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Abstract: A repeated interaction process assisted by auxiliary thermal systems charges a quantum
battery. The charging energy is supplied by switching on and off the interaction between the battery
and the thermal systems. The charged state is an equilibrium state for the repeated interaction process,
and the ergotropy characterizes its charge. The working cycle consists in extracting the ergotropy
and charging the battery again. We discuss the fluctuating efficiency of the process, among other
fluctuating properties. These fluctuations are dominated by the equilibrium distribution and depend
weakly on other process properties.
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1. Introduction

Repeated interaction schemes, also known as collisional models [1–6], have played a
vital role in the development of quantum optics [7–10] and the rapid evolution of quantum
thermodynamics [11–15]. The idealized and straightforward formalism has been crucial
to designing and understanding quantum devices such as information engines [16–19],
heat engines [12,20–23], and quantum batteries [24–34]. Recently, it was realized that the
framework can be extended to deal with macroscopic reservoirs [23,35], expanding the
reach of applications in quantum thermodynamics. For comprehensive reviews of the
method and its applications, see [36,37].

In the simplest scenario, many copies of an auxiliary system in the Gibbs equilibrium
thermal state interact sequentially with a system of interest. Each interaction step is de-
scribed by a completely positive trace-preserving (CPTP) map [38]. The repeated interaction
process corresponds to concatenations of the map, which eventually will bring the system
to a nonequilibrium steady state or an equilibrium state. In equilibrium, heat does not flow
to the environment, and entropy is not produced. When the repeated interaction brings
the system to an equilibrium state, we say that we iterate a map with equilibrium. In this
paper, we apply this framework to study a quantum battery.

Quantum technologies, such as quantum computing, communication, and sensing,
are supported by the quantum storage and transfer of energy. Implementing fast and
reliable quantum batteries in these technologies may improve their functionality. Different
quantum batteries have been proposed to achieve these goals [39–42]. One paradigmatic
setup considers the battery to be composed of noninteracting qubits. Global operations,
such as charging or discharging the battery by coupling all qubits to a single optical cavity
mode, boost its performance in power [28–31] and reliability [43].

The most straightforward repeated interaction model for a quantum battery considers
nonequilibrium auxiliary systems supplying the energy. However, the process of sustaining
the charged state is dissipative. Reference [26] proposed a different kind of quantum battery
where the charged state corresponds to the equilibrium state of the process. The work in
the recharging stage provides the energy, which is preserved without dissipation in the
equilibrium state as long as the battery–environment interaction remains under control.
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In actual physical implementations, other exchanges can still cause energy leakage. The
battery’s charge is characterized by its ergotropy [44], i.e., the maximum amount of energy
extracted with a unitary process. Once removed, a repeated interaction process recharges
the battery. In this way, we have a thermodynamic cycle.

The recharging energy and the ergotropy delivered by the quantum battery are av-
eraged values that are relevant for several cycles or many batteries working parallel. In a
single cycle, one can observe fluctuations when observing these energies. Therefore, their
study is relevant for the reliability of the device. The two-point measurement scheme [45]
is appropriate for describing these thermal and quantum fluctuations that reveal essential
properties of the process [46–49]. Other sources of randomness in the operation of a battery
can arise from changes in the evolution operator [50–52], Hamiltonian [53], and initial
condition [54]. We do not take them into account. Closer to the spirit of this work are
studies of work fluctuations in the charging or discharging process of isolated quantum
batteries [55–57].

Thus, in this work, we take the dissipative quantum battery [26] and study fluctuations
in the thermodynamic quantities such as heat and work during the charging phase and
the efficiency fluctuations of the cycle. Efficiency fluctuations are significant in assessing
the performance of a machine. They have drawn recent attention in classical [58–68] and
quantum [21] engines. Evaluating the fluctuations requires detailed information about
the bath and the process [45]. However, a key simplification arises because we deal with
maps with equilibrium, allowing us to determine the statistics of the fluctuations. We will
illustrate this using two examples.

For completeness, we also consider equilibrium fluctuations. We evaluate the prob-
ability of performing work or absorbing heat while keeping the (average) charge in the
battery. We compare our findings with the equilibrium fluctuations in a process with a
Gibbs equilibrium state.

The remainder of this article is organized as follows. In Section 2, we review the
thermodynamics for CPTP maps, emphasizing the results for maps with equilibrium.
Then, in Section 3, we introduce our system of study, namely the equilibrium quantum
battery proposed in [26]. Section 4 discusses the stochastic versions of the thermodynamic
equalities and laws, emphasizing the results for maps with equilibrium again. Subsequently,
in Section 5, we evaluate these fluctuations in two illustrative examples. We conclude this
article in Section 6.

2. Thermodynamic Description for Completely Positive Trace-Preserving Maps

Consider a system S and a system A that jointly evolve under the unitary U =

e−i τ
h̄ (HS+HA+V). The Hamiltonians HS and HA of S and A, respectively, are constant in time.

The coupling between S and A during the time interval (0, τ) is given by the interaction
energy V and vanishes for t < 0 and t > τ.

