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A B S T R A C T   

Study region: Nile Basin, Africa. 
Study focus: The accurate representation of precipitation (P) and actual evapotranspiration (ETa) 
patterns is crucial for water resources management, yet there remains a high spatial and temporal 
variability among gridded products, particularly over data-scarce regions. We evaluated the 
performance of eleven state-of-the-art P products and seven ETa products over the Nile Basin 
using a four-step procedure: (i) P products were evaluated at the monthly scale through a point- 
to-pixel approach; (ii) streamflow was modelled using the Random Forest machine learning 
technique, and simulated for well-performing catchments for 2009–2018 (to correspond with ETa 
product availability); (iii) ETa products were evaluated at the multiannual scale using the water 
balance method; and (iv) the ability of the best-performing P and ETa products to represent 
monthly variations in terrestrial water storage (ΔTWS) was assessed through a comparison with 
GRACE Level-3 data. 
New hydrological insights for the region: CHIRPSv2 was the best-performing P product (median 
monthly KGE’ of 0.80) and PMLv2 and WaPORv2.1 the best-performing ETa products over the 
majority of the evaluated catchments. The application of the water balance using these best- 
performing products captures the seasonality of ΔTWS well over the White Nile Basin, but 
overestimates seasonality over the Blue Nile Basin. Our study demonstrates how gridded P and 
ETa products can be evaluated over extremely data-scarce conditions using an easily transferable 
methodology.   
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Table 1 
Summary of most relevant studies of gridded P and ETa products in the Nile Basin.  

Study Region Products Temp. scale Relevant conclusions 

P studies 
Dinku et al. 

(2008a) 
Ethiopian 

highlands and 
Zimbabwe 

CMORPH, NRLB, PERSIANN, RFEv2, 
TRMM-3B42, TRMM-3B42RT 

Daily, 10-day Over Ethiopia, CMORPH and TRMM-3B42 
performed the best. PERSIANN was the only product 

with a bias greater than 1. 
Dinku et al. 

(2008b) 
Ethiopian 
highlands 

CRU TS2.1, GPCC-mon, GPCC-ful v3, 
GPCC-clm v1.1, NOAA–CPC 

Monthly GPCC-ful v3 was the best-performing product, 
followed by NOAA-CPC. 

Romilly and 
Gebremichael 
(2011) 

Ethiopia CMORPH, PERSIANN, TRMM 3B42RT Multiannual Generally, TRMM 3B42RT and CMORPH 
outperformed PERSIANN. Over the Blue Nile, the 

bias ratio decreased with increasing elevation. 
Thiemig et al. 

(2012) 
Baro-Akobo 

Basin 
CMORPH, ERA-Interim, GPROF 6.0, 

GSMaP-MVK, PERSIANN, RFEv2, 
TRMM 3B42v6 

Daily, monthly, 
seasonal, 

multiannual 

In the point-to-pixel analysis, CMORPH was the best- 
performing product in terms of both pBIAS and r.  

Diem et al. (2014) Western Uganda ARC2, RFEv2, TRMM 3B42v7 Daily, 10-day, 
monthly, seasonal 

TRMM 3B42v7 was the best-performing product; 
however, all three products performed poorly in the 

southern part of the study area. 
Abera et al. (2016) Upper Blue Nile 

Basin 
CFSR, CMORPH, SM2R-CCI, TAMSAT, 

TRMM 3B42v7 
Daily CMORPH, TAMSAT and SM2R-CCI were the best- 

performing products. 
Bayissa et al. 

(2017) 
Upper Blue Nile ARC2, CHIRPSv2, PERSIANN-CDR, 

TARCATv2, TRMM 3B42v7 
10-day, monthly, 

seasonal 
TARCATv2 and CHIRPSv2 performed the best 

overall and CHIRPSv2 at the monthly temporal 
scale. All products underestimated seasonal rainfall 

amounts. 
Ayehu et al. (2018) Upper Blue Nile 

Basin 
ARC2, CHIRPSv2, TAMSATv2, 

TAMSATv3 
10-day, monthly CHIRPSv2 was the best-performing product at the 

dekadal (i.e., 10-day) and monthly temporal scales. 
Dinku et al. (2018) Eastern Africa ARC2, CHIRP, CHIRPSv2, TAMSATv3 Daily, 10-day, 

monthly 
CHIRP and CHIRPSv2 performed best at the dekadal 

and monthly time scales while TAMSATv3 
performed best at the daily temporal scale. 

Basheer and Elagib 
(2019) 

South Sudan ARC2, CHIRPSv2, GPCCv7.0, 
MSWEPv2.0, PERSIANN-CDR, 

TAMSATv2 

Monthly, annual GPCCv7.0 was the best-performing product, 
followed by CHIRPSv2. Note that rain gauge data 

from the five evaluated stations are used to correct 
some of the evaluated products. 

Camberlin et al. 
(2019) 

Five regions 
over Central 

Africa 

ARCv2, CHIRPSv2, CMORPH, 
PERSIANN-CDR, TAMSAT/TARCATv3, 

TAPEER, TRMM 3B42v7 

Daily, monthly In eastern Democratic Republic of the Congo, 
Burundi and western Uganda (the only studied area 
overlapping the Nile Basin), TAPEER performed best 
at the daily temporal scale (correlation coefficient), 
while TRMM 3B42v7 and CHIRPSv2 performed best 

at the monthly temporal scale. 
Abebe et al. (2020) Upper Blue Nile 

Basin 
CHIRPSv2, ENACTS, IMERGv6, 

MSWEPv2.2, SM2RAIN-ASCATv1.1 
Daily, monthly, 

seasonal 
At the daily and monthly temporal scales, the best- 
performing products were ENACTS and CHIRPSv2, 
respectively. All product performances decreased for 
the highest evaluated elevation band (> 2,500 m a.s. 

l.).  
Lakew et al. (2020) Upper Blue Nile 

Basin 
CMORPH, ERA-Interim, GPCCv1.1, 

MSWEPv1.1, TRMM 3B42v7 
Daily MSWEPv1.1 was the best-performing product at 

simulating daily flow over the three catchments. In 
the highest-elevation catchment, all products except 

ERA-Interim underestimated total P.  
Nashwan et al. 

(2020) 
Egypt ARC2, CHIRPSv2, GSMaPv6, 

PERSIANN-CCS, TAMSATv3 
Daily ARC2, CHIRPSv2 and GSMaPv6 exhibited the best 

KGE’s over all evaluated stations. Rainfall events 
were best detected by ARC2 and GSMaPv6.  

ETa studies 
Alemu et al. (2014) Nile Basin SSEBop, MOD16 Monthly, annual SSEBop and MOD16 showed similar patterns over 

rainfed croplands; however, over irrigated croplands 
they varied in seasonality and magnitude, while over 

grasslands and wetlands they showed similar 
seasonality but varied in magnitude. 

Al Zayed et al. 
(2016) 

Gezira 
Irrigation 

Scheme, Sudan 

Product: MODI6A2; other calculation 
methods: METRIC, SEBAL, SSEB 

Daily, seasonal SSEB and SEBAL provided ETa estimates close to 
values derived from water balance calculations, 

while MOD16A2 underestimated ETa. SSEB gave the 
best performance overall. 

Ayyad et al. (2019) Egypt EEFlux, MOD16A2, SSEBop Monthly, annual SSEBop was the best-performing product, followed 
by MOD16A2. 

Blatchford et al. 
(2020) 

Africa WaPORv2.1 10-day, annual WaPORv2.1 shows good spatial and temporal 
consistency for most climate classes. WaPORv2.1 
generally overestimates ETa over irrigated areas, 
while for rainfed areas, it overestimates low ETa 

values and underestimates high ETa values. 

(continued on next page) 
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1. Introduction 

Precipitation (P) and actual evapotranspiration (ETa; also referred to as evaporation, see Miralles et al., 2020) are two major 
components of the water cycle, and their accurate characterisation in time and space is of vital importance in hydrology, water re-
sources management, agricultural planning and many other fields. P can be measured directly by rain gauges, which provide accurate 
information at the point scale; however, a dense station network is required to obtain reliable estimates of its spatial patterns (Garcia 
et al., 2008; Villarini et al., 2008; Adhikary et al., 2015). While P is directly measured, methods such as the Bowen ratio and the eddy 
covariance are commonly used to derive estimates of ETa rates from ground-based measurements at discrete locations, but in addition 
to the high density of measurements required to understand spatial patterns of ETa, the installation of these instruments can be labour 
and cost-intensive (Wang and Dickinson, 2012; Zhang et al., 2016). 

