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COMPORTAMIENTO TÉRMICO Y ESTUDIO DE ESTABILIDAD DE UN PAQUETE
DE BATERÍAS DE IONES DE LITIO CON ENFRIAMIENTO POR AIRE

Las aplicaciones de las baterías de iones de litio están emergiendo cada vez más en la actu-
alidad y es fundamental prestar especial atención a su rendimiento térmico. El mecanismo
de enfriamiento juega un papel esencial como sistema de gestión térmica de la batería. El
presente trabajo tiene como objetivo evaluar el comportamiento térmico de un módulo de
baterías refrigerado por aire compuesto de baterías cilíndricas de iones de litio de tipo LiCoO2

(LCO) 26650 (diámetro 26 mm y altura 65 mm).

Primero, se evaluó una sola celda comparando tres enfoques: un modelo térmico de
parámetros concentrados o resistencia térmica despreciable, un modelo 3D de dinámica de
fluidos computacional (CFD) y un modelo electroquímico. Antes de proveer más detalles, es
importante definir la tasa C, la cual representa la medida de corriente de carga o descarga que
se aplica a una celda con respecto a su capacidad nomimal. Por ejemplo, para una batería de
1 Ah cargada, 1C representa la corriente que descarga completamente la celda en una hora.
A una tasa de descarga de 0.5C, el modelo electroquímico presenta el error más bajo. No
obstante, este modelo proporciona el error más alto a 1.5C. Bajo un perfil de corriente que
emula un ciclo de conducción, todos los modelos proporcionan el mismo orden de error.

Luego, se evaluó el comportamiento térmico de un módulo de baterías con quince (3× 5)
celdas cilíndricas. Durante la descarga a convección libre, la temperatura de las células
aumenta a medida que aumenta la corriente de descarga. La zona central del módulo de
baterías alcanza la temperatura más alta al final de la descarga. Las mediciones del perfil de
temperatura de las celdas concuerdan con las simulaciones numéricas. Además, se aplicó un
modelo basado en filtro de partículas para estimar la temperatura del paquete de baterías
durante el proceso de enfriamiento. Esta técnica predice satisfactoriamente la temperatura
de las celdas y se puede implementar en el monitoreo en línea de las mismas. Dicho modelo
también proporciona la evolución artificial de parámetros. Alternativamente, se llevaron a
cabo simulaciones numéricas mediante CFD, cuya ejecución demanda un tiempo considerable,
logrando mejorar ligeramente la estimación de la temperatura de las celdas en comparación
con el filtro de partículas.

Para tomar en consideración las condiciones extremas de funcionamiento de la batería, se
describió el embalamiento o fuga térmica mediante un modelo de abuso térmico que se basa
en la reacción térmica que tiene lugar en los distintos componentes de la batería. En términos
generales, la fuga térmica ocurre cuando la tasa de generación de calor en la celda es mayor
que el calor liberado. La temperatura de inicio de la fuga térmica depende principalmente
del tipo de celda, la temperatura ambiente y el mecanismo de enfriamiento. Se describieron
parámetros adimensionales que tienen en cuenta esos factores. Para una celda de LCO en
convección libre, la fuga térmica se activa a una temperatura por sobre los 145 °C.
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Abstract

Applications of lithium-ion batteries are increasingly emerging nowadays and it is crucial
to pay special attention to their thermal performance. The cooling mechanism plays an
essential role as battery thermal management system of the batteries. The present work
aims to evaluate the thermal behavior of an air-cooled battery module comprised of LiCoO2

(LCO) 26650 (26 mm diameter and 65 mm height) cylindrical Li-ion batteries.

First, a single cell was evaluated by comparing three approaches: a thermal lumped model,
a 3D computational fluid dynamics (CFD) model, and an electrochemical model. Before pro-
viding more details, it is important to define what C-rate is. This represents the measurement
of the charging or discharging current applied to a cell with respect to its rated capacity, for
example, for a 1 Ah fully charged cell, 1C rate represents the current that completely dis-
charges the battery in one hour. At 0.5C discharge rate, the electrochemical model has the
lower error. Nonetheless, this model give the higher error at 1.5C. Under a current profile of
a driving cycle, all the models provide the same order of error.

Then, the thermal behavior of a battery module with fifteen (3 × 5) cylindrical LCO
cells was evaluated. During discharging at free convection, the temperature of cells rises
as discharging current increases. The central zone of the battery module reach the highest
temperature at the end of discharging. Measurements of the temperature profile of cells
are in good agreement with numerical simulations. Furthermore, a model based on particle
filtering was applied to estimate the temperature of the battery pack during the cooling-down
process. This technique predicts well the temperature of cells and it can be implemented
in online monitoring of cells. It also performs the artificial evolution of parameters in the
model. Alternatively, CFD simulations were performed, characterized to be a time consuming
process to simulate the cooling-down and slightly improves the temperature estimation of cells
comparing with particle filter.

To take into consideration extreme operating conditions of the battery, thermal runaway
was described by a thermal abuse model which is based on the heat reaction that take place
in the distinct components of the battery. In general terms, thermal runaway occur when
the rate of heat generation in the cell is greater than the released heat. Onset temperature
of thermal runaway mainly depends on the type of cell, ambient temperature and cooling
mechanism. Dimensionless parameters that take into account those factors were described.
For a LCO cell under free convection, thermal runaway is triggered above 145 °C.
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Introduction

The use of electric vehicles (EVs) and hybrid electric vehicles (HEVs) is becoming increasingly
relevant to reduce oil consumption and avoid environmental pollution. Nevertheless, the
primary challenge for clean energy vehicles is the improvement of the energy storage system,
which is comprised of lithium-ion batteries (LIBs). Furthermore, the study of LIBs is crucial
in terms of energy efficiency and safety of several kind of electric and electronic devices.

LIBs were commercialized for the first time by Sony Corporation in August 1991 and
have undergone noticeable progress in capacity, performance, and cost reduction. Nowadays,
there exist LIB manufacturers for EVs that provide batteries sizing from 16 kWh (Mitsubishi
I model) to 100 kWh (Tesla S model) [1].

In general, batteries are classified into primary (non-rechargeable) and secondary (recharge-
able). There exist many types of secondary batteries utilized as energy source in EVs: lead-
acid, nickel-iron, nickel-zinc, nickel-cadmium, nickel-metal hydrate (NiMH), lithium-ion (Li-
ion), aluminum-air, zinc-air, etc. Moreover, flexible LIBs with high energy density have been
created recently [2].

However, a weak point of LIBs is that their performance is chiefly dependent on temper-
ature. This implies that it is highly important to study heat generation inside a battery,
the relationship between temperature and capacity degradation, heat dissipation, and other
topics. Consequently, a suitable thermal management system is a priority for optimal per-
formance and safety of the battery [3].

As part of battery thermal management (BTM) system, there have been developed exter-
nal cooling mechanisms such as active cooling with air or liquid, passive cooling with phase
change material (PCM) and heat pipe [4]. Air forced as an active BTM system has been
extensively used because of its simplicity, low cost of implementation and maintenance [5].

In order to model a LIB, there exist some models such as electrochemical, thermal, equiv-
alent circuit model, or a combination among them, which may provide heat generation rate,
the temperature profile of the battery, and many other important parameters. To study the
thermal behavior of a battery module, it is necessary to couple the heat generation and the
cooling system models.

There exist a few approaches to study the behavior of a BTM system for battery modules
without expensive computational resources. For instance, Hu et al. [6] considered the cooling
system as a linear time-independent (LTI) system and proposed a Foster network thermal
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model for a battery module. This approach considerably reduces the simulation time com-
paring to conventional CFD. Tian et al. [7] presented a pioneer work in order to reconstruct
the temperature field for a battery module by using an estimator based on Kalman filter
approach. Another tool to face state estimation is particle filter which is used specially for
nonlinear problems.

The main goal in this work is to evaluate the thermal behavior of a lithium-ion battery pack
with air cooling by developing a study supported by experiments and numerical simulations.
First, three models were implemented numerically to study the thermal behavior of LIBs: a
lumped model, a 3D-CFD model, and an electrochemical approach using the NTGK model.
Furthermore, voltage was simulated using NTGK formulation. All of these simulations were
done at the same physical conditions of the experimental tests, at constant current discharge
rate, and under a driving cycle. A 26650 lithium cobalt oxide (LCO) battery was used.
Parameter estimation was carried out to determinate the values of unknown parameters and
electrochemical impedance spectroscopy (EIS) was applied to measure the internal resistance
of the battery.

Furthermore, thermal performance of a battery module with fifteen cells was analyzed.
Experimental discharging and cooling-down tests were performed and compared to numerical
simulations. For cooling-down process at forced convection, a particle filter was implemented
to estimate online the surface temperature of each cell. A fractal thermal approach was used
as a process model of the cells.

If a battery undergoes elevated temperatures, it may lead up to thermal runaway (TR).
During this phenomenon, a chain of exothermic reactions may occur; even fire and explosions
may be present. This phenomenon may be studied through a thermal abuse model proposed
by Hatchard et al. [8] and extended by Kim et al. [9]. This approach is applied in this work
to study TR by using a thermal lumped model for a cylindrical cell. In order to describe the
thermal stability of the cell, physical conditions given by non-dimensional numbers that lead
a Li-ion battery to thermal runaway are described.

This work is organized as follows: Chapter 1 presents a literature review of the developed
topics. Chapter 2 describes the methodology to study the thermal behavior of a single cell
and a battery pack including thermal runaway occurrence. The implementation of a model
based on particle filter to estimate the cell surface temperature in a battery module is is also
described in this Chapter. Results are presented in Chapter 3.
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Research problem, hypothesis and
objectives

Research problem statement
The weak point regarding the operation of many electric devices and electric vehicles is their
energy supply and storage system comprised of lithium-ion batteries. Battery performance
is strongly dependent on temperature, and at elevated temperatures, a critical event (named
thermal runaway) may occur. An approach to estimate the temperature behavior of cells
through a probabilistic and numerical approach will contribute to improve the battery ther-
mal management system.

Studies on thermal stability of LIBs from a mathematical point of view are scarce, and
an approach on the relationship between the thermal behavior of LIBs and electric vehicles’
driving conditions are limited as well.

The following research question is formulated:

How to predict the thermal behavior of an air-cooled Li-ion battery module from the
standard operating conditions straightforwardly until thermal runaway occurrence oriented
to electric vehicle applications?

Hypotheses
The general hypothesis is formulated as follows:

Thermal behavior parameters of a LIB module such as temperature, convection coeffi-
cient, and cooling characteristics may be described satisfactorily in a wide range of operating
conditions by using a lumped model for the cell domain even under thermal abuse conditions.

The following specific hypotheses are proposed:

1. Linear stability analysis based on a thermal abuse model describes physical parameters
which let the temperature profile of a battery increases until thermal runaway occurs.

2. The thermal performance of the battery module depends on a proper estimation of the
heat generation rate and convection coefficient.

3. CDF modeling of the battery module including driving data of an EV will corroborate
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the heating and cooling phenomena predicted by a mathematical model to be proposed.

Objectives

General objective

To evaluate the thermal behavior of a LIB module with air cooling including thermal abuse
conditions by developing a theoretical study supported by experiments and numerical results.

Specific objectives

1. Determine the physical conditions that lead a lithium-ion battery to thermal runaway
under thermal abuse conditions.

2. Characterize the thermal behavior of a lithium-ion battery module with air as a coolant
under natural convection and forced convection experimentally.

3. Carry out CFD numerical simulations of the battery arrangement focusing on the cool-
ing effect and heat generation rate.

4. Predict the thermal performance of the battery module based on real driving data of
an electric vehicle.

Contributions
This work present some contributions regarding the thermal performance of lithium-ion bat-
teries:

• The most common approaches for thermal modeling of lithium-ion batteries are evalu-
ated.

• Thermal parameters of a LCO battery are determined.
• Heat generation rate of a LCO cell is described experimentally.
• Temperature of cells under natural and forced convection are tested and computed

numerically.
• Temperature of a battery module under forced convection is estimated based on a

particle filter approach. Thus, it is possible to monitor cells in real time by indirect
measurements.

• Thermal runaway of a lithium-ion battery is studied based on the thermal abuse model.

Moreover, the following works were published:

• E. Paccha-Herrera, W. R. Calderón-Muñoz, M. Orchard, F. Jaramillo and K. Medjaher,
"Thermal Modeling Approaches for a LiCoO2 Lithium-ion Battery—A Comparative
Study with Experimental Validation," Batteries, vol. 6, pp. 40, 2020.

• R. A. Toledo-Quiroz, W. R. Calderón-Muñoz and E. Paccha-Herrera, "Modular packag-
ing effect on thermal performance of LiCoO2 lithium-ion cells: An experimental study,"
Journal of Energy Storage, vol. 44, pp. 103394, 2021.
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Chapter 1

Literature review

This chapter introduces some basic definitions to understand how LIBs work. Moreover,
a discussion about thermal management systems for batteries, thermal models and abuse
conditions is also covered. A description about particle filtering to estimate a state of a
system is presented as well.

1.1 Working principle and types of lithium-ion batteries
Nowadays, the industry of electric vehicles (EVs) requires an increasing production of LIBs.
Figure 1.1 shows the most common types of LiBs configurations that have been used in EV
applications as well as for other general purposes.

of the main purposes of this Review is to draw a realistic 
and critical picture of the extent to which the energy 
density in commercial cells can be improved through 
the use of post-LIBs compared with existing LIBs. This 
analysis is important because the energy-density evalu-
ations presented in many previous literature sources are 
based on gravimetric capacities of active materials that 
exclude other dead-volume and dead-weight compo-
nents, and therefore overestimate the energy densities 
of post-LIBs9. Rather than detail all advancements for 
each class of post-LIB, we focus on crucial technological 
issues that may have a strong impact on the practical 
energy densities of these systems.

Commercial cell configurations
Before addressing each of the various post-LIBs, we first 
discuss the different structures of commercial cells. In 
large-scale applications (for example, in electric vehicles), 
a certain number of cells are packed into a module. The 
design of the modules depends largely on the size and 
shape of the products, as well as their interconnecting  
circuits, safety and temperature control aspects. We 
restrict the scope of this Review to the material properties 
and behaviour at the single-cell level.

Current commercial cells adopt three cell types: 
cylindrical, prismatic and pouch (FIG. 1). Cylindrical cells 
in most products (including those used for Tesla Motors’ 
vehicles) follow a standard model in terms of size — 
namely, the 18650 cell. Typical 18650 cells in commer-
cial LIB products hold volumetric energy densities of 
600–650 Wh l−1, which are ~20% higher than those of 
their prismatic and pouch counterparts10,11 because a 
stacked cell assembly in a cylindrical cell is wound with 
a higher tension. The energy density of battery systems 
can be compared on a gravimetric or volumetric basis. 
It seems that for many practical systems, the volumetric 
aspect is more important, because most battery packs 
are designed according to the available volume. Despite 
the higher energy densities of cylindrical cells, prismatic 
and pouch cells are adopted for a wide range of applica-
tions owing to their smaller dead volumes on the module 
level and higher degrees of design freedom; in contrast 
to cylindrical cells, the size of prismatic and pouch cells 
is easily customized for the final product. Hence, we took 

the pouch cell as a common platform to examine the 
volumetric energy densities of selected battery systems 
and used the specific volumetric energy densities as the 
basis for comparison.

As depicted in FIG. 1c, fixed dimensions of 300 mm 
(length) × 100 mm (width) × 10 mm (thickness) are 
used by benchmarking a product of one battery man-
ufacturer (SK Innovation). Inside this prototype cell, 
n anode–separator–cathode stacks are incorporated 
to occupy the given pouch thickness, with both sides 
of each current collector, except the outermost stacks, 
coated with electrode films. In this commercial pouch 
setting, a conventional LiCoO2–graphite cell delivers 
491 Wh l−1 (Supplementary information S1 (table)), 
which is in the range of many current commercial prod-
ucts. We evaluated other post-LIBs under an identical 
cell configuration.

Near-term technologies
The active materials in this category of post-LIBs have 
been developed to a level that enables their partial use in 
the electrodes of current commercial products. Research 
on these active materials is ongoing to increase their con-
tent in the electrodes of the corresponding post-LIB cells.

Silicon anodes. Natural and artificial graphite have long 
been the main anode-active materials in LIBs12,13 and 
serve as a universal reference in evaluating new mate-
rials. Among many higher-specific-capacity alternatives 
to graphite that are under investigation, Si is one of the 
most promising anode materials because of its superior 
theoretical capacity (>4,000 mAh g−1) and attractive oper-
ating voltage (~0.3 V versus Li/Li+)14–17. Since the early 
work conducted at Argonne National Laboratory18 and 
General Motors19,20 in the 1970s, considerable research 
efforts have focused on overcoming the key failure 
modes in the cyclability that originate from the huge 
volume change of Si upon lithiation–delithiation (FIG. 2a). 
Progress in this area has been made using smart electrode 
structures21–26 and binder designs27–37, whereby the issues 
of pulverization of the active material and peeling-off of 
the electrode active mass can be simultaneously resolved. 
Another critical problem of Si electrodes is the forma-
tion of unstable passivation layers. In practice, when the 
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Figure 1.1: Common configurations of lithium-ion batteries: (a) cylindrical, (b) prismatic,
and (c) pouch [10].

