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Abstract: Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in
the use of different substrates. Thus, an understanding of the molecular mechanisms underlying
substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechno-
logical purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)8-barrel domain
and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity
assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynA∆29) in which
two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze
p-nitrophenyl-β-D-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze.
Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in sec-
ondary structure and increased flexibility of XynA∆29. Molecular dynamics simulations revealed
that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not
previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions
within the (β/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is
more intense in XynA∆29 than in XynA and promotes the formation of a wider active site that allows
the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the
relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing
(β/α)8-barrel domain.

Keywords: GH10 endoxylanase; intrinsically disordered region; protein dynamics; (β/α)8-barrel
domain; new activities

1. Introduction

Xylan, one of the main components of plant hemicelluloses, is a polysaccharide
composed of a backbone of β-D-xylose molecules linked by β-1,4 bonds, which can be
substituted by different chemical groups [1]. Owing to its heterogeneity, xylan degra-
dation requires the action of numerous enzymes. Among them, endoxylanases (endo-
β-1,4-xylanases, E.C. 3.2.1.8) are key players, because they act on the backbone of xylan,
hydrolyzing internal β-1,4 linkages between xylopyranosyl residues, giving rise to a diverse
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array of xilooligosaccharides (XOS) that may include xylobiose, xylotriose, xylotetraose, or
longer, which may be or not branched by some substituents [1].

Based on amino acid sequence similarities, endoxylanases have been classified into
different glycoside hydrolases (GH) families [2]. Family GH10 is one of the most known.
Endoxylanases from this family have a classical (β/α)8-barrel fold [3,4]. Concerning
activity, GH10 endoxylanases are versatile, acting on different kinds of xylans and XOS.
This versatility is due to the presence of several subsites in the active site that accommodate
the xylose moiety of different substrates [4,5]. GH10 endoxylanases hydrolyze glycosidic
bonds by a double-displacement mechanism, with retention of anomeric configuration.
Two glutamate residues separated by 5.5 Å are implicated in the catalytic mechanism of
GH10 endoxylanases. One of these glutamates acts as the general acid/base, while the
other one is the nucleophile [4–6].

Endoxylanases have many applications including animal feed, biofuel, baking, paper,
and detergent industries [7]. In this regard, GH10 endoxylanases are of particular interest
because of their versatility in the use of different substrates [4,5]. In recent years, some
studies have shown that mutations in GH10 endoxylanases lead to alterations in substrate
specificities of these enzymes [8,9]. A deep understanding of the molecular mechanisms
underlying these changes could be very useful in the engineering of GH10 endoxylanases.

In previous work, we characterized XynA, an endoxylanase from the fungus Cladosporium
fildesense belonging to the family GH10 [10]. XynA has a typical endo-β-1,4-xylanase activity,
producing XOS as final products [10]. During the course of these experiments, we noticed
that in addition to the typical (β/α)8-barrel fold found in GH10 endoxylanases, XynA
contains an intrinsically disordered region (IDR) of 29 amino acids at its amino end (see
Results). IDRs are protein regions that fail to form secondary or tertiary structures [11].
In nature, the majority of eukaryotic proteins contain IDRs [11], and these regions have
been involved in several functions of proteins with impact on critical biological processes
including cell signaling, cell cycle control, or diseases [12–15]. However, and despite the
advances in our knowledge of IDRs, the mechanisms underlying the effects of these regions
on enzyme catalysis still remain largely unknown.

In this work, we have eliminated the IDR in XynA. As a result, we obtained a mutant
enzyme, named XynA∆29, with increased flexibility, and in which two new activities
emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-
β-D-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. It
was of particular interest to determine why XynA∆29 can hydrolyze pNPXyl. Molecular
dynamics simulations revealed that the emergence of this new activity was correlated with
a dynamic behavior not previously observed in GH10 enzymes: a hinge-bending motion of
two symmetric regions within the (β/α)8-barrel domain, whose hinge point is the active
cleft. The hinge-bending motion observed in XynA∆29 is more intense than in XynA, and
promotes the formation of a wider active site for the entry and accommodation of pNPXyl
and its subsequent hydrolysis by catalytic residues. Our results open new avenues for the
study of the relationship between IDRs, dynamics and activity of GH10 enzymes, and other
enzymes containing (β/α)8-barrel fold.

2. Results

As mentioned, we previously purified and characterized XynA, an endoxylanase from
the fungus Cladosporium fildesense [10]. To gain insights into the molecular mechanisms of
XynA, we analyzed the structure of the enzyme by bioinformatics tools. We generated a
homology model for XynA (Figure 1A), and we noticed that in addition to the classical
(β/α)8-barrel fold found in GH10 endoxylanases, XynA contains an intrinsically disordered
region (IDR) of 29 amino acids at its amino end (Figure 1B), a region not found in other
endoxylanases (Supplementary Figure S1).
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Figure 1. (A) Homology model of XynA, indicating the IDR and the (β/α)8-barrel fold; (B) Amino 
acid sequence of the IDR. (C–E) Outputs of the result of prediction of disordered regions in mature 
XynA by IUPred3 (C), PrDOS (D) and NetSurfP-2.0 (E). In all cases, the IDR of 29 amino acids ap-
pears delimited by a vertical dashed blue line. In (C,D), thresholds used to determine the disor-
dered property by the respective programs are indicated. In (E), disorder property is indicated by a 
gray line, thicker line means higher disorder. Secondary structure (SS) predicted for IDR is coil 
structure (light violet line), while relative surface accessibility (RSA) predicts that this region is 
exposed (dark red). 