Over the previous decades, high quality gridded P and ETa datasets based on novel techniques have become widely available, 
which account for the spatial and temporal distributions of these variables. Gridded P products are typically based on: (i) the inter-
polation of ground-based measurements; (ii) satellite-based retrievals (using infrared and/or passive microwave data); and (iii) 
reanalysis models (Sun et al., 2018). On the other hand, remote sensing based ETa estimates are mainly derived through calculation 
methods such as the Surface Energy Balance (SEB; Bastiaanssen et al., 1998; Allen et al., 2007), Penman-Monteith (PM; Mu et al., 2007; 
Leuning et al., 2008), Priestley-Taylor (PT; Fisher et al., 2008), and Ts-VI space methods (Price, 1990), among others (e.g., Ryu et al., 
2011; Wang and Bras, 2011). For comprehensive reviews on methodologies used to derive P and ETa products, the reader is referred to 
Sun et al. (2018) and Zhang et al. (2016), respectively. 

Gauge-based gridded P products lose accuracy over areas where the gauge network density is low (Xie et al., 1996; Schneider et al., 
2014). Satellite-based P products perform better at longer temporal scales (Maggioni and Massari, 2018; Sun et al., 2018), and their 
performance is influenced by climate, with lower performances over arid regions (Sun et al., 2018) as well as for intense P events 
(Herold et al., 2017; Baez-Villanueva et al., 2020). Satellite-based products tend to perform better in the tropics because the convective 
systems are more related to cold cloud-top temperatures (Levizzani et al., 2001; Nauss and Kokhanovsky, 2006), while reanalysis 
products are consistent with large-scale circulation systems (Gehne et al., 2016) because of their ability of simulate synoptic-scale 
weather systems (Haiden et al., 2012; Zhu et al., 2014). The performance of P products is commonly evaluated through 
point-to-pixel analyses, hydrological modelling and triple collocation procedures (e.g., Stisen and Sandholt, 2010; Beck et al., 2017; 
Massari et al., 2017; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018). 

Gridded ETa products are typically derived through the extrapolation of methodologies that were initially developed for local scale 
applications (McCabe et al., 2016). Because ETa in gridded products is derived as an energy variable (i.e., energy flux), its estimation 
relies on accurate representations of numerous input variables, most notably net radiation, near surface air temperature, water vapour 
pressure and visible and near infrared (VNIR) measurements for phenology and vegetation cover (Fisher et al., 2017). Some relevant 
conclusions from global evaluations of ETa products are: reanalysis based datasets have the highest global mean estimates, followed by 
remote sensing based datasets and then land surface models (Mueller et al., 2011); not all products account for irrigated areas (Pan 
et al., 2020); and that there is an increased variability in ETa estimates over arid and semi-arid regions (Pan et al., 2020). Assessing the 
water balance closure is a common approach to evaluate the accuracy of these products when insufficient ground-based ETa mea-
surements are available (e.g., Senay et al., 2011; Liu et al., 2016; Moreira et al., 2019; Weerasinghe et al., 2020; Abolafia-Rosenzweig 

Table 1 (continued ) 

Study Region Products Temp. scale Relevant conclusions 

Weerasinghe et al. 
(2020) 

Africa CMRSET, ETMonitor, GLEAMv3.2a, 
LandFlux-EVAL, MOD16A3, MTE, 

SSEBopv4, WaPORv1.1, WECANNv1.0 

Multiannual CMRSET, SSEBopv4 and WaPORv1.1 best estimated 
long-term ETa quantities across Africa, and along 

with ETMonitor, best represented ETa spatial 
patterns. Over the Upper Blue Nile Basin, all 

products underestimated ETa, while over the Nile 
Basin, all products except for CMRSET and 

WaPORv1.1 underestimated ETa.  

P & ETa studies 
Bastiaanssen et al. 

(2014) 
Nile Basin P: TRMM 3B43v7, FEWS-NET; ETa: 

SSEBop  
Multiannual The Q derived using the evaluated P and ETa 

products had a good agreement with observed Q for 
the 14 catchments evaluated.  

Abera et al. (2017) Upper Blue Nile 
Basin 

P: SM2R-CCI; ETa: GLEAMv3_BETA, 
MOD16  

Daily, monthly Model estimated ETa showed higher seasonal 
variations than both the GLEAMv3_BETA and 

MOD16 products. The combination of SM2R-CCI as a 
P input and model calibrated ETa and Q in the 
application of the water balance at the monthly 

temporal scale outputted derived ΔTWS very similar 
to that obtained by GRACE.  

Koukoula et al. 
(2020) 

Upper Blue Nile 
Basin 

18 water resources reanalysis datasets Monthly Datasets with satellite-derived P forcing exhibited 
better Q performance than those that used 

reanalysis-based P. Most products showed an overall 
underestimation of TWS compared to GRACE, 
caused by an overall underestimation of ETa.   
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et al., 2021). 
There is no best-performing P product or ETa product worldwide, with the relative performance of products specific to the study 

area (Miralles et al., 2016; Beck et al., 2017), meaning that the performance of a product over a particular area should be assessed prior 
to any application (Zambrano-Bigiarini et al., 2017; Khan et al., 2018; Zandler et al., 2019). In the data-scarce continent of Africa, there 
is a high spatial and temporal variability among estimates from gridded P and ETa products (Mueller et al., 2011; Trambauer et al., 
2014; Awange et al., 2016; Beck et al., 2017; Sun et al., 2018; Weerasinghe et al., 2020), while in the Nile Basin, relatively few 
ground-based observations are used by some of these gridded products to correct their estimates, resulting in a reduced reliability 
(Karimi and Bastiaanssen, 2015). For instance, systematic underestimations of P have been reported over the northern arid regions of 
the Nile (Beck et al., 2020) and of ETa over the Blue Nile (Weerasinghe et al., 2020). Table 1 presents a summary of the most relevant 
studies that have assessed the performances of gridded P and ETa products over or within the Nile Basin, where it is evident that most 
studies assess either P products or ETa products rather than both. 

Of the identified studies that assess both P and ETa product performance over the Nile Basin, Bastiaanssen et al. (2014) considers 
only two P products (TRMM 3B43v7 and FEWS-NET) and one ETa product (SSEBop) to evaluate water balance closure at the mul-
tiannual scale. Over the Upper Blue Nile Basin, Abera et al. (2017) used one P product (SM2R-CCI) to force a hydrological model and 
compared the ETa model outputs with two gridded ETa products (GLEAMv3_BETA and MOD16), while Koukoula et al. (2020) assessed 

Fig. 1. Study area: (a) elevation (Jarvis et al., 2008); and (b) climate zones according to the Köppen-Geiger climate classification (Beck et al., 2018). 
The locations of streamflow and precipitation stations used in this study are also depicted. 
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18 reanalysis datasets at the monthly temporal scale against in situ P and Q measurements as well as a satellite-based ETa dataset. In 
addition, two studies listed in Table 1 used the water balance approach to only evaluate ETa product performance: Weerasinghe et al. 
(2020) used a mean ensemble of gridded P inputs to evaluate ETa products at the multiannual scale; and Blatchford et al. (2020) 
evaluated only one ETa product (WaPORv2.1) over the Nile Basin. 

To the best of our knowledge, there is no study that comprehensively assesses the performance of both gridded P and ETa products 
at different temporal scales and over multiple catchments in the Nile Basin. A greater understanding of the spatial and temporal 
patterns of the key components of the water balance over this basin will greatly assist many decision-making processes related to water 
resources management, such as the optimisation of agricultural practices, streamflow (Q) modelling, drought characterisation, and the 
development of national and transboundary water plans (Mohamed et al., 2006; Bayissa et al., 2015; Abdelmoneim et al., 2020; Shokr, 
2020; Ayyad and Khalifa, 2021). Through the implementation of statistical comparisons between point-based measurements and 
gridded product estimates, machine learning techniques to simulate Q and the application of the water balance, this study evaluates 
the spatial and temporal performance of numerous gridded P and ETa products over the Nile Basin. Based on these results, we assess 
whether the best-performing P and ETa products are able to represent: (i) seasonality of the terrestrial water storage (TWS) over Nile 
subcatchments; and (ii) the multiannual water balance of the entire Nile Basin. 

2. Study area 

The Nile River Basin extends over eleven African countries and has a drainage area of about 3.15 million km2. The upper areas of 
the basin are located in a tropical climate, the Blue Nile and White Nile merge in Sudan, forming the Main Nile that then flows through 
the arid Egyptian climate before discharging into the Mediterranean Sea (see Fig. 1). The Nile River, together with its tributaries and 
lakes, serve domestic and industrial uses as well as irrigated agriculture, hydropower dams and vast fisheries, making the water re-
sources of vital importance for the livelihoods of those living in the basin (Awulachew, 2012). Despite its importance, data are scarce, 
and disputes regarding water resources have led to minimal data sharing (Swain, 2011; Johnston and Smakhtin, 2014; Digna et al., 
2017; Zeitoun et al., 2020). 