Initially, S and A are uncorrelated; i.e., their density matrix is the tensor product of
the respective density matrices ρtot = ρS ⊗ωβ(HA), where ωβ(HA) =

e−βHA
ZA

is the Gibbs
thermal state for A with β as the inverse temperature, and ZA = Tr e−βHA . After the lapse
of time τ, the initial state ρtot changes to a new state,

ρ′tot = U
(
ρS ⊗ωβ(HA)

)
U†. (1)

In the following, we denote ρ′S = TrAρ′tot and ρ′A = TrSρ′tot, where TrX is the partial trace
over subsystem X. By tracing out A, one obtains a CPTP map E for the system S evolution

ρ′S = E(ρS) = TrA

[
U
(
ρS ⊗ωβ(HA)

)
U†
]
. (2)

The energy change of S
∆E = Tr[HS(ρ

′
S − ρS)], (3)
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can be written as the sum of

Q = Tr[HA(ωβ(HA)− ρ′A)], (4)

and
W = Tr[(HS + HA)(ρ

′
tot − ρtot)], (5)

satisfying the first law ∆E = W + Q. Note that −Q is the energy change of A, we call Q
the heat, and W is the energy change of the full S + A system, which we call the switching
work because it is due to the energy cost of turning on and off the interaction V at the
beginning and end of the process, respectively [69,70].

Consider the von Neumann entropy change

∆SvN = −Tr[ρ′S ln ρ′S] + Tr[ρS ln ρS] (6)

of system S and the heat Q given in Equation (4). The entropy production, Σ = ∆SvN− βQ,
is also given by [71]

Σ = D(ρ′tot||ρ′S ⊗ωβ(HA)) ≥ 0, (7)

with D(a||b) ≡ Tr[a ln a] − Tr[a ln b]. The inequality in Equation (7) corresponds to the
second law. Note that auxiliary system A does not need to be macroscopic; nevertheless,
we will call it the bath.

As in standard thermodynamics, analyzing the process ρS → ρ′S = E(ρS), in terms
of ∆E = W + Q and Σ = ∆SvN − βQ ≥ 0 with the quantities given in Equations (3)–(7)
is very useful. Note that for their evaluation, particularly for the work, Equation (5), and
entropy production, Equation (7), we need to know the full state ρ′tot.

Maps with Thermodynamic Equilibrium

In a repeated interaction process, one concatenates L CPTP maps E L ≡ E ◦ · · · ◦ E(·)
to describe a sequence of evolutions of a system coupled to an auxiliary thermal system for
a given lapse of time τ. With each map E , a new fresh bath is introduced that exchanges
heat with the system during the time that the interaction is turned on. The concatenated
map E L is also a CPTP map. The total work performed is the sum of the work performed
by switching on and off the interaction energy with each bath. Similarly, the total heat is
the sum of the heat exchanged with each bath.

Let us assume that the map E has an attractive invariant state ρ̄, defined as

lim
L→∞

E L(ρS) = ρ̄, ∀ρS,

and ρ̄ = E(ρ̄). The process ρ̄→ E(ρ̄) is thermodynamically characterized by ∆SvN = 0 = ∆E;
see Equations (3) and (6). If the entropy produced by the action of the map E on ρ̄ is Σ > 0,
then we say that the invariant state is a nonequilibrium steady state. The invariant state is an
equilibrium state if Σ = 0, i.e., if the entropy production, Equation (7), vanishes by the action of
E on ρ̄. Maps with these particular states are called maps with equilibrium [72,73].

According to Equation (7), Σ = 0 for the steady state ρ̄ if and only if ρ̄⊗ ωβ(HA) =

U
(
ρ̄⊗ωβ(HA)

)
U†. Equivalently, if the unitary U in Equation (1) satisfies [U, H0 + HA] = 0,

where H0 is an operator in the Hilbert space of the system, then the product state ωβ(H0)⊗
ωβ(HA), with ωβ(H0) =

e−βH0
Z0

, where Z0 = Tr[e−βH0 ], is invariant under the unitary evo-
lution in Equation (1) and ρ̄ = ωβ(H0) is an equilibrium state for the map in Equation (2).

It follows from [U, H0 + HA] = 0 that the heat, Equation (4), and work, Equation (5),
simplify to

Q = Tr[H0(ρ
′
S − ρS)] (8)

and
W = TrS[(HS − H0)(ρ

′
S − ρS)]. (9)
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The entropy production also reduces to an expression that does not involve the state of the
bath. Indeed, we obtain

Σ = D(ρS||ωβ(H0))− D(ρ′S||ωβ(H0)), (10)

which is positive due to the contracting character of the map [38]. The averaged thermody-
namic quantities for a map with equilibrium are only determined by the properties of the
system of interest.

If H0 = HS, then the map is called thermal [74,75]. The equilibrium state is the Gibbs
state ωβ(HS) = e−βHS /ZS with ZS = Tr[e−βHS ], and the agent is passive because W = 0
for every initial state ρS; see Equation (9).

When H0 6= HS, an active external agent has to provide (or extract) work to perform
the map on a state ρS. However, once the system reaches the equilibrium state ωβ(H0), the
process ωβ(H0)→ E(ωβ(H0)) = ωβ(H0) is performed with W = 0; see Equation (9), and
Σ = 0.

Let us end this section with the following remark. Since the total evolution operator
U = e−i τ

h̄ (HS+HA+V) is time-independent, the equilibrium condition is satisfied by finding
H0 and V such that [H0, HS] = 0 and [H0 + HA, V] = 0 [26]. In this case, HS and H0 share
the same eigenbasis. To simplify the discussion of fluctuations, we consider non-degenerate
eigenenergies. We denote the eigensystems as

HS |n〉 = En |n〉 , H0 |n〉 = E0
n |n〉 .

with increasing order E1 < E2 < · · · < EN for the eigenenergies. The eigenvalues E0
n are

not necessarily ordered, but there is always a permutation that we call π of (1, . . . , N)→
(π1, . . . , πN) such that E0

π1
≤ · · · ≤ E0

πN
.

