
����������
�������

Citation: Muñoz, V.; Flández, E.

Complex Network Study of Solar

Magnetograms. Entropy 2022, 24, 753.

https://doi.org/10.3390/e24060753

Academic Editor: Hocine Cherifi

Received: 18 April 2022

Accepted: 21 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Complex Network Study of Solar Magnetograms

Víctor Muñoz *,† and Eduardo Flández †

Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile;
eduardo.flandez@ug.uchile.cl
* Correspondence: vmunoz@fisica.ciencias.uchile.cl
† These authors contributed equally to this work.

Abstract: In this paper, we study solar magnetic activity by means of a complex network approach.
A complex network was built based on information on the space and time evolution of sunspots
provided by image recognition algorithms on solar magnetograms taken during the complete 23rd
solar cycle. Both directed and undirected networks were built, and various measures such as degree
distributions, clustering coefficient, average shortest path, various centrality measures, and Gini
coefficients calculated for all them. We find that certain measures are correlated with solar activity
and others are anticorrelated, while several measures are essentially constant along the solar cycle.
Thus, we show that complex network analysis can yield useful information on the evolution of solar
activity and reveal universal features valid at any stage of the solar cycle; the implications of this
research for the prediction of solar maxima are discussed as well.

Keywords: complex networks; sunspots; magnetograms; solar activity; complexity

1. Introduction

Studying solar dynamics is a subject of great interest, both for the observational,
theoretical, and computational challenges involved and for the impact that solar magnetic
activity has on our planet through the coupling of solar wind and the Earth’s magnetic
fields, whereby periods of high solar activity may lead to intense geomagnetic storms
which may affect human communications and spacecrafts [1]. Periods of low solar activity
can be correlated with anomalously cold periods in the past [2], which is why many efforts
have been devoted to the understanding or prediction of the solar cycle.

Several strategies have been developed to understand solar dynamics, including fluid
and kinetic analytical models and computer simulations based on these models. In the last
several decades, new strategies based on the study of complexity have been developed to
study plasma systems. For instance, fractal and multifractal analyses have been carried
out for turbulence in laboratory plasmas [3,4], geomagnetic activity [5–10], and solar wind
dynamics [11–13]. From the perspective of self-organized criticality, sandpile models have
been used to model the energy release from the Sun by means of solar flares [14] and
geomagnetic activity [15].

Complex networks have proven to be a new and interesting approach to the study of
plasma dynamics in general and of solar activity in particular. They have already been used
in the context of various geophysical problems such as earthquakes, sea and atmospheric
flows, and geomagnetic storms [16–22].

Regarding solar activity, complex networks have been successfully used to investigate
time reversibility in turbulent states in solar wind simulations [23], to study probability of
flares in solar active regions [24], to characterize the sunspots time series [25], and more
recently to study solar flare statistics [26].

Most of these approaches consider complexity either in the spatial domain (e.g., fractal
analysis of images) or in the time domain (e.g., fractality in time series and visibility graphs
or nonlinear time series analysis in general). However, complex networks are able to follow
the spatiotemporal evolution of a system as well, by mapping spatial patterns to nodes
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and time patterns to their connections. This strategy has been successfully applied to the
study of seismic events, where it has revealed various universal features of seismicity
regardless of the seismic zone [16,19,20] as well as changes in the network topology due to
the existence of large events [27]. It has been further applied to the study of solar flares,
where, combined with a visibility graph approach, it has shown scale-free and small-world
features similar to those observed for networks based on seismic events.

In this paper, we take a similar strategy to studying solar activity by mapping the
spatiotemporal evolution of sunspots on the solar surface to a complex network. As the
sunspot number is regarded as a simple and effective way to describe the solar cycle, being
directly related to the level of magnetic activity, changes in the number, distribution, and
lifetime of sunspots may lead to changes in the topological properties of the resulting
complex network, which can then be related back with the physical evolution of the solar
magnetic field.

This paper is organized as follows. In Section 2, the dataset and analysis methods
used to study them are described. First, in Section 2.1 the dataset used for this study is
described. Then, the image recognition algorithms used to identify individual sunspots are
described in Section 2.2. Next, Section 2.3 describes how a complex network was built from
sunspot data, and the measures that were chosen to analyze it. Our results are provided in
Section 3, and they are further summarized and discussed in Section 4.

2. Materials and Methods
2.1. Solar Magnetograms

Solar magnetograms are bidimensional representations of the magnetic field in the
Sun’s photosphere. In this paper, we have taken data collected by the Michelson Doppler
Imager (MDI) for the Daily Magnetic Field Synoptic Data (Solar Oscillations Investigation
(SOI) project onboard the SOHO mission [28,29]). While each magnetogram is associated
with one calendar day, they are actually averages over a 27-day solar rotation, thus repre-
senting the magnetic field magnitude on the solar disk. A typical magnetogram image can
be found in Figure 13 of Ref. [5].

