creation. 7) creation in progress. 8) creation
finished, click on finish. 9) Final result with our new test. 52

C.1 Source code frontend structure with extended file view. All components for
views are visible. 54

F.1 InCA BAT Navigation Map: Simplified navigation map for InCA BAT. Teacher
interfaces on blue, Learner Interfaces on green. 60

xi

Chapter 1

Introduction

Animal-computer interaction (ACI) is a field of research for “the design and use of technology
with, for, and by animals” [5]. It is a multidisciplinary field where engineering, design, com-
puting, anthropology, behavior science, welfare science, etc. can work together with a com-
mon idea, connecting the benefits of technology with human and non-human animals. ACI
has grown rapidly and consistently in the last decade, connecting researchers and practition-
ers from all over the world with different points of view on the same problem: understanding
the possibilities and limitations of technology, for human and non-human animals.

Jennifer Cunha, an ACI researcher, studies advancing communication with birds [6].
Among other topics, she studies the possibility for birds to be able to learn how to read and
write. For instance, showing a cockatoo two letters and pronouncing a word, the bird is able
to choose which letter corresponds to the sound: that is an example of Binary Choice, a
specific case of Associative Testing, that measures the subject’s ability to relate two objects
with the same meaning.

Cunha uses Android applications to train and entertain cockatoos. Mobile applications
can be used for training them in the use of touch devices, to communicate and actively
interact with her, and test diverse abilities of her birds. These digital games reduce the setup
time and allows Cunha to try a wide a variety of applications to measure different abilities
and improve their skills for using touch screens.

One of the most relevant abilities to study in animal cognition, is the associative ability.
How much can they learn and what are the difficulties and challenges for them when they
associate two different objects? To research about this, Cunha designed a Blind Associative
Testing setup, using cardboard cards and recording each session, in order to watch it later
to recollect data (Chapter 2).

It is necessary to improve this kind of research with non-human animals because human
interaction can be involved in all the experiments, making its validation possibly biased by
the researcher, who is the one that most of the time makes all the procedures. That is why
we designed a Blind Associative Testing application that covered all the relevant points of
Cunha’s Blind Testing setup, to prove that the cost and risks of implementing a Blind
Associative Testing, from setup to data recollection (create tests, play a BAT,

1

save logs for future analysis) can be reduced using digital devices.

The designed web application (Chapter 3) emulates Cunha’s Blind Testing setup, based
on the same principles underlying her methodology: a human trainer (also called Teacher in
this report) creates a set of cards and questions/asseverations related to those cards, chooses
a set of one or more cards and one asseveration to ask to the non-human animal (also called
Learner in this report). The Learner can choose one card after the question and then repeats
the process.

We followed an agile methodology to manage this project (Chapter 4), to validate, fix
and develop in a short time three important points ordered by importance: Blind Associative
Testing, material creation and log creation. The methodology was based on a combination
of SCRUM and Kanban, with sprints of 3 to 4 weeks to show and validate each point or a
subset of features for each point. We started from the most important point, ensuring that
the choosing card game is playable by the Learner and some of the most relevant settings
to modify cards displaying and simple logging. The next point was adding more features,
to create new tests with different cards and audios that are saved in client side, followed by
improvement of logging system and data recollection. Once all important features were done,
we finished improving user interfaces based on HCI principles to ease user interactions with
the platform.

There was a informal validation on the end of each sprint, followed by requirements
gathering for next sprints (Chapter 5). At the last part of the project, once the system
was completed, we validated the three main important features mentioned before, software
usability and desired future features for the software, with the help of Cunha. She declared
her enthusiasm to use InCA BAT to validate animal cognition hypotheses on associative
abilities, and she is now using the application as part of the core of her training sessions with
birds.

2

Chapter 2

State of the Art

A core problem of research in animal cognition is understanding their ability to associate
elements with their meaning. It has been studied more intensely since the 19th century, but
having some credibility issues when researchers are directly involved in experimenting, like in
associative testing, which concept we describe in Section 2.1. In order to solve that, Cunha
(and others before her) designed a Blind Associative Testing setup, detailed in Section 2.2,
that offers a possible solution to evaluate the associative abilities, of non-human animals,
without bias. But even this good idea has practical limitations (its setup cost is too high),
which can partially be alleviated by using technology. That is how with the help and expe-
rience of Cunha, in Section 2.3 we analyze the current applications and their problems when
using it with cockatoos.

2.1 Animal Cognition and Associative Testing

Associative abilities are common in humans, associating sounds to things and symbols,
or symbols to images. For example, learning a new language requires associating their
graphemes with their sounds, and when we are learning the periodic table we associate
the chemical elements with 1 or 2 letters. But in the case of non-human animals, there is not
enough knowledge to judge the ability of each subject or each different species to associate
different elements with same meaning.

Associative Testing helps us to measure the associative ability of individuals by displaying
pictures, symbols, images or sounds and letting the subjects match them. For example,
showing two cards with different symbols that have the same sound, let’s say the sound for
letter A and letter a, are the same, so we can associate them together because it has the
same meaning. With this kind of test we can understand what are the limitations of each
animal, or even species, in terms of association abilities. But, there is skepticism among the
researchers of animal cognition about these experiments when a human tries to demonstrate
that animals can understand, communicate efficiently, read, write, do the math, etcetera,
because of the Clever Hans Effect [8]. In the early 1900, there was a horse called Hans
that supposedly can solve arithmetical problems and other mental tasks by itself, but it was

3

demonstrated later that what he was doing was reading the human physical cues, not solving
the mathematical problems.

Associative Testing does not train subjects to recognize certain element and associate
it with others, but helps to determine which is the best way for each subject to associate
elements, or if the subject can or cannot recognize any relationship between the elements.
So, if the subject has the ability to associate elements, he can use this ability to learn new
things by associating. Because of the Clever Hans effect, Associative Testing is not a reliable
methodology by itself, requiring to add a Blind factor to improve the system, which we will
describe in Section 2.2.

2.2 Blind Assosiative Testing (BAT)

A Blind Testing set-up minimizes human interactions to avoid the Clever Hans Effect [8],
because the human is not directly interacting with the non-human animal during the experi-
ment, and know neither the question nor its answer, so that the human lacks the information
to decide which is the correct answer to the problem, and hence can not give any cue to the
subject.

Cunha [6], and other researchers in ACI, have been interacting with cockatoos to realize
experiments about communication with birds, using physical elements, like cardboard cards
or touch interfaces. The experiment that we are focusing on, is what we call Associative
Testing, where a human shows to a parrot cards with different symbols, the human makes a
sound (a word or basic instruction in English) and the bird chooses one of the cards with its
beak [1]. It may also be called Binary choice, because normally showing one card with each
hand is the easiest way to make the test. The used cards have nothing in the back, so the
human does not know which card is the correct one for the given question, and cannot give
any (voluntary or involuntary) cues to the subject.

Blind Tests designed by Cunha are complicated for several reasons: They require help
from other humans to make it easier, because it tries to isolate the test from the researcher; it
is time consuming to get analyzable data from the experiments, and there is still a possibility
that a bias can be given to the parrot without knowing it.

There are different kinds of non-human cognition tests. In this project, we focus on a
limited type of Associative tests, where a non-human animal decides, among two or more
choices, which one is associated with a given prompt. This experiment is not easy to set up
and randomize without a computer, because of the possibility of bias in the randomization
when it is done by a human. Currently, there is a lot of work behind each test, like recording
sessions and watching it later to annotate results or similar settings, but there is still missed
data and possible bias from the researchers on each experiment.

4

2.3 Animal Computer Interaction (ACI)

Cunha has trained her cockatoos to play learning games on smartphones and tablets, let-
ting them play and receive rewards for correct answers, but using applications that are not
designed for birds. Common problems are the use of many colors or animations that dis-
tract from the main task, characters that might be scary for a bird, strong sound or strong
vibration.

The closest examples of associative testing games available for Android in Google Play are
Periodic Table Battle [Figure2.1], Math Mech: Basic Mathematics [Figure2.2] or Vocabulary
Battle: Flashcards [Figure2.3], but as we said before, these games have a lot of distractors
for the main task, that a human can handle, but a bird might not be comfortable with. So
it is needed to find a better approach to design an application for birds or small mammals.

Figure 2.1: Periodic Table game for android in Google Play store, associates chemical element
symbol (and a picture related to it) with 2 options. This game can be categorized as picture to text
or symbol to text Associative Testing.

Figure 2.2: Math Mech game for android in Google Play store, associates an arithmetical problem
with 2 options. This game is not directly associating a symbol, picture or a sound, but a meaning
interpretation to another symbol.