3. Data 

3.1. Ground-based data 

To evaluate the performance of the gridded P and ETa products over the Nile Basin, we used monthly time series from 90 rain 
gauges and 23 Q stations provided by the Nile Basin Initiative (NBI). The locations of these stations are shown in Fig. 1. The temporal 
availability of ground-based data varies according to station; 2011 is the last year for which any station has P data available, and 2014 
for Q data. Information related to the location, period of data availability and station administrator of the rain gauge data is included in 
Table S1 of the Supplementary Material. 

3.2. Gridded data 

3.2.1. Gridded precipitation products 
Based on results of previous studies, eleven P products were selected for evaluation: African Rainfall Climatology, version 2 (ARC2, 

Novella and Thiaw, 2013); Climate Hazards InfraRed Precipitation with Stations data version 2.0 (CHIRPSv2, Funk et al., 2015); 
Climate Prediction Center (CPC) Morphing technique version 1.0-BLD, gauge-satellite blended precipitation product (CMORPHv1, 

Table 2 
Summary of the evaluated P products.  

Product Product type Spatial resolutiona Spatial coverage Temporal resolutionb Time period 

ARC2 Satellite and gauge 0.10∘ (∼11 km)  Africa Dailyc 1983–present 
CHIRPSv2 Satellite, reanalysis and gauge 0.05∘ (∼5.5 km)  50∘S–50∘N  Daily 1981–present 

CMORPHv1 Satellite and gauge 0.25∘ (∼28 km)  60∘S–60∘N  3-hourly 1998–present 
CRU TS4.04 Gauge 0.50∘ (∼55 km)  Global Monthly 1901–present 

ERA5 Reanalysis 0.25∘ (∼28 km)  Global Monthly 1981–present 
GPCCv2020 Gauge 0.25∘ (∼28 km)  Global Monthly 1891–present 
IMERGv6 Satellite and gauge 0.10∘ (∼11 km)  Global Daily 2000–present 

MSWEPv2.2 Merged 0.10∘ (∼11 km)  Global Daily 1979–2021 
PERSIANN-CDR Satellite and gauge 0.25∘ (∼28 km)  60∘S–60∘N  6-hourlyc 1983–present 

TAMSATv3.1 Satellite and gauge 0.25∘ (∼28 km)d  Africa Daily 1983–present 
TRMM 3B42v7 Satellite and gauge 0.25∘ (∼28 km)  50∘S–50∘N  3-hourly 1998–2019  

a Equivalent grid size in kilometres is calculated at the equator. 
b Most P products are available at multiple temporal resolutions; the resolution listed in the table refers to the product downloaded for this study. 
c Data not available for all time steps. 
d Dataset has a spatial resolution of 0.0375∘ but a rescaled dataset at 0.25∘ was acquired. 
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Joyce et al., 2004; Xie et al., 2017); Climatic Research Unit Time-Series version 4.04 (CRU TS4.04, Harris et al., 2020); The European 
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset (ERA5, Hersbach et al., 2020); Global Precipitation 
Climatology Centre version 2020 (GPCCv2020, Becker et al., 2013; Schneider et al., 2016, 2020); Global Precipitation Measurement 
(GPM) Integrated Multi-satellitE Retrievals for GPM Final Run (IMERGv6, Huffman et al., 2015, 2019); Multi-Source Weight-
ed-Ensemble Precipitation (MSWEPv2.2, Beck et al., 2019); Precipitation Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks Climate Data Record (PERSIANN-CDR, Hsu et al., 1997; Ashouri et al., 2015); Tropical Applications of 
Meteorology using SATellite and ground based observations version 3.1 (TAMSATv3.1, Tarnavsky et al., 2014; Maidment et al., 2014, 
2017); and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) (TRMM 3B42v7, Huffman et al., 
2007, 2010). These eleven products are summarised in Table 2. 

3.2.2. Gridded actual evapotranspiration products 
We selected seven gridded ETa products that encompass a variety of ETa calculation methodologies (Table 3). The products 

selected and their method for deriving ETa are as follows:  

• The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset (ERA5; Hersbach et al., 2020) 
derives ETa through a land surface model;  

• The NASA Global Land Assimilation System (GLDAS; Rodell et al., 2004) uses satellite and ground-based data to generate optimal 
fields of land-surface states and fluxes. GLDAS version 2.1 (GLDASv2.1) is forced with a combination of model and observation 
based forcing datasets (Rui et al., 2018);  

• The Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011; Martens et al., 2016, 2017) estimates different 
components of land evapotranspiration based on the PT equation. Two versions of the product are available: GLEAMv3.5a, based 
mainly on reanalysis data; and GLEAMv3.5b, based mainly on satellite data;  

• MOD16 (Mu et al., 2007, 2011) ETa is calculated based on the PM equation and uses daily meteorological reanalysis data (air 
pressure, air temperature, humidity and radiation) in combination with remotely sensed products obtained from MODIS such as 
albedo, land cover, and vegetation property dynamics;  

• The Penman-Monteith-Leuning (PML) model was developed by Leuning et al. (2008). The PMLv2 product couples ET and gross 
primary products via canopy conductance theory (Gan et al., 2018; Zhang et al., 2019);  

• The operational Simplified Surface Energy Balance (SSEBop) product (Senay et al., 2013) combines ET fractions generated from 
MODIS thermal imagery with reference ET using a thermal index approach. The product uses pre-defined, seasonally dynamic 
boundary conditions that are unique to each grid-cell for the cold/wet and hot/dry reference points; and  

• The FAO Water Productivity through Open access of Remotely sensed derived data (WaPOR; FAO, 2020) actual Evapotranspiration 
and Interception (ETIa) product estimates of the sum of the soil evaporation, canopy transpiration and evaporation of intercepted P. 
WaPORv2.1 is based on the ETLook model (Pelgrum et al., 2010; Bastiaanssen et al., 2012), which uses the PM equation adapted for 
remote sensing data. 

3.2.3. Potential evaporation and temperature products 
In addition to a gridded P product (see Section 3.2.1), we used gridded potential evaporation (PET) and temperature (T) datasets for 

Q modelling. These products were acquired from the ECMWF ERA5 reanalysis dataset (Hersbach et al., 2020), downloaded at the 
monthly temporal scale and with a spatial resolution of ∼0.28∘ (30 km at the equator). The PET product is calculated based on the 
surface energy balance, while T represents the mean temperature 2 m above the land surface, calculated through interpolation be-
tween the lowest ERA5 model level and the land surface. 

3.2.4. GRACE data 
The Gravity Recovery And Climate Experiment (GRACE) uses measurements of the relative distance between centre of mass of two 

Table 3 
Summary of the evaluated ETa products.  

Product Calculation method Spatial resolutiona Spatial coverage Temporal resolutionb Time period 

ERA5 Land surface model 0.25∘ (∼28 km)  Global Monthly 1981–present 
GLDASv2.1 Land surface model 0.25∘ (∼28 km)  Global 3 hourly 2000–present 

GLEAMv3.5bc Priestley-Taylor 0.25∘ (∼28 km)  Global Daily 2003–2020 
MOD16 Penman-Monteith 0.0043∘ (∼500 m)  Global Annuald 2000–present 
PMLv2 Penman-Monteith-Leuning 0.05∘ (∼5.6 km)  Global 8 day 2002–present 
SSEBop Surface energy balance 0.0092∘ (∼1 km)  Global 10 day 2003–present 

WaPORv2.1 ETLook 0.0022∘ (∼250 m)  Africa and the Near East 10 day 2009–present  

a Some products are available at multiple spatial resolutions; the resolution listed in the table refers to the product downloaded for this study. 
b Most products are available at multiple temporal resolutions; the resolution listed in the table refers to the product downloaded for this study. 
c The analysis of GLEAMv3.5a was not included in this manuscript because it was consistently outperformed over our study area by GLEAMv3.5b. 
d The annual product (MOD16A3) was selected for this study because it employs a gap-filling technique for cells where estimates were sometimes 

not available at the 8-day temporal scale because of cloud cover and aerosols (Running et al., 2019). 
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identical co-orbiting satellites to derive mean and time variable components of Earth’s gravity field, which can be used to monitor 
changes in water storage, among other processes (Wahr et al., 1998; Rodell and Famiglietti, 1999; Tapley et al., 2004). The mea-
surements are consolidated into a series of gravity field estimates in the form of spherical harmonics, and background models are 
included so that the contributions of changes in TWS can be isolated (Dahle et al., 2019). GRACE data have been used in numerous 
studies of water resources both in Africa, and specifically focusing on the Nile Basin (e.g., Shamsudduha et al., 2017; Seyoum, 2018; 
Abd-Elbaky and Jin, 2019; Hasan et al., 2019, 2021; Koukoula et al., 2020). 

