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Anthropogenic pollution has a huge impact on the water quality of marine ecosystems.
Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the
health of the marine organisms. Although heavy metals are also associate with volcanic
eruptions, wind erosion or evaporation, most of them come from industrial and urban
waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials
in aquatic environments, is an important stress factor capable of affecting the marine
communities in the ecosystem. Bivalves are important ecological components of the
oceanic environments and can bioaccumulate pollutants during their feeding through
water filtration, acting as environmental sentinels. However, heavy metals and antibiotics
pollution can affect several of their physiologic and immunological processes, including
their microbiome. In fact, heavy metals and antibiotics have the potential to select
resistance genes in bacteria, including those that are part of the microbiota of bivalves,
such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be
more tolerant to heavy metals, and vice versa, which probably occurs through co- and
cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in
the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it
might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would
be higher in contaminated environments. In this review, we focused on co-occurrence of
heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean
situation with respect to the contaminants described above, focusing on the main
bivalves-producing region for human consumption, considering bivalves as potential
vehicles of antibiotic resistance genes to humans through the ingestion of
contaminated seafood.
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INTRODUCTION

The 2030 Agenda for Sustainable Development acknowledges
the importance of water quality and aims to influence countries’
future policies and strategies to make water pollution control a
global priority. Human settlements, industries and agriculture
are the major sources of water pollution. Globally, 80% of
municipal wastewater is discharged untreated into water
bodies, and industry is responsible for dumping millions of
tons of heavy metals (HMs), solvents, toxic sludge, and other
wastes each year. The resulting water pollution is a demonstrated
risk to aquatic ecosystems and human health (Mateo-Sagasta
et al., 2017; Häder et al., 2020).

Anthropogenic pollutants include stressors of the biotic
components of the aquatic ecosystem, such as HMs and
antibiotics (Pierce and Ward, 2018). The global warming have
a direct impact on acidification, temperature, and salinity of
seawater, exacerbating the stressors mentioned above (Sugie
et al., 2020).

Marine organisms such as bivalve mollusks are directly and
indirectly affected by seawater pollution, which could alter the
important ecological functions they perform in marine
ecosystems. As filter-feeders, bivalves remove suspended
material from the water, so they can concentrate water
pollutants, which also explains their use as environmental
sentinels (Dame, 2013; Bighiu et al., 2019; Giacometti et al.,
2021). Bivalves are organisms that are not only important in
marine ecosystems; for example, since the 1970s, the “Mussel
Watch” program has been using mussels of the genus Mytilus to
monitor pollutants (Goldberg et al., 1983; Benaltabet et al., 2021).
Moreover, the impact of pollution is not only related to bivalves
as filter-feeding organisms. The acidification of marine waters
because of pollutants and climate change is harmful to the
survival of calcium-containing organisms because it affects the
development of bivalve mollusk shells (Landrigan et al., 2020).

Coastal zones represent approximately 7% of the marine
environment, but their role in food productivity is key, providing
more than 50% of the food in ocean ecosystems (Häder et al., 2020).
Bivalve mollusks are harvested from coasts and estuaries reaching
about 14% of the total marine production (Romalde et al., 2014). In
addition, the world production of marine bivalves from aquaculture
is approximately 89% of total production, the rest associated with
wild fisheries (Wijsman et al., 2019).

Chile is the tenth largest producer of aquaculture products in the
world, with salmon and bivalve mollusks as the main sources of
fishery products (FAO, 2020; Naylor et al., 2021). Furthermore, the
country is the second leading world´s producer and the main
exporter of mussels (FAO, 2021). In addition, Chile is the second-
largest producer of Atlantic salmon in the world, and the Chilean
salmon production accounts for 27% of the world production
(Morera et al., 2021). Salmonid and mollusk farming areas are
concentrated in the southern areas of the country, mainly in Los
Lagos and Aysén Regions (FAO, 2020).

Chile’s geography, large coastal area on the Pacific Ocean,
makes it very sensitive to seawater pollution and multiplies the
impacts of climate change. Currently, in Chile there is an official
order (Supreme Official Order 90/2000-Emission standard for
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the regulation of pollutants associated to the liquid waste
discharges to sea, continental and superficial waters) that
regulates the discharge of pollutants into marine and
continental surface waters, establishing maximum permissible
limits for the discharge of liquid wastes, thus avoiding the
contamination of these bodies of water (SMA, 2000). However,
compliance with emissions does not indicate that there is no
discharge of pollutants because the cut-off value established in
the official order is minimal. Today it is an obsolete and
insufficient official order, which is being revised again by the
Ministry of Environment to include the protection of estuaries,
fjords and coastal wetlands and regulate parameters of chemical
pollutants, such as HMs (Barra Rıós et al., 2021). In this regard, it
is important to mention that Chile also does not have a legal
framework that assigns emission reduction responsibilities or
requires the implementation and reporting of measures to
mitigate emissions and adapt to the impacts of climate change.
However, a law with this objective was drafted in 2019 and is
being debated in Congress (Madariaga Gómez de Cuenca, 2021).
Although studies that determine the concentration of HMs in
Chilean marine systems are scarce (Salamanca et al., 2000;
Copaja et al., 2016; Espejo et al., 2019; Oyarzo-Miranda et al.,
2020; Fierro et al., 2021), high concentrations have been found in
some areas of the country. According to Chile’s pollutant
emission and transfer registry (data can be obtained from
https://datosretc.mma.gob.cl/group/emisiones-al-agua), the Los
Lagos Region is among the five Chilean regions that contain the
highest concentration of HMs and precisely this area is one of the
main producers of bivalve mollusks such as mussels (Figure 1A).
Several fish (red circles) and mussels (blue circles) culture centers
are in this region, besides many wastewater plants (black stars),
which together contribute to the high metal contamination
observed in this area (Figure 1B).

This scenario of high concentrations of HMs is accompanied
by the presence of antimicrobial resistant bacteria (ARB) in
Chile’s aquatic ecosystems. However, in the last 20 years there
are few publications focused on the co- and cross-resistance
against antimicrobials and HMs (Domıńguez et al., 2021).