5

Figure 2.3: Vocabulary Battle game for android in Google Play store, associates a picture of photo
with 2 options. This kind of Associative Test is the closest one to our main purpose to achieve in
this project.

6

Chapter 3

Design

The design of the application was inspired by the learner view of the application InCA Blind
Comparative Testing (InCA BCT) [2] (illustrated by a screenshot in Figure 3.1), and the
analogical Blind Associative Testing setup done by Cunha [6], using cardboard cards with
words and letters of different colors and Foam Letters (illustrated by a screenshot in Figure
3.2). These designs are minimalist, specially InCA BCT with plain colors and trying to avoid
most of the distractors that we are used to see in normal applications (like animations and
colorful interfaces), and the reason is mainly because the users of such application might
react with fear or might be distracted and not see clearly what is it supposed to do in the
application. Because of that, we followed the same design philosophy in the prototype and
final design for InCA BAT, with plain interfaces and minimal buttons, locking the access of
the non-human user to specific sections in the application, the Learner View, and giving free
access to the human user to configure the Learner view and add more cards and tests.

In order to understand the system and to design all needed interfaces, we describe a
use case diagram in Section 3.1, that shows how the Teacher and Learner interact with the
application. All these use cases generate or need Tests, Cards, and other objects, described
by diagrams in Section 3.2, interacting with each other to setup a large amount of Blind
Associative Tests (BAT). We continue describing the general requirements for the application
in Section 3.3, but a critical part depends of the usability of the Learner views, where BAT
are played, as a minimalist but complete cards selection game. We finish by a description
of the options to the Teacher to create new material intuitively, adapt tests globally and
retrieve all session logs in one click.

7

Figure 3.1: InCA BCT selection view: InCA BAT Learner view is based on the card position
display of InCA BCT, showing a title on top of the view, an exit button, and cards ordered hori-
zontally.

Figure 3.2: Foam letters used by Cunha on her researches about animal cognition, teaching how
to read and write.

8

3.1 Use Cases

There are at least three major use cases for this application: start a Blind Associative
Test (BAT) session, retrieve logs and create material. We separated each of those in more
specific use cases, to clarify all the possible features to develop in the application. We also
have two different users for this application, the Learner and the Teacher. The Learner is
how we call the non-verbal animal (not restricted to non-humans), and the Teacher is the
human researcher or caregiver of the Learner, both terms will be used in this project without
differences. There are 7 use cases that the system must cover, described in Figure 3.3.

Figure 3.3: Use case diagram: Teachers (on left) can create cards and tests, configure the learner
view and retrieve logs from BAT sessions. Learners (on right), symbolized by a parrot, can only
access to play Blind Associative Test (BAT) sessions.

9

3.2 Objects Diagram

The application can be described by all the objects and their relations. It helps to clarify
how Tests, Cards and Settings interact with each other, without adding actions. As seen in
the use case diagram in Figure 3.3, a Teacher can create Tests and Cards, and Select a Test
from the created Tests to allow a Learner to Play a BAT session. Figure 3.4, illustrates how
a Test contains Cards, but there is a container object which represents that action, the Test
Card, that also has an audio. This is needed to generalize a Test structure, with different
behaviors of object associations (like different types of cards with different details, or image
to image tests instead of image to sound test).

Figure 3.4: Objects diagram for InCA BAT: this diagram describes all needed objects, their
relationship and interactions, without methods or functions.

10

3.3 Requirements

All the requirements were identified through interviews with the client, each of the interviews
resulting in the addition of new requirements based on current version on that time, directly
requested by the client or suggested by us. These requirements were categorized on important,
normal and desired, where most of the desired ones were directly defined as future work
because escaping from the objectives for this project in the given time available.

3.3.1 Blind Testing Basic Setup and Learner View

The Learner View is the most important part of the application, where the subject of study
directly interacts with the touch interface, that is why we put special care on consistency of
this view and all settings to modify the display of cards, sounds, colors and other details.
Blind Testing Basic Setup refers to Settings view and Test Selection view, and Learner view
refers to the part of the application that emulates a Blind Associative Test with cards and
sounds.

There are three views that interact directly to cover a complete and highly configurable
Blind Associative Testing: Test Selection, to choose and see details of each test among all
the available tests for the user, Settings, to configure the game visual display and sounds
for feedback and questions, and finally the Learner view, that includes all the logic of a
Blind Associate Test (BAT), displaying randomly a configurable amount of cards on screen,
allowing only one card to be clicked each time, giving feedback and repeat the process for 1 or
more times (also configurable on settings view), after the session finishes it allows to restart
the same test or go back to Test Selection. Specific requirements of this part are available in
Annexed A.1.

Settings view includes the following configurable global variables that are applied to all
the tests: amount of cards on screen, number of tests for each BAT session, cards separation,
learner view background color, cards foreground and background color, feedback time delay,
how much time hold the exit button while in BAT, show card text on screen, card height
and width, enable/disable card sound message, and feedback sound.

Test Selection view allows the Teacher to select one of the tests, display test details and
start new session with selected test. A Test Preview has 1 or more cards, and each card
has 0 or 1 audio message that will be played on the Test Selection view if a card is touched,
allowing to verify if the selected test is the desired or not. Finally there is a button to go
back to menu or start the test, moving to the Learner view.

Learner view starts with a button on the center of the screen with the word “Start!”, once
it is clicked the BAT session start. A BAT session has N tests, defined on Settings view as
number of repetitions, that after T seconds, defined as feedback time delay on Settings, start
a test. Each test in a session chooses randomly one card, from now the S+ card, from all the
cards available on chosen Test on the Test Selection view, then choose randomly C-1 cards
among left cards after removing the S+ card, where C is the minimum between the number
of cards of chosen Test on the Test Selection View and the number of cards on screen defined

11

on Settings. After this process we have C cards, and one of them is the S+ card, and the
test start playing the sound of the S+ card and showing on the screen all the C chosen cards.
Once a card from the screen is picked, the next test start (including the delay time before
showing the cards on the screen). When a session finished N tests, it concludes showing in
the screen a summary of the correct and incorrect selections and 2 buttons: “Play Again?”,
to start a new session and “Go Back”, to go to Test Selection view.

3.3.2 Logs Requirements

According to Cunha, data collection is crucial for research purposes, having a reliable system
and enough data from each Blind Associative Test session. Without automatic log generation,
generating such logs manually might take months. That makes this feature so relevant for the
client and there are very specific requirements about the data, the format and the moment
such a log is saved.

After each completed session, a complete log of session events is saved, and all the current
settings setup for that test. The required session events to save in logs were required from
the client, but adapted and improved based on the capabilities of the software: Session
number, test number for current Test Session, Test name, correct choice (S+), Card audio
message, Learner name, Caregiver name (CG), order of each card on screen from left to right,
picked card name, picked card position, result, date, reaction time, background color, Card
background color, Card foreground, feedback delay, card text (enabled or disabled, true or
false), voice (true or false for enabled or disabled), feedback message chosen, Card height and
width, Cards separation (percentage) and extra annotations. An example of required data
is described in Figures 3.5, 3.6 and 3.7.

Logs can be accessed, retrieved and reset easily. They are saved locally and can be
downloaded from the application in CSV format. To access session logs, there is a view that
can be accessed from the main page (a visualization can be seen in Figure 4.15). Logs are
displayed from last session to first session, with the last session on top. Each log has a table
preview and a human readable summary, that can be shown and hidden with a button (each
one).

Figure 3.5: Logs table part 1: this session has 5 repetitions with 3 cards (white card, dot card, 2
dots card), 2 of them selectable (dot card and 2 dots card). TestName is the name of the selected
test,Learner is Ellie and Caregiver/Teacher (GC) is set as Default, S+ represents the correct card
and CardAudioMsg is the audio prompt.

12

Figure 3.6: Logs table part 2: this session has 5 repetitions with 3 cards (white card, dot card, 2
dots card), 2 of them selectable (dot card and 2 dots card). From C 0 to C 4 the names of the cards
ordered from left to right, picked card (PC) represents the index of selected card (0 to 4) and its
name in PC name. Column R is for result of picked card, Data is for exact time when touched the
card and TimeR for time reaction in milliseconds.

Figure 3.7: Logs table part 3: all settings that modifies BAT sessions are described in last
11 columns of logs, these are from left to right background color, card background color, card
foreground, feedback delay (in milliseconds), card text (enabled is true, and disabled is false),
voice (same as card text), feedback message, card height (in pixels), card width (in pixels), cards
separation and annotations. Annotations are always empty.

3.3.3 Material Creation

Due to the large amount of possible tests to create, to study different topics of image-sound
association, we designed the first version of this application with two simple tests based on
touching a dot and decided to give freedom to create new tests, with combinations of custom
cards and sounds.

