
70

Plausible Sealing for Gradual Parametricity

ELIZABETH LABRADA∗, University of Chile, Chile

MATÍAS TORO, University of Chile, Chile

ÉRIC TANTER, University of Chile, Chile

DOMINIQUE DEVRIESE, KU Leuven, Belgium

Graduality and parametricity have proven to be extremely challenging notions to bring together. Intuitively,
enforcing parametricity gradually requires possibly sealing values in order to detect violations of uniform
behavior. Toro et al. (2019) argue that the two notions are incompatible in the context of System F, where
sealing is transparently driven by potentially imprecise type information, while New et al. (2020) reconcile both
properties at the cost of abandoning the syntax of System F and requiring user-provided sealing annotations
that are not subject to graduality guarantees. Furthermore, all current proposals rely on a global form of
dynamic sealing in order to enforce parametric behavior at runtime, which weakens parametric reasoning
and breaks equivalences in the static language. Based on the observation that the tension between graduality
and parametricity comes from the early commitment to seal values based on type information, we propose
plausible sealing as a new intermediate language mechanism that allows postponing such decisions to runtime.
We propose an intermediate language for gradual parametricity, Funky, which supports plausible sealing in a
simplified setting where polymorphism is restricted to instantiations with base and variable types. We prove
that Funky satisfies both parametricity and graduality, mechanizing key lemmas in Agda. Additionally, we
avoid global dynamic sealing and instead propose a novel lexically-scoped form of sealing realized using a
representation of evidence inspired by the category of spans. As a consequence, Funky satisfies a standard
formulation of parametricity that does not break System F equivalences. In order to show the practicality of
plausible sealing, we describe a translation from Funk, a source language without explicit sealing, to Funky,
that takes care of inserting plausible sealing forms. We establish graduality of Funk, subject to a restriction
on type applications, and explain the source-level parametric reasoning it supports. Finally, we provide an
interactive prototype along with illustrative examples both novel and from the literature.

CCS Concepts: • Theory of computation→ Operational semantics.

Additional Key Words and Phrases: Gradual typing, polymorphism, parametricity

ACM Reference Format:

Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese. 2022. Plausible Sealing for Gradual
Parametricity. Proc. ACM Program. Lang. 6, OOPSLA1, Article 70 (April 2022), 28 pages. https://doi.org/10.
1145/3527314

∗Research conducted while Elizabeth was affiliated with Vrije Universiteit Brussel and KU Leuven, Belgium.
This work is partially funded by ANID FONDECYT projects 1190058 and 3200583, Chile.

Authors’ addresses: Elizabeth Labrada, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef
851, Santiago, Chile, elabrada@dcc.uchile.cl; Matías Toro, University of Chile, PLEIAD Lab, Computer Science Department
(DCC), Beauchef 851, Santiago, Chile, mtoro@dcc.uchile.cl; Éric Tanter, University of Chile, PLEIAD Lab, Computer Science
Department (DCC), Beauchef 851, Santiago, Chile, etanter@dcc.uchile.cl; Dominique Devriese, KU Leuven, imec - DistriNet,
Leuven, Belgium, dominique.devriese@kuleuven.be.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/4-ART70
https://doi.org/10.1145/3527314

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3527314
https://doi.org/10.1145/3527314
https://doi.org/10.1145/3527314

70:2 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

1 INTRODUCTION

Parametric polymorphism enables the generic definition of functions and types, providing as benefits
code reusability and representation independence. System F [Girard 1972; Reynolds 1974] is the
standard language to formalize this notion of parametric polymorphism. Relational parametricity
stipulates that the behavior of polymorphic functions must be independent of the specific types
they are instantiated with. For instance, the behavior of a function f of type ∀𝑋 .𝑋 → 𝑋 should
not depend on the type 𝑋 it is instantiated with and, consequently, should treat the argument of
type 𝑋 opaquely. Hence, f [Int] 42 should never return a different value than 42.

Also, in recent years, gradual typing has become a relevant feature for programming languages
because it combines the best of static and dynamic type checking. Central to gradual typing is
the notion of precision between types, which can range from fully-precise static types to the fully-
imprecise unknown type (hereafter written ?), with partially specified types in between, such as
Int → ?. Among the expected properties of gradual languages [Siek et al. 2015], a particularly
challenging one is the dynamic gradual guarantee (DGG), also called graduality [New and Ahmed
2018]. Informally, graduality is a monotonicity property of reduction with respect to precision:
introducing imprecision in a program ought not change its behavior. For instance, the function
𝜆𝑥 : ?. 𝑥 + 1 of type ? → Int should be transparently usable in place of 𝜆𝑥 : Int. 𝑥 + 1.

It turns that out that integrating parametric polymorphism and gradual typing into a language
while preserving parametricity and graduality is extremely challenging [Ahmed et al. 2009, 2017;
Igarashi et al. 2017; Matthews and Ahmed 2008; New et al. 2020; Toro et al. 2019]. The difficulty
observed in these efforts is a strong tension between the two desirable properties, considering that
functions may attempt to use gradual typing to bypass parametricity. For example, the following
function of type ∀𝑋 .𝑋 → 𝑋 should not be allowed to treat the value 𝑥 as an integer, even when 𝑋

happens to be instantiated to Int:

(Λ𝑋 . 𝜆𝑥 :𝑋 . ((𝑥 :: ?) + 1) :: 𝑋) [Int] 42 (we write 𝑡 :: 𝑇 for type ascriptions)

To prevent this application from reducing to ((42 :: ?) + 1) :: Int, gradual polymorphic languages
have generally relied on a form of dynamic sealing [Matthews and Ahmed 2008]. Essentially, the
function (Λ𝑋 . 𝜆𝑥 :𝑋 . ((𝑥 :: ?) +1) :: 𝑋) is not applied to type Int and value 42; instead, the language
generates a fresh seal 𝛼 and applies the function to 𝛼 and a sealed version of the value 42, and
unseals the result. This approach ensures that effectively-parametric code behaves as usual, but
that the above example fails (because addition fails on sealed values):

(Λ𝑋 . 𝜆𝑥 :𝑋 . 𝑥) [Int] 42 →∗ unseal𝛼 (seal𝛼 (42)) →
∗ 42

(Λ𝑋 . 𝜆𝑥 :𝑋 . ((𝑥 :: ?) + 1) :: 𝑋) [Int] 42 →∗ unseal𝛼 (((seal𝛼 (42) :: ?) + 1) :: 𝛼) →∗ error

Unfortunately, when applying a polymorphic function with an imprecise type, the decision of
whether arguments should be sealed or not is not so clear-cut. Consider, for example, the functions
𝑓1 = Λ𝑋 . 𝜆𝑥 : ?. 𝑥 :: 𝑋 and 𝑓2 = Λ𝑋 . 𝜆𝑥 : ?. 𝑥 :: Int. By graduality, the two functions should behave
like their more precisely-typed versions Λ𝑋 . 𝜆𝑥 :𝑋 . 𝑥 :: 𝑋 and Λ𝑋 . 𝜆𝑥 : Int. 𝑥 :: Int, respectively.
However, this means that applying both functions to type Int and value 42 should treat their
arguments differently even though they have the same parameter type. Applying 𝑓1 [Int] 42 should
seal the argument 42, while 𝑓2 [Int] 42 should not. Most proposed gradual parametric languages
decide whether to seal or not based on the type of the argument and the function being applied, i.e.
they apply type-driven sealing. However, there is no way to make this choice a priori and modularly,
without breaking graduality. For example, GSF [Toro et al. 2019] does not seal the argument here,
breaking graduality for 𝑓1.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:3

A recent proposal by New et al. [2020] side-steps the conundrum by shifting the burden of choice
to programmers using term-driven sealing. PolyG𝜈 requires programmers to specify whether argu-
ments should be sealed or not, by writing for example f1 [X=Int] (sealX (42)) and f2 [X=Int] 42,
respectively.1 While this strategy has produced the first parametric gradual calculus, it is important
to realize that this calculus does not solve the same problem as the one tackled by other proposals
like GSF, 𝜆𝐵 [Ahmed et al. 2017] or System F𝐺 [Igarashi et al. 2017]. Gradual languages are intended
to smoothly support the static-to-dynamic checking spectrum, but as noted by New et al., PolyG𝜈

supports this only when the untyped code already contains the right sealing annotations. In other
words, in PolyG𝜈 , sealing annotations are not subject to graduality guarantees, i.e. f [Int] 42

and 𝑓 [Int] seal𝑋 (42) are unrelated by precision, and therefore graduality does not relate their
respective behavior.
In this paper, we revisit the original problem: gradual parametricity with type-driven sealing.

Consider again the applications 𝑓1 [Int] 42 and 𝑓2 [Int] 42. Instead of making an arbitrary choice
between sealing or not sealing, we propose to keep both options open, so the decision can be
made when the value 42 is actually used. This novel technique, called plausible sealing, essentially
allows our calculus to treat the applications as 𝑓𝑖 [Int] (maybeSeal𝑋 (42)). The maybe-sealed
value 42 embeds the fact that it may be both sealed at 𝑋 and unsealed, which makes the two
applications successfully reduce to 42. To study plausible sealing, we propose an intermediate
gradual parametric language, Funky (F?𝜀), which can be used as the elaboration target of different
gradual source languages; we describe one such source language, Funk (F?), with the familiar syntax
of System F.2 Note that for simplicity, we formalize the approach in a setting where polymorphism
is limited to instantiations with base and variable types.

The key novelty of the intermediate language F?𝜀 is that it introduces maybe-sealing forms, which
are interpreted thanks to an innovative runtime tracking technique. Additionally, F?𝜀 avoids the use of
dynamically-generated global seals. In previous calculi, a seal 𝛼 can continue to exist when the type
variable 𝑋 for which it was created goes out of scope: (Λ𝑋 . 𝜆𝑥 :𝑋 . 𝑥 :: ?) [Int] 42 →∗ seal𝛼 (42).
In fact, seals in these calculi behave as a form of symbolic cryptography, which makes it possible
to embed languages with runtime sealing [Pierce and Sumii 2000; Sumii and Pierce 2004]. But
at the same time, global seals have been shown to break equivalences that hold in System F
[Devriese et al. 2018]. This global nature of seals is also the reason that parametricity theorems for
gradual calculi so far have used formulations based on Kripke worlds containing semantic types
for dynamically-allocated seals. F?𝜀 features lexically-scoped sealing, and it is the first to support a
stronger formulation of parametricity where semantic types are tracked in a lexical environment,
similar to traditional formulations of parametricity [Reynolds 1983]. As such, F?𝜀 could perhaps
satisfy the ambitious criterion for gradual languages recently proposed by Jacobs et al. [2021]: fully
abstract embedding of the statically-typed language into the gradually-typed language. This has
been disproved by Devriese et al. [2018] for 𝜆𝐵, but their counterexample, which essentially relies
on the global nature of seals in 𝜆𝐵 and GSF, does not apply to F?𝜀 .

3 Finally, we prove both graduality
and parametricity for the intermediate language F?𝜀 .

The elaboration of the source language F? to F?𝜀 is in charge of introducing maybe-sealing forms
when imprecise types occur in type applications. For F?, we establish graduality, currently subject
to a restriction on type applications. Specifically, reasoning about graduality requires users to
verify that the types of polymorphic functions being applied have the same shape; for instance,
graduality holds between functions of types ∀X.X→X and ∀X.?→?, but not between ∀X.X→X and

1As the syntax suggests, type variables in PolyG𝜈 are introduced at instantiation time, with outward scoping; this requires
linear typing environments and a mechanism to limit their propagation to the current lambda abstraction [New et al. 2020].

2Funk is for F-unknown (F?), and Funky is for Funk with evidence (F?𝜀).
3See the technical report for a proof sketch that their counterexample does not apply to F?𝜀 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:4 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

∀X.?. Except for this technical restriction, type and term precision is standard and graduality in F?

allows programmers to reason in much the same way as they would with the natural notion of
term precision.
In addition to graduality, we explain the source-level parametric reasoning that F? offers. It is

worth noting that parametric reasoning at the source level of a gradual language is subtle because of
another point of tension between parametricity and gradual typing that was pointed out by New et al.
[2020]. Consider the two applications: (Λ𝑋 . 𝜆𝑥 : ?. 𝑥 :: 𝑋) [Int] 42 and (Λ𝑋 . 𝜆𝑥 : ?. 𝑥 :: 𝑋) [Bool] 42.
Since the behavior of the polymorphic function Λ𝑋 . 𝜆𝑥 : ?.𝑥 :: 𝑋 should not depend on the type it
is applied to, a strict interpretation of parametricity dictates that both applications should behave
the same. At the same time, by graduality, the first application should behave equivalently to the
following more precisely typed version, which reduces to 42: (Λ𝑋 . 𝜆𝑥 :𝑋 . 𝑥 :: 𝑋) [Int] 42 →∗ 42.
However, the second application is of type Bool and there is no reasonable way to come up with a
boolean value to return. Even worse, because parametricity implies preservation of relatedness of
values, successfully returning a boolean in the second application would imply a contradiction,
because that boolean would have to be related to 42 in an arbitrary, caller-chosen relation, even
when that relation is empty. In other words, this strict interpretation of source-level parametricity
is incompatible with graduality. However, that is not the end of the story.
In F?, the second application fails at runtime: the value 42 does not have the right type to be

sealed at type 𝑋 , so it is not maybe-sealed, and we simply report an error when it is treated as a
value of type 𝑋 . This means that some polymorphic F? terms may behave differently depending on
the type they are applied to, as we have (Λ𝑋 .𝜆𝑥 :?.𝑥 :: 𝑋) [Int] 42 ↦−→

∗
42 and (Λ𝑋 .𝜆𝑥 :?.𝑥 :: 𝑋)

[Bool] 42 ↦−→
∗
error. It would however be incorrect to conclude that F? is not parametrically

polymorphic. First, uniformity of behavior is satisfied for polymorphic functions of fully precise
types,4 even if they internally use type applications that do (!). In these cases, the definition of
parametricity coincides with the standard definition for System FÐexcept that related terms may
also simultaneously fail with a runtime type error. In other words, the differences in behavior can
only occur for imprecise types (and can therefore be avoided using ascriptions to precise types).
Intuitively, these differences are a consequence of F? applying plausible sealing in an attempt to
infer whether the programmer intended to treat arguments (or results) as values of the quantified
type 𝑋 , in a maximally permissive way. However, the behavior of plausible sealing is entirely
predictable based on type information available statically at the call site, and does not depend on
runtime type information. When one takes this behavior into account, gradual parametricity in F?

still implies useful free theorems. For example, for any 𝑓 : ∀X.?→X, 𝑓 [Bool] true may diverge, fail
or return the value true, but it can never return false.