3. The Battery

As is well known, the Gibbs state ωβ(HS) is passive; i.e., one cannot decrease (extract)
its energy with a unitary operation [76,77]. This is not true for the equilibrium state

ωβ(H0) = ∑
n

e−βE0
n

Z0
|n〉 〈n| , (11)

if a pair (j, k) exists such that (Ej − Ek)(E0
j − E0

k) < 0. In that case, the unitary operator u
with matrix elements uij = 〈i|u|j〉 = δπi ,j extracts the ergotropy [44]

W [ωβ(H0)] =
N

∑
n=1

(Eπn − En)
e−βE0

πn

Z0
> 0, (12)

where π is the permutation that orders E0
n increasingly.

Once the ergotropy is extracted, the system is left in the passive state

σωβ(H0)
= uωβ(H0)u† =

N

∑
n=1

e−βE0
πn

Z0
|n〉 〈n| . (13)

An equilibrium quantum battery was proposed in [26] based on that observation. The
system is driven by a repeated interaction process described by a map E with equilibrium
ωβ(H0). Once the equilibrium is reached, it is kept with no cost (W = 0), energy does
not leak from it, and the battery’s charge, characterized by the ergotropyW [ωβ(H0)], is
preserved. Equilibrium states with ergotropy are called active.

The thermodynamic cycle is as follows: The battery starts in the active equilibrium
state, and then the ergotropy (12) is extracted, leaving the battery in the passive state
(13) from which the repeated interaction process limL→∞ E L(σωβ(H0)

) recharges it. As
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a consequence of the second law, the recharging work WR = TrS[(HS − H0)(ωβ(H0) −
σωβ(H0)

)] is never smaller that the extracted ergotropy. In this way, the thermodynamic
efficiency

0 ≤ ηth ≡
W [ωβ(H0)]

WR
≤ 1, (14)

which is the ratio of the wanted resource over the invested, characterizes the operation of
the device.

4. Fluctuations
4.1. Repeated Interaction for a Map with Equilibrium

The thermodynamic quantities in Equations (3)–(7) were obtained as the average over
their stochastic versions defined over trajectories using a two-point measurement scheme
in [72]. Since all interesting density matrices ωβ(HS), ωβ(H0), and σωβ(H0)

are diagonal in
the system energy basis, we need only projective energy measurement in this work.

A trajectory γ = {n; i1, j1, . . . , iL, jL; m} for the recharging process is defined by the
initial and final, εik and ε jk , energy results for each auxiliary thermal system and En and Em
for the system. According to the two-point measurement scheme [45], its probability is

P(L)
γ = |〈j1 · · · jLm|UL · · ·U1|i1 · · · iLn〉|2 e−β ∑L

k=1 εik

ZL
A

pini(n), (15)

where pini(n) is the probability that the initial state of the system is |n〉; see Appendix A.
We now associate the stochastic thermodynamic quantities with these trajectories. The
stochastic heat flow to the system qγ corresponds to the negative energy change of the bath,
i.e., qγ = ∑L

k=1(εik − ε jk ). According to the first law of stochastic thermodynamics [47], the
stochastic work is given by

wγ = ∆eγ − qγ, (16)

where ∆eγ = Em − En is the stochastic energy change. These fluctuating quantities are
studied through their distributions

p(L)
w (x) = ∑

γ

δ(x− wγ)P(L)
γ , p(L)

∆e (x) = ∑
γ

δ(x− ∆eγ)P(L)
γ , p(L)

q (x) = ∑
γ

δ(x− qγ)P(L)
γ , (17)

and, as for the averaged thermodynamic quantities, we need information on the state of the
whole system to evaluate them. However, for maps with equilibrium, a stochastic trajectory
is determined by the pair γ = {n, m}; see Appendix A. Consequently these formulas
simplify and become, qγ = E0

m − E0
n, wγ = Em − E0

m − (En − E0
n) with the distributions

p(L)
∆e (x) = ∑

n,m
δ(x− [Em − En])P(L)

n→m, (18)

p(L)
w (x) = ∑

n,m
δ(x− [(Em − E0

m)− (En − E0
n)])P(L)

n→m, (19)

p(L)
q (x) = ∑

n,m
δ(x− [E0

m − E0
n])P(L)

n→m, (20)

and the trajectory probability

P(L)
n→m = 〈m| E L(|n〉 〈n|) |m〉 pini(n) = (TL)m|n pini(n), (21)

in terms of the initial probability pini(n) and of the L power of the stochastic matrix
Tm|n = 〈m| E(|n〉 〈n|) |m〉.
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The averages
∫

xp(L)
∆e (x)dx,

∫
xp(L)

w (x)dx,
∫

xp(L)
q (x)dx reproduce Equations (3), (8) and (9)

with ρ′S = E L(ρS) and ρS = ∑n pini(n) |n〉 〈n|.

4.2. Fluctuations in the Equilibrium State

As noted before, all averaged thermodynamic quantities ∆E = ∆S = Σ = W = Q = 0 van-
ish for a process in equilibrium. So, on average, the process ωβ(H0)→ E(ωβ(H0)) = ωβ(H0)
has no energy cost. However, if H0 6= HS, the agent is still active due to non-vanishing work
fluctuations. For thermal maps, H0 = HS and Equation (19) gives p(L)

w (x) = δ(x). The external
agent is truly passive.

To analyze equilibrium fluctuations, we use Equations (18)–(20) with pini(n) = e−βE0
n

Z0
.

4.3. Recharging Process

Since the recharging process starts from σωβ(H0)
, we take pini(n) = e−βE0

πn /Z0—see
Equation (13)—in the distribution Equations (18)–(20).

