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OPTIMIZACIÓN DE LAS PROPIEDADES ELÁSTICAS ANISOTRÓPICAS
DE UN METAMATERIAL MECÁNICO PARA EL DISEÑO DE

INSTRUMENTOS MUSICALES DE MADERA.

Los fabricantes de guitarras han lidiado siempre con la variabilidad de las propiedades de
la madera, ya que dos placas cortadas del mismo tronco podrían tener un comportamiento
acústico muy diferente. Además, el calentamiento global está reduciendo el hábitat de las
maderas tradicionales para instrumentos (por ejemplo, el Abeto Engelmann), lo que provoca
su escasez y un mayor coste de fabricación. Ambos hechos han inspirado la investigación de
materiales alternativos. En esta tesis, se propone los metamateriales mecánicos de madera
como un nuevo material para la fabricación de instrumentos, cuya geometría consiste en
patrones de agujeros. Se estudia el efecto de las variaciones del patrón en las principales
propiedades elásticas del metamaterial en las direcciones longitudinal y radial, a saber, EL
y ER. Se descubre que el tamaño y la simetría de los agujeros, así como la distribución del
tamaño de los agujeros, influyen directamente en estos parámetros y es posible sintonizarlos
de forma independiente o ambos al mismo tiempo. Por último, se desarrolla un algoritmo
de optimización para encontrar el mejor patrón para parámetros objetivo fijos, y se aplica
con éxito el algoritmo en casos que se asemejan a las dos dificultades que inspiraron esta
investigación. Se demuestra que los metamateriales mecánicos de madera pueden mejorar la
respuesta de las maderas que naturalmente no son adecuadas para los instrumentos, tallando
la madera para que coincida con los parámetros del material de las que sí lo son. Estos
resultados muestran cómo los metamateriales mecánicos de madera podrían ayudar a mitigar
la variabilidad intrínseca de la madera y la escasez de madera tradicionales.
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OPTIMIZATION OF THE ANISOTROPIC ELASTIC PROPERTIES OF A
MECHANICAL METAMATERIAL FOR THE DESIGN OF WOODEN

MUSICAL INSTRUMENTS.

Guitar-makers have always dealt with wood material variability, since two plates cut from
the same log could have very different acoustical behavior. Additionally, global warming
is shrinking the habitat of traditional instrument woods (e.g., Engelmann spruce), leading
to scarcity and higher manufacturing cost. Both facts have inspired research in alternative
materials. In this thesis, we propose wooden mechanical metamaterials as a novel material
for instrument-making, whose geometry consists in hole patterns. We studied the effect of
pattern variations in the main elastic properties of the metamaterial in the longitudinal and
radial directions, namely EL and ER. We discovered that the size and symmetry of the holes,
as well as the hole size distribution, directly influence those parameters and it is possible to
tune them independently or both at the same time. Finally, we developed an optimization
algorithm to find the best pattern for fixed target parameters, and we successfully applied the
algorithm in cases that resemble both difficulties that inspired this investigation. We showed
that wooden mechanical metamaterials can improve the response of wood naturally not well-
suited for instruments, carving the wood to match the material parameters of well-suited
ones. These results shows how wooden mechanical metamaterials could help to mitigate
wood material variability and tonewood scarcity.
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El placer del momento antepongamos
a la absurda cura del futuro, cuya
única certeza es el mal presente
con el que compramos su bien.

Ricardo Reis
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Chapter 1

Introduction

Two problems have existed throughout the entire history of guitar manufacturing. On one
hand, wood shows great material variability [1, 2], so even if two guitars are made from the
same tree, with the same geometry and manufactured with exactly the same techniques,
they will sound different. On the other, climate change has altered the habitat of trees [3, 4],
causing wood shortage and making it harder and more expensive for guitar makers to find
wood for guitars. This wood scarcity has lead iconic manufacturers to move away from tra-
ditional and better suited woods or using them just for premium quality instruments [5].
These difficulties have inspired the research in novel materials to reduce the variability and
find ways to tackle climate change using sustainable methods for manufacturing.

Materials such as carbon fiber [6, 7, 8]; Lyrachord, developed by Ovation Guitars [8]; and
Ekoa, a composite made of linen fibers and bio-based resins developed by Blackbird [9] are
some examples of novel materials used in guitar making. All of them decrease material va-
riations, but they may be expensive to manufacture or not sustainable because they belong
to the oil supply chain. Nevertheless, classical guitars have been made with wood since their
origins, and the tone associated with wooden instruments is considered the most pleasing.
Therefore, as none of these examples is based in wood a lot of effort is put to make the
instruments sound with a similar tone to wooden guitars.

Faced with the difficulties of guitar-making and of the materials listed above, wooden mecha-
nical metamaterials arise as a good alternative for the guitar’s soundboard, environmentally
friendly and more accessible to luthiers (i.e., guitar or instrument makers). Metamaterials are
rationally designed materials with non-intuitive mechanical properties based on their struc-
ture rather than on the properties of their material composition. Changing the structure of
the material it is possible to tune the mechanical parameters [10] and frequency response,
introducing the possibility of adapting (or improving) wood for desirable applications.

Guitar-making is one of those applications, since the role of the soundboard mechanical pa-
rameters is crucial in the final tone of the instrument. Metamaterials could help reducing the
intrinsic material variations or enhancing desired properties for the instruments. However, to
the best of our knowledge, only two investigations have applied metamaterials in the realm of
instrument making: Oñate et al. [11] have shown that a mechanical metamaterial can modify
the power spectrum of a guitar top when glued to it, while Bader et al. [12] attached a ring
of masses to the drum membrane resulting in cloaking behavior.

1



The aim of this thesis is to study the effect of geometric and density variations in the elastic
parameters of a wooden mechanical metamaterial consisting on a wooden plate divided in
squared cells with a parametrized elliptic hole. First, we explore plates in which all cells
share the same parameters. Then, we expand the parameter space dividing the plate in va-
rious subsets of cells with different holes to contrast the variations found in the first place
with heterogeneous configurations. Finally, an algorithmic optimizations is proposed to find
geometries better suited for different needs. This procedure allows to match desired elastic
properties or to maximize or minimize related quantities that measure the quality of the wood.

To obtain the elastic constants, we solved the linear elasticity eigenvalue problem for each
plate with free boundary conditions and we used the formulas proposed by Caldersmith [13]
to relate the Young’s Moduli with particular resonance frequencies. All our simulations were
realized with FEM tools via the Structural Mechanics module of the commercial softwa-
re COMSOL. The algorithmic optimization was implemented in the programming language
Python, using the numpy package for numerical calculations and mph package as a bridge
between COMSOL and Python.

This thesis is organized as follows: Chapter 2 introduces briefly the concepts of double top gui-
tars and wooden mechanical metamaterials. It also gives a review of the mathematical tools
of the linearized theory of elasticity and its eigenvalue problems for orthotropic materials.
Chapter 3 describes the research objectives and the methodology behind the simulations.
Chapters 4 and 5 provide the results for the homogeneous and heterogeneous studies. Even
though all the results are shown with the same plate and wood type, consistency tests we-
re made to quantify the variations for different woods and plate size, see Annexes. Finally,
chapter 6 describes the algorithmic optimization with successful results..
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Chapter 2

Literature review

In this chapter we present a brief review on the topics of guitar-making, metamaterials and
the theory of elasticity. First, we show how guitars have evolved through changes in its
geometry, modifying its acoustical and mechanical behavior. Then we explain the concept of
mechanical metamaterials mainly based in a review written by Yu [10] and show how our
investigation is inspired by them. Finally, we introduce the theory of elasticity and other
mathematical tools in the special case of wooden plates and their modal study.

2.1. Guitar-making development
While the origins of the guitar can be traced back to its African, Arabic, Asian, and Greek
ancestors [14] (See Figure 2.1 for examples of such instruments), Antonio de Torres in the
mid 19th century is commonly cited as the first to build the modern guitar as we know it
[15, 14], inspired by designs of Sanguino, Pagés, and Alonso [16]. A detailed description of the
guitar’s anatomy can be found in Figure 2.2. Torres considered the guitar soundboard as the
most critical component, so he focused on improving older soundboard building techniques.
His instruments had larger lower bouts, incorporated seven radial fan struts and curved lower
bout using a solera to assemble the guitars [15].

Inspired by successful Torre’s designs, many guitar makers from the early 20th century in-
troduced their own modifications to the soundboard, aiming for stronger structures or better
tonal balance. For example, Santos Hernández altered the angle of the lower harmonic bar,
Herman Hauser varied the height of the struts, and Ignacio Fleta built nine strut guitars with
an additional diagonal harmonic bar [15]. Nevertheless, innovations were not only introduced
in the structure but new woods started to be used for guitar construction. European Spruce
was the main wood used for soundboards in that time, because its light weight and great
strength made it well-suited for the application. Despite this, Fleta popularized the use of
Western Red Cedar for soundboards, and its guitars with that wood were known for their
“Fleta sound” [15].
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Figure 2.1: Examples of plucked string instruments, ancestors of the modern guitar. From left to right: drone
lute ramsagar, Bina, Delhi, India; ‘ud, Tangier, Morocco (II 58); pipa, China (VII 92); sanxian, China (II 26)
[14].

