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Unification of massless field equations solutions for any spin
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A unification of Klein–Gordon, Dirac, Maxwell, Rarita–Schwinger and Einstein equations exact
solutions (for the massless fields cases) is presented. The method is based on writing all of the
relevant dynamical fields in terms of products and derivatives of pre–potential functions, which
satisfy d’Alambert equation. The coupled equations satisfied by the pre–potentials are non-linear.
Remarkably, there are particular solutions of (gradient) orthogonal pre–potentials that satisfy the
usual wave equation which may be used to construct exact non–trivial solutions to Klein–Gordon,
Dirac, Maxwell, Rarita–Schwinger and (linearized and full) Einstein equations, thus giving rise to
a unification of the solutions of all massless field equations for any spin. Some solutions written in
terms of orthogonal pre–potentials are presented. Relations of this method to previously developed
ones, as well as to other subjects in physics are pointed out.
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I. INTRODUCTION

Klein–Gordon, Dirac, Maxwell, Rarita–Schwinger and
Einstein field equations are cornerstones of physics and,
as such, numerous studies have been dedicated on the
subject. Many of them are related to solving these equa-
tions and it is, therefore, surprising to realize that a uni-
fied method to simultaneously produce exact solutions
for all of these theories can be devised by introducing
pre–potential functions. These are functions which are
used to construct massless fields of any spin, and they
satisfy d’Alambert equation. Orhogonal pre–potentials,
which have gradients which are orthogonal to each other,
are extremely useful in this approach.

This method is loosely inspired on two different seem-
ingly unrelated subjects: the search for the two gauge
invariant true dynamical degrees of electromagnetism [1]
and the solution of the first order inverse problem of the
calculus of variations [2]. It is constructed based on the
fact that massless field theories (for non–vanishing spin)
have two dynamical degrees of freedom [1] and that half
of Maxwell equations are nothing but the statement that
the exterior derivative of a two–form (the electromagnetic
field) vanishes. These equations are equivalent to the in-
tegrability conditions for Lagrange brackets [2], where
the Lagrange brackets are expressed in terms of gradi-
ents of functionally independent constants of motion of
the mechanical problem.

The above works as a starting point to construct any
spin massless field by using pre–potentials, with the pos-
sibility that the same pre–potentials solve all of the equa-
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tions for different spins. We first apply the pre-potential
method to solve Maxwell equations exactly and later ap-
ply the same procedure to get solutions for other massless
fields of any spin.

II. EXACT SOLUTIONS OF MAXWELL

EQUATIONS

Define the electromagnetic field Fab(x
c) for even–

dimensional space-time by

Fab(x
c) =

n
∑

i=1

(

∂u(2i−1)

∂xa
∂u(2i)

∂xb
−
∂u(2i−1)

∂xb
∂u(2i)

∂xa

)

,

(1)
where the electromagnetic pre–potentials u(c)(xb) are 2n
functionally independent real functions of the 2n vari-
ables xb with a, b, c, .... = 1, 2, 3, ...., 2n. Definition (1)
takes advantage of the vanishing exterior derivative of the
electromagnetic tensor. Thus, this electromagnetic field
satisfies half of the 2n–dimensional Maxwell equations,
∂γFαβ + ∂βFγα + ∂αFβγ ≡ 0, identically (∂β ≡ ∂/∂xβ).
The rest of the (source–free) Maxwell equations

∂Fαβ

∂xβ
= 0 . (2)

define the conditions on the pre-potentials in order to be
solutions for the electromagnetic field.

In order to exemplify this, let us now turn our at-
tention to the expression for Fαβ(xγ) written for the 4–
dimensional case

Fαβ(xγ) = u(1),αu
(2)

,β − u(2),αu
(1)

,β

+ u(3),αu
(4)

,β − u(4),αu
(3)

,β , (3)
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in a flat Minkowski (pseudo–orthonormal) space–time
metric ηµν = diag (+1,−1,−1,−1). Here, the electro-

magnetic pre-potentials u(α)(xγ) are 4 functionally inde-
pendent real functions of 4 variables xγ with α, β, γ, .... =
0, 1, 2, 3, and u(α),β ≡ ∂βu

(α). The usual electromag-
netic potential Aα(xβ) may be written in terms of the
pre–potentials u(α)(xγ) as

Aα(xγ) =
1

2

(

u(1),αu
(2) − u(2),αu

(1)
)

+
1

2

(

u(3),αu
(4) − u(4),αu

(3)
)

+ Λ(xγ),α , (4)

where Λ(xγ) is an arbitrary function. Of course, all of
the pre–potentials u(γ) and potentials Aα must be real
functions.