Since the charged state ωβ(H0) is reached asymptotically, we take L → ∞ to charge
the battery fully.

Moreover, since E has a unique equilibrium state, we will find that T is a regular
stochastic matrix [78], implying that limL→∞(TL)m|n = e−βE0

m /Z0, ∀n. Therefore, the limit
in Equation (21)

P(∞)
n→m = pini(n)e−βE0

m /Z0 = e−β(E0
πn+E0

m)/Z2
0 , (22)

is independent of the map’s details. Interestingly, the rate of convergence of TL to the equi-
librium distribution depends on the map E parameters. We later discuss the fluctuations of
a concatenated process E L with finite L.

The average of the stochastic energy change in the recharging process

〈∆eγ〉(∞) ≡ ∑
n,m

(Em − En)P(∞)
n→m = Tr[HS(ωβ(H0)− σωβ(H0)

)] =W(ωβ(H0)) (23)

is the ergotropy. The average stochastic work

〈wγ〉(∞) ≡ ∑
n,m

((Em − E0
m)− (En − E0

n))P(∞)
n→m = Tr[(HS − H0)(ωβ(H0)− σωβ(H0)

)] = WR (24)

is the recharging work.

4.4. Extracting Process

The extracting process also fluctuates when we measure the battery’s energy in the
charged state and the discharged state. We call κ the stochastic trajectory in the ergotropy
extracting process and vκ the stochastic extracted energy. The probability pκ of κ = (m′, n)
is the product of the transition probability from |m′〉 to |n〉 under the permutation u,

Pext
m′→n = | 〈n|u|m′〉 |2 = δπn ,m′ , with the initial probability e−βE0

m′/Z0; see Equation (11).
The averaged extracted energy,

〈vκ〉 = ∑
κ

vκ pκ = ∑
m′ ,n

(Em′ − En)Pext
m′→n

e−βE0
m′

Z0
= ∑

n
(Eπn − En)

e−βE0
πn

Z0
=W(ωβ(H0)) (25)

is the ergotropy Equation (12).
Equations (23) and (25) show the cycle’s consistency, where two processes, recharging

(γ) and extracting (κ), connect the same states, ωβ(H0) and σωβ(H0)
.

4.5. Fluctuating Efficiency for the Cycle

In terms of Equations (24) and (25), we have the thermodynamic efficiency ηth =
W
WR

= 〈vκ〉
〈wγ〉(∞) .
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As the thermodynamic efficiency is the ratio of the ergotropy over the recharg-
ing work, the fluctuating efficiency [21] should be the ratio of their fluctuating equiv-
alents. The fluctuating extracted energy is vκ = Em′ − En, and the fluctuating work is
wγ = Em − E0

m − (En − E0
n). Therefore, we define the fluctuating efficiency as

ηγκ =
vκ

wγ
=

Em′ − En

Em − E0
m − (En − E0

n)
. (26)

Given the extracting trajectory κ, the probability of the recharging trajectory γ is Pext
m′→nP∞

n→m.
Thus, the joint probability for the processes κ and γ is

pγκ =
e−βE0

m′

Z0
Pext

m′→nP∞
n→m =

e−βE0
m′

Z0
δπn ,m′

e−βE0
m

Z0
,

and the distribution of the fluctuating efficiency is

pη(x) = ∑
γ,κ

δ(x− ηγκ)pγκ = ∑
n,m

δ

(
x− Eπn − En

Em − E0
m − (En − E0

n)

)
e−β(E0

m+E0
πn )

Z2
0

. (27)

To simplify the notation, we write this as

pη(x) = ∑
n,m

δ(x− ηnm)Pn→m, (28)

with

ηnm =
Eπn − En

Em − E0
m − (En − E0

n)
, and Pn→m =

e−β(E0
m+E0

πn )

Z2
0

. (29)

The probability Pn→m corresponds Equation (22), and we omit the superscript.
Trajectories with wγ = 0 and vκ 6= 0 have |ηγκ | = ∞. Therefore, the average 〈ηγκ〉

does not always exist, and if it does, ηth 6= 〈ηγκ〉, unless the stochastic work and efficiency
are uncorrelated. In fact, 〈ηγκwγ〉 = 〈vκ〉 =W . So only if 〈ηγκwγ〉 = 〈ηγκ〉WR do we have
〈ηγκ〉 = ηth. The thermodynamic and fluctuating efficiency can be very different.

The following section discusses efficiency fluctuations for the cycle, heat and work
fluctuations for the recharging process and equilibrium fluctuations in two examples.

5. Examples

We illustrate our results in two simple examples. The first example is a single-qubit
battery that we use to discuss equilibrium fluctuations (Section 4.2). The second exam-
ple is a two-qubit battery where we compute heath and work distributions in a partial
recharging process (Section 4.3). In both, we compute the fluctuating efficiency distribution
(Section 4.5).

5.1. Single-Qubit Battery

An interesting protocol, with H0 = −HS, was discussed in [26] for a system S interact-
ing with systems A, which are copies of S. The corresponding process E has the remarkable
equilibrium state

ωβ(−HS) =
N

∑
n=1

eβEn

Z+
|n〉 〈n| ,

with Z+ = Tr[e+βHS ] between a system in the state ωβ(−HS) with copies of itself in the
Gibbs state ωβ(HS).