The aim of this review is to analyze anthropogenic activities
related to HMs and antibiotic contamination in areas producing
bivalve mollusks, together with the impact on microorganisms,
such as Vibrio spp., and their role in multiresistance phenomena,
as well as to investigate how these contaminants could affect final
consumers. In this regard, we hypothesize that in highly metal/
antibiotics contaminated environments, microbial components
of the bivalves could play a key role as carriers of resistant
bacteria and their resistance genes, which could be transmitted to
the human microbiota and affect human health.
ANTHROPOGENIC MARINE
ECOSYSTEMS POLLUTION: AN
APPROACH TO THE PROBLEM

In recent decades, there has been a steady and systematic growth
of industries and population on a global scale, which has led to
April 2022 | Volume 12 | Article 867446
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high anthropogenic pollution of the environment, including
marine ecosystems. In fact, human activities are the main
source of pollution originating from industrial and urban waste
discharges that are often transported by water sources and
atmospheric emissions that end up in the ocean (Chiang, 1989;
Krumgalz, 1993; Valette-Silver, 1993; Bruland et al., 1994;
Salamanca and Camaño, 1994). Eighty percent of ocean
pollution comes from land-based sources, while discharges
from marine shipping, offshore industrial operations, and
waste disposal at sea account for the remaining 20%. Pollution
is most severe along coasts, for example, in bays, harbors, and
estuaries, where wastewater, industrial discharges, agricultural
runoff, and river pollution are the main source. The coasts of the
rapidly developing countries of the southern hemisphere have
some of the worst ocean pollution in the world (Landrigan
et al., 2020).

Rising sea surface temperatures and ocean pollution influence
the abundance and geographic distribution of naturally
occurring marine pathogens, such as Vibrio parahaemolyticus
and Vibrio vulnificus (Baker-Austin et al., 2010). Therefore, the
most likely consequences will be an increase in the frequency of
Vibrio-associated diseases, as well as the spread of these
infections to new, previously unaffected areas. The risk is
especially high in countries where coastal development is
intense, with dysfunctional sanitation systems and affected by
sea level rise, coastal over-development and natural disasters
(Landrigan et al., 2020).
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Indeed, we know that ocean pollution is a complex
phenomenon, involving a wide range of factors, including
chemical and biological compounds, such as pesticides,
petroleum derivatives, plastics, microplastics, wastewater, HMs,
and antibiotics (Imran et al., 2019; Landrigan et al., 2020; Vaid
et al., 2021; Zheng et al., 2021). However, in this review we will
focus on the last two contaminants (HMs and antibiotics)
mentioned above and how they may affect the environment of
bivalve-producing areas, the microbial components of bivalves,
emphasizing Vibrio spp., and as a result, the potential risk to
human health from pathogenic species.

Heavy Metals: A Resistance-Associated
Stressor
Emissions of toxic metals to the environment began centuries
ago with the onset of mining and smelting, continued to increase
since the beginning of the Industrial Revolution, and have risen
abruptly in the last two centuries (Landrigan et al., 2020). The
classification of HMs includes any metallic chemical element
with a density > 5 g/cm3, e.g., mercury (Hg), cadmium (Cd),
arsenic (As), chromium (Cr), thallium (Tl), lead (Pb), silver (Ag),
zinc (Zn), cooper (Cu), and iron (Fe). They exist naturally in the
environment in the form of salts, minerals, and other types of
compounds (Leong and Chang, 2020). A comprehensive
assessment of HMs content in surface water bodies and the
implications of toxic metals on aquatic life and human health
was recently reviewed by Kumar and Collaborates (2019) and
FIGURE 1 | Heavy metal pollution in Chile. (A) Heavy metals discharged in each Chilean region. Metal emissions in tons (t) can be observed in horizontal line below
the map figure. (B) Colocalization of fish culture centers (red circles), mussels culture centers (blue circles) and wastewater plants (black stars) in Los Lagos Region.
April 2022 | Volume 12 | Article 867446
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Okereafor and Collaborates (2020), respectively (Kumar et al.,
2019; Okereafor et al., 2020).

Some HMs have important functions in biological systems.
Through evolution, different organisms have acquired the ability
to use some metals and HMs for essential biological functions
(Nanda et al., 2019). Vanadium (V), manganese (Mn), cobalt (Co),
nickel (Ni), molybdenum (Mo), boron (B), silicon (Si), selenium
(Se), fluorine (F), iodine (I), tin (Sn), Cr, Fe, Cu, Zn, and As, are
found in some living organisms. Generally, most of them are
required as cofactors for enzymes, structural integrity or to
provide a screen for electrostatic interactions in the aqueous
phase. In this regard, they are essential in trace amounts but
when they exceed their threshold values, they become toxic.
Speciation of metals can also reduce or increase toxicity, for
example, Cr (III) (trivalent) is known to be an essential trace
element, while Cr (VI) (hexavalent) is highly toxic and the most
toxic form of arsenic, As (III), is found in fractions of less than
20% of the total in marine systems. Moreover, organic forms of Hg
are more toxic than inorganic and elemental Hg. Metal-protein
complexes of metals such as Hg are intrinsically toxic and trace
elements such as Zn also become toxic at high concentrations
(Neff, 1997; Nies, 1999; Seiler and Berendonk, 2012; Fulke et al.,
2020). The high concentration of other metals such as Ni, Cu and
Co has been strongly associated with their toxicity (Richards et al.,
2011). The presence of HMs in seawater has its origin naturally or
anthropogenic way, but most of these substances come from
industrial and urban waste. In fact, human activities are the
main source of HMs pollution originating from industrial and
urban waste discharges that are usually transported by water
sources such as rivers and through atmospheric emissions
(Chiang, 1989; Krumgalz, 1993; Valette-Silver, 1993; Bruland
et al., 1994; Salamanca and Camaño, 1994). In addition, HMs
are not biodegradable and tend to persist in nature and
living organisms, resulting in accumulation that pollutes the
environment and affects the food chain causing serious damage
to health. The toxicity in the environment depends to a large
extent on environmental conditions, as these influence the valence
of the metal ions and thus their bioavailability (Suvarapu and
Baek, 2017). There is a growing understanding of the
anthropogenic impact of metal contamination on the microbial
community of aquatic ecosystems (Ozbay et al., 2017; Yao et al.,
2017; Igiri et al., 2018; Gillard et al., 2019; Rajeev et al., 2021; Liu
et al., 2021).

The resistance and resilience of microorganisms to HMs in the
ecosystem depends on many factors. For example, the intrinsic
detoxification systems of microorganisms largely determine their
survival in a contaminated environment. In addition, it is not
excluded that other (a)biotic factors influence the toxicity of HMs
and the fitness of microorganisms (Hao et al., 2021). Detailed
information about the habitat and taxonomic distribution of HMs
resistant bacteria isolated from polluted environments was
discussed in a recent review (Hao et al., 2021).