A Card is an image that represent a choice for a Blind Test, and there are three possible
Cards types: Image card, that can be set with the image url, dice Cards (preset SVG images
with dice shapes), and Text cards, that can be adjusted adding a text and adjusting it to
the card size. Each Card can be created and deleted directly from the application (except
for diceCard), in a menu that can be accessed from the main page (see the button My Cards
on Figure 3.10).

A Test is a collection of Cards, with 0 or 1 Audio associated to each card. There is only
one type of test, Image-Audio Association Test, and these can be created from the view to
access local Tests (see button My Tests on Figure 3.10). The needed steps to create a Test
are listed below:

1. Select 1 more cards, if the needed card is not available, it can be created with a button

13

available in the same view.

2. Add a short text description for each Card, this description will be transformed from
text to speech and linked to the Card in current Test. If no text description is added,
there is no audio linked to the Card.

3. Add a name for the Test, this will be displayed on Test Selector view to find a Test.

4. Confirm creation. In this step, if confirm is pressed, all cards with description will link
an audio with the text as a content of the audio and set as Selectable, if there is no text
description, there is no audio linked and is set as non Selectable.

Selectable cards in a Test can be chosen as correct choice in random card selection. This
behavior allows to set filling Cards for some tests, it means that the card image will be shown
but never will be an option to click. This setup simplifies Test creation and gives an useful
tool for ignoring some cards from the card selection.

Tests and Cards can be listed and deleted from their main views, protecting the system
for cascade delete, it means that a Card cannot be deleted if there is a Test using it, and if a
Test is deleted, it does not delete used Cards. This behavior is just available for Local Tests
and Cards (created in the device).

3.3.4 Other requirements

Cunha requested and remarked the importance of mentioning her Parrot Kindergarten project
in the application, adding a hyperlink to it in the main page of InCA BAT that is visible and
redirect to her web page located in https://parrotkindergarten.com/. We also proposed
to add a view for this purpose in a section named About, that can be accessed from main page
and it also includes a mention to Parrot Kindergarten and a brief summary of the project to
clarify intentions. A description of this view can be seen in Annexed B.2.

3.4 Learner Interface

The Learner interface covers the main requirements for Learner View seen on Section 3.3.1,
allowing to start a Blind Associative Test Session, with all the settings from the Settings view
(details on Section 3.3.1). This view was designed as a minimalist but dynamically extensible
interface, allowing the user to modify as needed in order to create very specific situations to
Test cognitive abilities of non-human animals.

To ensure that the Learner has an extremely limited interaction with the interface, we
designed the flow of the Learner View (Figure 3.8) with no more than two actions while in
game: Pick a Card and Replay. This setup not only limit the Learner but allows it to play
by itself without Teacher interaction with the application. An example of a test session view
can be seen in Figure 3.9.

14

https://parrotkindergarten.com/

Figure 3.8: Play BAT Flowchart: This flowchart describes the Learner interaction with the Learner
interface. Comments in yellow, actions in blue, user actions in red, internal process in green.

Figure 3.9: Play BAT Test Session example view: This example shows 2 cards on the screen, with
default settings (50% card separation with white background, foreground and card background). To
ensure Learner correct interaction without distraction, there are limited elements on screen, such
as cards and two small buttons on bottom corner.

15

3.5 Teacher Interfaces

When we refers to Teacher Interfaces, we mean all the views that can help a Teacher to setup
a Blind Associative Test, including: Main navigation page, information about the project,
local logs, card management, test management, application settings, BAT settings and test
selection. We designed these views thinking of a Teacher, giving the possibility to create
new materials and navigate in few taps from one view to another, without hidden views and
making it clear and smooth. All the views can be accessed from the main page as seen in
Figure 3.10. In Annexed F.1 we can see a detailed flowchart of the the application navigation.

Figure 3.10: InCA BAT Main page: There are 6 buttons to access all the sections of the applica-
tion, on top left the access for About view, top right Settings, followed by test selection, logs view,
local cards management, and local test management. On the bottom the collaboration declaration.

16

3.6 Data Model

InCA BAT data model includes all the requirements described in Section 3.3, included Logs,
Settings, Test Sessions, Test and Cards. We describe in the following entity-relationship
model (Figure 3.11), a data oriented model based on the object diagram seen in Figure 3.4,
assuming a TestSession as a container for all the Logging information needed by the client.

Figure 3.11: Data model: Containing a total of 10 entities, this diagram manage Tests and Cards
(which can be 3 different types of cards) and Logs (with TestSession, TestSessionLog and Settings).

As we can see in Figure 3.11, each Test has one or more TestCards. TestCard is the entity
that contains the logic for a Blind Associative Test among an image and an audio, where
a Card extends to DiceCard, ImageCard or TextCard, each one including different creation
details. This design allows the creation of a large amount of Cards, but not limited to it,
because it allows to extend the model to add more card types that might not be considered in
this project. This model (Figure 3.11), also allows storing session logs in a database, saving
all the requested data (see Section 3.3.2) from each session to further analysis.

This model does not include users, because it was designed to interact with a frontend
application that does not have login options. But it is a simple model that can be easily
extended to include users, adding a new entity User or Teacher that is related with Test,
Card, Audio, and/or TestSession.

17

Chapter 4

Implementation

The implementation of the InCA BAT software followed an agile methodology of work,
detailed in Section 4.1, to have small versions of the application for early validation. That
is why we chose technologies like Svelte, described in Section 4.2, to develop and deploy
fast the frontend, Section 4.3, and backend, Section 4.4. We explain in detail how to store
variables on the client side, Section 4.3.2, and how to use it in Learner and Teacher views,
with an extensive description of these interfaces development, Section 4.3.3 and Section 4.3.4
respectively. We continue describing how we partially implemented an API, to interact with
the frontend in Section 4.4, its importance to storing data, and generating audio files for the
text to speech functionality that is a core functionality of the application, Section 4.4. We
finish the implementation description with our deployment methodology in Section 4.5.

4.1 Work Methodology

We followed an agile methodology in this project, using Kanban and Scrum principles, specif-
ically using 5 lists of tasks:simple urgent, complex urgent, simple non-urgent, desired but
complex and things that are done. Each completed task was moved to the done list. Every 2
to 4 weeks the list was updated, presenting to the client the done tasks, to have an informal
validation in a period of 2 weeks, and tasks still on the list were moved, and new tasks were
added, adjusting priorities. This methodology was implemented to develop as many features
as we can in the shortest possible period, and moving features that were underestimated
replacing it by simpler ones while looking for other solutions. This allowed us to develop and
validate in parallel, and make fast adaptations whenever is needed. We delivered a minimal
version in week 6 and small new features every 2 to 3 weeks, with personal meetings with
informal interviews to gather requirements, and a final validation in the last week.

We developed InCA BAT in two parts, using software versioning with Git and Github
repositories. These two part are a frontend repository for main InCA BAT client side ori-
ented application, and a backend repository for an API that communicates to a database and
a text to speech integration, to create audio files for Tests created in frontend. Using ver-
sioning allowed us to have control of breaking changes and working organization, separating

18

functionalities and dependencies that makes the software easier to extend for further devel-
opers. The main objective was having an stable frontend with no dependencies of a backend,
and the least part of the time was dedicated to implement an API structure, extensible but
simple, that can adapt to the frontend application.

Due to constant discovery and change or priorities, the designed model for database was
not strictly implemented, but a subset of properties that are adaptable to create a more
stable version.

4.2 Technologies

We chose the following technologies to develop InCA BAT, based on the objectives, cur-
rent knowledge, learning curve and flexibility for breaking changes of requirements and/or
objectives:

1. Svelte: for frontend development.

2. Flask: for backend development, oriented to simple and fast API creation, using python
3.

3. MongoDB: non-relational database to store data with backend API.

We decided to create a web application that can be tested easily in many devices with
different operative systems, to avoid possible installation issues, and to ease user interaction
with new versions of the application (due to the possibility of a large a amount of version
changes). Svelte allows us to create a very flexible, simple and reactive software, that will
run in any device that has a browser. Svelte can be structured with components like other
frontend popular libraries, allowing to extend the system, and reuse code reducing time of
development that can be used to test features with low time cost. The only negative thing
is that we are restricted to browser capabilities, but we considered it not important for this
project, because InCA BAT design principle is being simple and non-human animal oriented.

Svelte is an easy to learn framework that allowed us to develop and try fast, something
needed because of the low knowledge we had about the topic (animal cognition) and the
possible reactions of birds using the application.

We decided to build a small backend API using Flask, due to low configuration needed
and fast deployment. The other considered option was Django, also using python 3, but this
option required more development time and has more flexibility restrictions, taking more
time to modify an endpoint compared with Flask. Even with this setup, this project did
not allowed us to work enough in the backend system, due to large amount of frontend
requirements.

