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ABSTRACT Neonatal seizures are sudden events in brain activity with detrimental effects in neurological
functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalog-
raphy (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time
consuming and prone to errors due the data’s nonstationarity and low signal-to-noise ratio. Towards the
greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian
process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output
spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used
covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure
detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal
EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for
neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world
neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters
and their validation for seizure detection (classification) in a patient specific approach.

INDEX TERMS Electroencephalography, Gaussian processes, multi-output, data imputation, seizure
detection, spectral mixture kernels.

I. INTRODUCTION
Detecting neonatal seizures [1], [2] is crucial, as they may
affect the development of the brain during the first four weeks
of a child’s life [3]. Although electroencephalography (EEG)
has been validated as a de facto resource for the diagnosis of
neonatal brain seizures, its application faces clear challenges.
First, long EEG recordings lasting from several hours to
days are needed to detect neonatal seizures, which motivates
the urgency of automatic seizure-detection methods to aid
clinical decision making [4]. Second, EEG recordings are
corrupted by observation artifacts related to, e.g., muscle
movements, which need to be removed to identify brain
activity. Third, several methods for EEG analysis operate as
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an ensemble of independent single-channel models [5]–[7],
however, EEG channels aggregate and share multiple sources
of neural information, thus cross-correlations between chan-
nels should be considered.

Motivated by the challenges outlined above and the
hypothesis that EEG data should be modelled with a multi-
channel approach, we conjecture that multi-output Gaussian
processes (MOGP) can be instrumental for the EEG-based
detection of neonatal seizures. As a first step towards this
objective, in this article we show that MOGPs [8], and
specifically the multi-output spectral mixture (MOSM) ker-
nel [9], are suitable for modelling noise-corrupted EEG sig-
nals in terms of imputation of missing data, consistency of
model selection and interpretation. Furthermore, we show
that the MOSM kernel outperforms other multioutput kernels
in the literature under different scenarios and, additionally,
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TABLE 1. Some advances on ML-based analysis of neonatal EEG and a summary of their contribution. To the best of the authors knowledge, no other
works have implemented MOGP kernels directly on neonatal EEG for imputation and also for seizure detection by feeding the learnt hyperparameters as
features to ML classifiers.

by feeding MOSM’s hyperparameters as feature vectors into
standard machine learning classifiers, we obtain promising
results for automatic seizure detection.

The article is organised as follows. Section II presents the
background and previous work on MOGP and EEG mod-
elling. Section III describes the experimental settings of our
model, while Section IV shows our experimental validation
on neonatal EEG imputation and seizure detection. Then,
Section V presents a discussion regarding the most relevant
findings in our work, in particular, we conjecture about the
feasibility of using MOSM features to represent different
seizure types. Lastly, Section VI concludes our study and
suggests future research steps.

II. BACKGROUND
A. EEG MODELLING
Previous approaches to model-based analysis of neona-
tal EEG have considered parametric, e.g., autoregressive
(AR) [10] or nonlinear [11] models. For instance, [10]
developed an autoregressive model for neonatal EEG, [11]
built on a mechanical analogy to model EEG using con-
cepts from nonlinear dynamic systems called Duffing
oscillators [12], while [13], [14] characterised multi-channel
neonatal EEG from a spectral perspective. However, these
methods struggle to properly account for the dynamic fea-
tures of seizure-related EEG comprising fast and repeating
patterns [14]. This limitation is further evidenced when the
heteroscedasticity and nonstationarity of EEG recordings are
taken into account.

Improved performance over parametric approaches to EEG
has been achieved by nonparametric models. In [15], the
authors usedGaussian processes [16] tomodel neonatal EEG,
which allowed them to classify seizure and nonseizure data
using the magnitude of the learnt variance of the noise:
seizure segments are known to be more repetitive and deter-
ministic thus having a reduced noise variance than nonseizure
ones.

B. BIOSIGNAL DISEASE CLASSIFICATION
Several attempts to biosignal disease identification have been
proposed in the last years. For instance, [17] studied the
classification of neurological states of a driver from their EEG
recordings, and [18] discriminated EEG signals coming form
stroke-derived and healthy brain activity.

In the line of seizure classification, the list of standard, off-
the-shelf, machine learning approaches for EEG analysis is
endless. Among them, [5], [19]–[22] used SVM for classi-
fication, [6] considered a GMM operating on hand-crafted
EEG features, and [7] combined both in a mixture model.
Also, [23] developed a horse race approach combining
GMM, SVM, hybrid likelihood ratio and Gaussian super-
vectors. Other features that have also been evaluated for
seizure classification include: i) cross-channel Fourier trans-
forms [24], hyperparameters of Gaussian processes [25] and
parameters of a normal inverse Gaussian model [26].