The mechanisms by which bacteria develop resistance to
metal toxicity can occur through different pathways, such as
extracellular barrier, intracellular/extracellular sequestration,
efflux, or reduction of metals ions (Igiri et al., 2018;
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Tarekegn et al., 2020) or by transference of resistance genes
(Sterritt and Lester, 1980; Nanda et al., 2019). Yap and
Collaborators (2007) mentioned that there is also a strong
correlation between uptake and accumulation of trace metals
in filter-feeders whereas they accumulate metal concentrations in
water (Yap et al., 2007). As a result, aquatic living organisms
become dangerous and threatening organisms to human being in
terms of food (Yap et al., 2007). Therefore, ecosystems
contaminated with HMs could exert a selective pressure that
favors the development of resistant microorganisms. In this
sense, the filtering characteristic of bivalves could multiply the
possibilities of the appearance of bacteria resistant to HMs when
bivalves, such as mussels, are cultivated in ecosystems
contaminated with HMs. The consumption of these marine
products would pose a latent risk to humans.

Antibiotics: The Associated Risk of
Resistance That Threatens Everyone
Antibiotics are substances able to inhibit the growth or killing
bacteria. According to World Health Organization (WHO),
antimicrobial resistance occurs due to genetic changes over
time, and resistance genes can spread among living organisms
(WHO, 2020). ARB cause more than 100.000 deaths per years in
China, 58.000 in India, 35.000 in the United States and 33.000 in
the European Economic Area and these numbers should increase
because of rapid socioeconomic development along with
population growth (Reverter et al., 2020; Domıńguez et al.,
2021). In Latin America, multi-drug resistant organisms are
the leading cause of hospital acquired infections (Domıńguez
et al., 2021). Moreover, infections produced by resistant bacteria
are associated with increased mortality, morbidity, and greater
numbers of complications, prolonged hospitalizations, and more
expensive treatments. This phenomenon is especially recurrent
in countries that use high amounts of antimicrobials in animal
production industries and for veterinary care (Millanao et al.,
2018). According to surveillance data from the Latin American
Network for Antimicrobial Resistance Surveillance (ReLAVRA)
an increased trend has been observed in carbapenem resistant
bacteria since 2014 (Domıńguez et al., 2021). Acquired resistance
in a pathogen occurs through a stepwise evolution from a
chromosomal and immobile ARGs, In addition, ARGs genes
existed in the environment before antimicrobials were
discovered and used as therapeutic agents, however, their use
and subsequent misuse induced natural selection of resistant
bacteria (Lupo et al., 2012).

Bacterial pathogens are the main pathway for the spread of
ARGs from “hot spots” of potential resistance development (Ravi
et al., 2014). Even resistance gene transfer events can be
stimulated by antibiotics themselves (Allen, 2017). The rate of
HGT in human-associated bacteria is up to 25-fold higher than
HGT in non-human-associated bacteria (Smillie et al., 2011; Ravi
et al., 2014).

In bacteria, the most common HGT mechanisms are
conjugation, transformation, and transduction. The spread of
antibiotic resistance (AR) determinants among the bacterial
community is mainly attributed to the rapid HGT of genetic
April 2022 | Volume 12 | Article 867446
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elements, such as integrons, plasmids, and transposons (Zheng
et al., 2021). The plasmid transfer between bacteria could occur
within an hour, despite suboptimal conditions and the absence of
selective pressure (Ravi et al., 2014).

Novel resistance genes that are so far not clinically important
may arise from the vast reservoirs of environmental and
commensal bacteria due to selective pressure. Compared to
anthropogenically selected resistance genes, these novel genes
are usually not found in mobile genetic elements (MGE) such as
integrons, transposons and plasmids, so they must be selected in
several steps in MGE before they arrive a pathogenic bacterium
(Stokes and Gillings, 2011; Allen, 2017). For example, reviewing
the literature we found a study demonstrating the relationship
between ARGs in marine bacteria and human uropathogenic
Escherichia coli, in an intensive aquaculture region (Tomova
et al., 2015). The authors identified ARGs in marine bacteria
isolated from Chilean aquaculture and non-aquaculture sites that
endowed them with resistance to tetracycline, florfenicol and
quinolones. They demonstrated that plasmid-mediated
quinolone resistance genes were present more frequently in
uropathogenic E. coli isolates from a coastal site bordering
Chilean aquaculture than in uropathogenic E. coli isolates from
an urban non-aquaculture site in the United States (Tomova
et al., 2015). In addition, some Chilean uropathogenic E. coli had
plasmid-mediated quinolone resistance genes whose sequences
were identical to those of local Chilean marine bacteria,
suggesting linkage of these marine and terrestrial bacterial
populations through uni- or bidirectional HGT mediated gene
flow (Tomova et al., 2015). The above is an example of the public
health risk associated with AR when human settlements and
industries dedicated to the intensive farming of animals coexist,
such as aquaculture, and the prevailing need to maintain good
veterinary practices that favor the hygiene and well-being of
animals, but also decrease the impact of the spread of ARGs.

Moreover, Aeromonas spp. members could easily develop
single or multiple AR phenotypes (Janda and Abbott, 2010)
playing an important role in the dissemination of AR in aquatic
environments as indicated by Figueira and Collaborates (2011)
(Figueira et al., 2011). Another example is the blaCTX-M genes,
which is currently the most prevalent cause of extended
spectrum b-lactamases (ESBL) in Enterobacteriaceae worldwide
and a major cause of clinical treatment problems (Hawkey and
Jones, 2009). The most probable origin of these genes has been
identified in the chromosomal DNA of several environmental
species of Kluyvera spp., where it is believed to have spread with
great success to different bacterial species (Cantón and Coque,
2006). Furthermore, in Shewanella algae was found the origin of
plasmid-encoded qnrA genes, which confers resistance to
quinolones (Poirel et al., 2005). Likewise, OXA-48 genes,
which possess remarkable carbapenem-hydrolyzing activity, are
increasingly prevalent in Enterobacteriaceae species worldwide
and originated in the chromosomes of Shewanella spp. from the
aquatic environment (Poirel et al., 2012). Some species of the
Vibrionaceae family are part of the microbiota of mussels and
they could be the reservoir of other plasmid-encoded qnrA genes
(Poirel et al., 2005), which have spread worldwide in several
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
species of Enterobacteriaceae. Worryingly, the antimicrobial
resistance emerged and evolved in Vibrio species over the last
decades has been matter of concern, since multiresistance of fish
pathogenic species has caused important economic loses to the
aquaculture industry. Even worse, AR is induced in the
surrounding bacteria in the column water, sediment, and fish-
associated bacterial strains, and the use of antibiotics in
aquaculture also impacts the frequencies of resistance in
human pathogens (Pepi and Focardi, 2021). In fact, human
pathogenic species of Vibrio have increased resistance to
several clinical antibiotics of common use during last years
(Mohamad et al., 2019).