For this paper, we considered all magnetograms corresponding to the 23rd solar cycle,
which started in July 1996 and ended in December 2008. The corresponding maximum of
solar activity occurred in November 2001.

2.2. Image Processing Algorithms

Starting from the magnetogram images, we extracted information about sunspot
location. First, we converted them into a black and white image, with white regions
representing sunspots. Here, we follow the same procedure described in [5] involving
conversion to gray scale. At this point, the image is represented by pixels which can have
any value between 0 (black) and 255 (white). Then, a suitable threshold α is chosen such
that all values above α are considered white and all values below α are considered black.
In [5], the authors’ interest was to follow the evolution of the fractal dimension of the
magnetograms, and the choice of α was therefore based on two criteria: that the resulting
fractal dimension be able to actually discriminate stages along the solar cycle, and that
the fractal dimension not be too sensitive to α (which is, after all, an arbitrary parameter).
Based on that criteria, α = 155 was chosen; we use the same value here for consistency. The
results presented herein show that this method is able to discriminate between different
stages of solar activity in complex network analysis.

Up to this point, the images are the same as those used for the fractal analysis in [5],
with white dots indicating locations with higher magnetic field. However, in this work we
intend to follow the spatiotemporal evolution of sunspots, and thus need to identify them,
and their location, individually.

Thus, we required additional image recognition and processing algorithms. First,
we applied a noise reduction filter in order to eliminate isolated dots and focus only on
major features which better represent actual sunspots. This was carried out by applying



Entropy 2022, 24, 753 3 of 17

the MATLAB nlfilter function (https://la.mathworks.com/help/images/ref/nlfilter.html,
accessed on 20 May 2022). By inspection, we determined that three passes of the filter were
enough to eliminate noise and leave only relevant sunspots, yielding trends consistent
with works reported elsewhere [30], as shown in Section 3. Figure 1 displays the resulting
image after all the described steps, corresponding to the magnetogram for 1 January 2000.
The original magnetogram and its conversion into a black and white pattern before noise
filtering can be found in Figures 13 and 15 in Ref. [5].

Figure 1. Filtered magnetogram for 1 January 2000; the axes show the coordinate system as used by
the image processing algorithms described in the text.

Then, we used the MATLAB bwlabel function (https://la.mathworks.com/help/
images/ref/bwlabel.html, accessed on 20 May 2022) to identify each sunspot as an indepen-
dent object. Finally, the function regionprops (https://la.mathworks.com/help/images/
ref/regionprops.html, accessed on 20 May 2022) was used to determine the respective
centroids (in pixel coordinates).

As time evolves and as the Sun rotates, the centroids move, resulting in different
coordinates for the centroids. In order to ensure that this phenomenon was not mistaken
for two different events, we measured all centroid coordinates with respect to the origin of
the Carrington coordinate system, which can be identified in the magnetograms and moves
horizontally at a constant rate in consecutive magnetograms.

2.3. Complex Network

The set of centroids (pixels) for all magnetograms was used to build a complex network.
Here, we follow previous work on seismic events [16,19,20,27,31], where seisms define
the nodes and a node A is connected to a node B if the event associated with B is the one
following the event associated with A in the seismic catalog. This approach has revealed
interesting universal features for various seismic regions, although it is important to note
that network edges do not imply causal relationships. For instance, it has allowed the
universality of scale freedom and small-world features to be established in the resulting
networks [27,31], as well as the universal behavior of the clustering coefficient regardless of
the detailed features of the studied seismic region [19] and the change in network topology
and critical indices before and after large seismic events [20]. These works suggest that
complex networks built as described can be useful in studying physical systems by means
of their spatiotemporal patterns. A similar idea, including a visibility graph approach, has
been recently used to study solar flare statistics [26].

Here, then, we consider each centroid pixel as a node, and nodes are connected
according to their time sequence. The main difference between our set of centroids and
the seismic catalog is that at any given timestep there are several events (centroids) active,
instead of only one. The simplest way to deal with this is to connect all nodes in the n-th
magnetogram to all nodes in the n + 1-th one.

Because sunspots may have lifetimes of several days, most of them appear in several
consecutive magnetograms, which according to the previous rule should lead to several
repeated connections between the same two nodes. As this is simply information about the

https://la.mathworks.com/help/images/ref/nlfilter.html
https://la.mathworks.com/help/images/ref/bwlabel.html
https://la.mathworks.com/help/images/ref/bwlabel.html
https://la.mathworks.com/help/images/ref/regionprops.html
https://la.mathworks.com/help/images/ref/regionprops.html
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simultaneous persistence of two nodes, we have ignored repeated connections between
nodes; that is, two nodes can be connected, at most, by one edge.

