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ANALISIS BAYESIANO MULTINIVEL DE RECOLECTORES DE ENERGIA
PIEZOELECTRICOS

Este trabajo propone un esquema bayesiano jerarquico para identificar propiedades elec-
tromecénicas en recolectores de energia piezoeléctricos (PEHs, por su sigla en inglés) e in-
certidumbres asociadas basadas en funciones respuesta en frecuencia (FRFs) experimentales.
El esquema permite el uso de datos experimentales de multiples dispositivos, potencialmente
definidos por diferentes propiedades electromecéanicas. En el esquema jerarquico propuesto,
la dispersion de la FRF observada en grupos de PEHs es explicitamente modelada como
consecuencia de las incertidumbres en los parametros del modelo, mas que como una con-
secuencia Unicamente del error de prediccion del modelo, algo tipicamente obtenido en el
esquema bayesiano cléasico. El método Transitional Markov Chain Monte Carlo (TMCMC)
se utiliza para identificar la distribucién posterior de los parametros del modelo. La preferen-
cia hacia el esquema jerarquico es luego confirmada utilizando el procedimiento de seleccion
de modelos bayesiano (Bayesian model class selection), para comparar las probabilidades pos-
teriores de seleccionar el esquema jerarquico o clésico. El marco propuesto es aplicado para
la identificacion de parametros tanto en un solo dispositivo como en grupos de dispositivos.
Los resultados muestran que el esquema jerdarquico propuesto presenta ventajas significativas
en comparacion con otros enfoques bayesianos aplicados a PEHs. Primero, permite el uso de
datos experimentales de multiples dispositivos para actualizacion de parametros; segundo,
considera correctamente las incertidumbres de los parametros a través de miltiples disposi-
tivos; tercero, podria usarse para identificar densidades de probabilidad previas objetivas en
un enfoque bayesiano clasico.
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MULTI-LEVEL BAYESIAN ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS

This work proposes a hierarchical Bayesian framework to identify electromechanical proper-
ties of Piezoelectric Energy Harvesters (PEHs) and associated uncertainties based on exper-
imental frequency response functions (FRFs). The framework allows the use of experimental
data from multiple devices, potentially defined by different electromechanical properties. In
the proposed hierarchical scheme, the FRF dispersion experimentally observed in groups of
PEHs is explicitly modeled as a consequence of uncertainties in the model parameters rather
than as a consequence of only the model prediction error typically used in classical Bayesian
scheme. The Transitional Markov Chain Monte Carlo (TMCMC) method is used to establish
the full posterior distribution of the model parameters. Preference towards selection of the
hierarchical scheme is further confirmed by using Bayesian model class selection to compare
the posterior probabilities of selecting the hierarchical or the classical scheme. The proposed
framework is applied to identification of model parameters for both a single device and groups
of devices. Results show that the proposed hierarchical scheme present significant advantages
compared to other Bayesian based approaches for PEHs. First, it allows the use of exper-
imental data from multiple devices for model parameter updating; second, it accounts for
the model parameter uncertainties across different devices; third, it could be used to identify
objective priors for a classical Bayesian approach.
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Chapter 1

Introduction

In the last two decades, the use of piezoelectric materials for energy harvesting applications
has raised the attention of the scientific community [1|. Different devices have been proposed
to facilitate the energy scavenging in vibratory environments, with the cantilever piezoelectric
beam type being the most common piezoelectric energy harvester (PEH) configuration. In
these devices, the cantilever beam is composed of a main elastic layer (wide range of non
piezoelectric materials have been used) bonded to another layer of piezoelectric material.
The energy harvesting is accomplished by locating the devices in vibratory environments that
induce an oscillatory deformation in the beam [2, 3|. In this way, the strain in the piezoelectric
material generates an electric charge while the main elastic layer provides structural support.
Depending on the number of piezoelectric layers, the devices are classified as unimorph (one
layer) or bimorph (when two layers are bonded to the main elastic layer) [4]. A general
scheme of the latter configuration is shown in Figure 1.1.

Multiple and diverse models have been developed to describe and predict the PEHSs’
electromechanical behavior, including single degree of freedom models [5], electromechanical
finite element models 6], reduced-order models (ROMs) [7], isogeometric analyses [8], and
linear and nonlinear distributed parameter models [9, 10, 11]. Among the latter, the linear
model proposed by Erturk and Inman [10], based on the Euler-Bernoulli beam theory, has
became quite popular since it provides clean analytical expressions for the behavior of PEHs
by considering the electromechanical coupling.

substructure
layer

piezoelectric
layers

Figure 1.1: Typical scheme of a rectangular Bimorph PEH in a cantilevered condition. Sub-
structure and piezoelectric layers are also shown together with the main geometrical param-
eters.



Despite the development of high fidelity models, mismatches between numerical and ex-
perimental observations are detected when nominal electromechanical properties are used,
indicating the need to tune the electromechanical properties of each device based on exper-
imental observations. This conclusion was made by Peralta et al. [12]| after studying the
dynamic response of a group of PEHs with identical nominal electromechanical properties,
raising the concern about the characterization of the uncertainties involved in the electrome-
chanical properties. The study revealed that the most important source of uncertainty is
related to the electromechanical properties but no attempt was made to characterize it.
However, the authors stated that if these uncertainties are modeled adopting a probability
perspective, then, the uncertainties can be propagated to the Frequency Response Function
(FRF) by following a procedure previously introduced by Ruiz and Meruane [13]. Given this,
the study left open questions about the identification of the electromechanical properties dis-
persion such that stochastic predictions will be in agreement with the dispersion observed
in the FRFs. Particularly, this identification is interesting under two perspectives: (i) in a
single PEH to improve its response predictability in future situations and (ii) in multiple
same-model PEHs to characterize the uncertainties involved in the material properties. Note
that the first task aims to tune the numerical model with respect to experimental observa-
tions, which corresponds to an important issue specifically for the validation of new predictive
models. On the other hand, the second task aims to improve the precision in the nominal
values of the electromechanical properties that is provided by manufacturers as well as their
respective variability. Here, the adoption of a Bayesian inference strategy [14] seems to be a
natural framework to address these tasks, as it provides the necessary probabilistic context
for the electromechanical properties identification.

The Bayesian inference framework, grounded on the probability theory, is a powerful tool
to deal with uncertainties in engineering systems modeling. Notably, it provides a framework
in which prior information about the model parameters and experimental data are employed
to perform a model parameter updating by means of the Bayes theorem. Thus, model pa-
rameters are identified as probability density functions (PDFs) conditioned on experimental
data (called posterior distribution in the Bayesian context). Ultimately, this process leads
to a posterior understanding of the model parameters allowing a robust posterior predic-
tive analysis. Due to the potentially high dimensionality of the model parameters or non
linear relationships within the Bayesian formulation, analytical expressions for the poste-
rior distribution are hardly reached. Thus, approximations relying on point estimate values
(e.g., applying Laplace asymptotic approximations [15, 16]) or advanced stochastic simula-
tion methods (e.g., Markov Chain Monte Carlo based methods [17, 18]) are usually used.
Beyond model parameter updating, the Bayesian inference framework also provides a cri-
terion for selecting the most adequate model among different candidate models, based on
experimental data. The procedure, known as model class selection, also enforces a principle
of model parsimony, where model accuracy and complexity are balanced (see [19] for more
details).

Recently, Peralta et al. [20] explored the implementation of the Bayesian inference frame-
work on a given PEH to fully identify the posterior distribution of the model parameters,
addressing the first question proposed in [12]. The results demonstrated the power of the
Bayesian method, as it was able to identify the posterior model parameter distribution (elec-
tromechanical properties as well as geometrical dimensions) of PEHs to get a mean prediction



that showed an excellent match with the experimental FRFs. The variances of the predicted
FREFs were also addressed, observing small variances in all cases studied. Regarding the up-
dated model parameter distribution, large variances were found in their respective marginals.
The lower variance at the FRF prediction and high variance at the model parameter marginals
was explained by the large correlations found between some model parameters. Similar re-
sults were obtained by Poblete et al. [21] when the same framework was applied to PEHs
to tune nonlinear constitutive relationships. Overall, it was observed that when applied to a
single device Bayesian approach tends to assign large correlation in some model parameters to
compensate the large variances found in the marginals. Another important observation made
by the authors is the dependency of the updated model parameters on the prior distribution
adopted.