In this subsection, we consider the battery S and auxiliary systems A identical
qubits; i.e., the battery Hamiltonian is HS = (h/2)σz

S, and the baths Hamiltonians are
HA = (h/2)σz

A, with h > 0. Hereafter, σx, σy and σz are Pauli matrices.
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The coupling between the system and the bath qubit is

V = a(σ+
S σ+

A + σ−S σ−A ),

with σ± = (σx ± σy)/2, and is such that [σz
A − σz

S, V] = 0, i.e., H0 = −HS.
In the basis defined by σz |↑〉 = |↑〉 and σz |↓〉 = − |↓〉, the eigenvalues and eigenvec-

tors of HS and H0 are

E2 = h/2, E0
2 = −h/2, |2〉 = |↑〉 (30)

E1 = −h/2, E0
1 = h/2, |1〉 = |↓〉 (31)

and the ordering permutation is (π1, π2) = (2, 1). Thus, on the above basis, the equilibrium
state is

ωβ(H0) = ωβ(−HS) =
eβ h

2

Z
|2〉 〈2|+ e−β h

2

Z
|1〉 〈1| ,

and the passive state for the system is

σωβ(H0)
= ωβ(HS) =

e−β h
2

Z
|2〉 〈2|+ eβ h

2

Z
|1〉 〈1| ,

where Z = Z+ = 2 cosh(βh/2). With Equations (30) and (31), and the permutation π, we
can evaluate the transition probabilities in Equation (29). The ergotropy of the battery in
the equilibrium state ωβ(−HS) isW = h tanh βh/2. From Equations (23) and (24), we see
that the thermodynamic efficiency of the process is ηth = 1/2, independent of the inverse
temperature β.

The recharging process in this single-qubit battery (1Q) is determined by the stochastic
matrix (see Equation (21))

T1Q =

 1− eβ h
2

Z g(a, h) e−β h
2

Z g(a, h)
eβ h

2
Z g(a, h) 1− e−β h

2
Z g(a, h)

 (32)

where g(a, h) = a2 sin2(τ
√

h2+a2/h̄)
h2+a2 and Z = eβ h

2 + e−β h
2 . It is a regular stochastic matrix if

g(a, h) 6= 0.

5.1.1. Fluctuating Efficiency

The fluctuating efficiency (see Equation (29)) takes the values

η11 = −η22 = ∞, η12 = η21 =
1
2

Its distribution Equation (28) is

pη(x) = δ(x−∞)P∞ + δ(x + ∞)P−∞ + δ

(
x− 1

2

)
P 1

2

with

P∞ = P1→1 = P−∞ = P2→2 =
1

Z2 , P 1
2
= P1→2 + P2→1 =

eβh + e−βh

Z2 (33)

The explicit formulas at the right follow from Equation (29), which is valid if g(a, h) 6= 0
in T1Q.

In Figure 1a, we depict the probabilities Pη as functions of βh and see that for βh� 1
with probability 1; the fluctuating efficiency equals the thermodynamic efficiency 1/2,
because, as we see in Figure 1b, P1→2 → 1, reflecting the charging character of the process.
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Figure 1. For the 1-qubit battery (a) Plots of Pη (Equation (33)) as a function of βh. (b) Plots of
P1→2 = eβh/Z2, P2→1 = e−βh/Z2 and P1→1 = P2→2 = 1/Z2 for the single-qubit battery (see
Equation (29)). The charging process becomes deterministic as the temperature decreases, and the
fluctuating efficiency equals the thermodynamic efficiency 1/2 with probability one.

The diagrams in Figure 2 depict κ transitions (left, up to down), followed by γ tran-
sitions (right, down to up). The values of all variables and their probability are given
underneath.

γ
12

κ

11
η11 = ∞
vκ = h
wγ = 0
qγ = 0

pγκ = 1
Z2

γ
22

κ

11
η12 = 1/2

vκ = h
wγ = 2h
qγ = −h
pγκ = eβh

Z2

γ
11

κ

22
η21 = 1/2
vκ = −h

wγ = −2h
qγ = h

pγκ = e−βh

Z2

γ
21

κ

22
η22 = −∞
vκ = −h
wγ = 0
qγ = 0

pγκ = 1
Z2

Figure 2. Diagrammatic representation of the κ and γ paths for the discharging-charging cycle in
the single-qubit battery. Underneath each diagram, the associated value of the efficiency, extracted
energy, work, heat, and probability are given.

The numbers correspond to the energy levels 1 and 2. In the limit of large temperature,
β→ 0, all these processes have the same probability 1/4, while at low temperature β→ ∞,
the probability of the second process goes to one and the others to zero. Only the third
diagram has a transition assisted by heat, qγ = h. We extract energy wγ = −2h < 0 in the
γ process and invest vκ = −h in the κ process. This cycle is the least likely. Its probability
is e−βh/Z2 and decreases quickly as βh increases.

5.1.2. Equilibrium Fluctuation

Let us analyze the fluctuations when maintaining the charged state, i.e., those of
the process ωβ(H0) → E L(ωβ(H0)) = ωβ(H0); see Section 4.2. As we can verify in the
examples above, and as shown in [72], the transition matrices T for maps with equilibrium
satisfy the detailed balance condition Tm|ne−βE0

n = Tn|me−βE0
m . From this fact, it is simple to

show that P(L)
n→m = P(L)

m→n with pini(n) = e−βE0
n /Z0 in Equation (21).

We are interested in distinguishing fluctuations in an active equilibrium state from
fluctuations in a Gibbs equilibrium state. The main difference is that the probability
distribution of equilibrium work fluctuation is pw(x) 6= δ(x) for the former, reflecting an
active agent, and pw(x) = δ(x) for the latter, reflecting a passive agent.