Wastewaters: Convergence of
Marine Pollutants
Municipal and industrial wastewater treatment plants (MIWTP)
are important point sources of nutrients and organic material that
alter biogeochemical processes in receiving aquatic ecosystems
(Lofton et al., 2007), but they also contain contaminants that have
the potential or capacity to alter ecosystems throughout the
trophic level. Contaminations such as HMs and antibiotics are a
great interest because they could cause changes in the function,
composition and resistome of the microbial communities present
in sediments and marine estuaries (Wakelin et al., 2008).
Wastewater treatment plants are considered one of the main
sources of AR and it is estimated that between 75%-90% of
antibiotics are poorly absorbed by humans or animal hosts and
excreted, unaltered, in feces or urine (Uyaguari-Dıáz et al., 2018).
Despite all treatments of wastewaters, they are finally released to
estuaries, rivers and oceans containing several ARGs. Thus, the
discharge of antibiotics and their metabolites into the environment
is widespread; “hot spots” of contamination include wastewater
discharges from hospital, healthcare facilities, community
wastewater treatment plants, pharmaceutical industry, and
confined animal feeding operations (Pruden et al., 2006;
Berendonk et al., 2015). Some antibiotics can degrade rapidly,
while others accumulate in soil or sediments and persist into the
environment for longer (Shi et al., 2014). Surface water
remains the main vehicle for the dissemination of antibiotic
resistant bacteria (ARB), antibiotic residues, and ARGs in the
environment (Heberer, 2002; Uyaguari-Dıáz et al., 2018).
Worryingly, the interaction between environmental and clinical
microorganisms could select multidrug-resistant bacteria, severely
affecting environments, changing biodiversity, and modifying
evolutionary pathways in favor of resistant ones (Eduardo-
Correia et al., 2019). Furthermore, HMs concentrations detected
in wastewater treatment plants are generally two or four orders of
magnitude higher than antibiotics levels (Seiler and Berendonk,
2012). These metals, as the antibiotics, are not subjected to rapid
degradation, ensuring a maintenance of selection for HMs
resistance (Stepanauskas et al., 2005).

We suggest that the discharge of HMs, together
with antibiotics from agriculture and ecosystems linked to
animal production into the seawater environment, can cause
a combined selection and co-selection effect toward
ARB development.
April 2022 | Volume 12 | Article 867446
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ANTIBIOTICS AND HEAVY METAL:
RESISTANCE CO-SELECTION FACTORS

Indirect selection for AR by HMs through co-selection has been
of concern since the 1970’s (Koditschek and Guyre, 1974). This
indirect process occurs by physiological (cross-resistance) and
genetic (co-resistance) coupling of antibiotic and HMs resistance
mechanisms. Cross-resistance describes mechanisms that
provide tolerance to more than one antimicrobial agent, such
as antibiotics and HMs.

On the other hand, in co-resistance, two or more resistance
genes are physically linked and the genes responsible for two or
more resistances are located together in a MGE, as plasmids,
integrons or transposons, and could potentially propagate to
other bacterial species through HGTs (Chapman, 2003; Seiler
and Berendonk, 2012; Pal et al., 2017; Verma et al., 2019; Zou
et al., 2021). Well-characterized mechanisms of cross-resistance
and co-selection can be detailed reviewed in Baker-Austin and
Collaborates (2006); Seiler and Berendonk (2012) and Imran and
Collaborates (2019) (Baker-Austin et al., 2006; Seiler and
Berendonk, 2012; Imran et al., 2019).

Co-selection of HMs resistance genes (HMRGs) and ARGs
have been reported in agriculture (Hu et al., 2016), livestock (Zhu
et al., 2013), sediment (Wright, 2010), mining (Zou et al., 2021),
pond sediments (a microbial paleontology approach) (Dickinson
et al., 2019) and wastewater treatment system (Di Cesare et al.,
2016a; Di Cesare et al., 2016b). However, MIWTPs are
particularly recognized as a “hot spot” of transfer between
environmental and pathogenic bacteria (Guo et al., 2017;
Manaia et al., 2018). The simultaneous presence of chemicals
stress (HMs and/or antibiotics at sublethal concentrations),
resistant bacteria, and resistance genes can favor the selection
of multidrug-resistant bacteria and the potentiation of
resistances in the environment (Shendure and Ji, 2008; Di
Cesare et al., 2016a; Shen et al., 2021; Silva et al., 2021).

In the presence of stress, the selection of the corresponding
resistance gene promotes the persistence of other resistance
genes, even without a direct impact of their specific stressors
(Chapman, 2003; Di Cesare et al., 2016a). HMs have been
suggested to enhance selection for AR in the environment and
vice versa through co-resistance, cross-resistance or co-
regulation of resistance pathways (Matyar et al., 2008; Zhang
et al., 2021). In this regard, experimental evidence demonstrated
a relationship between HMRGs and ARGs acquisition, both of
which disseminated through the MGE (Szczepanowski et al.,
2005; Tennstedt et al., 2005; Baker-Austin et al., 2006;
Szczepanowski et al., 2007; Graham et al., 2011; Knapp et al.,
2011; Di Cesare et al., 2016a); these mechanisms were extensive
review by Seiler and Berendonk, 2012 (Seiler and Berendonk,
2012). Such elements, referred to as integrative and conjugative
elements, are self-transmissible chromosomal MGE that encode
a wide variety of genetic information: a characteristic set of core
genes (for excision, circularization, conjugative transfer, and site-
specific integration) and cargo genes, which confer a wide range
of phenotypes to their hosts, including antibiotic and HMs
resistance (Wozniak and Waldor, 2010; Durrant et al., 2020).
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The co-selection mechanism is highly favored when diverse
resistance genes are located on the same MGE, for example: an
integron, a plasmid, a genomic island, a phage, or a transposon,
facilitating the lateral transfer in the worldwide problem of
resistance (Chapman, 2003; Gillings et al., 2008; Di Cesare
et al., 2016a; Uyaguari-Dı ́az et al., 2018). The genomic
plasticity of MGE has contributed to the fitness quotient and
robustness of bacteria to survive in different environments. In
addition, plasmid-borne or transposon-enclosed integrons
disseminate the resistance gene and play an important role in
the development and spread of superbugs (Sultan et al., 2018).
Integrons provide bacteria with rapid adaptation under strong
selection pressure, so they are considered the main agents of
bacterial evolution due to their role in the ARGs spread,
development of multidrug resistance and potential to add
genetic structures in bacterial genomes (Gillings et al., 2008;
Uyaguari-Dıáz et al., 2018).

There are examples in the literature describing the role of
HMs in increasing AR of microorganisms in aquatic ecosystems.
In a recent study, Wang and Collaborates (2021) confirmed that
the selective pressure of HMs contributed to the increase in
ampicillin-resistant opportunistic pathogens (Pseudomonas
monteilii, Aeromonas hydrophila, Acinetobacter baumannii,
and Staphylococcus epidermidis) in the Xiangjiang River,
China. In addition, a microcosm experiment showed that the
HMs (Cu2+ and Zn2+) raised the abundance of b-lactam
resistance genes carried by opportunistic pathogenic bacteria
and the horizontal transfer of plasmids in pathogenic bacteria
(Wang et al., 2021).