Finally, as network construction requires a sequence of consecutive magnetograms,
we must define time windows in order to use only those magnetograms which belong to it
to build the complex network. We have found that non overlapping one-month windows
are sufficient to reveal interesting features, as shown in Section 3.

In principle, as connections between nodes are forward in time, the resulting networks
are directed. However, following [16,19,20,27,31], we can study the corresponding undi-
rected networks by removing multiple connections between nodes and self-connections.

After the networks are built, various measures must be calculated in order to study
their possible correlation with magnetic activity along the solar cycle. In particular, we
considered node degree, clustering coefficient, mean path length between nodes, network
density, and various centrality measures (betweenness, eigenvector, and closeness central-
ity). We calculated measures for each node and then averaged them in order to find the
representative value for the whole network.

However, this average could be nonrepresentative if fluctuations are large; thus, a
better description of the network should consider the distributions of these quantities.
These distributions can provide interesting information about the underlying dynamics of
the system. For instance, random networks yield exponential degree distributions, while
a preferential-attachment growth model yields a power-law degree distribution [32]. In
addition, decay exponents can change as the result of large events [20], and may correlate
with the parameters of the network growth model [33].

Another way to analyze distributions is the Gini coefficient, which is typically used
in economics as a measure of inequality in a society, providing an interesting abstraction
of how a variable is distributed across individuals. This can be easily generalized to the
distribution of a given measure across network nodes. Thus, based on the probability
distribution function (PDF), we calculated the Gini coefficient in order to measure the
“inequality” in the network representing the spatiotemporal pattern of sunspots.

3. Results

As a first test of the quality of our procedure to isolate sunspots, we simply count the
number of centroids in each magnetogram. Figure 2 shows the result obtained when three
passes of the noise reduction filter are applied. The shape of the curve is consistent with
previous works. For instance, Ref. [30] presents results obtained with the STARA code,
which is based on image processing algorithms. Notice that they scale their results in order
to compare with the international sunspot number reported by the Solar Influences Data
Center (SIDC, [34]), as although absolute values are different, it is trends that are relevant.
The same occurs in our case, where although our algorithms yield absolute values which
are different from the SIDC number, the curves behave similarly. In effect, their Figure 1
shows that the trends are actually the same, as does our Figure 2. Notice that after 1 July
2015 a new data series is available for sunspot data at [34]. In order to compare with [30],
the original series previous to 2015 has been used. Similar results are obtained with the
revised dataset, except that a higher absolute number of sunspots is found in the latter. In
particular, it is interesting that both the SIDC number and the STARA algorithm show a
double-peaked maximum. However, the STARA algorithm shows a higher second peak.
In that sense, our Figure 2, which is likewise based on image processing algorithms, is
consistent with the result in [30] as well.

We note that around 1999 there is a lack of points in the curve. This is due to data
collection problems in the spacecraft (loss of contact for several months following June
1998); thus, no magnetograms, or only low quality ones, exist for this period.
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Figure 2. Sunspot number along the 23rd solar cycle as obtained by our algorithm. Black line: this
work; Blue line: SIDC sunspot number.

We now use one-month windows to build the network, as described in Section 2, and
calculate various measures, starting with the simplest ones. Figure 3a shows the number of
nodes in one-month time windows, and Figure 3b shows the number of edges.

(a) (b)

Figure 3. (a) Node number for one-month windows and (b) edge number for networks obtained for
one-month time windows along the 23rd solar cycle.

As expected, the curve for the number of nodes follows the trend of the sunspot
number, because each node simply corresponds to a sunspot (except that the same sunspot
may appear in several magnetograms, and thus the actual number of nodes is higher). A
similar result is found for edges. As all nodes at time t are connected to all nodes at time
t + 1, it can be expected that when more nodes are present (near solar maximum), more
edges will appear. While the number of edges is slightly decreased when the undirected
network is considered because it involves removing edges from the directed network, the
general trend is the same.

Consistent with the results above, if both node and edge numbers increase during
solar maximum we can expect the average degree of the network to increase as well. This
is actually the case, as shown in Figure 4a. However, the increase in edge number as the
solar maximum approaches induces a large increase in the fluctuations of the degree across
the network. This can be noted in Figure 4b, where the standard deviation for the degree is
plotted for both the directed and undirected networks. The same trend as all the other plots
is observed. This suggests that although averages of a measure can show a good correlation
with solar activity, deviations from the average may be very large, making the average
itself less meaningful; thus, we must pay attention to the distribution of that quantity over
the whole network as well.

