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We revisit the observable used for the direct measurements of the electron’s g factor. This is done by
considering the subleading effects of the large magnetic background field and virtual Standard Model
processes. We find substantial corrections to the Landau levels of the electron. Implications for the
observed magnetic moment and the tension between direct and indirect measurement are discussed.
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I. INTRODUCTION

A. Electron g− 2 in a nutshell

Quantum electrodynamics (QED) is one of the corner-
stones of our understanding of the electron, its properties,
and interactions [1,2]. This theory allows performance of
the interplay between theoretical prediction and experi-
mental confirmation to unprecedented precision. The
anomalous magnetic moment of the electron plays a pivotal
role in this ongoing success.
Schwinger [3] and Luttinger [4] made the first theoretical

calculations suggesting that the magnetic moment of the
electron should differ from two. Over the decades, these
calculations became more and more precise [5–7], such that
they currently include even tenth order in perturbation
theory (for a review see [8]). For recent developments
concerning the anomalous magnetic moment of the muon,
see [9].
Such an amazing effort on the theoretical side only

makes sense, if the experimental observations have a
precision that is comparable to the theoretical uncertainty.
Since the first experimental observation of g ≠ 2 [10,11],
the measurements have been continuously improved.
Currently, the most precise direct measurement of the
electron’s g factor goes down to 13 significant digits

[12–14]. These experiments, which will be discussed in
more detail below, use Penning traps. A comparison
between theory and experiment at such precision does
not only allow for better testing of QED, but is an excellent
tool to test the Standard Model of particle physics (SM) and
to constrain models that go beyond the Standard Model of
particle physics (BSM) [15–20].
These direct measurements can also be complemented

by measurements of the fine structure constant α, which, by
virtue of the theoretical predictions, allow inferring the
value of g [21,22]. Three years ago, such a comparison
showed a significant tension of 2.4 standard deviations
between the directly measured and the inferred magnetic
moment [23]. This triggered new hope for the search of
physics beyond the Standard Model. Currently, the most
prominent examples of these models, which are capable of
resolving the tension, are given in [24–33]. However, last
year a new experiment gave a discrepancy pointing in the
opposite direction, but with a smaller absolute value, such
that one cannot speak of a significant tension anymore [34].
In this paper, we revisit the observable that is used to

determine the electron’s anomalous magnetic moment in
the most precise direct measurements [12–14]. The paper is
organized as follows. In Sec. I B, we give an idealized and
thus simplified summary of the key observable. We then
motivate the study by discussing and comparing the orders
of magnitude involved in this problem in Sec. I C.
Section II uses an effective Lagrangian approach. It
contains four parts in which the path from Lagrangian
corrections to changes in the observable is described. In
Sec. III, these findings are then applied and discussed in the
context of a comparison between direct and indirect
measurements of (g − 2). A summary and conclusion is
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given in Sec. IV. Recently, we noticed the preprint [35] also
considers the effect of a finite magnetic field. It, however,
mainly discusses the implications for the anomalous
magnetic moment of the muon.

B. Idealized experimental setting

The motion of an electron in a real Penning trap has four
eigenfrequencies, which are the spin, cyclotron, axial, and
magnetron frequency. For the most part of this paper, it is,
however, sufficient to consider the idealized case, where
electric field and magnetron effects are absent.
The magnetic field strength, used in this experiment, can

be inferred from the measured cyclotron frequency of about
νc ¼ ω=ð2πÞ ≈ 149 GHz [12],

jBj ¼ 2πνcm
e0

≈ 5.3 T: ð1Þ

Here, e0 is the absolute value of the electron charge. The
energy eigenvalues of this system are [36]

E�
n ¼ 1

2
ð2nþ 1� 1Þhνc �

a
2
hνc −

1

8

h2ν2c
mc2

ð2nþ 1� 1Þ2;
ð2Þ

where the last term is the leading relativistic correction. The
parameter of interest in (2) is the anomalous magnetic
moment

a≡ ðg − 2Þ
2

: ð3Þ

Measurements of transitions between these energies are
used to determine the value of a. It turns out that a
particular ratio of such transition energies cancels several
effects of imperfections and is thus particularly suited for
this purpose [12–14],

ad ¼
Eþ
0 − E−

1

Eþ
1 − Eþ

0 þ 3hδ=2
: ð4Þ

The subscript of ad refers to “direct” measurement.

C. Corrections to expect

Quantum field theoretical descriptions are effective
many-particle theories, which consider excitations of all
fields ðψ ; Aμ;…Þ. This leads to corrections to the quantum
mechanical Dirac equation

iℏψ ¼ HDψ : ð5Þ

When discussing these corrections for the above exper-
imental setting, we have three small dimensionless num-
bers at our disposal, which can be used to obtain good

estimates. In order to compare these quantities, we intro-
duce a common small expansion parameter ϵ.

(i) First, for the nonvanishing magnetic field in (1),
there is

δc ≡ hνc
mc2

∼ 10−9 ∼ ϵ4: ð6Þ

The Foldy-Wouthuysen transformation [37] is es-
sentially based on an expansion in (6) since rela-
tivistic energy corrections to the rest mass are given
as series of the form 1þ δc þ δ2c þ δ3c � � �.

(ii) Second, there is the fine-structure constant

α ∼ 2πa ∼ 0.007 ∼ ϵ: ð7Þ

Perturbation theory in QED is an expansion in (7).
The famous anomalous magnetic moment contrib-
utes to the energies with a term αδc.