Other HMs, such as Zn, Cd, and Hg have been associated with
methicillin resistance on Staphylococcus aureus chromosomes
(Ito et al., 2001; Cavaco et al., 2010). We have previously
mentioned that HMs can persist in the natural environment
for long periods of time; therefore, according to some authors,
their contribution to the maintenance and spread of AR factors
may be more than we expected (Baker-Austin et al., 2006; Ji et al.,
2012). However, more studies are needed in long-term HMs and
antibiotic contamination in relation with evolutionary
bacterial communities.

We have already mentioned that integrons play a key role in
ARGs propagation and they are considered the main agents of
bacterial evolution. The most studied integrons are the resistance
integrons, in which the cassettes are antibiotic resistance
determinants (Xu et al., 2007). Two classes of integrons (IV
and V) have been identified in Vibrio spp, with some species that
are part of the microbiota of mussels, and both were associated
with the development of resistance to the antibiotic
trimethoprim (Ravi et al., 2014). In addition, the integrons in
Hydrogenophaga spp., Imtechium spp., and Aquabacterium spp
carried a gene cassette whose open reading frame was
homologous to a hypothetical protein (VP1784) from Vibrio
parahaemolyticus. This cassette was also present in the
previously described class 1 integron from Acidovorax sp, a
specie that was isolated from a wastewater treatment plant and
belongs to a genus with clinically relevant species (Gillings et al.,
2008; Wisplinghoff, 2017).
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Importantly, in approximately 70 years, the integron has
accelerated resistance mechanisms to the point of rendering
antibiotic treatment ineffective, which is a major health
concern (WHO, 2012). The hypothesis that ancestral integrons
were not associated with ARGs compared to current integrons
reinforces the fact of antibiotics overuse and misuse (Uyaguari-
Dıáz et al., 2018).
IMPACT OF SEAWATER POLLUTION IN
BIVALVES AND VIBRIO SPP.

Bivalves have different physiological characteristics, such as
stress resistance, sessile behavior, tolerance to salinity changes
and the ability to accumulate contaminants at levels higher than
those found in seawater, making them very useful for monitoring
levels and trends of classical and emerging contaminants (Rodil
et al., 2019). They are an important filtering organism and have
been used as bioindicators in environmental monitoring
programs. For example, since 1986 the National Oceanic and
Atmospheric Administration (NOAA) National Mussel Watch
Program has conducted annual sampling of the bivalve Mytilus
edulis, or similar species, along the U.S. coast to assess the status
and long-term trends of approximately 140 contaminant
analytes (Bricker et al., 2014).

We previously discussed the role of HMs in the environment
as a stress factor that may favor the potential development of
resistance in marine bacteria and its risk to human health. In
addition to this role, HMs also affect the development of bivalves.
During feeding, bivalves in ecosystems contaminated with HMs
can bioaccumulate them through water filtration (Wang and Lu,
2017; Max Blanc et al., 2019; Yuan et al., 2020). The
incorporation of these metal compounds also depends on the
physical conditions of the metal and the physicochemical factors
of the environment (Wang and Rainbow, 2005; Tapia et al., 2010;
Cardwell et al., 2013). Several investigations have shown that
HMs can affect physiological processes in bivalves (Mandich,
2018). There is evidence that HMs cause damage to the gills and
hepatopancreas of green mussels (Perna viridis) and, being
teratogenic, interfere with their reproduction (Ferraro et al.,
2006; Riani et al., 2018). Other studies showed that Hg (2 x 10-
4 M) caused high hemocyte mortality in Crassostrea gigas, while
Cd2+ exposure (10-100 mmol L-1) was associated with high levels
of apoptosis in Crassostrea virginica. Moreover, mussels exposed
to Cu (20 mg L-1) and Hg (20 mg L-1) affected several immune
parameters, including phagocytosis and Mytilus galloprovincialis
decreased its lysosomal membrane stability of hemocyte in
response to Cr (0.1, 1, 10 and 100 mM) (Renault, 2015).

Unfortunately, coastal marine areas and estuaries, including
bivalve mollusk farming areas, are prone to high levels of HMs
contamination (Stewart et al., 2021). A recent study performed in
bivalves marketed in coastal cities of China showed that, due to
their water filtering capacity, the mean concentration of HMs in
bivalve tissues decreased in the following order Zn (5.29–35.74,
mean: 12.37 ± 5.58 mg/kg) > Cu (0.74–4.93, mean: 1.72 ± 0.72 mg/
kg) > As (0.61–3.95, mean: 1.50 ± 0.81mg/kg) > Cd (0.02–0.35,
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mean: 0.12 ± 0.07 mg/kg.) > Cr (0.06–1.09, mean: 0.30 ± 0.15mg/
kg) >Pb (0.03–0.48, mean: 0.19 ± 0.10 mg/kg) > Hg (0.001–0.029,
mean 0.008 ± 0.006mg/kg) (Dame, 2013; Qin et al., 2021).

However, it is important to note that despite several studies
on the accumulation of HMs in mussels (Chan, 1989; Naimo,
1995; Yap et al., 2003; Fung et al., 2004; Zuykov et al., 2013; Liu
and Wang, 2016), their retention and depuration dynamics
remain of increasing interest (Stewart et al., 2021) because of
the physiological consequences and possible implications related
to human consumption.

On the other hand, the acidification of seawaters
environments, resulting from anthropogenic pollution and
increased CO2 concentrations, has a direct effect on the
increased toxicity of certain HMs, such as Cu, in bivalves
(Pascal et al., 2010; Yang et al., 2019; Landrigan et al., 2020).
Moreover, in certain estuaries, the mean free ionic form of Cu2+

could increase 115% by the year 2100, due of a possible decrease
of ocean pH to 7.7 (Landrigan et al., 2020). An example of how
Cu affected Mytilus californianus larvae and adults was
demonstrated by Hall et al. (2020). This metal to 25 mg L-1

caused developmental and neurological malfunction, specifically
a drastic structural malformation, erratic swimming behavior of
larvae and failure in shell development (Hall et al., 2020).

Bivalve mollusks constitute habitats for bacteria of the
Vibrionaceae family in the marine environment. In this regard,
Proteobacteria has been previously described as a predominant
phylum in many HMs polluted environments, with a variety of
HMRGs and strong capability of adaptation and tolerance. In
addition, species of Gram-negative g-proteobacteria in the genus
Vibrio spp. make up a significant fraction of the culturable
heterotrophic bacteria of oceans and estuaries (Hao et al., 2021).