The disordered property of the IDR was confirmed using three different bioinfor-
matics tools, which are based on different methods for the detection of disordered re-
gions in proteins: IUPred3 [16], NetSurfP-2.0 [17], and PrDOS [18]. The three bioinfor-
matics tools predicted the disordered nature of this IDR (Figure 1C–E). This prediction 
was also supported by root mean square fluctuation (RMSF) analysis, which indicated 
that during 1-microsecond molecular dynamic simulations of XynA, the region com-
prising the IDR showed higher fluctuations as compared with the rest of the protein 

Figure 1. (A) Homology model of XynA, indicating the IDR and the (β/α)8-barrel fold; (B) Amino
acid sequence of the IDR. (C–E) Outputs of the result of prediction of disordered regions in mature
XynA by IUPred3 (C), PrDOS (D) and NetSurfP-2.0 (E). In all cases, the IDR of 29 amino acids appears
delimited by a vertical dashed blue line. In (C,D), thresholds used to determine the disordered
property by the respective programs are indicated. In (E), disorder property is indicated by a gray
line, thicker line means higher disorder. Secondary structure (SS) predicted for IDR is coil structure
(light violet line), while relative surface accessibility (RSA) predicts that this region is exposed
(dark red).

The disordered property of the IDR was confirmed using three different bioinfor-
matics tools, which are based on different methods for the detection of disordered re-
gions in proteins: IUPred3 [16], NetSurfP-2.0 [17], and PrDOS [18]. The three bioinfor-
matics tools predicted the disordered nature of this IDR (Figure 1C–E). This prediction
was also supported by root mean square fluctuation (RMSF) analysis, which indicated
that during 1-microsecond molecular dynamic simulations of XynA, the region com-
prising the IDR showed higher fluctuations as compared with the rest of the protein
(Supplementary Figure S2). On the other hand, an estimation of evolutionary conservation
of XynA was performed with ConSurf. No conservation between the IDR and the amino
end of 149 similar proteins was detected (Supplementary Figure S3).
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To assess the impact of IDR in XynA function, we expressed and purified XynA and
a mutant version of the enzyme named XynA∆29, which lacks the IDR (Figure 2A), and
we performed a comparative study of both enzymes. We observed that XynA∆29 is more
active than XynA in a wide range of temperature and pH values (Figure 2B,C). Concerning
kinetic parameters, the enzymes have similar KM (14.07 ± 2.3 mg/mL for XynA and
18.3 ± 1.0 mg/mL for XynA∆29). However, the kcat values of XynA∆29 (224.8± 6.2 seg−1)
were about 1.7-fold higher than those observed for XynA (131.6 ± 10.7 seg−1), suggesting
that XynA∆29 has become more efficient in the hydrolysis of the substrate as compared
to XynA.
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Figure 2. (A) SDS-PAGE of purified enzymes. S: Molecular weight standard in kDa. (B) Xylanolytic 
activity of XynA and XynAΔ29 at different temperatures. (C) Xylanolytic activity of XynA and 
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Figure 2. (A) SDS-PAGE of purified enzymes. S: Molecular weight standard in kDa. (B) Xylanolytic
activity of XynA and XynA∆29 at different temperatures. (C) Xylanolytic activity of XynA and
XynA∆29 at different pH. (D) TLC of the products released from xylan. (E) TLC of the products
released from XOS. Xylose released by XynA∆29 is highlighted in red boxes. Controls without
enzymes (w/o e), and standards xylose (X1), xylobiose (X2), xylotriose (X3), and xylotetraose (X4)
were included. (F) Structure of pNPXyl. (G) Michaelis–Menten plot of the hydrolysis of pNPXyl by
XynA and XynA∆N29. (H) Far-UV circular dichroism spectra of XynA and XynA∆29. The mean
residue ellipticity ([θ]MRW) was plotted against wavelength. (I) Stern-Volmer plot for tryptophan
fluorescence quenching by acrylamide of XynA and XynA∆29. In (B,C,G,I) values are the mean of
three experiments, bars representing the standard error of the mean lie within the size of the symbols.
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Next, we addressed whether the elimination of IDR has an impact on products gen-
erated by enzymes. Interestingly, and different from the wild-type enzyme, XynA∆29
acquired the ability to release xylose from polymeric xylan (Figure 2D). This ability also
appears considerably increased when xylotriose and xylotetraose were used (Figure 2E).
These results suggest that the elimination of IDR has modified the behavior of the enzyme,
making XynA∆29 able to generate xylose from xylan.