Contributions. We develop a novel approach to gradual parametricity based on plausible sealing.
Technically, we use lexically-scoped rather than global sealing, and a novel runtime tracking
mechanism based on proof-relevant precision to account for postponing sealing decisions. This is
achieved using a representation of evidence inspired by the category of spans. Focusing on the new
ideas, we formally develop our approach in a simplified setting where polymorphism is restricted to
instantiations with base and variable types. We prove that the proposed intermediate language F?𝜀
satisfies both parametricity and graduality, and mechanize the two key lemmas in Agda needed to
prove these properties. We illustrate the practicality of F?𝜀 by providing a translation from the source
gradual language F?. For F?, we establish graduality, subject to a restriction on type applications,
and explain the source-level parametric reasoning it offers.

4Later on, we introduce a mechanism to annotate occurrences of the unknown type with the subset of type variables in
scope that it might denote, and explain the impact of this feature on parametric reasoning for imprecise types.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:5

Overview. In Section 2, we illustrate the behavior of F?𝜀 programs by starting from their F? source
counterparts, and compare to other approaches. We then formalize the core calculus F?𝜀 (Section 3),
describe its novel form of runtime tracking mechanism for plausible sealing (Section 4), and prove
parametricity (Section 5) and the gradual guarantees (Section 6). We then formalize the source
language F? and its elaboration to F?𝜀 . We discuss the parametric reasoning enjoyed by F?, and the
gradual guarantees, subject to a technical restriction on type applications (Section 7). We discuss
the lifting of the technical restrictions of this work in Section 8. Section 9 discusses related work
and Section 10 concludes.
Full definitions and proofs of the main results can be found in the companion technical report,

provided as supplementary material. Mechanized proofs of two key technical results in Agda (Lem-

mas 4.6 and 6.2, marked with ✓) are also included as supplementary material. The implementation
(https://doi.org/10.5281/zenodo.6341550) exhibits typing derivations, the translation from F? to
F?𝜀 , and reduction traces, including all the examples mentioned in this paper and of the related
literature.

2 BACKGROUND AND OVERVIEW OF F?𝜀

This section recalls the basics of gradual typing, emphasizing the Abstracting Gradual Typing
methodology [Garcia et al. 2016], which inspired this work. It also outlines the behavior of F?𝜀 with
specific source program examples in F? from the current state of the art of gradual parametricity,
informally shedding light on how plausible sealing is realized and compares to other approaches.

2.1 Background on (Abstracting) Gradual Typing

Basics of gradual typing. Gradual typing smoothly supports the range from static to dynamic
type checking by introducing the unknown type (here denoted ?) and allowing types to be partially
specified [Siek and Taha 2006]. For instance, ? → Int is the gradual type of functions whose domain
is statically unknown ? and whose codomain is Int. This type is said to be less precise (or more
imprecise) than static types such as Bool → Int, and more precise than both ? → ? and ? [Siek
et al. 2015]; this is noted Bool → Int ⊑ ? → Int ⊑ ? → ? ⊑ ?. Optimistically, a variable of type ?
can be used at any type statically; at runtime, some mechanism ensures that a runtime type error is
raised before any unsafe operation is performed. For instance, the application (𝜆𝑥 : ?. 𝑥 + 1) false is
well-typed, but results in a runtime error before addition is performed.

The flexibility of gradual typing is achieved by relaxing type predicates (such as type equality,
subtyping, etc.) to optimistically account for imprecision. For example, type consistency (denoted ∼)
is the relaxation of type equality [Garcia et al. 2016; Siek and Taha 2006]. The application example
above is well typed because Bool ∼ ? and ? ∼ Int (but Bool ≁ Int!). The dynamic semantics of a
gradual source language is typically given by elaboration to a cast calculus [Siek and Taha 2006]. The
elaboration inserts casts to guarantee that violations of static assumptions are detected, triggering
type errors at runtime. For instance, the source term 𝜆x : ?.x+1 would typically be elaborated to
the target term 𝜆x : ?.⟨Int⇐=?⟩x+1, where the cast ⟨Int⇐=?⟩ ensures that the argument given at
runtime is indeed an Int value, otherwise an error is raised.5

Abstracting gradual typing. The Abstracting Gradual Typing framework (AGT) [Garcia et al.
2016] derives the static and dynamic semantics of a gradual language starting from a static language
and its type safety argument. The static semantics exploit a Galois connection between gradual
types and the sets of static types they denote: predicates on gradual types are obtained by existential
lifting of static predicates. For instance, consistency is the lifting of equality: two gradual types

5We use the blue color and sans serif fonts for source languages and the red color and bold fonts for target languages.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

https://doi.org/10.5281/zenodo.6341550

70:6 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

are consistent iff there exist two static types in their denotations (a.k.a. concretizations) that are
equal. More advanced predicates and functions for gradual types, such as consistent subtyping and
consistent join, can also be derived following this approach.

In AGT, the dynamic semantics is defined by reduction of gradual typing derivations augmented
with evidence for consistent judgments. Equivalently, one can understand this approach as defining
an elaboration to an evidence-based target language, by analogy with cast calculi. The key notion
here is that of evidence, which tracks the most precise information regarding a consistent judgment
at runtime. During reduction, evidences are combined, just like casts, and this combination may
fail with a runtime error, whenever the resulting consistent judgment is not justified anymore.
This mechanism at least ensures type safety, and can be adjusted to ensure other properties
(e.g. noninterference [Toro et al. 2018], parametricity [Toro et al. 2019]).

While the concept of evidence is very general and applies to a variety of typing disciplines,
Garcia et al. [2016] observe that for a language with only type consistency, evidence coincides
with the middle type of threesomes [Siek and Wadler 2010]. A threesome is a three-place cast,

⟨G2

G
⇐= G1⟩, representing a downcast from the source type G1 to the middle type G, followed by

an upcast from the middle type to the target typeG2. This representation allows for space efficiency
of cast calculi: when combining two threesomes, it is sufficient to retain the outermost types and
keep the meet ⊓ (according to the precision partial order) of the middle types. If such a meet is
not defined, the combination of threesomes fails with a cast error. For instance, the combination

⟨Int
Int
⇐= ?⟩⟨?

Bool
⇐= Bool⟩ fails because Int ⊓ Bool is undefined.

Likewise, an evidence 𝜖 for a consistency judgment, noted 𝜖 : G1 ∼ G2, is naturally represented
by a common more precise type G such that G ⊑ G1 and G ⊑ G2; for instance Int : Int ∼ ?. At
runtime, reduction proceeds by combining evidences through consistent transitivity (◦), which is,
like for threesomes, the precision meet of the evidences. For example, term 𝜖2 (𝜖1 x :: Int) :: ? (with
𝜖i = Int) reduces to (𝜖1 ◦ 𝜖2) x :: ?, where 𝜖1 ◦ 𝜖2 = Int ⊓ Int = Int.

The elaboration from the source language to the evidence-based target language simply inserts
the initial evidence of all consistent judgments used in the gradual typing derivation of the term.
For example, if ⊢ t : G then the source term t :: G′ would elaborate to 𝜖 t :: G′, where t is the
elaboration of the subterm t, and 𝜖 is the initial evidence between the type G and the ascribed type
G′, i.e. G ⊓ G′. In an elimination form such as a function application, elaboration introduces an
ascription to ensure that the top-level type constructor matches.

2.2 Evidence for Plausible Sealing

In this work, we adopt AGT for deriving the static semantics of F? and F?𝜀 , and define the dynamic
semantics of F? by elaboration to the evidence-based target language F?𝜀 . Prior work using AGT
for gradual parametricity (GSF [Toro et al. 2019]) has shown that the semantics obtained blindly
with AGT only ensure type safety, but not parametricity. Ensuring parametricity requires a refined
representation of evidence and consistent transitivity. In GSF, evidence is represented not as a
single type, but as a pair of types (extended with type names tracked globally), in order to capture
the directionality of consistent judgments, which can intuitively denote either sealing or unsealing.
Consistent transitivity is refined to forbid unsound unsealing and hence enforce parametricity. In
order to address the limitations discussed in the introduction, we design a novel representation of
evidence in F?𝜀 , to realize plausible sealing. The rest of this section informally describes this novel
representation of evidence and the achieved behavior.
Let us focus on the two terms (1) f1 [Int] 42 and (2) f2 [Int] 42 used in the introduction. As

explained, these are key illustrations of the challenge of type-driven sealing: any early decision
to either seal or not seal the argument would make one of these examples fail, thereby breaking

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:7

graduality. Our approach consists of capturing the different possibilities regarding sealing, and
postponing the choice to seal or not to seal until a value is used; as a consequence, both programs
successfully reduce to 42. This is achieved by a novel representation of evidence, which accommo-
dates the different valid usages of an argument of unknown type, whenever the unknown type
is in scope of some type variables. The first step consists of decorating the unknown type with
the type variables that are in scope. So the type of both elaborated polymorphic functions in F?𝜀
are ∀X .?X → X and ∀X.?X → Int, respectively, since 𝑋 is the only type variable in the scope of
the unknown type. The argument 42 is of type Int, so upon elaboration an ascription to ?∅ is
introducedÐthere are no type variables in scope at that point. Hence, the elaboration of both
examples (where G stands for either X (1) or Int (2)) is:

(𝜖1 ((ΛX .𝜆x : ?X . 𝜖 x :: G) [Int]) :: ?∅ → Int) (𝜖2 42 :: ?∅) (1)

When these polymorphic functions are instantiated at type Int, the decorations of unknown
types are enriched with the instantiation information, so the lambda-abstractions both take an
argument of type ?X:Int. To proceed with the beta reduction, the argument 𝜖242 :: ?∅ is ascribed to
the expected argument type of the lambda, yielding the value v = 𝜖 ′42 :: ?X:Int. This value is the
maybeSeal𝑋 (42) used in the introduction. Observe that there are two ways in which the type of 42,
Int, is consistent with ?X:Int: either because ?X:Int stands for Int, or because it stands for X (which
happens to be instantiated with Int). So it is plausible that the value be sealed at type 𝑋 , though not
mandatory. In order to account for this multiplicity of possibilities, we let 𝜖 ′ be a set of justifications,
rather than a single justification as is standard in AGT (and in GSF). Both justifications support the
same consistency judgment Int ∼ ?X:Int, so using just the meet is insufficient. Instead, we represent
a justification of a consistent judgment between types G1 and G2 as a triple (G, c1, c2), where G
is the meet, and c1 (resp. c2) is a proof term that characterizes how G is more precise than G1

(resp. G2). Hence, precision in F?𝜀 is a proof-relevant notion, and evidences carry these proofs. In the
example, the precision judgments are injX : Int ⊑ ?X:Int and injInt : Int ⊑ ?X:Int, where the proof
terms injX and injInt denote the two possible injections of imprecision. We write reflInt for the
proof term of Int ⊑ Int. So we have:

𝜖 ′ = {(Int, reflInt, injX), (Int, reflInt, injInt)}

When v is substituted in the body, reduction proceeds by combining 𝜖 ′ with 𝜖 , the evidence
inserted by the elaboration of the ascription in the body (Equation 1), using consistent transitivity.
Importantly, in Example (1), 𝜖 justifies that the unknown type is consistent with X via injX , and
when Int is substituted for X, the proof term injX in 𝜖 does not change (although it now justifies
the judgment Int ⊑ ?X:Int rather than X ⊑ ?X). Then reduction proceeds by checking that there is
at least one justification in 𝜖 ′ that is compatible with 𝜖 ; otherwise an error is raised. Because such
a justification exists in both examples, they both successfully reduce to 42.
In essence, we treat type precision ⊑ in F?𝜀 not simply as a preorder, but as a category, and

we construct evidence as a variant of the category of spans. Spans are the triples (G, c1, c2), and
evidences are sets of spans. Composition of evidence through consistent transitivity can then be
defined in terms of a category-theoretic pullback operation, again generalizing the order-theoretic
meet that is used in regular threesomes and AGT.

2.3 Comparing Plausible Sealing and Prior Approaches

We now outline the behavior of F?𝜀 , informally shedding light on how plausible sealing is realized
and compares to other approaches. For the sake of simplicity and understanding, we use source
F? programs for the comparison. Note that, in order to be well typed, source terms in F? need to
be augmented with evidence in F?𝜀 , casts in 𝜆𝐵, and seal/unseal terms in PolyG𝜈 (possibly yielding

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:8 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

Table 1. Comparisons of gradual parametricity approaches.

Source term in F? F?𝜀 𝜆𝐵 System F𝐺 GSF PolyG𝜈

1 (ΛX.𝜆x : ? .x :: X) [Int] 42 42 error error error error / 42
2 (ΛX.𝜆x : ?.x :: Int) [Int] 42 42 42 42 42 42 / error
3 (ΛX.𝜆x : ? .x :: X) [Bool] 42 error error error error error

4 ((ΛX.𝜆x :X.x :: ?) [Int] 42) + 1 43 error error error error / 43
5 (ΛX.𝜆x :X.(x :: ?) + 1) [Int] 3 error error error error error

6 (ΛX.ΛY.𝜆x : ? .⟨x, x⟩ :: X×Y) [Int] [Int] 42 ⟨42, 42⟩ error error error error / error

two possible well-typed variants), in addition to superficial syntactic differences. Table 1 compares
F?𝜀 with prior approaches using a number of key examples from the literatureÐexcept Example
(6)Ðeither adapted or verbatim. Additional examples are provided in the technical report.

Examples (1) and (2) are the key examples discussed in Section 2.2. In GSF, 𝜆𝐵 and System F𝐺 ,
Example (1) fails with an error, and Example (2) yields 42, because these systems eagerly choose
not to seal the argument when it has the unknown type. In PolyG𝜈 , programmers have to use
explicit sealing to decide to seal or not, but this cannot be done modularly; one can obtain different
behaviors accordingly. Example (3) raises a runtime error at the ascription to X, as the type
variable is instantiated to Bool but a value of type Int is provided; together with Example (1), it
illustrates the shallow non-parametric behavior of F? discussed in the introduction. Note that other
approaches also raise an error in this example because the argument is not sealed, which implies
that Example (1) fails as well. Example (4) illustrates that, contrary to other approaches that use
global type names as a runtime sealing mechanism, sealing in F?𝜀 is lexically scoped: seals cannot
outlive the lexical boundary of a type abstraction. In the example, when 42 is returned by the
function, it is automatically unsealed and usable as a regular integer. In PolyG𝜈 , an explicit unseal
is needed to avoid failure. Example (5) illustrates the prevention of a violation of parametricity
at runtime. Example (6) illustrates yet another flexibility of plausible sealing that makes it more
expressive than prior approaches: evidence as sets of spans can support multiple sealing behaviors.
In this example, the argument of the function, 42, is treated as plausibly sealed to both X and Y at
the same time. This example fails in GSF. In PolyG𝜈 , programmers have to pick in advance whether
to seal with X or Y, and the example fails in both cases. Observe that this program does not have a
fully statically-typed counterpart, and therefore showcases an expressiveness gain of the gradual
language, which compromises neither graduality nor parametricity.
These examples illustrate the flexibility afforded by plausible sealing, as a novel point in the

design space of gradual parametricity.