We decided to use a mongodb, a non-relational database instead of a relational database,
because of the constant design changes in the middle of the project while adapting to user
requirements. We considered risky to have a relational database, because it is not easy to

19

modify the model structure many times during the project. The benefits of mongodb are
the flexibility to save information in JSON format, that is closer to the frontend design with
javascript based language, it makes easier to submit and retrieve data to an API, making it
even faster to develop. Disadvantages of using non-relational database are not relevant in
our situation, but might be an issue for future development if querys gets more complex.

All these technologies makes InCA BAT source code highly flexible to further modifi-
cations once the structure of the system becomes mature, and data structures gets more
stable.

4.3 Frontend

The main objective of InCA BAT is having an useful system to setup Blind Associative Tests
on digital devices. It means that the frontend of this application had to be reliable and
complete, allowing the user to create a large amount of different tests. Because of this, we
focused the design and development on client side features, validating a large a amount of test
cases using client side storage (Section 4.3.2), included logs saving and setting options. We
ensured that Learner view is consistent, showing correctly each card from each created Test
(Section 4.3.4), randomizing Test choices without human interaction and keeping simple
this interface (Section 4.3.3). Source code is available in https://github.com/plt1994/

inca-bat

4.3.1 Source Code Structure

InCA BAT frontend code structure is component oriented, as it can be seen in Figure 4.1 in
src/components, Svelte code is encapsulated in components directory, separated in Card-
Components, Games, LogComponents, SettingComponents and Utils (see complete detail of
files in Annexed C). This structure makes the code extensible, for further developments, for
example to add image to image associative tests.

4.3.2 Local Storage

InCA BAT stores a large number of global variables, used among all the application, such as
Settings parameters and navigation pointers. These variables are easily managed thanks to
Svelte Stores system, that allows to use and update variables from any part of the application.
But it resets everytime the web page is reloaded, making it a partial solution to store data,
because it is not persistent among sessions. To solve this problem, we used svelte Stores with
local storage from browsers, allowing to save data and keep it from one session to another
from all over the application. An example for storing a username variable persistent among
sessions can be seen in Figure 4.2, and its usage in Figure 4.3.

We use svelte stores to store all variables in InCA BAT, such as local Settings, Logs,
Tests and Cards. The only things that are not stored locally are images and sounds, that

20

https://github.com/plt1994/inca-bat
https://github.com/plt1994/inca-bat

inca-bat

public

images

sounds

src

components

CardComponents

Games

VoiceToImageTest

LogComponents

SettingComponents

Utils

controller

stores

utils

Figure 4.1: Code structure directory view: InCA BAT frontend project code structure has com-
ponents that manage the views, controller that manage data model abstraction, stores for global
variables and utils for any other utilities.

are directly obtained from the source of the url. Logs, Cards and Tests variables structures
are JSON like strings, parsed to JSON when read from the localStorage, allowing the system
to manage local data without the need of persistent queries to an API.

4.3.3 Learner View

Learner view has 4 states: pre-start, waiting, running and post-game. Each one described in
Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7 respectively. Waiting state happens just
before each running state and establish a time delay, from 0 to 3.5 seconds, drafting a subset
of cards to display on running state (flowchart diagram details in Section 3.5). When the
Learner touch a card from the screen, a test log is generated and add a counter to number
of repetitions. If number of repetitions is equal to Settings number of repetitions, post-game
state start, saving local logs and asking if play again or leave the game.

A problem we discovered from prototyping and first validation for Learner views with
real birds, was that it is easy for the Learner to accidentally hide the application once the
test started by simply scrolling down, and even in some devices that action refreshed the web

21

1 import { writable } from 'svelte/store ';
2 ...

3 const storedUsername = localStorage.username

4 ...

5 export const username = writable(storedUsername || "Default")

6
7 username.subscribe ((value) => {

8 localStorage.username = value

9 })

Figure 4.2: Save and persist username among sessions: in stores.js file, we imported writable

from ’svelte/store’ to use Svelte stores, and we retrieve the last value of username saved in last
session in line 3. In line 5 we export the username value to use in other files. In lines 7 to 9 we
update the value of local storage, everytime variable username changes

1 <script>

2 ...

3 import { username } from 'stores/stores.js ';
4 ...

5 </script>

6 ...

7 <div>

8 <input bind:value={$username} />

9 </div>

10 ...

Figure 4.3: Usage of store variable, example for username in Settings.svelte: we imported
username from stores and bind it in a input html tag. This will dynamically change username
value from stores, each time the username is changed in the input.

page and the application went back to main page. To solve this, we ensured that in every
screen, once we enter to Learner view, we automatically set full screen, with fixed screen
width to avoid any possible scrolling to any side of the screen, producing a sort of screenlock.

As we can see in Figure 4.6, there are 2 small buttons on bottom left and bottom right
corners. Bottom left button allows the Teacher to stop a test before it concludes, holding it
for few seconds (configurable on Settings view). Bottom right button allow us to enter and
leave full screen mode if clicked. When leaving full screen mode, the current test is paused
showing a pause view (Figure 4.8), with one button to continue the test. When button for
continuing the test is pressed, a new random draft is automatically requested (that might be
different from the one before the pause), all the other elements do not change.

22

Figure 4.4: Learner View Pre-Start: this is the starting screen when entering to a new BAT
session. From this point is designed to be used by a Learner without support.

Figure 4.5: Learner View Waiting: this view shows the background color only (white in this
example) and no cards, for 1.5 seconds that is modifiable on Settings. In this point draft a subset
of cards for next view.

Figure 4.6: Learner View Running: this view shows drafted cards and prompt audio from one
of the cards to be selected. Once one of the cards is selected it goes to waiting view if there are
repetitions left. Hold to exit button and Exit full screen button on right.

23

Figure 4.7: Learner View Post-Game: When no repetitions left for current current session we can
see 3 buttons on screen and a brief summary of the test results.

Figure 4.8: Learner View Pause: If bottom right button is pressed, we leave fullscreen view and
pause the game. If continue button is pressed, goes directly to running view with a new drafted
subset of cards and audio prompt.

24

4.3.4 Teacher Views

The teacher views are all the views to configure cards, test, application seetings and the
learner view (to setup global settings for all blind associative tests), and retrieve logs. In
this section we show all the implemented views and details about each one, following design
described in Section 3.5.

Navigation

To move from one view to another, we implemented a system of Links, views Stack and views
internal name. Each section (settings, card display, card creator, test display, test creator,
logs, test selection and learner view) has a key name, and there is a variable for current
section that is updated each time we move from one view to another using Links. Each time
we move to another view, last visited view is added to a Stack, allowing us to go back from
one point to another, but not to go forward. This feature allows us to avoid routes changes,
making the application more static and purely javascript dependent.

To navigate from one section to another we added a footer on every teacher view , letting
us go from anywhere to main menu, but changing content and number of buttons in some
views depending on the interface needed actions. For example, on My Tests and My Cards
sections we included a Back button to keep a constant for Test and Card creation, that
requires 2 or more steps to create a new Test or Card, but in Settings, Test Selection and
Logs view, we do not need a back button because it goes directly to main menu. To keep a
non-high mental model breaking, we put all the buttons with same shape, home button has
an icon of a house, and back button is always on the left. Other actions are always added to
the right side of the footer. A list of footers that can be seen in InCA BAT are described in
Annexed B.1.

Settings

Settings view implementation used defined variables in stores, to globally apply it, displaying
them and adding options to modify them. All needed variables directly modifiable in settings
were obtained from Section 3.3. Settings view is composed by 2 components, Settings, for
structure, and SettingsOption for each option display (components structure in Annexed C).
Settings also have a footer with a Preview button, where it is possible to preview the Learner
view with currently selected Test and current setup on Settings, just ignoring the number of
repetitions (there is only 1 repetition in Learner Preview mode). Logs can be cleaned in this
view with the button Clean Logs, but needs to hold the button for 3 seconds. These details
can be observed in Figure 4.9.

BAT sessions (learner view), apply all these settings in real time and keep from one
session to another if the web page is refreshed, but these settings are just available on the
user browser and device it was setup, because we did not implement users that can migrate
data to one device to another, or any other mechanism. If users needs to apply same settings

25

Figure 4.9: Settings view: from left to right the Settings view are scrolling down. First option is
Number of repetitions and last option is Tests Logs cleaning.

in many devices or even many browser in one device, it needs to be done manually.

My Cards

To display list of local Cards, create new ones and delete them, we created the section My
Cards accessed from main page. List of cards with preview and delete option are in the same
view, we call it display view, see Figure 4.10. One or more cards can be selected to delete,
showing a confirmation message with the cards that will be deleted, and restrict card deletion
if the card is being used in one or more Tests, more details in Annexed B.3.