On the subfield of ML-based analysis of neonatal EEG,
which is the particular focus of our work, there is a large and
fast-growing literature. Table 1 provides a short presentation
of recent articles (published in the last two years) with the
aim to illustrate the various points of view on advancing
neonatal EEG analysis using ML, with special emphasis on
their difference with respect to our contribution.

It can be argued that the community of ML-based EEG
analysis for seizure detection has converged to stacking more
and more components in an ensemble, this is particularly
clear with recent neural network methods. Though this can
be advantageous in practice, our approach is towards inter-
pretability and uncertainty modelling, which we argue is
critical in medical applications.

C. MULTI-OUTPUT GAUSSIAN PROCESS
The Gaussian process (GP) is a Bayesian nonparametric gen-
erative model for scalar-valued functions f : RD

→ R.
GPs are particularly suited for imputation of continuous data:
for a set of (possibly unevenly-sampled) observations, the
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GP computes the posterior distribution over the unobserved
regions.

The extension of GPs to multiple channels is referred to as
multi-output GPs (MOGP), which, akin to its scalar coun-
terpart, are perfectly suited for unevenly-sampled or even
missing data, and provide probabilistic predictions for multi-
channel signals. The choice of the covariance function is
fundamental for MOGPs. Besides the choice of independent
Gaussian process (IGP), where no across-channel correla-
tion is assumed, the most popular MOGP covariance func-
tions include the cross-spectral mixture kernel (CSM) [36],
the linear model of corregionalization (LMC) [37] and the
multi-output spectral mixture (MOSM) [9].

In medical data modelling, [38] presented an MOGP
framework for estimating temporal dependencies across mul-
tiple sparse and irregularly-sampled medical time series.
Also, [39] proposed a hierarchical GP for spatio-temporal
representation of EEG and source localization. Recently, [35]
proposed a MOSM-based discriminative approach to binary
classification of EEGwith emotional content and handmove-
ment prediction.

D. THE MULTI-OUTPUT SPECTRAL MIXTURE KERNEL
In this work, we pay particular attention to the MOSM
covariance kernel, since we conjecture that this kernel will
successfully extract relevant cross-channel information from
neonatal EEG data based on i) its multivariate Fourier-based
construction, and ii) its validated performance in other fields,
in particular EEG.

For two channels i, j ∈ {1, . . . ,m} and a temporal lag τ ,
the MOSM kernel is defined by

κij(τ ) =
Q∑
q=1

α
(q)
ij exp

(
1
2
(τ + θ (q)ij )>6(q)

ij (τ + θ (q)ij )
)

· cos
((
τ + θ

(q)
ij

)
µ
(q)
ij + φ

(q)
ij

)
, (1)

where the superscript (·)(q) denotes the parameters corre-
sponding to the qth component of the spectral mixture.
The hyperparameters of the MOSM kernel have clear

meaning regarding the interpretation of the cross-covariance
between channel (electrodes) i and j. For the qth component:
• α

(q)
ij : covariance’s magnitude (energy)

• θ
(q)
ij : temporal delay between channels

• µ
(q)
ij : fundamental oscillatory frequency

• φ
(q)
ij : the phase shift between channels

• 6
(q)
ij : inverse lenghtscales (usually diagonal).

Additionally, we assume that the ith channel is contami-
nated with a zero-mean Gaussian noise of variance σ 2

i , i ∈
{1, . . . ,m}. Furthermore, we clarify that in our approach all
the above hyperparemeters (including the noise variances) are
unknown a priori and determined from the data via maximum
likelihood.

Following [9], let us observe that MOSM is a generali-
sation of other MOGP kernels, that is, by restricting some

of its parameters MOSM can replicate other kernels in the
literature. Table 2 shows how some MOPG kernels can be
recovered from MOSM by applying specific parametric con-
straints to MOSM. Therefore, when MOSM is trained appro-
priately it is expected to perform equal or better than other
MOGP kernels. This ability to recover other models is the
main reason MOSM is the principal model considered in our
work.

TABLE 2. MOGP kernels utilized in this paper as particular cases of
MOSM. For M channels, indices are denoted by i, j ∈ 1, . . . ,M, and δij
denotes the Kronecker delta between channels i and j . Notation: SM-IGP
(Independent GP with spectral mixture kernels), SM-LMC (linear model of
coregionalisation with spectral mixture kernels) and CSM (cross-spectral
mixture). Table extracted from [40].