The second question proposed in [12] was also addressed recently in [22], in this case, the
authors identify that the procedure presented in [20| for updating the model parameters of
a single device is not extendable to the case in which the interest is to update the model
parameters of a group of multiple same-model PEHs. In this case, the experimental FRF of
each PEH studied significantly differs from the other devices of the same group (in particular,
presenting different natural frequencies), hence, the FRFs of the group presents a significant
dispersion. This motivated the frequency and amplitude normalization of FRFs associated
to each device. Then, the authors proposed a multi-output likelihood function (based on the
natural frequency, amplitude at natural frequency and normalized FRF') to perform the model
parameter updating. Here, the updated model parameters distribution are used to estimate
the mean of the FRF as well as its variance. The results show that the predicted mean FRF
is in agreement with the observations, however, the predicted FRF variance is considerably
lower compared to the experimental evidence. Overall, the procedure presented in [22] allows
the identification of model parameters that could be considered representative of the nominal
electromechanical properties associated to a group of PEHs. However, the proposed approach
was incapable of identifying uncertainties across the devices properly, leaving questions about
the actual electromechanical properties variability present in a group of harvesters.

From the Bayesian perspective, it is not surprising that the updated model parameters
distribution tends to underestimate the variance of the system output when it is compared
to the variance observed experimentally |23, 24]. This is common when multiple experiments
are conducted, in particular, when each test slightly differs from the others. Examples of
this case could also be found in other structural dynamic problems [25, 26]. According to
[26], this is not attributable to the Bayesian methodology itself but an improper formulation
of the probabilistic model used to describe the model parameters. In this sense, a new class
of probabilistic models had been proposed, referred to as hierarchical Bayesian models [27].
Hierarchical Bayesian models are an extension of the classical Bayesian modeling 28], where
an extra level of parameters, called hyperparameters, introduces the hierarchy: they are used
to parametrize prior distributions, adding a new information dependency in the model for-
mulation. Depending on information dependence structure, Wu et al. [28] made a distinction
between two classes of Bayesian hierarchical models: Hierarchical Prior Model (HPM), which
is commonly used to update prior distributions based on experimental data, and Hierarchical
Stochastic Model (HSM), where the hyperparameters are used to describe model parame-
ters variations across different data sets. The latter scheme provides a more flexible account
for model parameter uncertainties [27] as the different data sets are treated independently.



Recently, hierarchical Bayesian schemes have been adopted in different structural dynamic
problems. For example, it has been demonstrated that they are able to account for the
inherent variability of structural parameters (e.g., elasticity modulus) due to manufacturing
variability [25, 29] and changing environmental /ambient conditions |23, 30]; Sedehi et al. [26]
proposed a hierarchical Bayesian model for structural dynamics by breaking up time-series
vibration data and adopting novel strategies for posterior identification; Patsialis et al. [31]
explored the classical and hierarchical Bayesian schemes to calibrate hysteric reduced order
models to agree with high fidelity predictions. Despite the higher complexity and compu-
tational cost involved in such a hierarchical Bayesian scheme, its flexibility and potentially
better account of uncertainties make its implementation worthwhile [28]. Further, despite
the use of hierarchical Bayesian models in structural dynamic problems, its application in
the identification of electromechanical properties in PEHs has not been explored, thus, its
advantages and disadvantages have not been demonstrated.

Given the above discussions, this work proposes a hierarchical Bayesian approach for the
model parameter updating of multiple PEHs. The framework is developed based on the idea
of Hierarchical Stochastic Model (HSM), and hyperparameters are used to describe model
parameters variations across different devices. The Transitional Markov Chain Monte Carlo
(TMCMC) method is used to establish the full posterior distribution of the model parameters.
Comprehensive investigations are performed to gain important insights on the performances
of the framework. The theoretical implications and details regarding the implementation are
presented. Comparison with the classical approach and the impact of informative priors in
the model parameter updating are also investigated. The results show an outstanding per-
formance of the proposed hierarchical approach, since: (1) it can capture the uncertainties in
model parameters across devices, (2) it can be used to update the model parameters of each
device, (3) it offers a probabilistic description of the model parameters that characterize a
group of PEHs, and (4) it does not require previous information about the model parame-
ters. In the end, the preference of the hierarchical approach over the classical approach is
demonstrated by using Bayesian model class selection.

The rest of the paper is organized as follows. Section 2 reviews piezoelectric energy
harvesters, the classical and hierarchical Bayesian schemes’ formulations, the model class
selection method, and the procedure to achieve robust predictions. Section 3 presents a PEHS’
prior parameter uncertainties. Section 4 presents the Bayesian schemes’ implementation on
multiple and individual PEHs, while Section 5 concludes the study.



Chapter 2

Background

2.1 Piezoelectric energy harvesters (PEHSs)

In the last time, efforts have been made to develop alternative methods to get electrical power
from ambient energy. The goal is to feed wireless sensors and electronics without requiring
electrochemical batteries, which have not experienced a significant development. In this line,
the use of piezoelectric materials to harvest energy from vibratory environments has received
attention since they present a great power per unit of volume, constituting the so-called
piezoelectric energy harvesters.

Energy harvesting by means of piezoelectric materials is achieved due to their oriented
molecular structure, which allows a local charge separation (electric dipole). Thus, the appli-
cation of strain energy to these materials results in an alteration of the dipole, generating an
electric charge that can be removed [32]. A typical piezoelectric material used in PEHs is lead
zirconium titanate (PZT). On the other hand, the substructure material usually corresponds
to a nickel iron alloy, brass, carbon fiber composite, etc.

In order to characterize and quantify the devices’ behavior, the Frequency Response Func-
tion (FRF) associated to their voltage output is often used. A common forward model that
predict this function is reviewed next.

2.1.1 PEH predictive model

In this work, the linear electromechanical model proposed by Erturk and Inman [10] is used.
Based on the Euler-Bernoulli beam model, it obtains a simple analytical expression for a PEH
response, which is a function of geometric and electromechanical properties of the device:

: -1
w 1
HO,w) = ———¢" ) |-Tw? +iwCe + Koy + ————— x| T 2.1
0) = (") |17+ O+ Ky + e (2.1
The expression is obtained by a modal expansion of IV, eigenvectors of a beam composed of
two piezoelectric layers bonded to a central elastic layer, ultimately representing a bimorph



PEH. Then I, C,, and K., € RY*Ne correspond to the identity, damping, and stiffness
matrices, respectively, and x, ¢ and r € R™ are vectors representing electrical coupling,
mechanical coupling, and mechanical forcing amplification. The scalar term £, incorporates
the electrical properties of the harvester. All the mentioned variables (including matrices,
vectors, and scalars) are directly dependent on the geometric and mechanical properties of
the PEH, which are explicitly shown in Annex A. In this way, the PEHs model predictor is
fully defined by the following model parameter vector 0:

0 =[C sty dsi €33 pp ps Es L b hy hy) (2.2)

The model parameters correspond to damping ratio ¢, the elastic compliance at constant
electric field s}, the piezoelectric constant ds;, the permittivity at constant stress el,, the
piezoelectric layers density p,, the substructure layer density ps, the elastic modulus of the
substructure Ej, the length L, width b, thickness of the substructure layer h,, and thickness
of the piezoelectric layers h,,.

