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Abstract: Forest ecosystems play an important role in hydrological processes as surface and subsur-
face runoff, as well as the storage of water at the catchment scale. Therefore, it is important to have
a greater understanding of the effects of forests in the long-term water balance of Mediterranean
catchments. In this sense, this study evaluates the effect of native forests, forest plantations, and the
combination of both, on long-term streamflow variations in central Chile, an unusual area of Mediter-
ranean climate characterized by a well-marked annual cycle with dry summers and wet winters.
Thus, the temporal pattern of monthly streamflow was evaluated for mean flow (Qmean), maximum
flow (Qmax), and minimum flow (Qmin) in 42 large-scale (>200 km2) Mediterranean catchments.
Each series of monthly streamflow data was QA/QC, and then evaluated using the Mann–Kendall’s
non-parametric statistical test to detect temporal variations between 1994 and 2015. In addition to
the previous analysis, the monthly series were grouped into wet seasons (April–September) and dry
seasons (October–April), to determine if there were any significant differences within the annual
hydrological cycle. The areas covered with native and forest plantations and their relative changes
were evaluated for each catchment through streamflow variations and forest cover indicators. Re-
sults revealed that streamflow variations are positive and significant when more forest cover exists.
The intra-catchment relationships assessed for both species revealed the significant role of native
forests and mixed masses as key ecosystems for the long-term conservation of summer streamflow
in Mediterranean catchments of central Chile. These findings encourage an urgent need to create
highland afforestation programs on degraded areas of central Chile, to maximize water storage in a
region that is quickly drying out due to unsustainable water and land use management practices and
the effects of global warming.
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1. Introduction

A key challenge faced by forest managers is how to maximize the wide variety of
benefits generated from forest ecosystems without impacting the availability of water
resources over time. For instance, forest ecosystems play a crucial role on the mitigation of
global warming through carbon sequestration (e.g., [1]). Large-scale forest disruption has
been correlated to adverse implications for water quality with respect to organic carbon,
nutrients, and metals [2–5], and conversely growth can mitigate contaminant release and
regulate surface and subsurface flows [6].

Water consumption by trees has been the focus of countless studies globally, e.g., [7–10],
with a particular interest on evapotranspiration [11–13]. The quantity of water used by forests
is also influenced by numerous other factors, including local climates [14]; forest location
within the catchment and planting design [15,16]; forest management practices such as pruning,
thinning, and harvesting [17]; age of the forest, e.g., [18–20]; rotation period (for the case of forest
plantations) (e.g., [21]); and tree species [22–24], among the most relevant.

Despite the above, large-scale effects on water resources across disparate forest ecosys-
tems remain controversial [7,25–27]. Several studies developed within climates charac-
terized by the common incidence of wet summers (Table 1) conclude that the larger the
proportion of the catchment occupied by forests, the greater the annual volume of con-
sumed water (e.g., [16,28–30]). Other studies performed in similar climates suggest that
planting more than 20% of a catchment should have a significant effect on water availability
for other uses [31]. However, little research has been published on the impact of forests
(native and/or forest plantations) on the long-term availability of water (hydrologic re-
sponse) in large catchments within the Southern Hemisphere’s Mediterranean climates,
characterized by dry summers and wet winters, such as those found in central Chile. In
general, it is assumed that generalizing the effects of disturbances or management practices
on forest ecosystems in the long-term hydrologic response of a catchment is complicated
due to the internal natural variability of coevolving and self-organizing factors, such as
climate, geology, topography, soils, and forest species distribution [32]. However, in this
research, important signatures of these coevolutive patterns are evaluated for the first time
in catchments of the Southern Hemisphere with the above-mentioned climate type. The
research offers a novel opportunity to improve hydrologic planning on these catchments
using features such as the total forest cover of a drainage area. From this paradigm, it will
be possible to provide a better understanding about the long-term hydrologic response of
Mediterranean catchments on large-scale interactions with native or exotic forest ecosys-
tems. This research can enable informed environmental policies and water governance
schemes designed to optimize the management of Chilean Mediterranean-climate catch-
ments that serve as a water supply in this hydrologically stressed region of the world [33].

Controversy on the effects of forests on long-term hydrologic response exists in
Mediterranean-climate catchments of central Chile. Studies carried out in small experimen-
tal catchments (between 30 and 40◦ S) have suggested that reduction of forest cover (i.e.,
forested area) increases summer runoff and peak streamflows, agreeing with international
studies developed in similar climate types (e.g., [34]). In fact, significant increases in stream-
flow after final harvesting have been found by Iroumé et al. [35–37] and Little et al. [38].
On the contrary, Pizarro et al. [39] found no significant changes on peak streamflows over a
40-year period (1960–2000) in a Mediterranean-climate catchment where land use gradually
changed from native forests to forest plantations. Studies developed at the plot scale (in
southern Chile) have found higher water consumption by plantations as compared to
grassland, shrubland, and native forest [24], mainly due to larger interception and evapo-
transpiration losses, reduced percolation, and reduced soil water retention, agreeing with
the findings reported by Lara et al. [40]. Moreover, Birkinshaw et al. [41] developed a study
in a small catchment (0.35 km2) with a Mediterranean climate located in south-central Chile
(41◦ S), concluding that the effect of forest cover on peak flows becomes less important as
the size of the hydrological event increases. In a different study, Iroumé and Palacios [42]
found reductions of summer runoff in six small-to-large catchments (between 100 and
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1500 km2) in central Chile (between 37◦30′ and 39◦ S), although these reductions must
be carefully interpreted because summer streamflow decreased similarly in catchments
where land use changes were not significant. The authors also concluded that annual
water reductions are probably associated with increases in evapotranspiration rates due to
forest plantation expansion and changes in tree species composition. Soto-Schönherr and
Iroumé [43], on the other hand, compiled and reviewed data from annual water balance
plot studies in Chile, to derive relationships between interception, precipitation, species
composition, and plantation age, among other variables, concluding that annual intercep-
tion losses are mainly explained by annual rainfall and the forest stands’ basal area, with
a clear difference between northern (drier) and southern (wetter) regions. To the best of
our knowledge, most studies carried out in Mediterranean regions of central Chile have
been developed at the plot and experimental (small) catchment scale, except for the studies
by Little et al. [38], Pizarro et al. [39], Iroumé and Palacios [43], and Alvarez-Garreton
et al. [44], who investigated these relationships for larger catchments.