Our investigation will be focused in “Double-top guitars”, introduced by German guitar-
makers Gernot Wagner and Matthias Dammann in the late 1990. Double top guitars arose
as a solution to improve the soundboard performance using an aramid polymer related to
nylon called Nomex. It consists in building the soundboard with two wooden layers (called
veneers) with a Nomex Honeycomb core in between, attached with synthetic glue and glued
in vacuum [17, 18]. This sandwich board has the benefit of increasing the overall stiffness of
the soundboard while decreasing its weight, effectively improving its stiffness to weight ratio.
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Figure 2.2: Guitar’s anatomy [19]. The soundboard (also called Top or Sound Table) shows the fan strutting
built by Antonio de Torres. Our research is focused in the acoustic behavior of the wood plate from which
the soundboard is made.

Despite these benefits, an additional problem is introduced when using a Nomex Core: the
change in materials modifies the soundboard’s acoustic impedance, decreasing the acoustic
flow between each layer. In addition, there is no consensus on the choice of the core layer’s
pattern, since guitar makers decide based on a trial and error fashion. Using wood as the
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core material could improve the acoustic response of the plate, and studies of the effects of
different types of patterns can be made both numerically and experimentally using CNC or
laser cutting techniques.

(a) Nomex core with the upper board. (b) An example of a finished double top sound-
board. It is possible to observe the Nomex core
between the two layers of wood.

Figure 2.3: Illustration of double top soundboards, courtesy of [20].

All the modifications presented above were partially inspired to improve two important cha-
racteristics on guitar soundboards. On the one hand, stronger plates (i.e., higher stiffness)
are desired to support string tension. On the other, lighter plates (i.e., lower density) radiate
more sound from the instrument, increasing its volume. By changing the number and the
height of struts, the number and angle of the harmonic bars, or the nature of the soundboard
material, guitar makers have enhanced one or both of these properties. However, their modifi-
cations are based solely on their intuition, experience working with wood, and trial and error.

The contribution of science to the realm of instrument-making could help luthiers to choose
how to build their instruments in a more informed way, knowing precisely how each modifi-
cation influences stiffness, density, or acoustic behavior. In addition, the process of choosing
the right material or design can help to reduce the material usage and waste induced by
trial and an error and prototype constructions. The latter is critical in a world where bet-
ter suited wood are becoming harder to find due to climate and economical factors [3, 4], so
the development of scientific and cost-effective approaches is becoming more and more urgent.

In recent years, scientific approaches to instrument-making have emerged with two general
goals. First, validation of luthiers’ decisions has been made, for example, in the choices of
wood [21, 22], the aging of wood [23], and the bracing effectiveness [24]. The second goal
has been to propose new modifications to the guitar structure and building methods, as
a way to improve sound or reduce deforestation. For instance, thermal [25] and chemical
[26] treatments of wood, new materials such as fiber glass and epoxy [27], and data driven
methods of construction [28]. These works have proved the usefulness of scientific studies in
instrument-making and how luthiers and companies can benefited with these collaborations.
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2.2. Mechanical metamaterials
Metamaterials differ from usual composites in that their properties rely heavily on the topo-
graphical optimization in which the designs are based, rather than in the materials of which
it is composed [10]. The concept emerged in the field of optics [29, 30, 31], but quickly after
researchers expanded the techniques to develop metamaterials in the realm of acoustics and
mechanics [32, 33]. Investigations searched and founded materials which can be used as wa-
veguides [34], imperceptibility cloaks [35], and lightweight low frequency sound dampers [36],
effectively expanding the behavior found in optics to mechanical and acoustical applications.

Mechanical metamaterials inspire our investigation. This specific type of metamaterials shows
unconventional mechanical properties [37, 38, 39, 40], derived from their optimized structu-
re. The geometries are commonly based on periodic structures around a unit cell (See for
example Figure 2.4), but non-periodic structures has also been studied [41]. Periodic and
non-periodic designs were used during this investigation, in order to compare the benefits
and limitations of both. Mechanical metamaterials have been used in biomedical, acoustics,
aerospace, and thermal management applications. [42].

We are interested in a particular type of mechanical metamaterial associated with strength
and lightweight. These subclass consists of lightweight structures which are adequately stiff
and strong, a characteristic that moves them apart from conventional materials where a de-
crease in density bring forth a drastic degradation in the mechanical properties [10]. Examples
of these structures are microlattices, chiral, and hierarchical metamaterials as the ones de-
picted in Figure 2.4. This group of metamaterials have the exact property we search when
building guitar soundboards, so clearly inspiration emerge from these designs.

(a) Tetrakaidecahedron unit
cell packed into a cubic bend-
dominated lattice (Kelvin foam).
This structure shows ultra high
stiffness-to-density ratio [43]

(b) Tesselation obtained from a
hexachiral system. These design
form auxectic materials (i.e., ne-
gative Poisson’s ratios) [44].

(c) Holy sheet. Compressing the
material changes its mechanical
properties [37].

Figure 2.4: Examples of mechanical metamaterials associated with strength and lightweight.
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While the use of materials such as foam, epoxy and all kind of polymers and man-made ma-
terials is predominant, wood has been present in both structural [45] and acoustical [46, 47]
applications (See Figure 2.5 for images of wooden metamaterials), and even urban trees
planted in periodic arrangements can be understood as natural metamaterials used to re-
duce ground vibrations [48]. Given the importance of acoustics and mechanics in musical
instruments a connection between them and metamaterials would seem evident. Moreover,
as wood is the fundamental ingredient of many musical instruments, applying wooden me-
tamaterial designs in their construction could solve many of the problems luthiers have found.

(a) Sonic crystals made of resonating bamboo
rods [47].

(b) Acoustic barrier made of cylindrical wooden
bars [46].

Figure 2.5: Examples of wooden metamaterials.

To the best of our knowledge, only two works have connected mechanical metamaterials and
musical instruments: Oñate et al. [11] have shown that a mechanical metamaterial can mo-
dify the power spectrum of a guitar top when glued to it, while Bader et al. [12] attached a
ring of masses to the drum membrane resulting in cloaking behavior. Our investigation falls
within this area of research, directly applying metamaterial designs to the guitar structure
(or any wooden musical instrument with soundboard) to change its acoustic response and
mechanical behavior.

2.3. Theory of elasticity for wooden plates

2.3.1. PDE’s for the eigenvalue problem

Lets consider a wooden plate Ω ⊆ R3, with or without holes. We are interested in finding
eigenfrequencies and eigenmodes of the fundamental equations of linearized elastodynamics
for a 3D elastic body with free boundary conditions. This problem can be modeled as finding
pairs (u, λ) ∈ H1(Ω;R3)× R such that [49]:

−∇ · σ(u) = λρ(x)u in Ω,
σ(u) · n = 0 in ∂Ω

(2.1)

has no trivial solutions, where ρ(x) ∈ L∞(Ω;R+) is the mass density, σ(u) ∈ L2(Ω;S3) is
the stress tensor, S3 representing the space of real 3 × 3 symmetric matrices, and n is the
unit outward normal vector to Ω in its boundary. The vector u ∈ H1(Ω;R3) represents the
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displacement vector due to the deformation of the domain [50].

The stress-strain relation for linear elasticity can be written as

σ(u) = Aε(u), (2.2)

where the strain tensor ε(u) is given by:

ε(u) = 1
2
(
∇u +∇uT

)
, (2.3)

and A is a fourth order tensor such that [51]:

A = (aijkl)1≤i,j,k,l≤3 and aijkl = aklij = ajikl = aijlk.

∃α, β > 0 such that αβ ≤ 1 and
Aξ : ξ ≥ α|ξ|2

Aξ : ξ ≥ β|ξ|2
(2.4)

for all ξ ∈ S3, where : represents the scalar product of S3.

2.3.2. Existence of solutions

Since ρ(x) > 0 and bounded, the linear operator Bv := ρv is selfadjoint and positive definite,
and all its eigenvalues are real and positive [52]. Consequently, if Λv := −∇ · σ(v), the
eigenvalue problem

Λu = Bu (2.5)

has real and positive eigenvalues associated to finite dimensional eigenmodes (λn)∞n=1, since
Λ is selfadjoint and with compact inverse from L2(Ω,R3) into L2(Ω,R3) [53].

As we are solving the eigenvalue problem with free boundary conditions, λ1 = 0 is the first
eigenvalue and its eigenmodes correspond to the rigid displacements of the domain Ω:

Kerε = {u ∈ H1(Ω;R3) : ε(u) = 0}. (2.6)

These eigenmodes are important since every attempt to solve the equation numerically will
have them as solutions, but we are not interested in them and they will be ignored. They
can be avoided using Dirichlet boundary conditions, but the modes we’re really interested
into (i.e., the fundamental longitudinal and radial modes as explained in Section 3.5) do not
appear when fixing any of the boundaries.

2.3.3. Stress-strain relation for orthotropic materials

The tensor A carries the information about the material mechanical response. Orthotropic
materials (such as wood, laminated plastic, and various composite materials) posses three
orthogonal planes of material symmetry and three corresponding orthogonal axes called the
orthotropic axes [54]. The orthotropic axes are commonly called Longitudinal, Radial and
Tangential, and they are denoted L,R, and T respectively. Hence, the material mechanical
response is described by 9 constants:
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Three orthotropic moduli of elasticity EL, ER, and ET , which measures the object resis-
tance to being deformed elastically when a stress is applied to it.

Three orthotropic shear moduli GLR, GLT , and GRT , which measures the material elastic
shear stiffness.

Three Poisson’s ratios νLR, νLT , and νRT , which characterizes the strain in the second
direction produced by the stress in the first one.