Level-3 GRACE gridded data products (RL06v3) from the three official GRACE data centres (JPL, GFZ and UTCSR) were down-
loaded for period of data availability for the initial GRACE mission (04/2002–06/2017) from the podaac portal: https://podaac.jpl. 
nasa.gov/ (Yuan, 2018; Dahle et al., 2019; Wiese et al., 2019; Save, 2020). As described by Landerer and Swenson (2012), GRACE 
Level-3 data are generated by downscaling the filtered standard (native) GRACE products with an approximate spatial resolution of 3∘ 

(∼330 km at the equator; cell size of approximately 100,000 km2) to a resolution of 1∘ (∼110 km at the equator). Because of this 
downscaling process, adjacent cells are highly correlated to each other, meaning that more representative results are obtained when 
evaluating catchments larger than the ∼100,000 km2 footprint of the native GRACE data (Scanlon et al., 2016; Cooley and Landerer, 
2020). The Level-3 products provide information of TWS deviation from a mean condition calculated over 2005–2010. 

4. Methods 

Fig. 2 illustrates the four-step procedure implemented to evaluate the performance of the gridded P and ETa products. The eval-
uation period for each step was selected based on data availability of ground-based observations and gridded products. First, we 
evaluated P products at the monthly temporal scale through a statistical comparison against the rain gauge data over the period where 
the majority of P products are available (Section 4.1). Because all evaluated ETa products are available for 2009–2018 and we did not 
have sufficient Q data for that period, we simulated Q using a Random Forest (RF) model over the 23 catchments from 1981 (when all 
gridded RF model inputs were available) to the end of the Q observations corresponding to each catchment. For the catchments where 
modelling performed well, we then simulated Q for 2009–2018 (Section 4.2). Third, adopting the identified best-performing P product 
and the simulated Q time series, we evaluated ETa product performance for each catchment by determining the relative error in closing 
the water balance at the multiannual scale under the assumption that the multiannual change in storage can be neglected (Section 4.3). 
Finally, we compared the derived monthly ΔTWS values obtained using the best-performing P and ETa products (ΔTWSWB) with those 
obtained from GRACE Level-3 data (ΔTWSGRACE), starting in 2009 due to ETa product availability and finishing in 2017 due to GRACE 
data availability. We also validated the assumption that ΔTWS is negligible in the application of the water balance at the multiannual 
scale (Section 4.4). For Steps 3 and 4, we applied the water balance method at the catchment scale (see Senay et al., 2011; Long et al., 
2014; Liu et al., 2016; Moreira et al., 2019; Weerasinghe et al., 2020), according to Eq. (1): 

Fig. 2. Overview of the four-step procedure to evaluate the performance of P and ETa products. The top panels illustrate the inputs, methods and 
outputs while the bottom panels illustrate the temporal availability of ground-based data and evaluated products. 
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P − Q − ETa = ΔTWS (1)  

where P is the precipitation; Q is the catchment runoff; ETa is the actual evapotranspiration; and ΔTWS is the change in terrestrial 
water storage. All values are expressed in mm, averaged over the area of the catchment. 

4.1. Evaluation of precipitation products 

The P product performances were evaluated using a point-to-pixel approach at the monthly temporal scale over 1983–2011. The 
start of the evaluation period was selected because the majority (nine) of the eleven P products have data from 1983 onwards, while 
the end of the evaluation period was selected because ground-based P data were only available until 2011. In this method, the time 
series of observed data (here, rain gauge data) are compared against simulated data (here, the corresponding grid-cells from the P 
products) using a performance index. The point-to-pixel approach assumes that the rain gauge measurements are representative values 
over the corresponding grid-cell (e.g., Thiemig et al., 2012; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018). The P 
products that were obtained at a sub-monthly scale were aggregated to the monthly scale, except for when temporal data gaps existed, 
in which case, no monthly values were calculated. To ensure a consistent point-to-pixel comparison, all products were resampled to the 
same spatial resolution (0.25∘) using bilinear interpolation. 

Some P products use data from rain gauge stations to correct their estimates; hence the inclusion of these stations in the product 
evaluation may bias the results. From the 90 stations described in Section 3.1, the 31 that form part of the FAO or GHCN networks, 
which are used by CHIRPSv2 and MSWEPv2.2 to correct their estimates, were discarded for the evaluation. For performance 
assessment, to evaluate the P products against the remaining 59 stations, we selected the modified Kling-Gupta efficiency (KGE’; Kling 
et al., 2012) because: (i) it can be decomposed into three components that allow a better understanding of the origin of mismatches; (ii) 
in contrast to typical measures of performance based on squared residuals, it avoids assigning a disproportional weight to high values; 
and (iii) it allows a fair intercomparison of performance across different climatic conditions (Schaefli and Gupta, 2007; Criss and 
Winston, 2008; Gupta et al., 2009; Thiemig et al., 2013; Baez-Villanueva et al., 2018). The KGE’ is described in Eq. (2). 

KGE′

= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(2)  

The KGE’ compares observed data with simulated data, and consists of three components: the Pearson’s linear correlation (r; Eq. (3)), 
which measures the temporal dynamics; the bias ratio (β; Eq. (4)), which measures the total volume (a value greater than 1 represents 
an overestimation of the simulations while a value less than 1 represents an underestimation); and the variability ratio (γ; Eq. (5)), 
which measures the relative dispersion between simulations and observations (Gupta et al., 2009; Kling et al., 2012). 

r =

∑n
i=1(Oi − O)(Si − S)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Si − S)2
√ (3)  

β =
μs

μo
(4)  

γ =
CVs

CVo
=

σs/μs

σo/μo
(5)  

where n is the number of observations (only when both observed and simulated data exist for that time step); Oi and Si are the observed 
and simulated values, respectively, at time i; O and S are the arithmetic means of the observations and the simulations, respectively; σ is 
the standard deviation; and μ is the mean. The KGE’ and its three components present their optimal value at 1. 

4.2. Streamflow modelling and evaluation 

To assess the performance of ETa products through the water balance, reliable Q data were required for the period where all ETa 
estimates are available (2009–2018). Because only one Q station had multiple years of observed data after 2009, we implemented an 
RF model to simulate monthly Q for 2009–2018 over more catchments. 

Machine learning techniques have been widely applied in Q modelling studies (for reviews, see Tyralis et al., 2019; Sit et al., 2020). 
In this study, we selected an RF model to simulate Q based on gridded P, T, and PET data. RF methods have been widely used in Q 
prediction for many reasons, including: (i) their demonstrated high predictive performance (Shortridge et al., 2016; Tyralis et al., 
2019; Schoppa et al., 2020); (ii) their ability to represent non-linear relationships between climatological variables and Q (Shortridge 
et al., 2016; Yang et al., 2017; Konapala and Mishra, 2020); and (iii) their ability to not produce biased estimates or lead to overfitting 
(Díaz-Uriarte and Alvarez de Andrés, 2006; Biau and Scornet, 2016; Hengl et al., 2018; Tyralis et al., 2019). RF is an ensemble machine 
learning method that works by constructing numerous decision trees using the relationship between independent and dependent 
variables and can be used for supervised classification and regression tasks (Breiman, 2001; Prasad et al., 2006; Biau and Scornet, 
2016). A lumped model was implemented using catchment-averaged monthly time series of the best-performing P product as well as 
ERA5 PET and T as inputs. The year 1981 was selected as the start date for modelling because it is the first year where both the 
best-performing P product (see Section 5.1) and ERA5 datasets are available. The end date for modelling each catchment corresponded 
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to the availability of Q data. 
The general formulation used to model the monthly Q was adapted from the approach outlined in Shortridge et al. (2016): 

Qt = f (Pt,Pt− 1,Pt− 2,Pt− 3,Pt− 4,Tt, Tt− 1,Tt− 2,Tt− 3, Tt− 4,

PETt,PETt− 1,PETt− 2, PETt− 3, PETt− 4) + εt
(6)  

where Pt , Tt, and PETt are the catchment-averaged monthly total precipitation, mean temperature and mean potential evaporation at 
month t, respectively; and εt is the model error. The subscript t − n represents n months before the month t. 

The modelled period for each catchment was divided into a calibration period using the first 70% of the available Q time series, and 
a validation period using the remaining 30%. Due to the differing length of available time series of Q observations in each catchment, 
the lengths of these periods varied accordingly. The RF model was trained over the calibration period using the formulation described 
in Eq. (6), with the following RF configuration: number of trees set to 1000; number of variables randomly sampled as candidates at 
each split set as the number of predictors divided by 3; and minimum size of terminal nodes set to 5. The performance of Q simulations 
was evaluated using the KGE’ and its components during the validation period. Based on Thiemig et al. (2013), a KGE’ greater than 
0.75 was used to select a well-performing model. Furthermore, the β component (Eq. (4)) of the KGE’ was used to evaluate the ability of 
the model to represent the total volume of estimated Q because its accurate estimation is crucial in the application of the simplified 
water balance. Therefore, in addition to ensuring a KGE’ > 0.75, only catchments with a β component within the range of 0.80 < β <
1.20 were selected to avoid introducing bias into the evaluation. The implementation of these selection criteria may result in a smaller 
selection of catchments to evaluate the performance of the ETa products, but at the same time, guarantees a higher degree of reliability 
in the Q estimates. 