3 THE EVIDENCE-BASED LANGUAGE F?𝜀

Now that we have informally explained our representation of evidence and the obtained behavior,
we turn to the formalization of F?𝜀 and its properties: parametricity and graduality. This section
centers on presenting the language without entering into the details of evidence: evidence and its
operators are treated abstractly. We provide the full details of evidence for F?𝜀 in Section 4. Sections 5
and 6 establish parametricity and graduality of F?𝜀 , respectively. Section 7 then studies the source
language F?, its elaboration to F?𝜀 , and its properties.

Syntax and static semantics. Figure 1 presents the syntax and semantics of F?𝜀 . A type G can
be either a base type, a type variable, a function type, a polymorphic type, or the unknown

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:9

X ∈ TypeVar, G ∈ GType, 𝜖 ∈ Evidence, t ∈ Term, ∆ ⊂ TypeVar, Γ ∈ Var
fin
⇀ GType

F ::= B | X G ::= B | X | G → G | ∀X .G | ?𝛅 𝛅 ::= 𝛅,X : F | ∅

u ::= b | 𝜆x :G .t | ΛX .t v ::= 𝜖 u :: G t ::= v | x | t t | t [F] | 𝜖 t :: G s ::= u | t

∆; Γ ⊢ s : G Term typing

Gasc
∆; Γ ⊢ s : G′ ∆ ⊢ G 𝜖 : G′ ∼ G

∆; Γ ⊢ 𝜖 s :: G : G
GappG

∆; Γ ⊢ t : ∀X .G ∆ ⊢ F

∆; Γ ⊢ t [F] : G [F/X]

t −−→ t or error Notion of reduction

(Rasc) 𝜖2 (𝜖1 u :: G1) :: G2 −−→

{

𝜖 u :: G2 if 𝜖 = 𝜖1 ◦ 𝜖2

error otherwise

(Rapp)
(𝜖1 (𝜆x :G11 .t) :: G1 → G2)

(𝜖2 u :: G1)
−−→

{

cod (𝜖1) (t [(𝜖 u :: G11)/x]) :: G2 if 𝜖 = 𝜖2 ◦ dom(𝜖1)

error otherwise
(RappG) (𝜖 (ΛX .t) :: ∀X .G) [F] −−→ (schm(𝜖) t :: G) [F/X]

Fig. 1. F?𝜀 : Syntax, Static and Dynamic Semantics (fragment).

type. 6 Observe that static types from System F are syntactically included in gradual types G.
In F?𝜀 , polymorphic types can only be instantiated with base types and type variables, called
instantiation types, and denoted by metavariable F. As mentioned in the introduction, this restriction
on polymorphism simplifies the already-dense technical development while still manifesting all the
subtleties of gradual parametricity identified in prior work. Another distinctive feature of F?𝜀 is that
it avoids the use of a global typename store as used in all prior work on gradual parametricity thanks
to the fact that the unknown type is indexed by an environment 𝛅. This instantiation environment
keeps track of the static and dynamic information related to type variables in scope: ?X:Int expresses
that type variable X is in scope and instantiated to Int. Uninstantiated type variables are associated
with themselves X : X, which for brevity we simply write as X. It is worth noting that in the type
?X:X , the two occurrences of X play a different role: the first is merely a label, while the second is
an actual occurrence of the type variable X.
A term t can be a value v, a variable, a term application, a type application (to an instantiation

type), or an ascription. Note the presence of an evidence 𝜖 in an ascription, to justify the fact that
the underlying term is of a type consistent with the ascribed type. Values v are ascribed raw values
𝜖u :: G, where 𝜖 justifies that the type of u is consistent with G. A raw value u can be a base value
b, a function, or a type abstraction. To avoid duplication of typing rules, we use metavariable s to
denote both raw values u and terms t.

The typing judgment ∆; Γ ⊢ s : G establishes that s has type G, under type variable environment
∆, and type environment Γ.∆ is used to track type variables in scope, and Γ to map variables to their
types. Most of the type rules are standard, closely following System F. Note that rule (Gasc) is the
only rule that uses the consistency relation; all other elimination rules require types to match exactly.
Elaboration from the source language F? is in charge of introducing the necessary ascriptions to
safely support the flexibility of gradual typing. Rule (GappG) is almost standard, save for the fact
that it restricts instantiations to instantiation types F. The type substitution operator G [F/X]

6We omit formal definitions for pairs, which are unsurprising and found in the technical report.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:10 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

is standard, except for occurrences of unknown types, for which type substitution is applied
to their instantiation environments 𝛅: (𝛅,X : F′) [F/X] = 𝛅 [F/X],X : F′[F/X]. For instance,
?Y:X,X:X [Int/X] = ?Y:Int,X:Int. Notice that type substitution on an instantiation environment 𝛅 only
affects type variable occurrences, not labels.

Dynamic semantics. The dynamic semantics of F?𝜀 are usual for an evidence-based reduction
semantics [Garcia et al. 2016; Toro et al. 2019], using reduction frames and notions of reduction.
Reduction uses the consistent transitivity operator ◦ to combine evidence and justify transitive
judgments. If 𝜖1 ◦ 𝜖2 is defined then it yields a more precise evidence, otherwise an error is raised.
For example, rule (Rasc) reduces nested ascriptions, such as value 𝜖1 u :: G1 ascribed to G2 using
evidence 𝜖2. Recall that 𝜖1 justifies that Gu, the type of u, is consistent with G1, noted 𝜖1 : Gu ∼ G1,
and likewise, 𝜖2 : G1 ∼ G2. Therefore, if 𝜖1 ◦ 𝜖2 is defined, then the resulting evidence justifies
the transitive judgment between Gu and G2, i.e. 𝜖1 ◦ 𝜖2 : Gu ∼ G2. Rule (Rapp) reduces a term
application substituting the argument in the body of the function. It first ascribes the argument to
G11, the type of x. To justify the transitive judgment of the beta reduction, it combines 𝜖2, with
dom(𝜖1). Evidence dom(𝜖1) and cod (𝜖1) can be extracted from 𝜖1 by reasoning about inversion on
consistency (𝜖1 : G11 → G12 ∼ G1 → G2). Evidence 𝜖1 justifies that G11→G12, the underlying type
of the function, is consistent with G1 → G2. Thus, evidence dom(𝜖1) justifies that G1 is consistent
withG11, and therefore 𝜖 ◦ dom(𝜖1), if defined, justifies that the type of the raw value u is consistent
withG11. The output of the function is ascribed to the expected return typeG2 using the co-domain
evidence cod (𝜖1). Rule (RappG) reduces type application by substituting type F in the schema
evidence schm(𝜖), in the body of the type abstraction t and in the scheme type G. By inversion
on consistency, if 𝜖 : ∀X.G′ ∼ ∀X.G, then schm(𝜖) : G′ ∼ G. Substitution on evidence 𝜖 [F/X] is
defined using substitution on types, for all type information that appears in the evidence (Section 4).
Substitution on terms t [F/X] is recursively defined over subterms, evidences, and types.
It is worth noting that rule (RappG) is remarkably standard unlike other gradual polymorphic

calculi where dynamic type generation happens in this rule, being stored in a global store. This
is made possible thanks to the use of the annotated unknown type ?𝛅 . Another point that has
relevance in the reduction of type applications is that the type of the redex can contain instantiated
type variables in scope. For example, term (𝜖2 (ΛX.𝜆x : ?X .𝜖1 x :: X) :: ∀X.?X → X) [Int] has type
?X:Int → Int with X in the instantiation environment of the unknown type. To obtain a term that
can be applied to an argument of type ?∅, an external evidence to the application is necessary to
justify that ?X:Int → Int is consistent with ?∅ → Int. As we saw in Section 2 and will explain in
detail in Section 7, this evidence is inserted by the elaboration from F? to F?𝜀 .

Properties. As expected from any language, F?𝜀 is type safe (i.e. well-typed F?𝜀 terms do not get
stuck). Thus, a well-typed program either evaluates to a value, a runtime error, or diverges. In
order to prove type safety, it is necessary to have some properties about the evidence, such as the
resulting evidence from consistent transitivity supports the transitive consistency judgment and
type substitution over the evidence supports the substitution over the judgment (Section 4).

Lemma 3.1 (Type Safety). If ⊢ t : G then either t
∗

↦−→ v with ⊢ v : G, t
∗

↦−→ error, or t diverges.

Of course, the most interesting properties of F?𝜀 are parametricity and graduality. We dive into the
details of these properties in Section 5 and Section 6 respectively, after giving a detailed account of
evidence, including its representation, operations, and properties thereof, in particular associativity
and monotonicity of consistent transitivity.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:11

c ::= reflF | c → c | ∀X.c | injF | inj→ (c) | inj∀(c) | inj?

c : G ⊑ G Proof-relevant precision

reflB : B ⊑ B reflX : X ⊑ X

𝛅 ⊆ 𝛅
′

inj? : ?𝛅 ⊑ ?
𝛅
′

c : G1 ⊑ G2 c′ : G′
1 ⊑ G′

2

c → c′ : G1 → G′
1 ⊑ G2 → G′

2

c : G1 ⊑ G2

∀X.c : ∀X.G1 ⊑ ∀X.G2

X : F ∈ 𝛅 𝛅 ⊢ F

injX : F ⊑ ?𝛅

injB : B ⊑ ?𝛅

c : G ⊑ ?𝛅 → ?𝛅
inj→ (c) : G ⊑ ?𝛅

c : G ⊑ ∀X.?𝛅,X
inj∀(c) : G ⊑ ?𝛅

c;c = c Composition of precision proof terms

reflB ;reflB = reflB reflX ;reflX = reflX (c1 → c2);(c
′
1 → c′2) = (c1;c

′
1) → (c2;c

′
2)

(∀X.c);(∀X.c′) = ∀X.(c;c′) reflB ;injB = injB reflF ;injX = injX

c1;inj_ (c2) = inj_ (c1;c2) c;inj? = c

G1 G G2
c1 c2

c1;c2 = c

Int Int ?X :Int
reflInt injInt

injInt

Int ?X :Int ?X :Int,Y:Int
injX inj?

injX

Fig. 2. Proof-relevant type precision, composition, and examples.

4 EVIDENCE FOR PLAUSIBLE SEALING IN F?𝜀

We now turn to the key technical innovation that makes F?𝜀 (and by extension, F?) able to address
the dilemma presented in Section 1: plausible sealing, implemented via a novel representation of
evidence based on a proof-relevant notion of gradual type precision. As explained in Section 2, for a
consistency judgment G1 ∼ G2, instead of having evidence only track a common more precise type
G, evidence is a set of spans, where each span includes a common more precise type G and two
proof terms that describe how G ⊑ G1 and G ⊑ G2 hold, respectively.

Proof-relevant precision. As mentioned in Section 2.2, there can be multiple ways of satisfying a
precision relation G ⊑ G′. To differentiate them, we extend the precision relation between types
with a proof term c that expresses how G is more precise than G′.

Proof-relevant precision is presented in Figure 2. The proof relevant judgment c : G ⊑ G′ denotes
that proof term c justifies that G is more precise than G′. A reflexive proof term reflF justifies
that F is more precise than F. A function proof term c → c′ witnesses that a function type is
more precise than another function type if their domains and codomains are related; likewise for
polymorphic proof terms (∀𝑋 .c). Proof term injX represents an injection from X into ?𝛅 , and
witnesses that if X is associated to F in 𝛅 and F is well-formed with respect to 𝛅, then F is more
precise than ?𝛅 . We say that a type F is well-formed with respect to 𝛅 (𝛅 ⊢ F) if F is a base type
B or is a type variable X and X : X ∈ 𝛅. For example, if X is not yet instantiated and X : X ∈ 𝛅,
then injX : X ⊑ ?X:X . If X : Int ∈ 𝛅, then injX : Int ⊑ ?X:Int. Injection injB witnesses that a
base type B is more precise than any unknown type. Proof term sequence inj→ (c) justifies that
function types are more precise than unknown: if c witnesses that a type G is more precise than

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:12 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

?𝛅 → ?𝛅 , then inj→ (c) justifies that G is more precise than ?𝛅 . Similarly, inj∀(c) witnesses that
polymorphic types are more precise than unknown respectively. inj? justifies that an unknown
type is more precise than another if the environment of the former is contained in the environment
of the latter.

To support transitive judgments of precision, we define the composition of proof terms in Figure 2.
A reflexive proof term combinedwith itself yields the same proof term. The combinations of function,
and abstraction proof terms are defined inductively. The combination of a reflexive base type proof
termwith an injection from that type yields the latter. Similarly, the combination of a reflexive reflF
proof term with an injection from X, yields just the injection from X. Finally, the combination of an
inj? from the right can always be dropped. Figure 2 illustrates graphically the composition function
along some examples. If c1 : G1 ⊑ G, and c : G ⊑ G2, then c1;c2 : G1 ⊑ G2. If reflInt : Int ⊑ Int,
and injInt : Int ⊑ ?X:Int, then as reflInt;injInt = injInt, then injInt : Int ⊑ ?X:Int. Finally, if
injInt : Int ⊑ ?X:Int, and inj? : ?X:Int ⊑ ?X:Int,Y:Int, then injInt : Int ⊑ ?X:Int,Y:Int. With these
reflexivity and composition operators, gradual types and type precision proof terms can be seen as
the objects and morphisms of a category, which will be useful in Section 4.

Evidence and consistent transitivity. As mentioned before, evidence is defined as a set of
justifications, accounting for the multiple possibilities in which two types can be consistent. Using
proof-relevant type precision, evidence 𝜖 is defined as a non-empty set of spans { S, ... }, where a
span S is a tuple (G, c1, c2) such that if 𝜖 : G1 ∼ G2, then G is a common more precise type than
G1 and G2, and c1 and c2 justify łhowž, respectively.

