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a Departamento de Química, Facultad de Ciencias Naturales, Matemática y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile 
b Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano, 
Subercaseaux, 2801 San Miguel, Santiago, Chile 
c Centro de Nanotecnología Aplicada, Universidad Mayor, Santiago, Chile 
d Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain 
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A B S T R A C T   

Layered hybrid ZnO (2D) intercalated by myristic acid (MA) with (0D) CdTe quantum dots (QDs) was designed to 
increase the conversion efficiency of photochemical energy. The results showed that the introduction of CdTe 
QDs in ZnO(MA) layered with more active sites available enhanced the photocatalytic efficiency. The optimal 
composite sample ZnO(MA)/CdTe (1:0.02) showed excellent dye removal efficiency under simulated solar light 
irradiation, above 96% after three cyclic experiments. The correlation coefficients possessed the highest reaction 
rate. This study offers an efficient research approach and vision to support the development of other photo-
catalytic systems featuring a direct Z scheme.   

1. Introduction 

Semiconductor-based photocatalytic performance under solar light 
is believed to be an efficient and ecofriendly system for removing 
numerous hazardous pollutants from wastewater [1,2]. Many semi-
conductor materials have been applied as photocatalysts; among them, 
ZnO has been generally employed due to their stability, non-toxicity, 
safety, low cost, high activity, and morphologies, such as 0D, 1D, 2D, 
and hierarchical nanostructures [3]. Compared to nanostructures, 
nanosheets (2D) are more suitable for creating photocatalysts with well 
performance as they have an elevated specific surface area, plenty active 
sites, and fast mass diffusion lengths to increase the efficiency of electron 
transport [4,5]. However, the single component photocatalysis, it very 
difficult because of the fast recombination of photogenerated electrons 
and holes. Because of this, in the last few years, the coupling of semi-
conductors has received increased interest expected to the ability to 
integrate several semiconductors into one system. Binary coupling is 

considered a potential method that could pass the obstacles of single 
semiconductors and greatly improve the photocatalytic performance in 
various solar-driven reactions, mainly in pollutant degradation [6,7]. It 
is well recognized that a mediator-free direct Z-scheme photocatalytic 
system only including two semiconductor components possesses sepa-
ration efficiency of electrons and holes on distinct semiconductors as 
well as great redox ability [8,9]. Compared to bulk materials, zero- 
dimensional (0D) quantum dots (QDs) have more prospective in pho-
tocatalytic applications expected to their quantum confinement effect 
and sizeable surface to volume ratios [10,11]. CdTe QDs are direct band 
gap semiconductor (1.5–2.3 eV) nanoparticles with strong visible-light 
absorption ability, which have been utilized in fluorescent imaging of 
cells [12], solar cells [13,14], and in the construction of a direct Z- 
scheme [15,16]. Recently, excellent developments have been achieved 
mixed with materials such as 0D/2D type composite photocatalysts that 
have a direct Z scheme mechanism; for example, g-C3N4 QDs/ZnO 
nanosheets [17] and MoS2 QDs/C3N4 nanosheets [18] have been 
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constructed and utilized in pollutants degradation. They effectively 
enhance the charge transport capability and photoinduced electron-hole 
separation efficiency of the composites, thus considerably increasing the 
photocatalytic performance. Motivated by the reports, an effective 
approach of coupling CdTe (0D) QDs with ZnO (2D) layered materials 
was developed for the advancement of additional visible-light-driven 
photocatalysts for pollution of the environment. 

We report a heterostructured nanocomposite formed by a layered 
hybrid of ZnO combined with CdTe QD nanoparticles. The nano-
composite structure consists of ZnO, a self-assembled arrangement of 
intercalated sheets flanked by myristic acid (MA), which provides 
properties of a two-dimensional semiconductor, combined with a nar-
row band semiconductor such as CdTe QD with mercaptosuccinic acid 
(MSA) as a capping agent, which can expand the absorption range, 
achieving optimal performance in the degradation of congo red (CR) as a 
pollutant example under simulated solar light irradiation. The synergy 
between both semiconductors is corroborated for light absorption and a 
Z scheme mechanism is proposed to produce the separation of photo-
generated electrons and holes and preserve relatively great redox po-
tentials. In addition, the stability and catalytic activity are maintained 
for three cycles. 

2. Results and discussion 

2.1. Characterization of CdTe-QDs 

TEM was used to determine the size of the nanocrystals and their 
distribution (Fig. 1a–b). The average particle size of the synthetized QDs 
was around 3.64 ± 0.84 nm. The UV–vis absorption and emission 
spectra showed that the absorption peak was at 492 nm and the emission 
peak was at 528 nm (Fig. 1c). The form of the absorption spectra is 

characteristic of quantum dots, and the fluorescence spectrum of the 
CdTe QDs displays a narrow and clear-cut band representative of the 
creation of fine crystals [19]. Changes in the absorption and emission 
spectra towards the red are related to the characteristics of nanocrystals 
of semiconductor materials and the Stokes changes [20]. 