(iii) The third dimensionless parameter is the ratio
between the electron mass m and the mass of the
W boson

δW ¼ m
mW

∼ 10−5 ∼ ϵ2.5: ð8Þ

The leading contribution to the Hamiltonian of these
corrections appears at quadratic order in δW and is
induced by loop corrections. It is suppressed by
αδcδ

2
W or by αδ2W, as shown in (C4).

The above expansions are present in energy formulas like (2).
To see the relevance of the different terms in this expansion it
is instructive to compare them to the experimental precision
of [13]. In this experiment “a”was determined bymeasuring
a dimensionless ratio ∼ðΔE=ðmc2δcÞÞ between different
transition energies (ΔE; δc) of the quantum mechanical
system to a precision of 2.8 × 10−13. This comparison of
magnitudes is shown in Fig. 1. Remembering that the
interpretation of the experimental measurement considers
dimensionless corrections up to order∼δc, Fig. 1 gives some
expected and some surprising insight. One sees that sub-sub-
leading-order relativistic corrections (∼δ2c), or loop correc-
tions with three external photon lines (αδ2c), are well beyond
experimental reach.On the other hand, Fig. 1 shows that loop
corrections with two external photon lines ∼αδc and loop
corrections involving aweak interaction and a single external
photon line ∼αδW can be expected to give relevant correc-
tions to the interpretation of experimental results. From the
point of view of a combined expansion in (6)–(8), there is no
reason why such terms should be absent.
We will discuss possible corrections to the energies and

to the observable [(2) and (4)] up to order αδ2c in a
systematic way. We address the issue of the seemingly
relevant corrections ∼αδc and αδ2W .
Note that there are further dimensionless scales. In

particular, if one would consider axial motion with the
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axial frequency νz, there would be a fourth small dimen-
sionless parameter

δz ≡ hνz
mc2

∼ 10−13 ∼ ϵ6: ð9Þ

This parameter is shortly mentioned in the discussion.
There are, of course, further higher orders in fine-structure
constant α, which are not shown in Fig. 1 since these
corrections do not introduce new effective operators.
Note further that, in principle, this discussion of orders of

magnitude also applies to the anomalous magnetic moment
of the muon, but there are two crucial differences: First, the
experimental observable is different from (4). Second, the
muon is about 200 times heavier than the electron, which
further suppresses δc by the same factor. Thus, most of the
possible corrections discussed for the electron are irrelevant
for the muon.

II. CORRECTIONS FROM EFFECTIVE
LAGRANGIAN APPROACH

We address the problem of corrections to the anomalous
magnetic moment of the electron with an effective
Lagrangian approach. This approach allows one to obtain
the energy spectrum as a result of the solutions of the
effective equations of motion. Alternatively, the energies
can be read off from the spectral structure of the exact
electron propagator in the presence of a finite magnetic
field, using Schwinger’s proper-time representation [38].
We chose the former approach, because it allows us to
include non-QED effects straightforwardly.

A. Hamiltonian from effective Lagrangian

In an effective field theory approach, the anomalous
magnetic moment of the electron is given in terms of the
effective Lagrangian [39]

Leff ¼ ψ̄

�
γμðiℏ∂μ − eAμÞ −mc2 þ a

eℏ
4m

σμνFμν þ…

�
ψ :

ð10Þ

The anomalous contribution to the g factor is encoded in the
parameter (a). In a top-down approach, the corresponding
last term in (10) arises from the sunset diagram with a

single external photon line (see Fig. 2 with y ¼ 1). In a
bottom-up approach, one can also take (a) as a phenom-
enological parameter of the effective Lagrangian (10) and
determine its value from an experiment. For this purpose,
one uses (10) to derive the corresponding quantum
mechanical Dirac equation

�
γμðiℏ∂μ − eAμÞ−mc2 þ a

eℏ
4m

σμνFμν þ…

�
ψ ¼ 0: ð11Þ

For a constant external magnetic field and a ¼ 0, the
energy levels and eigenfunctions of the system with a
single electron are known exactly [40,41], with the eige-
nenergies given in (B1). With a ≠ 0, the anomalous
magnetic moment is described by an additional term,

Δ1H ¼ aγ0σμνFμν; ð12Þ

adding to the Dirac Hamiltonian. Since these are also
eigenfunctions of the operator Δ1H, the corresponding
energy levels (B1) only get modified by an additive factor

E�
n ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hνc

mc2
ð1þ 2n� 1Þ

r
� a

2
hνc: ð13Þ

Since our aim is to study corrections to (2), we expand the
energies (13) up to powers of δ3c,

E�
n ¼mc2þ1

2
ð2nþ1�1Þhνc�

a
2
hνc

−
1

8

h2ν2c
mc2

ð2nþ1�1Þ2þ 1

16

h3ν3c
m2c4

ð2nþ1�1Þ3: ð14Þ

FIG. 1. Orders of magnitude of the expansion parameters [(6)–(8)]. The precision reached by current experiments is indicated by the
green bar. The theoretical expansion order used to interpret the experimental results [(2) and (4)] is indicated by the red bar. The energies
in this sketch are normalized to the dimensionless ratio ∼ðΔE=ðmc2δcÞÞ.