2.2 Bayesian inference

One way to approach uncertainties in engineering models is through the Bayesian Inference
framework. Under this framework, experimental data is employed to infer model parameters
by using the classical Bayes theorem. Given this probabilistic approach, model parameters
are characterized by probability distribution functions (PDF). The method updates the ini-
tial knowledge (prior PDF) of the parameters to a posterior understanding, conditioned on
experimental data. Besides, Bayesian Inference leads to the selection of the best model class
given experimental data, balancing accuracy and complexity of the model.

Next, the classical and hierarchical schemes of the Bayesian inference framework for model
parameter updating are presented, as well as the model class selection procedure and the
Transitional Markov Chain Monte Carlo (TMCMC) used to establish the posterior PDF.

2.2.1 Classical Bayesian scheme

Consider a predictive model H(0,u) € R defined by model parameters 8 € R™ and input
u € R. Typically, in PEHs applications, H(0,u) represents a Frequency Response Function
(FRF), where 0 are electromechanical and geometric properties of the device and u the
excitation frequency. A probabilistic model is then defined by assuming a predictive error
e in H(0,u), commonly as additive by a zero mean and o2 variance Gaussian distribution
N(0,0%). Nevertheless, the adoption of this kind of error may lead to large variabilities in
some sections of the predicted FRF, as demonstrated in [20]. Therefore, a multiplicative
error is adopted, which leads to constant variability throughout the response:

h=H(0,u) e (2.3)

where h represents the probabilistic model response. Note that under a strictly positive
output (as a FRF), this kind of error can be treated as additive if it is worked out between

6



the logarithms In (h) and In(H(0,u)). This leads to a lognormal distribution for e, and
consequently, for h:

1 1

p(h|0¢,u) = ol (In(h) — In(H(8,u)))” (2.4)
where 0, is the augmented parameter vector that ultimately defines the probabilistic model
for h, which is composed of the model parameters 0 and the standard deviation of In (e), i.e.,
o.. Now, let U = {tp;m =1,..., M} and H = {ﬁm;m =1,..., M} denote vectors that
represent M observations for the system input and output, respectively, and D the complete
experimental data pair containing U and H. If the observations are considered statistically
independent, the likelihood of the observations H is given by:

p(H|0,, U Hp (B 0, U ) (2.5)

which for the multiplicative error presented in Eq. (2.3) reduces to:

p(H|0, U) = (U \1/%) (H ﬁl )exp [_T; > (In(hm) = In(H(O, @)))*|  (2.6)

m=1

Then, with the definition of a prior probability density function p(0¢|M,) for the param-
eters, the Bayes rule is used to update them, to get a posterior description based on the
experimental data D:

p(et|D7Mcs) = C_lp(DletaMcs)p(et|Mcs) (27>

where M, refers to the classical scheme model, p(D|0, M) is the likelihood function

p(H|0,, U) described above, and ¢ = P(D|M,,) is a normalization constant called “evidence,”
which plays an essential role in the Bayesian model class selection procedure (discussed later).
Lastly, p(0¢|D, M) is the updated PDF for 6, which represents a posterior understand-
ing of the model parameters given the experimental data D. This distribution is called the
posterior PDF'.

Finding explicit analytical expressions for the posterior PDF is hardly reached due to the
nonlinear relationship between H and 0; introduced by the multiplicative error. It can be
estimated, though, by drawing samples from it or by approximations of its modes. The latter
are known as point estimates, where the Maximum A Posteriori (MAP) [14] estimate is found
by (notation of M., is omitted for simplicity):

0MAP — argmax In (p(D|0,)p(8y)) (2.8)

7



where the logarithm function is introduced for numerical reasons [14]. As noticed, this
estimate focuses on the maximization of the numerator of Eq. (2.7), where prior information
about parameters is considered. If the prior information is not included, the Maximum
Likelihood Estimate (MLE) [33] is obtained:

0" " = argmax Inp(D|0,) (2.9)

When the posterior PDF happens to be heavily peaked on a single point, for posterior
analysis (as discussed later), the point estimate can be used within the Laplace’s asymptotic
approximation to estimate the posterior integrals with good accuracy [15]. However, if this
condition is not guaranteed, as it happens for PEHs [20], the approximation might be poor,
yielding an erroneous account for system uncertainties. In this situation, full description of
the posterior PDF needs to be used (e.g., by generating samples from it), allowing more
reliable results.

2.2.2 Hierarchical Bayesian scheme

Now, let D = {D%i = 1,..., N;} represent N; different independent data pairs containing
inputs {ﬂl;i = 1,...,N;} and outputs {I:Il;i = 1,..., N;} of the system; each data pair
defined by the parameters 8!. Under the hierarchical Bayesian scheme, each prior distribution
for 0!, p(@!n, My,), is parametrized by common hyperparameters m, which introduces the
hierarchy. In this sense, such hierarchical models are defined by two levels of parameters,
the parameters for each data set 0/, and the hyperparameters v. Compared to the classical
Bayesian scheme, the hierarchy imposed allows the variation of the parameters across the
data sets; and such variation can be described by the hyperparameters m. Thus, using the
Bayes theorem, the joint posterior distribution of the parameters {0%;i = 1,...,N;} and
hyperparameters m, is expressed as:

N;

p({ei,l = 17 ) Nz}u TI|D, Mhs) = C_IP(T”Mhs) Hp(DZ’ei, Mhs)p(e“nu Mhs) (21())

i=1

where M), refers to the hierarchical scheme model, p(n|My;) is the prior distribution for the
hyperparameters and p(D’|0!, M) is the likelihood function for each data set D', whose
expression is analogous to Eq. (2.6). Given the potentially large dimension of the posterior
p({0%i=1,...,N;},m|D, My,), the last equation is marginalized over the parameters !:

N;

p([D, M) = ¢ 'p(n| M) [ [ p(Dn, Mys) = ¢ p(n| Mps)p(D|m, M) (2.11)

=1

where ¢ = P(D|M,;,) and p(n|D, M) is the hyperparameters’ posterior distribution, with:
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(D', Mys) = / p(DV[6], My, )p(6i 1y, My, )6 (2.12)

Different methods to estimate p(D'|n, Mj,,) are found in the literature. For example, for
many data points, Sedehi et al. [24] used Laplace’s asymptotic approximation for time series

data. Wu et al. [28] proposed an importance sampling method with proposal distribution
p(0;|D*, M), sampling with Transitional Markov Chain Monte Carlo (TMCMC) for each

data set D’. In this work, the method proposed by Patsialis et al. [31] is employed, also
relying on TMCMC. First, samples {Gi(k);i =1,....,N,k=1,..., N} from the likelihood
function p(D'|0;, M),,) are obtained through TMCMC, by using a uniform prior distribution

for 8! € [8™™", 8"™]. Then, Monte Carlo simulation is performed to estimate p(D|n, Mys):

Ny

i 1 i
p(D'n, My) ~ 5= > p(61 [, M) (213)
k=1

Finally, Eq. (2.13) is plugged into Eq. (2.11), which allows an expression for the posterior
distribution of the hyperparameters n:

N; Ny
_ 1 i
p(nD, Mys) & ¢ p(nlMas) | TT 5 > o0 Im, M) (2.14)
1=1 k=1

the samples of which can be generated using TMCMC, with prior p(m|M;s) and likelihood
function the expression in the big brackets [31].

Under the assumption that the hyperparameters n can describe model parameter varia-
tions across the different data sets, the total probability theorem can be employed to compute
the posterior distribution of the parameters under the hierarchical scheme p(0.|D, M},;) [24]:

p(6:D, My,) = / p(8,1, My )p(nD, My)dn (2.15)

which can be estimated using the already available samples {n™;h = 1,..., N,,} obtained
from Eq. (2.14), with Monte Carlo simulation:

Np

1
P(8D, M) ~ 7= > p(Bufn™, M) (2.16)
h=1

If the distributions p(0;|n™, M) were established to be lognormal distributions with
medians p and coefficients of variation cov, in the logarithm space log (0;) they behave as
Gaussian distributions. Thus, the sum of N, Gaussian distributions is a Gaussian distribution
with mean and covariance matrix [24]:



1

Ellog (0:)] = 3~ > log (u™)
h=1
Np

Col/flog (8] = - 3 (1og (1) log (") + =) (2.17)
h=1

where 3™ are covariance matrices, calculated with the samples cov®.