Finally, for orthotropic materials we have that A = S−1, where S is called the compliance
tensor. Using Voigt notation, S can be written as a 6× 6 matrix with the following form:

S =



1
EL

−νRL

ER
−νT L

ET
0 0 0

−νLR

EL

1
ER

−νT R

ET
0 0 0

−νLT

EL
−νRT

ER

1
ET

0 0 0
0 0 0 1

GRT
0 0

0 0 0 0 1
GT L

0
0 0 0 0 0 1

GLR


, (2.7)

where, Ei corresponds to the Young’s modulus, νij the Poisson’s ratio and Gij the shear
modulus [54].
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Chapter 3

Methodology

This chapter explain the research objectives as well as all the information related to the
simulation procedures. Furthermore, we explain in detail the plate’s geometry and its para-
metrization, wood used for the simulations, quantities of interest and how to calculate them,
and simulation procedures.

3.1. Research objectives
The main research objective is to study the effect of geometric variations on the elastic pa-
rameters of a wooden mechanical metamaterial, which consists on a plate divided in squared
cells with a parametrized elliptic hole. This objective can be broken into three tasks:

1. Describe the variation in density and elastic parameters produced by changes in size
and symmetry of the elliptic hole when all the cells share the same geometry.

2. Describe the variation in elastic parameters produced by geometries with multiple cell
types for a fixed density.

3. Develop an optimization algorithm to find the best geometry for a given set of target
mechanical parameters.

These goals will demonstrate how wooden mechanical metamaterials can increase wood ver-
satility in the manufacture of musical instruments. In addition, tools will be developed to
enable luthiers to choose the geometries best-suited to their specific needs. By improving the
response of wood naturally not well-suited for soundboards, it will be possible to augment
the wood types used for that task, tackling the scarcity of traditional woods with sustainable
solutions that do not lose the nature of wood tonal characteristics.

3.2. Setup
Numerical simulations were performed using rectangular plates of standard guitar dimen-
sions, divided into unit cells composed by a square with a centered elliptic or circular hole
(see Figure 3.1 for examples of plates). This type of patterns work as a simple way to introdu-
ce asymmetries in the geometry by changing the shape and angle of the ellipses. In addition,
we took advantage of the orthotropic nature of the material using patterns that preserve the
simmetries of wood. First, we studied homogeneous patterns in which all the unit cells share
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the same parameters (hence all the holes have the same shape, Fig. 3.1 (b)). Later, those
results were expanded with heterogeneous patterns that preserve symmetries with respect to
the L or R axes of the plate, Fig. 3.1 (c).
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Figure 3.1: Wood cutting scheme (a) Diagram for an orthotropic wood plate and how it is cut from a log:
the longitudinal axis L is parallel to the grain, the tangential axis T is tangential to the growth rings and the
radial axis R is parallel to the direction of growth of the tree. (b) Top view of a 3D simulated homogeneous
plate. (c) Top view of a 3D simulated heterogeneous plate.

We choose Engelmann spruce for the simulations because it is one of the most sought after
wood for soundboards. The elastic properties used were taken from Ross et al. [55] and are
shown in Table 3.1. In reality spruce’s material parameters are not constant, as they could
vary depending on the age of the source tree, the plate’s location in the log, humidity or
absorbed water, among others [1, 56], but for the sake of simplicity we will keep them cons-
tant. Even though this might seem arbitrary, we carried simulations with two other types of
wood to show that the quantitative change on the effective material parameters is close to
independent of the actual values of the wood used (See Annexed C).

Table 3.1: Simulated material properties. The dimensions correspond to the standard plate used for the
manufacture of guitar tops: L ×W ×H = a × b × h = 0.6 × 0.24 × 0.0035[m ×m ×m]. Elastic properties
correspond to the ones of Engelmann spruce reported in [55].

Density [kg/m3] Young’s Moduli [GPa] Shear Moduli [GPa] Poissons’s Ratios
ρ EL ER ET GLR GRT GLT νLR νRT νLT

385 8.9 1.13 0.52 1.10 0.09 1.07 0.422 0.530 0.462

3.3. Quantities of interest
When looking for an ideal wood for guitar’s top plates, there are three primary characteristics
to consider: the stiffness in the longitudinal direction EL, the stiffness in the radial direction
ER, and the density of the plate ρ. Besides those three, following Ono [57], the quality of the
soundboard can be assessed with two additional acoustical factors: the anisotropy ratio

ER
EL

, (3.1)

and the acoustic radiation index, proposed by Schelleng [58], which is the longitudinal sound
velocity divided by density: √

EL
ρ3 = cL

ρ
, (3.2)
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where cL is the sound velocity (disregarding the Poisson ratio) in the longitudinal direction.

In the case of soundboards, for the first three quantities a suitable wood should have high
EL, low ER, and low ρ. Besides, low anisotropy ratio and high acoustic radiation are desired.
Values for stiffness and density of Engelmann Spruce can be found in Table 3.1, while for
the acoustical factors it has nominal values of ER/EL = 0.128 and

√
(EL/ρ3) = 12.48 m4/kg·s.

These five parameters serve two proposes in this research: to measure the effect of each geo-
metry on the plate’s mechanic behavior and to show what configurations are well suited for
guitar’s top plates. These and other related quantities have been used previously, for example,
to measure the effect of ageing [23, 59], the effect of absorbed water [56], and the classification
of woods for string instruments [21, 22].

3.4. Parametrization
Every cell is described with a set of three parameters: the volume fraction v of the hole with
respect to the unit cell, the aspect ratio k of the elliptic hole, and the angle θ of the hole with
respect to the L-axis (See Figure 3.2 for a detailed explanation of the cell parametrization).
Hence, if Nr is the number of rows and Nc is the number of columns of cells in the plate, the
set of all parameters can be arranged as P = {(vij, kij, θij)}i=1,...,Nr,j=1,...,Nc , counting from left
to right and top to bottom. Additionally we defined the void matrix V = (vij)i=1,...,Nr,j=1,...,Nc

as the matrix which contains all the volume fractions of the pattern. All the cells were square
shaped, and they shared the same side `. With these parameters we determined the semi-
major and semi-minor axes xi and yi for each hole:

xij =
√
`2vijkij
π

, yij = xij
kij

, i = 1, . . . , Nr , j = 1, . . . , Nc. (3.3)

We established two bounds that serve different purposes in the construction of the real
wooden plates:

kij <
π

vij

(
0.5− δ1

`

)2

, i = 1, . . . , Nr , j = 1, . . . , Nc (3.4)

and
kij <

vij
π

(
`

δ2

)2

, i = 1, . . . , Nr , j = 1, . . . , Nc (3.5)

Equation (3.4) ensures there is at least δ1 [m] between the boundary of the hole and the
outer boundary of the unit cell to keep enough material so that the plate is not too fragile. In
addition , Equation (3.5) refers to restrictions of the cutting technique where it is impossible
to make holes with one of the semi-axes smaller than δ2 [m]. During the course of this thesis
we used δ1 = δ2 = 0.001, but in practices both values could be different.
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Figure 3.2: Cell parametrization diagram. We define cells of side ` with an elliptical hole which shape is
controlled with three parameters: the volume fraction with respect to the whole cell v = πxy/`2, the aspect
ratio k = x/y where x and y are the semi-major and semi-minor axes respectively, and the angle θ of the
ellipse with respect to the L-axis. In this example we use (v, k, θ) = (0.25, 2.2, π/4).

3.5. Formulas for effective properties
The three chosen parameters allow us to calculate the effective mechanical properties descri-
bed in Section 3.3. The effective density is calculated as

ρ′ = ρ(1− V ) . (3.6)

where V is the mean of the void matrix V ,

V = mean(V) = 1
NrNc

Nr∑
i=1

Nc∑
j=1

vij (3.7)

Equation 3.6 has two clear consequences. If we increase V , the effective density will decrease
linearly and the volume fraction is the only parameter that changes the value of ρ′. Taking
the latter into account, we will refer to changes in effective density rather than in volume
fraction when discussing the results, since ρ′ allows a more direct interpretation of the effect
of the geometry in the plate’s mechanical behavior.

To compute the Young’s moduli E ′L and E ′R of the plates we used the formulas proposed in
[60, 13]. Namely,

E ′L = 12× 0.08006 ρ′ a4f 2
0,2/h

2 ,

E ′R = 12× 0.08006 ρ′ b4f 2
2,0/h

2 ,
(3.8)

where f0,2 is the frequency of the fundamental longitudinal mode (long grain mode), f2,0 is the
frequency of the fundamental radial mode (cross grain mode) (See Figure 3.3 for an example
of the mode shapes), and the constants a, b and h are the dimensions on the longitudinal,
radial and transverse direction of the plate described in Figure 3.1. The effect of the Poisson’s
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ratios are less relevant in the behavior of the instrument [61] so we have disregarded their
analysis in what follows.

(a) Fundamental longitudinal mode, (0, 2). (b) Fundamental radial mode, (2, 0).

Figure 3.3: Modes used to calculate the desired Young’s Moduli. The fundamental longitudinal mode is
associated with E′L, while the fundamental radial mode is associated with E′R

Because of equations 3.8 are defined for rectangular plates without holes, we test the use-
fulness of this equation for our patterned plates with numerical tensile tests on different
plates, with and without holes, obtaining the longitudinal and radial stiffness (Et

L and Et
R,

respectively). The relationship between the elastic moduli obtained from the tensile tests and
(3.8) was fitted as Et

i = αiE
′
i. For longitudinal stiffness we obtained αL = 0.91 ± 0.04 with

R2 = 0.96. For radial stiffness we obtained αR = 0.73±0.03 with R2 = 0.78. This means that
the longitudinal stiffness is better approximated than the radial stiffness in our perforated
plates. Despite these discrepancies, we decided to work with (3.8) instead of tensile tests
because it is the method preferred by luthiers. It is important to keep in mind, however, that
in both cases the stiffness obtained using (3.8) are smaller than the real yet linearly related
ones, but our results remain qualitatively valid with either way of measuring the stiffness.