Using the above, Eqs. (2) written explicitly in terms of
u(α) are

∂Fαβ

∂xβ
= u(1)

,α

,βu
(2),β + u(1)

,α
u(2)

,β

,β

− u(2)
,α

,βu
(1),β − u(2)

,α
u(1)

,β

,β

+ u(3)
,α

,βu
(4),β + u(3)

,α
u(4)

,β

,β

− u(4)
,α

,βu
(3),β − u(4)

,α
u(3)

,β

,β = 0 . (5)

It is a straightforward matter to realize that an ex-
ample of a particular solution in cartesian coordinates is
given by

u(1)(t, x) = p1(t+ x) + p2(t− x) ,

u(2)(y, z) = q1(y + iz) + q1
∗(y − iz) ,

u(3)(t, y) = r1(t+ y) + r2(t− y) ,

u(4)(x, z) = s1(z + ix) + s1
∗(z − ix) , (6)

where p1, p2, r1, and r2 are arbitrary real functions and
q1 and s1 are arbitrary complex functions.These four pre-
potentials are real functions.

In particular, in order to find a general solution of
Eqs. (5), it is sufficient that

�u(γ) = 0 , ∀γ ,

u(2i−1),α
,βu

(2i),β = 0 ,

u(2i)
,α

,βu
(2i−1),β = 0 , (7)

for i = 1, 2, where � is the d’Alembert operator in
Minkowski space. We call pre–potential any function
which satisfies d’Alembert equation, and we define or-
thogonal pre–potentials as any pair of functions which
satisfy Eqs. (7), alluding to the fact that their gradients
are orthogonal or equivalently that they, in general, de-
fine a (two–dimensional) patch of orthogonal coordinates.

A more general solution, is obtained by requiring that
the vectors v(2i−1) and v(2i), defined in terms of the u(µ)

gradients,

v(µ)
α

= ηαβu(µ),β (8)

commute with each other, i.e.,

v(2i−1)α
,β v

(2i)β − v(2i)
α

,β v
(2i−1)β = 0 , (9)

for i = 1, 2. For Minkowski flat space–time metric, one
may require that the set of coordinates S(α)(6= Ø, ∀ α)
on which u(α) depends, fulfill

S(1) ∩ S(2) = Ø and S(3) ∩ S(4) = Ø . (10)

in order to get an exact particular solution to Maxwell
Eqs. (2).

It is also a straightforward matter to prove that the ex-
act electromagnetic field solutions to Maxwell equations
given by (7) define regular electromagnetic fields

det(Fαβ) 6= 0 , (11)

provided the pre–potentials u(γ) are four functionally in-
dependent functions, as the ones chosen in example (6),
for instance.

III. EXACT SOLUTIONS OF KLEIN–GORDON

EQUATION

The wave or Klein–Gordon massless equation reads

�φ(xα) = 0 . (12)

Of course, Eq. (12) is solved by any pre–potential. Nev-
ertheless, in order to achieve a complete unification of
all spin fields solutions we would rather choose to write
its field solution φ(xα) as a product of two orthogonal
pre–potentials u(1)(xµ) and u(2)(xν),

φ(xα) = u(1)(xµ) u(2)(xν) , (13)

which is a solution of Klein–Gordon equation (12) by
properties (7). In fact, this solution can be generalized
to the addition of several product of pairs of orthogonal
pre–potentials

φ(xα) = u(1)(xµ) u(2)(xν )+u(3)(xµ) u(4)(xν)+ ... . (14)

A particular solution can be constructed using pre–
potentials (6), impyling that the same pre–potentials
solve Maxwell and Klein–Gordon equations.