To investigate other differences, we consider our charging map E and a thermal map
EThm for a qubit. The map EThm is obtained by coupling the qubit to an auxiliary thermal
qubit with V = a(σ+

S σ−A + σ−S σ+
A ) and tracing out the auxiliary system. The resulting map
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is thermal (i.e., a map with the Gibbs equilibrium state), and the transition matrix for this
process is

TThm =

 1− e−β h
2

Z g(a, 0) eβ h
2

Z g(a, 0)
e−β h

2
Z g(a, 0) 1− eβ h

2
Z g(a, 0)


where g(a, 0) = sin2(τa/h̄) and Z = eβ h

2 + e−β h
2 . TThm is a regular stochastic matrix if

g(a, 0) 6= 0. The most crucial difference between TThm and T1Q in Equation (32) is the
position of the factors e±βh/2.

For the charging map, one can show P(L)
2→2 > P(L)

1→1, reflecting the higher population of

the excited state in the active equilibrium. Instead, for the thermal map, P(L)Thm
1→1 > P(L)Thm

2→2 ,
reflecting the higher population of the ground state in Gibbs equilibrium. On the other hand,
energy fluctuations due to 1↔ 2 transitions are qualitatively similar if g(a, h) ≈ g(a, 0) for
processes with finite L but are indistinguishable for L→ ∞. Indeed, for L→ ∞, we have

P(∞)Thm
1→2 = P(∞)Thm

2→1 =
1

Z2 , P(∞)Thm
1→1 =

eβh

Z2 , P(∞)Thm
2→2 =

e−βh

Z2

and for the charging map,

P(∞)
2→1 = P(∞)

1→2 =
1

Z2 , P(∞)
2→2 =

eβh

Z2 , P(∞)
1→1 =

e−βh

Z2 .

Thus, these processes are very similar at the level of energy fluctuations.

5.2. Two-Qubit Battery

We consider a two-qubit battery with Hamiltonian [26]

HS =
h
2
(σz

1 + σz
2) + J

(
σx

1 σx
2 + σ

y
1 σ

y
2

)
,

coupled with
V = J′(σx

Aσx
1 + σ

y
Aσ

y
1 ),

to auxiliary systems with Hamiltonian HA = h
2 σz

A in the thermal state. The corresponding
map E has the equilibrium state ωβ(H0) with H0 = h

2
(
σz

1 + σz
2
)
.

The eigenvalues and eigenvectors of HS and H0 in the basis defined by σz |↑〉 = |↑〉
and σz |↓〉 = − |↓〉 are

E3 = h, E0
3 = h, |3〉 = |↑↑〉 , (34)

E4 = 2J, E0
4 = 0, |4〉 = (|↑↓〉+ |↓↑〉)/

√
2, (35)

E1 = −2J, E0
1 = 0, |1〉 = (|↑↓〉 − |↓↑〉)/

√
2, (36)

E2 = −h, E0
2 = −h, |2〉 = |↓↓〉 . (37)

We take 2J > h > 0 such that Ei+1 > Ei. The permutation that orders E0
πi+1
≥ E0

πi
is

(π1, π2, π3, π4) = (2, 1, 4, 3). Thus, on the above basis, the equilibrium state is

ωβ(H0) =
e−βh

Z0
|3〉 〈3|+ 1

Z0
(|1〉 〈1|+ |4〉 〈4|) + eβh

Z0
|2〉 〈2| ,

and the passive state for the system is

σωβ(H0)
=

eβh

Z0
|1〉 〈1|+ 1

Z0
(|2〉 〈2|+ |3〉 〈3|) + e−βh

Z0
|4〉 〈4| ,
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where Z0 = 2 + 2 cosh(βh). The ergotropy of the equilibrium stateW = Tr[HS(ωβ(H0)−
σωβ(H0)

)] is

W = (2J − h)
sinh βh

1 + cosh βh
.

The work performed in the charging process σωβ(H0)
→ ωβ(H0) is

WR = 2J
sinh βh

1 + cosh βh
.

We see that the thermodynamic efficiency is ηth =W/WR = 1− h
2J independently of the

inverse temperature β.
The recharging process in this two-qubit battery (2Q) is determined by the stochastic

matrix (see Equation (21))

T2Q =
1

(J2 + J′2)2


Φ2 2

(1+eβh)
ΦΨ 2eβh

(1+eβh)
ΦΨ Ψ2

2eβh

(1+eβh)
ΦΨ eβh(J2+J′2)2+∆

(1+eβh)
0 2eβh

(1+eβh)
ΦΨ

2
(1+eβh)

ΦΨ 0 (J2+J′2)2+eβh∆
(1+eβh)

2
(1+eβh)

ΦΨ

Ψ2 2
(1+eβh)

ΦΨ 2eβh

(1+eβh)
ΦΨ Φ2

, (38)

with

Φ = J2 + J′2 cos2(
τ

h̄

√
J2 + J′2), Ψ = J′2 sin2(

τ

h̄

√
J2 + J′2), ∆ = (Φ−Ψ)2,

which is a regular stochastic matrix excepts at points with Ψ = 0 or Φ = 0, as one can check
by computing T2.