FIG. 2. Feynman diagram for coupling to y ¼ 3 external
photons.
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One notes that this contains the constant mass term, the
energy formula (2), and the additional last term ∼δ3c ∼ ϵ12,
which is the type of correction we are interested in.
Schematically one can write

E�
n

mc2δc
¼ O

�
1

δc
þ 1þ αþ δc þ δ2c þ…

�
: ð15Þ

The contributions ∼δc lead to relative changes in the energy
differences of ∼10−9 and are thus an essential part of the
current measurements, which have a precision of about
10−13. The corrections ∼δ2c lead to relative changes in the
energy differences of ∼10−18; they will only be accessible
to future experiments. One realizes that the solution (13)
does not give rise to αδc or αδ2W terms. For these terms to
appear, one needs to consider additional operators in the
effective action (10).
In the following subsections, we will explore this

possibility.

B. Between theory and experiment

There is a conceptual gap between the theoretical
definition of the anomalous magnetic moment and the
observable that is used to measure this quantity. From the
theory side, one defines a in terms of the photon-electron
vertex function Γeēρðp;−p; qÞ, evaluated at zero momen-
tum transfer [42,43]. From the experimental side, a is
defined through Eq. (4) in terms energy eigenvalues of an
electron in the background of a finite magnetic field.
These are different things, which only agree in certain

limits and approximations. One way to discuss this issue is
in terms of the effective Lagrangian (10) and the resulting
field equations, as sketched in the previous subsection. The
photon-electron vertex function Γeēρðp;−p; qÞ evaluated at
zero momentum gives rise to the effective Hamiltonian
contribution (12). This contribution is thus an unambiguous
SM prediction, which is experimentally tested by measur-
ing transitions between energy eigenvalues of (11) and
plugging them into relation (4). This test is correct as long
as additional contributions to the effective Lagrangian,
symbolized by the dots in relations (10) and (11), are
negligible or at least give negligible contributions to the
energy eigenvalues in (4).
Higher-order corrections to the effective field equa-

tions (11), which are not included in the standard analysis
because they do not arise from the photon-electron vertex
function Γeēρðp;−p; qÞ, are a consequence of three differ-
ent aspects:

(i) The experiments are performed at finite magnetic
field, which means that the assumption of zero
momentum transfer is only approximately true.
Since such corrections are typically quadratic in
the momentum transfer, one can expect that they
lead to ∼δ2c corrections in (15).

(ii) When allowing contributions to second or higher
order in the finite external magnetic field, (11) will
contain additional terms that have a field and
Lorentz structure, which is not captured by (12).
Such corrections can already appear at order ∼αδc
in (15).

(iii) Additional non-QED fields can also lead to oper-
ators with a different structure than (12) and which
are thus not part of the standard analysis in the
literature. If the additional field is a weak gauge
boson, one expects ∼αδ2W corrections to (15). If the
additional field is some hypothetical beyond the
Standard Model field, one expects a correction
suppressed by the coupling and by the mass of this
field.

In the following discussion, wewill estimate these effects for
the Standard Model of particle physics, but some of the
findings can be useful for studies that go beyond this model.

C. Further gauge-invariant bilinear corrections

In a top-down approach, further corrections to the
effective action (10) arise from irreducible Feynman dia-
grams with an arbitrary number of external legs. We are
interested in the cases with two external fermion lines and
y-external photon lines, as shown in Fig. 2. For y ¼ 1, the
only contribution is the one given in (10). Loop corrections
induce numerous terms with y > 1. In an effective field
theory approach, we study a class of possible terms in the
extended Lagrangian that meet the following criteria:

(i) They are bilinear in the Dirac field ψ̄Oψ .
(ii) They form a Lorentz scalar.
(iii) The field content of the operator O ¼ OðAμ; FμνÞ

only contains gauge-invariant contributions of the
external electromagnetic field, which are either the
field strength tensor Fμν or the covariant derivative
operator Dμ, thus O ¼ OðDμ; FμνÞ.

(iv) The field content of O is only up to second power in
the field and has at least one contribution from Fμν.

Since the operatorO forms a 4 × 4matrix in spinor space, it
is useful to use f1; γμ; σμν; γ5γμ; γ5g as complete five-
dimensional basis for the classification of these operators.
While the first three basis elements are naturally induced in
QED, the last two elements require virtual non-QED
contributions, such as weak interactions or BSM physics.

1. ∼1 contributions

The term one can add to the effective Lagrangian (10),
which is proportional to the identity matrix, is

Δ1;FFL ¼ α
ξ1;FF
m3c6

ψ̄FμνFμνψ ; ð16Þ

where ξi is the effective dimensionless coupling parameter,
which is expected to be of order 1. The contributions of
these operators to the energy spectrum can be estimated by
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using jϕ�
n i, the eigenfunctions of (11), which are given

in (A1). These eigenfunctions are normalized as
hϕ�

n jϕ�
n i ¼ 1. Since small terms like (16) only lead to

small modifications of these wave functions, one can apply
perturbation theory to estimate to which extent these
modifications shift the energy levels E�

n . These shifts are
labeled Δ…E�

n . One finds

Δ1;FFE�
n ¼ ξ1;FFα

m3c6
hϕ�

n jγ0FμνFμνjϕ�
n i

¼ −ξ1;FFα
h2ν2

2mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hν

mc2 ð2nþ 1� 1Þ
q ð17Þ

≈ ξ1;FFα

�
−
h2ν2c
mc2

þ h3ν3cð2nþ 1� 1Þ
m2c4

�
: ð18Þ

In terms of the series in Fig. 1, these contributions are of the
order of

Δ1;FFE�
n =ðmc2δcÞ ∼ ξ1;FFOðαδc þ αδ2cÞ: ð19Þ

Note that these corrections are also dependent on the
other quantum number l, as long as l ≤ n. The above
relation is for l ¼ 0.
Note further that corrections of this type can also appear

due to finite temperature effects, but these are so small that
they do not interfere with our discussion.

