Tabla de Contenido

1	Introducción1					
1.1	Antecedentes 1					
1.2	Elementos conservados: una referencia válida5					
2	Hipótesis9					
3	Objetivo9					
4	Metodología10					
5	Consideraciones previas11					
6	Isomasas12					
6.1	Origen y diferencias con la metodología de Isóconas12					
6.2	Enunciación del método de Isomasas18					
6.3	Elementos adicionados, elementos removidos y elementos conservados					
6.4	APLICACIÓN DEL MÉTODO ISOMASAS: ejemplo sintético					
6.5	SERIE DE MUESTRAS SECUNDARIAS: Razones de Masa de Sistemas Secundarios 28					
6.6	REPRESENTACIÓN GRÁFICA de la modelación Isomasas					
7	Aplicación del Método a casos reales33					
8	Aplicación del Método a grandes bases de datos60					
9	Otros resultados de Isomasas94					
9.1	Isomasas aplicado a Perfiles de Meteorización94					
9.2	Isomasas aplicado a Lavas afectadas por Metamorfismo					
9.3	Isomasas aplicado a Zonas de Alteración107					
9.4	Isomasas aplicado a vetillas y fallas112					
9.5	Isomasas aplicado a ambientes Magmáticos115					
10	La Cuantificación: discusiones sobre este modelo118					
11	Conclusiones					
Símbo	los utilizados en esta Tesis123					
Biblio	grafía124					
Anexo A. Tablas de datos originales utilizados en esta Tesis 137						
Anexo B. Tablas de datos dr_i obtenidos a partir de la aplicación del método Isomasas 167						
Anexo C. Representación gráfica de resultados de Isomasas a partir de resultados desplegados en el Anexo D						

Anexo	D.	Resultados	de	Cantidad	Relativa	de	Transferencia	de	Material	calculados	con	la
	r	netodología	lsor	nasas							2	28
Anexo	E. 4	Algoritmos es	scrit	os en Mat	Lab© del	Mé	todo Isomasas.				2	31

Índice de Figuras

- Figura 6.2. Distribución de porcentaje en peso de óxidos (*wt*%) y en partes por millón (*ppm*) de elementos trazas para muestras sintéticas con incorporación de masa en azul (dilución de sílice) y remoción de masa en verde (concentración de sílice). Muestra precursora en rojo. En los valores de abscisa SiO₂ *wt*%.
- Figura 6.3. Modelo conceptual para la determinación de un par de elementos conservados (x, y) a partir de la correlación de las Razones de Masa de Sistemas Secundarios en una serie de muestras cogenéticas.
 29

- Figura 9.1. Variación de cambio porcentual de masa para suelo Jiang et al. (2018) y paleosuelo (Condie et al., 1995) de los pares de elementos Zr-V, Sc-Th, Zr-Th, Nb-Ta, Lu-Hf y Zr-Hf. 95

- Figura 9.5. Diferencia porcentual (% *dri*) de elementos alcalinos y alcalino térreos, Cr, SiO₂, Y y V para muestras de lavas con diferentes grados de metamorfismo. VLGM andesite: lava andesítica con metamorfismo de muy bajo grado en facies ceolita; Serpt. Pillowed Basalt/Komatiite: basaltos almohadillados y komatiítas serpentinizadas; Komatiite lava Flow: lavas komatiíticas C y AB; Buried basaltic andesite: lava continental basalto andesítica en facies prehnita-pumpellyita; Cogenetic lavas: serie cogenética de lavas de la Fm. Chala; Bentonite Rhyolite/Andesite: lavas riolítica y andesítica bentonitizadas. 102

- Figura 9.8. Cantidad relativa de transferencia de material en Sr, Ba y Rb con respecto a aquel de Fe₂O₃ para muestras sometidas a diferentes grados metamórficos...... 105
- Figura 9.9. Resultados de Cantidad relativa de transferencia de material (% dri) para las muestras de los perfiles de alteración a bentonita de las zonas de Prassa (medio) y Zoulias (abajo), desde análisis en Christidis (1998), para elementos alcalinos y alcalinotérreos, considerando la muestra precursora y los elementos conservados SM285-TiO2 y SM203-Zr, en cada perfil.
- Figura 9.10. Resumen de resultados de Cantidad relativa de transferencia de material (% dri) para las muestras de diferentes tipos de alteración de granito, desde análisis en Alderton et al. (1980), para elementos mayores y trazas, considerando la muestra precursora y los elementos conservados explicitados en la Tabla B.9 de los Anexos. Resultados extensivos en Figura C.9.1 9.2 de los Anexos.
- Figura 9.11. Resumen de resultados de Cantidad relativa de transferencia de material (% dri) para las muestras de alteración de corteza oceánica según profundidad, desde análisis en Bach et al. (2001), para elementos mayores y trazas, considerando la muestra precursora y los elementos conservados explicitados en la Tabla B.10 de los Anexos. Resultados extensivos en Figura C.10.1 10.6.
- Figura 9.12. Cantidad relativa de transferencia de material (% *dri*) de elementos alcalinos y alcalinotérreos para las muestras de alteración de corteza oceánica según profundidad, desde análisis en Bach et al. (2001), considerando la muestra precursora y los elementos conservados explicitados en la Tabla B.10 de los Anexos. El recuadro resume el elemento

- Figura 9.13. Resumen de resultados de Cantidad relativa de transferencia de material (% dri) para las muestras de albitización de diferentes protolitos, desde análisis en Oliver et al. (2004), para elementos mayores y trazas, considerando la muestra precursora y los elementos conservados explicitados en la Tabla B.12 de los Anexos. Resultados extensivos en Figura C.12.1.
- Figura 9.14. Resultados de Cantidad relativa de transferencia de material (% dri) respecto a distancia a la vetilla retrógrada carbonatada (dolomita-calcita), para las muestras de vecindad de una vetilla en rocas de la subfacies epidota-esquisto azul, desde análisis en Mori et al. (2003), para elementos mayores y trazas, considerando la muestra precursora y los elementos conservados explicitados en la Tabla B.13 de los Anexos. Resultados extensivos en Figura C.13.1-13.2.
- Figura 9.16. Cantidad relativa de transferencia de material en Cr y Ni para los Flujos de lava komatiíticos serpentinizados descritos por Shore (1996). A la derecha se observan los resultados para ambos flujos de lava AB y C según la relación Cr versus Ni, arriba, y (Cr + Ni) versus (MgO + SiO₂), abajo; en el centro el detalle de la relación Cr versus Ni para el flujo C, arriba, y flujo AB, abajo; a la izquierda, las mismas relaciones desde la perspectiva PER.
- Figura 10.1. Propuesta de clasificación de transferencia de masa y movilidad de elementos. . 120

Índice de Tablas

Tabla 1.1: Resumen de metodologías utilizadas para la estimación de transferencia de masa en procesos geoquímicamente abiertos.6
Tabla 6.1: Composición en masa (g) y en concentración para las muestras sintéticas precursora y secundarias. <i>Sj</i> representa la masa total de cada muestra
Tabla 6.2: Resultados numéricos de Isomasas para TiO ₂ y Zr como elementos conservados en caso sintético