III. METHODOLOGY
A. NEONATAL SEIZURE DATASET
We considered a public dataset of neonatal EEG record-
ings with seizure annotations [1]. The dataset contained
multi-channel EEG recordings from 79 pre-term neonates
admitted to the Neonatal Intensive Care Unit (NICU) at the
Helsinki University Hospital; each recording lasted 74 min-
utes in average. The EEG signals were recorded at 256 Hz
with 19 electrodes positioned as per the international 10-20
standard. In particular, we considered the following bipo-
lar montage in our study: Fp2-F4, F4-C4, C4-P4, P4-O2,
Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4, T4-T6,
T6-O2, Fp1-F7, F7-T3, T3-T5 and T5-O1—see Fig. 1. These
recordings were annotated by three experts for the presence or
absence of seizures on each second of recording (henceforth
1-s segments), annotations for artifacts were not available in
the dataset considered. In order to ensure label consistency for
training the proposed model, we only considered a subset of
the Helsinki NICU dataset for which all three expert labels
agreed; this way, the findings reported in this work corre-
spond exclusively to 1-s segments where the three experts
agreed unanimously. Out of the 79 EEG recordings, 39 had
seizures by expert consensus and thus they were considered
here.

Fig. 2 shows the proportion of 1-s segments labelled as
seizures by full expert agreement on the considered pool
of 39 patients. Observe that the proportion of seizure to
nonseizure 1-s segments vary greatly among patients. This
uneven distribution of classes has to be taken into account
when designing and evaluating (classification) experiments,
since the considered dataset is heavily unbalanced towards
samples with low proportions of seizure labels. For more
detailed information regarding every patient considered in
this work, we refer the reader to Table 6 (Appendix), which
lists the proportion of seizures of every EEG alongside their
primary seizure localization.
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FIGURE 1. Electrode layout in the neonatal seizure EEG dataset. Red
electrodes are removed in the sensor failure simulation.

FIGURE 2. Histogram of proportion of 1-s segments labelled as seizures
on the pool of 39 patients affected by seizures. It can be seen that the
proportion of seizures vary significantly across the dataset.

B. DATA PRE-PROCESSING
Most MOGP kernels assume the data to be stationary. The
choice of 1-second segments is also motivated for consis-
tency with this assumption: we used 1-second EEG segments
since intervals of that length can be safely considered as
stationary for EEG [41]. This choice was also supported by a
preliminary analysis of the spectrogram and rolling-window
computation of mean and variance of the signal. Then, the
data were i) filtered with a 6-order Butterworth IIR notch-
filter at 50 Hz to discard powerline artifacts, ii) filtered with
a 6-order Butterworth IIR high-pass filter with a cut-off
frequency of 0.25 Hz so as to eliminate possible trends,
iii) downsampled to 128 Hz, iv) standardised and lastly v)
partitioned into 1-s EEG segments. The diagram in Figure 3
summarises the proposed methodology including the main

aspects of the chosen dataset, the preprocessing stages and
the two applications considered.

C. EXPERIMENTAL SETTING
We considered two practical tasks: imputation and classifi-
cation of EEG data based on the dataset described above.
In addition to the noise-corrupted nature of real-world data,
with the aim of simulating challenging realistic environments
we eliminated parts of the training data as follows:

• a randomly (uniformly) chosen 20% in each channel,
• the last 35% of channels Fp1, F4, C3, T5, P3 and O2
(red electrodes in Fig. 1). This configuration is used only
on the data imputation task.

The second data elimination procedure is referred to as sensor
failure, as it simulates the unwanted disconnection of an
electrode or other reasons that may lead to the deletion of such
recording. The aim of this recreation is to test our models in
the reconstruction of complete missing EEG channels from
the observed ones, a task of particular interest in wearable
EEG devices [42], [43].

For the data imputation task, we considered all 39 eligible
(full expert agreement) patients. For each patient, we ran-
domly chose 15 seizure and 15 non-seizure 1-s EEG seg-
ments. This way, by fitting one model to each 30-segment
set acquired from each patient, we trained 1170 CSM,
SM-LMC, SM-IGP and MOSM models over 300 iterations
and compared their performance under the same experimental
settings.