The main components of LIBs are: anode (negative electrode), cathode (positive elec-
trode), separator, electrolyte and collector plates as shown in Figure 1.2a. A solid electrolyte
interface (SEI) layer is formed on the anode surface usually during the first charge cycles as
shown Figure 1.2b. The SEI layer is crucial for the lifetime of the battery because it prevents
electrolyte decomposition [11]. During the discharge process (when a load is connected to the
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battery terminals), lithium ions inside the active material of negative electrode travel to the
positive electrode; ions are diffused through the SEI layer passing the porous separator and
moving through the electrolyte. At the same time, an equal quantity of electrons flows to
the anode current collector. Thereby, a redox reaction occurs (oxidization at the anode and
reduction at the cathode). During the charging process, an opposite movement of lithium
ions and electrons occurs, and the redox reaction is inverted as well [12]. Here is an example
of reactions during the discharging process of an LCO cell [13]:

Cathode : Li1−xCoO2 + xLi+ + xe−
discharge−−−−−→ LiCoO2 (1.1a)

Anode : LixC6
discharge−−−−−→ xLi+ + xe− + C6 (1.1b)

Full reaction in the cell : LiC6 + CoO2
discharge−−−−−→ C6 + LiCoO2; E = 3.7V at 25 °C (1.1c)

Separator

Electrolyte
SEI layer

(a)

Review Chem. Mater., Vol. 22, No. 3, 2010 593

initial charge of the carbon anode is associated with the
formation of a thin, amorphous SEI layer on the
carbon that stabilizes reversible Li insertion/extraction
on subsequent charge/discharge cycles, see Figure 6, with
a reversible capacity of 370 mA h/g. Disordered carbon
rather than graphitic carbon provides a better capacity.63

With a passivated carbon anode and LiCoO2 as the
cathode, members of the Sony corporation launched the
hand-held wireless revolution with their introduction of
the wireless telephone.64

The next step was to recognize that framework struc-
tures offer strong 3D bonding as well as interstitial space
for the insertion of Liþ ions. For example, the A[B2]X4

spinels contain B cations in octahedral sites andA cations
in tetrahedral sites of a close-packed-cubic X-atom array.
The B cations are ordered to give a 3D-bonded [B2]X4

framework in which the interstitial space is intercon-
nected by edge-sharing octahedral sites that share faces
with the tetrahedral A sites; see Figure 7. Murphy and
colleagues 65 removed Cu from Cu[Ti2]S4 and then in-
serted Li into the [Ti2]S4 spinel framework. In this sulfide,
Liþ ions initially enter the octahedral sites of the inter-
stitial space rather than the tetrahedral sites, so the
voltage versus x profile of Lix[Ti2]S4, 0 e x e 1, was
essentially identical to that of the layered LixTiS2.

57

Independent work at Oxford66 showed that Li can be
inserted into the oxospinels; but in oxides the Li species
occupy the tetrahedral sites in Li1-x[B2]O4. On insertion
of Li into Li[B2]O4, Coulomb interactions between the
Liþ ions displace all the Liþ ions to the octahedral sites. In
the spinel Li[Mn2]O4, the high-spinMn3þ ions are Jahn-
Teller ions, and cooperative orbital ordering for a ratio
Mn3þ/Mn4þ > 0.5 distorts the cubic structure to tetra-
gonal to give a coexistence of two phases rather than a
solid solution and therefore a flat Voc ≈ 3.0 V for Li1þx-
[Mn2]O4. Subsequently, Thackeray et al.

67 showed that on
removal of the Li from the tetrahedral sites of Li1-x-
[Mn

2
]O4, the Voc versus x profile was at 4.0 V versus Liþ/

Li0 for the sameMn4þ/Mn3þ redox couple. These observa-
tions, summarized in Figure 3, showed that shifting the Liþ

ions from octahedral to tetrahedral sites produces a 1 eV
step in the Mn4þ/Mn3þ redox couple as a result of the
inductive effect of the Liþ ions. However, it also shows

that use of the oxospinels limits the operative capacity
to one Li per two B-site cations as in layered LiCoO2.
Although Mn is cheaper and environmentally more

Figure 5. Voltageversus capacityof several electrodematerials relative to
the window of the electrolyte 1 M LiPF6 in EC/DEC (1:1).

Figure 6. (a) Voltage curves of graphite tested in 1MLiClO4 in PC and 1
MLiAsF6 inPC:EC (1:1) electrolytes. The electrolyte is reducedatV≈ 0.7
V in 1MLiClO4 inPC.AnSEI layer is formed in theEC-based electrolyte
between 0.8 and0.4VversusLiþ/Li0, whichallows further intercalationof
Liþ ions after an initial capacity loss. Adapted from refs 62 and 8. (b)
Schematic presentation of the formation of the SEI layer by decomposi-
tion of EC-based electrolytes. Adapted from ref 9.

Figure 7. Two quadrants of the cubic spinel A[B2]X4 showing
the occupied tetrahedral sites (8a), occupied octahedral sites (16d),
and unoccupied octahedral sites (16c). The Li species of Li1-x[B2]O4

occupy 8a tetrahedral sites, and those of Li1þx[B2]O4 occupy only
unoccupied octahedral sites (16c). The Li species of Lix[Ti2]S4 occupy
only unoccupied octahedral sites (16c) for all x of 0 e x e 2. Adapted
from ref 77.

Graphite SEI Electrolyte

(b)

Figure 1.2: Working principle of a lithium-ion battery: (a) Scheme of discharge process.
Adapted from [14]. (b) Solid electrolyte interface (SEI) layer formation process [15].

The LIB electrodes consist of active material, a conductive filler, a polymer binder, and
electrolyte [16]. The anode active material is made of graphite or carbon materials such as
LixC6. The cathode active material describes the chemistry of a battery and it is typically
made of layered oxides, e.g., lithium cobalt oxide (LCO - LiCoO2), lithium manganese ox-
ide (LMO - LiMn2O4), lithium nickel cobalt aluminum oxide (NCA - LiNi0.8Co0.15Al0.05O2),
lithium nickl manganese cobalt oxide (NMC - LiNixMnyCo1−x−yO2), lithium iron phosphate
(LFP - LiFePO4), lithium titanium oxide (LTO - Li4T5O12), among others. Some characteris-
tics of Li-ion cells according to the cathode material are shown in Table 1.1. The electrolyte is
a lithium salt (e.g., lithium hexafluorophosphate, LiPF6) in an organic solvent (e.g., ethylene
carbonate, dimethyl carbonate, and propylene carbonate) [1, 17]. Regarding to the separa-
tor, it is commonly made of a porous membrane of polyethylene (PE) or polypropylene (PP).
The collector plates are usually made from copper and aluminum, for anode and cathode,
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Table 1.1: Characteristics of different types of cathodes [1, 19].

Cathode
material

Specific
capacity
(Ah/kg)

Characteristics
Thermal
runaway

temperature (◦C)

LCO 155
High energy density. Good cycle life.
Thermal stability issue.
Used in portable electronics.

150

LMO 100-120 Great thermal stability. Acceptable cycle life.
Used in power tools and EVs. 250

NCA 180
Excellent energy and cycle life.
Sensitive to moisture.
Used in selected electronics and EVs.

210

NMC 160 Good energy, thermal stability, and cycle life.
Patent issues. EVs and industrial uses. 210

LFP 160 Good thermal stability and cycle life. Minor
energy density. High endurance applications. 270

respectively. LMO and LFP batteries have had more opportunities in EVs applications in
the last years [18].

1.2 Battery thermal management system
A battery system (such as an EV battery) consists of a set of battery packs, while a battery
pack is a group of modules, modules are formed by single cells. The target of a battery thermal
management (BTM) system is to guarantee that cells operate at an adequate temperature
with small fluctuations of temperature and voltage. Besides, it should have compactness and
a suitable ventilation system [20, 21]. According to the instructions of battery manufacturers,
the reliable operating temperatures required by a majority of current automotive LIBs are
given in the following range: charging from 0 °C to 45 °C, and discharging from −20 °C to
55 °C [22]. Nevertheless, Zhao et al. [23] suggest that an optimum temperature range of
operation for LIBs is 25-40 °C. It is convenient that the temperature difference between
modules might be less than 5 °C [24].

There exist some mechanisms used for battery cooling, and the main ones are listed as
follows:

• Air cooling. It is the more straightforward and low-priced method; it is used for heat-
ing/ventilation as well. The main issue is the low thermal conductivity of the air. For
instance, if the cell temperature is above 66 °C, it would be decreased no more than
14 °C by using air forced convection [21] and then, the battery would operate in the
limit of the suggested temperature range.

• Liquid cooling. Because of the heat capacity of liquids, it has a better performance than
air cooling, especially in abuse conditions. This system has some disadvantages such
as more weight and the risk of leakage [25]. Strategies for liquid cooling may include
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direct or indirect systems. Indirect mechanisms of cooling may include tube cooling,
micro channels, jacket cooling, and heat pipe [4].

• Phase change material (PCM) cooling. Many works have been developed in regards to
this passive method which was firstly proposed by Mills and Al-Hallaj [26] in 2005 by
using paraffin wax. At discharging, PCM absorbs heat, while during standby PCM may
reject heat from the batteries. Nevertheless, PCM can melts under hot environments
or due to progressive use of the cell [4].

Battery module configurations based on air and liquid cooling are discussed in [4]. Char-
acteristics of many thermal management methods, especially the thermal behavior of PCMs
are compared and discussed in [21]. Design principles of existing and emerging thermal man-
agement systems are reported in [27]. Moreover, Mondal et al. [28] studied vortex generation
for active BTM. Hunt et al. [29] experimented with pouch cells and proposed tab cooling
rather than surface cooling in order to increase the lifespan of a pack.

1.2.1 ANSYS Fluent

ANSYS Fluent is a computational package widely used to solve incompressible, compress-
ible, laminar and turbulent fluid flow problems. Integral equations for the conservation of
mass, momentum, energy an other scalars are numerically computed based on finite volume
discretization. Steady-state or transient studies can be implemented. Furthermore, dis-
tinct heat transfer modes can be computed, including natural, forced, and mixed convection.
Two numerical solvers are available in Fluent: pressure-based and density-based approach.
Generally, the pressure-based method is used for low-speed incompressible flows, while the
density-based approach is mainly implemented for high-speed compressible flows [30].

1.3 Battery modeling
This section exposes the thermal models solved in the present study.

1.3.1 3D-CFD model

The energy equation employed by CFD solver to model the battery as a solid is governed
by [30]:

∂

∂t
(ρhe) +∇ ·

(
V⃗ ρhe

)
= ∇ · (k∇T ) + Sh, (1.2)

where ρ is the density, he =
∫
cpdT is the sensible enthalpy, cp is the specific heat, k is

the thermal conductivity, T is the temperature, Sh is the volumetric source term, and the
velocity V⃗ is obtained from the motion of the fluid. In the present study, instead of solving
flow equations around the battery, an experimental heat transfer coefficient was utilized.
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1.3.2 Thermal lumped model

Energy balance for a single cell also can be written as:

Cp
∂T

∂t
= Qconv +Qrad +Qgen, (1.3)

where Cp is heat capacity, Qgen is the heat generation (source term), and heat exchange rate
is transferred by convection Qconv and radiation Qrad.

This work employs a thermal lumped model proposed by Forgez et al. [31], which simplifies
Eq. 1.3 into Eq. 1.4:

dTs

dt
=

Tamb − Ts

Cp (Rin +Rout)
+

QgenRout

Cp (Rin +Rout)
, (1.4)

where Ts, and Tamb are the surface temperature of the battery, and ambient temperature,
respectively. The heat capacity, conduction resistance in the inner of the cell Rin, and external
resistance Rout between the surface of the cell and surrounding fluid; can be determined via
parameter identification such as Refs. [32, 33]. An equivalent thermal circuit is illustrated in
Figure 1.3, where Qgen is represented as a source of current, and Cp allows to store energy as
a capacitor. Internal cell temperature Tin could be compute as well.

Qgen Cp
Rin Rout

Tamb

TsTin

Figure 1.3: Simplified lumped model. Adapted from [31].

1.3.3 Heat transfer

The heat transfer rate by convection, and radiation are defined as:

Qconv = −Asurf,chconv (Ts − Tamb) (1.5)
Qrad = −Asurf,cεσ

(
T 4
s − T 4

sur

)
, (1.6)

where Asurf,c is the surface area of the cell, hconv is the convection heat transfer coefficient,
ε is the emissivity of the cell surface, σ = 5.67 · 10−8 Wm−2K−4 is the Steffan-Boltzmann
constant, and Tsur is the surrounding temperature for radiative heat transfer.

Considering that Tamb = Tsur, total heat transfer rate Qht = Qconv+Qrad can be expressed
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in terms of a combined heat transfer coefficient hcomb as follows [34]:

Qht = hcombAsurf,c (Ts − Tamb) (1.7)
hcomb = hconv + hrad (1.8)

hrad = εσ(T 2
s + T 2

amb)(Ts + Tamb). (1.9)

Then, the following expression for Rout in Eq. 1.4 can be written:

Rout =
1

hcombAsurf,c

. (1.10)

Convection coefficient hconv is governed by:

hconv =
NuD · kf

d
, (1.11)

where kf is the thermal conductivity of the fluid, d is the battery diameter, and NuD is
Nusselt number computed through Eq. 1.12, formulated by Morgan for free convection from
a horizontal cylinder [34]:

NuD = CNu ·RanD, (1.12)
where CNu and n are constants according to the Rayleigh number RaD.

1.3.4 Heat generation

Bernardi et al. [35] developed the following expression to compute the heat generation inside
a battery:

Qgen = I (VOC − V )− I

(
T
dVOC

dT

)
= I2RT − I

(
T
dVOC

dT

)
, (1.13)

where the current I is positive for discharging and negative for charging. Both open circuit
potential (VOC) and the total internal resistance of the battery RT depend on the state-of-
charge (SOC) and temperature of the cell. The term I (VOC − V ) of Eq. 1.13 represents the
heating due to the Joule effect (irreversible heat generation). The second term is the entropy
change (reversible heat generation), attributed to electrochemical reactions [36]. Besides,
phase change effect, mixing effect, and simultaneous reactions are neglected in the Bernardi’s
formulation.

In the present approach, the battery state-of-charge (SOC) is estimated by ampere-hour
integration or Coulomb counting method [37]:

SOC = SOCt=0 −
1

CN

∫
I(t)dt, (1.14)

where SOCt=0 = 1 when the battery is fully charged, and CN is the nominal capacity of the
cell.

Regarding the total internal resistance of a cell, the most common method to determine
its value is the hybrid pulse power characterization (HPPC) test [38, 39]; nonetheless, elec-
trochemical impedance spectroscopy (EIS) can help to characterize the internal impedance
of the battery, and evaluate individually all components of total resistance [40].
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1.3.5 NTGK model

The NTGK model is based on dual potential MSMD framework and computes the thermal
and electric field of the battery as follows [30]:

∂ρCpT

∂t
−∇ · (kc∇T ) = σpos |∇ϕpos|2 + σneg |∇ϕneg|2 + qech (1.15)

∇ · (σpos∇ϕpos) = −j

∇ · (σneg∇ϕneg) = j,
(1.16)

where σ is the electric conductivity, ϕ is the electric potential, and subscripts pos and neg
refer to positive and negative electrode, respectively.

The volumetric current transfer rate j is formulated as [41]:

j =
CN

CrefV ol
Y [U − (ϕpos − ϕneg)] , (1.17)

where V ol is the volume of active zone, Cref is the capacity of the battery used to obtain the
parameters of the functions U and Y , which are determined by the Parameter Estimation
Tool in ANSYS Fluent software by using discharging experiments. Based on the Depth-of-
discharge (DoD), these functions are computed as follows [41]:

U =

(
5∑

n=0

an (DoD)n
)

− C2 (T − Tref )

Y =

(
5∑

n=0

bn (DoD)n
)
exp

[
−C1

(
1

T
− 1

Tref

)]
,

(1.18)

where C1 and C2 are constants for a specific battery, and Tref is the reference temperature
(in Kelvin units).

The heat due to electrochemical reactions qech is written as [30]:

qech = j

[
U − (ϕpos − ϕneg)− T

dU

dT

]
, (1.19)

where the first term represents the overpotential heat, and the second term is the entropic
component.