IV. EXACT SOLUTIONS OF DIRAC

EQUATION

Consider the massless Dirac equation (Weyl equation)

iγµ∂µψ(xα) = i /∂ψ(xα) = 0 , (15)

where Dirac matrices are given the following Kronecker
products: γ0 = σ3 ⊗ I and γj = iσ2 ⊗ σj , where σj are
Pauli matrices and j = 1, 2, 3.
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To solve the massless Dirac equation in a simple way,
it is enough to define ψ(xα) by

ψ(xα) = /∂









u(1)(xµ) u(2)(xν)
u(3)(xµ) u(4)(xν)
u(5)(xµ) u(6)(xν)
u(7)(xµ) u(8)(xν)









, (16)

in terms of pairs of orthogonal pre–potentials. Anew, we
can use pre–potentials (6) in Dirac equation in order to
find a particular solution.

A different exact solution can be constructed with or-
thogonal pre–potentials. It is known that any solution
of the source–free Maxwell equations solves the massless
Dirac equation [3]. Therefore, any spinor, with compo-
nents ψi(x

α) (with i = 1, 2, 3, 4), given in terms of or-
thogonal pre–potentials in the form

ψ1 = −u(1),0u
(2)

,3 + u(2),0u
(1)

,3

−u(3),0u
(4)

,3 + u(4),0u
(3)

,3 ,

ψ2 = −u(1),0u
(2)

,1 + u(2),0u
(1)

,1

−u(3),0u
(4)

,1 + u(4),0u
(3)

,1

−iu(1),0u
(2)

,2 + iu(2),0u
(1)

,2

−iu(3),0u
(4)

,2 + iu(4),0u
(3)

,2 ,

ψ3 = iu(1),1u
(2)

,2 − iu(2),1u
(1)

,2

+iu(3),1u
(4)

,2 − iu(4),1u
(3)

,2 ,

ψ4 = −u(1),3u
(2)

,1 + u(2),3u
(1)

,1

−u(3),3u
(4)

,1 + u(4),3u
(3)

,1

+iu(1),2u
(2)

,3 − iu(2),2u
(1)

,3

+iu(3),2u
(4)

,3 − iu(4),2u
(3)

,3 , (17)

solves Dirac equation.

In particular, pre–potentials (6) that solve Maxwell
and Klein–Gordon equation, also solve Dirac equation.
However, other pre–potentials are possible, even complex
ones.

V. EXACT SOLUTIONS OF

RARITA–SCHWINGER EQUATION

One may write the massless Rarita–Schwinger equa-
tions for a vector–spinor ψβ(xα) as a set of one (Dirac–
like) dynamical equation and a couple of constraints [4–
8], i.e.,

i/∂ψβ(xα) = 0 ,

γβψβ(xα) = 0 ,

∂βψβ(xα) = 0 . (18)

It is a straightforward matter to prove that the vector–

spinor ψβ(xα), given by

ψβ(xα) = ∂β
(

/∂u(xµ)
)

/∂









u(1)(xν)
u(2)(xν)
u(3)(xν)
u(4)(xν)









, (19)

solves all of the Eqs. (18) when the pre–potential u(xµ)
is orthogonal to all of the other pre–potentials u(j)(xν)
(for j = 1, 2, 3, 4), a choice which is similar to the one
made for Dirac equation.

For instance, a particular example for a Rarita–
Schwinger field could be given in terms of pre–potentials

u(t, x) = p1(t+ x) + p2(t− x) ,

u(1)(y, z) = u(3)(y, z) = q1(y + iz) + q1
∗(y − iz) ,

u(2)(t, y) = u(4)(t, y) = p1(t+ x) − p2(t− x) , (20)

for arbitrary functions p1, p2, and q1. All the possible
choices for the pre–potentials may coincide with those
that solve the equations for spin 0, 1/2 and 1 massless
fields.