The improved ability of XynA∆29 of releasing xylose from different substrates prompted
us to explore whether this enzyme could have acquired β-xylosidase activity. β-xylosidases
(EC 3.2.1.37) are enzymes that hydrolyze xylobiose and XOS to xylose from the non-
reducing end [19]. To test the hypothesis mentioned, we used two β-xylosidase substrates:
xylobiose (natural substrate of β-xylosidases), and p-nitrophenyl-β-D-xylopyranoside
(pNPXyl, Figure 2F), a synthetic substrate widely used for measuring β-xylosidase activity.
XynA∆29 does not hydrolyze xylobiose (Figure 2E). However, and different from the wild-
type enzyme, XynA∆29 has the ability to hydrolyze pNPXyl, following Michaelis–Menten
kinetics (Figure 2G) with Vmax = 5 ± 0.33 µM/min and KM = 2.67 ± 0.44 mM. Taken
together, the results described indicate that the elimination of IDR modified the classical
endo-β-1,4-xylanase activity of XynA∆29, resulting in the emergence of two new activities
that wild-type enzyme does not show: a xylose-releasing 1,4-β-D-xylan xylohydrolase
activity, and a pNPXyl-hydrolyzing activity.

Because XynA∆29 can now hydrolyze pNPXyl (Figure 2G), it was of particular interest
to explore how the elimination of a distal IDR at the amino end of the protein allows
the hydrolysis of this new substrate. For this purpose, we performed biophysical experi-
ments and molecular dynamics simulations. Far-UV circular dichroism revealed important
changes in the secondary structure of XynA∆29 as compared with XynA (Figure 2H). The
percentage of secondary structure content determined from the CD spectra indicated that
XynA∆29 has a lower content of α-helix and parallel β-sheet, and increased content of
short and irregular structures as compared to XynA (Supplementary Table S1). More
interesting, these structural changes correlated with increased flexibility of XynA∆29. As
can be seen in Figure 2I, accessibility for tryptophan quenching by acrylamide in XynA∆29
is enhanced as compared with XynA, which indicates that the mutant enzyme has a
more flexible structure. This conclusion was also supported by molecular dynamics sim-
ulations, which show that tryptophan residues of XynA∆29 have enhanced mobility as
compared to XynA (Supplementary Videos S1 and S2), as well as thermal unfolding ex-
periments, which indicate that XynA∆29 has a slightly lower thermal stability than XynA
(Supplementary Figure S4).

It is known that flexibility affects the intrinsic dynamics of proteins, thus being a key
determinant in the substrate specificity of enzymes [20]. Therefore, we sought to determine
whether the elimination of IDR in XynA changed the dynamics of the protein. We observed
that in XynA, IDR shows large motion, whereas the core (β/α)8-barrel displays a quite rigid
motion (Figure 3A, Supplementary Video S3). On the contrary, the (β/α)8-barrel domain
of XynA∆29, now released from IDR, acquired a more dynamic motion, as depicted by
increased normal mode vectors (Figure 3A, Supplementary Video S4).

Molecular docking experiments showed that the increased motion displayed by the
(β/α)8-barrel of XynA∆29 is critical to explain why the mutant enzyme can hydrolyze
pNPXyl. In both enzymes, the presence of pNPXyl induces an interesting dynamic behav-
ior: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel, whose
hinge point is the active cleft (Figure 3B). However, in XynA, the presence of pNPXyl yields
“unproductive” interactions because during a trajectory of 1 microsecond, pNPXyl mainly
moves around the enzyme and the vicinity of active cleft, but is not stably retained into the
active site (Figure 3B, Supplementary Video S5). On the contrary, the hinge-bending motion
of the (β/α)8-barrel is clearly more increased during the interaction between XynA∆29 and
pNPXyl, allowing the entry of substrate to the active cleft of XynA∆29, and its stable accom-
modation there during the complete 1 µs trajectory (Figure 3B, Supplementary Video S6).
The comparison of active clefts of XynA and XynA∆29 along their trajectories suggest
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that the increased hinge-bending motion in the (β/α)8-barrel of XynA∆29 promotes the
formation of a wider active site for the entry of pNPXyl, including an increase of the
distance between the catalytic residues E160 and E263. Thus, while the maximal distance
observed between E160 and E263 in XynA is 6.0 Å, the dynamics acquired by XynA∆29
create a pocket where E160 and E263 display a longer distance that reaches a peak of 12 Å
(Figure 4A). Different from XynA, this wider active site allows the accommodation of the
glycosyl group of pNPXyl in the active site of XynA∆29, its stable interaction with amino
acids located there, and the hydrolysis of the glycosidic linkage by catalytic residues E160
and E263 (Figure 4B,C).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. (A) Motion of XynA and XynAΔ29 described by normal mode vectors. The full dynamics 
can be seen in Supplementary Videos S3 and S4. (B) Interactions of pNPXyl with XynA and 
XynAΔ29, described by normal modes (upper figures), and tracking of pNPXyl movements in both 
enzymes during a trajectory of 1 µs (lower figures). Note in the lower figures that pNPXyl always 
correctly accommodates into the active cleft of XynAΔ29 while in XynA the substrate shows erratic 
positioning, mainly around the enzyme. The full dynamics can be seen in Supplementary Videos 
S5 and S6. 