While past studies have explored how specific features of Mediterranean-climate forest
ecosystems are related to long-term hydrologic response and water balance partitions, none
of them have analyzed how the intra-catchment distribution of these forests (represented
by their present forest cover or its temporal variation) can be used to explain long-term
streamflow variations in large catchments under this type of climate. For example, it is
not well understood how the current forest cover of a given catchment can potentially be a
good predictor of the long-term rate of water regulated by forests in large-scale Mediterranean
catchments (or other climate types). Our research was guided under the hypothesis that densely
forested areas (quantified by forest cover and their relative changes) in large Mediterranean-
climate catchments of central Chile contribute to a positive long-term variation of streamflow
and could potentially be used as a predictor of the long-term hydrologic response at forest
ecosystem timescales. In this study, we analyzed official records of forest cover and streamflows
from 42 large-scale Mediterranean-climate catchments in central Chile to define how those types
of land uses can be utilized to infer the long-term monthly hydrologic responses and large-scale
relationships between forest cover and streamflow variations. We aimed to answer the following
questions: (1) Can long-term streamflow variations observed in medium-to-large catchments
with a Mediterranean-climate (hereafter referred to as MC) be explained by the catchment’s
forest cover (or its temporal change)? (2) Is there any identifiable empirical relationship between
long-term streamflow variations and total forest cover (i.e., native forests, forest plantations, or
the combination of both)? (3) What is the value of having this inference capacity for future land
use management and/or for hydrologic predictions in ungauged Mediterranean basins under
paradigms of coevolving ecosystems?

Table 1. Effects of forests (native forests and forest plantations) on streamflow/runoff from catchments
under different rainy seasons.

Species Rainy Season Hydrologic Effect Source

Oak, pine All year round Streamflow reduction [13]
Sequoia serpervirens Winter Streamflow reduction [34]

Eucalyptus sp. All year round Streamflow reduction [45]
Eucalyptus grandis Mostly summer Streamflow reduction [46]
Eucalyptus globulus Mostly summer Streamflow reduction [47]

Pinus patula All year round Streamflow reduction [48]
Eucalyptus globulus All year round Streamflow reduction [49]

Pinus radiata All year round Streamflow reduction [50]
Pseudotsuga menziesii All year round Streamflow reduction [51]

Mixed conifers All year round Streamflow reduction [52]
Picea sitchensis All year round Streamflow reduction [53]

Cryptomeria japonica All year round Streamflow reduction [54]
Eucalyptus grandis Mostly summer Streamflow reduction [55]

Picea, Abies, Larix ssp. Summer Streamflow reduction [56]
Pinus caribaea Summer Streamflow reduction [57]

Pinus, Fagus, Quercus ssp. Mostly spring Streamflow reduction [58]
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2. Materials and Methods
2.1. Mediterranean-Type Ecosystems of Central Chile and Catchments under Study

About one third of central Chile (from Coquimbo to Los Rios regions) is covered
with Mediterranean-type ecosystems (~7.5 million hectares), occupying a narrow band
along the western margin of South America (approximately between 30◦ and 41◦ S). These
ecosystems are located in the transition between the Atacama Desert (the driest desert
in the world) [59–61] and the mixed deciduous temperate forests, which can be found in
the south portion of the country (36◦ S). Major vegetation types are dry xerophytic thorn
scrub, dominated by deciduous shrubs and succulents; mesic communities dominated
by evergreen sclerophyllous trees in the coastal and Andean foothills, also called Chilean
matorral [62]; and forests dominated by winter-deciduous trees in the southern transition
area [63]. According to the National Forestry Corporation (CONAF) [64], of the total
area covered by forests in Mediterranean-type regions of Chile, 61% is native forests
dominated by a combination of sclerophyllous trees (hard-leaved) in the northern area, and
winter-deciduous trees in the south, and 39% (2.9 million hectares) is extensive plantations
composed mostly of introduced Pinus radiata and Eucalyptus spp. Afforestation with exotic
trees in Chile started in October of 1974, after the declaration of a Decree Law (DL 701),
giving the private sector economic incentives to plant fast-growing exotic species. The
introduction of these species profoundly changed the land use of central Chile, since the
establishment of forest plantations was initially carried out in deforested regions degraded
by legacy anthropogenic activities over centuries that determined extensive soil degradation
throughout the central-southern zone of Chile [65]. However, various authors point out that
there was a replacement of native forests by forest plantations [66–70]. Zamorano-Elgueta
et al. [66] mention that between 1985 and 2011, the area covered by exotic tree plantations
increased by 168% (20,896–56,010 ha) in the coastal zone of the Los Ríos region, at an annual
rate of 3.8%, mostly at the expense of native forests and shrublands. Pizarro et al. [39] state
that there was substitution of native forests by forest plantations in the Purapel river basin
(one of the 42 watersheds considered in this study). In fact, Pizarro et al. [6] verified in the
same Purapel basin that the plantations have been very efficient in retaining sediment in
high areas and recovering the hydraulic balance of the rivers.