For the well-performing catchments, monthly Q time series were generated for 2009–2018. To ensure that the widest possible range 
of input variables were captured by the RF model, we re-trained the model for each selected catchment using the observed data from 
the entire period available (post-1981) instead of only the calibration period that was used to test model performance. 

4.3. Evaluation of actual evapotranspiration products 

We evaluated the performances of the gridded ETa products at the multiannual scale through the application of the water balance 
method (Eq. (1)) over the catchments where Q modelling performed well. Assuming that ΔTWS is negligible at the multiannual scale 
(Liu et al., 2016), we calculated the theoretical value of ETa according to the water balance (ETaWB) as: 

ETaWB = P − Q (7)  

where all values are mean annual catchment-averaged accumulations (expressed in mm) and P is calculated using the best-performing 
P product. We then compared the mean annual ETa for each gridded product with ETaWB, and the closer that the two results are to each 
other, the better performing the ETa product is inferred to be over that catchment. Note that this method only indicates whether the 
total ETa estimated over the catchment is accurate, regardless of the spatial distribution of ETa. 

Some of the evaluated ETa products have data gaps because estimates are not calculated over certain areas. GLDASv2.1, 
GLEAMv3.5b, MOD16 and PMLv2 do not calculate ETa over water bodies, while in addition, the MOD16 product does not provide ETa 
for non-vegetated grid-cells (Running et al., 2019). We did not consider these missing values when calculating catchment-averaged 
ETa values for products with data gaps. Furthermore, PMLv2 values over large water bodies, which are provided as zeroes, were 
discarded. 

4.4. Ability to represent changes in total water storage 

We selected the most downstream catchments with well-performing simulated Q for both the Blue Nile and White Nile to evaluate 
the best-performing P and ETa products at the monthly temporal scale. We extracted monthly catchment-averaged time series of the 
best-performing P and ETa products, and combined with the simulated Q, derived monthly time series of expected changes in storage 
(ΔTWSWB) for 01/2009–06/2017 according to Eq. (1). We compared these expected values with ΔTWSGRACE, which we derived from 
the arithmetic mean of the Level-3 solutions from the three official GRACE data centres. The arithmetic mean was used to reduce noise 
in the gravity field solutions (Sakumura et al., 2014). Because of the low spatial resolution of the product, we accounted for the 
percentage of each grid-cell that lies within the respective catchment boundary. 

Furthermore, we used ΔTWSGRACE to evaluate the assumption that ΔTWS is negligible our application of the water balance used for 
ETa product evaluation at the multiannual scale. GRACE Level-3 data from the first mission are available for 04/2002–06/2017 and 
the evaluation of ETa products was selected as 01/2009–12/2018. We calculated the trend of ΔTWS per catchment over the overlap 
period 01/2009–06/2017, based on fitting a linear trendline to the 12-month rolling average TWS. As recommended by Scanlon et al. 
(2016) and Cooley and Landerer (2020), we did not evaluate catchments with an area less than 100,000 km2 because of their smaller 
size relative to the native spatial resolution of GRACE data (see Section 3.2.4). 

For all analyses, we used the R environment 3.6.0 (R Core Team, 2013) and the following R packages: raster (Hijmans, 2020), for 
the processing and statistical analyses of gridded datasets; hydroGOF (Zambrano-Bigiarini, 2020a), for the calculation of performance 
indices; hydroTSM (Zambrano-Bigiarini, 2020b), for managing time series data; randomForest (Liaw and Wiener, 2002), for building 
the RF model to predict Q; and rgdal (Bivand, 2020), for working with vector data. For more information on these R packages, the 
reader is referred to their respective literature. 
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5. Results 

5.1. Performance of precipitation products 

The performances of the eleven P products at the monthly temporal scale at the locations of the 59 evaluated rain gauge stations are 
presented as boxplots in Fig. 3. The results indicate that CHIRPSv2, with a median KGE’ of 0.80, was the overall best-performing 
product, followed by GPCCv2020 (0.78), CRU TS4.04 (0.77), and MSWEPv2.2 (0.75). CHIRPSv2 exhibited the best median bias 
(1.00) as well as showing the smallest interquartile range for bias (0.11). GPCCv2020 had the best median r (0.89); however it pre-
sented a higher dispersion in the r values compared to CHIRPSv2 and CRU TS4.04. CRU TS4.04 exhibited the best median variability 
ratio (1.01), followed by CHIRPSv2 (0.99). All products showed similar performances (except for ERA5, ARC2, and CMORPHv1) 
indicating that the products can represent, to some extent, the monthly P patterns over the Nile Basin. 

Fig. 4 shows the spatial distribution of the KGE’ values, demonstrating that the best-performing P products (i.e., CHIRPSv2, 
GPCCv2020 and CRU TS4.04) perform consistently well over the spatial extent of the study area where stations were available. The 
northernmost station evaluated (i.e., after excluding FAO and GHCN stations) is located at a longitude of 18.1∘, which means that there 
are no rain gauge data available to evaluate product performance in the arid north of the Nile Basin. 

CHIRPSv2 was considered as the best-performing P product at the monthly scale because: (i) it outperformed all other P products 
(see Fig. 3); (ii) it showed a consistent high performance throughout the study area at the evaluated locations (see Fig. 4); and (iii) it is 
almost unbiased, with a median β of 1.00 and low dispersion compared to the other products. These results demonstrate that CHIRPSv2 
can be deemed suitable for application in the evaluation of ETa products using the water balance. 

5.2. Streamflow modelling 

Table 4 summarises the results obtained for modelling Q over all catchments, listing the KGE’ values for the calibration and 
validation periods as well as the β values for the validation period. Note that due to Q data availability, the modelling period varied 
among catchments, and the calibration period was always selected as the first 70% of the available time series for each catchment, 
leaving the remaining 30% for validation. The catchments fulfilling the performance criteria for the validation period (i.e., KGE’ >
0.75 and 0.80 < β < 1.20) are underlined and shown in bold text. 

The results in Table 4 show that nine catchments fulfilled the designated criteria to be considered as suitable for Q simulation for 

Fig. 3. P product performance at the monthly temporal scale: (a) KGE’, (b) Pearson’s linear correlation (r), (c) bias ratio (β); and (d) variability ratio 
(γ). The solid line represents the median value, the boxes bound the first and third quartiles, the whiskers extend to the most extreme data point that 
lies within 1.5 times the interquartile range from the box boundary and the dots represent outliers. The vertical blue line indicates the optimal value 
for the indicators. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2009–2018. For our case study, all nine catchments with KGE’ > 0.75 also yielded β values within the range 0.80 < β < 1.20. Fig. 5 
illustrates the hydrographs for these nine catchments, displaying both the monthly observed and simulated Q in billion cubic metres 
(BCM). For all nine catchments, the simulated Q matches the observations relatively well over both the calibration and the validation 
periods; however, some of the observed high Q values were underestimated. This is evident from the β values reported in Table 4, 
which are consistently slightly lower than one. For each catchment with good performance, we calculated the difference between total 
observed and modelled water volumes over the validation period. These differences varied from 1 to 60 mm/yr (mean of 24 mm/yr), 
averaged over the spatial extents of the corresponding catchments. In general, our RF model performed better in the Blue Nile (KGE’ 
values for the validation period of ∼0.80), where the majority of P is generated in the tropical and temperate upstream highlands, 
where a high seasonality in Q is present. In the upstream tropical areas of the White Nile, which is dominated by the African Great 
Lakes, our model had a reduced performance (KGE’ values of ∼0.35). In contrast, at the locations further downstream in the White Nile 
(as well as the Main Nile), the model performance improved (KGE’ values of ∼0.75). Here, the catchment outlets are located in arid 
climates, yet the vast majority of Q is generated in the upstream areas. 

Fig. 4. Spatial performance of the P products according to the KGE’ at the monthly temporal scale.  
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5.3. Performance of actual evapotranspiration products 

The water balance at the multiannual scale was assessed for the nine catchments where Q was simulated for 2009–2018. For each 
catchment, Fig. 6 lists the value of mean annual ETa calculated according to the water balance (ETaWB) as well as the respective mean 
annual ETa for all evaluated products. The closer the values of the products are to ETaWB, the better performing the product is inferred 
to be over that catchment. The numbers in brackets represent the values of ETa according to the evaluated products minus ETaWB, 
meaning that a positive value indicates that the product overestimates ETa and a negative value indicates underestimation. 

The results show PMLv2 as the best-performing of the ETa products, under the assumption that P and Q are accurately captured. 
PMLv2 ETa values were the closest to ETaWB in seven of the nine catchments, while WaPORv2.1 and ERA5 performed the best in one 
catchment each. WaPORv2.1 was the second-closest in seven catchments, PMLv2 in one and SSEBop in one. In general, ERA5, 
GLDASv2.1, GLEAMv3.5b, MOD16 and SSEBop all appear to systematically underestimate total ETa amounts. 