For the classification task, we adopted a patient specific
approach, that is, we trained, tested and evaluated models for
each patient separately (each model only saw data from a
single patient). We excluded seven patients from our analysis
as the proportion of the minority class in their recordings was
lower than 2% (see Table 6 and Figure 3), thus, our analysis
considered only 32 (out of the 39) patients to guarantee an
appropriate number of samples available for training, eval-
uating and testing for the patients studied. Then, we sam-
pled a total of 16, 800 1-s segments (10, 160 nonseizure and
6, 640 seizure). In particular, we sampled 525 1-s segments
from each patient according their own distribution of classes
(both for validation and test), see Table 6.
For each considered 1-s segment, we trained a MOSM

model over 100 iterations in order to control training times.
Then, we constructed a set of features from each model as
described in Section III-E. Although the fixed and limited
number of iterations in training these models may result in
some of them not reaching convergence, we decided to extract
features from them nonetheless. The reason for this was to
replicate a realistic scenario when the optimiser cannot reach
the desired minima due to, e.g., unavailability of the required
training time or even poorly conditioned data. The complete
specification of feature and model selection are described on
Sections III-E and III-F.

Training in both tasks was achieved using MOGPTK [44],
a PyTorch toolkit for training MOGPs via maximum

VOLUME 10, 2022 32915



V. Caro et al.: Modeling Neonatal EEG Using Multi-Output Gaussian Processes

FIGURE 3. Diagram of the data processing pipeline: From dataset subselection to preprocessing of segments and
the imputation / classification experiments.

likelihood. All experiments were run on an 8GB NVIDIA
GeForce GTX 1080.

D. SELECTING NUMBER OF COMPONENTS Q
The number of MOSM components Q and the number of
iterations I were set by grid search and cross-validation.
The trained models were evaluated via the mean average
error (MAE) and the normalized model evidence over I ∈
{50, 100, 500, 1000} iterations and Q ∈ {1, 2, 3, 4, 5} com-
ponents using Adam [45]. These performance indicators,
averaged over three nonseizure EEG segments, are shown
in Table 3. As expected, the larger the Q the better the
performance due to flexibility of more mixtures compo-
nents. However, for Q > 4 we witnessed diminishing
returns in terms of MAE, model evidence and training
time, thus we chose Q = 4 for our experiments. Regard-
ing the number of iterations, based on preliminary results
we chose I = 300 for the data imputation and I =
100 for seizure detection in order to keep computational costs
at bay.

E. FEATURE SELECTION FOR SEIZURE DETECTION
We posed the detection of seizures as a binary classification
problem, where 1-s segments are classified into seizure and
non-seizure ones. Inspired by EEG classification approaches
using scalar GPs (e.g., [15]), we built our seizure detector
using MOSM hyperparameters as features.

Based on the original construction of MOSM proposed by
[9, Sec. 3.1], we considered the natural reparametrisation of
the (scalar) hyperparameters defined in Sec. II-D given by

• 6ij = 26i(6i +6j)−16j
• µij = (6i +6j)−1(6iµj +6jµi)

• αij = αiαj exp
(
−

1
4 (µi − µj)

>(6i +6j)−1(µi − µj)
)

• θij = θi − θj
• φij = φi − φj,

where i, j = 1, . . . ,m. This way, we can use the
unconstrained hyperparameters which, for the Q-component
m-channel MOSM case, can be aggregated into the hyperpa-
rameter matrix

2 =
[
α,µ,6, θ ,φ, σ 2

]
∈ Rm×(5Q+1), (2)
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TABLE 3. Mean absolute error (MAE) and model evidence (log marginal
likelihood) for trained MOSM models with different number of
components Q and iterations I . These results are averages over three
nonseizure segments.

where we define the notation

α =
[
α
(q)
i

]m, Q
i=1,q=1

∈ Rm×Q

µ =
[
µ
(q)
i

]m, Q
i=1,q=1

∈ Rm×Q

6 =
[
6

(q)
i

]m, Q
i=1,q=1

∈ Rm×Q

θ =
[
θ
(q)
i

]m, Q
i=1,q=1

∈ Rm×Q

φ =
[
φ
(q)
i

]m, Q
i=1,q=1

∈ Rm×Q

σ 2
=

[
σ 2
i

]m
i=1
∈ Rm.

Notice that the dimension of the parameters follows from
the fact that for each one of the m channels there are 5Q
hyperparameters corresponding to the spectral mixture and
one to the noise variance.