The areas of the 42 catchments considered in this study (Figure 1) ranged between
2 × 102 and 2.4 × 104 km2, that is, catchments that exceed 20,000 ha. The selected basins
in general do not present strong anthropic alterations, with the exception of a few (e.g.,
Mataquito in Licantén, Maule in Forel, Itata in Coelemu, and Biobío in Desembocadura),
where anthropic activities are manifested (mainly agriculture). Watersheds were delineated
using the Shuttle Radar Topography Mission’s (SRTM) 90 m resolution images, obtained
from the National Geospatial Intelligence Agency (NGIA) and the National Aeronautics and
Space Administration (NASA). The catchments are in central Chile (between 30◦ and 41◦ S),
an area with a Mediterranean-type climate with a well-defined annual precipitation cycle
characterized by a peak precipitation during winter months (June through August) and
much lower values during other seasons, especially summer months (December through
February), as previously mentioned [33,71]. The catchments in this austral zone experience
a gradual geographic increase of annual precipitation, from around 100 mm (30◦ S) to
nearly 2000 mm (41◦ S) [72]. This latitudinal range of precipitation results from the winter
retreat of the Southern East Pacific Anticyclone (SEPA), which allows stronger low-level frontal
systems to enter the continent [73,74]. Additionally, orographic effects can more than double
precipitation westerly as they progress towards the Andes [75], which allows Andean rivers to
sustain streamflows from snow and glacier melt, especially during summer months [76].

2.2. Land Use of the Mediterranean-Climate (MC) Catchments

Land use for each catchment was provided by CONAF, through a compilation of
several of their National Forest Inventories carried out discontinuously between 1997 and
2016. The eight classification categories defined by CONAF are: native forest, meadows
and bushes, mosaic, agricultural areas, forest plantations, urban areas, lakes and rivers,
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and other uses. However, for the purposes of this study we used the following re-classified
categories. (1) Native forest (NF): areas in which native trees have canopy coverage over
25% of the land. It includes adult, renewal forests (secondary young forests), adult-renewal,
and scrub forests; (2) forest plantations (FP): areas dominated by exotic plantations, mostly
Pinus radiata and Eucalyptus spp., established to supply the forestry industry and, to a lesser
extent, firewood; and (3) other land uses: all areas not included in the previous categories.
The above categories were selected to focus the analysis of our research into the possible
differences between native forests and forest plantations. One of the main issues of CONAF
inventories is their temporal and spatial discontinuity (see Supplementary Materials, SI),
which made the estimation of forest changes over time challenging. This discontinuity
issue is also common from remote sensed data due to climate conditions and due to the
temporal and spatial resolution of the sensors. However, it is possible that changes at the
ecosystem timescales could be small in relation to the catchment sizes and, therefore, not a
relevant factor controlling the hydrologic response as compared to the present forest cover
of MC catchments, which in fact could be one of the most important features controlling
present-day and long-term hydrologic response in MC catchments, as discussed in other
sections of this document.

Figure 1. Land use and location of stream gauges of the 42 Mediterranean catchments (delineated in
red) for central Chile (30◦ S-41◦ S).

2.3. Classification of Catchments According to Their Forest Cover

The forest cover percent (see Equation (1)) was calculated for each of the 42 catchments
under evaluation using Equation (1), where FC is the forest cover (%) estimated using



Sustainability 2022, 14, 4443 6 of 21

the first and last year of available data for each catchment; AF is the area of total forest
cover (including native forests and/or forest plantations) (m2); and AC is the area of the
catchment under analysis (m2). All 42 catchments were classified according to their FC
value, resulting in 24 categories (groups) shown in Table 2. Only those groups with at least
5 catchments were used for further analyses.

FC =
AF
AC
× 100 (1)

Table 2. Classification of forest cover percent, which considered four main categories to form
24 groups: (1) very low forest cover (0–4.9%); (2) low forest cover (5–14.9%); (3) mid forest cover
(15–29.9%); and (4) high forest cover (≥30%).

Condition Classification Group FP
Cover (%)

NF
Cover (%)

Number of
Catchments

Forested
Area (%) Pass (n ≥ 5)

1 Very Low Forest Plantation Cover G1 0 to 4.9 Any 17 40 Yes

2 Low Forest Plantation Cover G2 5 to 14.9 Any 12 29 Yes

3 Mid Forest Plantation Cover G3 15 to 29.9 Any 8 19 Yes

4 High Forest Plantation Cover G4 ≥30 Any 5 12 Yes

5 Very Low Native Forest Cover G5 any 0 to 4.9 4 10 No

6 Low Native Forest Cover G6 any 5 to 14.9 9 26 Yes

7 Mid Native Forest Cover G7 any 15 to 29.9 14 29 Yes

8 High Native Forest Cover G8 any ≥30 15 36 Yes

1–5 Very Low Forest Plantation Cover
and Very Low Native Forest Cover G9 0 to 4.9 0 to 4.9 2 5 No

1–6 Very Low Forest Plantation Cover
and Low Native Forest Cover G10 0 to 4.9 5 to 14.9 5 12 Yes

1–7 Very Low Forest Plantation Cover
and Mid Native Forest Cover G11 0 to 4.9 15 to 29.9 2 5 No