On the other hand, the microbiota of bivalves is fundamental
to their homeostasis (Lohrmann et al., 2019). By filtering food
particles from seawater, bivalves accumulate exogenous bacteria,
often transiently (Froelich and Oliver, 2013). This filter feeding
process also allows the accumulation of pathogenic organisms in
the bivalves, thus acting as passive carriers of human pathogens
(Lopez-Joven et al., 2011; Leite et al., 2017; Bighiu et al., 2019;
Loo et al., 2020; Giacometti et al., 2021). We have already
mentioned that in the seawater environment, bivalves
constitute habitats for components of the Vibrionaceae family,
and some regular components of bivalve microbiota correspond
to Vibrio spp. (Pruzzo et al., 2005). In fact, Vibrio spp. are
components of the microbiota of oysters and mussels,
concentrating these bacteria in their tissues and hemolymph
(Le Roux et al., 2016; Destoumieux-Garzón et al., 2020). The
pathogenicity of Vibrio spp. is related to temperature, a climatic
parameter greatly affected by contamination. The increase in sea
surface temperature favors a higher rate of transmission,
proliferation, and changes in the regulation of several virulence
factors involved in motility, host degradation, secretion, and
antimicrobial resistance of Vibrio spp. (Warner and Oliver, 2008;
Kimes et al., 2012; Ceccarelli et al., 2013; Mok et al., 2019),
increasing host susceptibility by weakening the bivalves immune
system (Harvell et al., 2009). The high density in current bivalve
culture systems stresses these organisms, which also leads to
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decreased immune functions and thus lower resistance to disease
(Lohrmann et al., 2019). In this sense, the presence of pathogenic
species for bivalve mollusks directly affects the mussel farming.
Nevertheless, other components of the Vibrionaceae family can
infect humans, so the possibility of containing high loads of
pathogenic bacteria is a risk factor for bivalve consumers’ health.

Clinically, the most important human pathogens of Vibrio
spp. are V. cholerae, V. vulnificus and V. parahaemolyticus
(Thompson et al., 2004; Pérez-Reytor et al., 2018). In
particular, Vibrio parahaemolyticus comprises many strains
that inhabit the Chilean coastal sea. However, a pandemic
strain was first observed in Chile in 1998 (Antofagasta), when
it produced a large outbreak. Six years later, diarrhea outbreaks
related to seafood consumption began in Los Lagos Region. Until
2009 the pandemic strain was a relatively stable bacterial
subpopulation of the diverse V. parahaemolyticus population
present in shellfish (Garcia et al., 2009), but in 2011 the
pandemic strain disappeared in the region, completing a rise
and fall cycle previously observed in other countries (Garcia
et al . , 2013). Nonetheless, other post-pandemic V.
parahaemolyticus strains have been associated with clinical
cases, including strains lacking the major toxins of this
bacterial species (Castillo et al., 2018).

Although most infections associated with human pathogenic
Vibrio spp. are self-limiting, severe cases of the disease require
antibiotics for treatment. However, several reports have warned
about the increase in AR of environmental Vibrio spp. that is
associated with the use of antibiotics for the treatment of
vibriosis (Loo et al., 2020).

The occurrence of AMR in Vibrio has increased worldwide
and the efficacy of clinically important antibiotics has declined,
emerging as a global threat to public health (Dutta et al., 2021).

Resistance to antibiotic ampicillin, chloramphenicol,
cephalosporins and tetracycline has been detected in Vibrio
spp. (Lloyd et al., 2018; Loo et al., 2020), but recently it has
been reported that V. cholerae can avoid the effects of almost all
antibiotics used for the treatment of cholera and others bacterial
infectious diseases (Das et al., 2020).

In addition, antibiotic-resistant phenotypes of Vibrio spp. are
more tolerant to HMs, and vice versa, which probably occurs
through co-resistance pathways (Matyar, 2012; He et al., 2016;
Xu et al., 2019). Resistance of V. cholerae to antimicrobials and
HMs has been previously reported (Song et al., 2013; Bhuyan
et al., 2016; Baron et al., 2017; Sulca et al., 2018; Xu et al., 2019).
On the other hand, a very important aspect to consider is that
HMs tolerance was prevalent in the V. parahaemolyticus strains
with more than two AR phenotypes (He et al., 2016; Kang et al.,
2018; Jiang et al., 2020).

Despite the ecological importance and the risk to human
health associated with resistance co-selection, (Vaz-Moreira
et al., 2014; Hu and Chen, 2016; Lloyd et al., 2018; Squadrone,
2020; Silva et al., 2021) less attention has so far been focused on
the simultaneous occurrence of HMRGs and ARGs in Vibrio
spp. Due to their ability to relocate between host genomes,
Vibrio-MGE could play a vital role by acting as vehicles for
the acquisition of resistance gene and their successive
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propagation. In this sense, bivalves are a potential vehicle of
antibiotic‐resistant Vibrio spp., where resistance genes could be
transmitted to humans through ingestion of marine food (Lloyd
et al., 2019; Loo et al., 2020).
CHILE: ANTIBIOTICS AND HEAVY
METALS AS MARINE POLLUTANTS IN
LOS LAGOS REGION

The consumption of fish and seafood will increase 27% by 2030,
mainly due to the aquaculture sector, which will grow by 62%.
The shift in the human diet towards increased consumption of
fish and seafood is suggested to be a solution to the need for
protein that supports human and environmental health (FAO,
2020; Reverter et al., 2020). However, aquaculture has high costs
associated with its development. Chilean aquaculture grew 158-
fold during the last three decades (Poblete et al., 2019).
Currently, Chile is the world´s tenth largest producer of
aquaculture products in the world, with salmonids (Salmo
salar, Oncorhynchus kisutch and Oncorhynchus mykiss) and
mollusks bivalves (Mytilus chilensis) being the main products
(FAO, 2020; Naylor et al., 2021). The country is the second
leading world´s producer and the main exporter of mussels
(FAO, 2021), and second-largest producer of Salmo salar in
the world (Morera et al., 2021).

Cultivation areas are concentrated in the south of the country,
mainly in Los Lagos and Aysén Regions (FAO, 2020)
(Figures 1B, 2). However, Los Lagos Region is among the five
Chilean regions with the highest concentration of HMs
(Figure 1A) and it is also the third largest mussel cultivation
region (Figure 3A). The HMs mostly discharged in Los Lagos
Region during 2019 were Zn, Al, and Cu (Figure 3B). In this
regard, Nguen and Collaborates (2019) showed that across
diverse environmental reservoirs (water, wastewater and soil),
Zn and Cd were the most observed HMs associated with ARGs
(Nguyen et al., 2019).