Definition 4.1. 𝜖 : G1 ∼ G2 iff ∀(G, c1, c2) ∈ 𝜖, c1 : G ⊑ G1 ∧ c2 : G ⊑ G2.

For example, 𝜖 = {(Int, reflInt, injInt), (Int, reflInt, injX)} justifies that Int ∼ ?X:Int, because
reflInt : Int ⊑ Int, injInt : Int ⊑ ?X:Int, and injX : Int ⊑ ?X:Int. Therefore, as explained in
Section 2, the term 𝜖42 :: ?X:Int corresponds exactly to the maybe-sealed value maybeSeal𝑋 (42)

from the introduction: the evidence holds both possible justifications.
The type substitution definition on evidence, and more precisely on proof terms, is fundamental

for the plausible sealing mechanism to preserve parametricity. Type substitution for evidence is
defined as the type substitution for each of its spans. Type substitution for a span is defined as the
type substitution of its components. For example, (X, reflX , reflX) [F/X] = (F, reflF , reflF) and
(X, injX , reflX) [F/X] = (F, injX , reflF). Note that injX [F/X] = injX is essential to preserve
sealed values; otherwise, we would forget the sealing if we apply the substitution.

To define consistent transitivity for this representation of evidence, we first define the pullback
operator between proof terms.
Lemma 4.2 (Pullback operator and its universal property).

There exists a partial pullback operator such that if c1 : G1 ⊑ G and
c2 : G2 ⊑ G, and pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5), then
c3 : G3 ⊑ G1, c4 : G3 ⊑ G2, c3;c1 = c5 and c4;c2 = c5. The pullback
operator is universal in the following sense. If there exists G′

3, c
′
3, c

′
4

and c′5 such that c′3;c1 = c′5 and c′4;c2 = c′5, then pullback(G, (G1, c1),

(G2, c2)) = (G3, c3, c4, c5) and there exists a unique c : G′
3 ⊑ G3 such

that c;c3 = c′3, c;c4 = c′4 and c;c5 = c′5.

G

G1 G2

G3

G′
3

c1 c2

c3 c4

c′3 c′4

c5

c

Our pullback operator and its universal property are a mild adaptation of the standard definition
in category theory [nLab contributors 2021a]. Figure 3 illustrates our pullback operator, along
with two examples. The first example (second diagram) calculates pullback(?X:Int, (Int, injX),

(Int, injX)), returning (Int, reflInt, reflInt, injX). Note that the diamond diagram commutes, ob-
taining injX both on the left and on the right. The second example (third diagram) tries to calculate

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:13

G

G1 G2

G3

c1 c2

c3 c4

c5

?X :Int

Int Int

Int

injX injX

reflInt reflInt

injX

?X :Int

Int Int

Int

̸⟲

injX injInt

reflInt reflInt

Fig. 3. Pullback and examples.

G′
1 G

G1

G′
2

G2

G3

c′1

c1 c2

c′2
c3 c4

c5

c6 c7

Int ?X :Int

Int

?Y:Int

Int

Int

reflInt

injX injX

injYinjX
reflInt reflInt

Fig. 4. Consistent transitivity for spans and example.

pullback(?X:Int, (Int, injX), (Int, injInt)), but it is undefined since there is no gradual type and
proof terms such that the diagram commutes. The definition of the pullback operator is algorithmic,
proceeding in most cases congruently.
The universal property in Lemma 4.2 establishes that if G′

3 (with proof terms c′3 and c′4) makes
the pullback diagram commute, then the pullback is defined, resulting in type G3 (with proof
terms c3 and c4), the less precise type that makes the diagram commute. Additionally, there exists
a proof term c such that c : G3 ⊑ G′

3 and all sub-diagrams commute. For example, suppose
c1 = c2 = inj? and G = G1 = G2 = ?X:Int. Since G′

3 = Int, with c′3 = c′4 = injX , makes the
diagram commute, we know that the pullback exists. In this case, we know that pullback(?X:Int,

(?X:Int, inj?), (?X:Int, inj?)) = (?X:Int, inj?, inj?, inj?). Observe that there exist two proof terms
c such that c : G3 ⊑ G′

3, c = injInt and c = injX . However, only c = injX satisfies c;c3 = c′3,
c;c4 = c′4 and c;c5 = c′5. Consistent transitivity between spans is then defined as follows:

Definition 4.3 (Consistent transitivity for spans). Let c1 : G1 ⊑ G, c′1 : G1 ⊑ G′
1, c2 : G2 ⊑ G

and c′2 : G2 ⊑ G′
2. We pose (G1, c

′
1, c1) ◦ (G2, c2, c

′
2) = {(G3, c6, c7) | pullback(G, (G1, c1), (G2, c2)) =

(G3, c3, c4, c5) ∧ c3;c
′
1 = c6 ∧ c4;c

′
2 = c7}.

The definition is very close to the standard definition of composition of spans [nLab contributors
2021b], except that we are dealing with a partial pullback and a set of spans rather than a single
span. Figure 4 graphically supports the definition of consistent transitivity, along with an example.
First the pullback of c1 and c2 is computed. If the pullback is defined, then the new evidence
type is computed using the common gradual type from the pullback G3, and new proofs that
G3 is more precise than G′

1 and G′
2 using the proof-relevant composition operator. Note that the

result of consistent transitivity for spans is either a singleton set or the empty set. In the example,
we have that (Int, reflInt, injX) : Int ∼ ?X:Int (representing a seal at type X), and (Int, injX ,

injY) : ?X:Int ∼ ?Y:Int (an unseal at type X, followed by a seal at type Y). Consistent transitivity
(Int, reflInt, injX) ◦ (Int, injX , injY) is computed by first computing pullback(?X:Int, (Int, injX),

(Int, injX)) = (Int, reflInt, reflInt, injX). As reflInt;reflInt = reflInt, and reflInt;injY = injY,
the result is (Int, reflInt, injY).

Finally, consistent transitivity between evidences is just defined as the natural lifting of consistent
transitivity of spans to sets of spans.

Definition 4.4 (Consistent transitivity for evidence). Let 𝜖1 : G1 ∼ G, and 𝜖2 : G ∼ G2.

𝜖1 ◦ 𝜖2 ::=

®

𝜖 if 𝜖 = {S | S ∈ S1 ◦ S2, S1 ∈ 𝜖1, S2 ∈ 𝜖2} ≠ ∅

error otherwise

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:14 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

Note that if the resulting set is empty, then consistent transitivity is undefined, representing a
runtime type error because plausibility of well-typedness has been refuted. Otherwise, if consistent
transitivity is defined, then the obtained evidence justifies the transitive judgment.

Lemma 4.5. Let 𝜖1 : G1 ∼ G, and 𝜖2 : G ∼ G2. If 𝜖1 ◦ 𝜖2 is defined, then 𝜖1 ◦ 𝜖2 : G1 ∼ G2.

Associativity of consistent transitivity. Associativity of consistent transitivity is a key property
in evidence-based semantics, used to establish type soundness as well as space efficiency opti-
mizations [Bañados Schwerter et al. 2021; Toro and Tanter 2020]. In particular, in this work the
associativity lemma is used extensively in the proof of parametricity of F?𝜀 (Section 5).

Lemma 4.6 (✓ Associativity of Evidence Composition). (𝜖1 ◦ 𝜖2) ◦ 𝜖3 = 𝜖1 ◦ (𝜖2 ◦ 𝜖3).

The proof of the associativity lemma relies on the universal property of the pullback (Lemma 4.2).

Examples of reduction. Armed with the dynamic semantics of F?𝜀 and the concrete representation
of evidence, we first illustrate the reduction of Example (1) from Section 2.3: (ΛX.𝜆x : ?.x :: X) [Int] 42,
which reduces to 42. Its elaboration (omitting some trivial evidence for conciseness) and reduction
proceed as follows:

(𝜖2 (ΛX .𝜆x : ?X .𝜖1 x :: X [Int]) :: ? → Int) (𝜖3 42 :: ?) where 𝜖1 = {(X, injX , reflX)} and
𝜖2 = {(Int→ Int, injX → reflInt, injInt → reflInt),

(? → Int, inj? → reflInt, inj? → reflInt)} and 𝜖3 = {(Int, reflInt, injInt)}

(RappG) ↦−→ (𝜖2 (𝜆x : ?X:Int .𝜖
′
1 x :: Int) :: ? → Int) (𝜖3 42 :: ?) where 𝜖 ′1 = {(Int, injX , reflInt)}

(Rapp) ↦−→ cod (𝜖2) (𝜖
′
1 (𝜖

′
3 42 :: ?) :: Int) :: Int where 𝜖 ′3 = 𝜖3 ◦ dom(𝜖2) =

{(Int, reflInt, injX), (Int, reflInt, injInt)}

(Rasc) ↦−→ cod (𝜖2) (𝜖4 42 :: Int) :: Int where 𝜖4 = 𝜖 ′3 ◦ 𝜖
′
1 = {(Int, reflInt, reflInt)}

(Rasc) ↦−→𝜖5 42 :: Int where 𝜖5 = 𝜖4 ◦ cod (𝜖2) = {(Int, reflInt, reflInt)}

We now illustrate the reduction of Example (3) from Section 2.3: (ΛX.𝜆x : ?.x :: X) [Bool] 42. The
elaboration and reduction are as follows:

(𝜖2 (ΛX .𝜆x : ?X .𝜖1 x :: X [Bool]) :: ? → Bool) (𝜖3 42 :: ?) where 𝜖1 = {(X, injX , reflX)} and
𝜖2 = {(Bool→ Bool, injX → reflBool, injBool → reflBool),

(? → Bool, inj? → reflBool, inj? → reflBool)} and 𝜖3 = {(Int, reflInt, injInt)}

(RappG) ↦−→ (𝜖2 (𝜆x : ?X:Bool .𝜖
′
1 x :: Bool) :: ? → Bool) (𝜖3 42 :: ?) where 𝜖 ′1 = {(Bool, injX , reflBool)}

(Rapp) ↦−→ cod (𝜖2) (𝜖
′
1 (𝜖

′
3 42 :: ?) :: Bool) :: Bool where 𝜖 ′3 = 𝜖3 ◦ dom(𝜖2) = {(Int, reflInt, injInt)}

(Rasc) ↦−→error because {(Int, reflInt, injInt)} ◦ {(Bool, injX , reflBool)} is undefined

Finally, we show the reduction of Example (5) from Section 2.3, which illustrates the prevention
of a violation of parametricity at runtime: (ΛX.𝜆x :X.(x :: ?) + 1) [Int] 3. The elaboration and
reduction are as follows:

(𝜖3 ((ΛX .𝜆x : X .(𝜖2 (𝜖1 x :: ?X) :: Int) + (𝜖Int 1 :: Int)) [Int]) :: Int→ Int) (𝜖Int 3 :: Int)

where 𝜖1 = {(X, reflX , injX)}, 𝜖2 = {(Int, injInt, reflInt)}, 𝜖Int = {(Int, reflInt, reflInt)}

and 𝜖3 = {(Int→ Int, reflInt → reflInt, reflInt → reflInt)}

(RappG) ↦−→ (𝜖3 (𝜆x : Int.(𝜖2 (𝜖
′
1 x :: ?X:Int) :: Int) + (𝜖Int 1 :: Int)) :: Int→ Int) (𝜖Int 3 :: Int)

where 𝜖 ′1 = {(Int, reflInt, injX)}

(Rapp) ↦−→ cod (𝜖3) ((𝜖2 (𝜖
′
1 (𝜖Int 3 :: Int) :: ?X:Int) :: Int) + (𝜖Int 1 :: Int)) :: Int where 𝜖Int ◦ dom(𝜖3) = 𝜖Int

(Rasc) ↦−→ cod (𝜖3) ((𝜖2 (𝜖
′
1 3 :: ?X:Int) :: Int) + (𝜖Int 1 :: Int)) :: Int where 𝜖Int ◦ 𝜖

′
1 = 𝜖 ′1

(Rasc) ↦−→error because 𝜖 ′1 ◦ 𝜖2 = {(Int, reflInt, injX)} ◦ {(Int, injInt, reflInt)} is undefined

5 F?𝜀 : GRADUAL PARAMETRICITY

In this section, we present parametricity for F?𝜀 . Since gradual types support non-terminating terms,
we use a standard technique for establishing this result: step-indexed logical relations [Ahmed 2006;

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:15

V𝜌J𝐵K = {(𝑛, v, v) ∈ Atom𝜌 [𝐵]}

V𝜌JG1 → G2K = {(𝑛, v1, v2) ∈ Atom𝜌 [G1 → G2] | ∀𝑛′ ≤ 𝑛, v′1, v
′
2 .

▷ (𝑛′, v′1, v
′
2) ∈ V𝜌JG1K ⇒ (𝑛′, v1 v′1, v2 v′2) ∈ T𝜌JG2K}

V𝜌J∀X.GK = {(𝑛, v1, v2) ∈ Atom𝜌 [∀X.G] | ∀ ⊢ B1, ⊢ B2, 𝑅 ∈ Rel[B1,B2] .

(𝑛, v1 [B1], v2 [B2]) ∈ T𝜌 ;X ↦→(B1,B2,𝑅)JGK}

V𝜌JXK = 𝜌.𝑅(X)

V𝜌J?𝛅K = {(𝑛, v1, v2) ∈ Atom𝜌 [?𝛅] | ∀GR, 𝜖 , ⊢ 𝜖 : 𝛅 _ GR .

(𝑛, 𝜌1 (𝜖) v1 :: 𝜌1 (GR), 𝜌2 (𝜖) v2 :: 𝜌2 (GR)) ∈ T𝜌JGRK}

T𝜌JGK = {(𝑛, t1, t2) ∈ Atom𝜌 [G] | ∀𝑖 < 𝑛.

