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Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears
a broad mosaic of biological roles across various cell types. Thy-1 displays strong
physiological and pathological implications in development, cancer, immunity, and
tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling
through direct trans- and cis-interaction with integrins. Both interaction types have shown
distinctive roles, even when interacting with the same type of integrin, where binding in
trans or in cis often yields divergent signaling events. In this review, we will revisit recent
progress and discoveries of Thy-1–integrin interactions in trans and in cis, highlight their
pathophysiological consequences and explore other potential binding partners of Thy-1
within the integrin regulation/signaling paradigm.
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1 INTRODUCTION

Thy-1 [also known as cluster of differentiation 90 (CD90)] is a 25 kDa cell-surface glycoprotein
located in lipid rafts, which is tethered to the outer leaflet of the cell membrane via a
glycosylphosphatidylinositol (GPI) anchor. This protein was first identified more than half
a century ago on mouse T cells (Reif and Allen 1964a). Thy-1 has been identified as a member of
immunoglobin superfamily (IgSF), displaying strong homology to both the variable and
constant regions of immunoglobin (Williams and Gagnon 1982). The protein is widely
expressed among different cell types and across many species, and is involved in
neurogenesis, immunity, development, fibrosis, and cancer. These functions have been
previously reviewed elsewhere (Haeryfar and Hoskin 2004; Barker and Hagood 2009;
Herrera-Molina, Valdivia et al., 2013; Leyton and Hagood 2014; Hagood 2019; Saalbach
and Anderegg 2019; Sauzay, Voutetakis et al., 2019). In this review, we will focus on the trans-
and cis-interactions between Thy-1 and other cell surface molecules, especially the interactions
with the first identified Thy-1 receptors: the integrins.

The binding of Thy-1 to αvβ3 integrin was first reported as a trans-interaction of astrocytes
with EL4 cells. The interaction is dependent on the RLD tripeptide, a structural analog of the
established integrin binding RGD motif (Ruoslahti 1996) present on Thy-1, which triggers
canonical integrin outside-in signaling (Leyton, Schneider et al., 2001). Subsequently, Thy-1
has been shown to interact with αvβ3 integrin in cis; this interaction is critically important for
fibroblasts to appropriately sense and respond to the mechanical stiffness of their
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surroundings, via an essential functionality of this integrin
known as mechanotransduction (Fiore, Strane et al., 2015).
Collectively, existing evidence suggests Thy-1 as a dual-
functional integrin regulator —mediating integrin
downstream signaling through direct trans-interaction,
while also regulating baseline integrin activity/avidity in
cis-by preferentially coupling to integrin in its inactive
conformation.

More specifically, trans-interaction between Thy-1 and
integrin, which also involves the heparan sulfate proteoglycan
syndecan-4 forms a tri-molecular complex that regulates the
adhesion and migration of melanoma cells, blood cells and
astrocytes. Importantly, a bidirectional communication has
been described between astrocytes associated with other brain
cells, such as neurons, where not only astrocytes migrate in
response to Thy-1, but neurons also respond to integrin/
syndecan-4 binding by contracting their elongated processes
and acquiring a rounded shape (Burgos-Bravo, Martinez-Meza
et al., 2020). On the other hand, the cis-interaction of Thy-1 with
integrins also mediates a different biological role versus its trans
interactions. The integrin binding RLD motif on Thy-1 can
directly bind to integrin molecules within the same lipid raft
and thus, constrain activation-independent extension of
integrins, further stabilizing the bent-inactive conformation. In
addition, through recruiting various lipid raft-bound proteins to
the proximity of the integrin cytoplasmic tail, Thy-1 enables a cell
to “feel” its environmental stiffness and react accordingly (Fiore,
Strane et al., 2015). The details of the molecular basis and
biological significance for both trans and cis interactions
between Thy-1 and integrins will be carefully reviewed and
discussed in the following sections.

2 THY-1 DIRECTLY BINDS INTEGRINS IN
TRANS

Thy-1–integrin interaction in trans was originally described
in vitro in 2001, as the association of astrocytes containing
αvβ3 integrin with a Thy-1+/+-thymoma cell line (EL-4), but
not with Thy-1−/−- EL-4−f cells, (Leyton, Schneider et al.,
2001). Since then, evidence has indicated that more
physiologically relevant cell-cell interactions mediated by
this Thy-1–integrin interaction exist, including 1) activated
endothelial cells and cancer cells; 2) activated endothelial cells
and neutrophils, monocytes; 3) activated fibroblasts and
dendritic cells; 4) fibroblasts and cancer cells; as well as 5)
neurons and astrocytes. In all these cases, the trans cell-cell
interaction could potentially trigger downstream signaling;
however, detailed molecular mechanisms have not been
deciphered for all the cells involved. In this section, we will
review the cells that reportedly participate in these Thy-
1–integrin interactions, the molecular mechanisms triggered
downstream of these encounters and then, incorporate a third
element known to contribute to this association: syndecan-4.
Because αvβ3 integrin and syndecan-4 are both considered
mechanoreceptors, we will also address the signaling
mechanisms that are involved downstream of these

receptors, when cells are subjected to external forces due to
their binding to other cells through Thy-1.

2.1 Thy-1–Integrin Interaction in Cell-Cell
Interactions
2.1.1 Activated Endothelial Cells and Cancer Cells
The αvβ3 integrin–Thy-1 interaction mediates the binding of
various cancer cells to endothelial cells (ECs). Reportedly, ECs
do not express Thy-1, but they do so under inflammatory
conditions. Thy-1 expression levels on the cell surface are
enhanced in vitro by cytokines, such as Tumor Necrosis Factor
(TNF), and Thy-1 is also detected in ECs of primary
melanoma, but not in tissue sections obtained from benign
skin lesions (Schubert, Gutknecht et al., 2013). On the other
hand, melanoma cells are more aggressive with higher levels of
activated αvβ3 integrin, since this integrin stimulates tumor
growth and extracellular matrix (ECM) invasion (Johnson
1999). This is possible through the interaction of
endothelial Thy-1 with the αvβ3 integrin in melanoma cells,
since antibodies targeting these molecules inhibit melanoma
trans-endothelial migration and the adhesion of melanoma
cells to the human dermal microvascular endothelial cells
(HDMEC) under flow or static conditions (Saalbach, Wetzel
et al., 2005). In addition, using mouse B16F10 melanoma cells
in an isogenic model of metastasis in vivo, Leyton and co-
workers recently demonstrated that unlike melanoma cells
expressing αvβ3 integrin, those lacking this integrin fail to
metastasize to the lung (Brenet, Martinez et al., 2020).
Importantly, another study that used Thy-1 knockout mice,
showed that B16F10 cells (αvβ3 integrin+/+), injected via the
tail vein do not metastasize (Schubert, Gutknecht et al., 2013).
Moreover, reported that human breast cancer cells MDA-MB-
231, as well as B16F10 melanoma cells, adhere to activated EC
in vitro, allowing trans-endothelial migration of these cancer
cells in a β3 integrin-dependent manner Brenet, Martinez et al.
(2020). These in vitro results, together with those using cells
with silenced β3 integrin in a metastatic model, highlight the
importance of Thy-1–integrin interaction in cancer-
endothelial cell interactions in melanoma and breast cancer
progression and metastasis.

Thy-1 has been associated with tumor progression in
several types of cancers. In malignant pleural mesothelioma,
Thy-1 is found overexpressed in primary cancer cells obtained
from tumors exposed to chemotherapeutic drugs in vitro. The
elevated expression of Thy-1 correlates with tumor
progression, which has been additionally associated with
lower survival rate of patients according to data from The
Cancer Genome Atlas (TCGA) (Oehl, Kresoja-Rakic et al.,
2018). Thy-1 is also considered a tumor promoter in pancreas
adenocarcinoma, where its expression is elevated in the stroma
fibroblasts and in ECs, favoring tumor growth and
angiogenesis (Zhu, Thakolwiboon et al., 2014). Additionally,
Thy-1 and α6 integrin overexpression have been associated
with high metastasis and poor survival in gallbladder cancer
patients (Zhang, Yang et al., 2016). The α6 integrin, which
pairs with two distinct β subunits to form the laminin binding
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integrins α6β1 and α6β4, has also been associated with
metastasis in other cancer types, such as hepatocarcinoma
and breast cancer, respectively (Carloni, Mazzocca et al., 2001;
Yoon, Shin et al., 2006).