3.6. Simulation procedures
To obtain the frequencies of the fundamental longitudinal and radial modes, f0,2 and f2,0, we
numerically solve the eigenvalue problem with free boundary conditions related to each woo-
den plate described. Numerical simulations were performed using the Structural Mechanics
module of the commercial software COMSOL, defining the domain, equation and solver. In
addition, Python’s mph package [62] is used as an interface to run COMSOL scripts through
Python for the iterative processes to obtain the data, plotting and to implement the final
optimization algorithm.
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Chapter 4

Homogeneous study

In this chapter results for simulations of homogeneous geometries will be presented. We star-
ted by studying the role of the effective density ρ′ by simulating circular hole patterns of
different radii. Then, we measured the effect of asymmetry using elliptic holes varying their
aspect ratio. Finally, we characterized the change of the elastic constants by varying the angle
of the ellipses with respect to the longitudinal axis.

4.1. Building homogeneous patterns
By homogeneous pattern we understand plates which share the same parameter for each unit
cell. Consequently, Pij = (vij, kij, θij) = (v∗, k∗, θ∗)∀i = 1, . . . , Nr, j = 1, . . . , Nc. By means
of the three main parameters (v∗, k∗, θ∗) we changed the hole geometry for every cell. Figure
4.1 shows two examples of plates built with homogeneous patterns.

(a) (v∗, k∗, θ∗) = (0.15, 1, 0). (b) (v∗, k∗, θ∗) = (0.20, 2, π4 ).

Figure 4.1: Examples for homogeneous patterns.

4.2. Effect of the volume fraction v

To test the effect of the volume fraction in the effective parameters we study the variation
caused by increasing the size of circular hole. i.e., increasing the volume fraction and decrea-
sing the effective density. Figure 4.2 shows the variation in the quantities of interest caused
by different sizes of circles. Young’s Moduli increase as we decrease the circle size. The ex-
periments show a maximum decrease of 78 % in the longitudinal direction and 76 % in the
radial direction, reaching 1.96 [GPa] and 0.27 [GPa] respectively.
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Consequently, both the anisotropy ratio and the acoustic radiation show an increase of 14 %
and 85 % over the original value. The anisotropy ratio shows a maximum value of 0.146
while the acoustic radiation reaches 23.13 [m4/kg·s]. However, while the acoustic radiation
shows a monotonous increase when we increase the volume fraction, the value of the aniso-
tropy ratio does not depend on changes of the volume fraction and it remains almost constant.
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Figure 4.2: Effects of changing the effective density with circular holes of varying size. (a) Longitudinal
elasticity. (b) Radial elasticity. (c) Anisotropy ratio. (d) Acoustic radiation damping factor.

4.3. Effect of the aspect ratio k

By keeping the volume fraction of the hole constant and varying the aspect ratio we can
study how the geometry of the hole affects the stiffness. Figure 4.3 shows the behavior of
the quantities of interest for different aspect ratios and volume fractions, both for ellipses
parallel and perpendicular to the longitudinal axis.

It is remarkable to see that now, in contrast with circular holes, for every volume fraction
there is an interval of reachable values instead of just a point, effectively increasing the va-
riation of the elastic parameters. Black points in each of the graphics of Figure 4.3 represent
the same values as 4.2, while the arrows show the interval of reachable parameters for both
parallel and perpendicular ellipses.

The results show that if we increase the effective density, the range of variation increase.
This effect is directly related with the bound introduced in 3.4, because as we decrease the
volume fraction the interval of possible aspect ratios increase. It is also possible to see that
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even though now there is a range of values for each density, each graphic of Figure 4.3 fo-
llow the same overall trend dictated by the change in volume fraction described in Section 4.2.

In numerical terms, the longitudinal stiffness E ′L shows maximum and minimum variation of
81 % and 11 %, reaching 1.72 [GPa] and 7, 96 [GPa] respectively. Additionally, E ′R varies bet-
ween maximum and minimum variations of 79 % and 3 %, reaching 0.24 [GPa] and 1.10 [GPa].

While with circular holes the anisotropy ratio and acoustic radiation always increase, chan-
ging the aspect ratio and orientation it is possible to decrease both values. With ellipses
perpendicular to the longitudinal direction the value of E ′R/E ′L increases up to 0.377 with a
maximum variation of 195 %. Ellipses parallel to that direction decrease the anisotropy ratio
by 46 % with a value of 0.068.

The acoustic radiation changes in the opposite way. Ellipses perpendicular to the longitudinal
direction decrease the value by a maximum variation of 38 % at a value of 7.72 [m4/kg·s].
The value with horizontal ellipses increases up to 95 % at a value of 24.39 [m4/kg·s].
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Figure 4.3: Effects of changing the aspect ratio for different effective densities. The cell diagram on the left
side shows the meaning of the colors in each vertical line: black is the unit cell with circular hole and the
further away from it, the larger the aspect ratio for horizontal (in purple) or vertical (orange) ellipses. (a)
Longitudinal elasticity. (b) Radial elasticity. (c) Anisotropy ratio. (d) Acoustic radiation damping factor.

4.4. Effect of the angle variation θ

Now we focus our attention on the dependence of the stiffness and both acoustical factors
on the angle with respect to the longitudinal direction at which the ellipse is positioned.
Figure 4.4 shows changes of the quantities of interest for three different volumes, each one
with the maximum aspect ratio given by the bounds 3.4 and 3.5 , and rotating the ellipses
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from 0 to π. In contrast with the parameters studied in the previous sections, smooth angle
variations produces changes in the shape of some of the studied eigenmodes (See Annexed A
for a further discussion in this topic).

All the observables present the same periodicity, which is expected from the symmetry of
the unitary cell. It is easy to see that the smaller the hole is, the larger is the range that the
stiffness varies when varying the angle, mainly because the bigger the hole the less asym-
metry in the geometry, because the maximum aspect ratio decreased significantly. For the
case of the anisotropy ratio the variation with the density is not very noticeable, whereas for
the acoustic radiation it is inverted: the larger the hole, the more this value changes when
varying the angle.

The limits of the intervals in which every quantity varies are the same as in subsection 4.3.
This can be understood by noticing that, for every curve, the maximum and minimum are
respectively reached when the ellipse is either parallel or perpendicular to the longitudinal
direction. However, not the whole range of values is reachable by varying only the angle as
can be seen by the ’jump’ on the longitudinal stiffness mostly visible for the highest effective
density (purple line) in Fig. 4.4 (a).
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Figure 4.4: Effects of the angle of the ellipse. All the observables present a periodicity on the angle, which is
obvious from the symmetry of the shape of the hole. Interestingly though, the variation in the longitudinal
direction is much larger than in the radial direction, and both ranges of variation depend heavily on the
effective density of the plate: the smaller the hole the larger the range that the stiffness varies when varying
the angle. It is possible to see the same behavior for the acoustic radiation. (a) Longitudinal elasticity. (b)
Radial elasticity. (c) Anisotropy ratio. (d) Acoustic radiation damping factor.
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4.5. Phase plane EL − ER

It would seem from the previous results that E ′L and E ′R are inversely related: when varying
either the aspect ratio or the angle of the ellipses one increases when the other decreases.
However, from the measurements of the anisotropy ratio one can see that the variation in
each way of modifying the holes is peculiar. To understand this better we plot all the previous
results together in a E ′R-E ′L plot where the effects of the geometry is better illustrated.

Figure 4.5 (a) shows the results for some of our simulations in the space of normalized radial
and longitudinal stiffness for the plates with aspect ratio variation. Aspect ratio tends to
affect only one stiffness at the time: for the case of vertical ellipses, E ′L varies more than E ′R
and the opposite occurs for horizontal ellipses. In contrast, the behavior for angle variations
is very different (see Figure 4.5 (b)), since it varies both elastic constants at the same time,
in a roughly inverse relation.
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(a) Aspect ratio variations.
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(b) Angle variations.

Figure 4.5: Results for plates with (a) aspect ratio variation and (b) angle variation, normalized by Engelmann
Spruce elastic parameters. The shape of the point represent the hole shape of the corresponding plate, while
the color map represents the associated effective density. For the case of vertical ellipses, E′L varies more than
E′R and the opposite occurs for horizontal ellipses. Angle variations change both elastic constants at the same
time, in a roughly inverse relation.
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Chapter 5

Heterogeneous study

In this chapter, results for simulations of heterogeneous geometries will be presented. As we
are interested in variations in density, we focus on plates with circular hole patterns with
different sizes. We study non-periodic patterns that take advantage of the longitudinal and
radial axes of symmetry, allowing us to change the corresponding elastic parameters almost
independently.

5.1. Building heterogeneous geometries
By heterogeneous pattern we understand arrays of cells in which the parameters defining them
are not shared across the plate. Instead, subsets of cells could have different holes, while in the
limit every cell could have independent parameters. We are interested in the effect of density
variations in the plate, so only patterns with circular holes will be used in order to avoid the
effects of asymmetries in the holes produced by changes in aspect ratio and angle. Hence, for
the rest of this chapter we will assume kij = 1, θij = 0,∀i = 1, . . . , Nr, j = 1, . . . , Nc.