5.2.1. Fluctuating Efficiency

For the fluctuating efficiency Equation (29), we have

η12 = η13 = η21 = η34 = η42 = η43 = 1− h
2J

(39)

η14 = η41 =
1
2
(1− h

2J
) (40)

η32 = −η23 = ∞ (41)

η24 = η31 = −(1− h
2J

) (42)

and η11 = η33 = −η22 = −η44 = ∞. Its distribution follows from Equation (28), and it is

pη(x) = δ(x−∞)P∞ + δ(x + ∞)P−∞ + δ

(
x− 1 +

h
2J

)
P(1− h

2J )
+

δ

(
x + 1− h

2J

)
P−(1− h

2J )
+ δ

(
x− 1

2
+

h
4J

)
P(1/2)(1− h

2J )
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with

P∞ = P3→2 + P1→1 + P3→3 =
2eβh + e−βh

Z2
0

, (43)

P−∞ = P2→3 + P2→2 + P4→4 =
eβh + 2e−βh

Z2
0

, (44)

P(1− h
2J )

= P1→2 + P1→3 + P2→1 + P3→4 + P4→2 + P4→3 =
2 + (eβh + e−βh)2

Z2
0

, (45)

P−(1− h
2J )

= P3→1 + P2→4 =
2

Z2
0

, (46)

P(1/2)(1− h
2J )

= P1→4 + P4→1 =
(e−βh + eβh)

Z2
0

. (47)

The explicit formulas on the right follow from Equation (29) and are valid for parameters
τ, J and J′ in which T2Q is regular.

In Figure 3a, we plot the probabilities Pη in Equations (44)–(47) as a function of βh. We
see that for small βh, the average efficiency does not exist. On the other hand, when βh� 1,
the efficiency goes to the thermodynamic efficiency with a probability of one because the
work becomes deterministic.

Pη=∞

Pη=-∞

P
η=1- h

2 J

P
η=-1+ h

2 J

P
η=

1

2
-
h

4 J
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0.0

0.2

0.4

0.6

0.8

1.0

β h

pr
ob
ab
il
it
y

(a)
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P13=P21=P24=P31=P34=P42

P23=P33=P41=P44

P43
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(b)

Figure 3. For the 2-qubit battery: (a) plots of Pη as a function of βh and (b) plots of Pn→m given by
Equation (29) for the two-qubit battery.We observe that as temperature decreases, the 1→ 2 transition
dominates. Fluctuations become negligible, and the fluctuating efficiency equals the thermodynamic
efficiency with a probability of one.

κ
2

1

γ

1 1
2

3
4

vκ = 2J − h

κ
1

2

γ

2 1
2

3
4

vκ = −(2J − h)

κ
4

3

γ

3 1
2

3
4

vκ = (2J − h)

κ
3

4

γ

4 1
2

3
4

vκ = −(2J − h)

Figure 4. Diagrammatic representation of the κ and γ paths for the discharging-charging cycle in the
two-qubit battery. Underneath each diagram, the associated value of the extracted energy is given.

The diagrams in Figure 4, summarize all possible extracting–recharging cycles. The
numbers correspond to the energy levels 1, 2, 3, and 4. Since extracting the ergotropy only
allows transitions κ : m′ → n with m′ = πn, we have four possible processes κ. From
Figure 3b, we see that the only process with a high probability for large βh is the sequence
2 κ−→ 1

γ−→ 2 contained in the first diagram. Its efficiency equals thermodynamic efficiency.
Green arrows are processes assisted by heat (qγ > 0). These have very low probabilities,
as depicted in Figure 3b. In Figure 3b, we see that P1→2 goes to one in that limit. Second
in importance are P1→4, associated with the largest charge, but in the extracting κ process,
one has 4 κ−→ 3, and the γ process starting in 3 reaches 1, 2, or 4 with similar probabilities
and the battery is noisy.
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5.2.2. Heat and Work Fluctuations in the Partial Recharging Process

Here, we consider the process E L starting in the state σωβ(H0)
and evaluate the heat and

work distributions. Hence, we consider Equations (19) and (20) with P(L)
n→m = (TL)m|n

e−βE0
πn

Z0 ,
with the permutation π ordering the eigenvalues of H0 by increasing values.

For the two-qubit battery, we obtain

p(L)
w (x) = δ(x)A(L)

0 + δ(x− 4J)A(L)
1 + δ(x− 2J)A(L)

3 + δ(x + 4J)A(L)
2 + δ(x + 2J)A(L)

4 , (48)

p(L)
q (x) = δ(x)B(L)

0 + δ(x− h)B(L)
4 + δ(x− 2h)B(L)

2 + δ(x + h)B(L)
3 + δ(x + 2h)B(L)

1 (49)

with

A(L)
0 = P(L)

2→3 + P(L)
3→2, B(L)

0 = P(L)
1→4 + P(L)

4→1, (50)

A(L)
1 = P(L)

1→4, B(L)
1 = P(L)

3→2, (51)

A(L)
2 = P(L)

4→1, B(L)
2 = P(L)

2→3, (52)

A(L)
3 = P(L)

1→2 + P(L)
1→3 + P(L)

2→4 + P(L)
3→4, B(L)

3 = P(L)
1→2 + P(L)

3→1 + P(L)
4→2 + P(L)

3→4, (53)

A(L)
4 = P(L)

2→1 + P(L)
3→1 + P(L)

4→2 + P(L)
4→3, B(L)

4 = P(L)
2→1 + P(L)

1→3 + P(L)
2→4 + P(L)

4→3, (54)

where A(L)
i 6= B(L)

i for finite L but A(∞)
i = B(∞)

i with

A(∞)
0 =

6 cosh βh
Z2

0
, A(∞)

1 =
eβh

Z2
0

, A(∞)
2 =

e−βh

Z2
0

, A(∞)
3 =

e2βh + 3
Z2

0
, A(∞)

4 =
3 + e−2βh

Z2
0

.