2.1.2 Activated Endothelial Cells and Leukocytes
Thy-1 in HDMEC binds to αMβ2 integrin in leukocytes.
Proinflammatory cytokines, such as TNF, can activate the ECs,
inducing an increase in Thy-1 expression levels (Brenet, Martinez
et al., 2020). Leukocytes could then associate with ECs through an
αMβ2 integrin–Thy-1 interaction and undertake trans-
endothelial migration, suggesting that leukocytes could reach
distant organs through inflamed tissues by crossing barriers
with activated ECs (Wetzel, Chavakis et al., 2004). Thy-1 in
activated ECs could also bind to αMβ2 integrin in
polymorphonuclear cells derived from patients with psoriasis
and promote their transmigration through the EC layer to
accumulate in the skin (Wetzel, Wetzig et al., 2006).

The αXβ2 is a different leukocyte integrin that has also been
described as a Thy-1 receptor. Although a direct interaction of
αXβ2 integrin with Thy-1 was validated more than 15 years ago
through SPR experiments (Choi, Leyton et al., 2005), the
biological function of this interaction has not yet been
established. However, a recent study showed an interaction of
a tumor promoter molecule, extracellular matrix protein1
(ECM1) with αXβ2 integrin, which induces cancer cell
stemness through the phosphorylation of the AKT/FAK/
paxillin/Rac pathway. The binding of ECM1 to αXβ2 integrin
affects the ability of this integrin to bind to Thy-1, thus altering
Thy-1 function. Additionally, overexpression of ECM1 or its
silencing correlates with Thy-1 expression levels (Yin, Wang
et al., 2021). Here, Thy-1 could account, in part, for the
cancer cell stemness induced by the ECM1-αXβ2 integrin
association because, on the one hand, there will be greater
Thy-1 expression and, on the other, the Thy-1 integrin
partner will be sequestered by the ECM1 binding; however,
this is a possibility that remains to be investigated.

2.1.3 Activated Fibroblasts and Dendritic Cells
Dendritic cells (DCs) enzymatically clear their way through
the ECM, and with the aid of dermal fibroblasts reach the
lymph. DCs and fibroblasts contact each other via the
interaction of Thy-1 in fibroblasts and β2 integrin in DCs,
in vitro cultures (Saalbach, Klein et al., 2007; Saalbach, Klein
et al., 2010). Dermal fibroblasts increase the capabilities of DCs
to migrate upon TNF/IL-1β treatment of fibroblasts. Boosted
DC migration is attributed to the induction of membrane
metalloprotease-9 (MMP-9) expression by the dermal DCs.
Similarly, evidence indicates that lung fibroblasts can direct
DC migration under inflammatory diseases, like chronic
obstructive pulmonary disease and chronic asthma. These
events are coordinated by αvβ8 integrin, which activates
Transforming Growth factor-β (TGF-β) (Kitamura, Cambier
et al., 2011); however, the participation of Thy-1 is unclear in
this scenario. In a different study, αvβ5 integrin was described
to lead to TGF-β activation through the processing of the
latency-associated peptide (LAP), and it was shown that Thy-1

could regulate this process by binding to the integrin in cis,
preventing its interaction with LAP (Zhou, Hagood et al.,
2004). Therefore, it is tempting to speculate that Thy-1
could also play a role in the αvβ8 integrin-mediated
activation of TGF-β in airway remodeling. Thus far, this
possibility has not been studied.

2.1.4 Fibroblasts and Cancer Cells
Interestingly, cancer-associated fibroblasts (CAFs) are known to
promote tumor progression; however, the molecular mechanism
by which CAFs regulate these events are unknown. One study has
shown that gastric cancer patients with a large number of CAFs
exhibit drug resistance and a poor prognosis. These CAFs
produce extracellular vesicles that, when injected in a
peritoneal metastasis mouse model, induce drug resistance.
Additionally, these CAF vesicles, when added to cancer cells
grown in Matrigel, lead to β1 integrin stabilization on the plasma
membrane and drug resistance in vitro (Uchihara, Miyake et al.,
2020). Another study indicated that CAFs align the fibronectin
matrix through increased cellular contractility, generating
traction forces that allow cancer cells to migrate directionally
and invade tissues to promote metastasis (Erdogan, Ao et al.,
2017). A different study in human lung adenocarcinoma
indicated that Thy-1 is expressed in these CAFs and the
presence of an elevated number of Thy-1+/+ CAFs is a sign of
poor prognosis (Schliekelman, Creighton et al., 2017). Therefore,
an interesting possibility is that, apart from aligning the ECM
protein fibronectin, these Thy-1+/+ CAFs could guide integrin-
positive cancer cells to migrate and metastasize. Indeed, several
integrins have been involved in cancer cell migration over ECM
proteins secreted by CAFs (for a recent review on this topic, see
Jang and Beningo 2019); but in this case, the contribution of the
Thy-1–integrin interaction to cancer cell migration and invasion
has yet to be identified.

In ovarian cancer cells, the scenario is more complex since
Thy-1 can exert both tumor promoter and suppressor functions.
On the one hand, Thy-1+/+ cancer stem cells in ovarian cancer
show a high proliferative and self-renewal capability compared to
Thy-1−/− cells. Additionally, Thy-1 knockdown in these cells
makes the cancer features disappear (Leyton, Diaz et al.,
2019). However, different studies have reported that Thy-1 is
downregulated in ovarian cancer tissues and that Thy-1
overexpression decreases tumor formation in vivo and
anchorage-independent growth in vitro, effects that are
dependent on the expression of αvβ3 integrin (Abeysinghe,
Cao et al., 2003; Chen, Hsu et al., 2016). The in vitro effects of
Thy-1 overexpression are mirrored by silencing β3 integrin,
indicating a role of Thy-1 in cis-regulation of this integrin.
Therefore, as it is clear from other reported examples, the
context-dependent role of Thy-1 (Bradley, Ramirez et al.,
2009) could perhaps explain these differences in tumor
regulation.

2.1.5 Neurons and Astrocytes
The interaction of β3 integrin and Thy-1 was first described as an
important trigger of morphological changes in astrocytes (Leyton,
Schneider et al., 2001). Later, the interaction was shown to be
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involved in neuron-astrocyte association and to be mediated by
the αvβ3 integrin (Hermosilla, Munoz et al., 2008). The binding
of these two molecules was then held responsible for changes
occurring in neurons, suggesting a bidirectional signaling
emanating from each component: the αvβ3 integrin in
astrocytes and Thy-1 in neurons. Importantly, this trans-
interaction was challenged by the presence of αvβ3 integrin in
neurons, posing the question as to whether the cis-interaction of
Thy-1–integrin in neurons would play a role in the signaling
triggered in trans by a similar integrin. By silencing neuronal β3
integrin, showed that the Thy-1–integrin interaction in cis is
dispensable for αvβ3 integrin transactivation of neurite
outgrowth inhibition and suggested that the neuronal αvβ3
integrin could bind Thy-1 and form small nanoclusters that
would regulate the binding of the integrin with other cellular
or ECM ligands (Maldonado, Calderon et al., 2017). Therefore,
many interactions could occur in parallel between ECM-integrins
and integrins and proteins present on the same (cis) or on
different (trans) cells, supporting the idea of a complex
regulation of the function of many cell adhesion molecules.
Therefore, αvβ3 integrin binding to Thy-1 constitutes an
important interaction in neurite-astrocyte communication.
However, some studies have indicated that neither anti-
integrin antibodies, RGD peptides, nor Thy-1-Fc protein can
completely abolish the functionality of the αvβ3 integrin–Thy-1
interaction, suggesting that other molecules participate in the
cellular outcome. Indeed, syndecan-4 was reported as a mediator
of a trimolecular interaction with Thy-1 and αvβ3 integrin, and
the complex is required for the formation of focal adhesions and
stress fibers induced by the engaged receptors in astrocytes
(Avalos, Valdivia et al., 2009). As suspected, the trimolecular
complex formed was also important for the effect of Thy-
1–integrin interaction in neurite retraction (Burgos-Bravo,
Martinez-Meza et al., 2020). In this case, syndecan-4
accelerated the effect of Thy-1–integrin ligation, inducing
faster cytoskeleton contraction, neurite retraction and
inhibition of neurite outgrowth (Burgos-Bravo, Martinez-Meza
et al., 2020).