1.4 Thermal runaway
When a Li-ion battery undergoes abuse conditions, a chain of exothermic reactions happens
swiftly ending up with the cell damage. This phenomenon is named Thermal runaway (TR).
Abuse conditions can be provoked by many factors such as mechanical abuse (penetration,
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crush, immersion, drop, rollover, etc.), electrochemical abuse (overdischarge, overcharge,
short-circuit, etc.), and thermal abuse (thermal shock, fire, overheat, etc.) [42]. During
TR, it may occur explosions, emission of smoke, gasses and fire if heat is not properly
dissipated [3]. The temperature of TR onset varies depending upon the type of battery
chemistry (see Table 1.1). Nonetheless, this temperature is also affected by State-of-charge
(SOC), electrode materials of electrodes, separator and electrolyte [42]. Melcher et al. [43]
describe the beginning of TR through a parameter called thermal runaway time and proposed
102 K/s as a threshold.

A chain reaction scheme of TR for an NMC Li-ion battery with PE-based ceramic coated
separator is showed in Figure 1.4. After abuse conditions occur, temperature continuously
rises. The first damage is the SEI layer decomposition at 90-120 °C. Next, a reaction be-
tween intercalated lithium and the electrolyte occurs when the temperature is greater than
120 °C. Then, the PE-base separator melts followed by the cathode decomposition. Next, at
more elevated temperatures (> 200◦C), the electrolyte reaction decomposition occurs. When
the ceramic cover of the separator melts, it produces short circuits and finally, the battery
undergoes TR, and even combustion of the electrolyte may happen [44, 45]. TR onset may
take a few seconds or many hours depending on initial and boundary conditions such as
temperature of the cell, ambient temperature, heat transfer coefficient, fraction of lithium
and electrolyte in the battery, etc.

Figure 1.4: Thermal runaway chain reaction [44].

Many studies have been carried out in order to study TR. Most of them are based on a
modeling based on thermal abuse. For instance, Xu et al. [46] showed that TR propagation
in a battery pack could be prevented by employing a minichannel with water as a coolant.
Hoffman et al. [47] reported that reducing pressure (e.g., by using a vacuum pump) lead to
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prevent TR. Moreover, phase change materials (PCM) have been used to absorb the heat
generated by batteries (without transfer the heat away) [23, 48]. Coman et al. [49] used a ther-
mal lumped model combined with FEM to analyze TR induced by an internal short circuit.
Venting effects during TR were studied in another work with a lumped model approach [50].
Qi et al. [51] modeled a battery pack under overcharge by coupling an electrochemical model
with a thermal abuse model. Lopez at. al [52] experimentally studied the propagation of TR
in a battery module. In many cases, the test procedure has been performed by employing
high-quality equipment such as ARC [53, 54, 55], DSC [56] or a heatable reactor [57].

Table 1.2 presents a summary of the tests carried out in order to simulate abuse conditions
for LIBs. This study is focused on thermal abuse model frequently experimented by oven
test.

Table 1.2: Abuse test methods [58].

Type Abuse Test Description Level∗
Mechanical Mechanical shock Device under test is exposed to shock forces, CMPV

through a sudden acceleration.
Drop When a battery accidentally drops. CP
Penetration Penetration of a sharp nail induces a short CMP

circuit.
Immersion Simulates when a battery is submerged or MP

partially flooded.
Crush/crash Battery is undergone to compression or until CMPV

a brusque voltage drop is evidenced.
Rollover Battery pack or module rotates 360◦, MP

simulating a overturn.
Vibration It evaluates the impact of long-term CMP

vibration profiles.
Electrical External short circuit A low resistance element is connected CMP

through the cell terminals.
Internal short circuit It includes: evaluation of shutdown C

separator at elevated temperatures, forced
internal shortcircuit caused by insertion of a
nickel particle, a deformation of outer electrode
layers caused by a blunt rod.

Overcharge/overdischarge To charge or discharge the battery beyond of CMPV
its nominal values setting up a predefined SOC.

Environmental Thermal stability The temperature of the cell is continuously CMP
increased until elevated values, even thermal
runaway could occur.

Oven test Battery is placed in an oven at elevated C
temperature, e.g. 150◦C [45].

Thermal shock and cycling Cells are exposed to two limits of temperature CMP
(heat and cold) during a certain period of time .

Overheat It evaluates the protections or control failures CMPV
which produce internal overheating of the battery.

Extreme cold temperature Performance of the cell at low temperatures. CMP
Fire The battery is exposed to fire. CMPV

Chemical Emissions Hazardous substances have to be at a certain CMP
limits trying to avoid toxic gases release.

Flammability To determine the flammability of battery CMP
components

Level* is denoted as C: Cell, M: Module, P: Pack, and V: Vehicle.

Theoretical analyses of TR are scarce. Wang et al. [59] presented an initial study based
on a catastrophe analysis and showed that TR during the discharge process corresponds to a
swallowtail catastrophe. Shah et al. [60] proposed a non-dimensional parameter named Ther-
mal Runaway Number, that evaluate whether TR will occur or not based on a mathematical
model of the heat dissipation. Feng and Zhang [61] proposed a symmetry breaking study
for parallel-connected batteries including a stability criterion based on an electrical circuit
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model. Smyshlyaev et al. [62] characterized the thermal dynamics in a battery pack with
cooling pipes via 2D PDEs as a simplification of the CFD model. Parhizi et al. [63] presented
an analytical model based on heat transfer conduction to predict the core temperature of a
LIB during TR.

The stability analysis of a system could be represented from a geometric point of view by
using a phase portrait. Figure 1.5 depicts an example of a phase portrait for a one-dimensional
or first order system given by ẋ = sinx. Points at ẋ = 0 are known as fixed points. Solid
black dots are stable fixed points while open circles are unstable fixed points [64].

Figure 1.5: Phase portrait of the function ẋ = sinx [64].

1.5 Electrochemical impedance spectroscopy (EIS)
EIS is a non-destructive method based on frequency analysis that characterizes the internal
impedance of battery cells at a given SOC value. A small amplitude signal, either voltage
(potentiostatic) or current (galvanostatic) is applied to the battery during the test trying to
minimize disturbances on the actual battery SOC. Then, the collected data allow to identify
a model for the battery, capturing the electrical dynamic response in terms of an equivalent
circuit model (ECM) such as a lumped-parameter Thévenin Equivalent Circuit [65].

Results of EIS test are normally presented through a Nyquist plot as shown in Figure 1.6.
Pure ohmic resistance Ro is the value at the interception of the curve and the horizontal axis.
The real part of the impedance at local minimum point A corresponds to the total resistance
quantified from methods such as HPPC test [40, 66]. Hence, the total internal resistance of
the battery is considered as the sum of ohmic resistance and charge transfer resistance RCT .
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Figure 1.6: Nyquist plot scheme for an electrochemical impedance spectroscopy (EIS) exper-
iment. Adapted from Reference [67].

1.5.1 Equivalent circuit models

An ECM describes the input/output behavior of a battery. Frequently, either an ideal voltage
source or a capacitor denotes the open circuit voltage (OCV), while the other elements of the
circuit include the ohmic resistance of the battery R0 and dynamic effects [68]. The dynamical
performance of the battery depends on internal parameters such as SOC, State-of-health
(SOH), alternating and direct current resistance, design parameters, and external factors
(temperature, direct current, short-term history, and long-term history) [69]. Figure 1.7
displays distinct ECMs where VL is the terminal voltage of the battery and IL is the load
current. These models are computed by applying basic electric calculations. Each parameter
of the circuit is generally estimated via regression analysis. An adequate ECM can even
describe the battery electrochemical principles [70].
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Figure 1.7: Equivalent circuit models. (a) Rint model, (b) Thevenin model, (c) RC model,
(d) PNGV model. Adapted from [71, 68]

.

1.6 State estimation
The state estimation is widely applied in many fields of engineering. State-space models can
be classified into linear models and nonlinear models. Mathematical tools are more accessible
for linear systems. Nevertheless, states estimation for nonlinear models can be accomplished
by using estimators based on Kalman filter and Particle filter (PF). These filters are capable
of online monitoring for state estimation. In [37], A dual Kalman filter, a combination of a
Kalman filter and an extended Kalman filter, was implemented to estimate the temperature
inside the battery and convection coefficient. An adaptive temperature estimation method
based on dual extended Kalman filtering and was developed in [72] considering variable am-
bient temperature. In [73], a thermal model coupled with electrical impedance measurement
was presented, the battery core and surface temperature were indirectly estimated by using
an extended Kalman filter based on a polynomial approximation of the temperature. The
aforementioned works were developed for a single cell. A Foster network thermal model for a
battery module considerably reduces the simulation time comparing to conventional CFD [6],
but this model can not be implemented for online monitoring. In [74], the core temperature
for a battery module was estimated by a Kalman Filter approach using surface temperature
measurements. Tian et al. [7] reconstructed the temperature field for a battery module using
an estimator based on Kalman filter. Another powerful tool to face state estimation is PF.
This approach is widely used to estimate SOC and SOH of cells, but in the present work it
is employed to estimate the surface cell temperature for a battery module.
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PF or sequential Monte Carlo approach is a technique for implementing a method to es-
timate hidden process states (i.e., when a state can not be directly measured by sensors) in
real-time by combining the power of Monte Carlo methods with the Bayesian inference [75].
In PF approach, difference equations are utilized to model a non-linear system, and measure-
ments are given at discrete times. PF is based on two steps: prediction and update. At the
prediction stage, the probability density function (PDF) is recursively predicted from a mea-
surement time to the next one. During the update, the latest measurement is used to adjust
the prediction PDF. This is executed through the Bayes theorem, which is the technique to
update knowledge about the target state considering extra information from new data [76].

1.6.1 Bayesian estimation

In order to define the Bayesian estimation problem, a discrete-time model (process model)
is considered by using Eq. 1.20 that describes the evolution of the state vector x ∈ Rnx :

xk = fk (xk−1, ωk−1) , (1.20)

where k ∈ N is the time instant, and f is generally a nonlinear function that depends on
both the state vector x and the noise process vector ω ∈ Rnω iid (independent and identically
distributed).

Moreover, it is also considered a measurement vector z ∈ Rnz that is linked to the state
vector x and a noise measurement vector ν ∈ Rnν iid, through a possibly nonlinear function
h according to Eq. 1.21:

zk = hk (xk, νk) , (1.21)

The goal of the state estimation problem is to know xk based on both the state evolution
model (Eq. 1.20) and the measurements z1:k = {zi, i = 1, ..., k} given by the measuring model
(or observation model) defined through Ec. 1.21. Thereby, the PDF p (xk | z1:k) is required.
It is assumed that the initial PDF of the state vector (a priori PDF) p (x0 | z0) = p (x0) is
available. Then, the PDF p (xk | z1:k) can be recursively obtained taken into account two
stages: prediction and update.

Assuming that the PDF p (xk−1 | z1:k−1) at the time k−1 is available, the prediction stage
uses the process model to obtain the a priori PDF at the time k by using the Chapman-
Kolmogorov equation [76]:

p (xk | z1:k−1) =

∫
p (xk | x1:k−1) p (xk−1 | z1:k−1) dxk−1 (1.22)

For the update stage, the measurement zk available at the time k is employed to update
the PDF a priori using the Bayes’ theorem:

p (xk | z1:k) =
p (zk | xk) p (xk | z1:k−1)

p (zk | z1:k−1)
, (1.23)
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where the normalizing constant (Eq. 1.24) depends on the likelihood function p (zk | xk)
defined by Eq. 1.21.

p (zk | z1:k−1) =

∫
p (zk | xk) p (xk | z1:k−1) dxk (1.24)

At the update stage, the measurement zk is employed to modify the a priori PDF to
obtain the a posteriori PDF of the current state vector.

1.6.2 Particle filter

The particle filter (PF) approximates the optimal Bayesian solution when it is very hard to
find an analytical solution. The PF is a recursive Bayesian filter implemented by Monte Carlo
simulations. The main idea is to represent the required a posteriori PDF through the use
of random samples with their respective weights and to calculate estimates based on these
samples and weights [76].

PF is based in the sequential importance sampling (SIS) algorithm. To build the PF al-
gorithm, first, the particles

{
xi
k, i = 1, ..., Ns

}
with the associated weights

{
wi

k, i = 1, ..., Ns

}

are considered, where Ns is the number of particles and xk is the state vector at time k.
Then, the weights are normalized by

∑Ns

i=1 w
i
k = 1. The weights are chosen according to

the principle of importance sampling. Therefore, the a posteriori PDF at the time k can be
approximated through Eq. 1.25, where δ(·) is the delta Dirac function [76]:

p (xk | z1:k) ≈
Ns∑

i=1

wi
kδ
(
xk − xi

k

)
, (1.25)

The update for the weights is written as:

wi
k = wi

k−1

p
(
zk | xi

k

)
p
(
xi
k | xi

k−1

)

q
(
xi
k | xi

0:k−1, z1:k
) , (1.26)

where p
(
zk | xi

k

)
is the likelihood and q(·) is named an importance density that generates the

samples Ns. It can be observed that as Ns → ∞, the approximation given by Eq. 1.25 con-
verges to the true posterior PDF p (xk | z1:k). A graphical illustration about PF is depicted
in Figure 1.8.

1.6.3 Artificial evolution of parameters

Models generally consider time invariant and unknown parameters. Nevertheless, when these
parameters are time variant, it can harm the process of PF estimation. To address this
problem, the concept of artificial evolution can be applied [77]. This methodology is based
on extending the dimension of the state vector, implementing the parameter as an additional
state which is modeled like a random walk with small variance [78]. Then, the extended
model process utilized by the PF is written as:

xk = fk (xk−1, θk−1, ωk−1) , (1.27a)
θk = θk−1 + ηk−1. (1.27b)

18



Figure 1.8: Posterior estimation PDF of a state using particle filter. Adapted from [79].
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Chapter 2

Methodology

This chapter presents the methodology to study the thermal behavior of a single cell and a
battery pack. The approaches to study the state estimation based on particle filtering, and
thermal runaway are also presented.

2.1 Methodology for thermal modeling of a single cell
Some geometry considerations are necessary to take into account depending on the model
applied. The lumped model solves the cell surface temperature which is considered uniformly
distributed. The battery geometry employed to solve the 3D-CFD model is a solid cylinder
65 mm length and 26 mm diameter. The cell geometry for the NTGK model has three com-
ponents: anode (negative tab), cathode (positive tab), and jelly-roll, as shown in Figure 2.1a.
A detail of the jelly-roll is provided in Figure 2.3b. Thermal resistance through the shell is
considered negligible, then it is not modeled. Also, the thermal effect due to battery holder
is not studied.

Cathode

  Anode

Active zone (jelly-roll) 

(a) (b)

Figure 2.1: Battery details for NTGK model: (a) Cell geometry. (b) Jelly-roll of the LCO
26650 cell.

Figure 2.2 depicts the general procedure to develop the present study. The first step
is to obtain the heat generation rate of the battery by estimating the internal resistance
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RT using EIS, and the entropic coefficient applying the potentiometric method. Next stage
is to estimate heat capacity and internal thermal resistance of the cell Rin via parameter
identification. The following step is to perform battery discharging tests while ambient
temperature, cell surface temperature, and heat flux from the LIB are recorded. Discharging
tests allow to obtain U and Y functions using parameter estimation tool in Fluent. Finally,
the models are numerically solved using MATLAB for lumped model, and ANSYS Fluent
19.2 based on finite volume method, for both 3D-CFD and NTGK models.

1. Obtaining heat generation rate

Internal resistance by EIS

Entropy term using 
potentiometric method

2. Estimating heat capacity and 
internal thermal resistance

Parameter identification

3. Discharging tests
Record temperature and 

heat flux

4. Obtaining  the parameters U 
and Y, and heat transfer
coefficients 

5. Solving the models
numerically

- Lumped 
- 3D-CFD
- NTGK

Figure 2.2: Methodology scheme.

2.1.1 Experimental set-up

An ICR 26650 battery (see specifications in Table 2.1) was fully charged following the
constant-current constant-voltage (CC-CV) protocol using a battery charger (iCharger 208B).
The first stage (constant-current) was at 2 A, then the iCharger switches to the constant
voltage phase. Subsequently, the battery was discharged using a BK Precision 8500 pro-
grammable DC load (Figure 2.3a). Current rates applied were 2 A (0.5C), 4 A (1C), 6 A
(1.5C), and also a variable current profile. This last profile was obtained by ADVISOR soft-
ware selecting a highway HWFET-driving cycle as velocity input for an electric vehicle. The
simulated current was scaled at a maximum of 5.5 A, as shown in Figure 2.4, and this cycle
was repeatedly applied to the cell until the energy extracted was 4 Ah. Regeneration current
was not considered.
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Table 2.1: Battery specifications.