5.1.1. Symmetries

We divided the study into two groups: the first group corresponds to geometries symme-
tric with respect to the R axis, divided by groups of columns with the same parameters.
Consequently, this group consists of patterns such that

vi,j = vi,Nc−(j−1) = νcj , ν
c
j ∈ [0, 1],∀i = 1, ..., Nr, j = 1, ..., bNc

2 c.
(5.1)

Similarly, the second group takes advantage of L-axis symmetries, so the group consists in
patterns such that

vi,j = vNr−(i−1),j = νrj , ν
r
j ∈ [0, 1], ∀i = 1, ..., bNr

2 c, j = 1, ..., Nc. (5.2)

As a consequence,R-symmetric patterns will be described with void vectors Vc = (νcj )j=1,...,Nc
2
∈
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[0, 1]Nc
2 with its associated void matrix Vc, and the L-symmetric ones described by void vec-

tors Vr = (νrj )i=1,...,Nr
2
∈ [0, 1]Nr

2 with its associated void matrix Vr. We started studying
effects in the mechanical parameters of each group (See Section 5.2), and then we combined
symmetries (See Section 5.3), keeping the same effective density for each geometry. Figure
5.1 shows examples of plates for both types of symmetries.

(a) R-symmetric pattern. (b) L-symmetric pattern.

Figure 5.1: Examples for (a) R-symmetric and (b) L-symmetric patterns. The darker the cell the greater the
effective density.

5.1.2. Choosing void vectors

We used the following method to build the void vectors for the symmetries described above:
first, we fixed an objective mean volume fraction v∗ which defines the maximum and minimum
void volumes of the plate, vM and vm respectively, as:

vM :=
2v∗ − 0.02 if 2v∗ − 0.02 < 0.6

0.6 if 2v∗ − 0.02 ≥ 0.6
(5.3)

vm :=
0.02 if 2v∗ − 0.02 < 0.6

2v∗ − 0.6 if 2v∗ − 0.02 ≥ 0.6
(5.4)

The restrictions imposed in vM,m allow us to build patterns coherent with experimental
cutting methods and the restrictions imposed in Section 3.4. Then, taking µ ∈ R, we defined
the void vectors independently from the type of symmetry as follows: defining N∗c,r := Nc,r/2,

If N∗c,r is even, Vc,r = (νc,rk )k=1,...,N∗
c,r

is defined by:

νc,rk :=
vm + µ(N∗c,r − k) if k > N∗

c,r

2
vM − µ(k − 1) if k ≤ N∗

c,r

2
(5.5)

If N∗c,r is odd, Vc,r = (νc,rk )k=1,...,N∗
c,r

is defined by:

νc,rk :=


vm + µ(N∗c,r − k) if k > bN

∗
c,r

2 c
v∗ if k = bN

∗
c,r

2 c
vM − µ(k − 1) if k < bN

∗
c,r

2 c
(5.6)
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Defining Vc,r in this manner ensures that the volumes are in decreasing order, building pat-
terns with big holes near the edges and smaller ones near the center of the plate, as the ones
in Figure 5.1. The parameter µ quantifies the steepness of the void gradients: the smaller
the µ, the greater the difference in volume fraction (hence, in effective density) between the
edges and the center (Compare the patterns from Figure 5.2 with µ = 0.04 with the ones
from Figure 5.3 with µ = 0.002). Besides, to keep the vector Vc,r in descending order, µ must
satisfy the bound

µ ≤ vM − vm
2(N

∗
c,r

2 − 1) (5.7)

To show that patterns built with this method preserve v∗, we prove the equality for the case
of R-symmetric patterns and N∗c even, since the others are analogous: from the way in which
the patterns are built, it is clear that

V c = mean(Vc) = 2Nr

N∗
c∑

j=1
νcj (5.8)

Hence,

V c = 1
NrNc

Nr∑
i=1

Nc∑
j=1

vij

= 1
NrNc

2Nr

N∗
c∑

j=1
νcj

= 1
N∗c

N∗
c∑

j=1
νcj

(5.9)

Replacing νcj from Equation (5.5),

1
N∗c

N∗
c∑

j=1
νcj = 1

N∗c

N∗
c /2∑
j=1

νcj +
N∗

c∑
k=N∗

c /2+1
νck


= 1
N∗c

N∗c
2 (vM + vm) +

N∗
c /2∑
j=1

µ(j − 1)−
N∗

c∑
k=N∗

c /2+1
µ(N∗c − k)


= 1
N∗c

N∗c
2 (vM + vm) +

N∗
c /2−1∑
j̃=0

µj̃ −
N∗

c /2−1∑
k̃=0

µk̃


= 1
N∗c

N∗c
2 (vM + vm) = vM + vm

2 = v∗

(5.10)

where the last equality holds because from Equations 5.3 and 5.4 it is clear that vM + vm =
2v∗, ∀v∗ ∈ (0, 1). Therefore, the objective mean volume fraction is reached.

Finally, we define Ṽc,r = (ν̃c,rj )j=1,...,N∗
c,r

:= (νc,rN∗
c,r−(j−1))j=1,...,N∗

c,r
as reverse ordered versions

of Vc,r, with void matrices Vc̃,r̃ respectively. These vectors allow us to built patterns with
volume fractions in ascending order, that is, with small holes near the edges and bigger ones
near the center of the plate (See Figure 5.2 for examples of plates built with Vc and Ṽc).
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(a) Vc, descending order. (b) Ṽc, ascending order.

Figure 5.2: Examples of plates built with (a) Vc and (b) Ṽc, taking v∗ = 0.15 and µ = 0.04. The darker the
cell the greater the effective density.

5.2. Results combining patterns with the same sym-
metry

How the patterns are defined allows us to linearly combine the void matrices to create new
geometries, instead of building new matrices every time from the ground up. For λ ∈ [0, 1],
we define

Vλc,r = λVc,r + (1− λ)Vc̃,r̃, (5.11)

and noting that

V
λ
c,r = mean(Vλc,r) = 1

N∗c,r

N∗
c,r∑

j=1
λνc,rj + (1− λ)ν̃c,rj

= λ

N∗c,r

N∗
c,r∑

j=1
νc,rj + 1− λ

N∗c,r

N∗
c,r∑

k=1
ν̃c,rk

= λv∗ + (1− λ)v∗ = v∗, ∀λ ∈ [0, 1]

(5.12)

it is possible to take convex combinations between void matrices and preserve the same mean
volume fraction in the created patterns. This method enables us to study the effect of dif-
ferent volume gradients just by changing the value of λ, instead of changing the value of µ
and the vectors Vc,r.

In particular, when taking λ = 1
2 , we can recover an homogeneous pattern in which every

cell has the same volume fraction v∗. In fact,

1
2(νc,rk + ν̃c,rk ) = 1

2(νc,rk + νc,rN∗
c,r−(k−1))

= vM + vm
2 = v∗,∀k = 1, ..., N∗c,r

(5.13)

Furthermore, when λ < 1
2 , the plate presents bigger holes in the center and concentrates the

density in the edges, while λ > 1
2 has the opposite effect.

As an example of the changes produced by opposite geometries and their combination, Figure
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5.3 shows the effect in the elastic parameters of both groups of symmetries for v∗ = 0.15 and
µ = 0.002. The plot at the center of Figure 5.3 (a) shows the normalized values of the elastic
parameters for R-symmetric patterns and different values of λR. While we see a variation of
41.5 % in the value of E ′L, the value of E ′R barely changes with a variation of 1.1 %. In contrast,
L-symmetric patterns for different values of λL (See Figure 5.3 (b)) show greater variability in
E ′R with a change in its value of 37.2 % while changing the value of E ′L at a maximum of 6.1 %.
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Figure 5.3: Values of the elastic properties for both groups symmetries with v∗ = 0.15 and µ = 0.002, nor-
malized by Engelmann Spruce elastic parameters. λR,L parametrize the transformation between the pattern
on the left (λR,L = 0) and the pattern on the right (λR,L = 1), passing by different gradients of hole sizes.
At λR,L = 0.5 we recover an homogeneous configuration. (a) Initial R-symmetric patterns used and elastic
parameters for its combinations. While the value of E′R remains almost constant, E′L shows great variability
when changing the density distribution. (b) Initial L-symmetric patterns used and elastic parameters for its
combinations. While the value of EL barely changes, ER shows great variability when changing the density
distribution.

Figure 5.3 also shows that taking values of λR,L closer to 0.5 (i.e., less pronounced volume
gradients or greater values of µ) decreases the difference between the obtained elastic para-
meters and the ones associated with the homogeneous pattern. Consequently, smaller values
of µ in the initial patterns increase the range of possible values that the elastic parameters
could take in the combined pattern. However, while it might seem disadvantageous to in-
crease the value of µ, it could be useful to have several patterns that reach the same elastic
parameters.