2.2 Thy-1 Regulates Downstream Integrin
Signaling Through Trans-interactions
As mentioned above, detailed molecular mechanisms
downstream of Thy-1–integrin receptors are still ill defined;
therefore, in this section we will summarize what has been
best described thus far. Breast cancer and melanoma cells
treated with Thy-1 trigger signals by engaging β3 integrin. The
molecular cascade stimulated downstream of integrin ligation
involves increased intracellular Ca2+ concentration, Connexin-43
and Pannexin-1 hemichannel opening, ATP release, and P2X7
receptor (P2X7R) activation. This signaling mechanism occurs in
these two models: cancer cell migration and invasion.
Considering that the transmigration of breast cancer and
melanoma cells is significantly decreased when cells have low
levels of β3 integrin and that, in a preclinical mouse model,
melanoma cells that normally metastasize to the lung cannot
reach the target organ when β3 integrin has been silenced (Brenet,

Martinez et al., 2020), the signaling mechanism triggered by the
Thy-1–integrin interaction is important for cancer cell migration,
invasion and transvasation both in in vitro and in vivo models.
The aforementioned signaling pathway triggered by Thy-
1–integrin ligation was previously reported for activated
astrocytes (Henriquez, Herrera-Molina et al., 2011; Alvarez,
Lagos-Cabre et al., 2016; Lagos-Cabre, Alvarez et al., 2017).

Anti-αv integrin monoclonal antibodies, like CNTO 95 (also
known as intetumumab), have demonstrated the important role
of this integrin in tumor promotion and metastasis. CNTO 95
proved useful in inhibiting invasion of breast cancer cells (Chen,
Manning et al., 2008), as a standalone treatment (Mullamitha,
Ton et al., 2007) or in combination with other drugs in patients
with prostate cancer (O’Day, Pavlick et al., 2011; O’Day, Pavlick
et al., 2012). However, subsequent phase II studies of CNTO 95
showed no clinical benefits (Heidenreich, Rawal et al., 2013),
resulting in the discontinuation of the trials [reviewed in (Rocha,
Learmonth et al., 2018)]. It is conceivable that this failed anti-
integrin strategy is at least partially caused by the presence of
Thy-1, which is particularly highly-expressed in those invasive
cancer cells (Sauzay, Voutetakis et al., 2019).

Dermal fibroblasts are activated by TNF/IL-1β treatment and
produce IL-6 which then stimulates DCs to produce MMP9,
helping these cells to migrate through the ECM and transmigrate
through basement membrane-like structures (Saalbach, Klein
et al., 2010). Dermal DCs co-cultured with activated
fibroblasts produce 10-fold higher levels of MMP9 than DCs
treated directly with the proinflammatory cytokines TNF/IL-1β.
In addition, experiments using antibodies indicated that the high
production of MMP9, but not MMP2, account in part for the
enhanced motility of DCs in an inflamed tissue. Interestingly, the
interaction of activated fibroblasts with neutrophils also promotes
secretion of MMP9 by neutrophils, and in this case, the Thy-
1–αMβ2 integrin interaction is required for MMP9 production
(Saalbach, Arnhold et al., 2008). In the context of fibroblast-DC
interaction, the Thy-1–integrin interaction might also play an
important role in DC migration, since integrins are recognized
players of cell migration. In this skin inflammatory model, IL-6
was recognized for the first time as a cytokine capable of inducing
DC production of MMP9 and thus, as an important regulator of
DC migration [see recent review on this topic in (Perez, Leyton
et al., 2022)].

In gastric cancer cells growing in Matrigel, their exposure to
extracellular vesicles produced by CAFs, leads to a rapid change
of shape in these cancer cells. A proteomic analysis performed
with these vesicles revealed the presence of Annexin A6 in CAF-
vesicles, but not in cancer cell-vesicles. In this study, Annexin A6
is shown to stabilize β1 integrin, thereby leading to drug
resistance. CAF-vesicles can activate focal adhesion kinase
(FAK) and promote nuclear translocation of the yes-associated
protein (YAP) in cancer cells. Therefore, ECM-ligated β1 integrin
induces drug resistance through the activation of the FAK and
YAP signaling pathways (Uchihara, Miyake et al., 2020).
Importantly, extracellular vesicles reportedly play a role in the
development of drug resistance by various mechanisms, which
include transport of drugs, drug pumps, pro-survival cargos, and
mRNAs (Burgos-Ravanal, Campos et al., 2021). It is noteworthy
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that Thy-1 has been shown to co-exist with Annexin A6 on
extracellular vesicles (Morciano, Beckhaus et al., 2009) and can
directly interact with β1 integrin in trans (Fiore, Ju et al., 2014).
These facts suggest an important role of Thy-1 in drug
resistance—indeed, high expression of breast cancer resistance
protein (BCRP) has been identified in Thy-1 positive cells
(Sukowati, Anfuso et al., 2013).

Thy-1 induces a strong adhesion of reactive astrocytes to
culture plates within the first hour of Thy-1 stimulation
(Kong, Munoz et al., 2013), in a process dependent on
Thy-1 binding to astrocytic αvβ3 integrin (Leyton,
Schneider et al., 2001; Hermosilla, Munoz et al., 2008;
Kong, Munoz et al., 2013). Additionally, in a different
cellular model, the absence of Thy-1 (Thy-1−/− cells) in
fibroblasts induces faster migration than that observed for
Thy-1+/+ cells, suggesting an inhibitory effect of Thy-1 on cell
migration (Barker et al., 2004a). However, prolonged

interaction between Thy-1 and αvβ3 integrin (>60 min) can
promote astrocyte migration (Kong, Munoz et al., 2013),
demonstrating that the initial block of cell migration
mediated by Thy-1 disappears after the first hour of
stimulation. The molecular mechanisms underlying the
shift between strong cell adhesion and migration are still
under study. Thy-1-astrocyte receptor binding results in
the aggregation of αvβ3 integrin at the plasma membrane,
the recruitment and phosphorylation of FAK and p130Cas,
recruitment of vinculin, paxillin and PI3K (Leyton, Schneider
et al., 2001; Kong, Munoz et al., 2013), as well as the activation
of RhoA and p160ROCK (Avalos, Labra et al., 2002; Avalos,
Arthur et al., 2004) and the inactivation of Rac1 (Kong,
Munoz et al., 2013), events that lead to morphological
changes and increased focal adhesion (FA) formation
(Figure 1). The latter are points of adhesion of cells to the
ECM, and enhanced number and area of these structures lead

FIGURE 1 | Thy-1 mediates and regulates integrin signaling through trans-interaction with integrins. Thy-1 can directly bind integrins and syndecan-4 and mediate
distinctive signaling pathways between the two interacting cells. Recruitment of Cbp by Thy-1 to the lipid raft reduces Src activity and promotes contraction. On the other
side, signaling induced by Thy-1–integrin/syndecan-4 interaction promotes adhesion and migration through canonical integrin outside-in signaling. The interaction also
leads to elevated cellular Ca2+, opening of Connexin-43/Pannexin-1 hemichannels and activation of the P2X7R, resulting in astrocyte cell adhesion and migration.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9285105

Hu et al. Thy-1 and Integrin Signaling

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


to stronger cell adhesion (Dubash, Menold et al., 2009).
Moreover, syndecan-4, the latest identified member of the
membrane proteoglycans is also involved in cell adhesion and
migration (Akiyama, Yamada et al., 1989; Baciu and Goetinck
1995; Dovas, Yoneda et al., 2006). Importantly, syndecan-4
also acts as a receptor for Thy-1, and it is required in Thy-1-
induced astrocyte adhesion and migration (Avalos, Valdivia
et al., 2009; Kong, Munoz et al., 2013).

Pathways that are triggered in astrocytes by Thy-1-
engagement of syndecan-4 have not been studied in detail;
however, recent data indicates that upon Thy-1 binding,
syndecan-4 regulates FA turnover in astrocytes and mouse
embryonic fibroblasts by forming a complex with the PDZ-
domain scaffold protein and regulator of cell polarity, PAR3
(Valdivia, Cardenas et al., 2020). This complex formation leads
to dephosphorylation of FAK and activation of the Rac1GEF
Tiam1 (Valdivia, Cardenas et al., 2020). Moreover, the
cytoplasmatic domain of syndecan-4 has three tyrosine
residues; one of them, Y180, is a phosphorylation site for
the tyrosine kinase Src (Morgan, Hamidi et al., 2013). The
mutation of Y180 for a lysine (Y180L) slows down FA
dynamics, which in turn, reduces fibroblast migration by
increasing cell adhesion (Morgan, Hamidi et al., 2013). This
supports a role for syndecan-4 phosphorylation as a switch
controller of FA assembly/disassembly dynamics and cell
migration. Additionally, rapid FA turnover and migration
induced by pY180-syndecan-4 is likely to occur due to the
effect of syndecan-4 on integrin recycling (Brooks, Williamson
et al., 2012; Morgan, Hamidi et al., 2013). Thus, the possibility
that phosphorylation/dephosphorylation events of syndecan-4
could first promote adhesion and then lead to the attenuation
of Thy-1–αvβ3 integrin-induced downstream pathways to
decrease adhesion and increase cell migration is intriguing.
On the other hand, evidence supports an additional role for
syndecan-4 on PKCα activation in Thy-1-induced astrocyte
adhesion, upstream of RhoA GTPase activation (Avalos,
Valdivia et al., 2009). In addition, syndecan-4 mutated on
Y188 (Y188L) disrupts this syndecan-4-mediated PKCα
activation, and this residue is additionally involved in
syndecan-4-mediated Rac1 activity (Bass, Morgan et al.,
2007), as well as in integrin endocytosis (Bass, Morgan
et al., 2007; Bass, Williamson et al., 2011). Therefore, Y188
also constitutes an important target to study integrin and
syndecan-4 signaling pathway, particularly because of the
involvement of PKCα and RhoA activation in astrocyte
adhesion induced by Thy-1 (Figure 1).