1–8 Very Low Forest Plantation Cover
and High Native Forest Cover G12 0 to 4.9 ≥30 8 19 Yes

2–5 Low Forest Plantation Cover and
Very Low Native Forest Cover G13 5 to 14.9 0 to 4.9 0 0 No

2–6 Low Forest Plantation Cover and
Low Native Forest Cover G14 5 to 14.9 5 to 14.9 1 2 No

2–7 Low Forest Plantation Cover and
Mid Native Forest Cover G15 5 to 14.9 15 to 29.9 5 12 Yes

2–8 Low Forest Plantation Cover and
High Native Forest Cover G16 5 to 14.9 ≥30 6 14 Yes

3–5 Mid Forest Plantation Cover and
Very Low Native Forest Cover G17 15 to 29.9 0 to 4.9 0 0 No

3–6 Mid Forest Plantation Cover and
Low Native Forest Cover G18 15 to 29.9 5 to 14.9 2 5 No

3–7 Mid Forest Plantation Cover and
Mid Native Forest Cover G19 15 to 29.9 15 to 29.9 5 12 Yes

3–8 Mid Forest Plantation Cover and
High Native Forest Cover G20 15 to 29.9 ≥30 1 2 No

4–5 High Forest Plantation Cover and
Very Low Native Forest Cover G21 ≥30 0 to 4.9 2 5 No

4–6 High Forest Plantation Cover and
Low Native Forest Cover G22 ≥30 5 to 14.9 1 2 No

4–7 High Forest Plantation Cover and
Mid Native Forest Cover G23 ≥30 15 to 29.9 2 5 No

4–8 High Forest Plantation Cover and
High Native Forest Cover G24 ≥30 ≥30 0 0 No
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It is also important to indicate that the estimation of Fc can be carried out using either
imperial or international system units.

2.4. Calculation of Relative Changes in Forest Cover

Temporal relative changes of forest cover were calculated for each of the 42 catch-
ments under study. Relative-to-initial changes of forest cover (δFC) were calculated using
Equation (2), and relative-to-catchment changes of forest cover (δF C

AC
) were calculated

using Equation (3). Equation (2) represents the relative change over the initial forested area,
whereas Equation (3) represents the relative change of forest cover over the catchment area.

δFC =
Ai − Ai−n

Ai−n
× 100 (2)

δF C
AC

=
Ai − Ai−n

AC
× 100 (3)

In Equations (2) and (3), δFC is the relative-to-initial forest cover change (%); δFC/AC
is the relative-to-catchment size forest cover change (%); Ai is the current (or most recent)
area of NF and/or FP (m2); Ai−n is the previous (or initial) area of NF and/or FP (m2); n
is the number of years between initial and current forest cover; and AC is the area of the
catchment under analysis (m2).

2.5. Long-Term Streamflow Variations versus Forest Cover Dynamics

Average, minimum, and maximum monthly streamflow records over 21 years (1994–2015)
were provided for each catchment by the National Directorate of Water (DGA), the Chilean
institution officially in charge of monitoring and managing national water resources. To
estimate long-term streamflow variations for each group of catchments, the non-parametric
Mann–Kendall (MK) and Sen Slope’s statistical tests were applied (see details in Shadmani
et al. [77], Valdés-Pineda et al. [33,78], and Sangüesa et al. [79]) for each month within the
1994–2015 period. Additionally, monthly time series were grouped into dry (from October
to April) and wet (from April to September) periods, to determine possible differences at
the seasonal scale. As a first step, the MK and Sen Slope tests were applied to estimate real
and standardized monthly variations of average, minimum, and maximum streamflow
(dQ, as observed in Figure 2) for each catchment.

2.6. Intra-Catchment Relationships and Field Significance

The resulting monthly streamflow trends estimated for each catchment were evalu-
ated at the intra-catchment scale to determine empirical relationships between long-term
streamflow variations (real and standardized slopes) and the present-day forest cover,
or the long-term forest cover change for all the catchments under study. Additionally, a
field significance analysis through bootstrapping approach was performed considering
100,000 random selections of forest cover groups (see Table 2 for reference), ranging be-
tween 5 and 40 catchments, where the empirical relationship (dQ vs. FC, δFC or δF C

AC
)

was re-evaluated to analyze the field significance of results. Thus, expected relationships
between forest cover (%) and long-term streamflow variations (MK’s z values) were plotted,
as illustrated in Figure 2.

2.7. Long-Term Variations of Other Hydrological Fluxes

To complement our analysis, we also evaluated the long-term monthly and annual
rainfall variations (mm/year) using all available rain gauges managed by DGA. Monthly
rainfall variations were additionally calculated using the CHIRPS precipitation dataset [80]
to expand the spatial distribution and evaluation of the instrumental rainfall trends.

To consider the fact that many rivers of the Mediterranean catchments in central Chile
are fed by snowmelt and glacier melt from the Andes Mountains, long-term monthly varia-
tions of snow water equivalent (SWE) were also evaluated using Terraclimate products [81].



Sustainability 2022, 14, 4443 8 of 21

Figure 2. Examples of expected relationships between forest cover (%) and long-term streamflow
variations (MK’s z values), considering results from all catchments together. The examples presented
show: (a) all catchments with positive streamflow variations over time in which larger positive
variations are related to larger forest cover; (b) all catchments with positive streamflow variations
over time in which larger positive variations are related to low forest cover; (c) all catchments with
negative streamflow variations over time in which lower negative variations are related to larger
forest cover; and (d) all catchments with negative streamflow variations over time in which lower
negative variations are related to lower forest cover.