Molecular docking experiments showed that the increased motion displayed by the 
(β/α)8-barrel of XynAΔ29 is critical to explain why the mutant enzyme can hydrolyze 
pNPXyl. In both enzymes, the presence of pNPXyl induces an interesting dynamic be-
havior: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel, whose 
hinge point is the active cleft (Figure 3B). However, in XynA, the presence of pNPXyl 
yields “unproductive” interactions because during a trajectory of 1 microsecond, pNPXyl 
mainly moves around the enzyme and the vicinity of active cleft, but is not stably re-
tained into the active site (Figure 3B, Supplementary Video S5). On the contrary, the 
hinge-bending motion of the (β/α)8-barrel is clearly more increased during the interaction 
between XynAΔ29 and pNPXyl, allowing the entry of substrate to the active cleft of 
XynAΔ29, and its stable accommodation there during the complete 1 µs trajectory (Fig-
ure 3B, Supplementary Video S6). The comparison of active clefts of XynA and XynAΔ29 
along their trajectories suggest that the increased hinge-bending motion in the 
(β/α)8-barrel of XynAΔ29 promotes the formation of a wider active site for the entry of 
pNPXyl, including an increase of the distance between the catalytic residues E160 and 
E263. Thus, while the maximal distance observed between E160 and E263 in XynA is 6.0 
Å, the dynamics acquired by XynAΔ29 create a pocket where E160 and E263 display a 
longer distance that reaches a peak of 12 Å (Figure 4A). Different from XynA, this wider 
active site allows the accommodation of the glycosyl group of pNPXyl in the active site of 
XynAΔ29, its stable interaction with amino acids located there, and the hydrolysis of the 
glycosidic linkage by catalytic residues E160 and E263 (Figure 4B,C). 

Figure 3. (A) Motion of XynA and XynA∆29 described by normal mode vectors. The full dynamics
can be seen in Supplementary Videos S3 and S4. (B) Interactions of pNPXyl with XynA and XynA∆29,
described by normal modes (upper figures), and tracking of pNPXyl movements in both enzymes
during a trajectory of 1 µs (lower figures). Note in the lower figures that pNPXyl always correctly
accommodates into the active cleft of XynA∆29 while in XynA the substrate shows erratic positioning,
mainly around the enzyme. The full dynamics can be seen in Supplementary Videos S5 and S6.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. (A) Distribution of distances between E160 and E263 in XynA (blue) and XynAΔ29 (red) 
measured during a trajectory of 1 µs. (B) Frequency of residue occupancy of XynA (blue) and 
XynAΔ29 (red) by pNPXyl during the same trajectory. In XynA the substrate visits residues outside 
the active site, while in XynAΔ29 the substrate interacts with amino acids of the active site, in-
cluding E160 and E263 (highlighted). (C) Interactions of pNPXyl (yellow) with relevant amino ac-
ids of the active site of XynAΔ29, including catalytic residues E160 and E263. 

3. Discussion 
Previous studies have shown that the amino end region is important for the stability 

and activity of endoxylanases [21–30]. In some cases, these amino ends have been de-
scribed as “non-structured”, or contain amino acids predicted to be disordered residues 
[22–24]. Two of these cases correspond to endoxylanases from family GH11 [23,24], while 
only one corresponds to an endoxylanase from family GH10 [22]. This single case is the 
endoxylanase Xyn10 from Aspergillus niger, where five disordered residues were elimi-
nated from the amino end. Among other effects, the mutant enzyme showed a decrease 
in the optimum temperature for the activity of 6 °C, and an increase of KM, whereas no 
changes were observed in optimum pH [22]. These results partially differ from our re-
sults, because we do not find differences in KM; however, we observed important changes 
in activity at different pHs (Figure 2C). At this point, it is important to mention that our 
results (Supplementary Figures S1 and S3) and previous sequence similarity studies [21] 
have shown that the amino end of GH10 endoxylanases has a low degree of conservation, 
which suggests that they do not necessarily have similar roles in endoxylanases. 

Although there are some natural GH10 endoxylanases able to release xylose from 
xylan [31,32], in general terms GH10 endoxylanases do not show this property. In the 
case of XynA, a previous work [10] and the result shown in Figure 2D confirmed that this 
endoxylanase lacks this ability. However, after the elimination of the IDR, the resulting 
enzyme XynAΔ29 acquired the ability to release xylose from xylan (Figure 2D). As far as 
we know, XynAΔ29 represents the first case of an endoxylanase acquiring the ability to 
release xylose from xylan after the elimination of its amino end. Concerning the activity 
towards xylooligosaccharides, XynAΔ29 has no activity on xylobiose, but it shows an 
increase in activity on xylotriose and xylotetraose with respect to XynA. Similar results 
on xylotriose have been reported in other fungal endoxylanases where their respective 
amino ends were deleted [27–29]. 