The switch between astrocyte adhesion-migration appears
to be controlled by differential activation of GTPases from the
Rho family (Danen, van Rheenen et al., 2005). In addition,
Thy-1–αvβ3 integrin engagement increases intracellular
concentration of Ca2+, an event that occurs upstream of
RhoA activation (Alvarez, Lagos-Cabre et al., 2016).
Additional support for the involvement of the latter is that
enhanced intracellular Ca2+ is blocked by IP3R-inhibitors,
such as 2-APB and Xestospongin (Alvarez, Lagos-Cabre et al.,
2016). This increase in Ca2+ is involved in hemichannel
activation, which leads to ATP release, opening of P2X7R

and a second and sustained increase in intracellular Ca2+

concentration, since inhibition of hemichannels (Connexins
and Pannexins) abolishes these signaling events and astrocyte
migration (Henriquez, Herrera-Molina et al., 2011; Alvarez,
Lagos-Cabre et al., 2016, Figure 1). How does this IP3R-
dependent Ca2+ increase activate hemichannels to induce
ATP release? The answer to this question is currently
under investigation.

2.3 The Thy-1, Syndecan-4 and Integrin
Triplex in Signaling and Mechanosensing
The cellular responses mediated by Thy-1–integrin interaction
are affected by mechanical forces. The interaction of Thy-
1–integrin in the melanoma/EC model increases EC
contraction, facilitating the extravasation of the melanoma
cells through the endothelium (Schubert, Gutknecht et al.,
2013). The mechanical tension generated by EC contraction
could certainly affect melanoma cell adhesion, motility, and
invasion (Bras, Radmacher et al., 2020); however, the effect of
the mechanical forces exerted on the Thy-1–integrin interaction
has not yet been studied on melanoma cells.

A similar molecular interaction between astrocytes and neurons
triggers axonal contraction. Because these contractile forces are
exerted on the Thy-1-ligated integrin of astrocytes (axonal
pulling), astrocyte contraction is also detected, measured as FA
and stress fiber (SF) formation, as well as by myosin light chain
(MLC) phosphorylation (Perez, Rashid et al., 2021). FA and SF
formation is enhanced because integrin levels are elevated when the
cells are stimulated with Thy-1 plus mechanical stress (Perez, Rashid
et al., 2021). Cell contraction induced as a consequence of the
formation of these structures is thus exerted onto the substrate,
where these cells attach, i.e., the ECM. Therefore, axonal pulling
promotes astrocyte contraction and the force generated is exerted on
the matrix, where the cells adhere.

An additional component participates in regulating
mechanosensing of the integrin in the Thy-1–integrin interaction.
Syndecan-4 forms a trimolecular complex; the rigidity of the bonds in
this complex changes in response to mechanical stress. At a single
molecule level, the complex has a dynamic catch behavior when force
is applied, and the molecular bonds change from a non-stiff to a stiff
behavior required for cell adhesion. α5β1 integrin in A375 human
melanoma cells and syndecan-4 form a trimolecular complex with
Thy-1 associated surfaces (Beads) (Fiore, Ju et al., 2014). The bond
behavior of the α5β1 integrin, syndecan-4 and Thy-1 complex in
response to force does not change when signaling molecules such as
dynamin or Src are inhibited, indicating that syndecan-4 signaling
leading to integrin recycling is not involved in the bond behavior
described. In this case, the mechanical forces that affect the extension
of syndecan-4 glycosaminoglycan (GAG) chains change the
conformation of the integrin, thereby leading to its activation
(Fiore, Ju et al., 2014).

On the other hand, αvβ3 integrin and syndecan-4 in
reactive astrocytes form a trimolecular complex with Thy-1-
associated neurons. At a single molecule level, the complex
displays a slip bond behavior when force is applied, and the
molecular bonds are kept in a non-stiff phenotype required for
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cell contraction. This trimolecular interaction is mediated on
the one hand, by the RLD motif of Thy-1 and the integrin, and
on the other hand, by the heparin-binding domain of Thy-1
and syndecan-4. The interaction between syndecan-4 and
Thy-1 is of lower affinity than that of α5β1 and αvβ3
integrins and Thy-1 (Burgos-Bravo, Martinez-Meza et al.,
2020). Syndecan-4 promotes the functional effect of Thy-
1–integrin on neurons, which is inhibited by Heparinase III
or Heparin treatment, but this heparan sulfate blocking does
not completely inhibit the effect. An additional role for the
protein core is proposed by Leyton and co-workers (Burgos-
Bravo, Martinez-Meza et al., 2020). However, could the
integrin type, the cellular context, or the approaches used
make the difference between these two experimental
models? These are questions that still remain unanswered.

The cell machinery (Figure 1) involved in the biological
effect of engaging Thy-1 in neurons through the binding of
αvβ3 integrin includes the association of Thy-1 to a signal
transducer molecule of the Transmembrane Associated
Protein family, Csk binding protein (Cbp), the recruitment
of the non-receptor tyrosine kinase Csk, the inactivation of Src,
and the activation of the GTPase RhoA (Herrera-Molina,
Frischknecht et al., 2012; Maldonado, Calderon et al., 2017).
RhoA is a small G protein that regulates the actin cytoskeleton
and cell contraction by targeting the effector protein ROCK,

which elevates MLC phosphorylation and activation (Burridge
and Wennerberg 2004). In the case of neurons, this signaling
pathway includes MLC and cofilin phosphorylation, and leads
to axonal retraction (Maldonado, Calderon et al., 2017).
Syndecan-4 acts in conjunction with αvβ3 integrin to
trigger Thy-1-induced neurite contraction (Burgos-Bravo,
Martinez-Meza et al., 2020); however, its contribution to
the signaling described above in neurite retraction, is yet to
be investigated.

3 THY-1 MEDIATES INTEGRIN
CIS-REGULATION ON THE PLASMA
MEMBRANE

3.1 Direct cis-Coupling of Thy-1 and Integrin
αvβ3 Regulates Integrin Activity
The capability of Thy-1 to directly bind integrin in cis has long
been explored (Barker et al., 2004b; Barker and Hagood 2009) but
was only recently identified mechanistically (Fiore, Strane et al.,
2015, Figure 2). Although Thy-1 showed a tendency to bind both
αvβ3 and α5β1 integrins in their inactive conformation, its cis-
interaction with αvβ3 has a profound impact on integrin
downstream signaling, cell morphogenesis and pathogenesis
(Fiore, Strane et al., 2015; Fiore, Wong et al., 2018). Like the
aforementioned trans-interaction observed in vitro and in vivo
(Leyton, Schneider et al., 2001; Herrera-Molina, Frischknecht
et al., 2012; Lagos-Cabre, Alvarez et al., 2017; Burgos-Bravo,
Figueroa et al., 2018), the direct cis coupling of integrin is
dependent on the Thy-1 RLD motif. While the crystal
structure of Thy-1 is not available yet, a predicted structure
suggests that the RLD motif is located close to the protein’s
N-terminal glycosylation site, facing outward from the anti-
parallel structure of β-sheets that form an immunoglobulin
(Ig)-like V type domain (Herrera-Molina, Valdivia et al., 2013)
(UniProtKB—P04216). This effectively places the RLD motif no
more than a few nanometers above the plasma membrane and
thus, a cis-interaction with integrin can potentially further
stabilize the heterodimeric protein in its bent, inactive
conformation.