Finally, p(0¢|D, M}s) can be used as an objective prior to update the parameters of each
device. Thus, using Bayes rule:

p(0!D", M) o< p(D|0%, My, )p(0,|D, My,) (2.18)

where p(D'|0!, M) is the likelihood function, whose expression is analogous to Eq. (2.6),
and p(0;|D*, M) is the posterior distribution for each data set D' using the objective prior
that the hierarchical scheme offers.

Figure 2.1 shows the parameters’ structure and dependence within the classical and hier-
archical Bayesian schemes as a network.

(a)

Figure 2.1: Graphical representations of the two Bayesian schemes: (a) Classical scheme and
(b) Hierarchical scheme.

2.2.3 Model class selection

To further verify the preference for the hierarchical scheme/model over the classical scheme /-
model, Bayesian model class selection will be used. Within the Bayesian inference framework,
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data and model class selection can be used to select the best model among different model
classes. Let {M;;j =1,..., N} represent the set of different model classes, with A/; denot-
ing the jth model class. The posterior probability for each model class, conditioned on the
experimental data D, is obtained using Bayes’ theorem:

P(D|M;)P(M;)

P(M;D) = —x
>, P(D|M;)P(M))

(2.19)

where P(M;) is the prior belief of adequacy of the jth model class, which is commonly taken
as uniform across the set of models, i.e., P(M;) = 1/N. The term P(D|M;) is the evidence of
each model class, which corresponds to the denominator of Egs. (2.7) and (2.11), denoted by
c. Notably, the estimation of P(D|M;) is a by-product of the TMCMC algorithm. Finally,
the posterior probability P(M;|D) oc P(D|M;) represents a logical criterion for selecting the
most adequate model given experimental data, which imposes a principle of model parsimony
[19]: model accuracy and model complexity are balanced out.

2.2.4 Prior and posterior predictive analyses

Depending on the information available, a predictive analysis for the system h can be per-
formed. The deterministic prediction is straightforward as it only depends on the parameters’
nominal values. In contrast, given the probabilistic description for the parameters within the
Bayesian inference framework, a proper formulation for the prediction is required. Thus, the
total probability theorem is employed to propagate the parameter uncertainties into the sys-
tem output. For instance, the prior expected system output for a given input u, and model
M;, is:

Elhlu, M;] = /E[h|9t,u, M ]p(6,]M;)d8, — /H(O,u)p(9|Mj)d9 (2.20)

where E[h|0,u, M;] is with respect to the whole probabilistic model, which includes the pre-
diction error. However, under the usual assumption of unbiased predictions, E[h|0,u, M| =
H(0,u), which explains the second equality of Eq. (2.20).

A confidence interval for the prediction can also be established, reflecting the probability
that the model’s prediction will lie inside that interval. For instance, for the prior distribution,
the following probabilistic integral needs to be computed:

P(H > H,Ju, M;) = /zf(e,u)p(e\Mj)de _p, (2.21)

where 1;(0,u) is the indicator function, I;(0,u) = 1 when H(0,u) > H, and I;(0,u) =0
otherwise. Thus, the threshold H, is selected to get the desired probability bounds P* and
P" which will ultimately define the probability of the interval; commonly set to 90%. Note
that in Eq. (2.21), the prediction error is not included since it is common only to propagate
the model parameter uncertainties to analyze their impact on the system output. However,
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the prediction error can be included by simply replacing 6 with 6;. Then, Egs. (2.20) and
(2.21) can be easily estimated using Monte Carlo simulation.

The same procedure can be performed for the posterior distribution, which only requires
the replacement of p(0|M;) with p(0|D, M;) in Egs. (2.20) and (2.21):

Elh|u, D, M;] :/E[h|9t,u, M;]p(8:|D, M;)de, :/H(G,u)p(B|D,Mj)d9 (2.22)

P(H > H,Ju,D, M;) = / 1(8,u)p(6]D, M;)d0 = P, (2.23)

which can be similarly estimated with Monte Carlo simulation using samples that follow the
posterior p(0|D), obtained with TMCMC, for example.

Given the scope of this paper, please note that {};;j = cs, hs}. Proper explanations on
how to compute p(0|D, M.,) and p(8|D, M) are presented later.

2.2.5 Transitional Markov chain Monte Carlo (TMCMC)

As the TMCMC method is extensively used in this work, a brief review is presented next.
TMCMC algorithm [17, 34] is based on a sequential implementation of MCMC through
auxiliary PDFs to finally converge to the posterior PDF p(6¢|D). The transition defines
the auxiliary PDFs p;(0:|D) o p(D|0:)%p(0;), with {¢; € [0,1];5 = 0,...,n}. Thus, the
transition is controlled by ¢;, and for the extremes ¢y = 0 and ¢, = 1, the densities correspond
to po(0¢|D) x p(0;) and p,(0;|D) x p(D|0;)p(8;) respectively. The steps for obtaining N,
samples proportional to the posterior p(0¢|D) through TMCMC are as follows:

Step 1: Let {0¢}; = {07;);7 = 1,..., Ny} represent a set of N samples from the j-level
transition PDF p;(0.|D), the exponent ¢; is defined by setting the coefficient of variation of
the expression p;.1(0¢|D)/p;(0:|D) = p(D|6;)%+~%, commonly to 100%. If ¢; > 1, then
set ¢; = 1. Note that the algorithm starts with N, samples from py(0;|D) o p(8;), which
are easy to obtain since the prior PDF p(0;) is free choice. Then, compute the samples
plausibility weights with the evaluation of the quotient w;11(0¢) = p;+1(0¢|D)/p;(8:|D) =
p(D’qujH_qj-

Step 2: Compute the mean of the weights:

. 1 .
Siv1 =+ wjir1(05;) (2.24)

r=1

and the weighted sample mean and covariance matrix:
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N,
_ 1 o .
1= > 8w (87)
Sj+lNs 73
- (2.25)
1 - T T fa) T fa) T
Y= Z [w;41(0;)) (87 — 8,11)(87;) — 0;11)" ]
Sj+iNs 1o

Step 3: According to the computed weights w; 1, resample N; samples with replacement
from the set {0},. These ultimately correspond to samples from p;.(6¢|D).

Step 4: From each c¢(c = 1,..., N;) sample, start independent Markov chains, repeating
random walk moves using %%, where f is a scaling factor typically set to 0.2 [17]. For

the p™ random walk move, generate a candidate é:(c) from a gaussian proposal centered at
S )1 and covariance matrix %, 1;. Generate a sample u from an uniform distribution [0,1]

and set 05, = é:(c) if the following condition is satisfied:

11(0;,|D
pj+1( :(c)| >Zu (2.26)
pj+1(9t(c)|D)

otherwise set 0., = 6}, )1 After finishing the random walk moves for each chain, combine the
samples to obtain N, samples {0}, that are proportional to the transitional distribution

pj+1<9t‘D)-

The steps are repeated until ¢; = 1. Finally, the algorithm provides an estimation for the
evidence, given by:

n—1
PD[M;) =[] 9n (2:27)
j=0
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Chapter 3

PEH’s uncertainties

3.1 Model parameters uncertainties and prior probability
density function for PEHs

According to [13], typical dispersions related to geometric and electromechanical properties
of PEHs can reach values of 30% (respect to nominal values). These variations are mainly
attributed to manufacturing process imperfections, which critically affect PEHs response
functions [12]. Particularly, geometric characteristics present the lowest dispersions, reaching
values of 5% of variation. In contrast, electromechanical properties present the greatest, with
variations up to 30% [13]. Some manufacturers do not even report substructure mechanical
properties, increasing even more the system uncertainties.