Property Value

Diameter 26 mm
Height 65 mm
Mass (measured) 0.088 kg
Cathode material LiCoO2

Anode material Graphite
Nominal capacity 4 Ah
Tested capacity 4.3 Ah
Nominal voltage 3.7 V
Cut off voltage 2.75 V
Charge limit voltage 4.2 V
Maximum charge current 1 C
Maximum discharge current 2 C
Emissivity [50] 0.8

   Heat Flux DAQ 

Arduino DAQ 
for temperature
measurement

Cell 26650

FluxTeq DAQ 
for heat flux 
measurement

DC Load

(a) (b)

(c)

Battery impedance
         tester

Source meter

DC Electronic 
Load

(Battery tester)

(d)

Figure 2.3: Experimental set-up. (a) Set-up for a discharging test. (b) Detail of the heat
flux sensor. (c) Thermal chamber. (d) Equipment for EIS test.
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Figure 2.4: Scaled current profile of a HWFET-driving cycle.

All discharging tests were repeated five times to ensure repeatability measurements. Am-
bient temperature and cell temperature were recorded through a negative temperature co-
efficient (NTC) thermistor (ZX-Thermometer) connected to an Arduino processor board.
This sensor operates between −20 °C and 85 °C with an uncertainty of ± 0.5 °C. It requires
a direct-current supply voltage between +1.8 V and +5.0 V. A code was developed using
MATLAB software to convert voltage input (from Arduino board) into temperature. Since
ambient temperature fluctuations were less than 1 °C during all tests, this value was assumed
to be constant. Heat flux from the cell was measured by a PHFS-01 FluxTeq heat flux sensor
(Figure 2.3b) connected to a FluxTeq DAQ (see Figure 2.3a). Measurements of heat flux are
plotted in Figure 2.5.

Figure 2.5: Measured heat flux at different discharging rates.

2.1.2 Heat generation estimation

Heat generation in the cell was computed from Eq. 1.13 that includes internal resistance and
entropy change.

Experiment to characterize the battery internal resistance

Electrochemical impedance spectroscopy (EIS) was carried out to estimate the internal re-
sistance of the battery. First, the fully charged battery was placed in a thermal chamber
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EZT-570i (see Figure 2.3c) at 15 °C. After 2 hours of rest, galvanostatic EIS was conducted
by using an impedance tester equipment PGSTAT302N (see Figure 2.3d). Details of the setup
are listed in Table 2.2. This process was repeated at 25 °C, 35 °C, and 45 °C. After perform-
ing the experiment at 45 °C, the battery was discharged at 90 % SOC and overnighted. The
whole process was repeated until the cell was completely discharged (0 % SOC), decreasing
the battery SOC in intervals of 10 % between each of the EIS tests.

Table 2.2: Parameters for the EIS experiment.

Parameter Description

First applied frequency 104 Hz
Last applied frequency 0.005 Hz
Number of frequencies 10 per decade
Frequency step type Points per decade
Amplitude 0.05 A
Wave type Sine

Figure 2.6 shows results of EIS experiments at 100% SOC represented by a Nyquist plot.
This plot depicts how the internal impedance of the LCO battery varies at different tem-
peratures and according to the frequencies applied (see Figure 1.6). Internal impedance at
100% SOC is the only value that it is possible to know for sure, the rest of values at another
SOC are estimations. It can be observed that as temperature increases, radius of semicircles
associated to real component of impedance (resistance) decreases, i.e., internal resistance of
cell decreases as well.

Figure 2.6: Nyquist plot for the LCO battery at 100% SOC.

The experimental characterization of the battery internal resistance at different temper-
atures based on EIS tests is depicted in Figure 2.7. It reveals that at a lower temperature,
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and near to 0 % of SOC, the cell resistance increases. At 35 °C and 45 °C, the resistance has
practically the same value.

15°C
25°C
35°C
45°C

Figure 2.7: Battery internal resistance.

Average battery resistance for each discharging rate test is detailed in Table 2.3. Each
value represents RT in Eq. 1.13, i.e., it allows to compute the irreversible heating. It is
evident that at lower discharge rates, the resistance increases. The reason is mainly due to
the fact that at lower discharge rates, the cell temperature decreases while the resistance
increases as shown in Figure 2.7.

Table 2.3: Average cell resistance.

Current Resistance (mΩ) Ambient temperature (°C)

0.5C 57.7 24
1C 55.3 24
1.5C 53.9 23
HWFET-cycle 56.8 25

Entropy coefficient experiment

Entropy change term is expressed as a relationship between Open circuit voltage and cell
temperature, and was obtained by applying the potentiometric method: the battery 100 %
charged was put into a thermal chamber at 15 °C. After it rested for two hours to reach ther-
mal equilibrium [36], and the voltage was measured by using a KEITHLEY 2460 sourcemeter.
In order to obtain the relationship dVOC/dT , the same process was performed progressively
at 25, 35, and 45 °C, respectively. Next, the cell was discharged at 90 % SOC and overnighted.
The whole test described before was repeated with intervals of 10 % of SOC until the charge
of the battery drops to 0 % of SOC [80].

Experimental values for the entropy term are presented in Figure 2.8. There does not
exist a significant variation of entropy change at the different temperatures. In the interval
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of 20 % to 80 %, the entropy change is positive with a maximum value near to 0.2 mV/K. A
similar entropy profile was reported by Zhang et al. [81].

15 °C 25 °C
25 °C 35 °C
35 °C 45 °C

Figure 2.8: Battery entropy change coefficient.

2.1.3 Heat capacity and internal thermal resistance

To estimate heat capacity and internal thermal resistance, a consecutive current pulse of 0.4
A, 2 A, 4 A, and 3 A, each one of them with a duration of 10 s, was continuously applied until
the battery was discharged. Ambient and battery temperatures, and heat flux were recorded
as depicted in Figure 2.9a, and Figure 2.9b, respectively. These measurements allow to
compute hcomb by least squares regression from Eq. 1.7, and then, Rout from Eq. 1.10. After
obtaining hcomb, it is possible to figure out an experimental hconv from Eq. 1.8.

Following a similar procedure proposed by Bryden et al. [32], the next stage was to estimate
Cp and Rin from Eq. 1.4 by fitting the initial section of the measured cell temperature (see
Figure 2.9a), where the temperature gradient is greater. This region was taken for the
first 2700 seconds. Fitted temperature for parameter estimation is shown in Figure 2.9c.
Parameters obtained are given in Table 2.4. Then, specific heat is obtained by cp = m−1Cp =
1197 Jkg−1K−1. The aforementioned authors reported values of Rin = 1.4 KW−1 and cp =
1169 Jkg−1K−1 for a 26650 LFP battery.

Table 2.4: Thermal parameters obtained.

Rout (KW−1) Rin (KW−1) Cp (JK
−1)

15.8 ± 2.7 1.8 ± 0.4 105.3 ± 3.8
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(a) (b)

(c)

Figure 2.9: Measurements and temperature fitting under applying a current pulse of 0.4 A,
2 A, 4 A, and 3 A: (a) Battery surface temperature and ambient temperature. (b) Battery
heat flux. (c) Fitted surface temperature of cell for parameter estimation.

2.1.4 Physical properties and solving

Properties of a 26650 LCO battery detailed in Table 2.5 were used to solve the lumped and
3D-CFD models. For NTGK approach, parameters and properties are given in Table 2.6 and
Table 2.7, respectively. Besides, for all three proposed models, there were utilized experi-
mental heat transfer coefficients based on heat flux and temperature measurements of the
cell surface. These coefficients are listed in Table 3.2 and were obtained following a similar
procedure described in the section 2.1.3. Furthermore, it was assumed that the external radi-
ation temperature is the same as the ambient temperature. The nominal capacity of the cell
is 4 Ah; however, the average tested capacity was 4.3 Ah, and this last value was employed
for thermal modeling. An experimental-based heat transfer coefficient (hconv) was applied
and radiation effects were considered so that the boundary condition on the cell surface is
expressed as:

−k
∂T

∂n

∣∣∣∣
surface

= hconv

(
T |surface − Tamb

)
+ εσ

(
T 4
∣∣
surface

− T 4
amb

)
, (2.1)

where n̂ is a unit normal vector.
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Table 2.5: Properties of materials for lumped and 3D-CFD models.

Property Value Lumped 3D-CFD

Density (kgm−3) 2550a ✓ ✓

Specific heat (Jkg−1K−1) 1197 b ✓ ✓

Thermal conductivity: radial,
tangential, axial (Wm−1K−1)

0.8, 27, 27 [82] ✗ ✓

Inner thermal resistance (KW−1) 1.8 b ✓ ✗

a Computed. b Parameter estimation.

Table 2.6: Parameters for NTGK model. Obtained in Fluent using discharging tests.

U
a0 a1 a2 a3 a4 a5

4.0682 -1.2669 -0.9072 3.7550 -2.3108 -0.1701

Y
b0 b1 b2 b3 b4 b5

16.5066 -27.0367 237.3297 -632.603 725.0825 -309.8760

Table 2.7: Properties of materials for MSMD model.

Property Active zone Positive tab Negative tab
(jelly-roll) (aluminium) (steel)

Density (kgm−3) 2226a 2719 8030
Specific heat (Jkg−1K−1) 1197b 871 502.48
Thermal conductivity:
radial, tangential, axial
(Wm−1K−1)

0.8, 27, 27 [82] 202.4 16.27

Electric conductivity
(Sm−1)

0 3.541·107 8.33·106

a Measured. b Parameter estimation.

Based on the current profile applied to simulate the 3D-CFD approach, there are two
considerations to couple the heat generation per unit volume to the energy equation. Firstly,
for constant current rates, a User Defined Function (UDF) was utilized. Secondly, for variable
currents (HWFET-cycle), a transient table was employed. In contrast, the NTGK model
automatically computes the heat generation rate.

Numerically, the lumped model was solved by Runge Kutta Fourth order method, and
the other two models were computed through a Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) scheme. For current rates of 2 A, 4 A, 6 A, and HWFET-cycle, the
simulation time was 8015 s, 3964 s, 2430 s, and 6500 s, respectively. Furthermore, 1 s time
step was utilized in all cases.

According to the description above, an example of boundary conditions set-up in Fluent
applied to the battery walls at 1.5C-rate is shown in Figure 2.10. In case of the NTGK
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model, boundary conditions of walls are also managed in the same way, but the Battery
Model in Fluent have to be enabled (Figure 2.11). Initial conditions are ambient and battery
temperature, which are assumed to be the same at the beginning of the discharge.

Figure 2.10: Boundary conditions set-up in Fluent for CFD-3D model at 1.5C-rate.

Figure 2.11: Screenshot of battery model in Fluent for NTGK approach at 1.5C-rate.
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2.1.5 Battery meshing

Meshing is the operation in which a continuous geometric space of an object is divided into
small elements or cells. A mesh independence study was carried out to solve the 3D-CFD
(Table 2.8), and NTGK model (Table 2.9), both modeled with a discharge current of 6 A.
In each case, mesh 2 was selected taking into account that maximum temperature and total
heat transfer rate do not vary when the number of mesh elements is increased. Moreover,
for the energy equation, the convergence criterion was satisfied once the residuals took a
value around 1 × 10−7 and 1 × 10−14 for the 3D-CFD and the NTGK model, respectively.
In this way, a mesh with 45604 elements was selected for 3D-CFD model, and a mesh with
38777 elements was chosen for NTGK model. Figure 2.12 shows a detail of batery meshing
in Fluent.

Table 2.8: Mesh independence test for 3D-CFD model.

Description Mesh 1 Mesh 2 Mesh 3

Number of elements 1104 45604 161124
Maximum temperature (◦C) 41.30 41.42 41.43
Total heat transfer rate (W) 1.51 1.52 1.52

Table 2.9: Mesh independence test for NTGK model.

Description Mesh 1 Mesh 2 Mesh 3

Number of elements 1812 38777 132892
Maximum temperature (◦C) 39.23 39.10 39.10
Total heat transfer rate (W) 1.31 1.31 1.31

(a) (b)

Figure 2.12: Battery meshing: (a) 3D-CFD model. (b) NTGK model.
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2.2 Methodology for thermal modeling of a battery pack
with air cooling

Natural and forced convection in the battery pack with fifteen cells was modeled numerically
and tested experimentally.

The experimental test was performed using an arrangement of fifteen LCO cylindrical cells
(type ICR 26650) represented in Figure 2.13 under natural and forced convection. Forced
convection was carried out using two direct current axial fans (Ebmp-Papst 4412FNH) at
two different airflow velocities (1.5 and 2.7 ms−1, respectively). These values of velocity yield
turbulent flow. Measurement points of air velocity are shown in Figure 2.13a. In order to
obtain a developed velocity profile, it is remarkable to take into consideration that the mean
velocity profile turns into fully developed about 25 to 40 diameters of the pipe from the
entrance [83]. In line with this criterion, A PVC tube (0.11 m diameter, and 3 m length)
conducted the air to the battery arrangement. Velocity was measured in six points into the
tube according to the recommendations given by ASHRAE standard (see Figure 2.15).

Temperature sensors (NTC thermistors) were placed on the surface of each battery, and at
inlet and outlet of the battery pack. Ambient room temperature was measured as well. An
Arduino interface was used to acquire temperature data. Cells have been connected in series.
The discharge process was performed at constant current: 0.25C, 0.5C and 1C-rate. High
discharging rates are not feasible due to the chemistry of cells. For example, the LCO cell
used in this study decreased its capacity from 4.3 Ah to around 3.6 Ah when a discharging
current of 8 A was applied.
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Figure 2.13: Scheme of the battery pack experiment: (a) Top view of the experimental layout.
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(a)

(b) (c)

Figure 2.14: Experimental set-up. (a) Wind tunnel. (b) Detail of the battery module and
testing equipment. (c) Fans.

Measurement and Instruments 37.19

from a disturbance (e.g., caused by a turn). However, for common
single-path rectangular duct fitting disturbances (60° and 90° tran-
sitions, 90° elbows), measurements can be made to uncertainties
within about ±3 to 4% for traverses even as close as 1 to 2 equiv-
alent diameters downstream of the disturbance using the log-T
traverse method. Furthermore, similar results can be obtained in
single-path rectangular ducts with these types disturbances using
either a pitot-static probe or a hot-wire anemometer (Hickman
et al. 2012).

Because field-measured airflows are rarely steady and uniform,
particularly near disturbances, accuracy can be improved by
increasing the number of measuring points. Straightening vanes
(ASHRAE Standard 51) located 1.5 duct diameters ahead of the tra-
verse plane improve measurement precision.

When velocities at a traverse plane fluctuate, the readings should
be averaged on a time-weighted basis. Two traverse readings in short
succession also help to average out velocity variations that occur
with time. If negative velocity pressure readings are encountered,
this is an indication that highly nonuniform flows are present. From
the characteristics of the pitot-static probe yaw variation shown in
Figure 7, it is not possible to draw meaningful and reliable conclu-
sions from the measurements, particularly downstream of tee fitting
disturbances, where boundary layer separation occurs (which causes
flow reversal) in the branch region downstream of the tee. Even if no
actual reversal occurs, the flow may also be highly nonaxial, and the
flow directional limitations of the pitot-static probe, as shown in Fig-
ure 7B, may still result in meaningless results. Also, it is important
to note that, although the pitot-static probe can produce a negative
and potentially meaningless output, it does indicate obvious flow
uniformity problems. Important Note: negative velocity pressures
measured by a pitot-static tube indicate an unacceptable traverse lo-
cation. To achieve meaningful volumetric flow rate measurements,

traverses must be performed where no negative velocity pressure
values occur. The presence of negative velocity pressures (even
when those values are considered to be zero-velocity values when
summing and averaging) results in a completely meaningless duct
flow calculation.

A hot-wire anemometer cannot indicate flow direction. Conse-
quently, it always indicates a positive velocity, even under reverse
flow. Hence, use of a thermal anemometer probe wherever flow
reversals occur, such as those encountered in the downstream
branch of tee fittings, can result in large errors. For traverse mea-
surements in the downstream branch of tees, regions of apparent
negative velocity pressure have been encountered as far as 7.5
equivalent diameters downstream of the tee, and are more likely to
occur at high flow rates with relatively low relative branch flows
(Hickman et al. 2012). These regions should be avoided when using
thermal anemometers.

Example 2.

Step 1. Numerical Evaluation of Duct Average Velocity. Velocity
measurements for a 610 × 610 mm square duct traverse using the
log-T method are given in the following tables. Air density is  =
1.185 kg/m3. Air temperature and absolute pressure conditions in the
duct are 30.5°C and 103.3 kPa. The top row shows the horizontal tra-
verse point position in the duct cross section, and the left column gives
the vertical traverse point position (mm) in the duct cross-section. Note
that, for this duct, there are 25 measurement positions across the duct,
with 5 in each direction (see Figure 8 for how these positions are
determined).

Velocity Measurements, m/s

46 mm 175 mm 305 mm 434 mm 564 mm

46 mm 5.644 5.878 5.578 6.253 5.761
175 mm 6.142 6.330 5.949 6.452 6.325

Fig. 8 Measuring Points for Rectangular and Round Duct Traverse
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Figure 2.15: Distribution of velocity measuring points [84].
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2.2.1 Materials and equipment for battery pack thermal behavior
test

Materials and equipment needed for this experimental work are listed as follows:

• Test bench, provided with two fans (Ebmp-Papst 4412FNH) and two PVC tubes. Cells
were placed into an acrylic case (8 mm thickness).