If the user wants to create a new card, the Card Creation View can be accessed from the
New card button on cards display view. There are two options to create cards (Figure 4.11),
Emoji Card and Text Card. Emoji card creates cards adding an image url or choosing an
emoticon from the list, see Figure 4.12. Text Cards can be created using a text, and allows
the user to set the size, font and position of the text in the card, detailed Text Card creation
views are available in Annexed B.4. After setting up all the needed information to create a
card, there will be a small button under the card to save it, and other card can be created if
wanted.

Each time a card is created or deleted, the global variable that stores cards in localStorage
is updated from a controller, and each time a card is displayed, the same controller search
it from the localStorage, using the stores. This system isolate the features for obtaining and
updating data, allowing improvements for new developments in this software.

26

Figure 4.10: Card list view: Card display view, on top left the button to access card creator. On
bottom the footer to go back, to main menu, and delete selected cards.

Figure 4.11: Card Creator Selector: this is the first view when selecting to add a new card. There
are 2 options, text cards and emoji cards. Emoji cards also works for image cards.

27

Figure 4.12: Card Creator: Example for emoji card creator selecting a monkey face emoji on left.
In the center the emoji selector with emoji searcher. On right an example for image card creator
adding a source image.

My Tests

Similar to Card display view and delete options, we implemented a view to display current
local tests, with delete and create options. The test display can be accessed from main page
selecting My Tests, and it will show on the screen all the created tests in local client browser,
see Figure 4.13. Each test preview shows its name and all the cards added to it, and if a
card is tapped it will play its sound if available. Each test can be deleted when the small
trash can is selected, with a previous confirmation, details in Annexed B.5. We decided to
add two buttons for create tests, because its a main feature that needs to be easily accessed,
and first thing an user will see is top center of the screen, but bottom right is the natural
position for users that use a mobile device.

Test creation requires some more steps compared with card creation, and interaction with
backend API to obtain a voice message for each card, and it is going to be explained in detail
and how did we implement it. Test Creation starts when tapping Create button in top of
the screen or in footer, taking us to test creation view, see Figure 4.14, where all available
cards (local and global) are displayed on screen, but also can create a new card if needed,
taking us to card creation view. In the first step we choose one or more cards, and click
on Next button, then we set a message to each card, this message will be transformed from
text to speech and it will be played on Learner view as a question to make the association
between the card and the sound. If a card does not have a text message, that card will be
non selectable on card random drafting for BAT session (Learner view). Next step requires
to setup a name for the test and finish with creation confirmation, in this part there is an

28

Figure 4.13: Test display view: main view of local test manager, on top and footer a create button
to access Test Creator. In the center of the screen all local tests are displayed and has an option to
delete it.

Figure 4.14: Test Creator view: First step view for Test Creator. New cards can be created from
this view or select one or more cards to create a new test.

29

internal process to request a sound from the API with the related text for each one of the
cards that declared a text, and it might takes time so we show on screen a waiting spinner
while this happens. When the creation of sounds is completed, we update the local storage
adding a new Test to local Tests. A step by step example is described in Annexed B.6.

Logs

Figure 4.15: Logs main view: we can see session logs from last to first in top, each one with a
brief summary and two buttons to extended summaries.

Session logs are one of the most important features of InCA BAT, giving a powerful tool
to researchers to analyze data from Blind Associative Tests. Because of that, we carefully
defined all the needed information with Cunha, based on her own research methodology,
saving information from a session in real time, and storing it once the test concluded. All
the needed data to save from each BAT session is described in Section 3.3.2.

To retrieve session Logs, we implemented a view to display all created logs in user browser,
see Figure 4.15. In this view, we added 4 features to see logs in different level details, the first
is the display of all logs with test session number and a brief summary with accuracy, chosen
feedback sound and number of correct and incorrect selections (Figure 4.15). Second feature
is a human readable log summary, displayed when clicking on Show Summary Data, showing
one line with date, test name, repetition number, result, learner name, chosen card, cards on
screen (ordered and with a * mark on correct choice) and time reaction for each selection on
a test session, see Figure 4.16. Third feature is a table with the same information, Figure
4.17, and Last feature, but considered the most important, is a button to download all the
logs data from all the sessions in a csv format file, with more columns that are described also
in Section 3.3.2.

30

Figure 4.16: Logs view summary data: When clicking Show Summary Data button, it displays a
list with all test repetitions in a session, in a human readable format.

Figure 4.17: Logs view summary table: When clicking Show Summary Table button, it displays a
list with all test repetitions in a session, in table format. This image was taken in a bigger resolution
(tablet/iPad), because its not readable on small screens.

31

Test Selection

Test selection view can be accessed from main page clicking Start Test. In this view we can
select a Test from a list and see a preview of the cards of the test. When we choose a Test
from this view, it is changed globally and stored for the current session, it resets if we reload
the web page.

Figure 4.18: Test Selection view: In this view the selected test remains for all the session and can
be selected a global or local test. When test is selected there is a preview of it, and if card image
is clicked the card sound is displayed.

32

4.4 Backend

InCA BAT backend was build using Flask, without any user interface, just the base of an API
connected to a non-relational database in mongodb. There is currently just one endpoint, that
allows us to generate an audio file from text using IBM text to speech generator, with a limited
free version. The database is deployed in mongodb Atlas and API in InCA server. Source
code is stored in a the github repository https://github.com/plt1994/inca-bat-backend.

API and Database

The API structure is described in Figure 4.19. The application logic is located app directory:
apy.py has the endpoints, client.py has the functions that interact with database and with
utils contains major part of the program logic, views manage user requests to the API and
interact with client. Database model is located in database directory, generated sounds are
stored in static/sounds and environment settings in settings.py (connection to database
and flask application settings).

The database is deployed in a free cluster in mongodb Atlas, that can be directly connected
and used after a fast setup. We chose this option to avoid looking for a server to store a
database in early steps, but it remained until the end of the project without changes. We
suggest making a big update of backend to adapt to final frontend system.

Figure 4.19: InCA BAT API structure based on traditional MVC architecture, from top to bot-
tom: app directory contains views, endpoint urls (api.py), and utils (text to speech), database
folder includes connection logic and models, static folder store generated files like sounds or im-
ages, and finally main.py, settings.py and requirements.txt include environment and deployment
configurations.

33

https://github.com/plt1994/inca-bat-backend

Text to Speech

InCA BAT needed an option to associate an audio to a Card, but it was costly for the user
to generate audios each time a test was created, especially if a test had many cards. Because
of that, we decided to automatize this step, creating an audio from a text using a text to
speech API from IBM. this service offered a free to use limited usage of 10000 letters per
month, and we considered this limit big enough for our needs now and for a near future.

The process to obtain an audio from a text starts in Test Creation view in frontend, where
the user set a text message on each card needed for a Test. When the test creation setup
is sent, InCA BAT API calls a text to speech internal function that makes a request to
IBM API for text to speech. The response of IBM API is an audio file in binary, that we
save in the folder static/sounds, with a unique name, that can be retrieved from https:

//buho.dcc.uchile.cl/inca-bat-api/static/sounds/<filename>.

To avoid creation of repeated text to speech requests, and the same audio file with different
names in the server, we save in database a document for each request with a new text that
was not requested before, and if the text was requested, it does not create a file but return
the last available file. It means that we only generate one audio for each text.

4.5 Deployment

A critical part of the application distribution is the deployment. So we explain here, what
is the process we followed to deploy InCA BAT frontend and backend, on InCA servers.
Starting for frontend, thanks to Svelte, the production environment building is simple and
take 6 steps.

Step 1. Connect to InCA server by SSH:
ssh inca-bat@buho.dcc.uchile.cl

Step 2. Download InCA BAT repository (using git in this example):
git clone https://github.com/plt1994/inca-bat

Step 3. Open inca-bat folder:
cd inca-bat

Step 4. Install dependencies:
npm install

Step 5. Build Source Code:
npm run build

Step 6. Copy content of folder public to /home/inca-bat/public html:
cp -R public/* /home/inca-bat/public html

To deploy backend we have more options, but an easy one can be done using command
screen and pip, from python. Following steps describes the process:

34

https://buho.dcc.uchile.cl/inca-bat-api/static/sounds/<filename>
https://buho.dcc.uchile.cl/inca-bat-api/static/sounds/<filename>

Step 1. Connect to InCA server by SSH:
ssh inca-bat@buho.dcc.uchile.cl

Step 2. Download InCA BAT backend repository (using git in this example):
git clone https://github.com/plt1994/inca-bat-backend

Step 3. Open inca-bat-backend folder:
cd inca-bat-backend

Step 4. Install requirements.txt:
pip install -r requirements.txt

Step 5. Create a screen:
screen -S inca-bat-backend

Step 6. Run server: python3 main.py

After this, the application will be available on https://buho.dcc.uchile.cl/~inca-bat/

and backend will be available in https://buho.dcc.uchile.cl/inca-bat-api (to confirm
if backend is available, access to https://buho.dcc.uchile.cl/inca-bat-api/inca-bat).
It is crucial to know that if the server shutdowns or reboots, the current screen instance for
the backend will also turn off, meaning that we need to start the application again following
steps 1, 3, 5, and 6 (steps 2 and 4 are no longer necessary).