As mentioned, XynAΔ29 cannot hydrolyze xylobiose, discarding that the enzyme 
had acquired β-xylosidase activity. However, XynAΔ29 shows activity on the artificial 
substrate pNPXyl, which is commonly used to measure β-xylosidase activity. Although 
there are some endoxylanases that have the natural ability to hydrolyze pNPXyl [33,34], 
XynAΔ29 represents the first case of an endoxylanase acquiring such ability in vitro after 
the elimination of an IDR. While the kinetic parameters observed for the hydrolysis of 
pNPXyl by XynAΔ29 are modest as compared with true β-xylosidases, this result repre-
sents an interesting starting point for the future evolvement of XynAΔ29, aiming for the 
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measured during a trajectory of 1 µs. (B) Frequency of residue occupancy of XynA (blue) and
XynA∆29 (red) by pNPXyl during the same trajectory. In XynA the substrate visits residues outside
the active site, while in XynA∆29 the substrate interacts with amino acids of the active site, including
E160 and E263 (highlighted). (C) Interactions of pNPXyl (yellow) with relevant amino acids of the
active site of XynA∆29, including catalytic residues E160 and E263.
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3. Discussion

Previous studies have shown that the amino end region is important for the stability
and activity of endoxylanases [21–30]. In some cases, these amino ends have been described
as “non-structured”, or contain amino acids predicted to be disordered residues [22–24].
Two of these cases correspond to endoxylanases from family GH11 [23,24], while only one
corresponds to an endoxylanase from family GH10 [22]. This single case is the endoxylanase
Xyn10 from Aspergillus niger, where five disordered residues were eliminated from the
amino end. Among other effects, the mutant enzyme showed a decrease in the optimum
temperature for the activity of 6 ◦C, and an increase of KM, whereas no changes were
observed in optimum pH [22]. These results partially differ from our results, because
we do not find differences in KM; however, we observed important changes in activity
at different pHs (Figure 2C). At this point, it is important to mention that our results
(Supplementary Figures S1 and S3) and previous sequence similarity studies [21] have
shown that the amino end of GH10 endoxylanases has a low degree of conservation, which
suggests that they do not necessarily have similar roles in endoxylanases.

Although there are some natural GH10 endoxylanases able to release xylose from
xylan [31,32], in general terms GH10 endoxylanases do not show this property. In the
case of XynA, a previous work [10] and the result shown in Figure 2D confirmed that this
endoxylanase lacks this ability. However, after the elimination of the IDR, the resulting
enzyme XynA∆29 acquired the ability to release xylose from xylan (Figure 2D). As far as we
know, XynA∆29 represents the first case of an endoxylanase acquiring the ability to release
xylose from xylan after the elimination of its amino end. Concerning the activity towards
xylooligosaccharides, XynA∆29 has no activity on xylobiose, but it shows an increase in
activity on xylotriose and xylotetraose with respect to XynA. Similar results on xylotriose
have been reported in other fungal endoxylanases where their respective amino ends were
deleted [27–29].

As mentioned, XynA∆29 cannot hydrolyze xylobiose, discarding that the enzyme
had acquired β-xylosidase activity. However, XynA∆29 shows activity on the artificial
substrate pNPXyl, which is commonly used to measure β-xylosidase activity. Although
there are some endoxylanases that have the natural ability to hydrolyze pNPXyl [33,34],
XynA∆29 represents the first case of an endoxylanase acquiring such ability in vitro after the
elimination of an IDR. While the kinetic parameters observed for the hydrolysis of pNPXyl
by XynA∆29 are modest as compared with true β-xylosidases, this result represents an
interesting starting point for the future evolvement of XynA∆29, aiming for the obtainment
of a bifunctional endoxylanase/β-xylosidase. Endoxylanases and β-xylosidases (and other
glycoside hydrolases) are believed to proceed from a common ancestor [35,36], so the
eventual obtaining of this evolved endoxylanase/β-xylosidase would be an important
verification of this hypothesis.

Regarding the accommodation and hydrolysis of pNPXyl by XynA∆29, our in silico
analyses support the experimental results. The active site of GH10 endoxylanases has
several subsites, named −3, −2, −1, +1, +2, and +3 subsites. The two catalytic glutamic
acids hydrolyze the substrate between -1 and +1 subsites. The −3, −2, −1 subsites (named
glycone subsites) are well conserved and allow the accommodation of the part of the
molecule that contains the non-reducing end [3,6,37,38]. On the other hand, the +1, +2,
and +3 subsites (named aglycone subsites) are less conserved and accommodate the part
of the molecule corresponding to the leaving group of the hydrolysis [3,6,37,38]. The
frequency of residue occupancy shows that pNPXyl interacts with residues K79, H112,
W116, N159, Q236, W293, and W301 in XynA∆29 (Figure 4B), which are conserved amino
acids found in the subsite −1 of GH10 endoxylanases [5]. More importantly, the molecular
simulation experiments showed that pNPXyl docks in the expected position in the active
site of XynA∆29, that is, the xylose moiety in the subsite -1, the p-nitrophenyl moiety
(aglycone) in subsite +1, and the catalytic residues E160 and E263 between both subsites,
hydrolyzing the glycosidic bond (Figure 4C and Supplementary Video S6).
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It has been described that IDRs can influence protein dynamics by different modes
of action [11]. In our case, we observed that the elimination of IDR in XynA increases
flexibility and motion of the (β/α)8-barrel domain. Dynamics is regarded as a key factor
in the function of enzymes [39–41], and it is intimately related to protein flexibility [11,42].
Our results support this notion suggesting that relationships between IDR, flexibility, and
dynamics determine the marked differences in the activity observed in XynA and XynA∆29.
At this point, it should be mentioned that it is not possible to predict which of the 29 amino
acids are most important for the function of the IDR. Although about 20 amino acids have
a clear propensity for disorder (Figure 1), the quantitative evaluation performed with
ConSurf (Supplementary Figure S3) showed no conservation between the IDR and the
amino end of 149 similar proteins. Therefore, in the future, an extensive mutagenesis
campaign will be needed to determine the importance of each amino acid in IDR function.
Such an analysis is far beyond the scope of the present investigation.