In general, for the rest of the measures we have considered in this work their standard
deviation does not have such extreme variations as for the degree distribution shown in
Figure 4b, and they tend to be larger during solar minima instead.
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Figure 4. Measures for each monthly network along the 23rd solar cycle: (a) average degree
and (b) standard deviation for degree.

Figure 5 shows the complementary cumulative probability distribution function
(CCDF) for the degree for all years in the solar cycle. For the sake of comparison, we
picked a particular network for each year, namely, the network for the month of July. We
observe a clear difference between distributions corresponding to years near the solar
minimum and solar maximum. Close to the solar maximum, larger degrees appear, causing
both the average degree and its standard deviation to increase, as seen in Figure 4.

Figure 5. Complementary cumulative probability distribution function 1− F(k) for node degree, in
semilogarithmic scale. All curves correspond to the month of July of the corresponding year.

Several previous works have shown that the decay features of the distribution function
may yield information on the underlying physics leading to network formation [32,35],
such as optimization mechanisms for the growth of spatial networks [33,36] and revealing
the existence of large earthquakes in networks of seismic data [20]. Based on this, we turn
our attention to the tail of the distributions. In Figure 5, there seems to be an exponential
decay with a varying decay exponent as the solar cycle progresses. This is explicit in
Figure 6, where the time evolution of the exponent is shown (blue dots). It is interesting to
compare these results, which are derived from an essentially structural analysis (complex
network measure), with the physical parameters representing solar activity. This is shown
in Figure 6 in the red dots, which correspond to the maximum magnetic field on the
sunspots’ umbra, averaged per year, as reported in [30]. We think that the good correlation
between the degree exponent and the sunspots’ magnetic field is nontrivial, and suggests
that this network analysis can provide interesting information on solar activity.
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Figure 6. Decay exponent for the distributions in Figure 5 along the 23rd solar cycle; Blue dots: decay
exponent for each monthly network; bars correspond to the error in the least squares fit; Red dots:
Maximum magnetic field on the sunspot umbra, averaged per year [30].

As mentioned above, the Gini coefficient is another measure that can be used to
visualize how a given quantity is distributed across nodes, in addition the much simpler
information provided by the average and standard deviation and without the need to deal
with the distribution as a whole. In this case, we calculate the Gini coefficient for the degree
distribution in order to obtain an estimation of how “unequally” the degree is distributed
across nodes. The results for both the directed and undirected networks are shown in
Figure 7.

Figure 7. Gini coefficient for each monthly network along the 23rd solar cycle. For reference, the
sunspot number as shown by the black curve of Figure 2 is plotted as well.

It is clear from Figure 7 that the Gini coefficient decreases during solar maxima. In
effect, during solar minima there are few sunspots, which leads to a low number of both
nodes and connections. Not all nodes have the same degree, and thus there is a certain
inequality in its distribution at the start of the cycle. However, as the solar cycle advances,
the sunspot number increases, and the number of nodes and connections increases. Given
the growth rules, connections are created between all nodes in consecutive magnetograms,
leading to the possibility of decreasing inequality.

Notice that this trend is opposite to that of the average degree and standard deviation
shown in Figure 4. It is worth pointing out that the difference between directed and
undirected networks is much less for the Gini coefficient than it is for the degree and
standard deviation.

To this point, we have found that certain measures correlate with solar activity (degree
and standard deviation of the degree), while others anticorrelate (Gini coefficient). This is a
consequence of the sunspot number evolution in time and space and the way the network
is built, which yields new connections which are distributed in such a way that degree
is more “equally” distributed across nodes when sunspot number increases. Thus, it is
interesting to find that this interplay is able to yield measures which are essentially constant
along the solar cycle.
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This is the case for the network density (the ratio of the edge number to the maximum
possible number if every node were connected to all other nodes); network density is
shown in Figure 8.

Figure 8. Network density for each monthly network along the 23rd solar cycle. For reference, the
sunspot number as shown by the black curve of Figure 2 is plotted as well.

As seen in this plot, the undirected network is slightly denser that the directed one,
which is consistent with it having more connections for the same number of nodes. How-
ever, the dynamics of new connections between nodes is such that density is essentially
constant along the solar cycle. Fluctuations, meanwhile, are larger at solar minima, possibly
due to the smaller number of connections and the resulting poorer statistics.

Thus far, we have only discussed results directly based on the degree of the nodes,
which is certainly the simplest of the possible measures. We now discuss other more
complex measures that allow to describe the network topology in complementary ways.