A set of commercial bimorph PEHs were studied in this work, which had layers of piezo-
electric material ZT-5X45 bonded to a carbon fiber’s substructure layer. The nominal char-
acteristics of the devices are presented in Table 3.1. Based on this available information, a
prior PDF p(0|M.,) for the model parameters is constructed. For continuity and consistency
with 20, 21, 22|, it is decided to define the prior distribution as a multivariate lognormal
distribution with a median equal to the nominal values, and coefficients of variation (cov)
of 5% for the geometric characteristics and 30% for the electromechanical properties. Since
there is no available information about the substructure’s properties, its elastic modulus and

density are taken equal to the piezoelectric layer’s properties with a coefficient of variation
of 100%.

Note that the selection of a lognormal distribution is supported by the maximum informa-
tion entropy principle [35] and also accounts for the positive nature of the model parameters.

3.2 Experimental identification of multiple PEHs
FRF observations from nine PEHs, all of them sharing the nominal characteristics presented

in Table 3.1 were available. The data was acquired by Peralta et al. [12] and the procedure
used allows the noise-free identification of the FRF at several excitation frequencies. Hence,
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Table 3.1: Nominal characteristics of the bimorph PEHs studied. The prior model is also
presented corresponding to a lognormal distribution with the given median and coefficient of
variation (cov).

Parameter Nominal Prior
Median  cov
¢ N/R 0.017  30%
s¥ [pPN7! m?| 16.4 16.4  30%
—dz [pC N7 320 320 30%
el /eo 4500 4500  30%
pp |kg/m?] 7400 7400  30%
ps [kg/m?] N/R 7400  100%
E |GPa| N/R 61 100%
L [mm] 40 40 5%
b [mm)] 10 10 5%
hs [mm]| 0.234 0.234 5%
h, [mm] 0.248 0.248 5%

N/R: Not reported by the manufacturer
go = 8.854x 10712 [F m™!]

for each device {i = 1,...,9}, frequency excitation data W = {&m;m = 1,..., M} and
FRF data H = {Bm;m = 1,..., M} are available, representing the input and the output
of the system, respectively, and ultimately defining each device’s data set D' and D =
{D%i=1,...,9}. The experimental FRFs from the nine PEHs, along with the deterministic
prediction, are shown in Figure 3.1(a). The deterministic prediction was obtained with the
nominal values presented in Table 3.1, and for those not reported (N/R) parameters, they
were taken equal to the median of the prior PDF. As noticed, the nine devices present
dissimilar behaviors, mainly attributed to variations in the electromechanical properties, as
discussed before. In this sense, the experimental identification of only one device may not
represent the behavior of the whole group [12]. Also, note that the deterministic prediction
given by the solid black line showed a poor data fit across the nine PEHSs, overestimating
their natural frequencies.

A prior predictive analysis was also performed, with the prior distribution p(0:|M.,) de-
fined in the section before. Following Section 2.2.4 (estimating Eqgs. (2.20) and (2.21) by
applying a Direct Monte Carlo with 6000 samples), the probabilistic prediction is defined by
a mean prediction and a 90% confidence band, shown in Figure 3.1(b). A significant disper-
sion band was obtained, which enclosed most of the data from the nine PEHSs. Nevertheless,
the large dispersion obtained seems to overrate the actual dispersions present in the group
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of harvesters, as also obtained by Peralta et al. [12]. Similar to the nominal prediction, the
prior mean prediction also overestimated the harvesters’ natural frequency.

100 150 200 250 300 100 150 200 250 300
Frequency [Hz] Frequency [Hz]

Figure 3.1: (a) Nominal prediction and (b) Prior stochastic prediction representing a 90%
confidence interval. In both cases experimental FRFs for the 9 PEHs are presented in circles.
The prior distribution used in (b) is adopted based on the information given by the manu-
facturer. The nominal estimation is biased and the uncertainties described through the prior
in overestimated.
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Chapter 4

Bayesian inference on PEHs

In this Chapter, the Bayesian inference framework is applied to the nine devices mentioned
above. The classical and hierarchical Bayesian schemes for model parameter updating are
implemented for individual and multiple devices. Posterior predictive analyses and model
class selection procedures are conducted to illustrate their differences.

4.1 Model parameter updating

4.1.1 Classical Bayesian scheme

The classical Bayesian scheme detailed in Section 2.1.1 is applied for the Bayesian inference
of the parameters for the nine devices. The prior distribution for the model parameters cor-
responded to the lognormal distribution detailed in Table 3.1. The prediction error standard
deviation o, was also considered uncertain, with a prior lognormal distribution centered at
0.1 and 400% of cov, accounting for the poor prior information on this error. This finally
defines the prior model p(0¢|M.,) for all the parameters.

Firstly, the Bayesian scheme was used to update each device individually. Thus, each data
set D* was used to identify the parameters 0, as Peralta et al. [20] did for a given device:

Note that the same prior distribution p(0;|M.s) was employed in each updating process.
The updated parameters (obtained via TMCMC) from each data set varied between them,
accounting for each device’s dissimilar behavior. Consequently, the samples from each pos-
terior distribution p(@!/D?, M,,) offered an excellent fit to the correspondent device, but
not for the others. Figure 4.1 shows the robust posterior predictions generated with each
device’s updated parameters, where the colored areas represent a 90% confidence interval.
Only PEHs properties and characteristics were propagated. The narrow robust predictions
are explained by the strong correlations found in some model parameters, which offset the
dispersions found, as also obtained by Peralta et al. [20]. The pair s¥ — d3; was the most
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repeated, reaching coefficients of correlation higher than 0.85.

100 150 200 250 300
Frequency [Hz]

Figure 4.1: Robust posterior predictions generated by the updated model parameters of each
device adopting a classical Bayesian approach. The colored bands represent a 90% confidence
interval. Experimental FRFs for the 9 PEHs are presented in circles. It is observed small
dispersion in each PEH.

In order to get a general description for all the devices, it is straightforward to com-
pute the median and coefficient of variation of all the samples (combining samples obtained
from the posterior distribution of each device), which are reported in Table 4.1. In addi-
tion, the relative absolute differences with the nominal values listed in Table 3.1 are also
reported. Among the PEHs properties, the larger difference was obtained in the permittivity
constant eZ;, whilst the smallest (<3%) were reported in geometric characteristics and p,.
The variability obtained of the model parameters was lower than the initial; only geometric
characteristics and E, remained close to their initial coefficient of variation.

A posterior predictive analysis was performed for the combined results as well, where only
PEHs properties and characteristics were propagated. For each model parameter, a lognormal
distribution was assumed, centered at the samples’ median and coefficients of variation the
values reported in Table 4.1. Two cases were explored corresponding to considering or not
the correlations found. For the first case, a diagonal covariance matrix was considered, and
for the second one, the covariance matrix was directly computed from all samples combined.
The mean prediction and 90% confidence interval for each case are shown in Figure 4.2.
For the first one, the mean prediction estimated well the mean natural frequency of the
devices but presented a wide 90% confidence interval band, slightly improving the prior
distribution’s prediction (Figure 3.1(b)). In contrast, when the correlations between model
parameters are considered, a much better prediction is reached, however, the FRF dispersion
is overestimated. Besides, the method used to reach it was not rigorous, as it consists of the
raw combination of samples obtained separately with the Bayesian updating. The results
demonstrate the impact of the model parameter correlations within the classical Bayesian
scheme for PEHs applications.