3. Results
3.1. Mediterranean-Climate (MC) Ecosystems and Long-Term Forest Cover Changes

The forest cover in the catchments evaluated in this study is highly dominated by
native forests (NF). For instance, 88% of the MC analyzed catchments have native forest
cover larger than 10%, and about 60% of catchments have native forest cover larger than
20%. On the other hand, 48% of the catchments have forest plantation cover lower than 5%,
with only 17% of them having forest cover percent larger than 20%. These classifications
confirm the dominance of native forests along the study area. From our results, it was
observed that the relative-to-initial forest cover (δFC) changes were mostly positive (i.e.,
increase in forest cover). For NF, 86% of the catchments showed positive variations of δFC.
These positive variations exceeded up to four times the initial coverage of NF in catchments
that showed the most extreme changes (Figure 3a). Positive variations in plantations
were observed in practically all the analyzed catchments (95%), with positive changes that
exceeded up to nine times the initial cover of FP. The most significant changes in plantations
were observed in catchments located in the southern portion of the study area, though
significant changes were also observed in Andean catchments in the north-central portion
of the study area (Figure 3b). However, and in a smaller proportion, negative variations
were observed, especially in Andean or mountainous areas, and the number of catchments
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with negative variations in either NF or FP was in general lower compared to positive
variations (Figure 3a,b).

Figure 3. Maps of relative-to-initial (δFC) and relative-to-catchment (δF C
AC

) changes of forest cover

in 42 Mediterranean catchments of central Chile. Each map was combined with CONAF inventory
and Hansen et al., (2013) products to visualize recent short-term changes for: (a) δFC (native forests)
with the distribution of native forests; (b) δFC (plantations) with the distribution of forest plantations;
(c) δF C

AC
(native forests) with the distribution of forest loss (2000–2018); and (d) δF C

AC
(forest planta-

tions) with the distribution of forest gain (2000–2018).

When the above changes were analyzed relative to the size of the catchments (δF C
AC

),

it was observed that 14% of the catchments revealed positive variations of native forest
cover that exceeded 10%. However, most of the catchments revealed positive changes in a
range of less than 5%. Similarly, catchments with negative variations of native forest cover
remained in a range of less than 4%, relative to the size of the catchment (Figure 3c,d).

Changes of forest cover in plantations revealed only two catchments with positive
variations greater than 10% (Damas en Tacamo, and Ñuble en San Fabián, corresponding to
catchments 23 and 41 in Figure 1). The dominant pattern observed in 70% of the catchments
was positive variations of forest plantation cover (δF C

AC
) that did not exceed 5% (Figure 3d).

The general pattern of positive changes in native forest cover could be associated with
re-sprout and growth of previously cleared NF in central Chile. The increase in FP cover,
on the other hand, was mainly due to the rise of the forestry industry [82], which increased
the areas available for productive growth. Forest cover changes relative to the size of
the catchments revealed that the impact of these changes on large-scale MC catchments
was relatively low (see Figure 3b,d); however, the lack of continuity of CONAF’s national
inventories (the records span several periods and different geographic areas) did not allow
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for the quantification of consistent forest cover changes throughout the intra-catchment
space. Therefore, it was not possible to determine whether these percent changes or
the indicators created to represent these changes could be significantly related to the
hydrological response of MC catchments. New datasets and evaluations will be required
to further evaluate how the long-term forest ecosystem dynamics could be related to the
hydrologic dynamics of large-scale MC catchments.

3.2. Long-Term Streamflow Variations within Mediterranean-Climate Catchments

Long-term monthly streamflow variations (mm/month) showed a regional declining
trend (Figure 4). Dominant patterns of negative trends were observed during the wet season
(April through September), except for August, where 62% of the catchments revealed
positive variations in streamflows (see SI). During the dry season (October through March),
the pattern of negative trends prevailed in the months of October and November. However,
positive trends were observed from December to March in about one third of the catchments,
especially those located in the central part of the study area (Figure 4). Despite the existence
of these trends in MC catchments, in general, these variations did not represent significant
statistical changes. These hydrological variations, while lacking statistical significance, can
still be hydrologically significant in the long-term.

Figure 4. Temporal monthly streamflow variations (mm/month) for the dry seasons (October–
March) between 1994 and 2015, calculated for 42 Mediterranean catchments located in central
Chile. The trends analyzed with the Mann–Kendall test are as follows: no significant (NS); +/−
statistically significant.

3.3. Forest Cover Dynamics versus Long-Term Streamflow Variations

When streamflow’s temporal variations were related to the catchment forest cover
(total, native, or plantation), as well as their respective indicators of relative temporal
changes, it was observed that the most consistent relationship occurred between the current
total forest cover (i.e., NF and FP together, and “mixed forest”) of the MC catchments and
temporal variations of streamflow (1994–2015). This relationship was significant during dry
seasons (October through March) and stronger between December and January (Figure 5),
with an intra-catchment pattern revealing that the greater the area or fraction of mixed
forests with native forest dominance in the MC catchments, the greater the tendency to find
increases in average, maximum, and minimum monthly streamflow (Figure 5).
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Figure 5. Significant intra-catchment relationships between percent forest cover (defined as the
sum of native forest cover and forest plantation cover) and long-term (monthly average, maximum,
and minimum) streamflow variations (dQ in mm/month-year). The marker-color represents the
latitude of each catchment, where redder colors are catchments located towards the north (less
precipitation), and bluer colors represent catchments located towards the south of the study area
(more precipitation).