As far as we know, the hinge-bending motion observed in XynA and XynA∆29 has
not been previously described in other endoxylanases from family GH10. However, this
kind of motion is usual in endoxylanases from family GH11. The catalytic domain of GH11
endoxylanases has a β-jelly roll structure that resembles a partially closed hand, where the
access of the substrate to the active cleft is controlled by hinge-bending motion between
“thumb” and “fingers” regions [43]. It has been observed that mutations in key residues of
the hinge in GH11 endoxylanases lead to an increase in catalytic efficiency that may be due
to improved flexibility of the enzyme [44]. Moreover, it has been suggested that changes
in motion and flexibility of the hinge region in GH11 endoxylanases, after the substrate
binding, could produce changes in the accessibility of the active site [45]. In our case,
molecular docking experiments showed that the increased motion displayed by the (β/α)8-
barrel of XynA∆29 in the presence of pNPXyl promotes the formation of a wider active site
for the entry of this substrate allowing its accommodation and hydrolysis by the catalytic
residues. Taken together, these results suggest that similarly to GH11 endoxylanases, the
hinge-bending motion, associated with changes in flexibility, is a mechanism that also can
modify the access, binding, and hydrolysis of substrates by GH10 endoxylanases, even
allowing the use of substrates not normally used by these enzymes such as pNPXyl.

Overall, our results suggest that XynA∆29 is no longer a typical endoxylanase like
XynA, but rather should be considered as a bifunctional 1,4-β-D-xylan xylohydrolase /pN-
Pxyl hydrolase. The term bifunctionality refers to the ability of an enzyme to possess two
different catalytic activities on the same polypeptide chain [46]. Bifunctional endoxylanases
have great biotechnological potential because their characteristics allow more efficient
xylan hydrolysis, thereby expanding its possible applications at an industrial level. In
this context, the improvement of activity observed in XynA∆29, as well as the eventual
directed evolution of XynA∆29 to a bifunctional endoxylanase/β-xylosidase mentioned
before, would be of great impact for biotechnological purposes.

As a concluding remark, it is important to mention that around 10% of enzymes in
nature contain (β/α)8-barrel structures [47]. Therefore, the results obtained in this work are
not only interesting for the study of the relationship between IDR, dynamics, and catalytic
properties in other endoxylanases from family GH10, but also suggest that dynamics and
activities of other enzymes with (β/α)8-barrel structures could also be modified by the
presence/absence of IDRs.

4. Materials and Methods
4.1. Prediction of Disordered Nature of IDR

The deduced sequence of XynA (GenBank accession MG007677), lacking signal peptide,
was used as input for the prediction of disordered regions. For this purpose, three different
bioinformatics tools for the prediction of protein disorder, based on different methods, were
used: IUPred3 (https://iupred3.elte.hu/) (accessed on 18 August 2021), NetSurfP-2.0 (https://
services.healthtech.dtu.dk/service.php?NetSurfP-2.0) (accessed on 18 August 2021), and PrDOS

https://iupred3.elte.hu/
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
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(https://prdos.hgc.jp/cgi-bin/top.cgi) (accessed on 18 August 2021). In all cases, predictions
were performed using default parameters.

IUPred3 predicts the tendency for each amino to be in a disordered region, as well as
context-dependent disordered regions. The algorithm uses an empirical force field to estimate
the energy for each residue based on its interactions with other residues in the structure [16].
The output consists of a graphical prediction of the probability of disorder of each residue in
the protein. The threshold score set to determine the disordered property is 0.5.

NetSurfP-2.0 predicts disordered regions in a sequence by using convolutional and
long short-term memory neural networks trained on solved protein structures [17]. As a
result, NetSurfP-2.0 gives the probability of disorder of the residues, secondary structure,
and relative surface accessibility of the IDR.

PrDOS uses two complementary algorithms. One algorithm works on the basis of local
amino acid sequence, specifically using a position-specific score matrix of the sequence
to map individual residues in a given sliding. The second algorithm compares the input
sequence with homologous proteins for which structural information is available. The final
prediction combines the results of the two algorithms. The prediction includes a predicted
disorder probability of each residue, with a default false positive rate set at 5% [18].

Finally, the degree of evolutionary conservation of XynA was estimated with ConSurf,
using default parameters (https://consurf.tau.ac.il/) [48] (accessed on 3 January 2022).

4.2. Expression of XynA and XynA∆29 in Pichia Pastoris, and Purification of Enzymes

The complete experimental detail for expressing XynA in Pichia pastoris, and its further
purification, was previously described [10].