Another way to visualize these results is by studying the E ′L − E ′R plane and how hetero-
geneous patterns and their combinations move around it. Figure 5.4 (a) shows the effect of
combinations of R-symmetric patterns with v∗ = 0.15, µ = 0.002, and several values of λR.
Clearly, the E ′R value barely moves, and the value for the homogeneous pattern is reached.
Similarly, Figure 5.4 (b) shows that combining L-symmetric patterns with v∗ = 0.15 and
µ = 0.002 varies E ′L much less than E ′R. As a result, we can modify one of the elastic
parameters barely modifying the other by choosing the correct pattern symmetry.
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Figure 5.4: E′L−E′R plots (normalized by Engelmann Spruce elastic parameters) for patterns with v∗ = 0.15.
Purple and orange values are taken from patterns with µ = 0.002. Both graphics show the values reached by
the homogeneous pattern,R-symmetric and L-symmetric configurations without convex combinations. Taking
convex combinations it is possible to modify the value of one of the elastic parameters while barely changing
the other. (a) Results combining R-symmetric patterns. While the value of E′R remains almost constant, E′L
shows great variability when changing the density distribution. (b) Results combining L-symmetric patterns.
While the value of E′L barely changes, E′R shows great variability when changing the density distribution.

To summarize, Figure 5.5 shows the effect of heterogeneous patterns for various effective
densities. The figure presents the area of reachable values for E ′L and E ′R for several objective
volume fractions v∗, using the same method with µ = 0.002 and varying the values of λL,R.
For both cases, we compare the new values with the ones reached with homogeneous patterns
reported in Chapter 4. Results show that taking heterogeneous configurations it is possible
to reach higher values of both elastic parameters —but not at the same time— keeping them
really close to the original value with up to 30 % less density.
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Figure 5.5: Stiffness versus density plots of the elastic parameters E′L and E′R. While changing the effective
density (i.e., mean volume fraction) allows us to move horizontally, taking different values of λL,R it is possible
to move vertically inside the region, for a fixed density. For both parameters we see a direct influence of one of
the type of symmetries, while the other keeps the elastic properties almost constant for each effective density.
The gray region shows the values obtainable by homogeneous patterns shown in Chapter 4. Notice how it
is possible to reach higher values of stiffness for almost any density with heterogeneous configurations than
with homogeneous patterns. (a) Longitudinal elasticity E′L. (b) Radial elasticity E′R.

The remaining quantities of interest has also been studied for heterogeneous patterns. Figure
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5.6 (a) shows the range of values of the Anisotropy ratio for each symmetry. While both ty-
pes of patterns show variations, none of them reaches the range possible using homogeneous
patterns with ellipses. This behavior can be explained because even though we are able to
reach higher values of both elastic parameters, the Anisotropy ratio takes into account the
difference between them which do not change as much as in the homogeneous case.

The acoustic radiation (See Figure 5.6 (b)) increases its value in several effective densities
when using R -symmetric patterns, as these symmetries influence the value of E ′L. Conver-
sely, L-symmetric patterns show a neglectful influence in the Acoustic radiation, because
as seen in Figure 5.3 (b) these patterns do not influence the value of E ′L significantly. This
behavior makes the Acoustic radiation for L-symmetric patterns stay within the range of
values reachable for homogeneous patterns, while R-symmetric patterns reach higher values
and variations comparable with the homogeneous case.
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Figure 5.6: Anisotropy ratio versus density and Acoustic radiation versus density plots. While changing the
effective density (i.e., mean volume fraction) allows us to move horizontally, taking different values of λL,R
it is possible to move vertically inside the region, for a fixed density. (a) Anisotropy ratio. The ratios for
heterogeneous do not succeed at reaching lower values than with homogeneous ones. (b) Acoustic radiation.
While R-symmetric patterns could reach higher values of radiation for some effective densities, L-symmetric
patterns do not show great variation mainly because this type of patterns have little influence in the value
of E′L.

5.3. Results combining patterns with different symme-
tries

Taking convex combinations between void matrices also enables us to combine patterns with
different symmetries, defining

V(λc,λc̃,λr,λr̃) := λcVc + λc̃Vc̃ + λrVr + λr̃Vr̃, (5.14)

where
(λc, λc̃, λr, λr̃) ∈ [0, 1]4 such that λc + λc̃ + λr + λr̃ = 1. (5.15)

Using the patterns defined in the previous section it is possible to obtain new density distri-
butions, like the ones depicted in Figure 5.7.
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As in the previous section, V(λc,λc̃,λr,λr̃) preserves v∗, since

mean(V(λc,λc̃,λr,λr̃)) = λcmean(Vc) + λc̃mean(Vc̃) + λrmean(Vr) + λr̃mean(Vr̃)
= (λc + λc̃ + λr + λr̃)v∗ = v∗

(5.16)

Additionally, we recover an homogeneous pattern when λc = λc̃ = λr = λr̃ = 1
4 since

1
4(νck + ν̃ck + νrj + ν̃rj ) = 1

4(νck + νcN∗
c−(k−1) + νrj + νrN∗

r−(k−1))

= 1
4(2v∗ + 2v∗)

= v∗,∀k = 1, ..., N∗c , j = 1, ..., N∗r

(5.17)

(a) (λc, λc̃, λr, λr̃) = (0.5, 0, 0.5, 0) (b) (λc, λc̃, λr, λr̃) = (0, 0.5, 0, 0.5)

Figure 5.7: Examples of plates built with the convex combinations defined in 5.14 using initial patterns
created with parameters v∗ = 0.15 and µ = 0.01. (a) (λc, λc̃, λr, λr̃) = (0.5, 0, 0.5, 0). (b) (λc, λc̃, λr, λr̃) =
(0, 0.5, 0, 0.5). The darker the cell the greater the effective density.

We use patterns with v∗ = 0.15 and µ = 0.002 to illustrate the results, taking into account
that for other mean volume fractions the changes are qualitatively the same, but the ranges
of reachable elastic parameters changes, as seen in Figure 5.5. Additionally, results presented
in Section 5.2 can be derived as a particular case of the combinations presented here, taking
λr = λr̃ = 0 to combine only R-symmetric patterns and λc = λc̃ = 0 to combine L-symmetric
patterns.

Figure 5.8 shows combinations of pairs of the four main patterns in the EL−ER plane. To do
that, we define a parameter λ ∈ [0, 1] which combines the two desired patterns, while ignoring
the others. As λ changes, a straight line is created between the initial patters, morphing its
elastic parameters into one another. With this method it is possible to reach every pair of
values of EL and ER in between the initial ones.

The four initial patterns and its combinations depicted in Figure 5.8 create a convex hall.
All the pairs of elastic parameters inside of it can be reached with convex combinations bet-
ween the initial patterns, while keeping the same mean volume fraction and effective density.
Besides, the convex hall shrinks around the point of the homogeneous pattern when taking
greater values of µ, because the range of reachable values decrease when taking less pronoun-
ced volume gradients (as explained in Section 5.2).
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Figure 5.8: EL − ER plot (normalized by Engelmann Spruce elastic parameters) for initial patterns with
v∗ = 0.15, µ = 0.002 and its convex combinations. The color of the dot represents the predominant symmetry,
where R-symmetric patterns are depicted in purple and L-symmetric ones in orange. With this method it
is possible to reach every pair of values of EL and ER in between the initial ones, and every pair inside the
convex hall preserving the effective density.

To conclude, Figure 5.9 shows the convex hall for several mean volume fractions with µ =
0, 002. As stated before, the effect of the combinations is qualitatively the same, but the
convex hall changes its size depending on v∗, since the reachable values also changes. These
opens the possibility to reach (EL, ER) pairs not only with different geometries with the
same effective density, but also with geometries that do not share ρ′, opening several paths
to follow when designing the plate instrument’s soundboards.
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patterns respectively, while gray lines depict the convex hall created combining patterns with the same
effective density. Geometries were built taking µ = 0.002.
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Chapter 6

Algorithmic optimization

In this chapter an optimization algorithm is described to find the best volume fraction dis-
tribution to match target density and elastic parameters. We give a detailed description of
the algorithm and two examples of use related to guitar-making.

6.1. Description
Results presented in Section 5.3 open the possibility to use convex combinations between
heterogeneous patterns to match desired density and elastic properties. That is to say, given
target parameters (ρt, Et

L, E
t
R), it is possible to found the best convex combination which

minimizes the difference between the desired and effective material parameters. With that
motivation in mind, we developed an optimization algorithm loosely based on gradient tech-
niques.

The algorithm receives the following information:

The 10 parameters that describe the source wood:

(ρs, Es
L, E

s
R, E

s
T , G

s
LR, G

s
RT , G

s
LT , ν

s
LR, ν

s
RT , ν

s
LT )

These values are used to define a COMSOL model of the wood plate where the patterns
per iteration are evaluated.

3 target parameters (ρt, Et
L, E

t
R), also called objective parameters.

A steepness parameter µ, a step size α > 0, a threshold τ > 0, and a maximum number
of iterations Niter.

and its output correspond to the matrix V∗ with the volume fraction per hole of the optimum
pattern. In each iteration of the algorithm, the COMSOL model is evaluated through the mph
Python package. Python carries the iterative process, receives and output all the parameters.
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6.2. Implementation
To measure the distance between the target parameters and the effective parameters of the
plate we define the loss function: for k = 1, ..., Niter

Lk = |εkρ|+ |εkL|+ |εkR| (6.1)

whit
εkρ = ρt − ρk

ρt
, εkL = Et

L − Ek
L

Et
L

, εkR = Et
R − Ek

R

Et
R

(6.2)

with (ρk, Ek
L, E

k
R) the effective parameters in the k-th iteration. εkρ, εkL, and εkR measures the

error between the target parameters and the effective parameters per iteration.