The Thy-1–αvβ3 integrin interaction physically couples the
integrin to lipid raft microdomains containing critical
signaling molecules to ensure proper mechanosensing. Fiore
and others identified two proteins with critical regulatory roles
in integrin signaling recruited to Integrin-Associated
Complexes (IACs) through the Thy-1–integrin cis-
interaction: Fyn, a member of the Src family kinases (SFK)
and Cbp. Fyn has been identified as a critical player in sensing
environmental rigidity and its activation is essential for
translating extracellular mechanosignals into intracellular
responses (Kostic and Sheetz 2006). This kinase is also
responsible for integrin-mediated morphogenesis by
activating downstream Rho GTPases (Liang, Draghi et al.,
2004; Reddy, Smith et al., 2008). Cbp keeps SFK activity in
check by recruiting Csk –the negative regulator of SFK– into
IACs. Loss of Cbp has been shown to cause defective integrin
mechanotransduction, resulting in impaired cell morphology

FIGURE 2 | Thy-1 modulates cell mechanosensing through direct cis-
interaction. Direct cis-coupling between Thy-1 and αv integrins (especially
αvβ3) further stabilizes the integrin in bent-inactive conformation and
simultaneously promotes recruitment of Cbp and Fyn to the cytoplasmic
tail of the integrin. This leads to: 1) balanced signal transduction between α5β1
and αv integrins through competitive-cooperative binding to fibronectin, and
2) regulated activity of SFK due to Csk recruitment by Cbp to focal adhesions
and Fyn-depended RhoA activation, which promotes cell spreading and
contraction in the presence of mechanical stimuli (e.g., stiff matrices). In
addition, Thy-1 can inhibit TGF-βRI and likely reduce αv integrin-dependent
TGF-β activation (through αvβ5, αvβ6, and αvβ8), resulting in suppression of
TGF-β signaling.
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(spreading) and migration (Shima, Nada et al., 2003).
Interestingly, in nascent FAs, Fyn interacts with FAK and
phosphorylates Cbp, resulting in subsequent recruitment/
activation of Csk (Yasuda, Nagafuku et al., 2002;
Maksumova, Le et al., 2005; Baillat, Siret et al., 2008),
which in turn, negatively regulates local SFK activity and
enables appropriate mechanotransduction.

Further downstream, Thy-1 has been shown to regulate cell
spreading and SF assembly by promoting RhoA activity–likely
due to downregulated c-Src-dependent p190 RhoGAP activity
in the presence of Thy-1 (Barker et al., 2004a). Fyn has also
been shown to directly phosphorylate and activate RhoGEF in
response to integrin mediated force transduction, resulting in a
more direct activation of RhoA (Guilluy, Swaminathan et al.,
2011). Importantly, the activity of Rho GTPase is required for
ECM stiffness-induced nucleus translocation of YAP/TAZ,
which drives mechano-activation of fibroblasts and fibrosis
(Dupont, Morsut et al., 2011; Liu, Lagares et al., 2015). Taken
together, the direct and indirect regulatory role of Fyn on
RhoA activity makes it a core modulator of force-induced
cellular response.

3.2 Thy-1–Integrin cis Interaction Regulates
Integrin Clustering
Thy-1 coupling with integrin can also suppress ligand binding-
independent self-clustering of integrin and thus, reduce baseline
integrin avidity, seen as reduced adhesion strength when cells are
only allowed transient contact with the ECM (Fiore, Strane et al.,
2015). Existing evidence has already shown that a tiny fraction of
surface integrins can spontaneously switch into extended-active
conformation without being activated –a thermodynamic nature
of integrin (Li, Su et al., 2017). It is also known that integrin
activation can be achieved simply through intramolecular
interactions at the transmembrane domain between different
integrin molecules (Ye, Kim et al., 2014). Therefore, the
presence of Thy-1 can constraint self-clustering of integrin,
indicating a higher-level regulatory role of Thy-1, other than
suppressing activity at the single molecular level.

3.3 Thy-1 and Indirect Integrin Regulation
in cis
In addition to direct cis-interacting with integrin and regulating
recruitment of IAC components, Thy-1 can also indirectly
regulate mechanotransduction through the TGF-β pathway.
TGF-β-SMAD2/3/4 is well established as the main signaling
route to induce mechano-related phenotypes and promote
proliferation, contraction and ECM deposition (Vallee and
Lecarpentier 2019). The role of TGF-β signaling in cancer and
fibrosis has been well described (Budi, Schaub et al., 2021; Chung,
Chan et al., 2021). As reported, Thy-1 null C57BL/6 mice were
more prone to develop severe lung fibrosis after bleomycin
treatment (Hagood, Prabhakaran et al., 2005), which could be
a result of disrupted inhibitory coupling between Thy-1 and TGF-
βRI (Koyama, Wang et al., 2017). Thy-1−/− fibroblasts were more
responsive to cytokines and growth factors like TGF-β, whereas

Thy-1+/+ cells were resistant to similar treatments. The difference
did not appear to be due to downstream signal transduction of
TGF-β, but instead, to higher latent TGF-β activation in Thy-1−/−

cells (Zhou, Hagood et al., 2004). Likewise, induction of MMP9
by TGF-β has been observed in Thy-1−/− fibroblasts, but not in
Thy-1+/+ fibroblasts, implying that Thy-1 as an important
suppressor in MMP9-induced latent TGF-β activation
(Ramirez, Hagood et al., 2011). The interaction between Thy-1
and αvβ5 integrin has been proposed as a mechanism to constrain
latent TGF-β activation by the integrin (Zhou, Hagood et al.,
2010). The study, however, did not reveal if the inhibition was
caused by cis- or trans-interaction between the two molecules. As
Thy-1 can cis interact with β1 integrin, it is conceivable that Thy-
1 is also capable of cis-interacting with other RGD integrins,
including β5 and β6, and therefore, can maintain TGF-β
activating αvβ5 and αvβ6 integrins in a low affinity
conformation, reducing the activation of endogenous TGF-β
(Figure 2). Indeed, in aging mice, TGF-β can effectively
suppress Thy-1 expression at the transcriptional level by
epigenetically inducing methylation of the Thy-1 promoter
(Neveu, Mills et al., 2015), making the animals prone to
fibrotic diseases.

Trans interaction between Thy-1 and syndecan-4 has been
discussed; however, existing evidence also indicate a possible
role of Thy-1 in integrin cis-regulation through syndecan-4
clustering. As an important co-receptor of fibroblast growth
factor (FGF), syndecan-4 clustering and mobilization into
lipid rafts can be induced by FGF treatment (Tkachenko and
Simons 2002)—a phenomenon that could be similarly
induced by the heparin-binding domain on Thy-1 through
its interaction with the heparan sulfate chain on syndecan-4
(Elfenbein and Simons 2013). Noteworthy, syndecan-4 itself
can sense environmental forces and mediate downstream
signaling (Chronopoulos, Thorpe et al., 2020). Antonios
used electromagnetic tweezers to apply repetitive, short
(1 s) 1 nN tension pulses on syndecan-4, resulting in
RhoA-dependent adaptive cell stiffening, whereas longer
exposure (5 min) to a one-time small scale ~200 pN force
was sufficient to induce PI3K-mediated recruitment of Talin/
Kindlin to FAs, with increased local β1 integrin activation
and YAP nuclear translocation Chronopoulos, Thorpe et al.
(2020). The evidence strongly suggests a cis correlation
between syndecan-4 and β1 integrin during
mechanotransduction. By coupling syndecan-4 to integrin,
Thy-1 could indirectly contribute to integrin signaling when
facing extracellular mechanical cues.

Another possible way for Thy-1 to regulate integrin activity
could be by regulating the surface availability of the adhesion
receptor. Reggie-1/Flotillin-2 has been shown to regulate integrin
dynamics and FA turnover –loss of Reggie-1 promotes FA
formation, FAK/Rac1 activity and integrin recycling
(Hulsbusch, Solis et al., 2015). Interestingly, Reggie 1/2
colocalizes with Thy-1 and Fyn kinase on the plasma
membrane, essentially marking that local lipid raft
microdomain for internalization and therefore, reducing
surface presence of proteins associated with Thy-1/Fyn (i.e.,
integrins) (Lang, Lommel et al., 1998; Stuermer, Lang et al., 2001).
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3.4 Thy-1 Fine Tunes Integrin Signaling
Balance
Integrins are engaged by the ECM both cooperatively and
competitively. This is particularly true for RGD integrins when
they interact with the same RGD-motif on fibronectin. It is well
established that during cell adhesion to fibronectin, a cooperative
and synergistic crosstalk between α5β1 and αv integrins
(especially αvβ3) is needed for mechanosensing, downstream
signaling and cell spreading (Schiller, Hermann et al., 2013;
Bharadwaj, Strohmeyer et al., 2017). α5β1 and αvβ3 clearly
play different roles in mechanotransduction: αvβ3 is more of a
“sensor” and could potentially reduce cellular contractility,
making cells more pliable and invasive; whereas α5β1
functions as a force generator, responsible for adhesion
strengthening and generation of contractility (Roca-Cusachs,
Gauthier et al., 2009; Lin, Cohen et al., 2013; Milloud,
Destaing et al., 2017; Strohmeyer, Bharadwaj et al., 2017).