The study continued with the parameter updating using the entire data set D, which

18



contains the FRF observations of all the devices. Samples from the posterior distribution
p(0¢|D, M), given by Eq. (2.7), were obtained through TMCMC. Table 4.2 shows the
updated medians and cov of the parameters and the relative absolute differences with the
values showed in Table 4.1. Among the PEH properties, no major differences were obtained,
with the highest in the damping ratio ¢ (77%). In contrast, the prediction error o, presented
a large increase in its value (1052%), reporting disagreement with the experimental data.

Table 4.1: Medians and coefficients of variation obtained combining samples of the updated
model parameters of each device adopting a classical Bayesian approach. The relative abso-
lute differences respect to nominal values are reported as percentage in parenthesis.

Parameter Median cov
¢ 0.0147 (14%)  25%
sE [pN~1 m?| 17.5 (7%) 19%

el eo 10009 (122%) 11%
p, [kg/m® 7603 (3%)  26%
po [ke/m?] 7014 (5%) 3%
E, [GPal 63.9 (5%)  110%

L [mm] 40.68 (2%) 4%

b [mm)| 10.24 (2%) 5%

hs [mm] 0.233 (<1%) 5%
h, [mm] 0.243 (2%) 5%
o, 0.023(77%)  47%

If compared to Table 4.1, the dispersions remained almost equal, where only ( presented a
difference of more than six percentage points. Strong correlations between model parameters
were also reported. Particularly, the group of model parameters ¢ — s — ds; — p, were highly
correlated, where the pair s¥ — d3; presented a correlation coefficient of 0.93. Figure 4.3
shows the posterior samples strongly correlated (|p| > 0.5). These correlations are consistent
with previous analyses found in |20, 22].

To further investigate the effects of the features mentioned before, a posterior predic-
tive analysis was carried out. It was performed for two cases: with only PEHs properties
and characteristics, and then including the prediction error o.. Figure 4.4 shows the mean
prediction and the 90% confidence interval found for the two cases mentioned, along with
the nine devices’ experimental data. As noted, the mean prediction is equal for both cases,
which estimates well the mean natural frequency of the devices. Nevertheless, the confidence
interval widths differ noticeably. When only considering model parameters uncertainties,
the interval obtained is very narrow and does not enclose the devices’ experimental data
correctly. The very narrow interval is explained again by the strong correlations obtained,
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which compensate for the high dispersion found in some model parameters. This aspect has
been thoroughly addressed by Peralta et al. [20]|, which pointed out that there is a signif-
icant trade-off between the large coefficients of variation and strong correlations found in
PEHs model parameters. It was also demonstrated that the system is globally identifiable.
Therefore, the posterior distribution does present regions that offer almost the same likeli-
hood value of the MAP estimate, yielding very similar FRF predictions. Otherwise, when
the prediction error o, is considered, a much wider confidence interval is encountered, which
encloses in a better way the experimental data. As the variance of the devices is mainly
attributed to model parameter variations, these results are unrealistic. The erroneous ac-
count for the system uncertainties was expected, as it has been reported that the classical
scheme commonly puts the system uncertainties (model error and parameters variability) in
the prediction error |23, 26|, as was discussed in the introduction.

100 150 200 250 300 100 150 200 250 300
Frequency [Hz] Frequency [Hz]

Figure 4.2: Robust posterior predictions with a confidence interval of 90%, obtained com-
bining the updated model parameters of each device adopting a classical Bayesian approach
(prediction error is not included). (a) Ignoring correlations and (b) incorporating correlation
identified in the posterior distribution of each device. Experimental FRFs for the 9 PEHs
are presented in circles. The predicted FRF dispersion is overestimated.
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Figure 4.3: Posterior samples with largest correlation coefficients (|p| > 0.5), obtained com-
bining the experimental FRF to update model parameters of a single predictive model adopt-
ing a classical Bayesian scheme. Correlation coefficients are indicated in the top left corner.

Table 4.2: Median and coefficient of variation of each model parameter updated using the
full data set D on a classical Bayesian approach. The relative absolute differences with the
median values of Table 4.1 are reported as percentage in parenthesis.

Posterior
Parameter
Median cov
¢ 0.026 (77%) 6%

sE IpN=tm?| 176 (<1%)  19%
“dy [pC N7 300.3 (5%)  19%

eT /e 0443 (6%)  15%
py [kg/m?] 7402 (3%)  26%
ps |kg/m?] 6437 (8%) 73%

E, [GPa] 639 (<1%) 103%
L [mm] 41.08 (1%) 5%
b [mm] 10.11 (1%) 5%
hs [mm] 0.232 (1%) 5%
hy [mm| 0.241 (1%) 5%
Oe 0.265 (1052%) 2%
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Figure 4.4: Predicted FRF with a confidence interval of 90%, obtained combining the exper-
imental FRF to update model parameters of a single predictive model adopting a classical
Bayesian scheme. (a) only model parameters uncertainties considered. (b) prediction error
also considered. Experimental FRFs for the 9 PEHs are presented in circles. The model
parameters uncertainties (excluding the predictive error) underestimate the FRF dispersion.

4.1.2 Hierarchical Bayesian scheme

Given the unrealistic account for model parameter uncertainties obtained with the classical
Bayesian scheme, the hierarchical approach is conducted. Now, each harvester data set D" is
treated independently and is defined by model parameters Bi. The hierarchy, as mentioned
before, is established by parameterizing the prior distribution of each data sets’ parameters,
leading to p(@!|n, Mj,). Given that the parameters prior PDF was selected to be a multivari-
ate uncorrelated lognormal distribution, defined by medians g and coefficient of variations
cov, the hyperparameters m consist of the set [u cov|. The prediction error o, was also
parameterized, as the FRF data from the nine harvesters were acquired under the same ex-
perimental setup [12], which ensures noise-free measurements. In this sense, the prediction
error is not expected to present high variations across the experiments.

The implementation of the hierarchical Bayesian scheme was then performed following
the procedure detailed in Section 2.2.2. Thus, it started with obtaining samples from the
likelihood function of each data set p(D?|@, M), which allows the estimation of the integrals
{p(D'|m, My,);i = 1,...,9}, given by Eq. (2.13). The samples were obtained using a uniform
prior distribution for the parameters 0 € [07™", %], where the limits 8™ and 0" were
selected to be the prior medians + two prior standard deviations, whose values are shown in
Table 3.1. These limits would represent the physical space where the uncertain parameters
Gi may lay.

Then, with Eq. (2.14), samples {n":h = 1,... N,} from p(n|D, M), which contain
the medians p® and coefficients of variations cov®, were obtained through TMCMC with
a uniform prior distribution p(m|My,): the medians g were bounded by the same limits ™
and 0" mentioned before, and the coefficients of variations cov were bounded between
0.001% and 500%. The posterior samples of the hyperparameters ™ are shown in Figure
4.5, corresponding to scatter plots for the medians u® and coefficients of variation cov” of
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each model parameter.
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Figure 4.5: Samples from p(n|D, M},;) obtained through TMCMC. These samples correspond
to the posterior distribution of the hyper-parameters.

Then, using Eq. (2.17) the medians and dispersions of p(0:|D, M) were calculated,
which are shown in Table 4.3. Significant differences with the values obtained with the
classical scheme are observed, demonstrating the impact of introducing the prior distribution
p(0¢|M.5). The parameter o, associated with the prediction error, showed a huge decrease
in its value, revealing the different structure of the hierarchical scheme. Also, most of the
PEHs properties and characteristics showed a decrease in their dispersions compared to the
ones obtained within the classical scheme (Table 4.2); only ¢ reported an increase of sixteen
percentual points. Given the analytical posterior distribution p(0:|D, M;,) the hierarchical
setting offers, contour plots of the joint distribution of parameter pairs are shown in Figure
4.6. In contrast with the classical scheme, no correlations between parameters are obtained
under the hierarchical approach, given that correlation coefficients are not considered in the

hyperparameter vector m.