2. ∼ γμ contributions

When including one γμ, the first option is to consider one
Dα and one Fμν. Since Dαγ

αFμ
μ ¼ 0, the only possibility,

which is linear in the field strength, is

Δγ;DFL ¼ ξγ;DF

m2c4
ψ̄Dαγ

βFα
βψ ≠ 0: ð20Þ

However, when integrating the corresponding contribution
to the energy, one finds that it vanishes

Δγ;DFE�
n ¼ ξ1;DF

m2c4
hϕ�

n jγ0Dαγ
βFα

βjϕ�
n i ¼ 0: ð21Þ

For second order in Fμν, there are two nonvanishing
contributions

Δγ;DFF1L ¼ α
ξγ;DFF1
m4c8

ψ̄Dαγ
αFμνFμνψ ; ð22Þ

with

Δγ;DFF1E�
n ¼ ξγ;DFF1α

h2ν2

mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hνð1þ 2n� 1Þp ð23Þ

≈ξγ;DFF1α
�
2h2ν2

mc2
−
h3ν3ð1þ 2n� 1Þ

m2c4

�
ð24Þ

and

Δγ;DFF2L ¼ α
ξγ;DFF2

m4c8
ψ̄Dαγ

βFβνFανψ ; ð25Þ

with

Δγ;DFF2E�
n ¼ −Δγ;DFF2α

h3ν3ð1þ 2n� 1Þ
m2c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hνð1þ 2n� 1Þp ð26Þ

≈ − ξγ;DFF2α
h3ν3ð1þ 2n� 1Þ

m2c4
: ð27Þ

In terms of the series in Fig. 1, these contributions are of the
order of

Δγ;DFF1E�
n =ðmc2δcÞ ∼ ξγ;DFF1Oðαδc þ αδ2cÞ; ð28Þ

Δγ;DFF2E�
n =ðmc2δcÞ ∼ ξγ;DFF2Oðαδ2cÞ: ð29Þ

3. ∼ σμν contributions

The contribution, which is first order in Fμν, is already
considered by the coupling in (11). Second-order contri-
butions such as ∼Fα

βσ
βμFμα are identically zero. A possible

third-order contribution is

Δσ;FFF1L ¼ α
ξσ;FFF1
m5c10

ψ̄σμνFμνFαβFαβψ ; ð30Þ

with

Δσ;FFF1E�
n ¼ �ξσ;FFF1α

4h3ν3

m2c4
: ð31Þ

Similarly, there is

Δσ;FFF2L ¼ α
ξσ;FFF2
m5c10

ψ̄σμνFμαFνβFαβψ ; ð32Þ

with

Δσ;FFF2E�
n ¼ �ξσ;FFF2α

2h3ν3

m2c4
: ð33Þ

Thus, one realizes that, in the spirit of the expansion in
Fig. 1, all of these contributions are of order

Δσ…E�
n =ðmc2δcÞ ∼ ξσ…Oðαδ2cÞ: ð34Þ
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D. Parity-violating corrections

Once one leaves the realm of QED, there is also the
possibility of forming Lorentz invariants with γ5; γμγ5, and
through contractions with ϵμναβ.

1. ∼ γ5 contributions

One might consider mass contributions that have the
form

Δγ5L ¼ mc2ξγ5αδ
2
Wψ̄γ

5ψ : ð35Þ

They do not give corrections to the energy

Δγ5E
�
n ¼ 0: ð36Þ

2. ∼ γ5γμ contributions

Parity-violating contributions to the minimal coupling
can, for example, be introduced by virtual weak inter-
actions

Δγ5γμL ¼ ξγ5γμαδ
2
Wψ̄γ

5γμDμψ : ð37Þ

Two examples are calculated in the Appendix C. Even
though these terms come with the expected prefactor, they
do not lead to corrections to the energy levels

Δγ5γμE
�
n ¼ 0: ð38Þ

Similarly, there is the possibility of

Δγ5γμFFL ¼ α
ξγ5γμFFδ2W
m3c6

ψ̄γ5γαDαFμνFμνψ ; ð39Þ

also leading to vanishing energy corrections

Δγ5γμFFE
�
n ¼ 0: ð40Þ

Notably, all parity-violating contributions to the energy
vanish at the considered order.