(∀v1 . t1 ↦−→
𝑖v1 ⇒ ∃v2 . t2

∗
↦−→ v2∧ ▷

𝑖 (𝑛, v1, v2) ∈ V𝜌JGK)∧

(t1 ↦−→
𝑖error ⇒ t2

∗
↦−→ error)}

DJ∅K = {(𝑛, ∅)}

DJ∆,XK = {(𝑛, 𝜌 [X ↦→ (B1,B2, 𝑅)]) | (𝑛, 𝜌) ∈ DJ∆K ∧ 𝑅 ∈ Rel[B1,B2]}

G𝜌J∅K = {(𝑛, ∅)}

G𝜌JΓ, x : GK = {(𝑛,𝛾 [x ↦→ (v1, v2)]) | (𝑛,𝛾) ∈ G𝜌JΓK ∧ (𝑛, v1, v2) ∈ V𝜌JGK}

∆; Γ ⊢ t1 ⪯ t2 : G ≜ ∆; Γ ⊢ t1 : G ∧ ∆; Γ ⊢ t2 : G ∧ ∀𝑛, 𝜌,𝛾 . ((𝑛, 𝜌) ∈ DJ∆K ∧ (𝑛,𝛾) ∈ G𝜌JΓK) ⇒
(𝑛, 𝜌1 (𝛾1 (t1)), 𝜌2 (𝛾2 (t2))) ∈ T𝜌JGK

∆; Γ ⊢ t1 ≈ t2 : G ≜ ∆; Γ ⊢ t1 ⪯ t2 : G ∧ ∆; Γ ⊢ t2 ⪯ t1 : G

Atom𝜌 [G] ={(𝑛, t1, t2) ∈ Atom[𝜌.1(G), 𝜌 .2(G)]}

Atom[G1,G2] ={(𝑛, t1, t2) | ⊢ t1 : G1 ∧ ⊢ t2 : G2} Atomval [G1,G2] = {(𝑛, v1, v2) ∈ Atom[G1,G2]}

Rel[G1,G2] ={𝑅 ⊆ Atomval [G1,G2] | ∀𝑛
′ ≤ 𝑛, v1, v2 . (𝑛, v1, v2) ∈ 𝑅 ⇒ (𝑛′, v1, v2) ∈ 𝑅}

Fig. 5. Gradual logical relation and auxiliary definitions.

Appel and McAllester 2001]. Step indexing ensures the well-foundedness of the logical relation. We
start by defining the logical relation for values and terms, and then we establish the fundamental
property or parametricity. Our proposal is the first gradual polymorphic language to support a
formulation of parametricity where semantic types are tracked in a lexical environment, similar to
traditional formulations of parametricity [Reynolds 1983].

Logical relations. Figure 5 presents the logical relation for parametricity along with some aux-
iliary definitions. The relational interpretation is presented using atoms of the form (𝑛, t1, t2) ∈

Atom[G1,G2], where 𝑛 denotes the step index, and t1 and t2 denote closed well-typed terms
at types G1 and G2 respectively. The logical relation is defined using two mutually-defined in-
terpretations: one for values V𝜌JGK and one for computations T𝜌JGK. Both interpretations are
indexed by a type G, and an environment 𝜌 , which maps type variables to two types G1 and
G2 and a relation 𝑅 ∈ Rel[G1,G2]. Rel[G1,G2] defines the set of all admissible relations 𝑅 such
that 𝑅 ⊆ Atomval [G1,G2] (the subset of atoms where terms are values). For convenience, if
𝜌 = {Xi ↦→ (Gi1,Gi2, 𝑅𝑖)}, then 𝜌.1, 𝜌.2, and 𝜌.𝑅 are abbreviations for {Xi ↦→ Gi1} and {Xi ↦→ Gi2},
and {Xi ↦→ 𝑅𝑖 } respectively. Thus 𝜌. 𝑗 (G) is an abbreviation for multiple substitutionsG [Xi ↦→ Gij].
Finally, Atom𝜌 [G] denotes the set of atoms Atom[𝜌.1(G), 𝜌 .2(G)]}.

Logical relation for values. The definition of related values is standard except for the unknown
type. Two base values of type B are related if they are the same. Two functions are related at type
G1 → G2, if given two related arguments at type G1 (and a strictly smaller index), the application

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:16 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

yields related computations at typeG2. We use notation▷𝑖 (𝑛, v1, v2) ∈ V𝜌JGK as an abbreviation for
(𝑛 − 𝑖, v1, v2) ∈ V𝜌JGK, and ▷ (𝑛, v1, v2) ∈ V𝜌JGK for ▷1 (𝑛, v1, v2) ∈ V𝜌JGK. Two type abstractions
are related if their instantiations to two arbitrary base types yields related computations for any
given relation between the instantiated types. Two values are related at an abstract type X, if they
are contained in the relation for X. Two values are related at the unknown type ?𝛅 , if given any
evidence 𝜖 that justifies that any GR is ground with respect to 𝛅, notation ⊢ 𝜖 : 𝛅 _ GR, then
both values ascribed to 𝜌.1(GR) and 𝜌.2(GR), using 𝜌.1(𝜖) and 𝜌.2(𝜖) respectively, are related
computations at type GR. This definition captures the fact that if two values are related at ?𝛅 , they
are also related at some more precise ground type, either X, B, ?𝛅 → ?𝛅 , or ∀X .?𝛅,X , after removing
the respective injections to the unknown type with the evidences 𝜌.1(𝜖) and 𝜌.2(𝜖). Both 𝜆𝐵 and
GSF use similar approaches for defining the logical relation for values of type unknown but are
formalized differently, according to the syntax of the considered languages. Relation ⊢ 𝜖 : 𝛅 _ GR

is defined such that GR is a ground type restricted to 𝛅, and 𝜖 : ?𝛅 ∼ GR:

⊢ {(B, injB, reflB)} : 𝛅 _ B ⊢ {(?𝛅 → ?𝛅 , inj→, inj? → inj?)} : 𝛅 _ ?𝛅 → ?𝛅

X : F ∈ 𝛅 𝛅 ⊢ F

⊢ {(F, injX , reflF)} : 𝛅 _ F ⊢ {(∀X .?𝛅,X , inj∀,∀X .inj?)} : 𝛅 _ ∀X .?𝛅,X

Let us illustrate the interpretation of the unknown type with examples. Consider the evidences:
𝜖Int? = {(Int, reflInt, injInt)}, 𝜖Int = {(Int, reflInt, reflInt)} and 𝜖X? = {(Int, reflInt, injX)},
where 𝛅 = X : X, and 𝛅

′
= X : Int.

• (𝑛, 𝜖Int?42::?𝛅′, 𝜖Int?42::?𝛅′) ∈ V𝜌J?𝛅K because for 𝜖 = {(Int, injInt, reflInt)} and ⊢ 𝜖 : 𝛅 _ Int,
as 𝜖Int? ◦ 𝜌.𝑖 (𝜖) = 𝜖Int, then ▷ (𝑛, 𝜖Int42 :: Int, 𝜖Int42 :: Int) ∈ V𝜌JIntK (and for every other
evidence 𝜖 and GR, such that ⊢ 𝜖 : 𝛅 _ GR, consistent transitivity is not defined).

• (𝑛, 𝜖Int?42 :: ?𝛅′, 𝜖Int?43 :: ?𝛅′) ∉ V𝜌J?𝛅K because for ⊢ {(Int, injInt, reflInt)} : 𝛅 _ Int, as
▷ (𝑛, 𝜖Int42 :: Int, 𝜖Int43 :: Int) ∉ V𝜌JIntK.

• Suppose ▷ (𝑛, 𝜖Int42 :: Int, 𝜖Int43 :: Int) ∈ 𝜌.𝑅(X). Then (𝑛, 𝜖X?42 :: ?𝛅′, 𝜖X?43 :: ?𝛅′) ∈ V𝜌J?𝛅K
because for 𝜖 = {(X, injX , reflX)} and ⊢ 𝜖 : 𝛅 _ X, as 𝜖X? ◦ 𝜌.𝑖 (𝜖) = 𝜖Int, then ▷
(𝑛, 𝜖Int42 :: Int, 𝜖Int43 :: Int) ∈ V𝜌JXK = 𝜌.𝑅(X) (and for every other evidence 𝜖 and GR, such
that ⊢ 𝜖 : 𝛅 _ GR, consistent transitivity is not defined).

• But (𝑛, 𝜖X?42 :: ?𝛅′, 𝜖X?43 :: ?𝛅′) ∉ V𝜌J?𝛅′K because for 𝜖 = {(Int, injX , reflInt)} and ⊢ 𝜖 :

𝛅
′ _ Int, as 𝜖X ◦ 𝜌.𝑖 (𝜖) = 𝜖Int, but ▷ (𝑛, 𝜖Int42 :: Int, 𝜖Int43 :: Int) ∉ V𝜌JIntK.

• Suppose 𝜌.𝑅(X) = V𝜌JIntK, and 𝜖m = 𝜖Int? ∪ 𝜖X?. Then (𝑛, 𝜖m42 :: ?𝛅′, 𝜖m42 :: ?𝛅′) ∈ V𝜌J?𝛅K
because (1) for 𝜖 = {(X, injX , reflX)} and ⊢ 𝜖 : 𝛅 _ X, as 𝜖m ◦ 𝜌.𝑖 (𝜖) = 𝜖X? ◦ 𝜌.𝑖 (𝜖) =

𝜖Int, then ▷ (𝑛, 𝜖Int42 :: Int, 𝜖Int42 :: Int) ∈ V𝜌JXK = 𝜌.𝑅(X) = V𝜌JIntK; and (2) for 𝜖 =

{(Int, injInt, reflInt)}, ⊢ 𝜖 : 𝛅 _ Int, as 𝜖m ◦ 𝜌.𝑖 (𝜖) = 𝜖Int? ◦ 𝜌.𝑖 (𝜖) = 𝜖Int, then ▷ (𝑛, 𝜖Int42 ::

Int, 𝜖Int42 :: Int) ∈ V𝜌JIntK.

Note that for the case of functions, type applications, and the unknown type, although the same
step index is used in every recursive reasoning, the relations are well-formed as in each case a
single step of reduction is always taken, lowering the index by one.

Logical relation for terms. Two computations are related at 𝑛 steps if the first term yields a value
in 𝑖 < 𝑛 reduction steps, then the second must produce a value related at that type at 𝑛 − 𝑖 steps;
and if the first term fails, then the second also fails.

Logical relation for environments. The interpretation of environment ∆, specifies all type
substitutions 𝜌 , such that all type variables in ∆ are mapped to a pair of base types and a relation

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:17

at those types. The interpretation of environment Γ, specifies all value substitution 𝛾 , such that
every variable of type G is mapped to a pair of related values at that type.

Parametricity. The logical approximation ∆; Γ ⊢ t1 ⪯ t2 : G states that given any step index,
any environments 𝜌 and 𝛾 that satisfy ∆ and Γ respectively, the substituted terms are related
computations. Similarly to 𝜌 , for convenience if 𝛾 = {x ↦→ (vi1, vi2)}, then 𝛾 𝑗 = {x ↦→ vij}. Finally,
the fundamental property states that any well-typed term logically approximates itself.

Theorem 5.1 (Fundamental Property). If ∆; Γ ⊢ t : G then ∆; Γ ⊢ t ⪯ t : G.

As standard [Ahmed 2004], the proofs of the fundamental property depends on numerous
compatibility lemmas for each term constructor and the compositionality lemma, which in this
work resembles compositionality for System F.

Lemma 5.2 (Compositionality). Let ∆ ⊢ F, ∆,X ⊢ G, (𝑛, 𝜌) ∈ DJ∆K, and 𝑅 = V𝜌JFK, then
V𝜌JG [F/X]K = V𝜌,X ↦→(𝜌1 (F),𝜌2 (F),𝑅)JGK.

The most important lemma, used by almost all compatibility lemmas and compositionality is the
ascription lemma, which says that the ascription of two related values yields related computations.

Lemma 5.3 (Ascription Lemma). If (𝑛, v1, v2) ∈ V𝜌JGK, (𝑛, 𝜌) ∈ DJ∆K, ∆ ⊢ G′ and 𝜖 : G ∼ G′, then
(𝑛, 𝜌1 (𝜖)v1 :: 𝜌1 (G

′), 𝜌2 (𝜖)v2 :: 𝜌2 (G
′)) ∈ T𝜌JG′K.

We finalize this section by emphasizing that most of the logical relations and main lemmas are
standard and defined just as in System F. In particular, and contrary to other gradual parametricity
formulations, the definition of related values at polymorphic types is defined just as in System F,
without the need for special notations and cases. The only unusual case is the definition of related
values at the unknown type, but that is expected for any gradual language.

6 F?𝜀 : GRADUAL GUARANTEES

This section presents graduality for F?𝜀 . We start by presenting the definition of evidence and term
precision. Similar to type precision, these definitions are also proof-relevant. Then, we show two of
the main challenges of proving graduality: monotonicity of consistent transitivity and monotonicity
of type substitution over evidence. We end this section by establishing graduality, more specifically,
the static and dynamic gradual guarantees [Siek et al. 2015].

Evidence precision. To define precision between evidence we start by stating two intuitive
requirements. Suppose 𝜖1 : G1 ∼ G′

1 and 𝜖2 : G2 ∼ G′
2. We say that 𝜖1 is more precise than 𝜖2, if

first, the types involved in the judgments are related by precision, i.e. c : G1 ⊑ G2 and c′ : G′
1 ⊑ G′

2

for some c and c′; and second, we require that for all S1 ∈ 𝜖1 there exists some S2 ∈ 𝜖2, such that S1
is more precise than S2. Note that there may be some S ∈ 𝜖2 not in precision with any element of 𝜖1.
This is intuitively expected by graduality, as it may cause 𝜖2 to łfail lessž than 𝜖1 when combined
with other evidence. Precision between spans (Gt1, c1, c

′
1) ⊑ (Gt2, c2, c

′
2) could be naively defined if

there exists some proof term ct that justifies that Gt1 is more precise than Gt2, i.e. ct : Gt1 ⊑ Gt2.
However, the above requirements are not sufficient to define precision among evidences. Suppose

that we have 𝜖1 = {(Int, reflInt, injX)} and 𝜖2 = {(Int, reflInt, injInt)}, where 𝜖i : Int ∼ ?X:Int

(Figure 6 supports this example). These two evidences meet all the above requirements: there exist
c = reflInt, c′ = inj?, and ct = reflInt such that c : Int ⊑ Int, c′ : ?X:Int ⊑ ?X:Int and ct : Int ⊑ Int.
We may be tempted to say that 𝜖1 ⊑ 𝜖2 (or vice versa), but then graduality would not hold. In
particular, monotonicity of consistent transitivity (MCT), a key lemma used to prove graduality,
would be broken. MCT states that given two pairs of evidence related by precision 𝜖1 ⊑ 𝜖2 and
𝜖 ′1 ⊑ 𝜖 ′2, if 𝜖1 ◦𝜖

′
1 is defined, then 𝜖1 ◦𝜖

′
1 ⊑ 𝜖2 ◦𝜖

′
2. In the example, if we take evidence 𝜖 ′1 = 𝜖 ′2 = {(Int,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:18 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

Int ?X :Int

Int

Int

IntreflInt

injInt

injInt reflInt

Int ?X :Int

Int

Int

IntreflInt injX injInt
reflInt

reflInt

reflInt

inj? reflInt

reflInt

Fig. 6. Evidence precision auxiliary example.

injInt, reflInt)} that justifies ?X:Int ∼ Int (and 𝜖 ′1 ⊑ 𝜖 ′2), then 𝜖1 ◦ 𝜖 ′1 = {(Int, reflInt, reflInt)} is
defined but 𝜖2 ◦ 𝜖 ′2 is not. We can use an analogous reasoning when assuming 𝜖2 ⊑ 𝜖1, using
𝜖 ′1 = 𝜖 ′2 = {(Int, injX , reflInt)}. These two evidences should not be related by precision; we miss a
connection between ct and both c′ and c as described next.