That is the case for the clustering coefficient, which quantifies the number of neighbors
of a given node which are in turn connected to each other. The result is shown in Figure 9.

Figure 9. Same as Figure 8, except for the clustering coefficient.

A very interesting picture now arises. In principle, it would be reasonable to expect
that the quantities measured on the complex networks would follow the solar cycle. As
mentioned above, this means that Figures 3 and 4 can be easily understood. However, not
all measures depend in a trivial way on the number of nodes and edges; this is related to
the topology of the network, as provided by both the number, location, and persistence
of the sunspots (which provides the physics behind the process), and to the algorithm
used to build the network. Figure 9 shows precisely this, as the clustering coefficient is a
measure that depends on how neighbors are connected, which is not automatically related
to their number. In fact, the clustering coefficient is essentially constant along the solar
cycle. As this measure is provided by the number of closed triangles in the network, it is
related to the number of possible connections between a given subset of nodes. Therefore,
one can argue that Figure 9 is consistent with Figure 8. Notice that fluctuations of the
clustering coefficient are larger at solar minima, which is possibly related to the poorer
statistics available with the smaller number of nodes. The clustering coefficient is slightly
larger for the undirected network, which is consistent with its larger density.
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On the other hand, although the average clustering coefficient does not change very
much along the solar cycle, its distribution clearly changes, as manifested by its Gini
coefficient (Figure 10). During solar maxima, the clustering coefficient is distributed more
equally across nodes, similar to the degree (Figure 7).

Figure 10. Same as Figure 8, except for the Gini coefficient of the clustering coefficient distribution.

We can now observe that these two quantities tell different stories along the solar cycle.
The degree correlates with the solar cycle, while its inequality anticorrelates; on the other
hand, the clustering coefficient does not correlate with the solar cycle, while its inequality
anticorrelates.

Mean distance (length of shortest path) between nodes and betweenness centrality
does not show any particularly interesting features, remaining essentially constant along
most of the solar cycle except very close to solar minima, as shown in Figure 11.
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Figure 11. Same as Figure 8, except for (a) distance and (b) betweenness centrality.

However, as a further example of the nontriviality of the results and of the relationship
between different measures, the Gini coefficient of the betweenness centrality (Figure 12)
shows an interesting evolution along the solar cycle, oscillating between 0.5 and 0.9, ap-
proximately, with one minimum near the solar cycle maximum and a maximum before the
final solar cycle minimum.

Figure 12. Same as Figure 8, except for the Gini coefficient of the betweenness centrality distribution.
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The mean distance between nodes is of the order of 2 along the solar cycle, which is
very small compared with the number of nodes (Figure 3), suggesting that the network
may be of the small-world type [37]. In order to test this, we can calculate the ratio between
the clustering coefficient of the network (Figure 9) and the clustering coefficient Crandom
of random networks with the same number of nodes and edges for each month along the
solar cycle; thus, we improved these statistics by building ten different random networks
to obtain an average value for Crandom, with the results shown in Figure 13. It can be
seen that although the clustering coefficients are larger than those for the corresponding
random network, the condition C � Crandom is not satisfied, and small world features
could therefore not be identified.
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Figure 13. Same as Figure 8, except for the ratio between the clustering coefficient and the clustering
coefficient of a random network with the same number of nodes and edges averaged over ten
random instances.

We made similar analyses for two additional measures of centrality, namely, closeness
and eigenvector centrality. The closeness centrality shows similar behavior as the distance
centrality and betweenness centrality (Figure 11), being approximately constant during
most of the cycle. However, unlike Figure 11, the closeness centrality diminishes near solar
minima, which makes sense when considering that this measure is related to the inverse
of the distance between nodes. As for the eigenvector centrality, its evolution is similar
to Figure 11, although with a more gradual increase near solar minima which makes the
anticorrelation with solar activity much more clear (Figure 14).

Figure 14. Same as Figure 8, except for the eigenvector centrality.

Regarding their respective Gini coefficients, the behavior is similar to the Gini coeffi-
cient for the clustering coefficient, anticorrelating with solar activity, although its variation
along the solar cycle is much more evident for the eigenvector centrality. This is shown in
Figure 15.

Several of the correlations between these measures and solar activity (as represented
by the number of sunspots) can be easily explained, e.g., the degree, while others are less
evident, such as the Gini coefficients and the decay exponents of the degree distribution.
There are relationships between certain measures which can be expected; we have already
mentioned that the density and the clustering coefficient (Figures 8 and 9) are constant
along the solar cycle, as they both compare the number of edges with the number of
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possible connections between a certain subset of nodes. We have pointed out that the
inverse relation between the closeness centrality and the distance between nodes may
explain the inverse convexity in their respective plots.