5.4. Changes in terrestrial water storage 

5.4.1. Monthly comparison of changes in terrestrial water storage 
Figs. 7 and 8 plot the key components of the water balance at the monthly scale for two catchments: Blue Nile Khartoum and White 

Nile Malakal, respectively. Here, we selected the largest of the assessed catchments corresponding to the Blue Nile and White Nile 
because: (i) these catchments correspond to the most downstream stations that showed good Q modelling performance; (ii) these two 
basins contribute the majority of Q for the Main Nile, hence it is important to understand their hydrological behaviour; and (iii) errors 
associated with the relatively coarse footprint of GRACE are minimised when larger catchments are evaluated. For this assessment, we 
used CHIRPSv2 to characterise P, as it performed the best at the monthly scale. To characterise ETa, we selected the two best- 
performing ETa products because their evaluation was carried out only at the multiannual scale using aggregated ETa values over 
each catchment, meaning that there was higher uncertainty related to the spatio-temporal distribution of ETa in the analysis. The two 
figures represent the water entering the catchment as P (blue bars) and leaving the catchment as ETa (green and orange bars for PMLv2 
and WaPORv2.1, respectively) and Q (blue-grey bars). Two time series representing the change in storage are included as lines: the 
derived monthly change in TWS from the P, ETa and Q components (ΔTWSWB, in red); and the derived monthly change in TWS from 
the arithmetic mean of the three official Level-3 GRACE products (ΔTWSGRACE, in grey). 

These results illustrate how the derived monthly ΔTWS using the water balance and the best-performing P and ETa products 
corresponds well to the monthly ΔTWS estimates from GRACE over the White Nile. However, this agreement is lost, to some extent, 
over the Blue Nile. Furthermore, these results suggest that the seasonality of ΔTWS is better captured through the combination of 
CHIRPSv2 and PMLv2 than the combination of CHIRPSv2 and WaPORv2.1. 

Table 4 
Performance of streamflow modelling according to catchment  

Station name Lat. Long. Area (103 km2)a  Period of modellingb KGE’ calibration KGE’ validation β validation  

Baro Gambella 8.25 34.58 23.5 1990–2006 0.96 0.69 1.25 
Blue Nile Bahir Dar 11.57 37.36 15.1 1981–2000 0.84 0.77 0.81 
Blue Nile Kessie 10.08 38.19 64.7 1981–2004 0.89 0.72 0.73 
Blue Nile Mandaia 10.00 35.62 139.0 1981–2003 0.95 0.85 0.85 
Blue Nile Abbay at Border 11.23 34.97 174.4 1981–2003 0.96 0.84 0.84 
Blue Nile Roseries Dam 11.80 34.30 188.4 1981–2005 0.96 0.87 0.87 
Blue Nile Khartoum 15.60 32.55 307.1 1981–2000 0.94 0.84 0.86 
Kubur Atbara River 14.08 36.00 26.7 1981–2000 0.91 0.53 0.64 
Wad El Hilew Atbara River 14.23 35.99 66.7 1981–2004 0.89 0.39 0.72 
Victoria Nzoia 0.12 34.09 12.6 1981–2004 0.80 0.57 1.00 
Victoria Nyabarongo − 2.19  30.27 15.5 1981–1996 0.83 0.28 0.80 
Victoria Kagera Rusumo − 2.27  30.73 30.7 1981–1990 0.81 0.39 0.80 
Jinja 0.45 33.18 263.4 1981–2014 0.66 − 0.03  1.31 
Kyoga Inflow 1.33 32.87 266.8 1981–2000 0.73 0.38 0.96 
Kyoga Outflow 1.64 32.31 320.8 1981–2000 0.68 0.28 0.98 
Lake Albert Inflow 2.19 31.38 352.5 1981–2000 0.68 0.34 0.94 
Albert Nile Panyango 2.57 31.43 409.5 1981–2010 0.61 − 0.38  1.40 
White Nile Malakal 9.55 31.65 1411.6 c 1981–2005 0.92 0.88 0.93 
White Nile Outflow Jabel Aulia Dam 15.23 32.50 1666.1 1981–2005 0.82 0.62 0.97 
Main Nile Hassanab 17.65 33.97 2012.2 1981–1997 0.91 0.80 0.89 
Main Nile Dongola 19.10 30.49 2643.8 1981–1997 0.93 0.79 0.84 
Aswan Dam 23.96 32.90 2915.0 1981–2002 0.95 0.76 0.89 
Assiut Barrage 27.21 31.19 3025.5 1981–2002 0.92 0.73 0.83  

a Delineated using the 90 m Shuttle Radar Topography Mission (SRTM) version 4.1 digital surface model (DSM) (Jarvis et al., 2008). 
b Corresponds to all available Q data per station after 1981. 
c Because the use of the SRTMv4.1 90 m could not accurately delineate the catchment boundary over the floodplains in the catchment’s north-east, 

the delineated boundary was adjusted between 9.472N, 31.698E & 8.718N, 34.152E, based on the official catchment boundary provided by the NBI. 
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5.4.2. Annual trends in terrestrial water storage 
The annual trends in ΔTWS according to the arithmetic mean of the three GRACE solutions were calculated for the eight of the nine 

evaluated catchments (see Fig. 5) that have an area greater than 100,000 km2. For the four catchments in the Blue Nile Basin, mean 
annual ΔTWS ranged from (positive) 4.6 to 5.1 mm/yr; for White Nile Malakal, the value was 10.0 mm/yr; and for the three catch-
ments in the Main Nile, the values ranged from 6.2 to 8.4 mm/yr. There was a consistent trend of a slight increase in TWS throughout 
the evaluated catchments over the period 01/2009–07/2017, but the magnitudes of these increases are small compared to the P, ETa 
and Q components of the water balance. Because these observed changes are small and because the GRACE data were not available 
over the entire period of ETa product evaluation, the storage component was not considered in the evaluation of the ETa products at 
the multiannual temporal scale. 

6. Discussion 

6.1. On the performance of P products 

CHIRPSv2 had the best performance of all the evaluated P products, which is in agreement with numerous studies that evaluated P 
products over regions within the Nile Basin (Bayissa et al., 2017; Ayehu et al., 2018; Dinku et al., 2018; Nashwan et al., 2020). The two 
solely gauge-based products (GPCCv2020 and CRU TS4.04) also performed quite well (second and third best performance), although 

Fig. 5. Hydrographs showing the performance of the RF Q model for the nine selected catchments. For each catchment, the calibration period was 
selected as the first 70% of available data, leaving the remaining 30% for validation. 
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this could be attributed to the possible inclusion of regional gauges by these products. In addition, there was a relatively good per-
formance exhibited by all satellite and gauge products, with the exception of ARC2 and CMORPHv1. ERA5, the only reanalysis product 
assessed, performed poorly, which is expected of reanalysis products over the tropics (Beck et al., 2017). 

Although the β component of the KGE’ showed that CHIRPSv2 is almost unbiased when compared to the available ground-based 
stations (median value of β = 1.00 and low dispersion; see Fig. 3), these stations are typically not placed at high elevations, thus making 

Fig. 6. ETa product performance at the multiannual temporal scale for 2009–2018: ETaWB refers to the multiannual mean ETa derived from the 
water balance (in mm); mean annual values are reported for each ETa product; and the numbers in brackets represent the difference between ETa for 
each product and ETaWB. The colour scale ranks the products from best-performing (dark green with bold text) to worst-performing (light green). 

Fig. 7. Components of the water balance at the monthly scale for the Blue Nile Khartoum catchment using the: (a) PMLv2; and (b) WaPORv2.1 ETa 
datasets. Two estimates for monthly change in TWS are shown: that derived from applying the water balance (ΔTWSWB); and that derived from the 
arithmetic mean of Level-3 GRACE solutions (ΔTWSGRACE). 
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it difficult to accurately represent the gradient of P related to elevation (Derin and Yilmaz, 2014). Studies have shown that 
satellite-based P products often underestimate P over high elevations (Beck et al., 2020), which is evident over the Ethiopian highlands 
(Romilly and Gebremichael, 2011; Thiemig et al., 2012; Bayissa et al., 2017). Dinku et al. (2018) evaluated the CHIRPSv2 dataset 
against approximately 500 rain gauge stations in Ethiopia, where a substantial portion of Q in the Nile Basin is generated, finding that 
this product underestimated the total volume of P (bias equal to 0.94). Similar results were obtained by Abebe et al. (2020), who 
reported CHIRPSv2 median bias ratios of ∼0.95 for elevations >2500 m a.s.l. 