35

https://buho.dcc.uchile.cl/~inca-bat/
https://buho.dcc.uchile.cl/inca-bat-api

Chapter 5

Validation

The validation of InCA BAT required an active participation of the client, Cunha, and non-
human animal learners, Ellie and Isabelle, two Cockatoos that lives with Cunha. We ensured
that our project is ethically correct (see Section 5.1) and the first steps were directly related
to validate that learners can use the Learner view. After critical validation of usability by
non-human animals, we validated the usability of Blind Associative Tests, material creation
and data collection with logs on informal interviews while gathering requirements, detailed
in Section 5.2. In the last interview we made a demo of the application followed by a semi-
structured interview with closed and open questions, validating all the important features,
usability of the software, nearly future use and future work to improve the application.

5.1 Ethics

Non-human animal cognition research involves direct interaction with the subjects of study,
in this case small non-human animals like parrots or mice. Because of that, in this project
we were aware of this and ensured that our application will not cause any type of abuse from
the human researcher to the non-human animal learner, directly or indirectly because of the
use of the application while validating Learner views, and also a direct harm because of the
application itself, such as stress, fear or any detected effect to the subject. In fact, InCA BAT
might improve learners quality of life if combined with other applications like communication
boards.

We ensured to protect the welfare, autonomy and dignity of each animal (human or non-
human) in this project [7], by repeatedly testing all the interfaces before giving it to the
client, and our client repeatedly tested the application before using it with any other animal
that plays as a Learner on InCA BAT. No one was obliged or tried to oblige other user to
use the application without their consent. As developers of the system, we ensured to give
enough time to our client to test any feature involving a Learner any time it was needed.

36

Meeting Date Meeting Details

October 19th 2021
First submit, Blind Associative Testing validation
(Learner View) and feedback for new features.

October 26th 2021
Follow up, re-validation of fixes requested on first
meeting and second submit, custom Test and Card creation. Also requirements gathering
for logs visualization.

November 9th 2021
Third submit, Logs and data recollection. Revalidation
of custom test creation after fixes.

November 16th 2021
Re-validation of Log fixes and finished requirements
gathering for new features.

December 14th 2021
Final Submit with user interface enhancement and
last software validation.

Table 5.1: Meeting details: We had 5 meetings at the end of each sprint, from October to
December. Details of each meeting are described in second column.

5.2 Validation Process

In order to validate the developed software usability and its features, we counted with our
client’s validation, that is also user of the application, Jennifer Cunha. The validated points
were 4: Blind Testing, Material creation, Data recollection and Software usability.

We had 5 meetings, the first 4 for requirements gathering and partial informal validations
of implemented features, details in Table 5.1. The last validation of the software was realized
in during the last part of the last meeting, in two parts: Evaluation from 1 to 5 ((1) Totally
disagree, (2) disagree, (3) neutral, (4) agree, (5) completely agree) and open questions. Last
evaluation questions and details are described in Annexed D.

5.3 Results

From 1 to 5, Cunha evaluated each one of the points presented on the last interview [2021-
12-14 Tue], and replied 3 open questions. All the questions were explained to ensure that
it was clear for the client when completing the evaluation. Results for open questions are
described belows and results for closed questions are described in Table 5.2. Open questions:

1. What do you think the app needs or what would you like to see in it.

(a) Uploading one’s images easily

(b) More feedback sounds (like ”great” voice) and colors to make it more exciting/en-
gaging for the bird.

(c) Share tests across devices

(d) Back-end to gather the statistics from various devices and facilitate their manage-
ment.

(e) Re-engaging feature (calling back after some time if no interaction) for the enrich-
ment

37

2. If there were not a log, would the digital set-up be better or worst than an
analogical one?
It is a toss-up: Tablet makes the blind setup easier (than the cards) but (some) birds
have (still) to learn to touch tablets.

3. Do you use the application in one or many devices?
InCA-BAT was tested on 2 distinct tablets (there are 3 tablets use by the 4 different
birds)

Question Result
The application was easy to use ����
The application was simple and straightforward to use �����
The workflow of the application is intuitive �����
It is easy to create an image card ����
It is easy to create a text card �����
It is easy to create an emoji card �����
It is easy to create a test �����
It is easy to delete a test �����
The application allows the realize Blind Associative Tests �����
The application allows the creation of a large variety of Blind Associative Tests �����
The application allows to see logs in a useful way �����
The application allows to export useful logs (human readable and csv) �����
The logs will be useful for some research purpose �����
I would like to use this application as a general user (trainer) ����
I would like to use the application for investigation purpose �����
I would like to use the application for investigation purpose (even if it did not have a log) �����
The application has the potential to enrich the life of animals ����

Table 5.2: Validation Results: The number of stars represent the level of agreement (�) Totally
disagree, (��) Disagree, (���) Neutral,(����) Agree, (�����) Completely agree. The
worst evaluated was agree and the best was completely agree

5.4 Analysis

In the last meeting and with the last validation interview, we evaluated the general usage
of the application and specific requirements gathered in all the meetings with the client and
also user of the software.

The validation covered three major points: successfully execute a blind associative testing
as a choosing card video game, add new custom tests, and obtain complete logs from every
game session. But also verifies the usability and the expected usages of the application, with
open questions. The main results of the evaluation can be summarized in the following 4
points:

1. InCA BAT can easily create and delete custom material, with all the types of cards.

2. The client validated that with InCA BAT she can create and realize a large amount of
blind associative tests. This is related with custom material creation and the application
settings, allowing a Teacher to configure with many possibilities a Test and a Session.

38

3. InCA BAT Logs can be easily seen, are readable and understandable, easy to export
and useful for research purposes.

4. The client would like to use this application for playing time and investigation, with or
without the logs.

With all the points we validate that blind associative testing setups can be improved using
InCA BAT, and also minimize the risk of bias due to the minimal interaction of the Teacher
once the application started a new session, not letting choose the cards nor the questions in
the whole session. Also, this application can be used to validate ACI hypothesis due to the
complete logging system and easy data retrieve, giving enough data to the researcher and a
reliable automatic way to obtain BAT sessions data.

39

Chapter 6

Conclusion

To conclude this report we summarize our contribution in Section 6.1, mentioning the impor-
tance of our work for ACI and specifically for our client, Jennifer Cunha. We discuss learned
lessons from this project in Section 6.2, about obtained results, methodology of work and
other topics useful for our future career and for future students who follow similar strategies
for ACI projects, and finally we outline potential future developments and their relative cost
in Section 6.3.

6.1 Contribution

We improved the way how a Blind Associative Tests applied to non-human animal cogni-
tion research can be done, designing and developing a web application for touch interfaces
to emulate traditional Blind Testing with paper cardboard cards. Cunha stated, as a ACI
researcher, that InCA BAT is now a core application of her daily routine. It is considered a
reliable blind testing tool, that simplifies the creation of new cards and sessions, automati-
cally randomize every test in a session and captures session logs on the fly. All the logs can
be accessed from the main page of the application and are also downloadable.
InCA BAT is an open source code, available in two public repositories, one for the frontend us-
ing Svelte (javascript, html, css), in https://github.com/plt1994/inca-bat and one for an
API using Flask (python 3, mongodb) in https://github.com/plt1994/inca-bat-backend

partially coded but extensible, to add new functionalities. The last version is running in
https://buho.dcc.uchile.cl/~inca-bat/ and the backend in https://buho.dcc.uchile.

cl/inca-bat-api/inca-bat

InCA-BAT was tested on 2 distinct tablets (there are 3 tablets used by the 4 different
birds). In order to validate the usability and all functionalities of the software, we measured
three important points.

1. Material generation: It is possible, simple and intuitive to create, delete and edit cards
and tests.

40

https://github.com/plt1994/inca-bat
https://github.com/plt1994/inca-bat-backend
https://buho.dcc.uchile.cl/~inca-bat/
https://buho.dcc.uchile.cl/inca-bat-api/inca-bat
https://buho.dcc.uchile.cl/inca-bat-api/inca-bat

2. Blind Testing: The non-human animal can use the application, it is, playing the game
touching only one card each time without accidentally leaving the game, complete a
game and possibly play again.