VI. EXACT SOLUTIONS OF LINEARIZED

EINSTEIN EQUATIONS

Consider linerized Einstein equations for a metric per-
turbation of Minkowski space–time

gαβ(xγ) = ηαβ + hαβ(xγ) , (21)

where ηαβ is the Minkowski space–time metric and the
perturbation |hαβ(xγ)| ≪ 1 (∀ α, β). Linearized Einstein
vacuum equations may be written as [9]

hµ
α
,να

+ hν
α
,µα − hµν,α

α − h,µν = 0 , (22)

where h is the trace of perturbed metric h ≡ hαα =
ηαβhαβ .

Inspired in the antisymmetric construction of the elec-
tromagnetic field (3), we seek for a solution to Einstein
linearized equations by defining a symmetric version of
it for hαβ with gravitational pre–potentials U (α), in the
form

hαβ(xγ) = U (1)
,αU

(2)
,β + U (2)

,αU
(1)

,β

+ U (3)
,αU

(4)
,β + U (4)

,αU
(3)

,β . (23)

It is straightforward to realize that exactly the same
electromagnetic orthogonal pre–potentials that solve
Maxwell (and Klein–Gordon and Dirac) equations un-
der the definitions (7), also solve the linearized Einstein
equations (22) for the gravitational pre–potentials (23).
In order to prove this, first notice that metric (23) has
h = 0 and hµ

α
,α

= 0, by conditions (7) and (9). Of

course, a coordinate (gauge) transformation may always
be introduced in expression (23). Thereby, the equations



4

for the gravitational pre–potentials U (α) are obtained us-
ing Eq. (22) to get

i=2
∑

i=1

(

U (2i−1)
,µ,ν �U (2i) + U (2i)

,µ,ν �U (2i−1)
)

=

i=2
∑

i=1

(

U (2i−1)
,µ,αU

(2i),α
,ν + U (2i−1)

,ν,αU
(2i),α

,µ

)

= 0 , (24)

which are identically satisfied if conditions (7) are met.
It is important to stress that these solutions are non–

trivial as long as they produce a non–identically vanish-
ing Riemann tensor to first order in the smallness param-
eter.

VII. EXACT SOLUTIONS OF FULL EINSTEIN

EQUATIONS

It is remarkable that some of the solutions to the lin-
earized Einstein theory also satisfy exactly the full the-

ory in vacuum, with no approximations whatsoever. Ex-
act spacetime metrics can be constructed using the pre–
potentials. In these cases, the metric have the form

gαβ = ĝαβ + Θαβ , (25)

where ĝαβ is a base flat metric, and now Θαβ is not a per-
turbation, but it has the same form than Eq. (23), i.e.,
Θαβ(xγ) = U (1)

,αU
(2)

,β + U (2)
,αU

(1)
,β + U (3)

,αU
(4)

,β +

U (4)
,αU

(3)
,β. For the case of full Einstein equations, the

pre–potencials and their derivatives are not small, in gen-
eral.

We can explicitly write some exact metrics that solve
the full Einstein equations in terms of pre–potentials. In
cartesian coordinates, a metric that solve the system [10]
is written for the base Minkowski metric ĝαβ = ηαβ , and

U (1)(x, t) = ξ1(x+ t) ,

U (2)(y, z) = ξ2(y + iz) + ξ2(y − iz) ,

U (3)(x, t) = ξ3(x+ t) ,

U (4)(y, z) = ξ4(y + iz) + ξ4(y − iz) , (26)

where ξi (with i = 1, 2, 3, 4) are arbitrary functions. No-
tice that this exact spacetime is not, in general, a wave.
Besides, its Riemann tensor is not identically zero, in
general, and thus is a non–flat space–time solution. Be-
sides, this solution can be generalized to introduce free
parameters in it. For example, the pre–potentials

U (1)(x, t) = ξ1(x + t) ,

U (2)(y, z) = ξ2
(

e−iα(y + iz)
)

+ ξ2
(

eiα(y − iz)
)

,

U (3)(x, t) = ξ3(y − t) ,

U (4)(y, z) = ξ4(x + iz) + ξ4(x− iz) , (27)

also solve full Einstein equations in vacuum, where again
ξi are arbitrary functions, and α is an arbitrary constant.
Other generalizations are possible.