• 15 new Li-ion batteries type 26650 with LiCoO2 chemistry.
• 18 temperature sensors type NTC thermistors (ZX-Thermometer).
• 2 temperature controller (Arduino DAQ).
• 2 battery chargers (iCharger 208B).
• 1 battery discharger (BK Precision 8500 programmable DC load).
• 1 hot wire anemometer (ALNOR 8525).
• 1 Multimeter.

2.2.2 Temperature profile of experiments

All the performed experiments have a typical profile cell temperature as shown in Figure 2.16
where the temperature behavior of fifteen cells is represented. It can be seen that the central
cell of the battery pack (cell number 8 in Figure 2.13) reaches the highest temperature at
the end of the discharging process. Then, cells are cooled-down until their temperature fall
to the ambient temperature.

Figure 2.16: Temperature profile of experiments. Discharging at natural convection and
cooling-down by forced convection. (a) Discharging under 1C. (b) Discharging under the
HWFET-driving cycle.

2.2.3 Numerical modeling of air flow using CFD

Thermal behavior of the battery pack was modeled numerically using ANSYS Fluent software.
Each battery of the module was modeled as a solid cylinder. The heat generation rate in the
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cell was customized through the use of a User Defined Function (UDF) coded in C language
programming. Heat generation in the UDF was implemented by fitting Eq. 1.13 to a Fourier
series with seven terms using Matlab Curve Fitting Tool.

Dimensions of the domain and boundary conditions are displayed in Figs. 2.13 and 2.17.
On the battery surface was considered the no-slip condition. The condition at the inlet was
the inlet velocity, and at the outlet, the atmospheric pressure. Furthermore, a heat transfer
coefficient of 5 Wm−2K−1 was imposed on the battery case. Pressure spatial discretization
for natural and forced convection was Body Force Weighted and PRESTO!, respectively. For
both cases, a transient simulation was executed with 1 s time step. To obtain a more robust
convergence (in both cases), A COUPLED scheme was applied for pressure-velocity coupling.
Initial conditions for the temperature of each cell were applied using Patch option in Fluent.

480 mm150 mm

Air outlet
Pressure = 1 atm

h = 5 Wm-2K-1
Battery

Ø 26 mm
Tt=0 =Tambient

1
1

9
 m

m

6
5

 m
m

Air intlet
Tambient

Velocity =
{0, 1.5, 2.7} ms-1  

Battery
ICR 26650

Software NOVA 2.0

EIS equipment
PGSTAT302N

Temperature controlled 
chamber EZT-570i

Figure 2.17: Boundary conditions for CFD simulations.

The airflow in the battery pack is considered to be incompressible flow since the maximum
velocity of air in a battery pack of an EV is below than 111 ms−1, which is less than one-third
of the sound speed [85]. Thus, the governing equations of continuity, momentum, and energy,
respectively are formulated as follows [86]:

∇ · V⃗ = 0, (2.2)

∂V⃗

∂t
+
(
V⃗ · ∇

)
V⃗ = −∇p

ρ
+

µ

ρ
∇2V⃗ , (2.3)

∂ (ρe)

∂t
+∇ ·

(
ρeV⃗

)
= −p∇ · V⃗ +∇ · (k∇T ) + Φ, (2.4)

where µ is the kinematic viscosity, e is the internal energy (e = CvT for an ideal gas), and Φ
is the viscous dissipation term defined as:

Φ = µ

[
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)2

+ 2

(
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(
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+

∂w
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)2
]

(2.5)

For natural convection modeling, the buoyancy effect in the air is considered through
Boussinesq approximation. This approach is suitable for small variations of density:

ρ = ρ0 (1− β∆T ) , (2.6)
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where ρ0 is the constant density of the flow, and β is the thermal expansion coefficient defined
as:

β = −1

ρ

(
∂ρ

∂T

)

p

(2.7)

Turbulence model

To describe turbulent flows in battery modules, the standard k − ε model has been widely
adopted in many studies due to its robustness [87, 88, 89, 90], and this approach is used in
the present study. Furthermore, the shear stress transport model (SST) could be used as
well.

The first transport equation for the standard k − ε model is the kinetic turbulent energy
k which is expressed as [30]:

∂ (ρk)

∂t
+

∂ (ρkui)

∂xi

=
∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ Pk + Pb − ρε− YM + Sk, (2.8)

where YM is the effect of compressibility on turbulence and Sk is the turbulent kinetic source
term.

The second equation is the dissipation of turbulent kinetic energy ε, which is given for the
following expression [30]:

∂ (ρε)

∂t
+

∂ (ρεui)

∂xi

=
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (2.9)

where Sε is the source term for the turbulent dissipation, and νt is the turbulent viscosity
described by:

µt = ρCµ
k2

ε
(2.10)

The component of turbulent kinetic energy owing to the mean velocity gradients Pk, named
production, is formulated as follows:

Pk = −ρu′
iu

′
j (2.11)

The component of turbulent kinetic energy owing to buoyancy Pb is

Pb = βgi
µt

Prt

∂T

∂xi

(2.12)

where Prt = 0.85 is the turbulent Prandtl number.

The constants of the model are given by:

Cµ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.0 and σε = 1.3
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Battery module meshing

A discharging test at 1C for the battery module with fifteen cells was simulated to perform a
mesh independence test. Three meshes were evaluated (see Table 2.10). Maximum tempera-
ture of the hottest cell (number 8) at the end of discharging was the parameter of comparison
among the meshes. A mesh with 751740 elements (mesh number 3) was selected for future
simulations and the convergence criterion was once the residuals took a value around 1×10−3,
1 × 10−6 and 1 × 10−8 for continuity, velocity and energy equation, respectively. Moreover,
five inflation layers were developed around each cell (see Figure 2.18) to capture boundary
layer effects.

Table 2.10: Mesh independence test for the battery module.

Description Mesh 1 Mesh 2 Mesh 3

Number of elements 49116 247820 751740
Inflation No No Yes
Maximum temperature 42.41 42.69 42.73
of cell number 8 (◦C)

Figure 2.18: Meshing detail around one cell in the battery bank.
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2.3 Methodology for temperature estimation based on
particle filter

To estimate the temperature in the battery pack using particle filter approach, a mathe-
matical model of the battery system (process equation) and measurements are needed. In
the present study, temperature measurements of one cell per string are employed. PF is
implemented solving Eqs.1.25, 1.26 and 1.27.

2.3.1 Thermal model for a single battery string

The surface temperature of a cell Ts can be estimated through the use of a lumped model
given by:

dT

dt
=

1

τ
(Tamb − T (t)) +

Qgen(t)

Cp

, (2.13)

where τ is the thermal time constant written as:

τ =
Cp

hAs

. (2.14)

Moreover, heat generation can be simplified as follows:

Qgen = I2RT (2.15)

A thermal model of a battery string is formulated extending the single-cell thermal model
and considering the cell to cell heat transfer. The scheme of a single battery string and its
equivalent thermal model is displayed in Figure 2.19.

Figure 1. SCHEMATIC OF A ONE-DIMENSIONAL BATTERY STRING AND THE ASSUMED EQUIVALENT-CIRCUIT THERMAL MODEL.

The string thermal model in Eq. (3) can be written in the
state space representation as

ẋ = Ax+Bu, x ∈ R2n, u ∈ R2

y = Cx+∆y, y,∆y ∈ Rm (4)

where n is the number of cells and m is the number of sensors,

x =
[
Tc,1 Ts,1 Tc,2 Ts,2 · · · Tc,n Ts,n

]T
,

B =

[Re,1
Cc

0 Re,2
Cc

0 · · · Re,n
Cc

0

0 1
RuCs

0 1
RcCs

RuC f −1
RuC f

· · · 0 1
RcCs

(RuC f −1
RuC f

)n−1

]T

u =

[
I2

Tf ,in

]
.

(5)

The matrix A is the state matrix shown in Eq.(6), y is the temper-
ature state(s) measured by the sensor(s) whose location is speci-
fied in the C matrix, and ∆y is the uncertainty in sensor measure-
ment.

PROBLEM FORMULATION - OPTIMAL OBSERVER DE-
SIGN FOR TEMPERATURE ESTIMATION

The objective in this paper is to design a model-based ob-
server that could achieve optimal performance in temperature

estimation under bounded uncertainty. The battery internal re-
sistance typically varies from cell to cell due to factors such
as degradation, manufacturing variability, and operating condi-
tions [14,15]. Since the observer can only use the nominal value
Re,0 for all the cells, there will be mismatch in battery resistance,

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T

=
[
Re,1 −Re,0 0 Re,2 −Re,0 0 · · · Re,n −Re,0 0

]T
,

(7)

which is the considered model uncertainty. The resistance uncer-
tainty are usually within certain bounds to be specified later.

In this paper, the closed-loop observer for estimating the
temperature states of the battery string takes the form

˙̂x = Ax̂+B′u+L(y− ŷ)

ŷ = Cx̂,
(8)

where x̂ and ŷ denote the estimates of the states and outputs, and
L is the observer gain. The input matrix is denoted as B′ instead
of B considering the uncertainty in internal resistance. The esti-
mation error, ex, is defined as the errors between x and x̂,

ex = x− x̂. (9)

The error dynamics can be derived by subtracting the observer

3 Copyright © 2014 by ASME
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Figure 2.19: Scheme of a single battery string and a equivalent-circuit thermal model [91].
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The temperature behavior of the kth cell for a string with n cells can be computed by
Eqs. 2.16, 2.17, 2.18, which are formulated based on the work proposed by Lin et al. [91]::

dTs,i

dt
=

1

τ
(Tamb,i − Ti) +

Qgen,i

Cp

+
Qcc,i

Cp

, (2.16)

Qcc,i =





(Ts,2 − Ts,1) /Rcc, i = 1

(Ts,i−1 + Ts,i+1 − 2Ts,i) /Rcc, i = 2, ..., n− 1

(Ts,n−1 − Ts,n) /Rcc, i = n

(2.17)

Tamb,i =

{
Tamb,in, i = 1

Tamb,i−1 +
Ts,i−1−Tamb,i−1

RoutCf
, i = 2, ..., n,

(2.18)

where Qcc is the heat transfer through a conduction resistance Rcc, Rout = τ/Cp is the
convection resistance, τ is a thermal time constant (given by Eq. 2.14), and Cf is the heat
capacity of the air.

2.3.2 Fractal time model as process equation

A better agreement between experimental measurements of cell temperature and a fitting
model is obtained employing a fractal formulation which takes into consideration an anoma-
lous temperature relaxation [92]. A fractal derivative can be written as [93]:

dF β

dtγ
= lim

∆t→0

F β(t+∆t)− F β(t)

(∆t+ t)γ − tγ
, (2.19)

where β > 0 and γ > 0 are scaling factors for the dependent variable and time, respectively.

Using only one scaling factor α and combining Eq. 2.16 and Eq. 2.19 yields [92]:

dTα

dtα
=

1

τα
(Tα

amb − Tα(tα)) +
Qα

gen(t
α)

Cα
p

+
Qα

cc,i(t
α)

Cα
p

, (2.20)

where τ = CpRout is the thermal time constant.

To apply the particle filter, a discrete formulation for the process equation is needed.
Then, based on the Euler discretization of Eq. 2.20, the process equation to estimate the
temperature of a single cell in the string at each time step k is written as:

Tk (t
α) =

{(
tαk − tαk−1

) [
− 1

ταk−1

(
Tα
k−1 (t

α)− Tα
amb

)
+

Qα
gen,k−1(t

α)

Cα
p

+
Qα

cc,i(t
α)

Cα
p

]
+ Tα

k−1 (t
α)

}1/α

(2.21)
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2.3.3 Experiments

The array of 15 cells was used to estimate the cell temperature using particle filter. Two
sets of temperature measurements on the surface of each cell were performed: at discharging
and cooling-down process. Experiments for discharging process were carried out at 1C-
rate. First, the cells were discharged under natural convection during 1800 s, and then,
the cells were cooled-down by forced convection (at 1.5 m/s and 2.7 m/s) during 1800 s.
Only temperature measurements during forced convection were considered to implement the
particle filtering because of the limitations of process equation to model natural convection
in a battery module. For the second type of experiments, cells were discharged under natural
convection at constant current of 0.25C, 0.5C, and 1C-rate, respectively. When a discharge
finished, immediately batteries were cooled-down by forced convection at 1.5 m/s and 2.7
m/s, respectively for each discharging rate applied. Measurements at forced convection were
used for particle filtering as well. A description of experiments is detailed in Figure 2.20.

 Experiments for particle filtering

At discharging process At cooling-down process

Discharging cells during 1800 s at 1C-rate 
under natural convection

Discharging  cells for 1800 s at 1C-rate under 
forced convection

Discharging cells under natural convection at 
constant C-rate: 0.25C, 0.5C, and 1C

Cooling-down under forced convection after 
finishing each discharging

Measuring of cells 
temperature at  1.5 

m/s 

Measuring of cells 
temperature at  2.7 

m/s 

Measuring of cells 
temperature at  1.5 

m/s 

Measuring of cells 
temperature at  2.7 

m/s 

Figure 2.20: Scheme of experiments for particle filtering.

2.3.4 Implementation of particle filter

The battery module was arranged into three strings as shown in Figure 2.21. Seven states were
estimated per each string: α, τ , and the temperature of the five cells. The temperature of the
first cell of each string (cell number 1, 2, and 3, respectively) was taken as the observation
state (Eq. 1.21) while the temperature of the other four cells (per string) were estimated
by PF. It is not mandatory to estimate the state of the cells taken as observation, but it
lets to know the behavior of the fractal model. After temperature and parameters α and τ
are formulated as a state space vector (Eq. 1.20), temperature states were estimated using
Eqs. 1.25 and 1.26 while parameters α and τ were obtained by artificial evolution using
Eqs. 1.27. The general goal of using PF in this study is to save temperature sensors in
the battery module. Thus, only three temperature sensors are required to estimate the
temperature of the whole module.

40



10

11

12

13

14

15

4

5

6

7

8

9

1

2

3

String 1

String 2

String 3

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Figure 2.21: Arrangement of cells for particle filtering estimation.

The following considerations were made:

• Ambient temperature was assumed as constant.
• All measurements were performed using fifteen cells at once.
• Thermal effects due to battery connectors (thermal contact resistance) were considered

as negligible.
• Changing of internal resistance of cells due to aging was not considered.

Parameters of particle filtering

The particle filter was implemented using the following parameters:

• Number of particles: 100.
• Process noise for α: 0.05.
• Process noise for τ : 1.25.
• Process noise of cells temperature for each i string: Ti,col1 = 0.025; Ti,col2 = 0.05; Ti,col3 =
0.05; Ti,col4 = 0.05; Ti,col5 = 0.05.

• Observation noise: 0.5.
• Initial condition of stretching factor α: 1.
• Initial condition of thermal time constant τ : τ0.

Taking into consideration that τ = Cp/(hAs), the initial condition τ0 was taken for the
cells in the first column (see Figure 2.21) based on the Zukauskas’ correlation for external
forced convection across bank of tubes [34]:

NuD = C1C2RemD,maxPr0.36
(

Pr

Prs

)1/4

, (2.22)

h =
NuDkf

D
, (2.23)

where NuD is the average Nusselt number, C1, C2 and m are constants, Pr is the Prandtl
number, Prs is the Prandtl number evaluated at surface temperature of the cell, and ReD,max

is the maximum Reynolds number.
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Due to the air flow speed was measured in the tubes of the bench (see Figure. 2.13a), air
speed just at the inlet of the battery module vinlet (in front of cells number 1, 2 and 3) was
computed using the continuity flow equation:

Atubes × vtubes = Ainlet × vinlet, (2.24)

where Atubes and Ainlet are the tubes and inlet battery module cross-sectional area, respec-
tively, and vtubes is the air speed in the tubes. Thereby, applying Eq. 2.24, when vtubes was
1.5 and 2.7 ms−1, vinlet was 2.6, and 4.60 ms−1, respectively. These last two values were
employed for PF modeling.
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2.4 Methodology for thermal runaway modeling and sta-
bility study

In this section, a methodology to explore thermal runaway by mathematical modeling is
presented. First, the thermal abuse model is described and then, a non-dimensional analysis
is proposed to evaluate the stability of the cell.