2.2. Characterization of ZnO(MA)/CdTe-QDs 

Fig. 1d shows the XRD patterns of the preparated ZnO(MA) and ZnO 
(MA)/CdTe nanocomposites. The pattern of ZnO(MA) shows a sequence 
of Bragg reflections at low 2-theta angles, indicating an ordered layered 
arrangement. Related interlayer distances, Δd, determined from the 
positions of the 00 l reflections, of 39.5 Å for ZnO(MA) and ZnO(MA)/ 
CdTe associate well with the molecular lengths of the myristic acid [21]. 
In the insert, the pattern shows peaks that may be the hexagonal ZnO 
wurtzite (JCPDS 36–1451), where the main facets (100), (101) and 
(002) appeared at 2θ = 31.7◦, 34.4◦, and 36.5◦, and the CdTe cubic zinc- 
blend phase shows characteristic peaks corresponding to the (111) and 
(220) at 2θ = 23.7◦ and 39.0◦, respectively. The XRD patterns of the 
nanocomposites exhibit peaks from the CdTe QDs and ZnO(MA), in that 
way confirming the formation of the required ZnO(MA)/CdTe structure. 
The reduce diffraction intensity of CdTe could be assigned to the low 
content of CdTe in the sample. The estimated average crystallite size of 
material of ~20 nm, as calculated by the Debye Scherer equation, cor-
responds to nearly 5 single hybrid nanosheets per particle [22]. Fig. 1e 
shows SEM image of aggregates of lamellar particles produced by 
assembled nanosheets. EDX elemental mapping of ZnO(MA)/CdTe were 
completed, clearly indicating that Zn, Cd and Te are distributed in the 
sample (Fig. SI1). The TEM image of Fig. 1f shows the morphology of the 
nanosheets/nanoparticles in the ZnO(MA)/CdTe compound. In this 
figure, the CdTe QD of quite small size, they are highlighted to better 

Fig. 1. (a) TEM images of CdTe QDs, (b) Size distribution of CdTe QDs, (c) UV–vis absorption and emission spectra of CdTe QDs, (d) XRD patterns of ZnO(MA) and 
ZnO(MA)/CdTe (e) SEM and (f) TEM images of ZnO(MA)/CdTe. 
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appreciate their distribution upon the sheets. 
Fig. 2a shows the FTIR spectra of MA, ZnO(MA), and ZnO(MA)/CdTe 

in the range 4000–500 cm− 1. A comparison of the spectra shows that the 
main spectral characteristics of myristic acid are present in the nano-
composite and several structural and chemical differences between both 
compounds are also observed. By contrast of the band at 1700 cm− 1 

related to the ν(C=O) mode of MA, in the ZnO(MA) and ZnO(MA)/CdTe 
spectrum, we observe the dimeric MA band at 1592 cm− 1 and 1409 
cm− 1, which corresponds to the modes of vibration νas(C=O) and 
νs(C=O) of the carboxylate salt, respectively. The values of the separa-
tion between the carboxylate stretches among the asymmetric and 
symmetric stretching modes (Δν = 183 cm− 1) indicate that the MA is 
incorporated into ZnO(MA) with a monodentate myristate ligand [23]. 
The peak at 1500 cm− 1 observed for the ZnO(MA)/CdTe sample corre-
sponds to the presence of the COO- group of mercaptosuccinic acid. 
Also, the lack of the − SH peak in the range of 2500–2600 cm− 1 indicates 
the formation of the S − Cd bond in the QD. The asymmetric and sym-
metric CH2 absorptions of the carboxylic acid at 2908 cm− 1 and 2839 
cm− 1 continue unchanged in the samples. 

DRS was utilized to characterize the samples, the absorbed light 
wavelength dispersal is visibly affected by their electronic bandgap 
structure, which defines the photocatalytic activity. Fig. 2b shows the 
UV–vis DRS of ZnO(MA) and ZnO(MA)/CdTe. A sharp fundamental 
absorbance edge for ZnO(MA) was observed at 378 nm, assigned to the 
band edge emission or the exciton transition, and a bandgap of 3.26 eV 
was exhibited. The band gap of the samples was analyzed using the Tauc 
method. The value of the indirect optical energy gap (Eg), was estimated 
from a plot of (αhʋ)2 versus the photon energy (hυ) and the intercept of a 
tangent to the x-axis (in the insert) [24]. In the composite ZnO(MA)/ 
CdTe, a shift to superior energy is seen in the absorbance maxima 
because of contact between CdTe QDs with ZnO, yielding a band gap 

value of 2.89 eV. Furthermore, the spectrum displayed a weak peak that 
appeared approximately at 500 nm, which is the characteristic surface 
plasma absorption corresponding to the CdTe nanoparticles in the 
sample. The results show that the ZnO(MA)/CdTe gives a broadened 
light absorption profile in the UV and visible scale, indicating that the 
composite ZnO(MA)/CdTe could allow more visible light absorption, 
therefore increasing its photocatalytic comportment [25,26]. 