In this context, it is critically important for cells to maintain
a proper signaling balance between different integrins. As a cis-
suppressor of αvβ3, Thy-1 could thus bear an essential role in
maintaining this much needed signaling balance. In vitro
studies (Fiore, Strane et al., 2015) have clearly demonstrated
that Thy-1 can keep αvβ3 in bent-inactive conformation,
reducing the reservoir of free integrins that can
automatically switch into extended conformation under the
thermodynamic equilibrium. Unsurprisingly, Thy-1
knockdown can significantly elevate αvβ3 signaling versus
α5β1 signaling, and potentially drive fibroblasts into a
myofibroblastic phenotype without environmental mechano
stimulators (Fiore, Wong et al., 2018).

3.5 Other Potential Integrin cis-regulators
With Functions Comparable to Thy-1
In addition to Thy-1, emerging evidence suggest other
proteins can regulate integrin in cis as well. Semaphorin 7a
(SEMA7a) is another GPI-AP capable of binding integrin in
trans and deeply involved in TGF-β signaling and fibroblast
differentiation (Kang, Lee et al., 2007; Suzuki, Okuno et al.,
2007; Scott, McClelland et al., 2008; Esnault, Torr et al.,
2017). SEMA7a could be another GPI-anchored membrane
protein capable of interacting with integrin in cis, due to its
function similarity to Thy-1.

While this review article focuses on Thy-1, a GPI-anchored
protein in integrin cis-regulation, it is noteworthy that
transmembrane proteins have also shown to regulate
integrin activity in cis as well. One example is cell
membrane metalloprotease ADAM17. The direct cis-
interaction between ADAM17 and integrin α5β1 can keep
both proteins in inactive form (Bax, Messent et al., 2004;
Gooz, Dang et al., 2012; Grotzinger, Lorenzen et al., 2017) and
this mutual inhibitory interaction can be enhanced by
tetraspanin CD9 (Machado-Pineda, Cardenes et al., 2018),
effectively adding another layer of regulation. Other examples
include CD154 (also known as CD40L) and FcγRIIA, with
their cis integrin binding promoting cell survival (CD154 and

α5β1) (Bachsais, Salti et al., 2020) or inhibiting neutrophil
recruitment (FcγRIIA and αMβ2) (Saggu, Okubo et al., 2018),
respectively. It is plausible that in addition to well established
inside-out and outside-in integrin regulations, a direct cis-
interaction dependent mechanism also exists on the plasma
membrane to regulate initial integrin-ECM binding.
Comprehensive studies are needed to further reveal the
extend and molecular details of such a mechanism.

4 THY-1–INTEGRIN INTERACTION IN
PATHOPHYSIOLOGY

4.1 Thy-1 and Fibrosis
Fibrosis, defined as the excess accumulation of scar tissue
composed of stiff, fibrillar ECM, leads to tissue and organ
dysfunction. Fibrosis can lead to disfigurement (such as when
it occurs in skin or joints), organ failure or death, and is often
thought to be irreversible. Fibrosis can be driven by injury,
inflammation, genetic variants, or aberrant mechanical stress
on tissues, leading to aberrant and/or persistent activation of
wound healing signaling paradigms. A myriad of cellular
phenotypic alterations can initiate, accompany or amplify
fibrosis, but the final common pathway always involves
activated fibroblasts, which elaborate and/or remodel the
fibrotic ECM. This is usually associated with phenotypic
alteration of fibroblasts to a contractile myofibroblastic
phenotype characterized by metabolic alterations, expression
of contractile molecular machinery, excessive ECM production
and resistance to apoptosis. Altered outside-in and inside-out
integrin signaling is a key driver of fibroblast phenotype
transitions; thus, molecules such as Thy-1, which modify
integrin signaling in cis and in trans may offer opportunities
for therapeutic interventions to slow, halt or even reverse fibrosis.

4.1.1 Lung
Progressive pulmonary fibrosis (PF) has a high burden of
morbidity and mortality. Idiopathic pulmonary fibrosis (IPF),
the most prevalent form, has no cure and inevitably results in
death or lung transplantation. FDA-approved antifibrotic drugs
are expensive, fraught with uncomfortable side effects, and only
slow disease progression, with minimal effects on mortality
(Moua and Ryu 2019). A critical barrier in the field is a lack
of understanding of the regulatory paradigms controlling the
emergence, function, and resolution of fibroblast phenotypes
in PF.

Differentiation and activation of myofibroblasts and lipid-
containing lipofibroblasts is critical for the development of
pulmonary alveoli (where oxygen enters the bloodstream) and
for wound repair and fibrosis (Kis, Liu et al., 2011; Li, Li et al.,
2015; Branchfield, Li et al., 2016; El Agha, Moiseenko et al., 2017).
Cell surface Thy-1 expression is important in both processes.
Thy-1 null mice have abnormal alveolar development (Nicola,
Hagood et al., 2009) and more severe lung fibrosis (Hagood,
Prabhakaran et al., 2005), which fails to resolve (Liu, Wong et al.,
2017). In human IPF, Thy-1, which is normally expressed by
most human lung fibroblasts, is absent in fibroblastic foci (FF)
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(Hagood, Prabhakaran et al., 2005), which are abnormal
collections of myofibroblasts driving fibrosis progression. Thy-
1 is silenced within FF by epigenetic mechanisms, such as DNA
methylation (Sanders, Pardo et al., 2008). Epigenetic silencing of
Thy-1 leading to pathogenic alteration in fibroblasts, is driven by
aging and TGF-β (Neveu, Mills et al., 2015), TLR4 (Xing, Nie
et al., 2015), IL-17 (Neveu, Staitieh et al., 2019) and hypoxia
(Robinson, Neary et al., 2012). A recent study described a
regulatory axis of Thy-1 expression involving the transcription
factor YY1 and miR-214 in the context of lung fibrosis (Chen,
Yang et al., 2020).

From a functional perspective, Thy-1 has been shown to
regulate many core functions and phenotypic features of
fibroblasts relevant to fibrogenesis, including proliferation,
cytokine and growth factor expression and responsiveness,
adhesion, migration, myofibroblast/lipofibroblast
differentiation, and cell survival. Thy-1 expression is lost in
the transition from fibroblasts to myofibroblasts (Hagood, Guo
et al., 1999; Hagood, Mangalwadi et al., 2002; Barker et al., 2004a;
Zhou, Hagood et al., 2004; Hagood, Prabhakaran et al., 2005;
Rege, Pallero et al., 2006; Sanders, Kumbla et al., 2007; Varisco
et al., 2012; Liu, Wong et al., 2017). The expression of Thy-1
supports a lipofibroblast phenotype, which is important in
normal lung alveolar development (McQualter, Brouard et al.,
2009; Varisco et al., 2012; McQualter, McCarty et al., 2013) and
its absence supports a contractile myofibroblast phenotype,
which activates latent TGF-β1 and resists apoptosis (Zhou,
Hagood et al., 2004; Sanders, Kumbla et al., 2007; Liu, Wong
et al., 2017). Prenatal tobacco smoke exposure promotes Thy-1
DNA methylation/silencing in embryos, predisposing mice to
lung fibrosis in adulthood (Cole, Brown et al., 2017).

Integrin αv signaling is a key regulator of fibrosis in
multiple organs (Henderson, Arnold et al., 2013; Sun,
Chang et al., 2016). IPF fibroblasts lacking Thy-1
expression, demonstrate persistent activation of
mechanosensitive integrin signaling, regardless of whether
they are in a mechanically soft environment (like normal lung
alveoli) or a mechanically stiff environment (like established
fibrotic tissue). Conversely Thy-1 expression inhibits
activation of SFK, RhoA, and downstream myofibroblast
differentiation pathways in soft environments (Fiore,
Strane et al., 2015), including FF, which have mechanical
properties similar to normal alveolar regions (Fiore, Wong
et al., 2018). Thus, integrin activation in the Thy-1-negative
myofibroblasts that populate FF likely initiate a cycle of
matrix remodeling that leads to progression and
persistence of fibrosis (Fiore, Wong et al., 2018). A single
lung injury, such as that induced experimentally by
administration of intratracheal bleomycin in mice, leads to
transient, reversible loss of cell surface Thy-1 and fibrosis that
spontaneously resolves. Repetitive injury, however, leads to
silencing of Thy-1 at the mRNA level and persistent
activation of αv integrin, resulting in progressive, non-
resolving fibrosis (Tan, Jiang et al., 2019).