This unique feature representing the hydrologic response could be a clear signal of
coevolutive patterns at the ecosystem timescales, in which any other abrupt natural or
anthropogenic disturbances of the landscape (i.e., forest fires, tree die-off, deforestation, and
land use changes) can affect the hydrologic response at local or catchment scales (Figure 5)
(for reference, see [83–86]). The fact that more native and mixed forests are present in
an MC catchment could increase the infiltration capacity of soils and the capacity of the
catchment to regulate subsurface flow, whose release to the main streamflow of these rivers
starts between August and September, when the catchments are still under near-saturated
water conditions, and it can be sustained until the end of summer in February, March or
even April in some very wet years.

Furthermore, estimates of the monthly mean contribution of glaciers to streamflow
in central Chile has shown to be between 40 and 80% [87]. This suggests that there is
about 20 to 60% of the total streamflow that can be probably explained by a combination
of subsurface flow and melting of low-density snow in the Andes during spring seasons.
Towards the summer, subsurface flow is mainly contributed from forest masses and slowly
released during the spring and austral summer. This lesser understood source of subsurface
flow in MC catchments can represent an important contribution to total streamflow during
dry seasons.

An important component of our study was that the forest cover was calculated from
CONAF forest inventories. Therefore, all analysis and results provided by this study were
calculated using data between 1997 and 2016, for most catchments. A notable limitation of
these inventories is that there was no consistency in relation to a fixed period of analysis, and
the periods used to calculate the relative changes varied between 3 and 20 years, depending
on the catchment. Despite these inconsistencies within the dataset, it was observed that
the relative-to-catchment size forest cover change (δF C

AC
) was a better indicator of long-

term hydrological responses, compared to the relative-to-initial forest cover change (δFC).
Nevertheless, because these relative forest changes are still very small compared to the
size of the catchments (generally lower than 5%), we hypothesize that a critical threshold
of total forest reduction or total forest replacement has not yet been reached on the MC
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catchments. As a consequence, this is a matter of further research to better identify and
analyze critical forest cover thresholds influencing summer streamflow response.

3.4. Disaggregation between Groups of Native Forests (NF) and Forest Plantations (FP)

The classification of forest cover percent allowed only those groups with at least five
catchments to be evaluated (see Table 2). Results revealed a strong and significant relation-
ship between those catchments with mid-to-high (>15%) native forest cover, combined with
low-to-mid (5–15%) FP cover, vs. the long-term variation of streamflow. These catchments
represent 50% of the total number of catchments analyzed in this study (groups 16 and 19)
(Figure 6), having a total forest cover of at least 20%, with large dominance of NF (see SI for
details). Results also suggest that relative changes in groups dominated by FP (group 4)
had significant negative relationships during dry months (December through March), that
sometimes become positive during winter months (Figure 6) (see SI for details). Addi-
tionally, FP showed less positive Sen’s slopes than NF. However, these results need to be
considered with caution, since the number of catchments with large forest cover plantation
is limited. In this regard, the aggregation of both species into mixed forests showed the
strongest intra-catchment relationship, suggesting that further research will be required to
capture the specific characteristics, differences, and thresholds between native and forest
plantations to understand how these masses evolve at ecosystems timescales, and how they
can impact the long-term hydrologic response at the catchment scale.

Figure 6. Correlations results between catchment dominant cover type groups (as defined in Table 2)
and temporal streamflow variations (trends), for each catchment. Left panels are forest cover vs.
temporal monthly maximum streamflow variation. Middle panels are forest cover vs. temporal
monthly minimum streamflow variation, and right panels are forest cover vs. temporal monthly
average streamflow variation. The bottom panels show only significant correlations, in the same
order. In other words, top charts show all the pie-shaped correlations, where what is covered by the
pie represents the “r” (for example, a 50% covered red pie represents a negative correlation of −0.5;
the blue pies represent positive correlations). In the bottom charts the marker size and its color
represent the strength of the correlation (for example, a larger blue marker covering almost the whole
area is a positive correlation closer to one).
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3.5. Field significance: Bootstrapping Analysis

The field significance analysis applied to all catchments evaluated in this study re-
vealed that the relationship between present-day mixed forest cover (the sum of both native
forest and FP, as previously mentioned) and long-term variations of streamflow tends to be
positive. The bootstrapping generated the empirical distribution of the correlation coeffi-
cient obtained for all possible groups of catchments used to establish the intra-catchment
relationships. This analysis allowed the identification of the confidence intervals for this
empirical relationship. Results revealed that, during dry months, the contribution of water
regulated by MC catchments with larger native-dominant mixed forested areas (NF and
FP) seems to be generally more significant than the contribution of water that is regulated
during winter (see example in Figure 7, considering 30 catchments). These results were
consistent for forest cover groups that considered 5, 10, 20, 30, and 40 catchments with the
caveat that the area occupied by FP is low in most of the catchments under study. Therefore,
as previously stated, the outcomes of this analysis must be summited to further research
to establish stronger conclusions about the specific differences between NF and FP under
paradigms of catchment coevolution at ecosystem timescales.

Figure 7. Bootstrapping results for the relationship between forest cover and average monthly
streamflow changes. The empirical distribution for the coefficient of determination using a total of
100,000 realizations (for n = 30 catchments) is presented in this example.