3. Log generation: The application collect all the data for a session on the fly, it is current
Test setup, Settings, cards positions on the screen ordered from left to right, correct
card, selected card name, selected position, card audio (represented in words), results,
date and response time. The Tests logs can be retrieved to a file and seen on the
application itself.

“I use the application a lot, it has become part of our core learning process” – Cunha,
December 14th 2021

6.2 Discussion

Along the development of InCA BAT, there were low and high progress points, mostly due to
methodology and personal situations organizing self work timing. We learned how powerful
an agile methodology of work can be, allowing us to move from low to high productivity while
obtaining more requirements in short time, just developing the most important parts in a
project. This methodology helped us to release in half of the time a large amount of features,
but it also made us refactor our project many times because of misunderstanding with original
plan of the client, because of that we suggest to use flexible technologies when working with
agile methodologies, for first steps or for all the project, designing and developing in no more
than 2 weeks before validating state of the project with the client.

Meetings with the client are such a great opportunity for gathering requirements, but as
a software engineer we need to take it carefully when accepting requirements in first steps
of the software development, mentioning to the client that we are analyzing each request
but prioritizing the most important parts for a MVP (Minimum Viable Product), and slowly
add new requirements on each opportunity. We made some mistakes in first steps organizing
meetings with the client, such as not clear time, date and place for meetings. When the
client does not live in the same timezone, it is important to clarify the day of the week, the
local time and date for each one of the guests and if possible what is the meeting about, to
prepare ourselves but also for our client to understand the objectives of the meeting.

When gathering requirements, we recommend to ask as much as possible and make it
a clear development piece, specially on first meetings. Assuming that everything has more
difficulties as expected, and calculating also testing and deployment time when on each cycle
of development. If we made an overestimation, we can always use our time to add extra
features and test more our application, and this point is more relevant in ACI projects,
because our users will be non-human animals or they will be directly related to the user,
giving us an ethical responsibility to protect the welfare of non-humans, making us think
and solve possible negative reactions such as stress or harmful situations, and this requires
to test first all the non-human animal interfaces we created.

41

One of the most important parts of software design, is the final validation of our appli-
cation. In many points of the developing of InCA BAT, we forgot the main objective of the
project while designing interesting new features, so we recommend to have in mind all the
time our final goal and ask ourselves (and also the client if they request non-viable features)
if current development helps us to achieve this goal.

Finally, usability, reliability and extensibility needs to be present all the time when we
develop a new piece in our software. Usability makes our software easy to use and to control
for the users, so each time we design a button, interface, or choose a color or any detail, we
need to think if this would be easy to use and understand for the final users. Reliability is also
important, because users will believe in our software, and it needs to respond consistently and
make what it says it can do, for example InCA BAT needs to give correct details for Logs,
or the research of our users will be invalid. Extensibility does not affect the client direcly
in short time, but if the software is successful and needs future changes, another software
engineer must be able to add new features, or the software will keep outdated.

6.3 Future Developments

We implemented most of the functionalities needed by our client, but there are plenty of
features and possible future work to do from this point. We describe three important possible
future development and research, and we list many more work and features in Annexed E.

InCA BAT can create a large amount of different tests, mainly thanks to easy card
creation, such as emoji and text cards, but adding other images are difficult, because the
Teacher must provide the url of the picture, and cannot control the shape of each picture
if added this way, just adjust the size. We propose as future work to extend the card
creation process, allowing the user to add pictures from the used device or directly search
recommended pictures from the application (such as WhatsApp gif searcher for chat). Such
a feature will need to extend also the backend adding more endpoints and a CRUD (create,
read, update and delete) for images, that can be extended to Test creation, and add users
to manage client logs and test synchronized (manually or automatic). But needs to keep the
application client based, for users having unstable connections. This work can be part of a
undergraduate Memoria de t́ıtulo with medium difficulty that can be done by one student in
4 to 5 months.

Other needed future work is having an administration and analysis system, also called
admin system or backend, where all data from InCA BAT frontend from each user can be
accessed, included raw data and processed data, such as statistics of usage or other needed
information useful for ACI researchers to validate animal cognition researches. This work
can be done in 3 to 5 months, and requires to integrate current frontend to a backend, and
extend it with current functionalities and database data.

Two possible interesting research works are Card Randomization for Blind Associative
Testing based on subject characteristics and Card hinting in BAT sessions and automatic
difficulty tests adaptation. We suggest these two topics for a master or doctoral thesis, due to
the needed research with different subjects or even species and also needs to extend current

42

version of InCA BAT. More details on these two topics are available in Annexed E.

43

Bibliography

[1] Copy of 9.17.18 Isabelle baseline dot test 1. https://www.youtube.com/watch?v=

-73o4sQwCLQ, Sep 2018. [Private video; Retrieved 2021-05-04].

[2] InCA-BlindComparativeTesting - REPL - Svelte - Barbay J. https://buho.dcc.uchile.
cl/~inca-bct/, 2021. [Retrieved 2021-05-15].

[3] Jennifer Cunha [LinkedIn page] LinkedIn. https://www.linkedin.com/in/

jennifer-cunha-75430b31/, 2021. [Retrieved 2021-05-04].

[4] Jennifer Cunha and Susan Clubb. Advancing communication with birds: Can they learn
to read? 2018.

[5] International Conference on Animal Computer Interaction. About animal-computer-
interaction. http://www.aciconf.org/aboutACI, 2021. [Retrieved 2021-05-04].

[6] J.D Jennifer Cunha and Dr. Susan Clubb. Advancing communaction with birds: Can
they learn to read? In Proceedings of the Conference ”Animal Computer Interactión”
(ACI), 2018.

[7] Clara Mancini. Towards an animal-centred ethics for animal–computer interaction. In-
ternational Journal of Human-Computer Studies, page 98 pp. 221–233, 2017.

[8] Michael Trestman. Clever Hans, Alex the Parrot, and Kanzi: What can exceptional
animal learning teach us about human cognitive evolution? Academia.edu, 2015.

44

https://www.youtube.com/watch?v=-73o4sQwCLQ
https://www.youtube.com/watch?v=-73o4sQwCLQ
https://buho.dcc.uchile.cl/~inca-bct/
https://buho.dcc.uchile.cl/~inca-bct/
https://www.linkedin.com/in/jennifer-cunha-75430b31/
https://www.linkedin.com/in/jennifer-cunha-75430b31/
http://www.aciconf.org/aboutACI

ANNEXES

45

Annexed A

Requirements

A.1 Blind Testing Basic Setup and Learner View

• Important

1. There is a Settings view that shows all the current values of all modifiable param-
eters and allows to modify it.

2. Settings view has the following modifiable parameters: Number of repetitions,
number of cards on screen, cards separation, feedback time delay in seconds, en-
abled text card, card height, card width, enable card audio message, feedback
sound after click.

3. The number of repetitions minimum value is 1 and has no maximum value. Default
value is 5.

4. The number of cards on screen minimum value is 1 and maximum value is 5.
Default value is 2.

5. The cards separation minimum value is 0% and maximum value is 100%. Default
value is 50%

6. The feedback time delay minimum value is 0 seconds and maximum is 3.5 seconds.
Default value is 1.5 seconds.

7. There is a test selection view

8. There is a Learner View that has a big button with the word “Start!”.

9. In the test selection view: there is an option that allows to select only one test
from a list of all available tests represented by the name of the test.

10. In the test selection view: if no test was selected, the first time the application
was opened, the default ”touch the dot” test is selected.

11. In the test selection view: there is a button to start the current test, that takes
to the Learner View.

12. In the Learner View: when button “Start!” is pressed, the selected test starts,
showing N cards on the screen randomly chosen from the total amount of cards

46

of the selected test, shows the name of one card from the list of N cards on the
screen and plays the audio for that one card. N is the minimum value between
the number of cards of a test and the number of cards on screen shown on settings
view.

13. In the Learner View, once the test started: Cards can be selected by clicking on
it, on any part of the image of the card. Once the card is selected, if the played
sound or text message on screen matches with the card, it plays a feedback sound.
Feedback sound played is the feedback sound selected on settings view.

14. After the feedback sound is played, if the number of tests in a session is less than
R, cards disappear from screen for N seconds, where N is the feedback time delay
parameter from settings view. After N seconds the test starts again. R is the
value of number of repetitions shown in the settings view.

15. After the feedback sound is played, if the number of tests in a session is equal to R,
cards disappear from screen and session finishes showing a summary of the session
correct and incorrect answer and a button to go back to test selection view. R is
the value of number of repetitions shown in the settings view.