3. Considering the electric field

If one considers an electric field, e.g., the field confining
the electrons in the z direction, the solutions of Eq. (11) will
contain additional quantum numbers, like nz referring to
this degree of freedom,

ψ ¼ ψ�
n;nz;l;lz

: ð41Þ

The strength of the electric field will depend on z, and it
will be related to the dimensionless parameter (9); the
energy contribution of the electric oscillations will be

E�
n;nz − E�

n;nz¼0 ¼ nzmc2δz þOðδ2zÞ: ð42Þ

In order to avoid such complications, let us consider a
constant electric field E⃗ ¼ ẑðmc2Þ2δz. Thus, as long as we
consider only eigenstates with the same quantum number
nz (e.g., nz ¼ 0), we can reuse the eigenstates of the
previous sections

ψ�
n;l ¼ ψ�

n;nz¼0;l;lz¼0: ð43Þ

The discussion of the preceding sections remains valid in a
perturbative sense, even though the electromagnetic stress
tensor now reads

Fμν ¼ ðmc2Þ2

0
BBB@

0 0 0 δz

0 0 δc 0

0 −δc 0 0

−δz 0 0 0

1
CCCA: ð44Þ

The existence of the electric field ∼ðmc2Þ2δz does not alter
the differences between energy levels of the state (43). This
invisibility becomes spoiled due to parity-violating con-
tributions, analogous to the ones discussed above. One
obtains, for example, an effective coupling

ΔσF̃L ¼ α
ξσF̃δ

2
W

mc2
σμνF̃μν; ð45Þ

where the dual electromagnetic tensor is given by
F̃μν ¼ 1

2
ϵμναβFαβ. This coupling contributes to the energy

levels with

ΔσF̃E
�
n ¼ �mc2αδ2WξσF̃δz: ð46Þ

E. Combined corrections

As a result of the previous two subsections, we have
obtained eight corrections [(17), (23), (26), (31), (33), (36),
(38), (40)] of the standard energy formula (2). Up to order
δ3c the expansion of the standard energy formula reads as
(14). Within the same expansion, the combined correction
arising from [(17), (23), (26), (31), (33), (36), (38), (40)]
reads

ΔE�
n

mc2δc
¼ αδ1cðξγμFF1 − ξ1;FFÞ � α

δ2Wδz
δc

ξσF̃

þ αδ2cðξIdFFð2n� 1þ 1Þ
− 2nðξγμFF1 þ ξγμFF2Þ − ξγμFF1 − ξγμFF2

∓ ðξγμFF1 þ ξγμFF1 − 2ðξσFFF1 þ ξσFFF2ÞÞÞ þ � � � :
ð47Þ

In Eq. (B8) a theoretical prediction for the proportionality
factor of the leading coefficient of (47) is given
ðξγμFF1 − ξ1;FFÞ ≈ 0.02.
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F. Anomalous magnetic moment

Experimentally, the value of ad is obtained from meas-
uring transition energies and applying relation (4). This
formula is valid for energies expanded up to δ2c. The value
inferred from the direct Penning trap experiment by using
this relation is [13]

ad ¼ 0.00115965218073ð28Þ: ð48Þ

If one wants to include the relativistic δ3c energy corrections
(14), one has to adopt formula (4) to

ad ¼
Eþ
0 − E−

1

Eþ
1 − E0 þ 3

2
mc2δc − 7

2
mc2δ2c

: ð49Þ

If one includes now, on top of the relativistic improvement
(14), the combined corrections (47), the actual energies read

Ẽ�
n ¼ E�

n þ ΔE�
n : ð50Þ

Using these energies in the relativistically improved for-
mula (49), one finds the inferred direct anomalous moment
ad [the lhs of (49)] differs from the actual magnetic moment
aa [the one appearing in (10)]. One finds

ad ¼ aa þ
2αδ2Wδz

δc
ξσF̃ − 2αδ2cðaaðξIdFF − ξγμFF1 − ξγμFF2Þ − 2ð2ξσFFF1 þ ξσFFF2ÞÞ þOðϵ11Þ: ð51Þ

The above relation used a combined expansion in the small parameter ϵ (6)–(8). This relation can be inverted to give the actual
value of the anomalous magnetic moment aa as a function of aa ¼ aaðad; ξiÞ,

aa ¼ ad −
2αδ2Wδz

δc
ξσF̃ þ 2αδ2cðadðξIdFF − ξγμFF1 − ξγμFF2Þ − 2ð2ξσFFF1 þ ξσFFF2ÞÞ: ð52Þ

It is now the task of theory to predict the precise values of
ξi and the task of experiment to determine and/or constrain
these values. One way of doing this is via a comparison
with indirect g − 2 measurements.

III. DISCUSSION

A. Indirect g− 2 measurements

Theoretical calculations determine a relation between the
value of (g − 2) and the fine-structure constant up to fifth
order in α,

aðαÞ ¼ C2

�
α

π

�
þ C4

�
α

π

�
2

þ C6

�
α

π

�
3

þ C8

�
α

π

�
4

þ C10

�
α

π

�
5

þ aμτ þ ahad þ aweak; ð53Þ

where the constants Ci are given in [14] (consider the
erratum). Thus, an independent measurement of α (and the
lepton masses), also allows one to infer a value for g − 2,
and vice versa.
In recent years, this has been done by Parker et al. [23]

and Morel et al. [34]. They obtained α-induced values

aPðαÞ ¼ 0.001159652181610ð230Þ; ð54Þ

aMðαÞ ¼ 0.001159652180252ð95Þ: ð55Þ

In contrast to this, the direct measurement gave (48). This
situation is shown in Fig. 3, where we plot the value of aðαÞ

relative to the value ad, which was inferred from the direct
measurement. Since the latter measurement of α has much
smaller error bars, there seems to be no significant tension
between ad and aMðαÞ. The (non)tension between the
direct measurement and the indirect measurements can be
quantified by

aP=MðαÞ − adffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa2d þ δa2P=MðαÞ

q ¼
�
ti;P ¼ þ2.4

ti;M ¼ −1.6
: ð56Þ

FIG. 3. Results for anomalous magnetic moment ðaP=MðαÞ −
adÞ · 1013 plotted as a function of time. The blue point is the direct
measurement [13]; the red and orange points are the indirect
measurements [23,34].