For a cylindrical form of the flat metric, with coor-
dinates (t, r, θ, z) and base metric ĝ00 = −1 = −ĝrr =
−ĝzz, and ĝθθ = r2 (all other components vanish), an
exact solution of Eistein equations is found when

U (1)(z, t) = ζ(z − t) ,

U (2)(r) = ln r , (28)

where ζ is an arbitrary function, and U (3) = 0 = U (4).
This spacetime metric gives rise to a non–vanishing Rie-
mann tensor (and it does not represent a wave, in gen-
eral).

There are also solutions for a base metric with
the light–like form of the flat metric for coordinates
(u, v, y, z), given by ĝuv = 1 = ĝyy = ĝzz (all other com-
ponents vanish). For this case, it is enough to consider

U (1)(u) = χ1(u) ,

U (2)(y, z) = χ2(y + iz) + χ2(y − iz) , (29)

while U (3) = 0 = U (4). Again, χi (with i = 1, 2) are
arbitrary functions. This spacetime has anew a Riemann
tensor that is not identically zero.

Finally, other exact non–trivial solutions can be ob-
tained for a light–like cylindrical form of the flat metric,
for coordinates (u, v, r, θ), with ĝuv = 1, ĝrr = 1, and
ĝθθ = r2, and other vanishing components. In this case,
the pre–potencials read

U (1)(r) = ρ1(r) ,

U (2)(r, θ) = A cosh (m ln r) sin (mθ) ,

U (3)(v) = ρ2(v) ,

U (4)(r, θ) = A cosh (w ln r) sin (w θ) , (30)

where A, m and w are arbitrary constants, and ρi (i =
1, 2) are arbitrary functions.

A clarifying comment seems to be in order. All the or-
thogonal pre–potentials may be used to construct (mass-
less) solutions to Klein–Gordon, Dirac, Maxwell, Rarita–
Schwinger and the linearized Einstein equations. Some
of them even solve the full Einstein theory exactly. In
the case of (linearized or full) gravity one should check
that the Riemann tensor is not identically zero (to have
a non–flat space–time solution) for the full theory and up
to first order in the linearized case. The above solutions
have such property.

VIII. DISCUSSION

The approach we present may be described, loosely
speaking, as a unified way of constructing solutions for
massless field equations for any spin where the fields are
made up of a core and a shell. The core is common to all
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fields of any spin and is made up of (exactly the same)
orthogonal pre–potentials. The shells depend upon the
spin of the fields. It is important to remark that bosonic
and fermionic fields share exactly the same core. It is
worth noting that linearized and full gravity share both
the core and the shell. The most remarkable fact is that
one can find examples (which we have presented) where
exactly the same core pre–potentials solve the massless
Klein–Gordon, Dirac, Maxwell, Rarita–Schwinger and
linearized and full Einstein equations, which shows a deep
connection between different spin fields. The approach
may lead to a different way of understanding supersym-
metry (keeping the core fixed while changing the shell).
On the other hand, the orthogonal pre–potentials may,
in principle, be used to determine the algebraic structure
of the fields.

There are several other approaches which have a sim-
ilar (but different) ways to deal with either different
spin fields and/or solutions to field equations. Among

them, Feynman and Gell–Mann dealt with a kind of pre–
potential for the Dirac equation [11] and Penrose [12]
presented a kind of pre–potential which once integrated
differs from spin to spin making it less transparent to re-
late solutions of different spin fields among them. There
are also many other early and recent methods devised
by Clebsch [13], Bateman [14], Geroch [15], Açik [16],
and Bia linicky–Birula [17], to deal with solutions to field
equations, for instance.

Our approach may also be used to deal with topological
aspects of fields as Rañada [18] has done. Furthermore,
it is also possible to extend the pre–potential method to
find dynamical solutions for higher-spin fields, which fol-
lows from extended Maxwell-like equations in the mass-
less case [19]. Finally, is important to stress that the
current approach allows us to construct exact solutions
to the full non–linear Einstein equations. This possibility
will be explored further in forthcoming articles.
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