Evidence suggests that Thy-1 modulation of profibrotic
signaling can be harnessed for therapeutic benefit. In a human
cytomegalovirus-induced model of acute interstitial pneumonia

(AIP), characterized by a rapid-onset form of fibrosis associated
with acute lung injury, lentiviral transfection of Thy-1 partially
attenuated fibrosis, by blocking WNT activation (Chen, Tang
et al., 2019). Exogenous soluble Thy-1-Fc fusion protein (sThy-1)
blocked TGF-β1 activation and reversed the myofibroblast
phenotype in vitro (Zhou, Hagood et al., 2004). Recent studies
in two distinct models of PF, induced either by bleomycin injury
or by transgenic expression of active TGF-β1, demonstrated that
intravenous administration of sThy-1, but not the non-integrin-
binding RLE form [sThy-1 (RLE)], is able to reverse established
fibrosis in vivo (Tan, Jiang et al., 2019). Extracellular vesicle-based
therapeutics are widely studied in models of fibrosis in multiple
organs and tissues, and in a variety of clinical trials. The ability of
mesenchymal stem cell (MSC)-derived extracellular vesicles to
reverse myofibroblast differentiation in lung fibroblasts is
attributable to Thy-1 modulation of integrin activation
(Shentu, Huang et al., 2017). Fibrosis-suppressive functions of
Thy-1 have been demonstrated in other organs as well.

4.1.2 Liver
Fibrosis of the liver, also known as cirrhosis, causes one
million deaths worldwide (Asrani, Devarbhavi et al., 2019),
and liver is the second most common solid organ transplant,
usually because of cirrhosis. In a mouse model of liver fibrosis
induced by bile duct ligation, absence of Thy-1 increases
fibrosis severity (Nishio, Koyama et al., 2021). In liver portal
fibroblasts, Thy-1 forms an inhibitory complex with TGF-
βR1 that is disrupted by mesothelin (Msln), in a mechanism
also involving Muc16 (Koyama, Wang et al., 2017).

4.1.3 Kidney
Chronic kidney disease involving fibrotic remodeling is
widespread and requires management with chronic dialysis or
transplantation. A widely used model of kidney inflammation
leading to fibrosis is injection of antibodies to Thy-1 in mice,
leading to mesangial cell injury (Becker and Hewitson 2013). In a
unilateral ureteral obstruction model of kidney injury, Thy-1-null
mice exhibit increased fibrosis severity, via similar mechanisms to
the bile duct ligation model in liver (Nishio, Koyama et al., 2021).

4.1.4 Heart
Congestive heart failure, which usually involves myocardial
fibrosis, is a major cause of mortality worldwide. In a
myocardial infarction model of cardiac fibrosis,
transplantation of Thy-1+/+ cardiac fibroblasts accelerated
resolution of fibrosis and improved repair (Chang, Li et al.,
2018). On the contrary, absence of Thy-1 increases severity of
cardiac fibrosis in a transverse aortic constriction model (Li,
Song et al., 2020).

4.1.5 Joints
The importance of Thy-1 in fibroblast phenotype has recently
been confirmed in arthritis (Croft, Campos et al., 2019), in
which Thy-1+/+ fibroblasts regulate inflammation, whereas
Thy-1−/− fibroblasts mediate bone and cartilage remodeling.
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4.1.6 Summary
In multiple tissues and organs, in a wide variety of models of
fibrosis and in several chronic human diseases, Thy-1
modulates development and progression of fibrosis. Its
absence, usually due to epigenetic silencing associated with
aging and/or inflammation, worsens fibrosis.
Mechanistically, the fibrosis-suppressive functions of Thy-1
involve modulation of integrin activation and signaling,
although notably, Thy-1 can also affect TGF-β and WNT
signaling.

4.2 Thy-1 and Other Normal Cell
Differentiation and Determination
4.2.1 Thy-1 and Stem Cell Differentiation and Function
Thy-1 has long been known as a marker of hematopoietic
(Boswell, Wade et al., 1984) and MSCs (Ghilzon, McCulloch
et al., 1999). It is unclear, however, the degree to which Thy-1,
either via integrin modulation or other molecular interactions,
mediates or modulates stem cell pluripotency or multipotency.
Interestingly, in reprogramming fibroblasts to create induced
pluripotent stem cells (iPSCs), Thy-1 is one of the first somatic
markers to be repressed at the initiation of reprogramming (Li,
Dang et al., 2014). Reprogrammed cells that either retain or
regain Thy-1 expression lack true pluripotency and retain/
regain a mesenchymal phenotype, in part through miRNA
regulation of Wisp1 and genes regulating cell-ECM
interactions and growth factor signaling.

Differential expression of Thy-1 in subsets of adipose-tissue
derived MSCs (or stromal cells) affects their proliferation and
metabolism, in part through activation of AKT (Pan, Zhou et al.,
2019). Thy-1 promotes osteogenic (vs. adipogenic) differentiation
ofMSCs (recently reviewed in Saalbach and Anderegg 2019). This
pro-osteogenic role of Thy-1 is dependent on β3, but not β1
integrin, and interestingly can be mediated by Thy-1 in both cis
and trans, and was associated with stimulation of the canonical
Wnt signaling pathway (Picke, Campbell et al., 2018). The same
study demonstrated higher body fat mass and lower bone density
in Thy-1−/−mice. A different study which used shRNAs to silence
Thy-1 expression in MSCs showed increased adipogenic and
osteogenic differentiation, indicating that Thy-1 functions as a
differentiation obstacle (Moraes, Sibov et al., 2016). Thy-1
expression is itself decreased during adipogenesis via
epigenetic silencing (Flores, Woeller et al., 2019). Thy-1
inhibits adipogenesis in preadipocytes via inhibition of Fyn

and PPARγ (Woeller, O’Loughlin et al., 2015). PPARγ activity
can also suppress Thy-1 expression via microRNA (miR) 103
(Woeller, Flores et al., 2017). Conversely, in lung fibroblasts, Thy-
1 promotes PPARγ signaling and lipid accumulation (Varisco
et al., 2012). Others have also shown that Thy-1 expression
supports lipofobroblast differentiation of lung fibroblasts
(McQualter, McCarty et al., 2013). This is also true of Sca1+/+

mesenchymal progenitors in the transition from saccular to
alveolar stages of lung development; Thy-1high cells
preferentially generate Oil Red O-positive lipofibroblasts,
whereas their Thy-1−/low counterparts generate an
interconnected network of non-lipofibroblastic cells
(McQualter, Brouard et al., 2009). Thus, the effects of Thy-1
on regulating lipid metabolism signaling and stemness/
pluripotency are very complex and likely depend on the
cellular context.

An increasingly appreciated function of MSCs is their
paracrine effects mediated through extracellular vesicles,
which can be harnessed for cell-based therapy. Human MSC-
derived extracellular vesicles have emerged as a new therapeutic
strategy for many diseases (van der Pol, Boing et al., 2012; Fais,
O’Driscoll et al., 2016). Extracellular vesicles are comprised of
mRNAs, non-coding RNAs, proteins and membrane lipids
derived from donor cells. Extracellular vesicles can modulate
cell proliferation, tissue repair, and regeneration (Biancone,
Bruno et al., 2012; Lamichhane, Raiker et al., 2015). Several
routes of extracellular vesicle uptake have been shown in
different cell types (Mulcahy, Pink et al., 2014) and this
uptake is repressed by endocytosis pathways (Svensson,
Christianson et al., 2013; Tian, Li et al., 2014). Thy-1 has
been shown to mediate uptake of viral particles by
glioblastoma cells and fibroblasts (Li, Fischer et al., 2016).
Interaction of Thy-1 with β integrins mediates MSC-derived
extracellular vesicle uptake by lung fibroblasts, which blocks
myofibroblastic differentiation; MSC-derived extracellular
vesicles are enriched for miRs that target profibrotic genes
upregulated in IPF fibroblasts (Shentu, Huang et al., 2017).
Blocking the RGD-binding β integrin “partners” of αv (β1, 3 and
5), as well as silencing them in recipient cells, blocks the uptake
of MSC-derived extracellular vesicles by myofibroblasts.

4.2.2 Thy-1 and Immunity
Thy-1 was originally described as a lymphocyte marker (Reif and
Allen 1964b). Despite extensive studies over decades on the role
of Thy-1 in augmenting T cell signaling, its exact role in

TABLE 1 | The interaction of Thy-1 with integrins in trans- or in cis-results in diverged impacts on downstream integrin signaling.

Interaction type Trans Cis

FAK Activating Increasing sensitivity
c-Src Inhibiting Inhibiting
Fyn Unidentified Recruiting
RhoA Activating Increasing sensitivity
Rac-1 Inhibiting Unidentified
MMP9 Inducing production Reducing production by inhibiting TGF-β
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immunity has remained somewhat enigmatic (Haeryfar and
Hoskin 2004; Furlong, Power Coombs et al., 2017). Most of
the Thy-1-associated signaling in immune cells requires
crosslinking of Thy-1 or engagement of other receptors, such
as the T-cell receptor (TCR), but does not involve integrin
interactions. A number of Thy-1+/+ mesenchymal or stromal
cells modulate T cell function, but it is still unclear whether Thy-1
plays a direct role in such interactions (Kitayama, Emoto et al.,
2014; Pfisterer, Lipnik et al., 2015).