ALMOST RELEVANT CORRECTIONS FOR DIRECT … PHYS. REV. D 105, 053004 (2022)

053004-7



The values of ti;P=M are measured in standard deviations.
Here the sign indicates whether aðαÞ is smaller or larger
than ad.
In the following subsections, we will explore a com-

parison between ad and aðαÞ in light of the difference
between ad and aa (52). In this comparison, we will
identify aðαÞ with aa. This identification assumes implic-
itly that there are no corrections to the measurements of the
fine-structure constant α.

B. Benchmark without parity violation

Let us first consider a benchmark without parity viola-
tion by setting ξσF̃ ¼ 0. The result in Sec. II suggests
correcting the interpretation of the direct measurement by
using the value (51): ad → aa ¼ aaðξiÞ and the error
induced by this correction.
As the first benchmark, let us treat all parity-conserving

contributions with the same numerical factor ξi. For this
benchmark, one can study how the comparison between
direct measurement and indirect measurement depends on
the parameter ξi. If one assumes these corrections come
without an increased error bar, one can plot aaðξiÞ relative
to ad and in comparison with the indirect results aP=M − ad.
This is shown in Fig. 4.
From Fig. 4 one sees that the parity-conserving correc-

tions only have a relevant effect on the comparison between
direct and indirect observation, if the dimensionless param-
eters ξi are of the order of 106. However, the prefactors of
the effective operators are chosen such that within the SM
the parameters ξi;… are expected to be of order 1. Thus,
Fig. 4 means that there are 6 orders of magnitude missing in
the sensibility before one can appreciate the effect of these
SM contributions.
This finding can be compared with the QED corrections

for finite momentum transfer. The one-loop QED form
factor for finite photon momentum squared q2 is given by

F2ðq2Þ ¼
α

2π

Z
1

0

dxdydzδðxþ yþ z− 1Þ 2m2zð1− zÞ
m2ð1− zÞ2−q2xy

¼ α

2π

�
1−

q2

6m2

�
: ð57Þ

If one evaluates the correction due to the second term with
the momentum scale given by the magnetic background
field q2 ≈ ðhνcÞ2, one obtains

F2 ≈
α

2π

�
1 −

δ2c
6

�
: ð58Þ

Thus, one also finds that finite momentum effects are
suppressed by αδ2c ≈ 10 × 10−20, which is also 6 orders of
magnitude below the current experimental precision.
From a phenomenological perspective (e.g., for BSM

models), one has to demand that jaa − adj ≤ 10 × 10−13,
which constrains the ξi parameter of this benchmark to

ξi ≤ 1 × 106: ð59Þ

The parameters ξi are thus useful mediators between BSM
models and the precision measurement of ad.

C. Benchmark with parity violation

In a second benchmark, we set all parity-conserving
corrections to zero and only retain ξσF̃. Figure 5 shows how
the comparison between direct and indirect measurements
is affected by the remaining parameter. One notes that a
natural ξσF̃ ¼ Oð1Þ is 3 orders of magnitude too small for
observation under the current simplifying assumptions.

D. What happened?

In Sec. I C, it has been shown that background field
effects ð∼αδcÞ and effects of the weak interaction ð∼αδ2WÞ
can be expected to give important contributions to the energy

FIG. 4. The red line shows ðaM − adÞ, with the error bars of aM
[34]. The orange line shows ðaP − adÞ, with the error bars of aP
[23]. The blue region are the error bars of ad [13]. The black line
shows ðaaðξiÞ − adÞ, with the error bars of ad.

FIG. 5. The red line shows ðaM − adÞ, with the error bars of aM
[34]. The orange line shows ðaP − adÞ, with the error bars of aP
[23]. The blue region shows the error bars of ad [13]. The black
line shows ðaaðξiÞ − adÞ, with the error bars of ad.
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levelsE�
n =ðmc2δcÞ, as depicted in Fig. 1. These energy levels

are used to determine ad. However, when studying the actual
comparison between direct and indirect measurements, the
effect of these corrections was rather negligible, as shown in
Fig. 4. The disappearance of these seemingly substantial
contributions happens for different reasons:

(i) The parity-violating contributions, arising from
virtual weak interactions, introduce new types of
effective couplings [(35), (37), (39)]. These cou-
plings do not, however, contribute to the leading-
order corrections of the energy levels E�

n =ðmc2δcÞ.
This is due to the particular off-diagonal nature of
the γ0 · γ5 matrix.

(ii) The parity-conserving corrections [(16), (20), (22),
(25), (30), (32)] do all contribute to E�

n =ðmc2δcÞ and
they do so with corrections ∼αδ1c and ∼αδ2c. The
problem is that all the ∼αδ1c corrections are inde-
pendent of the quantum numbers ð�; nÞ. Thus, when
evaluating energy differences in (49), only the much
smaller ∼αδ2c corrections survive. It remains to be
seen whether larger corrections ∼αδ1c can be noted
by a different type of experimental setup.

(iii) The largest corrections arise from the parity-violat-
ing contributions (45). Under the simplifying as-
sumptions used above, they are still 3 orders of
magnitude below the sensibility threshold. Concern-
ing this result, one has to consider two additional
aspects. On the one hand, one could imagine an
experimental setup with an increased electric field,
which would then reach the observability limit.
On the other hand, one must consider that the
assumption of a homogenous and constant electric
field is not realistic. In a more realistic scenario, it is
likely that contributions from positive and negative
electric fields cancel each other.