The iterative process of the algorithm is the following:

1. Initialize the four main heterogenous patterns Vc,Vc̃,Vr,Vr̃ with objective volume frac-
tion vt = 1− ρt

ρs and steepness parameter µ, as method described in Section 5.1. Addi-
tionally, we initialize the convex combination parameters as

(λ1
c , λ

1
c̃ , λ

1
r, λ

1
r̃) = (0.25, 0.25, 0.25, 0.25) (6.3)

These values start the algorithm with an homogeneous pattern of circles. Hence,

V1
ij = v∗,P1

ij = (v∗, 1, 0),∀i = 1, . . . , Nr, j = 1, . . . , Nc (6.4)

Finally,
(ρ1, E1

L, E
1
R) = (ρs, Es

L, E
s
R) (6.5)

2. For k = 2, ..., Niter: the first step is to check if α is bigger enough to make negative any
of the convex combination constants, in order to change the learning rate in that case:

if min(λk−1
c , λk−1

c̃ , λk−1
r , λk−1

r̃ ) < α:

α = min(λk−1
c , λk−1

c̃ , λk−1
r , λk−1

r̃ ) (6.6)

else:
do nothing

Next, the convex combination parameters are updated:

If |εk−1
L | ≤ |εk−1

R |:

λkc = λk−1
c + α1{sign(εk−1

L )=1} −
α

31{sign(εk−1
L )=−1}

λkc̃ = λk−1
c̃ − α

31{sign(εk−1
L )=1} + α1{sign(εk−1

L )=−1}

λkr = λk−1
r − α

3
λkr̃ = λk−1

r̃ − α

3

(6.7)
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else:
λkc = λk−1

c − α

3
λkc̃ = λk−1

c̃ − α

3
λkr = λk−1

r + α1{sign(εk−1
R )=1} −

α

31{sign(εk−1
R )=−1}

λkr̃ = λk−1
r̃ − α

31{sign(εk−1
R )=1} + α1{sign(εk−1

R )=−1}

(6.8)

After updating those parameters, we define the new void matrix as:

Vk := λkcVc + λkc̃Vc̃ + λkrVr + λkr̃Vr̃, (6.9)

which leads to update the COMSOL model with the new volume fractions. Then, the
eigefrequencies and elastic paramers are calculated to obtain the values (ρk, Ek

L, E
k
R) of

the k-th iteration.
The algorithm has 3 stop criteria:

If Lk < τ or min(λkc , λkc̃ , λkr , λkr̃) = 0 or k = Niter:
break the cycle
else:
go to iteration k + 1

3. Return V∗, the optimum of the algorithm.

The way in which (λkc , λkc̃ , λkr , λkr̃) is updated in every iteration ensures that none of the values
become negative and

λkc + λkc̃ + λkr + λkr̃ = 1,∀k = 1, ..., Niter (6.10)

keeping the effective density constant in every iteration. Hence, εkρ = 0, ∀k = 1, ..., Niter.

The hardware used for running the algorithm was a late 2013 MacBook Pro with an Intel®
Core i7 CPU at 2.3 GHz and 16 GB of RAM. Using this computer each iteration takes 40
seconds on average, from which the majority of the time is used in calculating the eigenvalues
and eigenfrequencies of the plate.

6.3. Results
In this section we present two use cases for the optimization algorithm. First, we optimize
the parameters between two wooden plates made of Engelmann Spruce but with different
ρ, EL, and ER. This application is inspired by material variability, so the objective is to
reduce the variation for wooden plates of the same species. Then, we optimize the difference
in ρ, EL, and ER of two wooden plates from different species, taking a Western Hemlock
plate as source wood while Engelmann Spruce parameters as target. With this example we
show that it is possible to “improve” Western Hemlock mechanical behavior for its use in
instrument-making. For the rest of this section, we use α = 0.03, τ = 0.01, and µ = 0.002.
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6.3.1. Matching between the same wood species

The first experiment consists in matching parameters between woods of the same species.
We optimize the mechanical parameters between two wooden plates of Engelmann spruce,
but the target one has ρt = 327.25[kg/m3], Et

L = 5.91[GPa], and Et
R = 0.79[GPa], while the

source plate has the parameters in Table 3.1. The target values are known to be inside the
domain described by the four main patterns for the given effective density, so we are also
testing the convergence of the algorithm for a value which we know is achievable.

Results from the optimization are summarized in Figure 6.1. As seen in Figure 6.1 (a), af-
ter 18 iterations the loss functions takes a value smaller than τ = 0.01 and the algorithm
stops, succesfully aproximating the target parameters. Figure 6.1 (b) shows the EL − ER
plane normalized by the original values of Engelmann Spruce. Clearly, the trajectory of the
elastic parameters per iteration (purple) ends close to the target values (red star), resulting
in the geometry depicted in Figure 6.1 (c). As a result, the algorithm shows its effectiveness
in reducing material variability, founding optimal geometries in a reasonable time.
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(a) Errors and loss function per iteration.
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(b) Trajectory of the elastic parameters per ite-
ration in the EL − ER plane, normalized by the
source wood parameters.

(c) Final plate. The darker the cell the greater
the effective density.

Figure 6.1: Summary of the results of optimizing two wooden plates made of Engelmann Spruce but with
different ρ,EL, and ER. As the target elastic parameters value stays within the domain for ρt, the algorithm
successfully converge with the given tolerance.

6.3.2. Wood matching between different species

The following example resembles the application in which a matching is performed between
plates from two different wood species. In this case, we star with a plate of Western Hemlock
as source (its elastic parameters are presented in 7.1), and we want to match the parameters of
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a plate made of Engelmann spruce, so ρt = 385[kg/m3], Et
L = 8.9[GPa], and Et

R = 1.13[GPa].
Since Et

R/E
s
R ≈ 1.73, the target value falls outside any possible domain (since it is not pos-

sible to reach such higher values), so this examples also works to study how the algorithm
behaves when the target elastic parameters are not reachable.

Result from the optimization are summarized in Figure 6.2. After 22 iterations the algorithms
stops because λc = λc̃ = 0. Still, as seen in Figure 6.2 (a) the error constantly decrease until
the final iteration, showing that even though the minimum is far from optimal, it lends to
better results than the initial plate without holes. Figure 6.2 (b) shows the EL − ER plane
normalized by the source parameters, with the trajectory of the optimization and the target
value. It is clear why the value of the loss function is still relatively large, since the target
value is outside the domain for the target effective density. The algorithms ends in the upper
part of the domain, creating the pattern shown in Figure 6.2 (c).
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(b) Trajectory of the elastic parameters per ite-
ration in the EL − ER plane, normalized by the
source wood parameters.

(c) Final plate. The darker the cell the greater
the effective density.

Figure 6.2: Summary of the results of optimizing two wooden plates made of different wood species. Even
though the algorithm reduce the error between the source and target woods, the final plate elastic parameters
are still far from the target ones, since the latter are outside the domain for ρt.

Even though the results are not as good as in the previous example, the algorithm success-
fully get the two wood species closer. The results also evidence how the source wood influence
the optimization, as in this case the difference in ER between woods was crucial. The “ideal”
source wood should have greater values for every one of the parameters to be optimized, as
we know from the results of previous chapters that it is not possible to surpass the elastic
parameters of the plate without holes.
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Chapter 7

Conclusion

Guitars have been constantly evolving. Looking for strong yet light soundboards, luthiers
have innovated both in materials used and in the structure itself. On top of that, the emer-
ging tonewood scarcity caused by climate change has forced guitar-makers to rely on cheaper
woods that are not as well-suited as the traditional ones. This context has motivated luthiers
and scientist to research in alternative materials for guitars and wooden instruments in ge-
neral. In this thesis, we propose wooden mechanical metamaterials as a novel material for
instrument-making, whose geometry consists in two main types of hole patterns: i) homo-
geneous geometries in which every hole has the same size and shape, and ii) heterogeneous
patterns of circular holes with different size. We studied how elastic properties change with
patterns variations, aiming for a material that let us design the acoustic behavior of wood.

With respect to homogeneous patterns, the effect on the mechanical parameters depends on
the hole size and shape. First, we showed that increasing the hole size decreases the value of
EL and ER. Then, by introducing asymmetries on the hole shape, we can reach several values
of these elastic parameters for a fixed effective density. We found that by using asymmetric
holes it is possible to change EL and ER almost independently, providing the ability to fine
tune one of them barely modifying the other. As a result, even though all homogeneous pat-
terns decrease EL and ER compared to the values without holes, we found geometries that
induced lower anisotropy ratio and higher acoustic radiation, improving the plate response
in terms of these quantities.

Later, we found that heterogeneous patterns with different density distributions makes pos-
sible to keep the effective properties close to the ones of the plate without holes, with up
to 30 % less density. These patterns preserve the independence showed by homogeneous pat-
terns, but reaching values that the latter could not. Depending on the symmetries of the
density distribution it its possible to increase or decrease EL and ER both independently or
at the same time.

Finally, based on the findings, we developed an optimization algorithm to find the best pat-
terned metamaterial to match a given set of target mechanical parameters. We were able to
show the effectiveness of our algorithm in two cases which resembles both difficulties that
inspired the investigation and affect the guitar-making world, proving that wooden mecha-
nical metamaterials could provide solutions for luthier’s needs.
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The contribution of this thesis has been to prove that wood elastic parameters can be tu-
ned using mechanical metamaterials. We have shown that now it is possible to choose wood
elastic properties and design the best geometry for them. Applications of these novel ma-
terials could be many, but in the case of guitar-making the appear as a possible approach
to mitigate wood variability and scarcity. With this approach we can reduce the variations
between wooden plates from the same species, mitigating one of the largest source of varia-
bility in the industry. Additionally, we can match the elastic properties between woods from
different species, improving the response of wood naturally not well-suited for instruments.
By enhancing the wood types used for instrument making, we can address the present and
future scarcity of traditional woods with materials that do not lose the nature of wood tonal
characteristics.