Notably, according to Chilean National System of
Environmental Information (SNIFA) and Pollutant Emission
and Transfer Registry of Chile (RETC) the aquaculture is the
industry that mostly discharge metals into the waters in Los Lagos
Region due to the production of balanced feed, which include
minerals and fishmeal obtained from raw materials containing
metals (Choi and Cech, 1998), furthermore, fertilizers applied to
fish farms may contain heavy metals (Emenike et al., 2021). In
addition to the high concentration of HMs, there are also several
wastewater plants that discharge the treated water into the coasts
of Los Lagos Region (Figure 4). Regarding MIWTP, Chilean
environment legislation regulates the discharge of pollutants into
marine waters. The main controls about secondary emissions to
body waters is regulated for the Supreme Official Order 90/2000-
Emission standard for the regulation of pollutants associated to the
liquid waste discharges to sea, continental and superficial waters
and Supreme Official Order 46/2002-Emission standard for liquid
industrial waste (ILW) discharged to groundwater (SMA, 2000;
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SMA, 2002). Both supreme official orders only regulate physical,
chemical, and bacteriological parameters, excluding the analysis of
antibiotics and the identification of bacterial pathogens. Indeed, it
is not possible to determine the quantity, concentration and type
of antibiotic that are deposited in water sources from sanitary
industries. In addition, the difficulty of controlling the flow of
water discharged into the ocean, could potentially further increase
the presence of antibiotics in coastal and ocean waters.
Contributing to the perfect storm, the development of salmon
farming in Chile has been accompanied by the misuse of
antibiotics, with the highest percentages concentrated in Aysén
and Los Lagos Regions (Figure 5A). The emergence of infectious
diseases is currently the most serious problem facing aquaculture
worldwide (FAO, 2020). In addition, the development of AR and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
its associated environmental impacts is a growing public concern
that is challenging, for example, the growth of aquaculture
(Figure 5B). Excessive amounts of antibiotics continue to be
used in Chile, which plays an important role in the emerging
public health crisis of AR. Resistant bacteria as well as antibiotic
residues from salmon production are spreading in the
environment, so both salmon food products and wild organisms
become a source of resistant bacteria that can be transmitted to
humans as foodborne contaminants (Lozano-Muñoz et al., 2021).
Salmon culture farms played a role in the incidence of ARB in
sediments, showing an important decrease in the number of ARB
at greater distances from the farms (Buschmann et al., 2012).

There is a high-risk of antibiotic contamination in Chile,
according to a recent review of ARB. Reverter et al. (2020)
FIGURE 2 | Aquaculture production in Chile. Production of mollusks, fish, and algae (expressed in tons, y-axis) in each Chilean region during 2020.
A B

FIGURE 3 | Heavy metals discharged in Chilean coasts during 2019. (A) Percentage of heavy metals spill (expressed in tons) in major regions of mussel’s cultivation
during 2019. (B) Percentage of each heavy metal spilled (in tons) in Los Lagos Region during 2019.
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FIGURE 4 | Contribution of heavy metals discharged by diverse industries in Los Lagos Region during 2019. Heavy metals are expressed in tons (x-axis). Different
industries are listed in y-axis. Data source: http://datosretc.mma.gob.cl/dataset/emisiones-al-agua/resource/041eb3e7-87b0-4be3-a980-4c837b02e97f and https://
snifa.sma.gob.cl/Estadisticas/Resultado/5.
A

B

FIGURE 5 | Antimicrobial use in Chilean regions. (A) Percentage of antimicrobials (y-axis) used in major regions of aquaculture’s production and other regions during
2016-2020 (x-axis). (B) Comparison of antimicrobial use (in tons) and salmonid production (in tons) occurred in Los Lagos Region during the same period (2016-
2020, x-axis).
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calculated the multi-antibiotic resistance index (MAR) of
aquaculture-related bacteria (11.274 isolates) for 40 countries
(representing for 93% of global animal aquaculture production)
and Chile had a MAR index of 0.28, i.e. above 0.2, the threshold
value considered as a high-risk antibiotic contamination index.

The main infectious disease facing the aquaculture industry in
Chile is the Salmonid Rickettsial Syndrome (SRS). This disease is
caused by the Gram-negative and intracellular bacterium
Piscirickettsia salmonis, which mostly affects salmonid species
in saltwater. On the other hand, in the freshwater phase,
antibiotics are mostly directed against Flavobacteriosis and
Renibacteriosis. Florfenicol and oxytetracycline represented for
98.7% and 1.25% of the total antimicrobials used in seawater,
respectively (SERNAPESCA, 2020) (Figure 6). Despite the use of
antibiotics and vaccines as key strategies to combat P. salmonis,
all initiative has been unsuccessful (Flores-Kossack et al., 2020).
Antibiotics have been used as a tool to maintain high production
rates, resulting in overuse under conditions of high uncertainty
and low effectiveness (Millanao et al., 2018; Jara et al., 2021).

The selection of resistant bacteria and the dissemination of
ARGs to other bacteria in the host or ecosystem of cultivation
areas has been discussed previously (Miranda et al., 2018;
Ibrahim et al., 2020). In the last decade, Chilean companies
showed a consistent increase in the number of antimicrobials
used by salmonid farms, from 143.2 tons in 2010 to 379.6 tons in
2020 (97.51% in seawater and 2.49% in freshwater), which is
equivalent to 4071.8 tons of antibiotics that were, for the most
part, supplied through pelleted feed (Figure 5A) (OCEANA,
2020; SERNAPESCA, 2020). According to the Chilean Salmon
Antibiotic Reduction Program (CSARP) 2020 report, Chilean
farmed salmon had a use of active ingredient of antibiotic in the
last five years of 382.5 tons in 2016, 393.9 tons in 2017, 322.7 tons
in 2018, 334.1 tons in 2019, and 379.6 tons in 2020
(SERNAPESCA, 2020). Although its use has decreased
compared to the amount used years ago, excessive amounts are
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
still used. Compared to Norway, in 2018, Chile used 550 times
more antibiotics than the industry in that country, the world’s
leading producer of Atlantic salmon (OCEANA, 2020). Three
years later, only 1.3% of salmonids (Salmo salar and
Oncorhynchus mykiss) farming areas used antibacterial
treatment, with 222 kg of antibiotics to produce 1.4 million
tons of farmed fish. The significant decrease in the usage of
antibacterial agents in Norwegian aquaculture from 1987, when
it amounted to 48 tons or 876 mg/PCU (mg active substance/
population correction unit) to 0.15 mg/PCU in 2019, it is mainly
attributed to the introduction of effective vaccines against
bacterial diseases in Salmo salar and Oncorhynchus mykiss but
also to the prevention of bacterial diseases and their spread
(Henriksson et al., 2018; NORM/NORM-VET, 2019). It is
important to note that the maximum allowed dose of the
antibiotic florfenicol in freshwater salmonid aquaculture is 10
to 15 mg per kg offish, but Chile used around 49 times more than
the regulated dose in 2017 (Lozano-Muñoz et al., 2021).