When selecting the features, we considered all the above
defined matrices flattened into one-dimensional arrays and
concatenated with the trained model mean absolute error
(MAE, denoted e for convenience). Therefore, following
from the choice of Q = 4 components and m = 16 channels,
and denoting the flattening operator by · , the considered
features were:

α̃ =

[
α

e

]
∈ R65, φ̃ =

[
φ

e

]
∈ R65,

µ̃ =

[
µ

e

]
∈ R65, σ̃ 2

=

[
σ 2

e

]
∈ R17,

6̃ =

[
6

e

]
∈ R65, θ̃ =

[
θ

e

]
∈ R65,

2̃ =

[
2

e

]
∈ R337. (3)

The inclusion of the MAE (e) as a feature was considered
after preliminary results on data imputation indicated that
MOSM performs consistently better on seizure segments (as
opposed to nonseizure ones) because they are more deter-
ministic. Therefore, the MAE of a trained model can be
considered as a proxy for determining the seizure/nonseizure
label of the segment.

F. CLASSIFIERS
Our choice of hyperparameter-based features for seizure
detection was validated on three standard classifiers under
the aforementioned patient specific approach: Random For-
est (RF), Gaussian Naive Bayes (GNB) and fully connected
Neural Networks (NN), which were implemented to operate
on every feature in eq. (3). Both RF and GNB were imple-
mented via scikit-learn v1.0.2 [46] and trained as follows:
we allocated 40% of the data (balanced labels according to
each patient) for testing and performed model selection using
5-fold cross-validation on the remaining data.

Training and architecture selection for the NN classifier
was, however, more involved. We relied on KerasTuner [47]
to set the hyperparameters of the NN, while the architec-
tures were found using the Hyperband search algorithm [48],
which is also implemented on KerasTuner. We performed
4 iterations of Hyperband in each case, which proved success-
fully in terms of the number of NN architectures evaluated.
Furthermore, in order to control the computational effort and
time related to cross-validation for every possible architec-
ture, we adopted the following procedure for every set of
candidate NN architecture and feature vector in eq. (3):

1) Define an acceptance criterion based on the model’s
F1-score and Matthews Correlation Coefficient
(MCC).

2) Reject models that do not meet the acceptance criterion
3) Train via 5-fold cross-validation every accepted model
4) Select the model with the best average performance

indicator (on cross-validation test sets).
To deal with the label imbalance in each patient, we con-

sidered class weighting in each classifier. For a patient with
n_class 1-s segments of each class out of n_total samples,
we implemented three different variants:

1) no class weighting;
2) weights adjusted to the proportion of class frequencies

in training data: n_class
(n_total) ; and

3) a scaled weight defined for each class as

1
n_class

∗
n_total

2
.

Additionally, for MLP classifiers we introduced a bias to the
output layer given by b0 = log( n_seizure

n_nonseizure ). Following this
pipeline, we selected one model for each feature vector in
eq. (3) and report their performance on both the held-out test
set and average cross-validation sets in Secs. IV and VII.
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FIGURE 4. Signal reconstruction over a 1-second EEG segment using MOGP with MOSM kernel. Light-red shaded areas correspond to missing data
(removed from training), training points are shown in black dots and the ground truth as black dashed lines. The coloured bands show the 95% error
bars of the posterior GP prediction.

IV. RESULTS
A. DATA IMPUTATION
Fig. 4 shows the results of MOSM-based imputation in a
single 1-s segment of multichannel EEG signal. Notably, the
MOGP posterior recovered the ground truth signals in the
regions with missing data to a fairly acceptable degree of
accuracy. In general, MOSM reconstructed the EEG signal
even for the cases of sensor failure, as shown by the figure
for electrodes Fp1 and O2.

Table 4 summarises the performance of the models aver-
aged over all channels both for seizure and non-seizure seg-
ments in terms of MAE, root mean square error (RMSE) and
model evidence. Observe that MOSM outperformed the rest
of the kernels in all metrics considered both for seizure and
nonseizure segments. In line with the underlying theory, all
models performed worse for nonseizure data, since seizure
signals are more repetitive, deterministic and thus more pre-
dictable [15].

Table 5 presents the performance (via the MAE) of data
imputation for the channels affected by the simulated sensor

failure. The best overall performance is once again obtained
byMOSM, followed by SM, with the exception for C3 where
both MOSM and SM achieved a similar performance. This
was expected, since MOSM can be regarded to be the exten-
sion of SM to multiple channels, but it also highlights the
representation capacity of MOSM and its ability to leverage
information from multiple sources to impute missing data in
any given channel.