This investigation opens many paths to follow. Regarding directly to the results presented,
studies of heterogeneous patterns with asymmetric (elliptic) holes could be done in order to
find (or not) new reachable values. Those results could be used to improve the optimization
algorithm in order to give luthiers more possibilities to build plates. Additionally, from a
theoretical point of view, homogenization approaches could help to understand how geome-
trical characteristics change the effective elasticity tensor and the complete elastic behavior
(not only EL and ER) at the scale of the effective material [63], explaining the changes in
the eigenmodes shape for angle variations in the homogeneous patterns.

Additionally, simulations of whole instruments and experimental validation could be made. It
is important to understand the effect of this new material when it is part of a more complex
acoustical system, so state of the art simulations could easily accommodate these metamate-
rials both for classical and archtop guitars [64, 65, 66], or even newly shaped violins [67, 28].
Besides, experimental validation of the observed behavior must be made, both for plates by
themselves and for finished instruments. With these results we can proactively tackle the fu-
ture tonewood scarcity while at the same time open the design space for all instruments with
a wooden soundboard, without necessarily resorting to synthetic materials [67] and keeping
the historical aesthetic of wooden instruments.
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Annexes

Annexed A: Mode shapes for homogeneous patterns with
different angles
Figure 7.1 shows examples of three homogeneous plates and its first five eigenmodes. With
all the ellipses rotating in the same direction, a "smooth"mode switching between the modes
(1, 1) and (0, 2) can be seen, showing a X-mode for an angle of π/4 (Figure 7.1 (b)). This
behavior can only be seen with smooth angle variations, since for aspect ratio variations and
heterogeneous configurations the shape of the eigenmodes remains the same and the swit-
ching between modes occurs in a “discontinous” manner. The presence of the X-mode and
changes in shape could be caused by variations in the relation between stiffness in the ortho-
gonal directions, which translates as changes in the Poisson’s ratio values, but the research
in that direction goes beyond the scope of this research.

(a) (v∗, k∗, θ∗) = (0.30, 2.2, 0). (b) (v∗, k∗, θ∗) = (0.30, 2.2, π4 ). (c) (v∗, k∗, θ∗) = (0.30, 2.2, π2 ).

Figure 7.1: Examples of mode shapes for homogeneous plates with different values of θ. In each figure, the
plate is oriented with the Longitudinal axis vertical, while the mode are arrenged from bottom to top. The
angle of the ellipse with respect to the L-axis influence the 5 first modes shape and order.
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Annexed B: Experimental validation of homogeneous re-
sults
To validate our predictions, the contributor Carolina Espinoza performed experiments with
a book-matched set of Spruce Engelmann typically used for the manufacture of guitar tops.
The dimensions of both plates were a = 550 mm, b = 200 mm and h = 3.5 mm. For each
sample, we measured the frequencies f2,0 and f0,2 to obtain their stiffness by applying (3.8).
Then, we characterized the elastic changes after cutting three different patterns of ellipses,
increasing their size while keeping constant their aspect ratio on each step. One plate, labelled
AW , was cut with a pattern of 9× 20 ellipses parallel to the R direction. The other, labelled
BW , was cut with a pattern of 10 × 20 ellipses parallel to the L direction. The plates were
cut with a ShopBot Desktop 3-axis CNC router. The smallest hole was 2× 6 mm, and could
be cut accurately with a 1 mm router bit. For the second and third steps on each plate we
enlarged the holes to 4× 12 mm and to 6× 18 mm respectively.

To measure the frequencies of the (2, 0) and (0, 2) modes after each cut, we used the following
setup: a swept sine signal was sent by a dynamic signal analyzer (Stanford System SR780)
and amplified by a power amplifier (Gemini XGA-5000). The plate, supported by two rubber
bands, was vibrated by a loudspeaker placed 1 cm from it. The plate response was measured
by a micro-accelerometer (PCB 356A14) connected to a signal conditioner (PCB 408E09)
and attached to the plate, 1 cm from one of its corners. Finally, modal identification was
performed visually by observing the Chladni patterns. The plates were kept in a humidity-
controlled environment between cuts.

Figure 7.2 shows the evolution of the stiffness as a function of the effective density for each
plate. As expected from the results of Fig. 4.3 the decay in the stiffness for each plate is
dependent on the orientation of the hole with respect to the grain direction. For the radial
ellipses the decay in EL is slower than for the vertical ellipses, and this is reversed when
we look at ER, in agreement with our simulations. Two things must be noted: a) the initial
stiffness for the two pieces of wood is not the same even though they come from the same
tree and are book-matched; they are also different from the nominal value that we used in
our simulations. b) The effective density of the plates is not the same since we needed to
remove a row of ellipses in the case of the radially oriented ellipses so the largest hole size
could fit in the plate. The results are remarkable since they show that the variation in the
mechanical parameters when changing the hole size are robust to varying the number of cells,
dimension of the plate, and material parameters of the initial sample, and that is a general
property of the wooden metamaterials. However, they also show the need to have a dedicated
simulation of the particular material parameters of the initial plate to reproduce or predict
the quantitative behavior of the metamaterial.
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Figure 7.2: Experimental results of the stiffness as a function of the effective density of the plate for two
samples. For AW the effective density changes between 1% and 13% and we observe a decrease between
23% and 70% for EL, and between 6% and 17% for ER. For BW the effective density changes between 1%
and 16% and we observe a decrease between 11% and 31% for EL, and between 0.5% and 32% for ER. The
density has an error around 1.1 %. (a) Longitudinal elasticity E′L vs density ρ′. (b) Radial elasticity E′R vs
density ρ′

Annexed C: Generalization to different woods
To test the generalization of the results to different use cases, we replicated the homogeneous
experiments made with Engelmann spruce to different woods with the same plate and cell
dimensions, as a way to measure the influence of the initial mechanical parameters in the
variations presented in the main chapters. Two types of woods were chosen for this example:
Western Hemlock and Western Larch. Values of the elastic properties of both woods can be
found in Table 7.1.

Table 7.1: Western Hemlock and Western Larch density and elastic properties. Elastic properties correspond
to the ones for both woods reported in [55].

Western Hemlock
Density [kg/m3] Young’s Moduli [GPa] Shear Moduli [GPa] Poissons’s Ratios

ρ EL ER ET GLR GRT GLT νLR νRT νLT
465 11.3 0.65 0.35 0.43 0.03 0.36 0.485 0.442 0.423

Western Larch
Density [kg/m3] Young’s Moduli [GPa] Shear Moduli [GPa] Poissons’s Ratios

ρ EL ER ET GLR GRT GLT νLR νRT νLT
575 12.9 1.02 0.84 0.81 0.09 0.89 0.355 0.389 0.276

Denser woods where chosen with the purpose to test the ability of the optimization algorithm
to adjust their elastic parameters to the ones of Engelmann spruce. In addition, woods with
higher EL were chosen because as shown in the main chapters, it is not possible to obtain
higher values than the original one when making holes in the plate. Hence, if we want to
match woods, it is necessary to start from woods with higher EL and desirably higher ER.

We defined the following procedure in order to measure the variation between woods: first,
we took the same measures described in 4.3 for every wood with the same dimensions both
for plate and cells. Then, for every geometry we calculated the percentage error with respect
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to Engelmann Spruce in terms of the normalized density and mechanical parameters. Finally,
for every normalized effective density we took the mean error between all the geometries with
the same mean volume fraction.

Results from the procedure described above are shown in Figure 7.3. For each wood, both
elastic constants share almost the same mean error it shows only slight variations for different
effective densities. Western Larch has an overall minor error than Western Hemlock. Despite
this difference, both mean errors do not surpass 8 %, showing that the effect of the geometry
is the same. Even though the study of the rest of the mechanical parameters exceed the scope
of this thesis, the difference in error could be explained with the relationship between the
main elastic parameter EL with the rest of them: the relationships for Western Larch are
closer to the ones that Engelmann spruce presents, while Western Hemlock has a much more
predominant principal longitudinal direction.
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Figure 7.3: Mean percentual error for variations in E′L and E′R showed by Western Hemlock and Wester Larch
with respect to Engelmann Spruce, for several effective densities. For both cases, Western Larch shows less
error than Western Hemlock, while for both of them the error do no surpass 8 %. In addition, in each case
the error is almost constant with respect to the effective density. (a) E′L error. (b) E′R error.

Annexed D: Generalization to different plate size
We use the same procedure to measure the error, but know using the same wood and a
plate with different dimensions. The alternative plate has dimensions a = 0.28 and b = 0.36,
while keeping the same cell size. These dimensions were chosen for two reasons: they allow
to measure the effect when the longitudinal axis is smaller than the radial axis, and they
represent similar dimensions to the ones on the lower of the guitar soundboard. The latter
has an important application when the holes are carved directly in the soundboard without
using double-top techniques, as making holes where the bracing of the top plate goes would
not have significant effects in the vibrations of the plate.

The obtained errors are shown in Figure 7.4. In this case the error increase when decreasing
the effective density, but all of them are still below 8 %.
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Figure 7.4: Mean percentual error for variations in E′L and E′R showed by an alternative plate with respect
to the values of the main result, for several effective densities. Both plates are simulated with Engelmann
spruce mechanical constants. While the error tends to decrease when the effective density increase, it stays
lower than 8 % for both E′L and E′R. (a) E′L error. (b) E′R error.
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