For the expression and purification of XynA∆29, the same protocol was followed, with
some variations. The xynA cDNA from Cladosporium fildesense [10] was used as a template
to obtain the coding sequence of XynA∆29 by PCR. This sequence was amplified using
primers Picz-xyl∆29N-EcorI-fw (5′-AGACTCCGAATTCGACGCTGGAGGCCTCAAC-3)
and Picz-Xyl-SacII-Rv (5′-AGACTCCCGCGGCTGCGAGGAGGGTGGTGAG-3). To avoid
undesired mutations, Pfu DNA polymerase (Invitrogen, Carlsbad, CA, USA) was used
and the amplicon was sequenced previously to use. The amplicon obtained was digested
with EcoRI and SacII, and cloned into pPICZα-A, thus giving rise to plasmid pPICZαA-
XynA∆29. This plasmid was used to transform electrocompetent P. pastoris GS115 cells.
Transformed clones were selected on zeocin (100 mg/mL). Five zeocin-resistant clones
were selected, and grown in liquid media according to the instructions of the Easy-Select
Pichia Expression kit (Invitrogen, Carlsbad, CA, USA). Xylanase expression was inducted
by adding methanol daily (1% final concentration), over 4 days. Aliquots were withdrawn
daily for measurement of xylanolytic activity (see below).

All clones showed similar xylanolytic activity, so one of them was randomly chosen
for purification of XynA∆29. The selected transformant was grown in a liquid medium (2 L)
over 4 days and induced with methanol as described above. After induction, the culture
supernatant was separated and concentrated to a final volume of 10 mL. Purification
of XynA∆29 was performed by affinity chromatography using His Pure Ni-NTA resin
(Thermo Fisher Scientific, Waltham, MA, USA). The resin was regenerated in 50 mL of
50 mM sodium phosphate buffer pH 8.0. A 1.6× 10 cm column was loaded with 5 mL of the
resin bed and equilibrated with 50 mL of the same buffer, with a flow rate of 10 mL/hour.
Then, the column was cooled at 4 ◦C and washed for 3 h with a 50 mM sodium phosphate
buffer plus 0.5 M NaCl. Finally, the column was loaded with 4 mL of the protein concentrate
and washed with three volumes of the same buffer at a rate of 10 mL/hour. The column
was eluted with a step gradient from 0 to 200 mM imidazole in 50 mM sodium phosphate
buffer pH 8.0. Fractions of 4 mL were collected, pooled, and analyzed for xylanolytic
activity (see below). Purity was estimated by SDS-PAGE stained with Coomassie brilliant
blue R-250.

https://prdos.hgc.jp/cgi-bin/top.cgi
https://consurf.tau.ac.il/
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4.3. Measurement of Xylanolytic Activity

For the measurement of xylanolytic activity, reducing sugars were detected by the
classical 3,5-dinitrosalicylic acid (DNS) assay [49]. Briefly, 450 µL of a 1% beechwood xylan
(Carl Roth, Karlsruhe, Germany) solution was pre-incubated in 50 mM citrate buffer pH
5.3 for 10 min at 50 ◦C. Then, 50 µL of the sample was added, and the mix was incubated
for an additional 10 min at 50 ◦C. The reaction was stopped with 750 µL of DNS reagent
(1% 3,5-dinitrosalicylic acid, 30% sodium potassium tartrate, 1.6% NaOH), and incubated
at 100 ◦C for 10 min. The samples were cooled to room temperature and centrifuged to
recover supernatant and remove residual xylan. Absorbance at 540 nm was measured in
the supernatant using a spectrophotometer. For the calibration curve, pure xylose was used
in concentrations ranging from 0 to 20 mM. One unit (U) of enzyme activity was defined as
the amount of enzyme necessary to produce 1 µmol of reducing sugars per minute.

4.4. Effect of pH and Temperature on Enzyme Activity

The effect of pH on XynA and XynA∆29 activities was carried out in a pH range
between 2.2–10. For the range 2.2–8.0, 100 mM McIlvaine buffers at different pH were
prepared by using different amounts of 0.1 M citric acid and 0.2 M basic disodium phosphate
stock solutions. For the range 9–10, 50 mM glycine-NaOH buffers were used. The reaction
mix contained 20 µg (50 µL) of enzyme and 450 µL of 1% beechwood xylan solution. Each
reaction was incubated for 10 min at 50 ◦C and, afterwards, the enzyme activity was
measured as described above.

To determine the effect of temperature on XynA and XynA∆29 activities, the reaction
mix contained 20 µg of enzyme (50 µL) and 450 µL of 1% beechwood xylan solution, pre-
pared at pH 6.0 in McIlvaine buffer. The reactions were incubated at different temperatures
for 10 min. Then, xylanolytic activity was measured as described before.

In all cases, assays were performed in triplicate, and a standard deviation of the three
independent experiments was calculated.

4.5. Thin Layer Chromatography (TLC) Experiments

Xylan was prepared at 1% in 50 mM citrate buffer pH 6.0. A total of 450 µL of xylan
solution was incubated with 50 µL of pure XynA or XynA∆29 (0.4 mg/mL) and incubated
at 50 ◦C for 10 min. After incubations, TLC experiments were performed using silica gel
60G F254 plates (Merck, Darmstadt, Germany). Plates were activated at 100 ◦C for 30 min.
After cooling the plate, 10 µL of each reaction were loaded. The mobile phase used was
ethyl acetate: glacial acetic acid: water 3:2:1 (vol/vol/vol). After the plate was dried, spots
were visualized by spraying a mixture of 0.2% orcinol and 10% sulfuric acid in ethanol, and
heating at 85 ◦C for 10 min.