Recall, from Fig. 1, that out of all electrodes affected by
sensor failure, C3, P3 and T5 are adjacent, thus they can
be considered to form a cluster of missing data for which
signal reconstruction is more challeging. Electrodes F4 or
O2, conversely, are isolated from other faulty electrodes and
thus they are expected to be easily recovered by their neigh-
bouring electrodes. This explains why the performance is
worse in those channels, as evidenced visually by Fig. 4 and
quantitatively by Table 5.
These indicators validate the ability of MOSM to recon-

struct the electrical activity on unobserved channels using
observations from other channels, where the quality of the
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TABLE 4. Average performance of MOGPs: mean absolute error (MAE), root mean square error (RMSE) and model evidence for different models. Each
model was trained for 300 iterations. The model evidence is normalized by the total number of points. The best performing kernel is denoted by bold font
and * indicates the second best kernel.

TABLE 5. Model performance for the sensor failure scenario: MAE for electrodes with their last 35% data removed. For each channel, the best performing
kernel is indicated in bold font and * indicates the second best kernel.

FIGURE 5. F1-score on held-out test sets of RF, GNB, and MLP trained on MOSM feature 2̃ for each patient. The patient IDs are sorted according to
the performance of RF.

reconstruction certainly depends on the proximity between
the unobserved region and the observations. Additionally, this
encouraging result also shows the robustness of the approach
to the chosen montage.

B. SEIZURE DETECTION VIA CLASSIFICATION
For each one of the 32 patients considered, we trained GNB,
NN and RF classifiers on the proposed MOSM features
described in Section III-E. We chose the best GNB, RF and
NN classifiers based on the maximisation of their F1-score
and MCC, and minimisation of their variance. Figure 5 com-
pares the F1-score of the aforementioned classifiers on the

test set of each patient on MOSM feature 2̃—see eq. (3).
From the same figure, it can be seen that the best-performing
family of classifiers corresponds to Random Forests (RF).
Notice that both RF and GNB exhibited a similar pattern
of performance suggesting that, for some patients, it was
easier to automatically detect seizure events. In contrast,MLP
classifiers fail to attain the same performance as RF, which
could be a consequence of the restrictive size of the datasets
used for training.

For RF, Figure 6 shows the performance of each proposed
MOSM feature on every patient in terms of its achieved
MCC on their respectives test sets. Overall, observe that the
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FIGURE 6. MCC on held-out test sets of RF classifiers trained on every proposed feature for each patient. The patient IDs are sorted according to the
performance of RFs trained on 2̃.

FIGURE 7. Detailed average performance on held-out test sets of RF classifiers trained on 2̃ for each patient. The patient IDs are sorted according to
the F1-score of RFs trained on 2̃.

three most successful features are σ̃ 2, 2̃ and α̃. Of particular
interest are the results for 2̃, as it corresponds to the con-
catenation of all MOSM parameters. These results suggest
that the combination of different MOSM hyper-parameters
effectively captures relevant information for the detection
of seizures on several patients. For instance, for patients
47, 50 and 78, 2̃ far surpasses the other proposed features.
On the other hand, patients number 31 and 20, which could

be considered difficult cases, performed better by training on
features 6̃. Considering that 2̃ contains every other proposed
feature, this behavior could be a consequence of the size of
the dimension of 2̃, or perhaps the type of seizure exhibited
in those patients is more adequately captured by 6̃, while the
other features do not contribute to the appropriate detection
of their seizures. An extreme case of this phenomenon is
exhibited on patients 15, 20 and 76, where features µ̃, φ̃ and 6̃
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FIGURE 8. MCC on held-out test sets of RF classifiers trained on 2̃ vs seizure proportion present in each EEG recording.

FIGURE 9. MCC of RF classifiers trained on every proposed MOSM feature aggregated according to the primary seizure localization of each EEG
recording.

obtained a performance that can be consideredworse than that
of a baseline that predicts randomly irrespective of its input.
Thus, not only do these features not contribute to the detection
of their seizures, but act akin to random noise. These results
suggest that, for most cases, it was possible to characterize
different types of seizures via different MOSM parameters.
It is, however, not possible to determine beforehand which
features will be useful for an arbitrary patient, so perhaps

more sophisticated classifiers could leverage the relevant
information conveyed by 2̃ with larger training datasets.

Figure 7 shows amore detailed analysis of the performance
of RF on theMOSM feature 2̃. It can be seen that, in general,
the RF classifiers exhibit a balanced behavior in terms of
their precision and recall values. This is particularly relevant
in the context of automatic seizure detection, where it is
needed to both maximize the detection of seizure episodes
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FIGURE 10. MCC on cross-validation test sets of RF classifiers trained on every proposed feature for each patient. The patient IDs are sorted according
to the performance of RFs trained on 2̃.