(a) (b)

Figure 15. Same as Figure 8, except for the Gini coefficients of (a) closeness and (b) eigenvector
centrality.

In order to reveal further and less obvious relationships between measures, we provide
various plots where the abscissa correspond to values of one measure for a given network
and the ordinate corresponds to the value of another measure for the same network. If
the two measures selected are completely uncorrelated, the points should cover the plane
randomly. If there is a strong linear correlation between the measures (revealing a possibly
trivial dependence between their values), the points would lie on a single line. Notice that
we consider measures which can be calculated for each single node (degree, clustering
coefficient, centrality measures); thus, the plotted values are actually averages over all
nodes for a certain monthly network, consistent with Figures 4, 9, 11b and 14.

Figure 16 shows the betweenness centrality versus the degree. A clear power-law
behavior is observed for both the directed and undirected networks:

〈g〉(〈k〉) ' 〈k〉−γ (1)

with slightly different decay exponents (γ ∼ 1.14 for directed networks and γ ∼ 1.18 for
undirected networks).
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Figure 16. Average betweenness centrality versus average degree for monthly networks along the
23rd solar cycle: (a) directed networks and (b) undirected networks.

This is an interesting result. First, the plots for degree (Figure 4) and betweenness
centrality (Figure 11b) do not suggest an evident relationship between both measures, which
is clear in Figure 16. Second, various works have discussed the power-law relationship
between betweenness centrality and degree for scale-free networks, including the possible
universality of the decay exponent [27,38,39], and thus Figure 16 could be showing the scale-
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free nature of the networks, which is not otherwise evident (in Figure 5, for instance, we
were able to fit the distributions with an exponential function). However, these works deal
with a single network, and the values of betweenness centrality and degree for individual
nodes are compared. Here, each point is provided by values representative of a complete
network, and further work is therefore required in order to understand the implications of
this result.

Notice that because Figure 4 shows that lower degrees occur close to solar minima
and higher degrees close to solar maxima, in Figure 16 the points on the left side of the
plot correspond to the beginning and end of the cycle, while the points on the right side
correspond to the networks near the solar maximum.

In Figure 16, certain points deviate from the power-law relationship. For the directed
networks, there are two outliers below the main group. These points correspond to March
1997 (〈k〉 ' 101) and February 1999 (〈k〉 . 102). For the second case, February 1999,
the problem is the quality of the magnetograms themselves, as mentioned above when
discussing Figure 2, which affects the topology of the resulting network, deviating it from
the general trend. For March 1997 the problem is less evident, because the quality of the
magnetograms is better, except for the existence of a band without data in the upper part of
the magnetogram. Although similar features can be observed in other parts of the solar
cycle, March 1997 is in the minimum of the cycle; fewer sunspots are visible, and a moderate
perturbation in the data can therefore yield strong effects in the network as a whole.

For the undirected networks, the major outlier for March 1997 remains, and the same
explanation applies.

It is interesting to note that although degree and betweenness centrality correlate in
different ways with solar activity, their respective Gini coefficients are not very different
during most of the solar cycle, with slightly different trends at the end of the solar cycle
(Figures 7 and 12). Further analyses are needed to understand whether this fact and the
correlation observed in Figure 16 is accidental or could be explained by more general
arguments.

Equivalent results are found for other centrality measure, namely eigenvector central-
ity. The results are shown in Figure 17, where a power-law dependence is again evident:

〈e〉(〈k〉) ' 〈k〉−δ . (2)

(a) (b)

Figure 17. Same as Figure 16, except for the eigenvector centrality: (a) directed networks, (b) undi-
rected networks.

Similar to the betweenness centrality, the decay exponent in this case is only slightly
different for directed and undirected networks (δ ∼ 0.48 and δ ∼ 0.5, respectively). It
could be argued that this is to be expected, as the betweenness and eigenvector centrality
show similar trends along the solar cycle (Figures 11b and 14), although with a more clear
dependence on the solar cycle for the latter.

However, unlike the betweenness centrality, the similarities between the Gini coeffi-
cients of the degree (Figure 7) and eigenvector centrality (Figure 15) are much closer than
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with the betweenness centrality (Figure 12), confirming that the power-law relationship
between measures does not imply correlation between the distribution inequalities.

In Figure 17, as in Figure 16, there are clear outliers, which in this case correspond to
March 1997 (〈k〉 ' 101), February 1999 (〈k〉 . 102), and November 1998 (〈k〉 & 102), the
explanations being the same as above. The new outlier, November 1998, has problems in
the data similar to February 1999, which are revealed by the choice of a different measure.