2.4.1 Thermal abuse modeling

The profile of temperature during TR is predicted by thermal abuse model. This model
was firstly proposed by Harchard et al. [8] and then extended by Kim et al. [9]. The model
is based on Arrhenius equation and it embraces a system of equations which describes the
reactions during the decomposition of the positive electrode, negative electrode and SEI as
follows:

dcsei
dt

= −cseiAsei · exp
(
−Ea,sei

RT

)
(2.25)

dcne
dt

= −cneAne · exp
(
− zsei
zsei,0

)
exp

(
−Ea,ne

RT

)
(2.26)

dzsei
dt

= cneAne · exp
(
− zsei
zsei,0

)
exp

(
−Ea,ne

RT

)
(2.27)

dα

dt
= α (1− α)Ape · exp

(
−Ea,pe

RT

)
(2.28)

dcel
dt

= −celAel · exp
(
−Ea,el

RT

)
, (2.29)

where subscripts sei, ne, pe and el represent SEI layer decomposition reaction, reaction be-
tween the negative electrode and the electrolyte, reaction between the positive electrode and
the electrolyte, and electrolyte decomposition reaction, respectively, zsei is a dimensionless
measure of a SEI layer thickness, zsei,0 is the reference SEI layer thickness, csei is the fraction
of concentration of meta-stable species containing lithium in the SEI layer, cne, is the fraction
of concentration of lithium in the negative electrode, zsei refers to the SEI layer thickness, α
represents the degree of conversion of the cathode, and cel is the concentration of electrolyte.
All these variables are dimensionless. R is the universal gas constant. Table 2.11 shows the
description of initial conditions and values of the parameters.

Based on Eq. 1.3, energy balance for a single cell under abuse conditions can be rewritten
as:

Cp
∂T

∂t
= Qconv +Qrad +Qgen +Qr,ab, (2.30)

where heat of reactions per unit volume under abuse conditions Qr,ab is given by:

Qr,ab = Hseimne

∣∣∣∣
dcsei
dt

∣∣∣∣+Hnemne

∣∣∣∣
dcne
dt

∣∣∣∣+Hpempe

∣∣∣∣
dα

dt

∣∣∣∣+Helmel

∣∣∣∣
dcel
dt

∣∣∣∣ , (2.31)
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where the meaning of each term on the right hand side in Eq. 2.31 is the heat released due to:
SEI decomposition, anode decomposition, cathode decomposition, and electrolyte decompo-
sition, respectively (more details of the rest of parameters are presented in Table 2.11).

Table 2.11: Parameters for thermal abuse model

Parameter Description Value Reference

Ael Frequency factor for electrolyte decomposition 5.14 · 1025 s−1 [45]
Ane Frequency factor for anode decomposition 2.5 · 1013 s−1 [8]
Ape Frequency factor for cathode decomposition 6.67 · 1013 s−1 [8]
Asei Frequency factor for SEI decomposition 1.67 · 1015 s−1 [8]
Ea,el Activation energy for electrolyte decomposition 4.55 · 10−19 J [8]
Ea,ne Activation energy for anode decomposition 2.24 · 10−19 J [8]
Ea,pe Activation energy for cathode decomposition 2.32 · 10−19 J [45]
Ea,sei Activation energy for SEI decomposition 2.24 · 10−19 J [8]
Hel Heat released by electrolyte decomposition 1.55 · 105 J kg−1 [45]
Hne Enthalpy of anode decomposition 1.714 · 106 J kg−1 [8]
Hpe Enthalpy of cathode decomposition 3.14 · 105 J kg−1 [8]
Hsei Heat released by SEI decomposition 2.57 · 105 J kg−1 [8]
mel Specific electrolyte content in jellyroll 406.9 kg m−3 [9]
mne Specific carbon content in jellyroll 610.4 kg m−3 [9]
mpe Specific positive active content in jellyroll 1221 kg m−3 [9]
cel,0 Initial value of fraction of electrolyte 1 [9]
cne,0 Initial value of fraction of Li in anode 0.75 [8]
csei,0 Initial value of fraction of Li in SEI 0.15 [8]
zsei,0 Initial value of dimensionless SEI thickness 0.033 [8]
α0 Initial value of degree of conversion of cathode 0.04 [8]

Kim. et al. [9] found that most of the time 3D models match with the lumped model.
Thus, a thermal abuse model based on a lumped system is proposed. The heat generation
rate term is not included when oven test is modeled (discharging current is equal to zero).
Substituting Eqs. (1.5), (1.6) and (2.31) into Eq. (2.30) yields:

dT

dt
=

[−Asurf,c

V olc

[
h (T − Tamb) + εσ

(
T 4 − T 4

amb

)]
+Qgen

−Hseimne
dcsei
dt

−Hnemne
dcne
dt

+Hpempe
dα

dt
−Helmel

dcel
dt

]
/Cp, (2.32)

where V olc = 2.8166 · 10−5m3 refers to the measured volume of jelly roll of the 26650 cell,
which is the core of the battery where the anode, cathode, and separator are rolled (in a
cylindrical cell).

2.4.2 Non-dimensional analysis on of LIB thermal stability

To evaluate the stability of the LIB system. First, we consider that the sum of heat of
reaction can be simplified as [59]:

∑
∆HmA exp

(−Ea

RT

)
= H ′m′A′ exp

(−E
′
a

RT

)
. (2.33)
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Then, neglecting the entropy term in heat generation rate, the following expression for a
cell can be formulated:

ρV olc
dT

dt
= H ′m′A′ exp

(−E
′
a

RT

)
+ I2RT

− Asurf,ch (T − Tamb)− Asurf,cεσ
(
T 4 − T 4

amb

)
, (2.34)

Equation 2.34 is nondimensionalized using the following transformations [94]:

T ∗ =
R

Ea

T (2.35)

t∗ =
H ′m′A′R

ρV olcEa

t (2.36)

(2.37)

Thus, equation 2.34 can be written as:

dT ∗

dt∗
= α + exp

(
− 1

T ∗

)
− βT ∗ − γT ∗4, (2.38)

= f (T ∗) ,

where

α =
I2RT

H ′m′A′ + βTamb + γT 4
amb (2.39)

β =
hAsurf,cEa

H ′m′A′R
(2.40)

γ =
Asurf,cεσ

H ′m′A′ (2.41)

Fixed points are given when Ṫ ∗ = 0 and they can be classified as stable fixed points
(attractors or sinks given by a negative slope of the tangent line at that point) and unstable
fixed points (repellers or sources given by a positive slope of the tangent line at that point),
which represent stable and unstable equilibrium, respectively [64]. These fixed points are
located at the intersection of the horizontal axis with f(T ∗).
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Chapter 3

Results and discussion

In this chapter, results of thermal behavior of a single cell and a battery module are exposed.
An application of particle filter to estimate the temperature of cells in a battery pack is
also presented. Moreover, thermal abuse model for a single cell is implemented to describe
thermal runaway, and a non-dimensional analysis is performed to study the stability of a cell.

3.1 Results of thermal modeling of a single cell
This section presents a comparative study among three of the most employed approaches
to study the thermal behavior of LIBs: a lumped model, a 3D-CFD model, and an elec-
trochemical approach using the Newman, Tiedemann, Gu and Kim (NTGK) model. These
formulations were solved numerically. Furthermore, voltage was simulated using NTGK
model. All of these simulations were compared with experimental tests, at constant current
discharge rate, and under the highway fuel economy test (HWFET) driving cycle using a
26650 lithium cobalt oxide (LCO) battery.

3.1.1 Heat generation rate

The behavior of the volumetric heat generation rate computed by Eq. 1.13 and the NTGK
model is depicted in Figure 3.1. Heat generation given by NTGK approach at constant
current tends to increase, specially at the beginning and at the end of the discharge time
(Figure 3.1a). The curves based on Bernardi’s equation (dashed lines) have a concave region
due to the effect of the entropic term. For HWFET driving cycle, heat generation varies
according to the current profile as shown in Figure 2.4.

Average of volumetric heat generation is reported in Table 3.1. In general, experimentally-
based values (Equation 1.13) are moderately close to values obtained numerically by NTGK
model, but there exists a maximum percentage of variation of 30.1 % at 0.5C.
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Figure 3.1: Battery volumetric heat generation: (a) At constant C-rate, (b) Under HWFET
driving cycle.

Table 3.1: Average heat generation.

Current Eq. 1.13
(Wm−3)

NTGK model
(Wm−3)

Percentage of
variation (%)

0.5C 5761 7542 30.9
1C 23588 22228 5.8
1.5C 52715 52465 0.5
HWFET-cycle 8597 9861 14.7

3.1.2 Heat transfer coefficient

According to Table 3.2, experimental heat transfer coefficients are in moderate agreement
with their computed values, although the first ones are slightly higher than predicted results.
Moreover, hconv is very close to a value of 5 Wm−2K−1 used by some authors [95, 96, 97] for
studies on LIBs performance under natural convection. Experimental hconv coefficient was
utilized in all simulations. Besides, it is evident from Table 3.2 that hrad has practically the
same contribution of hconv in terms of heat exchange under free convection. This was also
reported by Allafi et al. [98]. Radiation effects were considered in simulations. In general,
heat transfer coefficient raises as discharge current increases.
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Table 3.2: Convection coefficient comparison.

hcomb (Wm−2K−1) hconv (Wm−2K−1) hrad (Wm−2K−1)

Current Exp. Computed Eqs.
1.8, 1.9, 1.11

Exp. Computed
Eq. 1.11

Computed
Eq. 1.9

0.5C 8.4 8.5 3.6 3.7 4.8
1C 10.2 9.2 5.3 4.3 4.9
1.5C 12.8 9.8 7.7 4.8 5.0
HWFET-cycle 8.8 8.7 3.9 3.8 4.9

3.1.3 Temperature performance comparison

All three evaluated approaches successfully estimate the cell temperature as displayed in
Figure 3.2. The standard deviation of the experimental temperatures at each discharging test
is 0.3 °C, 0.2 °C, 0.3 °C, and 0.2 °C for 0.5C, 1C, 1.5C, and HWFET-cycle, respectively. The
maximum temperature increase was 18.1 °C for 1.5C rate. Moreover, measured temperature
profile of the cell is the same as its respective heat flux curve (Figure 2.5).

Figure 3.2: Comparison of temperature increase among different methods at different dis-
charging currents: (a) 0.5C-rate. (b) 1C-rate. (c) 1.5C-rate. (d) HWFET-cycle. Ambient
temperature was 24± 0.3 ◦C, 24± 0.3 ◦C, 23± 0.2 ◦C, and 25± 0.3 ◦C, respectively

.
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All the simulated models are consistent with their experimental temperature. The lumped
and 3D-CFD models have practically the same temperature distribution, it is mainly due to
the heat generation term is the same for both. Nevertheless, there exist minimal discrepan-
cies comparing the temperature profile among the proposed methods. This fact is supported
by computing root mean square (RMS) errors, which are detailed in Table 3.3, where NTGK
model has the lower error at 0.5C and 1C; however, this model has the maximum error
(1.3 °C) at 1.5C. For the HWFET-cycle, all models are in the same order of RMS error
capturing satisfactorily the dynamics of the battery temperature under a real driving cycle
(Figure 3.2d). One advantage of CFD-based models is the computation of spatial tempera-
tures, and also their flexibility to combine cells into a pack under different cooling conditions.
In general, electrochemical models are widely used to model temperature and voltage of bat-
teries due to their good agreement between numerical and experimental data [68], although
these models require cautious attention to determine parameters. For instance, in [99] the
ionic electrical conductivity of the liquid phase, and the diffusion coefficient of lithium ions in
the liquid and solid phases are formulated in terms of electrolyte concentration and tempera-
ture. Moreover, in [100] authors expose different procedures to determine internal resistance
and thermal conductivity of a cell.

Table 3.3: RMS errors for the different cases. Units ◦C.

Current Lumped 3D-CFD NTGK Experimental ∆T (°C)

0.5C 0.7 0.6 0.3 5.6
1C 0.7 0.9 0.8 11.1
1.5C 0.2 0.6 1.3 18.1
HWFET-cycle 0.3 0.3 0.3 5.1

Moreover, lumped model can be more practical to evaluate long simulation time profiles.
For instance, Figure 3.3 (bottom) shows the temperature behavior of the LCO battery con-
sidered in this study, simulated at different ambient temperatures under a real driving-cycle
of a Nissan Leaf in a rural road with light traffic during approximately 5.2 hours. The sim-
ulation time for each temperature distribution was 29.1 s. The application of the lumped
model could be extended to estimate the temperature of a battery pack [101, 91], and also
battery degradation in electric vehicles [102]. Currently, the application of lumped model to
estimate the temperature of an EV battery pack under different real driving cycles is being
investigated. Further results will be reported in future research publications.

Besides, the models also estimate the battery temperature under forced convection. For
example, Figure 3.4 shows a simulation of the models under the maximum discharging rate
(2C) of the battery studied here considering hconv = 100 Wm−2K−1. As the discharge current
increase, the temperature given by the NTGK model tends to be greater with respect to the
other models at the beginning of the discharge time. This behavior mainly depends on the
functions U and Y , and could be improved by adjusting the constant C1. Moreover, one
characteristic of the ICR 26650 battery is that its tested capacity decreases to approximately
3.6 Ah when the maximum discharging current is applied.
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Figure 3.3: Battery temperature simulation under a real driving cycle. Top: Velocity profile
of a Nissan Leaf in a rural road with light traffic. Middle: Scaled current. Bottom: Temper-
ature increase of the LCO 26650 LIB simulated at different ambient temperatures using the
lumped model.

Figure 3.4: Comparison of methods for a simulated discharge at 2C under hconv = 100
Wm−2K−1.

The behavior of all the approaches can be improved. For instance, the heat capacity is
the most sensitive parameter for thermal modeling while thermal conductivity has a minor
impact on the simulations [103]. Then, a more accurate value of thermal parameters can be
found by using calorimetric techniques. Moreover, the use of a full electrochemical model
(Newman formulation) is relevant to study the physical phenomena of Li-ion transport.
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3.1.4 Voltage

Figure 3.5 depicts the comparison between experimental and simulated voltage by using
NTGK model. Both values are in good agreement. For HWFET driving-cycle, peak values of
experimental voltage are slightly higher than the numerical result. In general, the dynamical
behavior of the system is well captured. There exist some discrepancies specially at the end
of the discharge process, where the minimal voltage is not reached; this behavior was also
reported by Celik et al. [104] using NTGK model, and by Li et al. [105] using the MSMD
approach under the electric circuit model. Voltage given by NTGK model could be improved
by adjusting the C2 constant.

Figure 3.5: Comparison of experimental and simulated voltage using the NTGK model.

Computational time

CPU time consuming is a relevant aspect while comparing among different proposed models in
this work. All cases were run using a standard CPU (3.5 GHz, 16 GB RAM). As indicated in
Table 3.4, the lumped model requires time in the order of seconds for solving the temperature
profile. NTGK model is more time consuming since it has to evaluate many electrochemical
equations in the battery domain, even under the consideration that its mesh has fewer number
of elements with respect to 3D-CFD approach. Moreover, if a mesh with more number of
elements is used, and if fluid flow around them is solved, the computational time will increase
considerably.

Table 3.4: Execution time for the different models.

Current Lumped 3D-CFD NTGK

0.5C 2.03 s 1612 s 27120 s
1C 1.08 s 776 s 14280 s
1.5C 0.61 s 463 s 8989 s
HWFET-cycle 7.23 s 1296 s 26460 s
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The temperature profile of a LCO 26650 lithium-ion battery under constant and complex
current rates was evaluated by comparing three of the most used methods to study the
thermal behavior of LIBs: a lumped model, 3D-CFD approach and an electrochemical method
based on NTGK with dual potential approach. The heat generation rate, heat capacity, and
heat transfer coefficients were estimated to predict the temperature at the cell surface.

In general, NTGK model has the best performance over the rest of the studied models due
to that it is capable to solve not only the temperature field of the cell, but also voltage, heat
generation and other properties. This approach provides the lower temperature error at rates
of 0.5C and 1C. Nevertheless, this model presents the higher RMS error of 1.3 °C at 1.5C,
where the maximum temperature increase of the cell was 18.1 °C. Under the driving cycle, the
temperature increase was 5.1 °C, and all the models were in the same order of error. Lumped
model is suitable to be used satisfactorily in a wide range of LIB operating conditions and
it presents a very similar temperature profile as 3D formulation since both models depend
on the same heat generation rate and thermal parameters. Under free convection, radiation
plays a relevant role in terms of heat transfer rate, this contribution is practically the same
as convection. Besides, the heat transfer coefficient increases as the discharging current does.
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3.2 Results of thermal modeling of a battery pack
An evaluation of thermal performance of a battery pack is crucial to avoid loss of capacity of
cells and accidents. Many studies on thermal behavior of a battery arrangement have been
developed numerically using computational packages such ANSYS, e.g. see [6, 106, 107, 86,
87]. To describe turbulent flows in battery modules, the standard k−ε model has been widely
adopted in many studies due to its robustness [87, 88, 89, 90]. Furthermore, the shear stress
transport model (SST) has been used as well. This turbulence model is enhanced to predict
the separation of flow under adverse pressure gradients [86]. In this chapter, the thermal
behavior of a battery pack with fifteen cells is analyzed. Experimental temperature of cells
was compared to numerical simulations obtained by Fluent-CFD.