4.2.3 Thy-1 and Vascular Biology
Thy-1 is expressed on activated ECs and interacts with leukocyte
integrins in trans to regulate inflammatory cell vascular adhesion
and transmigration (Wetzel, Chavakis et al., 2004). The
recruitment and extravasation of multiple different types of
leukocytes, including neutrophils, monocytes and eosinophils,
into inflamed sites, such as lung and peritoneum, is impaired in
Thy-1-null mice, and is not rescued by transplantation of wild
type bone marrow, indicating that endothelial Thy-1 expression
is required for optimal leukocyte recruitment (Schubert, Polte
et al., 2011). Likewise, endothelial Thy-1 expression is required
for melanoma cell metastasis (Schubert, Gutknecht et al., 2013).
Thy-1 is expressed on lymphatic vessels in the lung (Kretschmer,

Dethlefsen et al., 2013), but the functional significance of this
expression is unknown.

4.3 Thy-1 and Cancer
Thy-1 has complex and multiple roles in different types of
cancer, as detailed in excellent reviews (Kumar, Bhanja et al.,
2016; Sauzay, Voutetakis et al., 2019). Briefly, Thy-1 functions
as a tumor suppressor in multiple malignancies, including
nasopharyngeal and ovarian cancer (Lung, Bangarusamy et al.,
2005). This function appears dependent on the interaction
with β3 integrin (Chen, Hsu et al., 2016). Loss of
heterozygosity (LOH) at 11q23.3-q24.3, where THY1 is
mapped in humans, is associated with poor prognosis for
ovarian cancer (Cao, Abeysinghe et al., 2001). As reported,
forced Thy-1 expression suppresses tumorigenicity in the
ovarian cancer cell line SKOV-3 (Cao, Abeysinghe et al.,
2001; Abeysinghe, Cao et al., 2003). In neuroblastoma, Thy-
1 expression correlates inversely with prognosis (Fiegel, Kaifi
et al., 2008). On the other hand, Thy-1 functions as a cancer
stem cell marker in several types of malignancy (Shaikh, Kala
et al., 2016). In liver cancer, for example, Thy-1 promotes
tumor progression in part via β3 integrin interaction (Chen,
Chang et al., 2015).

FIGURE 3 | Thy-1 and integrin in pathophysiology. Through binding and regulating integrins, Thy-1 plays an intricate role in differentiation and tumorigenesis. The
presence of Thy-1 promotes differentiation of naïve fibroblasts into lipofibroblasts, but suppresses myofibroblast activation. Similarly, Thy-1 drives MSC differentiation
into osteoblasts, while inhibiting differentiation into adipocytes. The Thy-1–integrin interaction also promotes T cell activation and leukocyte adhesion. In cancer, Thy-1
displays somewhat contradictory roles –often regarded as an oncogene, but also promoting metastasis through its trans interaction with integrins.
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5 DISCUSSION AND FUTURE
PERSPECTIVE

Many members of IgSF are identified as cell adhesion molecules
(CAMs) and many of them have shown important role in cancer
metastasis and neuron development (Crossin and Krushel 2000;
Wai Wong et al., 2012). Among them, Thy-1 with its unique role
in integrin-mediated multiple cell-matrix and cell-cell
interactions truly stands out. Upon ligand binding, these
receptors trigger a myriad of divergent intracellular signaling
events in cis and in trans that control the actin cytoskeleton and
affect cellular processes, such as adhesion, migration, and ECM
remodeling (Table 1).

Integrins bind to Thy-1, thus enlarging Thy-1 clusters. As a GPI-
anchored protein, Thy-1 spontaneously forms small nanoclusters in
the plasma membrane, and its ligand binding reportedly induces
protein aggregation. Such reduction ofmobility and clustering of Thy-
1 could be facilitated by interaction between Thy-1 molecules, Thy-
1–integrin binding, the association between Thy-1 and Cbp in lipid
rafts, and the interaction of the Thy-1 membrane complex with the
cortical cytoskeleton. By means of this protein aggregation process,
Thy-1 also promotes integrin clustering in their inactive/active form,
thus regulating integrin function.

Although lacking a cytoplasmic tail, Thy-1mediates a large variety
of integrin-related signaling pathways in a context-dependent
manner. When binding with integrin in trans, Thy-1 functions as
a generic ligand for the molecule, promoting cell-cell association and
integrin outside-in signaling. On the mechanical side, the trio of Thy-
1, integrin and syndecan-4 works synergistically and generates rapid
binding strengthening with catch bond characteristics. However,
binding with integrin in cis plays vastly distinctive roles from the
trans-interaction, albeit with the same partner. Instead of mediating
integrin outside-in signaling, the cis-interaction between Thy-1 and
integrins further stabilizes the adhesion receptor in the inactive, bent
conformation, thus suppressing auto-activation of integrins, which is a
nature of its thermodynamic sway between different conformational
states. In addition to direct inhibition of integrin activity, Thy-1 also
brings together lipid raft-tethered signaling proteins, especially Fyn
and Cbp, to the proximity of integrins. This pre-assembled protein
complex is critical for integrin-mediatedmechanotransduction—Fyn
enables fast cellular mechanical responses and RhoA-dependent force
generation, whereas Cbp recruits the SFK inhibitor Csk to the site and
ensures that the signaling is tightly regulated. Through suppressing
TGF-β-activating integrins (αvβ5 and αvβ6) and TGF-βR1, Thy-1
indirectly downregulates TGF-β signaling, which could have an even
more significant biological impact on its integrin regulatory role.

Apart from RGD integrins (αv and α5β1 integrins), other
integrins, namely αMβ2 and αXβ2, that likely cannot directly
bind the Thy-1 RLD motif, have also shown interactivity with
Thy-1. This is particularly interesting, since it suggests that
Thy-1 could be a pan-integrin regulator with additional
unidentified biological impacts. This implication is actually
well aligned with the perplexing pathophysiological role of
Thy-1 in vivo (Figure 3). While it universally acts as a
suppressor in fibrotic diseases across various organs, Thy-1
bears a much more complicated role in cancer biology —it is
considered as a tumor suppressor in some cases, but also

correlates with poor prognosis and increased metastasis in
some other types of cancer.

For an extensive period following its initial discovery, Thy-
1 had been widely described as a surface marker for cell
differentiation and tissue development, particularly in
T cells. However, increasing evidence has collectively
demonstrated that Thy-1, through its capability of
interacting with integrins in trans and in cis, plays a much
broader biological role. To make the underlying mechanistic
network even more intricate, as a lipid raft GPI-anchored
protein, Thy-1 can dynamically bring together multiple
membrane proteins to regulate/mediate downstream
spatial-temporal signaling and hence, guide cellular
responses in an ever-changing microenvironment. In order
to fully unveil the true nature of Thy-1 (and to a broader
extent, lipid raft-anchored integrin regulators), a
combination of next generation sequencing techniques
(high-throughput RNA sequencing, single cell RNA
sequencing and ATAcSeq, etc.) with proteomics studies
and advanced microscopy is needed. Only then will we be
able to have a more comprehensive glimpse of how integrins,
together with other transmembrane proteins, actively sense
and transmit signaling across the plasma membrane,
decoding relevant environmental cues into distinctive
intracellular signaling events —with Thy-1 occupying a
critical place in the process.
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GLOSSARY

Thy-1 Thymus cell antigen one

CD90 Cluster of differentiation 90

BRCP Breast cancer resistance protein

EC Endothelial cells

ECM Extracellular matrix

ECM1 Extracellular matrix protein1

HDMEC Human dermal microvascular endothelial cells

GAG Glycosaminoglycan

GPI glycosylphosphatidylinositol

FA Focal adhesion

FAK Focal adhesion kinase

FGF Fibroblast growth factor

TGF-β Transforming growth factor β

PLC Phospholipase C

DC Dendritic cells

MMPs Matrix metalloproteinases

TNF Tumor necrosis factor

TCR T-cell antigen receptor

LAP Latency-associated peptide

CAFs Cancer-associated fibroblasts

CAMs Cell adhesion molecules

MLC Myosin light chain

Cbp Csk binding protein

IACs Integrin-Associated Complexes

IgSF Immunoglobin superfamily

SFK Src family kinases

SEMA7a Semaphorin 7a

PF Pulmonary fibrosis

IPF Idiopathic pulmonary fibrosis

FF Fibroblastic foci

MSC Mesenchymal stem cell

Msln Mesothelin

YAP Yes-associated protein
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