FIGURE 11. MCC on cross-validation test sets of GNB classifiers trained on every proposed feature for each patient. The patient IDs are sorted
according to the performance of GNBs trained on 2̃.

and minimize the number of false positives reported for fur-
ther analysis by professionals in the NICU.

Regarding the class imbalance, Table 7 (Appendix) lists
the hyperparameters chosen for each RF classifier. For most
cases, a balanced approach was beneficial to deal with the
class imbalance challenge, as described in Section III-F.
However, in some cases, the best result was achieved by using
no class weights whatsoever, even for patients with highly

imbalanced classes such as patients (compare with Table 6).
Thus, there is seemingly no clear relationship between the
class imbalance and the optimal weights to train RF classi-
fiers. Furthermore, Figure 8 shows the performance of RF
trained on 2̃ vs the proportion of seizure 1-s segments in
each EEG. These results, from where no apparent relation-
ship between MCC and seizure proportion can be identified,
suggest that the RF classifiers can be well trained with 2̃
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FIGURE 12. MCC on cross-validation test sets of MLP classifiers trained on every proposed feature for each patient. The patient IDs are sorted
according to the performance of MLPs trained on 2̃.

FIGURE 13. MCC on held-out test sets of GNB classifiers trained on every proposed feature for each patient. The patient IDs are sorted according to the
performance of GNBs trained on 2̃.

features irrespective of the seizure proportion in the EEG
recordings. In particular, notice that for patients with 7% of
their 1-s segments labelled as seizures, there is an ample
variance of performance in terms of MCC. This difference
on performance could be a consequence of other factors such
as number of artifacts present in the data (which were not
labeled in the dataset) or seizure types.

Figure 9 shows the average MCC of RFs trained on each
proposed feature aggregated by seizure primary localization.
It can be seen that irrespective of the seizure primary local-
ization, the best features are σ̃ 2, 2̃ and α̃. There is no clear
relationship between seizure primary localization and perfor-
mance of MOSM features, thus validating the applicability of
this approach to seizures present on arbitrary locations.
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FIGURE 14. MCC on held-out test sets of MLP classifiers trained on every proposed feature for each patient. The patient IDs are sorted according to the
performance of MLPs trained on 2̃.

Just as we have done in this section for the RF classifier,
the performance of all three considered classifiers on every
feature vector in eq. (3) is shown in the Appendix over
cross-validation sets and held-out test sets. In general, there
is performance consistency for validation and test sets across
all performance indicators and features, this is indicative of a
correct training procedure for the proposed classifiers as they
exhibit a reliable performance for out of sample data.

V. DISCUSSION
Taking a patient specific approach, we investigated the ability
of MOSM features to represent 1-s EEG segments within two
tasks: data imputation and automatic seizure detection.

In the first task, MOSM not only was validated to perform
data reconstruction in time but also across channels. This
is supported by the results from the sensor failure scenario,
where the missing segments were imputed using the rest of
the available channels. This reveals the robustness of MOGP,
and MOSM in particular, to the chosen montage, but also
suggests its strength for the classification under for the cases
where electrodes are faulty or unreliable.

In the seizure detection task, we used binary labels, that
is, the presence or absence of seizures (and not their type or
location), to empirically validate the capacity of MOSM fea-
tures for EEG analysis. In our study, we found that different
MOSMparameters exhibited varying degrees of relevance for
different patients (see Figure 6).

In the light of these results, our conjecture is that MOSM
features are capable of adequately representing different
seizure types, by extending our binary treatment to the mul-
ticlass setting in a straightforward manner. In fact, as some
seizure types could be well represented by α̃, while others by

σ̃ 2 or 6̃, we can argue that they are of seizures of different
types. Furthermore, since 2̃ is comprised of all MOSM
hyperparameters, training with larger and more thorough
datasets may improve the results presented in this work, as the
classifiers will be able to leverage the information present in
2̃ more competently.
Another aspect worth of discussion is that our proposed

methodology only considered short recordings with no tem-
poral information, i.e., the time index of the segment relative
to the entire recording. Though there is evidence support-
ing the importance of temporal information for automatic
EEG graphoelement detection (e.g. [49], [50]), we chose
not to include it because our focus is to test the proposed
features as a proof of concept instead of deploying a fully
fledged model without some initial empirical results. Thus,
we believe that an interesting line of further research is to
explore the effect of temporal information on the performance
of more sophisticated classifiers, such as recurrent neural
networks, as well as more detailed information of EEG in
general.