3.2.1 Results for discharging under natural convection

Under natural convection, the temperature distribution of the battery module shows that the
center of the domain is the hottest zone. This phenomenon is observed in all the experiments.
Thus, Figures 3.6, 3.7, 3.8, and 3.9 shows the temperature at the end of the discharging at 1C,
0.5C, 0.25C, and HWFET-cycle, respectively, where the initial temperature of the cells was
24 °C, 24 °C, 18 °C, and 20 °C, respectively. Temperature of cells is higher as discharging rate
increases because heat generation rate of LIBs is directly proportional to discharge current.
According to simulations, air temperature in the battery case mainly increases in the vicinity
of cells and it is slightly higher at the top of the battery case rather than the bottom due to the
density variation of the fluid. The 3D-CFD formulation with the Bousinessq approximation
were used to capture the free convection phenomenon.
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Figure 3.6: Temperature distribution of the module at the end of discharging under 1C and
Tinitial = 24 °C.

Figure 3.7: Temperature distribution of the module at the end of discharging under free
convection at 0.5C and Tinitial = 24 °C.
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Figure 3.8: Temperature distribution of the module at the end of discharging under free
convection at 0.25C and Tinitial = 18 °C.

Figure 3.9: Temperature distribution of the module at the end of discharging under free
convection at the HWFET-cycle and Tinitial = 20 °C.
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In order to compare the simulated temperature of cells in the module with the experimental
data under natural convection, the temperature profile of the central cell of the module (cell
number 8) under different discharge rates is depicted in Figure 3.10, which shows that there
exists a good agreement between numerical and experimental data.

Figure 3.10: Comparison between 3D-CFD model and experimental temperature of the
hottest cell (number 8) in the battery module at different discharging rates under free con-
vection.

Figure 3.11 displays the maximum temperature of each cell in the battery module at the
end of discharging. In general, temperature increases at a higher discharging rate current.
The higher temperature of approximately 44 °C was reached at 1C when the ambient tem-
perature was 24 °C. This cell temperature exceeds the suggested operation temperature of
40 °C [23]. The lowest temperature was about 21 °C at 0.25C when the ambient temperature
was 18 °C. The temperature difference among cells in the module is less than 5 °C which is
favorable to the useful life of cells [24]. Numerical simulations show that the temperature in
the cells tends to be symmetrically distributed.
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Figure 3.11: Maximum temperature under discharging at free convection. (a) 0.25C, Tamb =
18 °C. (b) 0.5C, Tamb = 24 °C. (c) 1C, Tamb = 24 °C. (d) HWFET-cycle, Tamb = 20 °C .

The RMS error between experimental and numerical data for each cell in the battery
module is listed in Table 3.5. This error is given for all the discharging period. The biggest
RMS error (2.24 °C) was found for the cell number 12 at 1C rate while the smallest error
(0.32 °C) was for the cell number 8 discharged under the HWFET-driving cycle. These
differences are mainly due to electrical connections and quality of cells.
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Table 3.5: RMS error between experimental and CFD data under discharging at different
current rates. Units ◦C.

Cell Number 1C 0.5C 0.25C HWFET

1 0.42 0.51 0.84 0.55
2 1.37 0.58 0.79 0.68
3 1.98 0.72 0.64 0.92
4 0.99 0.53 0.82 0.55
5 0.60 0.69 0.96 0.69
6 0.43 0.83 0.79 1.02
7 2.02 0.58 0.83 0.65
8 0.69 0.67 0.82 0.32
9 0.80 0.59 0.72 1.04
10 1.88 0.60 0.66 0.82
11 1.27 0.53 0.79 0.56
12 2.24 0.66 0.77 1.23
13 1.23 0.54 0.65 0.84
14 1.69 0.44 0.65 1.63
15 2.04 0.45 0.71 1.89

3.2.2 Cooling-down by forced convection

After finishing the discharge process, forced convection was applied. This phenomenon was
modeled using the standard k−ε model under two speeds: 1.5 m/s and 2.7 m/s. Figures 3.12
and 3.13 display their respective streamlines. Simulations show that a wake is developed
downstream in the flow separation region. The maximum local air velocity is about 7 m/s
when air inlet speed in the tubes was 1.5 m/s and the flow tend to be uniform (Figure 3.12).
On the other hand, when the inlet velocity in the tubes was 2.7 m/s, the maximum local
airflow speed was approximately 13 m/s and turbulent flow regions are observed (Figure 3.13).
It is noticed that the velocity field between two adjacent cells in the direction of the flow in
the battery module tend to be zero due to the aligned configuration of the battery module
(see Figure 3.12). This behavior was also reported in [108]. Moreover, when the flow is
less turbulent, velocity field in that zone (between two adjacent cells) tends to increase. The
thermal behavior of cells under forced convection are presented with more detail in section 3.3
to compare it with the temperature prediction based on particle filter.

The thermal behavior of a battery module with fifteen cylindrical LCO cells was evaluated.
Discharging current was performed at free convection while forced convection was applied
for cooling-down process. During discharging, the temperature of cells rises as discharging
current increases. Furthermore, the central zone of the battery module reach the highest
temperature at the end of discharging. Measurements of the temperature profile of cells are
in good agreement with numerical simulations. Heat generation in each cell is one of the
most important parameters to take into account to perform the simulations. Aging effect of
cells was not considered.
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Figure 3.12: Velocity field at 1.5 m/s in the tubes.

Figure 3.13: Velocity field at 2.7 m/s in the tubes.
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3.3 Results of temperature estimation of the battery mod-
ule using particle filter

The temperature of each string of five cells in the module was estimated independently during
discharging and at cooling-down (when discharging finished).

3.3.1 Particle filter applied during the discharging process

The battery module was completely discharged at 1C. During the first 1800 s, the module
underwent natural convection, and after 1800 s, the module was cooled by forced convection.
Two velocities were applied independently: 1.5 and 2.7 m/s (speed measurements were taken
in the PVC tubes). One example of the temperature profile of cells is depicted in Figure 3.14.
It can be observed that under discharging at natural convection (during the first 1800 s), a
maximum temperature of about 40 °C was reached for the cell located in the central zone
of the module (cell number 8). Moreover, cells number 12 and 14 do not reach the same
temperature due to the boundary conditions. Then, cooling-down was applied by air forced
convection and the temperature of cells fell without reach to the ambient temperature.

Figure 3.14: Experimental temperature profile of cells under discharging: 1800 s at natural
convection and 1800 s at forced convection (air flow speed 1.5 m/s).

Particle filter was implemented for the forced convection stage. Figure 3.15 shows a com-
parison of thermal performance of cells and parameters during discharging for the string 2
under forced convection at 1.5 m/s. For PF, cell number 2 is taken as observation and the
temperature of other cells was estimated. There exist a good agreement among experimen-
tal, filtered and CFD simulations of temperature. Moreover, PF estimate the evolution of
stretching factor α and thermal time constant τ . These two parameters tent to decrease
starting from their initial condition. When air flow speed was 2.7 m/s, there is a similar
behavior of parameters as Figure 3.16 shown.

60



Figure 3.15: Evolution of parameters and temperature estimation by particle filter under 1C
discharging rate and 1.5 m/s. Ambient temperature 26 °C.

Figure 3.16: Evolution of parameters and temperature estimation by particle filter under 1C
discharging rate and 2.7 m/s. Ambient temperature 26 °C.
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Table 3.6 shows the RMS temperature error between experimental and estimated temper-
ature by PF and CFD at two air speed rates. In general, RMS error given by CFD is slightly
minor than RSM error obtained by PF. Nevertheless, the estimation of temperature by PF is
quite good and take less than one minute while CFD simulations takes many hours. Another
advantage of PF is that it can be implemented in real-time applications.

Table 3.6: RMS error between experimental temperature and estimation by particle filtering
and CFD during during discharging at 1C-rate. Units ◦C.

Cell Number Particle filtering CFD

V 1.5 m/s V 2.7 m/s V 1.5 m/s V 2.7 m/s

1 0.16 0.12 0.29 0.71
2 0.11 0.19 0.88 0.34
3 0.20 0.19 0.33 0.45
4 0.78 0.64 0.30 0.61
5 0.49 0.66 0.53 0.22
6 0.78 0.49 0.24 0.26
7 0.73 0.57 0.36 0.78
8 0.51 0.51 0.46 0.26
9 0.84 0.66 0.29 0.36
10 1.57 0.14 0.31 1.11
11 0.42 0.49 0.60 0.60
12 0.57 0.41 0.32 0.70
13 0.67 0.21 0.20 1.45
14 0.29 1.43 0.70 0.88
15 0.54 0.30 0.23 0.96

3.3.2 Particle filter applied at cooling-down

In this experiment, the battery module with fifteen-cells was discharged under free convection
at 0.25C, 0.5C and 1C, and particle filter was applied to estimate the temperature of each
cell during the cooling-down process under forced convection (see Figure 3.17). Two speeds
were applied to the air flow: 1.5 m/s and 2.7 m/s.

Figures 3.18 and 3.19 display the behavior of cells after discharging them at 0.5C, and
cooling-down under 1.5 m/s and 2.7 m/s, respectively. At the air flow speed of 1.5 m/s, the
temperature estimated by particle filter and CFD are better than at 2.7 m/s. Nevertheless,
in this last case (2.7 m/s), CFD computations show an improvement with respect to filtered
temperature. For the rest of the cases, i.e., cell temperature estimations after 0.5C (Fig-
ures 3.20 and 3.21) and 1C (Figures 3.22 and 3.23), the cells temperature given by particle
filtering and CFD are almost the same and they are in good agreement with experimental
data. In the majority of the aforementioned cases, the evolution of parameters α and τ given
by PF tend to be decreasing starting from their respective initial value.
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Figure 3.17: Experimental temperature profile of cells discharged at 1C under natural con-
vection and then cooled-down by forced convection (air speed 1.5 m/s).

Figure 3.18: Evolution of parameters and temperature estimation by particle filter under
0.25C discharging rate and 1.5 m/s. Ambient temperature 26 °C.
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Figure 3.19: Evolution of parameters and temperature estimation by particle filter under
0.25C discharging rate and 2.7 m/s. Ambient temperature 26 °C.

Figure 3.20: Evolution of parameters and temperature estimation by particle filter under
0.5C discharging rate and 1.5 m/s. Ambient temperature 25 °C.
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Figure 3.21: Evolution of parameters and temperature estimation by particle filter under
0.5C discharging rate and 2.7 m/s. Ambient temperature 25 °C.

Figure 3.22: Evolution of parameters and temperature estimation by particle filter under 1C
discharging rate and 1.5 m/s. Ambient temperature 26 °C.
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Figure 3.23: Evolution of parameters and temperature estimation by particle filter under 1C
discharging rate and 2.7 m/s. Ambient temperature 26 °C.

In order to present a more detailed comparison between experimental temperature and
temperature given by particle filter and CFD, RMS error for temperature after discharging
at 0.25C (Table 3.7), 0.5C (Table 3.8) and 1C (Table 3.9) was computed. In general, RMS
error increases when current discharging rate increases as well. The smaller RMS error was
for cells number 1 and 2 at 0.25C and 2.7 m/s air flow while the higher RMS error was for the
cell number 9 at 1C and 2.7 m/s air flow rate. In most cases, by increasing the air flow speed,
the RMS error slightly increases. Moreover, RMS error given by CFD computation is slightly
smaller than PF estimation. Nonetheless, CFD takes many hours to perform simulations and
PF takes a few seconds. Another great advantage of PF is that this method can be employed
for real-time monitoring of the battery pack temperature.

66



Table 3.7: RMS error of temperature estimation by particle filtering and CFD under cooling-
down after 0.25C discharging rate. Units ◦C.

Cell Number Particle filtering CFD

V 1.5 m/s V 2.7 m/s V 1.5 m/s V 2.7 m/s

1 0.11 0.04 0.18 0.14
2 0.05 0.04 0.10 0.15
3 0.04 0.04 0.11 0.17
4 0.29 0.51 0.08 0.27
5 0.20 0.45 0.06 0.32
6 0.26 0.46 0.07 0.25
7 0.24 0.57 0.05 0.37
8 0.18 0.47 0.06 0.32
9 0.30 0.49 0.08 0.30
10 0.10 0.28 0.09 0.39
11 0.21 0.42 0.06 0.40
12 0.24 0.43 0.08 0.43
13 0.14 0.32 0.07 0.36
14 0.12 0.25 0.05 0.32
15 0.17 0.31 0.06 0.31

Table 3.8: RMS error of temperature estimation by particle filtering and CFD under cooling-
down after 0.5C discharging rate. Units ◦C.

Cell Number Particle filtering CFD

V 1.5 m/s V 2.7 m/s V 1.5 m/s V 2.7 m/s

1 0.06 0.11 0.25 0.19
2 0.07 0.17 0.20 0.23
3 0.08 0.07 0.23 0.29
4 0.39 0.56 0.12 0.11
5 0.18 0.35 0.11 0.24
6 0.33 0.54 0.11 0.15
7 0.37 0.66 0.10 0.23
8 0.29 0.46 0.10 0.28
9 0.34 0.65 0.09 0.19
10 0.11 0.13 0.11 0.32
11 0.23 0.44 0.12 0.44
12 0.24 0.47 0.08 0.27
13 0.12 0.26 0.11 0.43
14 0.20 0.24 0.13 0.50
15 0.10 0.31 0.06 0.33
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Table 3.9: RMS error of temperature estimation by particle filtering and CFD under cooling-
down after 1C discharging rate. Units ◦C.

Cell Number Particle filtering CFD

V 1.5 m/s V 2.7 m/s V 1.5 m/s V 2.7 m/s

1 0.49 0.30 0.63 0.40
2 0.19 0.19 0.51 0.52
3 0.25 0.21 0.46 0.57
4 0.97 1.13 0.43 0.26
5 0.70 0.59 0.73 0.26
6 0.80 1.16 0.47 0.46
7 0.76 1.13 0.32 0.44
8 0.80 0.86 0.56 0.27
9 1.08 1.47 0.55 0.72
10 0.51 0.39 0.39 0.68
11 0.58 0.79 0.54 0.65
12 0.57 1.10 0.40 1.09
13 0.26 0.50 0.43 1.01
14 0.20 0.51 0.48 0.82
15 0.38 0.67 0.39 0.67

PF was applied to estimate seven states during the cooling-down process in a Li-ion battery
module: fives states represent the temperature of the cells and two states correspond to a
stretching factor and a thermal time constant. In most cases, α decays from 1 to around 0.8
and τ oscillates from 300 s−1 to approximately 200 s−1. Moreover, RMS errors increase as
discharging rate increases. CFD computations slightly improves the temperature estimation
of cells. For example, for the cell number 8 cooled at 2.7 m/s, RMS error decays from 0.47 °C
to 0.32 °C at 0.25C, also is reduced from 0.46 °C to 0.28 °C at 0.5C, and from 0.86 °C to
0.27 °C at 1C. The disadvantage of CFD is that this approach takes many hours to simulate
the cooling-down process of the cells while the execution of PF algorithm takes a few seconds.

PF was developed to estimate the cell temperature at forced convection while natural
convection case could be studied as a future work. It was concluded that PF estimates well
the temperature of cells and it can be implemented in online monitoring.
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3.4 Results of thermal stability study of a lithium-ion
battery

Thermal stability of LIBs is crucial for safety of electric devices and people because at high
temperatures or under abuse conditions the cell can explode. The interaction between heat
transfer processes and heat generation determines the thermal state of the cell, and the
occurrence of thermal runaway (TR) [60]. In this section, the thermal behavior of a 26650
LCO cell under thermal abuse is modeled. A non-dimensional approach is also developed to
evaluate thermal runaway conditions.

3.4.1 Characterization of thermal runaway of a single cell by ther-
mal abuse model

Thermal runaway by oven test was modeled solving Eq. 2.32 coupled with the system of
Eqs. (2.25-2.29). A numerical simulation was implemented using an adaptative algorithm
(ode 15s) in MATLAB that sorts out stiff differential equations. Parameters of the model
are detailed in Table 2.11. Firstly, according to Figure 3.24a, natural convection is consid-
ered assuming hconv = 7.17 Wm−2K−1 [109]. Results shows that at ambient temperature
Tamb = 145 °C, TR does not occur, but at 150 °C it does after 62 min approximately. This
time is considerably reduced when Tamb is 155 °C. Secondly, with regard to 3.24b, forced
convection is assumed with hconv = 100 Wm−2K−1. In this case, TR does not occur until
Tamb is 170 °C, but when it occurs, it does after about 10 min. At time t = 0, the temperature
of the cell was assumed to be 35 °C for both cases.