Concerning product performance over the arid north of the Nile Basin, Nashwan et al. (2020) concluded that the performances of 
various P products over Egypt are relatively poor, which is in agreement with the reported lower performance of P products over arid 
areas (Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2020). The network of rain gauges used in this study (Fig. 4, after 
excluding FAO and GHCN stations) does not include stations over the northern arid region of the Nile Basin. 

6.2. On the application of the water balance to evaluate ETa products 

The RF model used to estimate Q performed well over the data-scarce Nile Basin, with nine of the 23 modelled catchments fulfilling 
the designated criteria for good performance (KGE’ > 0.75 and 0.80 < β < 1.20, see Table 4). However, there was a slight un-
derestimation of the total volume of simulated Q due to an inability of the model to accurately capture extreme Q values (see Fig. 5). As 
RF models average all individual tree predictions, they are likely to underestimate the extreme values (Bachmair et al., 2017; Schoppa 
et al., 2020). This is consistent with the results reported by Shortridge et al. (2016), where RF simulated Q was underestimated during 
the wet-season and overestimated during the dry-season. Despite this, the results of our study show that the effect of this bias on the 
total Q volume modelled is small compared to the volumes of water represented by P and ETa. 

After evaluating P and Q, we were able to evaluate ETa using the simplified water balance, and concluded that both PMLv2 and 
WaPORv2.1 are the best-performing products. Our results are also in agreement with those of Trambauer et al. (2014) and Weer-
asinghe et al. (2020), who note the large differences in total ETa estimates over Africa according to the different products. The sys-
tematic underestimation of the majority of ETa products (ERA5, GLDASv2.1, GLEAMv3.5b, MOD16 and SSEBop; see Fig. 6) is 
consistent with the results of Weerasinghe et al. (2020), who evaluated nine ETa products (including GLEAMv3.2a, MOD16, SSEBop 
and WaPORv1.1) using the water balance method and found that all products underestimated ETa over the Blue Nile Basin, while all 
products except CMRSET and WaPORv1.1 underestimated ETa over the entire Nile Basin. The large variation in product estimates is 
not surprising, given that the ETa products we assessed are derived from a range of calculation methods of varying complexity (see 
Section 3.2.2). Furthermore, the estimation of ETa in these products relies on accurate representations of numerous input variables 
(Fisher et al., 2017), with the estimation of the transpiration component identified as having the largest uncertainty (Pan et al., 2020). 

The accurate representation of evaporation over water bodies is important for water balance calculations, and four of the seven 
evaluated ETa products (GLDASv2.1, GLEAMv3.5b, MOD16 and PMLv2) do not provide ETa estimates over large water bodies. The 
largest water bodies in the Nile are located in the upstream areas of the White Nile (see Fig. 1). In the calculation of mean ETa over each 
catchment, we excluded cells without ETa estimates. Considering the two-best performing ETa products over the Nile Basin according 
to our analysis, PMLv2 does not provide estimates over large water bodies and WaPORv2.1 is considered to underestimate evaporation 
from water bodies (FAO and IHE Delft, 2020). 

In the Nile Basin, the upstream areas correspond to tropical and temperate climates, while the downstream areas are classified as 

Fig. 8. Components of the water balance at the monthly scale for the White Nile Malakal catchment using the: (a) PMLv2; and (b) WaPORv2.1 ETa 
datasets. Two estimates for monthly change in TWS are shown: that derived from applying the water balance (ΔTWSWB); and that derived from the 
arithmetic mean of Level-3 GRACE solutions (ΔTWSGRACE). 
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arid (see Fig. 1). Although the nine catchments assessed in our study extend over multiple climate zones, only a small contribution to 
total P and ETa comes from the arid climate areas. Therefore, our evaluation of ETa products provides low informative value about 
product performance over the arid climate. Over arid areas, Blatchford et al. (2020) compared WaPORv2.1 estimates to those derived 
from eddy covariance towers at three locations with irrigated agriculture in Egypt, finding that WaPORv2.1 overestimates ETa over 
these areas. Furthermore, Ayyad et al. (2019) compared estimates from ETa products with measurements from a lysimeter system over 
irrigated areas in Egypt, and found that SSEBop performed better than MOD16. To the best of our knowledge, no published studies 
have evaluated the performance of PMLv2 over the Nile Basin. 

6.3. Ability of P and ETa products to represent monthly changes in TWS 

The monthly ΔTWS derived from applying the water balance (Eq. (1)) using the best-performing P and ETa products corresponded 
well to the monthly ΔTWS estimates from GRACE over the White Nile (Fig. 8). In contrast, the seasonality of the ΔTWS derived from 
the water balance was more pronounced than that of GRACE over the Blue Nile (Fig. 7). Over the Blue Nile Basin, Abebe et al. (2020) 
showed that there is no substantial seasonal bias in CHIRPSv2 estimates, based on an evaluation over 38 rain gauges in the Upper Blue 
Nile Basin. Furthermore, the validation of our RF model showed that the seasonality of Q was well captured over this basin. Assuming 
that the seasonality of P and Q is captured well by CHIRPSv2 and the modelled Q, respectively, the discrepancy between the derived 
monthly ΔTWSWB and ΔTWSGRACE should be mainly due to the performance of the ETa products, or the performance of GRACE 
(related to measurement and leakage errors, as noted by Landerer and Swenson (2012)). 

Our results suggest that PMLv2 and WaPORv2.1 ETa products tend to underestimate the seasonal variability over the Blue Nile 
Basin. These results suggest that although some ETa products perform relatively well at multiannual temporal scales, they are not yet 
able to capture the intra-annual variability over this area, which is in agreement with the reported marked seasonal differences be-
tween ETa products and calculation methods (Mueller et al., 2011; Trambauer et al., 2014; Pan et al., 2020). In the case of WaPORv2.1, 
a reason for this could be attributed to the fact that the Blue Nile has large areas of rainfed agriculture, for which Blatchford et al. 
(2020) concluded that the product overestimates and underestimates low and high ETa values, respectively. Additionally, Abera et al. 
(2017) obtained a very good agreement between the ΔTWS resulting from a hydrological model forced with a specific P product and 
calibrated solely with Q data, and ΔTWS of GRACE over the Upper Blue Nile. Their results indicate that two ETa products 
(GLEAMv3_BETA and MOD16) underestimate the seasonal variability of ETa over this region when compared to the resulting modelled 
ETa, reinforcing the idea that ETa products do not capture the intra-annual variability of ETa over the Blue Nile Basin. 

6.4. Role of P and ETa product selection in establishing the water balance for the Nile Basin 

Considering the major water balance components over the entire Nile Basin for 2009–2018 based on the identified best-performing 
products, the mean annual P according to CHIRPSv2 is 636 mm/yr, while the mean annual ETa according to PMLv2 and WaPORv2.1 is 
616 mm/yr and 698 mm/yr, respectively. According to Molle et al. (2018), the discharge of the Nile into the Mediterranean Sea is 
approximately 14 BCM/yr (calculated for 2000–2013), which is equivalent to 4.4 mm/yr over the entire basin. Literature indicates that 
components such as groundwater discharge to the Mediterranean Sea and seawater extractions for desalination are negligible in the 
context of the water balance over the entire Nile Basin (Nofal et al., 2015; El-Rawy et al., 2020). Therefore, if using the P product and 
one of the ETa products recommended in this paper, the derived Q discharging from the Nile will either be too high (PMLv2) or 
negative (WaPORv2.1). Furthermore, with PMLv2, the total volumes will be affected by the missing ETa values over large water 
bodies. 

Fig. 9 shows the spatial distribution of the estimates from the evaluated P and ETa products. The upper panels plot the mean annual 
P and ETa for 2009–2018 for the best-performing products, while the lower panels plot the spatial distribution of the coefficient of 
variation (CV) calculated for all evaluated products. As expected, the CV for the P products is highest over the arid regions, where 
Awange et al. (2016) reported a low correlation between estimates from different products, and because of the very low annual P, 
slight changes between these products result in a high CV. Values of CV for P are also relatively high over regions of the basin where 
most of the Q is generated, namely the Ethiopian highlands and some upstream areas in the White Nile. The CV for the ETa products is 
also higher over the arid regions where annual accumulated ETa values are low, which is in agreement with the results reported by 
Trambauer et al. (2014) and Pan et al. (2020). In addition, the CV is also high over large irrigation schemes in the arid climates, with a 
key reason for this being that neither GLDASv2.1 nor GLEAMv3.5b appear to detect the increased ETa associated with these irrigated 
croplands. The water bodies and Sudd wetlands are the other areas with a relatively high CV for ETa. 