Definition 6.1 (Evidence Precision). If 𝜖1 : G1 ∼ G′
1, 𝜖2 : G2 ∼ G′

2,
c : G1 ⊑ G2 and c′ : G′

1 ⊑ G′
2, then we say that [c]𝜖1 ⊑ 𝜖2 [c

′] iff for
all (Gt1, c1, c

′
1) ∈ 𝜖1 there exists a (Gt2, c2, c

′
2) ∈ 𝜖2, c

′′
1 , c

′′
2 and ct such

that ct : Gt1 ⊑ Gt2, ct;c2 = c′′1 , c1;c = c′′1 , ct;c
′
2 = c′′2 and c′1;c

′
= c′′2 .

G2 G′
2

Gt2

c2 c′2

G1 G′
1

Gt1
c1 c′1

c c′

ct
c′′1 c′′2

In addition to the requirements described above, evidence precision also requires that the combi-
nation of ct and c2 must commute with the combination of c1 and c; similarly, the combination
of ct and c′2 must commute with the combination of c′1 and c′. Going back to the example, 𝜖1
and 𝜖2 are not related by precision as the diagram does not commute: reflInt;injInt = injInt
(ct;c′2 = c′′2) and injX ;inj? = injX (c′1;c

′
= c′′2), but injInt ≠ injX . On the other hand, evi-

dence {(Int, reflInt, reflInt)} is more precise than {(Int, reflInt, injX)}, because we can choose
c = ct = reflInt, and c′ = injX , such that the diagram commutes: reflInt;injX = injX (ct;c′2 = c′′2),
and reflInt;injX = injX (c′1;c

′
= c′′2).

Note that the evidence precision judgment [c]𝜖1 ⊑ 𝜖2 [c
′] explicitly tracks proof terms c and c′

(we will refer to them as boundary proofs). The reason is that monotonicity of consistent transitivity
only holds when adjacent boundary proofs match up.

Lemma 6.2 (✓ Monotonicity of Consistent Transitivity). If [c]𝜖1 ⊑ 𝜖2 [c
′], [c′]𝜖 ′1 ⊑ 𝜖 ′2 [c

′′]

and (𝜖1 ◦ 𝜖
′
1) is defined, then [c] (𝜖1 ◦ 𝜖

′
1) ⊑ (𝜖2 ◦ 𝜖

′
2) [c

′′].

Let us consider the following example to understand why the łmiddlež boundary proof terms
must match. We have that [reflInt]{(Int, reflInt, reflInt)} ⊑ {(Int, reflInt, injX)}[injX] and
[injInt]{(Int, reflInt, reflInt)} ⊑ {(Int, injInt, reflInt)}[reflInt]. The precision proofs do not
match (injX ≠ injInt), and even though {(Int, reflInt, reflInt)} ◦ {(Int, reflInt, reflInt)} is de-
fined, {(Int, reflInt, injX)} ◦ {(Int, injInt, reflInt)} is not. Similar to consistent transitivity, type
substitution over evidence is also monotonous concerning evidence precision (two evidences related
by precision remain related after type substitution).

Lemma 6.3 (Monotonicity of Type Substitution). If [∀X.c′]𝜖1 ⊑ 𝜖2 [∀X.c], then [c′] (schm(𝜖1))

⊑ (schm(𝜖2)) [c] and [c′[F/X]] (schm(𝜖1) [F/X]) ⊑ (schm(𝜖2) [F/X]) [c [F/X]].

Term precision. Term precision is the natural lifting of type and evidence precision to terms, and
is presented in Figure 7. Judgment Ω ⊢ c : s1 ⊑ s2 denotes that term s1 is more precise than s2
justified by proof term c, under precision relation environment Ω. Boundary proof terms c are
propagated for types, contexts, evidence, and subterms, justifying that the type of the less precise
term is less precise than the type of the more precise term. Ω binds a term variable x to a type
precision judgment c : G1 ⊑ G2. Rule (⊑x) establishes that a term variable is related with itself

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:19

Ω ⊢ c : s ⊑ s Term precision

⊑b
Ω ⊢ reflB : b ⊑ b

⊑x

Ω(x) = c : G1 ⊑ G2

Ω ⊢ c : x ⊑ x
⊑𝜆

Ω, x ↦→ c : G′
1 ⊑ G′

2 ⊢ c′ : t1 ⊑ t2

Ω ⊢ c → c′ : 𝜆x :G′
1 .t1 ⊑ 𝜆x :G′

2 .t2

⊑Λ
Ω ⊢ c : t1 ⊑ t2

Ω ⊢ ∀X.c : ΛX .t1 ⊑ ΛX .t2
⊑app

Ω ⊢ c′ → c : t1 ⊑ t2 Ω ⊢ c′ : t′1 ⊑ t′2

Ω ⊢ c : t1 t
′
1 ⊑ t2 t

′
2

⊑appG
Ω ⊢ ∀X.c : t1 ⊑ t2

Ω ⊢ c [F/X] : t1 [F] ⊑ t2 [F]
⊑asc

Ω ⊢ c′ : s1 ⊑ s2 c : G1 ⊑ G2 [c′]𝜖1 ⊑ 𝜖2 [c]

Ω ⊢ c : 𝜖1s1 :: G1 ⊑ 𝜖2s2 :: G2

Fig. 7. F?𝜀 : Term Precision (fragment).

along boundary proof term c if x : (c : G1 ⊑ G2) ∈ Ω, and Rule (⊑𝜆) extends Ω with the judgment
that justifies that the argument types are in precision. Analogous to MCT, rule (⊑app) requires
that the domain proof term of the function matches with the proof term of the arguments. Rule
(⊑asc) establishes that two ascriptions are related if the sub-terms, s1 and s2, are in precision with
proof term c′, the ascribed types, G1 and G2, are in precision with the proof c, and evidences are in
precision with the boundary proof terms c′ and c.

Gradual guarantees. Armed with the definition of term precision, we now establish the graduality
of F?𝜀 with the gradual guarantees [Siek et al. 2015].

Theorem 6.4. Suppose ⊢ t1 : G1 and ⊢ c : t1 ⊑ t2. Then,

• ⊢ t2 : G2 and c : G1 ⊑ G2.
• t1

∗
↦−→ v1 implies t2

∗
↦−→ v2 and ⊢ c : v1 ⊑ v2.

• t1 diverges implies t2 diverges.

The only peculiarity of this result compared to others in the literature is that the type and term
precision judgments are proof-relevant. The static part of graduality (the static gradual guarantee)
ensures that if t1 with type G1 is more precise than t2, justified by proof c, then t2 has a less precise
type G2 justified by c. The dynamic part of graduality (the dynamic gradual guarantee) establishes
that if the more precise term reduces to a value, then the less precise term also does, resulting in
values in precision with the same type proof term c. The key lemmas to prove graduality, are MCT
(Lemma 6.2), and monotonicity of type substitution (evidence precision is monotonous with respect
to type substitution) (Lemma 6.3).

7 THE GRADUAL SOURCE LANGUAGE F?

Having formalized the key technical innovation of this work, plausible sealing, and established
both graduality and parametricity for the intermediate language F?𝜀 , we now turn to the source
language F?. This section presents the static semantics of F? and its translation to F?𝜀 . The static
semantics of F? is derived systematically by applying AGT to System F1, which is a variation of
System F where type instantiations are restricted to instantiation types (i.e. base types and type
variables). The novel translation to F?𝜀 plays a crucial role since it is in charge of statically generating
the maybe-sealing evidence for type applications. We study the gradual guarantees for F? and the
resulting source-level parametric reasoning.

F?: Statics. In order to apply AGT to obtain the static semantics (i.e. lifting functions and predicates),
we use explicit type equalities and partial type functions in the typing rules of System F1. These
partial functions also allow capturing elimination forms in a single rule that accounts for both precise
and imprecise type information [Garcia et al. 2016]. For instance, functions dom and cod extract the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:20 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

F ::= B | X G ::= F | G→G | ∀X.G | ?𝛿 𝛿 ::= 𝛿, X : X | ∅ t ::= b | 𝜆x :G .t | ΛX.t | x | t t | t [F] | t :: G

Δ; Γ ⊢ t : G Term typing

Gasc
Δ; Γ ⊢ t : G′

Δ ⊢ G G′ ∼ G

Δ; Γ ⊢ t :: G : G
GappG

Δ; Γ ⊢ t : G Δ ⊢ F

Δ; Γ ⊢ t [F] : inst♯ (G, F)

Fig. 8. F?: Syntax and Static Semantics (fragment).

domain and codomain types, and inst instantiates a polymorphic type using a substitution function
𝑇 [𝑇 ′/𝑋], which replaces 𝑇 ′ for 𝑋 in 𝑇 . For example, the typing rule for type applications is:

(TappT)
Δ; Γ ⊢ 𝑡 : 𝑇 Δ ⊢ 𝐹

Δ; Γ ⊢ 𝑡 [𝐹] : inst (𝑇, 𝐹)

Figure 8 presents the syntax of source gradual types G. Source gradual types are syntactically
contained in the gradual types of F?𝜀 , and for simplicity throughout this section, we write G as the
F?𝜀 counterpart of G. Source gradual types restricts the scope of unknown types to not-instantiated
variables only. To represent this, we index unknown types with the 𝛿 meta-variable (included in 𝛅);
and as every type variable in ?𝛿 is not instantiated (i.e. of the form X : X), for simplicity we just write
𝛿 as a set of type variables. One final note is that ? (without a scope 𝛿 , as used in previous sections)
is syntactic sugar for ?Δ, where Δ is the set of all variables in scope at that point. A straightforward
and simple translation can insert these annotations before typing.

We give meaning to gradual types G through the concretization function 𝛾 (·) (omitted for space).
The meaning of the unknown type ?𝛿 is the set of all well-formed static types with respect to 𝛿
(i.e. 𝛾 (?𝛿) = {𝑇 | 𝛿 ⊢ 𝑇 }). The concretization function helps us define precision (G1 ⊑ G2 if and
only if 𝛾 (G1) ⊆ 𝛾 (G2)) and consistency (G1 ∼ G2 if and only if there exists 𝑇1 and 𝑇2 such that
𝑇1 = 𝑇2, 𝑇1 ∈ 𝛾 (G1) and 𝑇2 ∈ 𝛾 (G2)). Precision and consistency resemble their F?𝜀 counterpart and
can also be inductively defined. For instance, X ∼ ?X, but X ≁ ?Y (for X ≠ Y). However, precision
in F? is no longer proof relevant: F? contains only unknown types ?𝛿 with uninstantiated type
variables, so that the precision relation from F?𝜀 (which had the structure of a category) reduces to a
proof-irrelevant order relation in F?.

Figure 8 presents a fragment of the term typing rules for F?, which are obtained by replacing type
predicates and functions with their corresponding liftings. The lifting is straightforward and uses
the corresponding abstraction function 𝛼 (·) of 𝛾 (·), forming a Galois connection. For example, rule
(Gasc) uses type consistency instead of type equality, and rule (GappG) uses the lifting of the func-
tion inst, defined for polymorphic types and the unknown type (i.e. inst♯ (∀X.G,G′) = G [G′/X]\X,
inst♯ (?𝛿 ,G′) = ?𝛿 and undefined for other cases). Note that inst♯ uses the scope removal function
G\X, which is removes X from the scopes of unknown types in G: ?𝛿1,X,𝛿2\X = ?𝛿1,𝛿2 . For instance,
(X→?X,Y) [Int/X]\X = Int→?Y.

F?: Elaboration to F?𝜀 .The dynamic semantics of a F? program is given by a type-directed translation
to F?𝜀 . The rules are mostly standard save for the elaboration rule for type application. Judgment
Δ; Γ ⊢ t : G { t′ expresses that term t is elaborated to t′, under type variable environment Δ, and
type environment Γ. The elaboration rules use the function initEv(G1,G2), which stands for the
initial evidence between G1 and G2. It computes the least precise evidence that justifies consistency
between the types, and is defined as follows:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:21

instEv(B, X, F) = reflEv(B)

instEv(X, X, F) = reflEv(F)

instEv(?𝛿 , X, F) = reflEv(?𝛿) if X ∉ 𝛿

instEv(Y, X, F) = reflEv(Y) if X ≠ Y

instEv(G1→G2, X, F) = instEv(G1, X, F) → instEv(G2, X, F)

instEv(∀Y.G, X, F) = ∀Y.instEv(G, X, F)

instEv(?𝛿1;X;𝛿2 , X, F) = {(?𝛿1;𝛿2 , inj?, inj?), (F, injX , injF)}

Fig. 9. Instantiation evidence function.

Definition 7.1 (Initial Evidence). If G1 ∼ G2 then G = G1 ⊓ G2 and
initEv(G1,G2) = {(G, initPT(G,G1), initPT(G,G2))}.

This evidence consists of a single span, where the first component is the meet (greatest lower
bound with respect to precision) G1⊓G2 between G1 and G2, and the second and third components
are the initial proof terms between the meet and G1 and G2, respectively. The meet G1 ⊓ G2 is a
partial function and corresponds formally to 𝛼 (𝛾 (G1) ∩ 𝛾 (G2)). As for the definition of precision
and congruence, we also define an inductive definition for the meet. Note that from AGT, G ∼ G′

holds if 𝛾 (G1) ∩ 𝛾 (G2) is not empty, then if G ∼ G′ then G ⊓ G′ will always be defined. The initial
proof term between two types in precision is computed using the initPT(G,G′) function such that
initPT(G,G′) : G ⊑ G′. It is important to note that the initial proof term between two types is
unique since the type variables within the unknown type scope are not instantiated. Its definition
is unsurprising and can be derived from the type precision judgment from Figure 2. For example,
initPT(Int, ?X) = injInt and initPT(X, ?X) = injX .