Finally, we show results for the clustering coefficient versus degree, in Figure 18.
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Figure 18. Same as Figure 16, except for the clustering coefficient. Colors identify stages in the
solar cycle. Blue dots: years near solar minimum (1996–1997, 2006–2008); purple dots: years before
or after solar maximum (1998–1999, 2003–2005); red dots: years near solar maximum (2000–2002).
(a) Directed networks, (b) undirected networks.

The plots are clearly different from Figures 16 and 17, as no simple power-law depen-
dence is observed; however, the distribution is not fully random either. This is especially
evident when we add the information about the location of the corresponding time window
in the solar cycle, represented by the different colored dots in Figure 18. It can be observed
that the clustering coefficient is not fully independent of the degree, and the details change
along the solar cycle. Near solar maxima the clustering coefficient is less correlated with the
degree, as shown by the larger dispersion of blue points. At this stage, the small number
of sunspots leads to fewer nodes and connections (Figure 4), meaning that these dots are
located at the lowest values of the degree. The opposite occurs during solar maxima. The
clustering coefficient exhibits the lowest dispersion, and as the sunspot number is larger
at this time, the degree is the highest as well. Then, at intermediate stages of the solar
cycle (ascending and descending phases) far from both the maximum and the minimum
of solar cycle, both the dispersion of the clustering coefficient and the average degree
have intermediate values. These results are independent of the network being directed or
undirected. It is worth noting that it is the dispersion of the clustering coefficient which
has an interesting evolution along the solar cycle, whereas its average value is essentially
constant, as can be seen in Figure 18 and is explicit in Figure 9. This is consistent with the
fact that the Gini coefficient of the clustering coefficient, Figure 10 is better correlated with
solar activity than with the clustering coefficient itself.

4. Discussion

In this work, we have carried out an analysis of magnetic solar activity following
a complex network approach. The complex network was built by associating nodes to
sunspots and linking sunspots in consecutive days with edges. The study is based on
magnetic field information contained in daily magnetograms representing the magnetic
field intensity on the solar surface along the full 23rd solar cycle. The magnetograms
were converted to black and white images, the noise was reduced, and image recognition
algorithms were used to identify the centroids of individual sunspots, which in turn define
the network nodes.
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As the solar activity varies, the number and lifetime of sunspots change, and this
should have an effect on the topology of the resulting network. This was tested by evaluat-
ing several measures for networks built with data corresponding to moving one-month
windows along the solar cycle. Changes in the measures can then be expected to reveal
associated changes in the topology of the network as a result of variations in solar magnetic
activity.

Several measures were calculated, namely, degree, clustering coefficient, density,
distance between nodes, betweenness centrality, and eigenvector centrality. Their average
values were studied along with their full distributions and the associated Gini coefficients.
We observe that certain quantities correlate and others anticorrelate with solar activity,
as measured by sunspot number, whereas others are essentially constant along the solar
cycle. This is already an interesting result, as certain measures (such as the degree) should
obviously correlate with the solar number because they depend in a straightforward manner
on the number of nodes and edges. However, the fact that other measures (e.g., clustering
coefficient) do not change along the solar cycle is less trivial to explain.

The above is discussed in terms of the average values of the measures over the
network nodes. As fluctuations around average values can be very large (for instance, at
solar maximum both the average degree and its fluctuations increase; see Figure 4), we
consider the full distribution of the measures. In the case of the degree, this yields an
interesting result, as distributions are clearly different at solar maxima and minima. In
fact, an exponential fit can be applied to the degree distribution; its decay exponent closely
follows the curve of maximum values of the magnetic field on the solar surface (Figure 6).

This suggests that the topology of the complex network actually carries nontrivial
information about the physical state of the system.

Further analysis shows that the Gini coefficient is a useful way to describe the dis-
tribution, beyond the simple information given by averages, as it provides information
about the “inequality” of the distribution of a certain variable across nodes. In general,
we find that all of the Gini coefficients that we calculated tend to decrease during solar
maxima, regardless of the behavior of the averaged variable itself. This can be observed in
Figures 7, 10, 12 and 15. Thus, while average variables may correlate, anticorrelate, or be
approximately constant along the solar cycle, the inequality in their distribution always
tends to decrease during solar maxima. That is, the increase in nodes and edges has the
effect of homogenizing the distributions rather than further concentrating them in a few
already-prominent nodes. Although this result may be intuitive for quantities directly
related to the number of nodes and edges, such as the degree, it is much less obvious
for more elaborate measures such as the clustering coefficient and centrality measures.
Nevertheless, these results seems to be universal for all measures studied.