2.3. Photocatalytic activity 

The photocatalytic properties were determined by analyzing the 
degradation of CR as a pollutant under simulated sunlight irradiation. 
Fig. 2c shows the degradation of the dye for the ZnO (MA) / CdTe 
compounds with molar ratios of 1: 0.005, 1: 0.01, 1: 0.02 and 1: 0.03 and 
comparing them with CdTe and ZnO (MA) separately. The congo red dye 
sample does not show photocatalytic activity under irradiation and, the 
CdTe QDs and ZnO(MA) composite showed a lower photocatalytic 
behavior compared to the ZnO(MA)/CdTe composites. The photo-
catalytic activity of the ZnO(MA)/CdTe (1:0.02) compound did not 
show a substantial alteration with the performance of the ZnO(MA)/ 
CdTe (1:0.03); this was probably because excessive CdTe QDs produced 
a light “shielding effect”, which could affect the ZnO(MA) absorbed 
visible light, as observed in Fig. 2.c [15]. Therefore, the optimal ratio for 
the ZnO(MA)/CdTe (1:0.02) was selected. Certainly, as observed in 
Fig. 2c, the photocatalytic of ZnO(MA)/CdTe (1:0.02) in 120 min of 
irradiation was about 100%, which is considerably superior than that of 
ZnO(MA) of 50%, whereas only 4% degradation was observed not 
including the catalyst. Fig. 2d shows the variations in the UV–visible 
absorption spectra of CR at distinct times. CR has a typical absorption 
band at a wavelength of 497 nm. As the reaction progresses, the char-
acteristic peaks slowly decrease as the reaction is irradiated. The insert 

Fig. 2. (a) FTIR spectra, (b) UV–Vis spectra, in the insert plots of (FKM*hν)2 versus (hν) for ZnO(MA) and ZnO(MA)/CdTe, (c) Photocatalytic performance of samples 
under simulated solar light irradiation (d) UV–vis spectra of the degradation of CR of ZnO(MA)/CdTe (1:0.02) sample, (e) Photodegradation kinetics and (f) Pho-
todegradation of ZnO(MA)/CdTe (1:0.02) for radical scavengers solution. 
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displays the color change of the CR solution in the time. To understand 
well the photocatalytic efficiency of the samples, they were investigated 
by pseudo first-order model, with ln(C0/C) = kt, where k is the kinetic 
constant and t is the irradiation time. Fig. 2e illustrates the linear fitting 
equation of the kinetics model. According to the correlation coefficients, 
the ZnO(MA)/CdTe (1:0.02) composite possessed the highest reaction 
rate, and the apparent rate constant (kapp, min− 1) is about 3 times faster 
than that of ZnO(MA) and 11 times faster than that of ZnO pristine. 
These results suggest that a coupling of 0D/2D shows excellent photo-
catalytic performance, which is assigned to the QDs that can act as 
electron traps to aid the separation of photoinduced electron-holes and 
ZnO (MA) layered with high surface exposure, with plus active sites 
accessible to expand matching with the surfaces of the CdTe in the 
photocatalytic activity [27]. Moreover, the existence of a hydrophobic 
organic moiety in ZnO(MA) promotes appreciably to the improved 
photocatalytic behavior, as observed in the aforementioned photo-
catalytic studies of hybrids of TiO2 and ZnO [16, 37]. 

2.4. Proposed degradation mechanism 

To additional investigate the probable mechanistic effects, we per-
formed experiments using radical scavengers aiming to detect the spe-
cies involved in photodegradation. Ammonium oxalate (AO) as the h+

scavenger, benzoquinone (BQ) as the super oxide anion (O2
•− ) scav-

enger and isopropyl alcohol (IPA) as the hydroxyl radicals (•OH) scav-
enger. As shown in Fig. 2f, the photodegradation activities are 

appreciably inhibited when BQ and IPA are introduced, which indicates 
the following order h +<O2

•− < •OH for the active species participating 
in the photocatalytic degradation of the dye. 

The hypothesis that •OH is equally an active species in the degra-
dation was tested with terephthalic acid (TA) by the PL studies. We 
evaluated the rates of •OH formation in aqueous solution under irradi-
ation. TA can react with the •OH radical to generate highly fluorescent 2- 
hydroxyterephthalic acid (TAOH). The peak intensity is proportional to 
the amount of produced •OH radicals. In Fig. 3a, the production rate of 
radical •OH can be identified, showing that the surface of the sample 
facilitates the production of ‧OH radicals as photocatalytic intermediates 
to increase the photocatalytic activity in the degradation of the dye [28]. 