This means that the average work W(L) and average heat Q(L)

W(L) = 2J(A(L)
3 − A(L)

4 ) + 4J(A(L)
1 − A(L)

2 ) −−−→
L→∞

2J sinh βh
1 + cosh βh

Q(L) = h(B(L)
4 − B(L)

3 ) + 2h(B(L)
2 − B(L)

1 ) −−−→
L→∞

−h sinh βh
1 + cosh βh

become proportional when L→ ∞.
Since Markov chains converge exponentially quickly to the stationary state, it is

unnecessary to consider a large L to observe the asymptotic distribution. However, since
the convergence rate depends on the map’s parameters, we see deviations from it near
the points where Φ = 0 or Ψ = 0 in Equation (38). To illustrate this point, we plot in
Figure 5 the probabilities A(L)

0 , B(L)
0 , A(L)

2 , and B(L)
2 for various values of L and varying map

parameters.
Figure 5 shows that for L = 20, convergence is achieved with a duration of each

iteration τ/h̄ = 1. Note that the dependence on τ in T2Q is periodic; see Equation (38).
In the limit L → ∞, τ → 0 and J′ = j/

√
τ, the dynamics of the battery has the Lindblad

form [69] and converges exponentially quickly to the equilibrium distribution.
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Figure 5. Plots of the probabilities A(L)
i and B(L)

i , with L = 2 at the left (a,d) and L = 20 at the center
(b,e) with i = 0 at the top (a,b) and i = 2 at the bottom (d,e). On the right (c,f), we superpose the

analytical result A(∞)
i and B(∞)

i to the data at the center for L = 20. For the numerical computation,
we take β = τ/h̄ = 1, J = J′ = x and h = 0.6x. We observe that besides neighborhoods of points
where T2Q is not regular, the theoretical prediction in Equation (22) is observed after L ≈ 20 iterations.

6. Discussion

We have studied stochastic fluctuations in repeated interaction processes subjected
to the two-point energy-measurement scheme. Because map E has an equilibrium state,
all quantities are expressed in terms of system properties simplifying their study because
one does not require measuring the environment. We have shown that the equilibrium
distribution of the map dominates the distributions, except at particular points in the
parameter space of the map, where its details become essential. Near these zones, the
convergence rate towards the asymptotic value is low, requiring larger values of L to
reach it. The quantum aspect of the system is relevant near these zones since the Planck
constant appears in the parameters that set the convergence rate to the stationary state.
We have applied these results to study active equilibrium fluctuations, fluctuations in the
charging process of a quantum battery, and efficiency fluctuations of the cycle charging
and extracting energy for the battery in two examples. The fluctuating efficiency converges
to the thermodynamic efficiency of these examples in the low-temperature limit, where
the batteries operate in the cycle 2 κ−→ 1

γ−→ 2 and are reliable. On the other hand, at large
temperatures, where heat assists some transitions, all cycles are probable, and the battery
is unreliable.

For future research, it would be interesting to extend the results obtained here for
single-cycle efficiency to the case of an arbitrary number of cycles. As this number increases,
universal statistical behaviors have been shown to appear in other machines [58,59,68].
Likewise, considering the collective boost in power for dissipative quantum batteries [79]
and the result in [43], studying fluctuations as the number of batteries increases is of
similar interest.

Funding: F.B. gratefully acknowledges the financial support of FONDECYT grant 1191441 and the
Millennium Nucleus “Physics of active matter” of ANID (Chile).

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Distributions for Maps with Equilibrium

Let us justify Equations (15) and (20). Equations (18) and (19) follow from the
same argument.
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We can consider that the system S and all the copies of system A start as uncorrelated
in a product state. We measure the energy of that system and project the state to |i1 · · · iLn〉

with a probability e
−β ∑L

k=1 εik

ZL
A

pini(n) because the copies of A are in the Gibbs state. Then, the

full system evolves unitarily by composing the unitary evolution, where at each time, only
the system S with a copy i of A is interacting. This is represented by the product UL · · ·U1,
and the global state is UL · · ·U1 |i1 · · · iLn〉. Then, we measure the energy of S and of each
copy of A. According to the Born rule, after the measurement, the total system is the state
|j1 · · · jLm〉 with a probability of

P(L)
γ = |〈j1 · · · jLnaL |UL · · ·U1|i1 · · · iLna0〉|2

e−β ∑L
n=1 εin

ZL
b

pi(na0). (A1)

More details can be found in [72].
We use these results to derive Equation (20), and by extension, all other distributions

for maps with equilibrium. Consider that

〈j1 · · · jLnaL |UL · · ·U1|i1 · · · iLna0〉 = ∑
a1a2..aL−1

〈naL jL|UL|naL−1 iL〉 · · · 〈na2 j2|U2|na1 i2〉〈na1 j1|U1|na0 i1〉

Because [H0 + HA, Uk] = 0, the generic transition 〈nak jk|Uk|nak−1 ik〉 = 0 unless E0
ak
+ ε jk =

E0
ak−1

+ εik . Thus, in every trajectory γ with non-vanishing probability, we have

qγ = ∑
k
(εik − ε jk ) = ∑

k
(E0

ak
− E0

ak−1
) = E0

aL
− E0

a1
.

Hence

p(L)
q (x) = ∑

γ

δ(x− qγ)P(L)
γ = ∑

γ

δ(q− (E0
aL
− E0

a0
))P(L)

γ = ∑
aL ,a0

δ(q− (E0
aL
− E0

a0
)) ∑

γ:aL ,a0

P(L)
γ ,

where in the last sum, we add over all trajectories γ starting at na0 and ending at naL .
This corresponds to taking the traces over all systems A that interacted with S and thus

∑γ:aL ,a0
P(L)

γ = 〈naL | E L(|na0〉 〈na0 |) |naL〉 pi(na0).
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