Figure 3.24: Thermal runaway modeling of a 26650 LCO cell at three different ambient
temperatures: (a) Under natural convection, 7 Wm−2K−1. (b) Under forced convection, 100
Wm−2K−1.
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In [110], the author found that a heating rate more than 17 ◦C/min provokes a violent
thermal runaway reaction in a cylindrical LCO cell. In this way, thermal runaway time
(tTR) is assumed when the thermal reaction reaches this heating rate threshold. Figure 3.25
reveals that tTR modeled for a 26650 LCO cell increases as both ambient temperature and
convective coefficient decrease. As described earlier in Figure 3.24a, under natural convection
and considering the properties and initial conditions given in Table 2.11, TR does not occur
below 145 °C.

Figure 3.25: Thermal runaway time tTR simulation for a 26650 LCO cell

3.4.2 Qualitative stability analysis

Solutions when Eq. 2.38 is equal to zero are represented in the following plots. The goal is
to find fixed points, specially the unstable ones.

First, recalling the dimensionless Eq. 2.38 to evaluate the thermal runaway occurrence of
a cell:

dT ∗

dt∗
= α + exp

(
− 1

T ∗

)
− βT ∗ − γT ∗4,

= f (T ∗) ,

where α, β and γ mainly represent the effect of heat generation, convection, and radiation,
respectively on the cell.

Figure 3.26 shows the phase portrait of f(T ∗) for two values of the parameter α. For
α = 0.1 (Figure 3.26a) there exist two fixed points (when f(T ∗) = 0) named A and B which
are stable points. When α = 0.01 (Figure 3.26b), there exist also two fixed points named
C and D, which are unstable and stable points, respectively. The point C represents the
conditions that cause the battery to undergo thermal runaway and it is given for β = 0.2.
Moreover, considering that 2.38 represents a one-dimensional or first-order system, points A,
B and D are attractors (or sinks) while point C is a repeller (or source).
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Figure 3.26: Evaluation of f(T ∗) for γ = 10−5. (a) With α = 0.1. (b) With α = 0.01.

Figure 3.27: Evaluation of f(T ∗) for α = 0.1. (a) With γ = 0.015. (b) With γ = 0.001.

Another scenario is evaluated by varying the parameter γ. Figure 3.27a and Fig 3.27b
display the behavior of f(T ∗) for γ = 0.015 and γ = 0.001, respectively. In both cases there
exist only stable fixed points (attractors or sinks) which do not cause thermal runaway. This
behavior means that the radiation can be important factor but it is not a critical parameter
to consider in terms of the thermal runaway occurrence.
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Solutions for steady state when f(T ∗) = 0 are presented in Figure 3.28. For low values of
β, T ∗ takes values near to 1 and when β increases, T ∗ tends to decrease.

Figure 3.28: Dimensionless temperature T ∗ when f(T ∗) = 0 under different values of β with
α = 0.1 and γ = 0.5.

Mechanisms to prevent thermal runaway in Li-ion batteries should be focused on the cool-
ing system. Moreover, ambient temperature and heat generation rate are crucial parameters
that also should be controlled.

Thermal runaway is caused by many factors. In this case we studied the thermal abuse
model which takes into consideration the heat reaction that take place in the distinct com-
ponents of the battery. In general terms, TR occurs when the rate of heat generation in the
cell is greater than the released heat. Onset temperature of TR mainly depends on the type
of cell, ambient temperature and cooling mechanism. Dimensionless parameters that take
into account those factors were described.
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Conclusions

Concluding remarks
The temperature profile of a LCO 26650 lithium-ion battery module was evaluated. Ther-
mal performance of a Li-ion battery is mainly influenced by the discharging current, heat
generation rate, and cooling mechanism. First, there were compared three of the most used
methods to study the thermal behavior of LIBs: a lumped model, 3D-CFD approach and an
electrochemical method based on NTGK with dual potential approach.

In general, NTGK model has the best performance over the rest of the studied models
due to that it is capable to solve temperature, voltage, heat generation and other properties.
This approach provides the lower temperature error at rates of 0.5C and 1C. Nevertheless,
this model presents the higher RMS error at 1.5C, where the maximum temperature increase
of the cell was 18.1 °C.

Lumped model is suitable to be used satisfactorily in a wide range of LIB operating
conditions and it presents a very similar temperature profile as 3D formulation since both
models depend on the same heat generation rate and thermal parameters.

A 3D formulation was used to evaluate the thermal performance of a battery module. It
was observed that the temperature rises as the current increases and the central zone of the
module reached the higher temperature at the end of the discharging process.

A bayesian approach named particle filter was applied in a Li-ion battery pack under
air forced convection. PF predicts well the temperature of cells and it can be implemented
in online monitoring. PF also performs the artificial evolution of two parameters in the
model: a fractal time parameter and a thermal time constant. Applying CFD computations
slightly improves the temperature estimation of cells, but this approach takes many hours of
simulation.

Thermal runaway in a Li-ion battery was studied using a non-linear the thermal abuse
model. In general, thermal runaway occurs when the heat generation rate in the cell is
greater than the rate of heat transfer between the cell and the environment. Dimensionless
parameters were described and the main factors that cause TR are the type of cell, ambient
temperature and cooling mechanism.
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Suggestions for future work
This work pave the way for many other contributions that can be done as a future work in
the field of thermal management of lithium-ion batteries.

A study about natural convection in a battery pack would be appropriate to extend the
comprehension of thermal behavior of Li-ion cells. Numerical simulations can be done for
many cell configurations in a bank varying geometric characteristics and initial conditions,
Moreover, the impact of Von Karman Vortices on a battery arrangement could be analyzed.
Besides, another type of cooling methods such as phase change materials can be used.

Particle filter can be implemented using many others current profiles and flow rates of
coolant. It would be interesting to evaluate the particle filtering applying more experiments
during the discharging process under different cooling rates and cell arrangements such as
staggered configuration of LIBS. It would also be interesting to study a fractional formulation
as a process model. Moreover, aging effect on thermal performance of a cell could be studied.

Thermal runaway should be tested in the laboratory using precise equipment such as an
accelerating rate calorimeter. This kind of equipment could also be used to determine thermal
parameters. Besides, TR stability can be studied triggering it by another type of mechanism
such as nail penetration, short-circuit, overdischarge, etc.
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Glossary

Charging It is defined as the process when a battery is connected to any source of energy
in order to be re-charged.

Depth-of-discharge It represents the percentage of energy extracted from the battery. This
is the inverse of SOC (0% of DOD = full charged; 100% of DOD = discharged).

Discharging A process when a battery supplies energy to any load (device) that is connected
to the terminals of the battery.

Open circuit voltage It is the voltage between battery terminals without any load con-
nected.

Particle filter It is a technique for implementing a method to estimate hidden process
states in real-time by combining the power of Monte Carlo methods with the Bayesian
inference.

State-of-charge It is the percentage of energy (Ah) available in a battery (100% of SOC
= full charged; 0% of SOC = discharged). SOC plays the role as fuel gauge does in a
gasoline-driven automobile.

State-of-health It defines the physical condition of the battery. Generally, this term is
linked to the battery aging.

Thermal runaway A chain of exothermic reactions that happen swiftly when a cell under-
goes abuse conditions. It may cause explosions and fire.
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Annexed: Implemented codes

MATLAB Code to read temperature from Arduino DAQ

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Temperature reading from two sensor by Arduino eacht 1 second %
3 % Programm stops when the red STOP buttom is clicked %
4 % Input: Number of sensors (Ns); samples to save (Ns), name of file %
5 % Output vector: 'Temperatures' %
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 clc
9 close all

10 clear all
11 question='Enter the name of the experiment\n';
12 name=input(question,'s'); %Name fo measurement
13 Ns=2; %Number of sensors
14 Fs=1; %Sample time
15 N=3600; %Number of samples to save
16 a2=arduino('COM3'); %3 %Select COM port for Arduino device
17 line1 = line(nan,nan,'color','red'); %Line for the 1st sensor A1
18 line2 = line(nan,nan,'color','blue'); %Line for the 2dn sensor A2
19 grid; %Activate grid plot
20 ylim([15 55]); %Plot limits y axis
21 i=0; %Counter
22 Stop=1; %Stop
23

24 %Control Buttom for stopping
25 uicontrol('Style','Pushbutton','String','STOP','Callback','Stop=0;',...
26 'BackgroundColor','r','FontWeight','bold')
27

28 t=linspace(0,(N-1)/Fs,N);
29

30 tic
31 Temp_exp=zeros(N,Ns); %Create matrix containing ...

temperaturesÂt’
32 while Stop
33 if toc>1/Fs
34 tic;
35 %Read voltages from devices
36 V1=readVoltage(a2,'A1');
37 V2=readVoltage(a2,'A2');
38

39 %Convert voltage to temperature
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40 T1=Measured_temp(V1)-0.2; %0.2 is to calibrate sensor
41 T2=Measured_temp(V2)-0.3; %0.3 is to calibrate sensor
42

43

44 %Display measured temperatures
45 Online_temperature=[T1 T2]
46 Temp_exp(i+1,:)=Online_temperature; %save the measured temperatures ...

in matrix y
47

48 %Real time plot of some sensors
49 x1=get(line1,'xData');
50 y1=get(line1,'yData');
51 x2=get(line2,'xData');
52 y2=get(line2,'yData');
53

54

55 x1=[x1 i]; y1=[y1 T1];
56 x2=[x2 i]; y2=[y2 T2];
57

58 i=i+1;
59 set(line1, 'xData',x1,'yData',y1);
60 set(line2, 'xData',x2,'yData',y2);
61

62 legend('Tamb,int','Tcell')
63 xlabel('Time s'); ylabel('Temperature ÂřC')
64 drawnow
65

66 end
67 end
68 save(name,'Temp_exp')
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C Code for a UDF to estimate heat generation at 1C-rate
in Fluent

1 /***********************************************************************
2 UDF for time dependent volumetric heat generation of 26650 cell
3 Heat generation at 1.0C for a fresh battery
4 Ohmic resistance is taken as a mediuam value, 24ÂřC
5 ************************************************************************/
6 #include "udf.h"
7

8 //0-1s Qgen(t) = p0*t
9 #define p1 2.809e+04

10

11 //1s-3600
12 //a0 + a1*cos(x*w) + b1*sin(x*w) +
13 //a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
14 //a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) + ...
15

16 #define a0 2.92e+04
17 #define a1 6340
18 #define b1 -6126
19 #define a2 -2859
20 #define b2 -3851
21 #define a3 -2273
22 #define b3 -1828
23 #define a4 -2095
24 #define b4 1141
25 #define a5 -250.6
26 #define b5 1503
27 #define a6 -5.554
28 #define b6 75.5
29 #define a7 266.2
30 #define b7 371
31 #define w 0.00119
32

33 DEFINE_SOURCE(Qg_4Ajr3,c,t,dS,eqn)
34 {
35 real source;
36 real Qgen;
37 real time;
38 real derivative;
39 time = CURRENT_TIME; //taking time value
40

41 if (time ≤ 1){
42 Qgen = p1*time;
43

44 }
45

46 else if ((time > 1) && (time ≤ 3600)){
47 Qgen=a0 + a1*cos(time*w) + b1*sin(time*w) + a2*cos(2*time*w) + ...

b2*sin(2*time*w)
48 + a3*cos(3*time*w) + b3*sin(3*time*w) + a4*cos(4*time*w) + ...

b4*sin(4*time*w)+
49 a5*cos(5*time*w)+ b5*sin(5*time*w)+ a6*cos(6*time*w)+ ...

b6*sin(6*time*w)+
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50 a7*cos(7*time*w)+b7*sin(7*time*w);
51

52 }
53 else {
54 Qgen = 0.0;
55 }
56 source = Qgen;
57 dS[eqn] = 0.0;
58

59 return source;
60 }
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Optimizer to find cell parameters

1 %% Execute the main script.-
2 clear
3 clc
4 tic
5

6 Eo = C1_Init;
7

8 % Load datas 1.-
9 load('DTp5.mat'); % Experimental Temperature data

10 DTp5=DTp5(1:2700); % Select time interval
11 Ts_exp = DTp5 + Eo.Tamb; % Exp. temperature at surface of ...

the cell
12

13 load('Pulse5_N21P1.mat'); % Load temperature by current pulses
14 Tamb=(Pulse5_N21P1(1:2700,1));
15

16 % -------------------------------------------------------------------------
17 load('Ip5.mat') % Current profile
18 Ip5=Ip5(1:2700);
19 Eo.SOC1 = 1-cumsum(Ip5*1/(3600*Eo.C0)); % State of charge (Counting ...

Coulomb)
20 Eo.I1 = Ip5;
21 % -------------------------------------------------------------------------
22

23 % Fitting
24

25 [A,resnorm,residual,exitflag,output,lambda,jacobian] = ...
lsqcurvefit(@(A,t) ...
C2_lumped(A,t,Eo),Eo.A0,Eo.tpo,Ts_exp,Eo.lb,Eo.ub,Eo.options);

26

27 Eo.outP = 1;
28 FitData = C2_lumped(A,Eo.tpo,Eo);
29

30 y1 = FitData(:,1); % Temperature of the cell
31 A % Vector of results
32 Cp = A(1)/Eo.mass % Heat capacity
33 err_f = sum(((DTp5+Eo.Tamb) - y1(1:end,1)).^2) ./ size(y1,1)
34 epsilon=0.9;
35 sigma=5.67e-8;
36 toc
37

38 % Plot results------------------------------------------------------------
39 figure
40 plot(Ts_exp-273,'color',rgb('Navy'),'LineWidth',1.5); hold on
41 plot(y1-273,'color',rgb('Red'),'LineWidth',1.5)
42 plot(Tamb,'color',rgb('Black'),'LineWidth',1.5)
43 hold off
44

45 leg=legend('Measured temperature','Fitted temperature','Ambient ...
temperature','location','northwest');

46 xlabel('Time [s] '); ylabel('TemperatureÂt’)
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1 %% Initialize.-
2

3 function Eo = C1_Init()
4

5 % To define a structure.-
6 Eo = struct;
7

8 tdis = 2699; % Discharging time
9 Eo.Tamb = 23.3+273; % Ambient temperature

10

11 Eo.Asurf = pi*0.026*0.065+(2*pi*0.013^2); % Cell Surface area
12

13 Eo.A0 = [130; 2.5]; % Initial condition of parameters
14 Eo.lb = [100 1]; % [Cp Rin] Lower bound (Evoid ...

0->diverges)
15 Eo.ub = [140 5]; % Upper bound of parameters
16

17

18 % From experiment
19 Eo.tpo = 0:1:tdis; % dischargig time
20

21 % Set options to avoid stop the curvefit before to reach optim parameters.-
22 Eo.options = optimoptions('lsqcurvefit');
23 Eo.options.MaxIterations = 1000; % Default 400
24 Eo.options.MaxFunctionEvaluations = 5000; % Default 200
25 % -------------------------------------------------------------------------
26

27 Eo.h = 1; % Step for Runge Kutta ...
(RK4)solver

28 Eo.tspan = [0 tdis]; % Time span for RK4 solver
29 Eo.tspan2 = (Eo.tspan(1):Eo.h:Eo.tspan(2));
30 Eo.C0 = 4.368; % Capacity of the cell Ah
31 Eo.y0 = [Eo.Tamb]; % Cell temp. at t=0
32 % -------------------------------------------------------------------------
33 Eo.R = 0.058; % Resistance of the battery [ohm] 0.06391;
34 Eo.mass = 0.0875; % mass of the cell [kg]
35 % -------------------------------------------------------------------------
36 %Eo.outP = 0; % 0: Resuelve el ...

optimizador. 1: Entrega dos Temperaturas.-

1 % Function for a lumped model
2

3 function S = C2_lumped(A,t,Eo)
4

5 Eo.A = A;
6 [time, T] = C3_RK(@C4_DifEq, Eo.tspan, Eo.y0, Eo.h, Eo);
7 %if Eo.outP == 0
8 %S = T(:,1);
9 %else

10 S = T;
11 %end
12 end
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1 % Differential equation for cell temeperature
2 function dy = C4_DifEq(t,y,Eo)
3

4 SOC = interp1(Eo.tspan2,Eo.SOC1,t);
5 I = interp1(Eo.tspan2,Eo.I1,t);
6

7 dydt = zeros(1,1);
8 dydt(1)= (Eo.Tamb - y(1))/(Eo.A(1)*(Eo.A(2)+14.14))+...
9 (Resistance21ct(SOC,y(1))*I^2-I*y(1).*EntropyfunN21(SOC)*1e-3)*14.14/...

10 (Eo.A(1)*(Eo.A(2)+14.14));
11

12 dy = dydt;
13

14 end

1 %Cell entropy
2 function y = C5_Entropy(SOC)
3

4 SoC = 0:0.1:1;
5 Smean = [-0.1467 -0.0143 0.0257 0.1890 0.1690 0.1557 0.039 0.031 0.0303...
6 0 -0.0093];
7 if ((SOC≥0) && (SOC≤1))
8 y = interp1(SoC,Smean,SOC,'spline');
9 else

10 disp('Error: SOC must be beetween [0 1]');
11 end
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