In farming areas, selection of resistant bacteria and
dissemination of resistance elements to other bacteria has
previously been described, both from the host and the
environment (Miranda et al., 2018; Ibrahim et al., 2020).
Unlike in Norway, where the state collaborates with companies
to certify salmon farms by the Aquaculture Stewardship Council
(ASC), in Chile fishery health policies are not well aligned with
the ASC standards for salmon, and the country’s regulations do
not prevent the use of antibiotics classified as critical to human
health by the WHO (Luthman et al., 2019; Lozano-Muñoz
et al., 2021).

The threat of AR must be urgently addressed through the
implementing of national strategies in accordance with
international standards that include both, the prudent use of
antimicrobials on marine farms and investment towards a “One
Health Concept” approach that combines human, animal, and
environmental health (Lozano-Muñoz et al., 2021).
FIGURE 6 | Use of antimicrobial by aquaculture industry in Los Lagos Region. Percentage of diverse antimicrobials (y-axis) used in Los Lagos Region during 2016-
2020.
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On the other hand, the increasing development of this
industry in Chile, as well as the intensive use of antimicrobials,
has not been accompanied by the scientific research necessary to
understand the impact of the intensive use of antibiotics in this
industry. Information on the ecological and environmental
consequences of antibiotics use in fish farming is still scarce,
with the presence of traces of antibiotics detected in sediments
associated with salmon farming centers (Miranda et al., 2018),
even in the marine environment up to 8 km from aquaculture
sites, which could select for bacteria with multiple resistance in
that environment (Millanao et al., 2018).

According to the Report of emissions and transference
pollution issued by the Environment Ministry in 2019, 80% of
the waters discharged in Los Lagos Region come largely from the
aquaculture industry (52% mussel farming, 34% fish farming)
while that 20% come from other industries (RETC, 2020).
Therefore, although there is a lack of information on the
interaction between salmon and mussel farming, thus, a
competition for space and the use of water columns to
establish concessions for the cultivation of Mytilidae, because
both activities require the same environmental, oceanographic,
and boundary conditions. Recently, several Mytilus spp. reared
on different years and distance from salmon farms were analyzed
to study their bacterial microbiota and susceptibility to
florfenicol and oxytetracycline of their bacterial isolates
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
(Ramıŕez et al., 2022). No antibiotic was detected on Mytillus
samples, and Mytilus microbiota composition and minimum
inhibitory concentration (MIC) values were associated with
proximity to salmon farms, sampling years, and their
interaction. However, author discussed that other study design
are needed to confer causality. Importantly, bacterial genera of
isolates with high MIC (≥ 64 mg mL−1) represented a low
proportion of the microbiota identified with sequencing of the
16S rRNA gene. This urges the need to include more
comprehensive methods, such as metagenomic to better
describe the bacterial resistome, and HM resistance (Ramıŕez
et al., 2022). In the aquaculture industry, antibiotics contained in
feed or fish feces can diffuse into the sediments and be carried to
distant sites by ocean currents, where they exert selective
pressure and select ARB (Rasul and Majumdar, 2017). In
addition, MIWTP plays a key role because they are considered
the main “hot spot” of ARGs and spread bacteria in the
environment because their wastewater discharges into several
source waters like rivers, lakes, runoff, or groundwater end up
reaching the oceans (Bitton, 2005). Finally, the risk that exists in
the aquaculture areas of the Aysén and Los Lagos Regions is
worrying, where the high concentrations of Zn present in
seawater can mean an increase in resistance to antibiotics, with
the consequent risk for human health. In 2010, Peltier and
collaborates, reported that sub-toxic levels of Zn can increase
FIGURE 7 | Possible risk of mussel’s cultivation in Los Lagos Region. Discharge of antibiotics and heavy metals from diverse industries in Los Lagos Region implies
a possible risk to humans and animals, which consume mollusks raised in these areas. The presence of antibiotics and heavy metals could favor co-selection, co-
resistance and/or cross-resistance mechanisms between bacteria with mobile genetics elements (MGEs) and different antimicrobial resistance genes (ARGA, ARGB,
ARGC) or different metal resistance genes (MRGA, MRGB, MRGC) inside the bacterial components of the mussels’ microbiota, rising the risk of antimicrobial-
resistance genes transfer to consumers.
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the AR in Escherichia coli to tylosin, oxytetracycline and
ciprofloxacin among culturable bacteria in wastewater
treatment at low antibiotic levels, suggesting a cross-resistance
associated from pre- and/or co-exposure to Zn (Peltier et al.,
2010). This co-selection seems to be a consequence of the Zn
exposure increase the abundance of MGEs, such as integrons and
insertion sequences, with a significative association between
ARGs and MGEs, suggesting that Zn enhance the potential for
horizontal transfer of ARGs (Tongyi et al., 2020).
CONCLUSION

The co-occurrence of resistance to HMs and antibiotics has a
profound impact on health and modern antibiotics use,
considering that selection pressure for HMs may favor the
proliferation of antibiotics resistance via co-selection of ARGs
and HMRGs, given the high potential for co-transfer of both
types of resistance (Li et al., 2017). Since the last decade, the
increase of ARB due to mechanisms such as cross-resistance to
HMs and the co-regulation of the pathways that determine
resistance in these bacteria has been credited (Berg et al., 2005;
Akinbowale et al., 2007a; Akinbowale et al., 2007b; Wales and
Davies, 2015). Consequently, there is a high probability that
these HMs are taken up by marine bacteria. In Los Lagos Region,
the presence of antibiotics and HMs as water pollutants, coming
from the intensive activity of salmonid farming, as well as from
the discharge of sanitary water for domestic use, or from
hospitals, health centers, and industrial discharges (Figure 7),
denotes a danger to human, due to the possible HGT between
antimicrobial-resistant marine bacteria and human pathogens.
The questions that arise are, how would these genes be affected in
areas highly contaminated with Zn?, which is one of the HMs
most associated with AR? Are human pathogenic species of
Vibrio that are part of the microbiota of Mytilus chilensis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
cultivated in Los Lagos Region, carriers of multiple resistance
genes? Could they mean a risk for human consumers? Therefore,
it is of utmost importance to establish a surveillance plan for the
occurrence of bacterial resistance phenotypes, which should be
extensively investigated to provide a real reference of the
potential for co-selection in the genotype. It is necessary to
identify all potential co-selection agents and their roles in the
dissemination of AR in the human-associated environment (Li
et al., 2017), which will contribute to risk assessment of AR under
current clinical/environmental management.
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