These findings certainly point out the need to explore various measures in order to
properly study the topology of a given network, as they all carry different complementary
information. In our case, we have followed the evolution of measures along the solar cycle,
as we expect that the changes in the number and lifetime of nodes lead to changes in the
topology of the resulting networks. Thus, it is interesting (a) to find that this expectation is
actually met with respect to several measures, (b) to notice that certain measures exhibit
anticorrelation rather than correlation, and (c) to realize that although the average of a
measure may not correlate, the full distribution does have useful information on solar
activity, as shown by the Gini coefficients. It is interesting to note that it is possible to
relate the decay exponent of the distribution, which is a quantity related to the network
abstraction of the system, with a physical quantity such as the magnetic field in sunspots
(Figure 6), further pointing out about the possible usefulness of the complex network
approach for describing the magnetic evolution of the Sun.

As we have mentioned, the behavior of certain quantities is easier to understand, while
in other cases the explanation is less trivial; although each measure provides a particular
information of the system and they are independent of each other, there may be correlations
between them, especially because we made decisions as to how the network is built which
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constrain the phase space for the measures, and particular correlations may therefore
appear.

This is, for instance, the case for the density and the clustering coefficient, which are
both related to the number of actual edges compared to the total number of possible edges
between sets of nodes and which present similar behavior, essentially constant along the
solar cycle (Figures 8 and 9). The same occurs for the average distance between nodes and
the closeness centrality, which are related to the inverse of the distance between nodes.

Less evident correlations were found by plotting one measure as a function of another
measure. In effect, both betweenness and eigenvector centralities exhibit a power-law
dependence with respect to the degree. This resembles previous findings for scale-free
networks [27,38,39], although here each point represents a whole monthly network whereas
the cited works involve measures for individual nodes. We believe that further work is
needed in order to understand the consequences and meaning of these results, as it was
not clear when examining the degree distribution that the networks are actually scale-free
(Figure 5).

The nontriviality of the result above is highlighted by the fact that it is not universal, as
shown for the clustering coefficient (Figure 18). However, the distribution of points is not
random either; it is clear that the network clustering coefficient has the largest dispersion
during solar minima and the smallest at solar maxima. We note that in all cases the average
clustering coefficient is approximately constant, which is consistent with the Gini coefficient
(Figure 10) being anticorrelated with magnetic solar activity while the clustering coefficient
is not (Figure 9).

In this work, we have found that the complex network approach can be a useful
approach to studying solar magnetic activity, as certain measures show correlations or
anticorrelations with the sunspot number, which is a common way of following the solar
cycle. In addition, it is possible to establish a connection between complex network,
topological measures, and physical quantities such as the solar magnetic field along the
solar cycle.

This opens the possibility of using this tool to make predictions of the solar cycle. In
effect, various proposals are available to model various features of the solar cycle, such as
the magnetic field evolution [40,41] or the number of sunspots [42,43], in order to predict
parameters such as the time of occurrence and amplitude of the next solar maximum.
Considering our results, could a complex network approach contribute to this question by
providing a novel way to analyze the sunspot time series? We plan to address this question
in future work.

We have further shown that not all measures are equally useful for this purpose, as
not all are sensitive to the level of solar activity provided by the spatiotemporal pattern
of sunspots. Therefore, this suggests useful candidate measures for either the description
or the prediction of the solar activity. On the other hand, it is interesting that certain
measures do not seem to vary along the solar cycle; further work should be done in order
to understand to what extent the method used to build the complex network is responsible
for this, as well as to understand what it can tell us about sunspot evolution and associated
network growth.

We have shown that the differences between directed and undirected networks are
marginal. All our conclusions hold for both types of networks, the only differences being
in the actual numerical values of the measures.

It would be interesting to carry out similar studies for other solar cycles, in order to
establish possible universal behaviors as well as particularities of each solar cycle. This
would allow for testing of the eventual usefulness of this approach in making predictions
of the following solar maximum. This is specially relevant because of the various anomalies
present in solar cycle 23 with respect to other recent cycles [44,45], violating the empirical
even–odd rule [46]; it was unusually long (12.4 years), and during the following minimum
solar indices were exceptionally low [47]. However, it should be noted that the even–odd
rule may have been violated in the past, and thus cycle 23 may not be anomalous on



Entropy 2022, 24, 753 16 of 17

larger timescales [44]. Furthermore, these anomalies suggest a possible transition of the
Sun to a new regime, forcing strategies previously used to describe the solar cycles to be
revised [47]. In this sense, new tools, such as the one proposed here based on a complex
network approach, may enrich the discussion.

Other algorithms for building such networks and for using magnetic field data instead
of already-processed images are planned for future works; however, we believe this work
may contribute, as other recent works have [24–26], to establishing complex networks as a
useful approach to studying the evolution of solar magnetic activity.
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