The electronic band alignment between CdTe and ZnO(MA) is done 
to recognize the charge transfer process and, thus, the probable mech-
anisms. The band gap values (Eg) of CdTe (2.33 eV) was estimated using 
the Tauc approach, cyclic voltammetry, and the UV–vis absorption 
spectra [29]. The band gap of ZnO(MA) (3.26 eV) was estimated from 
measured DRS using the Tauc plot. The conduction band (ECB) and 
valence band (EVB) of a semiconductor can be calculated by the equa-
tion: EVB = χ − Ee + Eg/2; ECB = EVB − Eg [30]. In the Fig. 3d shows the 
band edge positions and band gaps. 

Under simulated solar light irradiation, both ZnO(MA) and CdTe will 
be excited and generate photoinduced electrons and holes [31], the 
electrons on the CB of ZnO(MA) can move rapidly to recombine and 
eliminate with holes on the VB of CdTe at the interface due to the 
presence of the strong electrostatic attraction. The VB potential value of 

Fig. 3. (a) PL of ZnO(MA)/CdTe (1:0.02) in a solution of TA, (b) The recycling experiments for CR degradation of ZnO(MA)/CdTe (1:0.02) (c) XRD patterns of 
samples before and after reuse in photocatalytic degradation and (d) The proposed construction and photocatalytic reaction mechanism of the heterojunction ZnO 
(MA)/CdTe. 
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ZnO(MA) (2.92 V) is more active than •OH/H2O (1.99 eV vs NHE, pH =
7) and the CB potential of CdTe (− 1.24 V) is more passive than O2/O2

-•

(− 0.33 eV vs NHE, pH = 7). The charge separation and transfer of 0D/ 
2D heterojunction follows the Z-scheme heterojunction, leaving photo-
induced electrons and photoinduced holes with stronger redox capac-
ities on the CB of CdTe and CV of ZnO(MA) respectively, favoring the 
formation of O2

-• and •OH radicals, leading to more efficient pollutant 
degradation. 

The photocatalytic efficiency remained constant until the third cycle 
above 96% for 120 min, as shown in Fig. 3b. Furthermore, we have 
observed, by XRD, the stability of the sample after recycling in Fig. 3c, 
indicating the effective reuse of the sample without significant loss in the 
degradation efficiency. 

2.5. Electrochemical measurement 

The photoelectrochemical properties of the CdTe, ZnO(MA), and 
ZnO(MA)/CdTe (1:0.02) samples were analyzed. Fig. 4a shows the 
photocurrent response under the light on and light off cycles [32]. It is 
observed that The ZnO (MA)/CdTe (1: 0.02) electrode shows a higher 
photocurrent under illumination, than the CdTe and ZnO (MA) elec-
trodes separately. These results are correlated with those obtained in the 
photocatalytic tests, demonstrating that the combined semiconductors 
lead to greater efficiency of charge separation and carrier availability 
due to the built-in electric field of heterojunction [33]. Electrochemical 
impedance spectroscopy (EIS) and photoelectrochemical impedance 
spectroscopy (PEIS) measurements were performed. Fig. 4b–c shows the 
Nyquist diagrams for the CdTe, ZnO (MA), and ZnO (MA) / CdTe (1: 
0.02) samples. EIS measurements show an abrupt rise without defining 
semicircles throughout the sweep frequency spectrum due to absence 
charge carriers in the dark [34]. On the other hand, the Nyquist dia-
grams for the PEIS measurements show a pronounced decrease in the Ź́
and Ź values, accompanied by the definition of at least one semicircle 
associated with charge transfer at semiconductor/electrode interface 
[35]. The decrease in diameter of the semicircles in the Nyquist plots 
(CdTe <ZnO (MA) < ZnO (MA) / CdTe (1: 0.02)) is associated with an 
increase in the efficiency of the charge separation of the photogenerated 
e− /h + pairs and therefore an increase in interfacial electron transfer 
[36]. 

3. Conclusions 

In summary, we have effectively prepared and characterized CdTe/ 
ZnO(MA) heterostructure photocatalysts. The results indicated that a 

coupling of 0D/2D showed excellent photocatalytic performance, 
attributed to QDs that promote electron-hole separation and ZnO(MA) 
layered with high surface exposure, with plus active sites accessible to 
improve matching with the CdTe quantum dots in the photocatalytic 
activity. The synergy between the semiconductors generated the charge 
transfer and exhibited an improved solar light absorption, attributed to a 
Z-scheme mechanism demonstrating the clear contribution of CdTe and 
the ZnO(MA) in the photocatalytic degradation of Congo Red. The 
photocatalytic efficiency remained constant until the third cycle. 
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