Lastly, our main aim has been towards interpretability,
since the predictions provided by an automatic seizure detec-
tor need to be fully understood from healthcare experts
in practical scenarios in order to justify the presence (or
absence) of a seizure from the underlying neurological theory.
In that sense, though our approach does not aim to beat
the state of the art in terms of classification performance,
the fact that MOSM hyperparameters are interpretable in
terms of signal power, correlations and delays as explained
in Sec. II-D, allow field experts to understand the decisions
made by particular detectors (as a matter of fact, that is
precisely what our RFs are doing).
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TABLE 6. Label proportion and primary seizure localization of each EEG
recording used in this work. Ids marked with * were excluded from the
automatic seizure classification task. The informed proportions were
calculated with respect to 1-s segments under the full expert agreement
criterion described in Section III-A.

VI. CONCLUSION
We have validated the hypothesis that EEG analysis can bene-
fit frommultivariate models, rather than a ensemble of single-
channel ones. In particular, we have proposed an MOGP
framework for analysing neonatal EEG with application to
data imputation, even for large missing regions arising from
sensor failure. This is a crucial point, specially on neonatal
EEG, where artifacts, and thus loss of data, are abundant.
We have also empirically demonstrated the superiority of
the MOSM covariance kernel in this task, which has out-
performed standard MOGP kernels owing to its ability for
cross-signal covariance modelling.

In addition to the data-imputation task, we have
obtained supporting evidence as to the suitability of
hyperparameter-based seizure detection using MOSM mod-
els; we implemented standard ML classifiers on the proposed
MOSM features and show extensive quantitative validation
of their performance. The superiority of the proposed model
is its interpretability through the designed MOSM features,

TABLE 7. Hyperparameters selected for RF classifiers trained on 2̃
according to their performance on cross-validation test sets for each
patient. The nomenclature for Class Weight is as follows: (1) None means
no class weighting was used; (2) Balanced means that class weights were
adjusted to the proportion of class frequencies in training data;
(3) Scaled means that class weights were scaled as indicated in
Section III-F. For max depth, None means that the nodes were expanded
until all leaves were pure or until all leaves contain less than 2 samples.
Recall that the Random Forest classifiers were implemented on
scikit-learn version 1.0.2, and thus we refer the reader to its
documentation for further clarification of the considered
hyperparameters.

and though there are NN-based methods in the state of the
art that have exhibited a unique classification performance,
our contribution is towards informed and reliable clinical
decision making.

To the best of our knowledge, the work presented here
is the first attempt at modelling and classifying neonatal
EEG with MOGPs and, therefore, the first validation of
the MOSM kernel on such setting. In the same fashion as
those of [35], our results are auspicious and promising as a
jumping off point for reliable MOGP-based seizure detection
mechanisms deployed at real-world clinical environments.
Although in this work we only considered seizure/nonseizure
classification, the proposed method can be easily extended to
seizure type classification with suitable datasets by means of
multilabel classifiers.

In the authors perspective, further research work for a
fully-automated seizure detection framework should include
the following aspects. First, sparse GPs [51]–[53] specially
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suited for MOGPs to control the computational costs. Sec-
ond, flexible kernels [54], [55] and non-Gaussian trainable
likelihoods to replicate the known features of EEG signals
[56], [57]. Third, an automatic identification of (quasi) sta-
tionary segments possibly based on the generalized likelihood
ratio [58], stationary subspace analysis [59], or non-
stationary MOGPs [60]. Fourth, further studies into hybrid
approaches combining interpretable probabilistic generative
models as the MOGP considered in this work together with
deep neural networks that sacrifice interpretation for perfor-
mance; combining these two approaches can lead to models
that combine are, at the same time, sufficiently interpretable
an high performing.

Lastly, some key open questions that stem from our study
include: 1) is successful data imputation with MOSM related
to improved performance in the automatic classification
task?; 2) is it possible to leverage the proposed approach for
automatic artifact detection in order to recover data lost to
such artifacts. This could allow for MOSM to be established
as a multi-purpose tool within the EEG analysis framework.

APPENDIX
A. TABLES
B. ADDITIONAL PERFORMANCE INDICATORS
The following figures show the MCC for all three classifiers
both for 5-fold cross-validation (CV) and held-out test sets:

• Fig. 10: Random Forest in 5-fold CV
• Fig. 11: Gaussian Naive Bayes in 5-fold CV
• Fig. 12: Multilayer Perceptron in 5-fold CV
• Fig. 13: Gaussian Naive Bayes in held-out set
• Fig. 14: Multilayer Perceptron in held-out set

Recall that the MCC of Random Forest in held-out set is
shown in Fig. 6.
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