As F?𝜀 requires all values to be ascribed, the elaboration rules ascribe base values, functions and
type abstractions to their own type using the reflexive evidence operator reflEv(G) ≜ initEv(G,G).
For instance, term 42 is elaborated to reflEv(Int) 42 :: Int, where reflEv(Int) = {(Int, reflInt,

reflInt)}. The elaboration process also inserts ascriptions to equate types in elimination forms. In
particular, the translation of a term application (Eapp) ascribes the function term t1 to a function
type that matches [Cimini and Siek 2016] with its own type (G1 _ G11→G12): its own type if t1
has a function type; otherwise ?𝛅 → ?𝛅 (if the type is ?𝛿). Also, the argument term t2 is ascribed to
the argument type of the ascribed function.

Eapp

Δ; Γ ⊢ t1 : G1 { t′1 Δ; Γ ⊢ t2 : G2 { t′2 G1 _ G11→G12
𝜖1 = initEv(G1,G11→G12) 𝜖2 = initEv(G2,G11)

Δ; Γ ⊢ t1 t2 : G12 { (𝜖1t
′
1 :: G11 → G12) (𝜖2t

′
2 :: G11)

Rule (EappG) elaborates type applications, and is responsible of inserting łmaybe-sealž evidence.

EappG
Δ; Γ ⊢ t : G { t′ Δ ⊢ F G _ ∀X.G′ 𝜖1 = initEv(G,∀X.G′) 𝜖2 = instEv(G′, X, F)

Δ; Γ ⊢ t [F] : G′[F/X]\X { 𝜖2 ((𝜖1t
′ :: ∀X.G′) [F]) :: G′[F/X]\X

The elaborated type application is ascribed to the instantiated scheme type G′[F/X]\X (removing
X from the environments of unknown types), using a special evidence that justifies that G′[F/X]

is consistent with G′[F/X]\X. This evidence is computed using the instantiation evidence function
instEv defined in Figure 9. Function instEv(G, X, F) : G [F/X] ∼ G [F/X]\X is defined (inductively)
almost as the reflexive evidence operator, save for the case when type G is ?𝛿 and X is in scope
𝛿 . Then, instEv generates an evidence which consist of two spans: one span that łseals to Xž and
another one that does not. More in detail, the first span (F, injX , injF) represents that the unknown
type should behave polymorphically in X. On the contrary, the second span (?𝛿1;𝛿2 , inj?, inj?)
does not acknowledge the existence of variable X. For example, we have that (?X → X) [Int/X] =

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:22 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

G ⩽ G Shape-restricted type precision

⩽B B ⩽ B
⩽X X ⩽ X

⩽→

G1 ⩽ G2 G′
1 ⩽ G′

2

G1→G′
1 ⩽ G2→G′

2
⩽∀

G1 ⩽ G2

∀X.G1 ⩽ ∀X.G2

⩽B? B ⩽ ?𝛿
⩽X?

X ∈ 𝛿

X ⩽ ?𝛿
⩽?

𝛿 ⊆ 𝛿 ′

?𝛿 ⩽ ?𝛿′

Ω ⊢ t : G ⊑ t : G Term precision

⊑asc
Ω ⊢ t1 : G′

1 ⊑ t2 : G′
2 G1 ⊑ G2

Ω ⊢ t1 :: G1 : G1 ⊑ t2 :: G2 : G2
⊑appG

Ω ⊢ t1 : G1 ⊑ t2 : G2 G1 ⩽ G2

G1 _ ∀X.G′
1 G2 _ ∀X.G′

2

Ω ⊢ t1 [F] : G′
1 [F/X]\X ⊑ t2 [F] : G′

2 [F/X]\X

Fig. 10. F?: Shape-restricted type precision and term precision (fragment).

?X:Int → Int and (?X → X) [Int/X]\X = ? → Int. Therefore instEv(?X→X, X, Int) : ?X:Int → Int ∼

? → Int, where instEv(?X→X, X, Int) = {(Int→ Int, injX → reflInt, injInt → reflInt), (? → Int,

inj? → reflInt, inj? → reflInt)}. Note that this evidence makes it impossible that a sealed value
leaks out of a polymorphic function application. The scope of a type variable (label) is limited to
the type application in which it appears. For example, consider the type application t [Int] in F?,
where ⊢ t : ∀X.?X→?X. This term is elaborated to instEv(?X→?X, X, Int) (t [Int]) :: ? → ?, where
t [Int] has type ?X:Int → ?X:Int; the generated instEv evidence is used to coerce this type to ? → ?.
The label X may appear in unknown types that are used inside t [Int], but the instEv evidence casts
t [Int] to a type not mentioning the label X, effectively restricting the scope of X to inside the
term t [Int]. Even when the resulting term computes further and t [Int] is reduced and combined
with values from the context (for example, in a function application), the instEv evidence protects
the scope of X, preventing it from interfering with possible other occurrences of the same name X
introduced by other type applications. Because of this, there is no need for alpha-renaming.
It is important to clarify one important limitation: the instantiation evidence instEv(G, X, F) is

not general enough whenG = ?𝛿1,X,𝛿2 . With the current definition, ?𝛿1,X,𝛿2 intuitively only represents
something of type X or other well-formed static type with respect to 𝛿1, 𝛿2. This means that at
runtime, if ?𝛿1,X,𝛿2 is used in a consistent judgment with a function such as X→X, the program could
fail. For instance, the program (ΛX.𝜆x :X.x) :: ∀X.?X [Int] 1 generates the instantiation evidence
instEv(?X, X, Int) = {(?, inj?, inj?), (Int, injX , injInt)}, which will not seal argument 1, making
this program fail at runtime. To fix the program, and generate appropriate sealing, the type of the
ascription had to be changed as follows: (ΛX.𝜆x :X.x) ::∀X.?X→?X [Int] 1. The spans generated now
include (Int→ Int, injX → injX , injInt → injInt) which makes the program run without errors.
However, statically there is no way to know a priori the exact shape of the evidence needed when
imprecise information is involved. Consequently, a more general mechanism for the generation of
the instantiation evidence is needed (see Section 8).
Finally, we prove that the elaboration preserves typing:

Theorem 7.2 (Elaboration Preserves Typing). If Δ; Γ ⊢ t : G, then Δ; Γ ⊢ t : G { t′ and
∆; Γ ⊢ t′ : G.

Source-level graduality. Under the natural notion of type precision (Figure 8), some F? terms
related by precision elaborate to F?𝜀 terms that are not related by precision. Consider program
(ΛX.𝜆x :X.x) :: ∀X.?X→?X [Int] 1 more precise than (ΛX.𝜆x :X.x) :: ∀X.?X [Int] 1 (note that

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:23

∀X.?X→?X ⊑ ∀X.?X). The first program elaborates to a program that reduces correctly, but the sec-
ond to a program that fails. As explained in the previous section, this is because instEv(?X, X, Int)
does not generate evidence that contains function spans that seal the argument. This does not
mean that there is no source-level graduality in F? at all; as first explored by Igarashi et al. [2017],
the fact that the gradual guarantees are stated relative to a notion of precision means that we may
be able to characterize source-level graduality via a restricted notion of precision.
To characterize the F? programs for which we can guarantee graduality, it is enough to restrict

term precision only for type applications, enforcing that for such expressions, type precision be
restricted to types of the same shape. Notice how rule (⊑appG) in Figure 10 uses shape-restricted
type precision ⩽ in its premise, while other rules, such as rule (⊑asc), use the natural type precision
⊑. Shape-restricted type precision ⩽ is defined similarly to ⊑, but in the case of polymorphic
and function types, the type constructors have to match. For example, ∀X.X→X ⩽ ∀X.?X→?X but
∀X.(X→X)→X ̸⩽ ∀X.?X→?X and ∀X.X→X ̸⩽ ∀X.?X. This means that if G1 ⩽ G2, then all sealing
spans included in applying instEv to G1 will be included in the application of instEv to G2. The
other cases of term precision are derived just as the natural lifting of type precision to terms.
With this notion of term precision, two source terms related by precision elaborate to F?𝜀 terms

that are also related by precision:

Lemma 7.3. If ⊢ t1 : G1 ⊑ t2 : G2, ⊢ t1 : G1 { t1 and ⊢ t2 : G2 { t2, then ⊢ initPT(G1,G2) : t1 ⊑ t2.

Note that precision in F?𝜀 is proof-relevant, therefore we have to provide a proof term that justifies
łhowž two terms are related. We do that by using the initial proof term function between the types
of the related terms.

The dynamic semantics of a F? term are given by first elaborating the term to F?𝜀 and then reducing
the F?𝜀 term. Hence, for establishing the gradual guarantees in F?, we write t ⇓ v if ⊢ t : G { t and

t
∗

↦−→ v. Similarly, we write t ⇑ if the elaboration of t diverges. Then, using Lemmas 7.2, 7.3 and 6.4
we can prove the gradual guarantees for F?:

Theorem 7.4 (Gradual guarantees). Suppose ⊢ t1 : G1 ⊑ t2 : G2 and ⊢ t1 : G1.

(1) ⊢ t2 : G2 and G1 ⊑ G2.
(2) If t1 ⇓ v1, then t2 ⇓ v2 and ⊢ initPT(G1,G2) : v1 ⊑ v2.

If t1 ⇑ then t2 ⇑.

Source-level parametric reasoning. As a first form of parametric reasoning for F?, the elabo-
rations of well-typed F? terms produces F?𝜀 terms that are also well typed (by Theorem 7.2), and
hence related to themselves (by Theorem 5.1):

Corollary 7.5. If Δ; Γ ⊢ t : G { t then ∆; Γ ⊢ t ⪯ t : G.

This lemma is powerful, but it is not immediately clear what it means for concrete example
terms in F?. We make this clearer as follows: a type abstraction f of type ∀X.G applied to related
types, produces related terms whenever X does not occur in the scopes of unknown types in G (a
condition written G\X = G below):

Lemma 7.6. ∀𝑛, 𝜌

Δ; Γ ⊢ f : ∀X.G ∀B1,B2, 𝑅 ∈ Rel[B1,B2] ((𝑛, 𝜌) ∈ DJ∆K ∧ (𝑛,𝛾) ∈ G𝜌JΓK)
G\X = G Δ; Γ ⊢ f [Bi] : G [Bi/X]\X { ti

(𝑛, 𝜌1 (𝛾1 (t1)), 𝜌2 (𝛾2 (t2))) ∈ T𝜌,X ↦→(B1,B2,𝑅)JGK

As a direct consequence of Lemma 7.6, every F? program ascribed to a static type behaves
parametrically, even if it internally uses the unknown type. Since the logical relation for F?𝜀 coincides

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:24 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

almost exactly with traditional formulations for System F, this means we get the same reasoning
about such applications than in System F itself, save for the possibility that two related terms both
raise a runtime error. From Lemma 7.6, we can also derive free theorems involving imprecise types.
For instance, given a function of type ∀X.?∅→X, then the application of the function either fails or
diverges.

Lemma 7.7. If ⊢ f : ∀X.?∅→X, ⊢ v : B and t = f [B] v, then t ⇓ error, or t ⇑.

This behavior is expected because ?∅ can only stand for a type that does not involve X. Intuitively,
this means that this gradual polymorphic function type denotes types such as ∀X.Int→X and
∀X.Bool→X, but not ∀X.X→X. Therefore, the function cannot create a value of type X out of thin
air, and the argument v cannot possibly be sealed as a value of type X, so the function necessarily
fails if it tries to return any value.

Lemma 7.6 does not apply to polymorphic functions whose type mentions unknown types with
the quantified variable in scope. To understand why such types require more nuance, remember
the example function 𝑓 = Λ𝑋 . 𝜆𝑥 : ?.𝑥 :: 𝑋 discussed in the introduction. When applied to type Int
and value 42, this function produces the value 42, but it throws a runtime type error when applied
to Bool and value 42. In such examples, F? inserts plausible sealing evidence, in an effort to guess
whether the programmer intended 42 to be treated as a value of type X or not, in a maximally
permissive way. However, this does not mean we do not get any form of parametricity for such
examples, but rather, we need to keep in mind the intuitive effect of plausible sealing. In other
words, F? supports more parametric reasoning than just what Lemma 7.6 expresses. Particularly,
when a type variable is in the scope of an unknown type within a function type, we can also derive
some free theorems using Corollary 7.5. For instance, if a function f has type ∀X.?X→X, then by
parametricity we can deduce that f behaves either as the identity function or fails or diverges:

Lemma 7.8. If ⊢ f : ∀X.?X→X, ⊢ v : B and t = f [B] v, then t ⇓ v with ⊢ v : B { v, or t ⇓ error, or t ⇑.

Contrary to GSF [Toro et al. 2019], in F? this result holds just by looking at the type of f, without
the need to unfold its definition. Intuitively, this lemma takes into account that F? applies plausible
sealing to the argument v, so f might return it as the result of type X. The function f can also diverge
or fail, but parametricity for F? still implies that f cannot return any value other than v.

8 LIMITATIONS AND PERSPECTIVES

The technical development of plausible sealing in this article suffers from two technical limitations.
The first is that we only formalize a simplified form of polymorphism with instantiation types. The
second is that graduality for F? is restricted for type applications, since two type applications are
only related when the polymorphic types have the same shape (Section 7).
Both limitations manifest in the definition of instantiation evidence for the unknown type

(Figure 9): instEv(?𝛿1;X;𝛿2 , X, F) = {(?𝛿1;𝛿2 , inj?, inj?), (F, injX , injF)}. Recall that the role of this
instantiation evidence is to cast, for example, a function application of type ?X:Int → Int to type
?∅ → Int. The restricted form of polymorphism is apparent because instEv’s third argument F is
restricted to an instantiation type (a base type or a type variable), andwe simply use injF : F ⊑ ?𝛅1;𝛅2
to inject F into type ?𝛅1;𝛅2 . Generalizing to full polymorphism would require replacing F and injF
in the above definition with an arbitrary type G and a proof term c : G ⊑ ?𝛅1;𝛅2 . This requires
to extend the syntax of 𝛅 to allow for any type. An initial exploration suggests this is largely
unproblematic and in fact, our Agda proofs of consistent transitivity associativity and monotonicity
already support such a richer syntax of 𝛅. A problem turns up when one of the other types in 𝛅1

or 𝛅2 mentions ?𝛿′ with X : X ∈ 𝛿 ′. In that case, it appears we additionally need a proof term that

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:25

expresses precision between ?𝛅 and ?𝛅′ when 𝛅 is not just a subset of 𝛅′ but some of the types in 𝛅

are themselves strictly more precise than corresponding types in 𝛅
′.