A posterior predictive analysis is performed to propagate the uncertainties p(0¢|D, M)
in the FRFs. Here, two cases are analyzed: considering and not the prediction error, yielding
to the robust predictions shown in Figure 4.7. The figure shows the mean FRF in solid
black line and experimental FRF of each PEH in circles. Additionally, the 90% confidence
intervals are also included, where the red dotted line incorporates the prediction error while
the gray dotted line excludes it. Practically no difference between the predictions (with and
without the prediction error) is obtained due to the small value obtained for o.. Contrary
to the classical scheme’s prediction (Figure 4.4), the hierarchical method correctly accounts
for the variability across the nine devices rigorously. In conclusion, the hierarchical approach
accurately bounds the entire FRF data set. Therefore, a good estimation for the mean
natural frequency and highest voltage response is reached.
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Table 4.3: Updated medians and covs of p(0;|D, M) given by the hierarchical scheme.
The relative absolute differences with the classical scheme are reported as percentage in
parenthesis.

Posterior
Parameter
Median cov
¢ 0.0172 (34%) 22%

s [pN~1 m?| 9.1 (49%) 8%
“dy [pC N7 150.29 (50%) 8%

eds /€0 7144 (24%) 1%
p, [ke/m?] 8035 (9%) 8%
po [keg/m?] 14801 (130%) 8%
E, [GPa]  116.6 (32%) 29%

L [mm] 43.57 (6%)  <1%

b [mm]| 10.92 (8%) 1%
hs [mm] 0.238 (3%) 5%
h, [mm] 0.226 (6%) 1%

o, 0.030 (89%)  42%

To further investigate the differences between the classical and hierarchical approach, the
marginalized histograms of the posterior distributions, p(0:|D, M.s) and p(0:|D, M), re-
spectively, are compared in Figure 4.8. Blue histograms correspond to the classical scheme,
while the red ones correspond to the hierarchical scheme. As noted, lower dispersions were
obtained with the hierarchical scheme, where some parameters, such as el;, L, b and h,
presented values of 1%. This behavior was not expected since it is common to obtain larger
model parameter dispersions within the hierarchical scheme compared to the classical one.
The behavior is explained by the critical role that model parameter correlations play in the
parameter uncertainty quantification within the classical scheme, discussed in Section 4.1. As
the hierarchical scheme was structured as uncorrelated, the trade-off effect vanishes, yielding
the decrease in model parameters dispersions. Thus, the hierarchical and classical schemes
are not compared under the same assumptions. It should be noted that if model parame-
ter correlation coefficients were considered within the hierarchical scheme, a 90-dimensional
hyperparameter vector is engendered, where alternative identification methods should be ex-
plored due to the significant computational cost involved. Secondly is the different assessment
of the prediction error o, which is manifested on its widely separated histograms. While the
classical scheme puts most of the variability of the data sets on the prediction error, critically
overestimating it, the hierarchical scheme puts it on model parameter uncertainties.

Further insight can be obtained if the prediction given by the MAP values of each scheme
are contrasted against the experimental data. For comparison, a similar procedure to [22]
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is performed. Thus, MAP predictions are presented into the physical space and also in a
normalized FRF space, defined by the following axes: r = w/w, and Hy = H/H,, where w,
and H, are the natural frequency and its corresponding FRF amplitude. The transformation
into the normalized FRF space is supported by the fact that its shape is independent of the
value of the natural frequency and the peak of amplitude. Figure 4.9 shows the predictions
provided by the MAP values of each scheme in both spaces defined before, along with the
experimental FRFs. Classical scheme MAP prediction is presented in a red solid line, while
the hierarchical in a blue. It is observed that the curve obtained with the classical scheme has
a poor agreement with the natural frequency and the maximum FRF amplitude. In contrast,
the prediction provided by the hierarchical scheme has good agreement with both values. On
the other hand, when the FRF shape is considered, Figure 4.9(b) reveals a poor agreement
between the MAP curve of the classical scheme and the experimental data since its prediction
is above the data points. In contrast, MAP prediction from the hierarchical scheme presents
an appropriate fit. In this line, the proposed hierarchical scheme significantly improves the
results obtained in [22] without manipulating experimental data.
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20 6000
0 200 400 7000 7200 7400 10000 15000 20000
E; [GPa] 537;)/60 ps kg m_3]
44.5 0.3 0.04
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g

E = ~0.02
~ 435 = 0.2

0.01
43 0.15

10.5 11 11.5 0.22 0.225 0.23 0 0.05 0.1
b [mm] hy [mm] o,

Figure 4.6: Joint posterior distribution of model parameter pairs given by the hierarchical
approach. The distribution corresponds to the approximation of p(8¢|D, M;s) made by a
Monte Carlo approach in Eq. (2.16). This PDF is considered as the underlaying distribution
of model parameters of the group of PEHs.
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Figure 4.7: Predicted FRF with a confidence interval of 90% given the p(6;|D, M) identified
by the hierarchical Bayesian scheme. Experimental FRFs for the 9 PEHs are presented in
circles. The model parameters uncertainties (excluding the prediction error) predict a FRF
dispersion in agreement with the experimental observations.
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Figure 4.8: Marginalized model parameter histograms of the posterior distribution for the
group of harvesters obtained with the classical (blue) and hierarchical (red) approaches.
Samples in color blue were used to obtain Fig. 4.4 while samples in color red were used to
obtain Fig. 4.7. Blue samples present larger dispersion.
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Figure 4.9: Predicted FRF employing MAP values for the posterior distributions of the
classical and hierarchical schemes. The FRF is presente in: (a) physical space, and (b) nor-
malized space. Experimental FRFs for the 9 PEHs are presented in circles. MAP prediction
of the hierarchical approach fit the experimental observation in both physical and normalized
spaces.

4.1.3 Identification of individual PEHs with objective prior

Finally, each device’s parameters 0! are updated based on the results of the hierarchical
scheme. Now, the posterior distribution for all the data sets p(0;|D, My) is taken as an
objective prior distribution to update the parameters of each device. Thus, using Eq. (2.18)
and the TMCMC method, the posterior distribution for each device p(0!|D?, Mj,,) are esti-
mated. The samples obtained for each device, represented with different colors, are shown in
Figure 4.10.

As noted, most of the parameters shared similarities across the data sets, except ¢ and
o. for the eighth device. The different behavior of this device explains the gap: it presents
a nonlinear behavior (its FRF peak is slightly deviated to the right, please refer to Figure
3.1(a)), inducing the distortion on the named parameters. Even so, the underlying lognor-
mal distribution p(0:|D, M;,) found (Figure 4.6) is able to describe such variations, as it
accurately covers the parameter values of the nine devices.

The same comparison between the classical and hierarchical scheme can be made for
each device, p(0}|D’, M,,) and p(0!|D’, M), respectively. For example, in Figure 4.11,
the marginalized histograms for the first (i=1) PEH are shown. Again, model parameter
dispersions were lower within the hierarchical scheme, which is explained by the different
prior distributions employed. Also, note that under both schemes, the prediction error o,
presented similar distributions, revealing the same data fit for this device. The marginalized
histograms of the remaining PEHs are presented in Annex B, since they showed a similar
trend.
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Figure 4.10: Posterior samples for each device under the hierarchical Bayesian scheme.

Number of samples

400 500 400 400
200 250 200 1 200 } -
0 0 0 0
0.012 0.016 0.02 0 20 40 100 300 500 6000 10000 14000
C I Classical Bayesian scheme Sﬁ [prl le] —dgl [])C Nfl] 6;?;;/60
[ Hierarchical Bayesian scheme
400 1000 1000 400
200 500 200 I . |
0 0
0 5000 10000 15000 0 20000 40000 35 40 45 50
py kg m ] ps kgm ] L [mm]
400 400 400
200 200 200 .
0 0 0
8 10 12 0.15 0.2 0.25 0.3 0.2 0.24 0.28 0.02 0.03 0.04 0.05
b [mm] hy [mm)] hy [mm] o,

Figure 4.11: Marginalized model parameter histograms of the posterior distribution for the
PEH number 1 obtained with the classical (blue) and hierarchical (red) approaches. Blue
samples present larger dispersion.