7. Conclusions 

We evaluated the performance of eleven gridded P products through a point-to-pixel analysis, and seven gridded ETa products 
through the water balance over the data-scarce Nile Basin. For the water balance analysis, we generated time series of simulated Q 
through a machine learning approach and used data from Level-3 GRACE products to evaluate the changes in TWS. We evaluated the 
gridded P and ETa products using ground-based data from 90 rain gauges and 23 Q stations, and made the following conclusions:  

(a) Based on a point-to-pixel analysis and using the KGE’ and its components, CHIRPSv2 was the best-performing P product over the 
Nile Basin at the monthly scale (median KGE’ of 0.80). Furthermore, CHIRPSv2 had a median bias of 1.00 and showed a much 
lower dispersion than all other evaluated P products; 
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Fig. 9. Top panels: mean annual estimates (2009–2018) of P and ETa according to the best-performing P and ETa products (a and b, respectively). 
Bottom panels: Spatial distribution of the coefficient of variation (CV) of mean annual estimates of P and ETa for the evaluated products (c and d, 
respectively). 
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(b) The RF model used to simulate monthly Q performed well for nine of the 23 evaluated catchments and was able to capture the 
seasonality and magnitude of Q. Model performance was generally better for catchments in the Blue Nile and downstream in the 
Main Nile;  

(c) The multiannual water balance was evaluated over nine catchments for 2009–2018 with CHIRPSv2 as the P input and with 
simulated Q. PMLv2 and WaPORv2.1 were the best-performing products over the majority of the catchments;  

(d) Over two catchments, monthly ΔTWS calculated from the water balance using the best-performing P and two best-performing 
ETa products was compared with ΔTWS derived from GRACE Level-3 products. The seasonality of TWS derived from the best- 
performing P and ETa products is well captured over the White Nile Basin but not as well captured over the Blue Nile Basin; and  

(e) Based on the results of our study, we recommend the use of CHIRPSv2 and either PMLv2 or WaPORv2.1 over the Nile Basin. 

Sheffield et al. (2018) identified the pivotal role played by satellite-based products in water resources management in data-scarce 
regions, and our paper answers this call by providing recommendations of the best-performing P and ETa products over the Nile Basin. 
The Nile Basin has low data availability and minimal data sharing, hence this study provides an important step in the improved 
understanding of the spatial and temporal patterns of P and ETa in the region. Furthermore, the study uses novel techniques that can be 
transferred to other data-scarce basins around the world. Greater data availability, such as a higher density of rain gauge data, 
point-based ETa data and updated Q data would also serve a great purpose in enabling a more comprehensive evaluation of the 
best-performing products. 
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Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K.H., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., et al., 2019. The GFZ GRACE 

RL06 monthly gravity field time series: processing details and quality assessment. Remote Sens. 11, 2116. https://doi.org/10.3390/rs11182116. 
Derin, Y., Yilmaz, K.K., 2014. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 15, 1498–1516. https://doi. 

org/10.1175/JHM-D-13-0191.1. 
Díaz-Uriarte, R., Alvarez de Andrés, S., 2006. Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3. https://doi.org/10.1186/ 

1471-2105-7-3. 
Diem, J.E., Hartter, J., Ryan, S.J., Palace, M.W., 2014. Validation of satellite rainfall products for western Uganda. J. Hydrometeorol. 15, 2030–2038. https://doi.org/ 

10.1175/JHM-D-13-0193.1. 
Digna, R.F., Mohamed, Y., van der Zaag, P., Uhlenbrook, S., Corzo, G., 2017. Nile River Basin modelling for water resources management – a literature review. Int. J. 

River Basin Manag. 15, 39–52. https://doi.org/10.1080/15715124.2016.1228656. 
Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S., Ropelewski, C., 2008a. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote 

Sens. 29, 4097–4110. https://doi.org/10.1080/01431160701772526. 
Dinku, T., Connor, S.J., Ceccato, P., Ropelewski, C.F., 2008b. Comparison of global gridded precipitation products over a mountainous region of Africa. Int. J. 

Climatol. J. R. Meteorol. Soc. 28, 1627–1638. https://doi.org/10.1002/joc.1669. 
Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., Ceccato, P., 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. 

Q. J. R. Meteorol. Soc. 144, 292–312. https://doi.org/10.1002/qj.3244. 
El-Rawy, M., Abdalla, F., El Alfy, M., 2020. Water resources in Egypt. In: Hamimi, Z., El-Barkooky, A., Martínez Frías, J., Fritz, H., Abd El-Rahman, Y. (Eds.), The 

Geology of Egypt. Springer, Cham, pp. 687–711. https://doi.org/10.1007/978-3-030-15265-9_18. 
FAO, 2020. WaPOR Database Methodology. Version 2 Release, April 2020. FAO, Rome. https://doi.org/10.4060/ca9894en.  
FAO, IHE Delft, 2020. Water Accounting in the Nile River Basin. FAO WaPOR Water Accounting Reports. FAO, Rome. https://doi.org/10.4060/ca9895en.  
Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., Baldocchi, D., Townsend, P.A., et al., 2017. The future of 

evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. 
Res. 53, 2618–2626. https://doi.org/10.1002/2016WR020175. 

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 
FLUXNET sites. Remote Sens. Environ. 112, 901–919. https://doi.org/10.1016/j.rse.2007.06.025. 

I. McNamara et al.                                                                                                                                                                                                    

https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1002/joc.4346
http://refhub.elsevier.com/S2214-5818(21)00113-0/sbref0065
https://doi.org/10.5194/amt-11-1921-2018
https://doi.org/10.3390/w11091913
https://doi.org/10.1016/j.scitotenv.2021.145769
https://doi.org/10.5194/nhess-17-1947-2017
https://doi.org/10.1016/j.rse.2019.111606
https://doi.org/10.1016/j.rse.2019.111606
https://doi.org/10.1016/j.atmosres.2018.05.011
https://doi.org/10.1016/j.atmosres.2018.08.028
https://doi.org/10.1029/2011WR010482
https://doi.org/10.3390/rs61110306
https://doi.org/10.1016/S0022-1694(98)00253-4
https://doi.org/10.3390/rs9070669
https://doi.org/10.1080/02626667.2015.1032291
https://doi.org/10.1080/02626667.2015.1032291
https://doi.org/10.5194/hess-21-6201-2017
https://doi.org/10.5194/hess-21-6201-2017
https://doi.org/10.1175/JCLI-D-19-0332.1
https://doi.org/10.1175/JCLI-D-19-0332.1
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.1007/s11749-016-0481-7
https://github.com/cran/rgdal
https://doi.org/10.1002/hyp.13791
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/qj.3547
https://doi.org/10.1002/qj.3547
http://refhub.elsevier.com/S2214-5818(21)00113-0/sbref0180
https://doi.org/10.1002/hyp.7072
https://doi.org/10.3390/rs11182116
https://doi.org/10.1175/JHM-D-13-0191.1
https://doi.org/10.1175/JHM-D-13-0191.1
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1175/JHM-D-13-0193.1
https://doi.org/10.1175/JHM-D-13-0193.1
https://doi.org/10.1080/15715124.2016.1228656
https://doi.org/10.1080/01431160701772526
https://doi.org/10.1002/joc.1669
https://doi.org/10.1002/qj.3244
https://doi.org/10.1007/978-3-030-15265-9_18
https://doi.org/10.4060/ca9894en
https://doi.org/10.4060/ca9895en
https://doi.org/10.1002/2016WR020175
https://doi.org/10.1016/j.rse.2007.06.025


Journal of Hydrology: Regional Studies 37 (2021) 100884

20

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., et al., 2015. The climate hazards infrared 
precipitation with stations – a new environmental record for monitoring extremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66. 

Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F.H., Yu, Q., 2018. Use of satellite leaf area index estimating evapotranspiration and gross 
assimilation for Australian ecosystems. Ecohydrology 11, e1974. https://doi.org/10.1002/eco.1974. 

Garcia, M., Peters-Lidard, C.D., Goodrich, D.C., 2008. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern 
United States. Water Resour. Res. 44 https://doi.org/10.1029/2006WR005788. 

Gehne, M., Hamill, T.M., Kiladis, G.N., Trenberth, K.E., 2016. Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Clim. 29, 
7773–7795. https://doi.org/10.1175/JCLI-D-15-0618.1. 

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving 
hydrological modelling. J. Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003. 

Haiden, T., Rodwell, M.J., Richardson, D.S., Okagaki, A., Robinson, T., Hewson, T., 2012. Intercomparison of global model precipitation forecast skill in 2010/11 
using the SEEPS score. Mon. Weather Rev. 140, 2720–2733. https://doi.org/10.1175/MWR-D-11-00301.1. 

Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18. https:// 
doi.org/10.1038/s41597-020-0453-3. 

Hasan, E., Tarhule, A., Hong, Y., Moore, B., 2019. Assessment of physical water scarcity in Africa using GRACE and TRMM satellite data. Remote Sens. 11, 904. 
https://doi.org/10.3390/rs11080904. 

Hasan, E., Tarhule, A., Kirstetter, P.E., 2021. Twentieth and twenty-first century water storage changes in the Nile River Basin from GRACE/GRACE-FO and modeling. 
Remote Sens. 13, 953. https://doi.org/10.3390/rs13050953. 
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