IV. CONCLUSION

Penning trap experiments allow for a precise direct
measurement of the electron’s anomalous magnetic moment

a ¼ ðg − 2Þ=2. This is done by relating observed transition
energies between Landau levels, as shown in Eq. (4).
In this paper, we studied the impact of parametrized

corrections to the effective Lagrangian (10) on the electron’s
anomalous g factor, deduced from the observable (49). It is
found that the presence of these parameters leads to a
difference between the deduced anomalous magnetic
moment ad and the actual magnetic moment aa given by
(51). This generic result is then studied for two benchmarks.
It is shown that there are QED-loop-induced parity-

conserving corrections to the energies E�
n , which are of the

order of αδ2c. Such corrections are, in principle, numerically
very relevant since Δa ∼ ΔE=δc ∼ αδc ∼ 10−11. However,
these leading corrections do not depend on the quantum
numbers ðn;�Þ and thus they get canceled in the actual
observable (49), where only energy differences are con-
sidered. The remaining subleading effects Δad ∼ δ2c are, at
the current stage, not observable. They are about 6 orders of
magnitude smaller than the experimental precision.
Most parity-violating corrections to the energy vanish

unless one considers effects of the electric field. An
example for such a contribution is given in relation (45).
Whether this scenario has the potential of studying parity
violation with g − 2 experiments has to be investigated with
a detailed study considering a spatial variation of the
electric field.
While this paper has its focus on SM contributions, the

relations (47) are perfectly suited to test and constrain BSM
effects.
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APPENDIX A: EXPLICIT SOLUTIONS

The exact solutions of (11) are well known [41]. Since
we made massive use of the particle eigenstates ψ�

n¼ð0;1Þ;l¼0
,

these functions in symmetric gauge are given explicitly

ψþ
0;0 ¼

 
ρ

2
ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ρ2
p

s
; 0; 0;

iρ3ðxþ iyÞ
4
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ρ2

p
þmÞ þ ρ2

q
!
e−

1
8
ρ2ðx2þy2Þ−it

ffiffiffiffiffiffiffiffiffiffi
m2þρ2

p
;

ψ−
0;0 ¼

�
0;

ρ

2
ffiffiffi
π

p ; 0; 0
�
e−

1
8
ρ2ðx2þy2Þ−itm;

ψþ
1;0 ¼

 
ρ2ðxþ iyÞ
4
ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ρ2
p

s
; 0; 0;

iρ4ðxþ iyÞ2

8
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ρ2

p
þmÞ þ 2ρ2

q
!
e−

1
8
ρ2ðx2þy2Þ−it

ffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2ρ2

p
;

ψ−
1;0 ¼

 
ρ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ρ2

p
þmÞðxþ iyÞ

4
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ρ2

p
þmÞ þ 2ρ2

q ; 0; 0
−iρ2

2
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ρ2

p
þmÞ þ 2ρ2

q
!
e−

1
8
ρ2ðx2þy2Þ−it

ffiffiffiffiffiffiffiffiffiffi
m2þρ2

p
; ðA1Þ

where the abbreviation ρ2 ¼ 2mhν and c≡ 1 was used.
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APPENDIX B: QED BACKGROUND
CORRECTIONS FROM SUZUKI APPROACH

In the effective Lagrangian approach (10), ξi are phe-
nomenological parameters that have to be determined by
experiment. In a full quantum field theory (QFT) approach,
with nonvanishing background fields, these parameters can
be predicted. Below we will sketch how such a calculation
relates to the above results.
Complementary to using the effective action (10), one

can also calculate the loop corrections to the different
energies E�

n directly in the underlying quantum field
theory. Usually, this is done to leading order in the
magnetic field. For a comparison with the results obtained
in the previous sections, this has to be done up to second
order in B. While the complete calculation of these QED
corrections goes beyond the scope of this paper, one can
use the known shift in the ground state energy to get an
estimate of the uncertainty. The finite ground state correc-
tions, which are proportional to B2, are given by Suzuki
[41]. Strong field effects in a broader sense are discussed
in [44].
Suzuki uses the exact quantum mechanics (QM) solution

for the energy levels of the electron [41]

E�
n ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hνc

mc2
ð1þ 2n� 1Þ

r
: ðB1Þ

Note that, when comparing the above formula with the
energies given in [39,41], one needs to do the identification
n → nþ 1. The energies (B1) are identical to (13)
for a ¼ 0.
The actual (QFT corrected) energies are then labeled E�

n ;
they can be expressed as corrections to (B1). One finds

ΔE�
n ≡ E�

n − E�
n

¼
Z

d3x
Z

d3x0ψ̄E;n;�ðxÞMðE�
n ; x⃗; x⃗0ÞψE;n;�ðx0Þ;

ðB2Þ

where M is the mass operator and ψE;n;� are the eigen-
functions for the QM eigenvalues (B1). The calculation is
tedious, but for a small magnetic field hνc ≪ mc2, the
result can be written as an expansion