Allowing a type abstraction to be instantiated at any typeG would require saving the information
of the instantiated type in the proof term injX . This information could then be refined through
composition. Therefore, we should transform injX to the proof term sequence injX (c), where
injX (c) : G′ ⊑ ?𝛅 , X : G ∈ 𝛅, c : G′ ⊑ G and 𝛅 ⊢ G′. In addition, the composition of proof
terms for this case would slightly change: c1;injX (c2) = injX (c1;c2). Note that applying the type
abstraction to any type G′ with rule RappG would not change; the instantiated type G′ would
continue to be substituted in the body of the type abstraction and the evidence.
The other main limitation of F? is caused by the right-hand-side of the above definition. Prob-

lematically, it only mentions two cases: a value of type ?𝛅1;𝛅2 will be converted into type ?𝛅1;X;𝛅2

either (1) by not sealing at all and simply extending the scope of the unknown type, or (2) by
sealing, converting a value of type F into a value sealed at type X in ?𝛅1;X;𝛅2 . What is missing is
a recursive case that would treat, for example, a value of type F → F as a value of type X → X

and recursively seal it accordingly. In fact, this could be accommodated easily by extending the
right-hand-side with an additional case: (F → F, inj→ (injX → injX), inj→ (injF → injF)). we
conjecture that a solution is to introduce a syntax of recursive evidence that would allow us to
define instEv(?𝛿1;X;𝛿2 , X, F) as:
𝜇𝜖 . inj→ (𝜖 → 𝜖) ⊎ inj× (𝜖 × 𝜖) ⊎ inj∀(∀Y. 𝜖) ⊎ {(B, injB, injB)} ⊎ {(F, injX , injF)}. In this no-
tation, we construct an evidence inj→ (𝜖 → 𝜖) : ?𝛅 ∼ ?𝛅′ from 𝜖 : ?𝛅 ∼ ?𝛅′ by combining two spans
(G1, c1, c2) and (G2, c3, c4) from 𝜖 into the span (G1 → G2, inj→ (c1 → c3), inj→ (c2 → c4)) and
similarly for inj× and inj∀. We leave the definition of the operational behavior of such recursive
evidence and the proofs of its properties to future work.

9 DISCUSSION AND RELATED WORK

Gradual parametricity has been intensively studied [Ahmed et al. 2009, 2017; Igarashi et al. 2017;
Matthews and Ahmed 2008; New et al. 2020; Toro et al. 2019; Xie et al. 2018]. We have already
discussed in detail related work, emphasizing the most recent proposals. Recall that Section 2.3
compares existing languages via examples (additional examples are included in the technical report).

Sealing for Parametricity. Dynamic sealing, originally proposed by Morris [1973] to dynamically
enforce type abstraction, has been widely used to guarantee parametricity in gradual languages.
The notion of dynamic sealing combined with global runtime type name generation has driven the
dynamic semantics of polymorphic gradual languages such as 𝜆𝐵 [Ahmed et al. 2017], CSA [Xie
et al. 2018], GSF [Toro et al. 2019] and PolyG𝜈 [New et al. 2020]. Type names are dynamically
generated in each type application and are kept in a global store, making the dynamic semantics
and the definitions and proof of parametricity less standard and more complex. F?𝜀 avoids using
type names generation and, therefore, a global store thanks to the fact that the unknown type is
decorated by an environment and the sealing/unsealing mechanism is generated statically. It is
worth noting that, unlike other developed gradual polymorphic languages, PolyG𝜈 also includes
explicit seal and unseal terms in its syntax. In this sense, we can say that F?𝜀 also includes in its
syntax explicit forms of sealing and unsealing, since for a program with an imprecise type to behave
in a parametric way, it is necessary to introduce the evidence of sealing and unsealing statically.
The key novelty of F?𝜀 is to support evidence with multiple sealing justifications, which makes it
possible to avoid to eagerly choose a sealing strategy when interacting with the unknown type.
Strict Precision. Igarashi et al. [2017] first proposed using a non-standard notion of precision

in System F𝐺 to address some problems with the dynamic gradual guarantee when the unknown
type is allowed to stand for a type variable. Consequently, in System F𝐺 the unknown type is not

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:26 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

consistent with any type variable. Here, the source language F? also restricts precision, but in a
much less drastic manner: type precision is the standard precision, and only term precision is
restricted, in order to only relate type applications to types of the same shape. We explain in the
previous section how this restriction could be lifted. Finally, F?𝜀 has no such restriction, and satisfies
the gradual guarantees with respect to the standard notion of precision, for both types and terms.
Proof Terms for Type Precision. PolyG𝜈 , inspired by previous work [New and Ahmed 2018],

adds a proof term to the type precision relation as a technical intermediate representation for the
translation from PolyG𝜈 to PolyC𝜈 , a cast calculus that gives meaning to PolyG𝜈 programs. It is
important to note that proof terms in the type precision relation are canonical, i.e. there is at most
one proof term that proves any given type precision judgment. Likewise, F?𝜀 language indexes the
type precision relation with proof terms, but contrary to PolyG𝜈 , proof terms are relevant, i.e. there
can be multiple proof terms for the same precision judgment. Also, as a difference with PolyG𝜈 ,
term precision in F?𝜀 is indexed by a relevant proof term.
Family of Unknown Types. Devriese et al. [2018] proposed to decorate the unknown type with

the set of type variables in scope, as we do here, thus limiting the expressiveness of the unknown
type by forming different families. This proposal aims to potentially reestablish the fully abstract
embedding property of System F into 𝜆𝐵. Devriese et al. [2018] and more recently Jacobs et al.
[2021] proposed a new criterion for gradual typing named the fully abstract embedding (FAE)
property: the embedding from the static to the gradual language should be fully abstract in order
to preserve the semantics properties of the static languages. We conjecture that this criterion holds
for the language F?, being a gradual version of System F that preserves its main semantic property
(i.e. parametricity), although we leave a proof of FAE as future work.

Implicit Polymorphism. Several polymorphic gradual languages have explored implicit polymor-
phism present in languages such as Haskell. Xie et al. [2018] developed a gradual source language
with implicit polymorphism, where the runtime semantics are given by compilation to 𝜆𝐵. 𝜆𝐵 and
System F𝐺 , in turn, are languages with explicit polymorphism that accommodate some form of
implicit polymorphism. F? and F?𝜀 , as well as PolyG

𝜈 and GSF, only support explicit polymorphism;
exploring implicit polymorphism for F? is an interesting venue for future work, in order to enhance
interoperability between typed and untyped code.

Evidence Representation. Evidence has been used in different scenarios, varying its representation
according to the semantic properties to be preserved in the gradual language. For instance, Lehmann
and Tanter [2017] develop a gradual language with refinement types, allowing smooth evolution
and interoperability between simple types and logically refined types. In this case, the evidence
for consistent subtyping is represented by a triple, where the first component accounts for the
logical environment, and the second and third are types. Toro et al. [2018] develop a gradual
language with security types and references, indexing types with gradual security labels. Driven
by noninterference, types in evidence are indexed with intervals of security labels, representing
(bounded) ranges of possible static types. Likewise, F?𝜀 represents evidence in a novel way. First, it
enriches evidence with proof terms relevant that we call span and then generalizes the evidence to a
set of spans, building evidence with the expressiveness to ensure both graduality and parametricity.
This theory may be applicable in other complex settings as well. We conjecture, and leave as future
work, that by representing the evidence of instantiation recursively when imprecise types occur,
we can lift the restriction on the term precision relation, thus correctly running all programs that
by graduality must end in a value. In addition, it would be interesting to explore if there is a way to
systematically derive proof-relevant consistency with AGT.
Performance. Gradual parametricity is a very challenging topic at the theoretical level, with all

current efforts trying to figure out how to achieve a good design backed by a strong metatheory.
This work likewise focuses on the theory of gradual parametricity, contributing a novel approach

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

Plausible Sealing for Gradual Parametricity 70:27

and technique. We leave the study of the performance and efficiency of a practical implementation
as an open question to be addressed. Nevertheless, it is worth mentioning that the proposed
language design satisfies a relevant criterion for space efficiency [Herman et al. 2010], namely
associativity of evidence composition, which is known to allow for space efficiency in evidence-
based semantics [Bañados Schwerter et al. 2021; Toro and Tanter 2020]. Whether the algorithmic
definition of consistent transitivity can be efficiently implemented depends on whether evidence can
be represented inmemory in a form that uses space efficiently and allows an efficient implementation
of evidence composition. All these are open research questions.

10 CONCLUSION

Previous work on gradual parametricity has had to compromise on important design goals like
graduality [Toro et al. 2019] or type-driven sealing [New et al. 2020]. Rather than accepting these
compromises, this paper attempts to revisit accepted wisdom like the use of globally scoped sealing
and contribute new ideas like plausible sealing and the set-of-spans representation of evidence
for proof-relevant precision. Although the results presented here still have some restrictions, they
open a new path towards the goal of reconciling parametricity, graduality and type-driven sealing.
Additionally, some of our novel techniques are potentially reusable in other settings. Finally, our
use of lexically scoped sealing invalidates the counterexample of fully-abstract embedding put
forth by Devriese et al. [2018], and thereby offers new hope of constructing a gradual language
that satisfies the ambitious goal of embedding System F fully abstractly [Jacobs et al. 2021].

ACKNOWLEDGMENTS

This work was partially supported by the United States Air Force Office of Scientific Research
under award number FA9550-21-1-0054, by the Flemish Research Programme Cybersecurity, and
by ANID FONDECYT projects 1190058 and 3200583, Chile.

REFERENCES

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.
Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the 15th

European Symposium on Programming Languages and Systems (ESOP 2006) (Lecture Notes in Computer Science, Vol. 3924),
Peter Sestoft (Ed.). Springer-Verlag, Vienna, Austria, 69ś83.

Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. 2009. Blame for All. In Workshop on Script to
Program Evolution (STOP). Genova, Italy.

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, with and
Without Types. See[ICFP 2017 2017], 39:1ś39:28.

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-carrying Code.
ACM Transactions on Programming Languages and Systems 23, 5 (Sept. 2001), 657ś683.

Felipe Bañados Schwerter, Alison M. Clark, and Jafery. 2021. Abstracting Gradual Typing Moving Forward: Precise and
Space-Efficient. See[POPL 2021 2021], 61:1ś61:28.

Rastislav Bodík and Rupak Majumdar (Eds.). 2016. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2016). ACM Press, St Petersburg, FL, USA.

Matteo Cimini and Jeremy Siek. 2016. The gradualizer: a methodology and algorithm for generating gradual type systems,
See [Bodík and Majumdar 2016], 443ś455.

Dominique Devriese, Marco Patrignani, and Frank Piessens. 2018. Parametricity versus the universal type. Proceedings of
the ACM on Programming Languages 2, POPL (Jan. 2018), 38:1ś38:23.

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing, See [Bodík and Majumdar 2016],
429ś442. See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Jean-Yves Girard. 1972. Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique d’Ordre Supérieur. Ph.D.
Dissertation. Université de Paris VII, Paris, France.

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-Order and Sympolic
Computation 23, 2 (June 2010), 167ś189.

ICFP 2017 2017.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

70:28 Elizabeth Labrada, Matías Toro, Éric Tanter, and Dominique Devriese

Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. See[ICFP 2017 2017], 40:1ś40:29.
Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully abstract from static to gradual. See[POPL 2021 2021],

7:1ś7:30.
Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL 2017). ACM Press, Paris, France, 775ś788.
Jacob Matthews and Amal Ahmed. 2008. Parametric Polymorphism Through Run-Time Sealing, or, Theorems for Low, Low

Prices!. In Proceedings of the 17th European Symposium on Programming Languages and Systems (ESOP 2008) (Lecture
Notes in Computer Science, Vol. 4960), Sophia Drossopoulou (Ed.). Springer-Verlag, Budapest, Hungary, 16ś31.

James H. Morris. 1973. Protection in Programming Languages. Commun. ACM 16, 1 (Jan. 1973), 15ś21.
Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. Proceedings of the ACM on Programming

Languages 2, ICFP (Sept. 2018), 73:1ś73:30.
Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and Parametricity: Together Again for the First Time.

Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 46:1ś46:32.
nLab contributors. 2021a. pullback. https://ncatlab.org/nlab/show/pullback
nLab contributors. 2021b. span. https://ncatlab.org/nlab/show/span
Benjamin Pierce and Eijiro Sumii. 2000. Relating Cryptography and Polymorphism. Manuscript.
POPL 2021 2021.
John C. Reynolds. 1974. Towards a Theory of Type Structure. In Porceedings of the Programming Symposium (Lecture Notes

in Computer Science, Vol. 19). Springer-Verlag, 408ś423.
John C. Reynolds. 1983. Types, abstraction, and parametric polymorphism. In Information Processing 83, R. E. A. Mason (Ed.).

Elsevier, 513ś523.
Jeremy Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the Scheme and Functional

Programming Workshop. 81ś92.
Jeremy Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of the 37th annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2010). ACM Press, Madrid, Spain, 365ś376.
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 32). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Asilomar, California, USA, 274ś293.

Eijiro Sumii and Benjamin C. Pierce. 2004. A Bisimulation for Dynamic Sealing. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2005). ACM Press, Venice, Italy, 161ś172.

Matías Toro, Ronald Garcia, and Éric Tanter. 2018. Type-Driven Gradual Security with References. ACM Transactions on
Programming Languages and Systems 40, 4 (Nov. 2018), 16:1ś16:55.

Matías Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricity, Revisited. Proceedings of the ACM on
Programming Languages 3, POPL (Jan. 2019), 17:1ś17:30.

Matías Toro and Éric Tanter. 2020. Abstracting Gradual References. Science of Computer Programming 197 (Oct. 2020), 1ś65.
Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In Proceedings of the 27th European

Symposium on Programming Languages and Systems (ESOP 2018) (Lecture Notes in Computer Science, Vol. 10801), Amal
Ahmed (Ed.). Springer-Verlag, Thessaloniki, Greece, 3ś30.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 70. Publication date: April 2022.

https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/span

	Abstract
	1 Introduction
	2 Background and Overview of F?
	2.1 Background on (Abstracting) Gradual Typing
	2.2 Evidence for Plausible Sealing
	2.3 Comparing Plausible Sealing and Prior Approaches

	3 The Evidence-Based Language F?
	4 Evidence for Plausible Sealing in F?
	5 F?: Gradual Parametricity
	6 F?: Gradual Guarantees
	7 The Gradual Source Language F?
	8 Limitations and Perspectives
	9 Discussion and Related Work
	10 Conclusion
	Acknowledgments
	References