4

.2

Model class selection

In order to support the selection of such a classical or hierarchical scheme for PEHs appli-
cations, a model class selection procedure is performed following the setting described in
Section 2.2.3. Thus, consider the set of models {M;;j = cs, hs} explored in this work and
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P(M;) = 1/2. With each model class’s evidence, Eq. (2.19) is used to update each model’s
posterior plausibility. Table 4.4 reports each model’s log(evidence) along with its posterior
plausibility.

Table 4.4: Model class selection results for the models reviewed.

Mcs Mhs
log(evidence) -101.04 76.23
P(M;|D) 0 1

Thus, the model class selection procedure leads to the selection of the hierarchical model.
The low value of the evidence in the classical scheme reveals (again) the impact of the prior
distribution used p(0¢|M.,) and the inappropriate formulation of the probabilistic model for
multiple PEHs applications.

The same procedure was performed with the individual updating of each data set. Thus,
the evidence terms from Eqgs. (4.1) and (2.18) were obtained using Eq. (2.27). Table 4.5
shows the results for { P(M;|D");j = cs, hs;i = 1,...,9}, where the hierarchical scheme was
preferred in most of the cases. The classical scheme was preferred in the third, sixth, and
seventh device, which is explained by the slightly lower value obtained in the prediction error
o (please refer to the o, histograms of Figures B.2, B.5, and B.6, respectively). The results
demonstrate the impact of using an objective prior, such as p(0|D, Mj;).

29



Table 4.5: Model class selection results for the classical and hierarchical Bayesian schemes
when individual data sets are used. The value of P(M;|D") for each data set is reported
together with its respective log-evidence (in parenthesis).

Mcs Mhs
0 1
PEH 1
(171.444)  (178.483)
0.01 0.99
PEH 2
(222.704)  (227.289)
0.62 0.38
PEH 3
(227.073)  (226.371)
0.02 0.98
PEH 4
(231.965)  (235.630)
0.01 0.99
PEH 5
(217.992)  (222.990)
0.89 0.11
PEH 6
(213.148)  (211.084)
0
PEH 7
(219.523)  (206.975)
0.03 0.97
PEH 8
(114.3641) (117.852)
0.4 0.6
PEH 9

(189.253)  (189.673)
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Chapter 5

Conclusions

In this work, a hierarchical Bayesian inference framework was proposed, implemented and
used to identify electromechanical properties in a group of PEHs based on experimental FRF
observations. The framework was illustrated with nine commercial PEHs that share the same
nominal properties but present different behaviors due to imperfections in the manufacturing
process. The hierarchical framework was compared respect to a classical approach, and the
results revealed several important conclusions about the hierarchical Bayesian scheme: (1)
it can rigorously account for the uncertainties in model parameters across devices, (2) it can
characterize prior distributions to be used in classical Bayesian schemes applied to a single
PEH, and (3) it extracts more information about model parameters employing the same
observations either at device or group level.

The study started with the implementation of a classical Bayesian scheme to update the
model parameters, which required a prior distribution and the formulation of a likelihood
function. Here, the prior distribution was selected based on the information given by the
manufacturer while the updating was performed adopting TMCMC. Two approaches were
explored to characterize the uncertainties in a group of PEHs: (i) updating the model pa-
rameters of each device independently and then combining their respective posteriors, and
(ii) combining the FRF observations of the PEH group to update the model parameters of
a single predictive model. The first approach overestimates the dispersion observed in the
experimental FRFs. Additionally, it constitutes a not rigorous procedure, especially in the
way in which the posterior distributions of each device are combined. The second approach
did not offer a good representation either, as the robust prediction obtained did not capture
the variability across the devices. In particular, the FRF dispersion was underestimated.

Given the above, a hierarchical Bayesian scheme for PEHs was proposed by introducing
hyperparameters to parameterize the prior distribution. Technical details and estimations
that facilitate the implementation of such a hierarchical scheme were presented. The pro-
posed approach leads to a parametric underlying distribution for the model parameters that
properly describes the devices’ FRF variability observed in experiments. This underlaying
distribution was considered to be representative of the electromechanical properties for the
group of PEHs studied. A model class selection procedure supported the preference for such
a hierarchical scheme (over a classical aproach) for multiple PEHs, which also enabled the
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Bayesian identification of individual devices with an objective prior, something unexplored
until now. It was proven that under this scheme, a much better account of the model param-
eter uncertainties was reached, as lower uncertainties were addressed either at device level or
group level compared to the classical scheme.

Overall, this study demonstrated the power of the hierarchical Bayesian inference frame-
work proposed for PEHs applications, which was able to identify electromechanical properties
of individual and multiple harvesters within a probabilistic approach. Particularly, the pro-
posed hierarchical scheme constitutes a powerful tool to identify electromechanical properties
of groups of PEHSs, as it enjoys the ability to match the natural frequency, the amplitude at
the natural frequency, the FRF shape, and FRF variability observed in experiments.
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Annexes

Annex A

The expressions for the matrices and vectors are [12]:

C.y = diag [2Ciw1 2Gws ... 2(N,wn,]
2 2 }

K., = diag [w% Wy .. Wy,
T

X:[Xl X2 --- XNO]
T

<P:[901 (25 SONO]

T
r=r; 1y ... 1ry,]

where (,, wn, Xn, ©n and 1, are the damping ratio, natural frequency, electrical coupling,
mechanical coupling, and mechanical forcing terms, respectively, of the n = {1,...,N,}
eigenfunction:

An An e ) An
on(x) = C, [cos (fx) — cosh <fx> + o, (sm (fx) — sinh (fx))}
where L is the length of the beam, and o, is defined by:

sin A\,, — sinh A\,
cos A, + cosh A\,

On

1+ cosA,cosh\, =0
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while C, is defined such that the following orthogonality condition is guaranteed:

g (@) bla)dr = B

where m = b(pshs + 2p,h,) is the mass per unit length of the beam and d,,,, is the Kronecker
delta function, ¢,,, = 1 if n = m and J,,, = 0 otherwise. With the above, the modal terms
can be defined as:

2
n = An mLA

ds; b [ h2 h\2\ don(z)
== [ = h =
Xn sﬁhp<4 (“LQ) du

_ @hp(hp + hs) don(x)
on st 2eLL dx

r, = —m /L On(z)dx
0

hp
2R (egg . %) bL

kpzt =

where F1 is the equivalent bending stiffness of the device:

E5h2+1 h+hs3_h§
g s A\ 2 8

pr=2
3
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Annex B
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Figure B.1: Marginalized parameter histograms of the posterior distributions obtained with
the classical (blue) and hierarchical (red) scheme for the second device.
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Figure B.2: Marginalized parameter histograms of the posterior distributions obtained with

the classical (blue) and hierarchical (red) scheme for the third device.
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Figure B.3: Marginalized parameter histograms of the posterior distributions obtained with
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the classical (blue) and hierarchical (red) scheme for the fourth device.
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Figure B.4: Marginalized parameter histograms of the posterior distributions obtained with
the classical (blue) and hierarchical (red) scheme for the fifth device.
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Figure B.5: Marginalized parameter histograms of the posterior distributions obtained with
the classical (blue) and hierarchical (red) scheme for the sixth device.
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Figure B.6: Marginalized parameter histograms of the posterior distributions obtained with
the classical (blue) and hierarchical (red) scheme for the seventh device.
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Figure B.7: Marginalized parameter histograms of the posterior distributions obtained with
the classical (blue) and hierarchical (red) scheme for the eighth device.
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Figure B.8: Marginalized parameter histograms of the posterior distributions obtained with
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the classical (blue) and hierarchical (red) scheme for the ninth device.
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