ΔE�
n ¼ a

2
hνc

�
1þ hνc

mc2
ðb�0 þ b�1 nÞ

�
þO

�
hνc
mc2

�
3

: ðB3Þ

In the recent paper of Kim et al. [35], this type of expansion
is given for the ground state energy and the coefficients are
calculated explicitly. However, the above formula allows
also for n ≠ 0. These energy contributions do, in principle,
depend on the quantum numbers ðn;�Þ, since the eigen-
functions ψn;� depend on these quantum numbers. This
dependence on n does not have to be linear, but since (4)

only considers n ¼ ð0; 1Þ, a distinction with different
powers of n is not necessary. Here, a; b�i are numerical
coefficients that can be obtained in a loop expansion

a ¼ α

2π
þOðα2Þ; ðB4Þ

b�i ¼ b�i;0 þ α · b�i;1 þOðα2Þ: ðB5Þ

The coefficients of a are very well studied to high order,
while the coefficients b�i are hard to find in the literature.
Their order of magnitude can be estimated from the ∼B2

correction to the ground state energy given in [41]. Using
the leading-order expansion in ϵ and minimal subtraction,
this ground state correction is

ΔE−
0 jB2 ¼ αB2

1259

16800

e2ℏ2

m3c2π
þOðϵ8Þ: ðB6Þ

From this, one can read off the numerical value of the first
coefficient of (B5),

b−0 ¼ 1159

4200
≈ 0.3þOðαÞ: ðB7Þ

From Eq. (47) and the preceding discussion, one can expect
that the coefficients that are proportional to n vanish at
order δc b�b1 ¼ 0. Further, one can extract from a compari-
son between (B7) and (47) a theoretical prediction for a
combination of the parameters ξγμFF1 and ξidFF,

ξγμFF1 − ξ1;FF ¼
b0−
4π

≈ 0.02: ðB8Þ

APPENDIX C: PARITY-VIOLATING
SM PROCESSES

There are SM processes that can contribute to parity
violation in low energy QED processes (see, for example,
[45–48]).

FIG. 6. Feynman diagram weak subprocess.
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To quantify the magnitude of similar effects in the context
of the observable (49), one needs to consider the weak
process shown in Fig. 6. The prefactor of the Feynman
amplitude of this process gives the magnitude one should

expect for the parameters ξγ5…. As discussed in the previous
section, the contribution, relevant for the g − 2 observable, is
ξγ5γμ . The amplitude shown in Fig. 6 can be calculated with
the software packages based on [49–51]. It reads

A ¼ 2iπ3αe
sin2ðθWÞ

ð−2ð−2B0ðm2; 0; m2
WÞ þ B0ð0; m2

W;m
2
WÞ − 2m2

WC0ð0; m2; m2; m2
W;m

2
W; 0Þ

þ 2m2C0ð0; m2; m2; m2
W;mW2; 0Þ −DC00ðm2; 0; m2; 0; m2

W;m
2
WÞÞ þ 2C00ðm2; 0; m2; 0; m2

W;m
2
WÞ

þ 3m2C1ðm2; 0; m2; 0; m2
W;m

2
WÞ · ψ̄2γ

μγ7ψ1;

mψ̄2γ
7ψ1 · ðD − 2Þpμ

2ððD − 8ÞC1ðm2; 0; m2; 0; m2
W;m

2
WÞ2ðD − 2ÞC12ðm2; 0; m2; 0; m2

W;m
2
WÞÞÞ;

mψ̄2γ
6ψ1 · ððD − 2Þpμ

1ðC1ðm2; 0; m2; 0; m2
W;m

2
WÞ þ 2C11ðm2; 0; m2; 0; m2

W;m
2
WÞÞ;

pμ
2ððD − 8ÞC1ðm2; 0; m2; 0; m2

W;m
2
WÞ þ 2ðD − 2ÞC12ðm2; 0; m20; m2

W;m
2
WÞÞÞ

þ 6m2C1ðm2; 0; m2; 0; m2
W;m

2
WÞ · ψ̄2γ

μγ6ψ1Þ; ðC1Þ

whereD ¼ 4 − ϵ̃ is the spacetime dimension of dimensional
regularization, γ6 ¼ ð1þ γ5Þ=2, γ7 ¼ ð1 − γ5Þ=2, and Cij

are the Passarino-Veltman loop integral functions, which are
evaluated with [52,53]. To reduce the resulting expression to
the parity-violating terms,which are relevant for our analysis,
we use the following simplifications:

(i) Retain only terms proportional to ψ̄2γ
μγ5ψ1.

(ii) Subtract divergent terms ∼1=ϵ̃.
(iii) Perform an expansion in δ2W in which A ∼ δ0W þ δ2Wþ

δ4W . Since the order δ0W is controlled by the dimen-
sional regularization parameters (ϵ̃, μ) and since the
order δ4W is negligible, we keep the ∼δ2W terms.

(iv) Set D → 4.
The result is then

AjWW ¼ −i
5e3m2

96π2m2
Wsin

2ðθWÞ
ψ̄2γ

μγ5ψ1: ðC2Þ

The same procedure can be repeated with the triangle
diagram with a single Z boson in the loop, giving

AjZ ¼ i
e3m2ð6 logðm2

Z=m
2Þ−1Þð4sin2ðθWÞ−1Þ

192π2m2
Z sin

2ðθWÞcos2ðθWÞ
ψ̄2γ

μγ5ψ1:

ðC3Þ

Thus, one can conclude that parity-violating corrections
to the QED couplings are indeed suppressed by

∼α
m2

m2
W=Z

: ðC4Þ
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