16. There is a button to restart the game session after it finishes, big enough to be
clicked by the Learner or the Teacher. When it is clicked, creates a new session
with the last selected test from the test selection view.

• Normal

1. In the test selection view: when clicking a card image from the preview, it plays
the sound of the card if it exists.

2. In the test selection view: show the current selected test cards with their names
in uppercase.

3. The current test keeps selected even changing views or after the game finishes. It
will reset if application is restarted or it will change if other test is selected from
the test selection view.

4. Settings view has the following modifiable parameters: Number of repetitions,
number of cards on screen, cards separation, Learner screen background color,
card background color, foreground color, feedback time delay in seconds, time
exit holding time, enabled text card, card height, card width, enable card audio
message, feedback sound after click.

47

Annexed B

InCA BAT interfaces

Figure B.1: Teacher views footers. All possible footer button structures for 1 to 7: 1) Test
Selection. 2) Local Logs. 3) My Cards display. 4) Cards creator. 5) My Tests display 6) Test
creator. 7) Settings.

48

Figure B.2: InCA BAT About view: includes a description of the project and mentions to Parrot
Kindergarten and InCA Labs.

49

Figure B.3: Card delete examples: On left a confirmation message to delete without restrictions.
On right a warning that does not allow to delete pictures and its detail.

Figure B.4: Card Creator: Example for text creator, on left configuring a Cheese word with text
size and position. On center same image but scrolling down to see save button. On right, cheese
card added already, removing button for save.

50

Figure B.5: Test deletion example when clicking the icon of trash can requesting confirmation.

51

Figure B.6: Test creation example: From 1 to 9 starting from top left, moving to right, and
finishing in bottom right. 1) Tests display, click on Create. 2) and 3) Test creator, choose 5 animal
cards. 4) set a text to each animal card. 5) set a name for the test. 6) confirm creation. 7) creation
in progress. 8) creation finished, click on finish. 9) Final result with our new test.

52

Annexed C

Source Code Structure

C.1 Frontend Structure

53

Figure C.1: Source code frontend structure with extended file view. All components for views are
visible.

54

Annexed D

Evaluation

D.1 Closed questions

• Usability validation of interfaces

1. The application was easy to use

2. The application was simple and straightforward to use.

3. The workflow of the application is intuitive

4. It is easy to create an image card

5. It is easy to create a text card

6. It is easy to create an emoji card

7. It is easy to create a test

8. It is easy to delete a test

• Blind Associative Testing and Logs

9. The application allows the realize Blind Associative Tests.

10. The application allows the creation of a large variety of Blind Associative Tests

11. The application allows to see logs in a useful way.

12. The application allows to export useful logs (human readable and csv).

13. The logs will be useful for some research purpose.

• How the application will be used

14. I would like to use this application as a general user (trainer).

15. I would like to use the application for investigation purpose.

16. I would like to use the application for investigation purpose (even if it did not
have a log).

17. The application has the potential to enrich the life of animals.

55

D.2 Open questions

1. What do you think the app needs or what would you like to see in it.

2. If there were not a log, would the digital set-up be better or worst than an analogical
one?

3. Do you use the application in one or many devices?

56

Annexed E

Future work list

1. Important Features:

(a) Learner View Cards display: Improve the responsiveness of card displaying
on different screen sizes and refreshing card displaying when the screen is ro-
tated.[Normal feature to include in another plan, such as backend integration]

(b) Upload Images for Card Creation view: For now all the cards for any test
can be created by adding the source link of an image while creating a new image,
or it creates on the fly an SVG code based on the card details. It is required to
extend card creation to directly upload a picture or photo from the user device,
adjusting it after upload to ease the editing for the user. [Normal feature to include
in another plan, such as backend integration]

(c) Offline loading user data: A first approach to understand how data is allocated
on client side is adding a feature to download the Local Storage on a file from
browser client, to upload it later in other client session or device, to duplicate all
the settings, local tests, cards and logs created in one session. The logical next
step is adding this same feature without the need of downloading a file, but using a
log-in system to keep data among sessions (next point).[Simple feature to include
in another plan]

(d) Backend Users and CRUD for tests and cards: Add users and log-in system,
with the possibility to save user data on database to create, retrieve, edit and delete
tests in any device connected with the same user account.

(e) Extend Local App with Online Tests and Cards

(f) Create a complete user administration view for data analysis, where all the logs of
current user can be displayed and downloaded, create, edit and delete new tests
and cards, general overview for each registered Learner and its progress for each
test type such as learned cards and audios, best tests and cards, worst tests and
cards and other useful data to analyze for non-human animal cognitive research.
[Memoria-full period]

(g) Audio repetition for current test: After few seconds of inactivity, replay the
sound or give the option to the Teacher to replay the sound. [Simple feature to
include in another plan]

57

(h) Safety checks for card and test creation. [Simple feature to include in another
plan]

2. Useful Features:

(a) Online sharing system: There is a big potential for the application to be used
by many people, each of them can create new cards and tests that measure specific
skills and they would like to share these tests with other users. This might also
be a feature for administrators of the system, to add more Global tests that can
be used in any device by anyone that uses the application.

(b) Not Online dependency: There might be cases where there is no good connec-
tion in the moment to start a session, so all the online dependencies will not work
and the tests will be incomplete. To solve this, we can add a feature to download
locally all needed data to run tests to use without connection in future sessions.
Note that these is not considering the possibility to create new tests, due to the
API creates audio files, but text cards can be created.

3. Research Features (all possible for master or undergraduate thesis):

(a) Multiple solutions for same audio on a Test: Study and evaluate if its
needed to add a feature where a test has multiple valid solutions for same audio.
For example: We created a Test to evaluate if the Learner can distinguish animals
whether is shown on emoticon, drawing or photo. We start the session for that
test and we have three cards on screen: two of them are horse represented with
different images and the other is a cow. The audio says ”where is horse?”. How
can this feature affect the Learner on its learning process?

(b) Multiple audios for same card: Study and evaluate if its needed to add a
feature where a test has cards with multiple questions with the same solution, it is
having different audios for the same card. For example: We created a Test to teach
new graphemes to the Learner, specifically letters from the English alphabet. We
have 1 card with the letter A with two possible sounds: apple, alphabet. Starting
a new session with such test only display one card on screen, but the audio is
randomly selected. How can this feature affect the Learner on its learning process?

(c) Image to Image or Sound to Sound Tests: Study and evaluate possible
solutions to add Image to Image association Tests or Sound to Sound Association
Tests. How can these tests be used and what kind of non-human animal cognitive
researches can be done?

(d) Card Randomization for Blind Associative Testing based on subject
characteristics: Study and evaluate cards randomization on Learner view, for
different situations like learning new cards, reinforcement of most failed cards,
discard of most failed cards, discard of most accurate cards and other situations
worth to be studied. Depending on subject characteristics, this randomization
might need to be adjusted, because of different capabilities of each subject.

(e) Card hinting in BAT sessions and automatic difficulty tests adaptation:
Study and evaluate how card highlighting with colors on correct cards can help
the Learner to improve the learning of new cards, and how based on the progress

58

the highlight will change the opacity. Also this research might include other rein-
forcement systems such as audio reinforcement or automatic reinforcement tests
creation with most failed cards on last test or last period.

(f) Incremental or decreasing test difficulty: Study and evaluate possible im-
plementations for incremental difficulty of tests when there is a good progress
learning an specific test, or decreasing the difficulty if there are many errors in
test.

59

Annexed F

Diagrams

F.1 InCA BAT Navigation Map

Figure F.1: InCA BAT Navigation Map: Simplified navigation map for InCA BAT. Teacher
interfaces on blue, Learner Interfaces on green.

60

	Introduction
	State of the Art
	Animal Cognition and Associative Testing
	Blind Assosiative Testing (BAT)
	Animal Computer Interaction (ACI)

	Design
	Use Cases
	Objects Diagram
	Requirements
	Blind Testing Basic Setup and Learner View
	Logs Requirements
	Material Creation
	Other requirements

	Learner Interface
	Teacher Interfaces
	Data Model

	Implementation
	Work Methodology
	Technologies
	Frontend
	Source Code Structure
	Local Storage
	Learner View
	Teacher Views

	Backend
	Deployment

	Validation
	Ethics
	Validation Process
	Results
	Analysis

	Conclusion
	Contribution
	Discussion
	Future Developments

	Bibliography
	 ANNEXES
	Annexed Requirements
	Blind Testing Basic Setup and Learner View

	Annexed InCA BAT interfaces
	Annexed Source Code Structure
	Frontend Structure

	Annexed Evaluation
	Closed questions
	Open questions

	Annexed Future work list
	Annexed Diagrams
	InCA BAT Navigation Map