3.6. Influence of Precipitation and Snow Water Equivalent on Total Streamflow

Monthly rainfall accumulation between 1994 and 2014 revealed a mesoscale pattern of
negative catchment-averaged trends during the months of April, June, July (see Figure 8a),
September, and October (see Figure 8c). The strongest catchment-averaged decreases in
rainfall accumulation ranged between 4 and 6 mm during April (fall season), especially
in catchments located in the southern portion of the study area. During winter months
(June and July), these reductions reached up to more than 10 mm in the most extreme
cases over the same group of catchments. At the beginning of spring (September and
October), regional rainfall accumulation showed reductions between 2 and 4 mm, which
are an important loss of water for the reactivation of secondary subsurface peak flows
developed during those months. In fact, spring storms can define how long the snow
will last and the subsurface contribution of flow that is regulated from forest masses and
released later during spring and summer seasons from the MC catchments. Additionally,
it is important to add that the instrumental records of annual precipitation accumulation
(130 rain gauges distributed within central Chile) also revealed regional declines, reaching
up to more than 50 mm in the most noticeable situations. Those records also confirmed
that rain gauges located at higher elevations have experienced more negative variations
than those located on lower lands. The spatial distribution of those temporal variations
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(1994–2014), but especially the fact that they are more negative towards the Andes, also
affects (and will affect) the availability of water on the headwaters of the MC catchments.

Figure 8. (a) Trends in rainfall (Sen’s slope) for central Chile (1994–2014) during the month of July;
(b) trends (Sen’s slope) of snow water equivalent and flows (Sen’s slope) for central Chile during
the month of July; (c) rainfall trends (Sen’s slope) for central Chile (1994–2014) during the month of
October; (d) trends of snow water equivalent and flows (Sen’s slope) for central Chile for the month of
October. The bar plots on the right panels represent the average monthly accumulated precipitation
for all catchments located within the latitudinal bands 34–36◦ S, 36–38◦ S, and 38–41◦ S.

Furthermore, the negative variations in streamflow (see Figure 5) observed for several
MC catchments during summer months (October through March) are also explained by
negative changes in the availability of snow and glacial water during winter and spring
months. For instance, the snow water equivalent (SWE) available from the Andes Mountain
range decreased regionally in the Andes during July and October months (Figure 8a,c).
However, these reductions do not span the whole study area, since positive changes were
also noticeable in some central catchments (Figure 8b,d). Despite the above, both positive
and negative catchments average SWE variations ranged between 0 and 3 mm, which
is about three times lower than the variations observed for precipitation accumulation.
These differences also put in evidence that snowmelt processes occur at a slower rate than
precipitation processes. During spring and summer periods, slight long-term negative
catchment-averaged SWE variations (≤1 mm) were observed in most of the catchments
under study. On the other hand, a few catchments with slight positive variations were
also observed (≤1 mm). In general, the SWE catchment-averaged results revealed that
regional variations in spring are not as hydrologically significant as catchment-averaged
precipitation (in terms of millimeters of water lost over time). Those results can be explained
by the spatial distribution of snowfall, which occurs mostly in the Andes and its foothills.
Therefore, there are many catchments that are snow fed (from upper catchments), but do
not have direct snow accumulation during autumn or winter seasons.

Despite the observed negative long-term changes in rainfall (especially during April,
June, and July) and negative SWE variations (specifically between August and December),
the glacier melting component (not evaluated in this study) has also experienced negative
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variations in central Chile (see for reference [88–92]). These components are in fact the main
controlling factors of MC Andean rivers. However, they do not explain the total seasonal
or annual variation of streamflow on these catchments.

The presence of a significant positive intra-catchment relationship found in this study
confirms that long-term increases in streamflow are related to the area of native-dominant
forests present in the MC basins. For instance, in most of the MC catchments evaluated
in this study, the snow and glacier flow component could be separated from subsurface
flows, since the latter component is strongly replenished by rainfall storms that occur
during winter and spring seasons, and then regulated and slowly released by forest masses
located on mid-elevation hillslopes during spring and summer months. This separation
of hydrological components is in fact driven by the elevational differences of the MC
catchments, since some of them are located at lower elevations in the central valley and the
Andean foothills. A few other catchments span the whole east-to-west domain from the
Andes to the Pacific Ocean, and these are controlled by a wide diversity of hydrological
processes affecting total streamflow.

4. Discussion

This study provides a novel intra-catchment relationship between a unique vegetative
catchment forming factor and the long-term hydrologic response observed in Mediter-
ranean catchments of central Chile. The empirical relationship was established from a group
of 42 large-scale catchments with areas >20,000 ha that were evaluated using long-term
streamflow records, as well as the evolution of forests at ecosystem timescales. Our re-
sults revealed significant intra-catchment relationships between the forest cover (estimated
relative to each catchment’s area) and the long-term variation of streamflow (observed
at each catchment’s outlet). Significant linear correlations were found mainly during the
dry season, suggesting that catchments with larger forest cover have a positive effect on
the long-term contribution of monthly minimum, average, and maximum streamflow.
This empirical relationship is sustained by the hypothesis that most water falling into
the ground in forested catchments tends to have slow passage through the surface of the
slope, given the physical obstacles (e.g., litter and organic matter) that can reduce the
surface runoff component of the hydrologic partition (e.g., [93]). Since forests with native
dominance provide better moisture retention conditions in the soil–vegetation complex,
the infiltration capacity of rainwater and the deep percolation increases during the rainy
season. This process starts in high areas of the catchment, and then promotes regional
groundwater table recharge along preferential flow paths of subsurface flow towards low
areas of the catchment [94]. The hydraulic load of water in the forest-dominated hillslopes
of Mediterranean catchments is generally released as springs or small creeks along the main
gullies of the sub-basins. This process can last up to several months into the summer season
(December to March). Therefore, it is interesting how this pattern was significantly revealed
during summer months, where the empirical intra-catchment relationship revealed that
the rate of streamflow change over time was generally more positive on catchments with
larger forest cover dominated by native species, which clearly demonstrates that forested
Mediterranean catchments fulfill this role.