For TLC experiments with xylobiose, xylotriose and xylotetraose, they were prepared
at 10 mg/mL in 50 mM citrate buffer pH 6.0. Reactions contained 4 µL of each XOS solution
and 4 µL of each pure enzyme and were incubated at 50 ◦C for 10 min. Chromatography
was performed exactly as was described above.

4.6. Determination of Kinetic Parameters for p-Nitrophenyl-β-D-xylopyranoside (pNPXyl)

For the determination of KM and Vmax using pNPXyl, solutions with different con-
centrations of the substrate (between 0 and 10 mM) were used, with increases in the
concentration of 1 mM. Each reaction was carried out using 50 µL of each pNPXyl solution
and 20 µL of each pure enzyme (0.4 mg/mL). Each reaction was incubated for 10 min at
40 ◦C and stopped by adding 50 µL of 0.2 M sodium carbonate. Then, absorbance was
measured at 405 nm. A calibration curve using pure p-nitrophenol (pNP) was prepared and
used to determine enzymatic activity. One unit of enzyme activity (U) was defined as the
amount of enzyme necessary to release 1 µmol of pNP per minute of the assay. The kinetic
parameters were determined by non-linear regression of the activity values obtained, using
the Michaelis–Menten equation. For this purpose, the GraphPad Prism version 7.0 program
was used.
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4.7. Determination of Protein Flexibility by Acrylamide Fluorescence Quenching

The conformational flexibility of XynA and XynA∆29 was analyzed through trypto-
phane accessibility by acrylamide fluorescence quenching experiments. Experiments were
carried out in a Jasco FP-8300 spectrofluorometer (Jasco Inc., Easton, PA, USA) at 25 ◦C.
The samples at concentration 5 µM were prepared in 100 mM McIlvaine buffer pH 6.0
(see above) and excited at a wavelength of 295 nm. The emission spectra were recorded
in the range of 305 and 450 nm, with a bandwidth of 5 nm. Each emission spectrum was
corrected by subtracting the spectrum from the protein-free buffer (blank). For quenching,
small aliquots of a 5 M acrylamide solution were added to the samples to obtain final
concentrations ranging from 5 to 1000 mM acrylamide. The area under the curve (AUC)
of spectra was calculated and fitted to the Stern–Volmer equation: F0/F = 1 + KSV [Q]
where F0 is the AUC fluorescence in the absence of quencher, F corresponds to the AUC
fluorescence at a given quencher concentration, KSV is the Stern–Volmer constant, and [Q]
is the quencher (acrylamide) concentration.

4.8. Circular Dichroism Measurements

Far ultraviolet circular dichroism spectra were recorded in a Jasco J-1500 spectropo-
larimeter (Jasco Inc., Easton, PA, USA) using 0.1 cm path length quartz cells. Each spectrum
is an accumulation of 3 scans measured in a continuous mode, with 2 s of digital integration
time and a speed of 50 nm/min. Spectra were recorded between 192–260 nm at 25 ◦C.
Protein concentrations were 0.151 mg/mL for XynA and 0.102 mg/mL for XynA∆29, both
prepared in 10 mM McIlvaine buffer pH 6.0. For the estimation of secondary structure
content of proteins, the CD spectra were analyzed using the Beta Structure Selection method
(BeStSel; http://bestsel.elte.hu/index.php) [50] (accessed on 9 January 2022).

For the analysis of the melting temperature of the enzymes, the heat-induced unfolding
spectra were performed following the ellipticity at 220 nm with a temperature ramp of
3 ◦C/min. A Peltier system PTC-517 (Jasco Inc., Easton, PA, USA) was coupled to the
spectropolarimeter for temperature control.

4.9. Homology Modeling and Molecular Dynamics Simulations

Homology models for XynA and XynA∆29 were constructed with Modeller 9.10,
using the structure of the endo-β-1,4-xylanase from Aspergillus niger (Protein Data Bank
id: 4XUY) as a template. This protein has 59% identity with XynA. Models were refined
and implanted in a water box of TIP3P molecules neutralized at 0.15 M NaCl. On the other
hand, the pNPXyl molecule was parameterized using LigPrep [51].

For molecular dynamic simulations, four molecular systems representing the combina-
tions of XynA and XynA∆29 with or without pNPXyl were arranged. The arrangement of
systems followed the recommended protocol by Schrödinger [52]. The first stage consisted
of 20,000 steps of energy minimization and 40 ns of equilibration, framed in an NPT ensem-
ble at 310.15 K and 1 atm. In addition, to preserve the secondary structure of the model,
gradually decreasing harmonic restraints from 10 to 0.1 kcal/(mol · Å2) were applied to the
backbone of the protein.

All molecular dynamics simulations were performed with the AMBERv18 software
using the ff14SB, GLYCAM, gaff, and lipid14 force fields. Bonded and short- and long-range
non-bonded interactions were integrated with a time step of 2. A 10-Å spherical cutoff was
used for short-range non-bonded interactions. Each final trajectory reached 1 microsecond.
All the four molecular dynamics simulations were very stable, with root mean square
deviation (RMSD) values fluctuating around 1.0–1.8 Å throughout the 1 microsecond
simulation period (Supplementary Figure S5).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23042315/s1.
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