In this regard, it is well-known that forested catchments play an important role in
the distribution of precipitated water, because tree canopies can intercept a significant
portion of rainfall [95]. Similarly, a proportion of the intercepted water is returned to the
atmosphere by evaporation, and the tree balance is closed with water that reaches the
ground as precipitation from foliage [96,97] and as storm runoff from stems and trunks [98].
Additionally, the litter layer, the organic matter, and other inert materials are an important
obstacle to the passage of surface runoff during storms (e.g., [99]), representing a greater
possibility of rainwater infiltration into the ground [94]. In summary, the hydrological
processes observed at the tree scale suggest that the residence time of surface and subsurface
water traveling in forested catchments is longer compared to non-forested catchments, and
the intra-catchment relationship found in this study clearly reveals that pattern [94,100,101].
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In addition to what is mentioned above, it is important to indicate that the evaluation
of the most extreme situations (MC catchments with native forests cover larger than 40%
and forest plantations cover larger than 40%) revealed clear and significant intra-catchment
relationships during summer months (November through March). For instance, patterns
of positive variations in monthly streamflow (average, maximum, and minimum) were
only observed for the catchments with dominance of native forests. Catchments dominated
by forest plantations, on the other hand, showed a generally negative impact on monthly
summer flows, although this is debatable since the basins in general presented very low
PF coverage, and it is necessary to have a greater number of basins with higher values of
PF coverage. The above is confirmed because this observed influence seemed to dissipate
when we evaluated catchments with lower plantation coverage mixed with native forests
areas, observing that there could still be positive variations of summer flows in response
to greater mixed forested areas. This finding reveals the plausible existence of a critical
threshold of plantation coverage allowable at the catchment scale, which could still favor
the regulation and hydrological response of the MC catchments under conditions that allow
maintaining the long-term water balance of the whole hydrologic system. This is important
for the development of forest productive schemes in terms of knowing or predicting what
sustainable forest cover of plantations is needed to maintain or increase large-scale and
long-term water production. Obviously, it is still necessary to determine in greater detail
how these thresholds could vary in space and time, meaning that future experimental
research should establish baselines to improve this understanding. In the same context, it
is important to add that previous research on these topics has mainly focused on testing
the two-water world hypothesis concluding that trees in Mediterranean climates capture
water from micropores of the soil (static water), leaving surface runoff and subsurface flow
(moving water) circulating by gravity [102,103]. In the same context, Hervé et al. [104]
concluded that the source of water used by trees in two catchments of south-central Chile
(one with NF and the second one with eucalyptus plantations), comes from micropores
of the soil. Furthermore, the authors additionally found that in winter, fresh rainwater
replenishes the micropores, and that water is also used by both tree species.

Other empirical studies carried out in Mediterranean catchments have shown that the
increase in forest plantations could have negative effects on annual flows in catchments
greater than 20,000 hectares [44]. Similarly, Little et al. [38] analyzed two catchments of
central Chile, concluding that FPs have a negative effect on surface water production.
However, the linear modeling used and the low number of basins in the study lead to a
limited range of conclusions that cannot be expanded to all MC catchments.

Future research needs to focus on improving the understanding of the effects of catch-
ments dominated by native forests and forest plantations in the long-term hydrological
response. Since our results are also limited by the lack of consistent records for all catch-
ments under analysis, this new understanding will require additional efforts of the Chilean
government in terms of data generation and monitoring across different spatial and tempo-
ral scales, promoting the diversity of tree species for further evaluation and developing
policies that can benefit the long-term natural hydrological cycles of MC catchments.

5. Conclusions and Recommendations

Results from this study allowed us to establish the first empirical intra-catchment
relationship between forest cover in Mediterranean catchments of central Chile and long-
term variations of monthly river streamflow (average, maximum, and minimum). This
relationship is positive, meaning that a larger forest cover of native dominant-type can
increase long-term streamflow variations.

The central conclusion based on data from 42 large catchments is that the greater the
area of a catchment covered with mixed forests dominated by native species, the larger
the long-term subsurface flow production at the catchment scale, especially during the dry
season (summer months).
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Though rainfall in the study area occurs mainly during winter months (when vegeta-
tion is dormant, with minimal water consumption), and it also decreased over the same time
span, forested areas have shown to have a positive impact on the regulation of river flows,
most likely because of enhanced infiltration processes during the rainy season (winter),
thus promoting a subsurface flow component during the spring and summer seasons.

In summary, mixed forest cover with dominance of native ecosystems was by far the
strongest indicator of the long-term hydrologic response evaluated over the streamflow
variations at the catchment’s outlets. Our analysis confirmed that increases in summer
streamflow from the release of subsurface flow in Mediterranean catchments are signifi-
cantly associated with the presence of native-dominant forests. This analysis should be
complemented by additional research to determine the critical thresholds that enable sus-
tainable hydrological responses that are regulated by forests species at a catchment scale.
Such research must be completed with analyses that include more information about soil
types, geology, and geomorphology, since it has also been observed that close relation-
ships exist between the hydrological response and the catchment’s morphologic features,
e.g., [105,106].

We hypothesize that hydrological responses at ecosystem timescales will have an
important impact in future global warming scenarios, where the degradation of forest
ecosystems may exacerbate the predicted significant decrease of streamflows, resulting in a
decreased availability of natural sources of water for future generations.
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