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CAPACIDADES DE SUPRESIÓN DE VIBRACIONES Y RECOLECCIÓN
DE ENERGÍA

Dentro del espectro de metamateriales, las estructuras periódicas son ampliamente estu-
diadas ya que pueden presentar bandgaps, los cuales corresponden a rangos de frecuencia en
los que las ondas mecánicas se suprimen por completo. Recientemente, algunos autores han
añadido piezoeléctricos a las estructuras periódicas con el objetivo de incorporar propiedades
de recolección de energía. Este trabajo está motivado por la configuración 2D utilizada por
Li et al. [1], en el que se combinan las propiedades de supresión de vibraciones y recolección
de energía.

El objetivo de este trabajo es implementar un modelo de elementos finitos de una estruc-
tura periódica que sea capaz de presentar supresión de vibraciones y recolección de energía, y
usarlo para ver la influencia de los parámetros del modelo en los bandgaps y la relación entre
la recolección de energía y los bandgaps. Específicamente, se desarrolla un modelo de elemen-
tos finitos acoplados electromecánicamente de vigas de Bernoulli para modelar estructuras
periódicas, que se componen de celdas unitarias cuadradas con voladizos con propiedades
piezoeléctricas que se unen al marco estructural primario. A través de estos modelos se
encuentra que el dominio de los vectores de onda que deben evaluarse en la condición per-
iódica de Floquet-Bloch para identificar los bandgaps generados por los resonadores locales
puede restringirse a solo 5 vectores de onda de la primera zona de Brillouin, lo que puede
generar una gran disminución de los recursos computacionales al optimizar este tipo de con-
figuración. Con base en este resultado, se realiza un análisis paramétrico para identificar la
influencia de los parámetros del modelo en la ubicación y el tamaño de la banda prohibida.
El análisis paramétrico se complementa con una variación simultánea de parámetros, lo que
muestra los beneficios de la cuantificación de incertidumbres y algunas recomendaciones si
se quiere desarrollar una optimización del bandgap producto de resonancias locales en este
tipo de estructuras. Finalmente, se presentan funciones de respuesta de frecuencia de voltaje
(FRF) para paneles finitos, que entregan resultados consistentes con lo estudiado a nivel de
celda unitaria, y nos permite ver la relación entre la recolección de energía y la supresión de
vibraciones.

i



RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS
DE LA INGENIERÍA, MENCIÓN INGENIERÍA
ESTRUCTURAL, SÍSMICA Y GEOTÉCNICA
POR: DIEGO ALEJANDRO ASTUDILLO LAGORIO
FECHA: 2022
PROF. GUÍA: RAFAEL RUIZ GARCÍA

PARAMETRIC STUDY OF PIEZOELECTRIC-BASED RESONATORS IN
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ENERGY HARVESTING

Within the spectrum of metamaterials, periodic structures are widely studied since they
can present bandgaps, which correspond to frequency ranges in which mechanical waves are
completely suppressed. Recently, some authors have added piezoelectrics to the periodic
structures with the aim of incorporating energy harvesting properties. This work is moti-
vated by the 2D configuration used by Li et al. [1], in which the properties of vibration
suppression and energy harvesting are combined.

The objective of this work is to implement a finite element model of a periodic structure
that is capable of presenting vibration suppression and energy harvesting, and use it to
see the influence of the parameters on the bandgaps and the relationship between energy
harvesting and bandgaps. Specifically, an electromechanically coupled finite element model
of Bernoulli beams is developed to model periodic structures, which are composed of square
unit cells with free-standing cantilevers featuring piezoelectric properties being attached to
the primary structural frame. Through these models, it is found that the domain of the wave
vectors that must be evaluated in the Floquet–Bloch periodic condition to identify bandgaps
generated by local resonators can be restricted to only 5 wave vectors of the first Brillouin
zone, which can generate a large decrease in computational resources when optimizing this
type of configuration. Based on this result, a parametric analysis is performed to identify the
influence of the model parameters on the location and size of the bandgap. The parametric
analysis is complemented by a simultaneous variation of parameters, which shows the benefits
of the quantification of uncertainties and some recommendations if you want to develop an
optimization of the bandgap due to local resonances in this type of structures. Finally, voltage
frequency response functions (FRF) for finite panels are presented, which deliver consistent
results with what was studied at the unit cell level, and allows us to see the relationship
between energy harvesting and vibration suppression.
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Chapter 1

Introduction

Mechanical metamaterials [2–5] are artificial materials designed to achieve mechanical be-
haviors not found in nature, since their properties come from their microstructural design
and differ from those of the material used in their composition (conventional materials such
as metals or plastics are usually used). The objective performance includes static behaviors
(such as negative thermal expansion [6], negative Poisson’s ratio [7] and others) and dynamic
behaviors (such as acoustic wave transmission with expected bandgaps or propagation paths
[8–11], a unique combination of stiffness, strength and energy absorption performance [12],
full-band mechanical vibration isolation [13], and others [14–16]).

For most vibration-isolation metamaterials, the magnitude of the energy flow will be sup-
pressed after transmitting through them, while the direction remains unchanged [17–20]. To
achieve this purpose, mechanical energy has to be dissipated [21–24], confined [25], or har-
vested and transferred to other forms [26, 27] by the metamaterials. Waves propagate in
dynamic mechanical metamaterials only within specific frequency bands, referred to as pass
bands, and they might be blocked within other frequency bands, which are called bandgaps.
The mechanisms of mechanical metamaterials to intervene in the magnitude of mechanical
waves strongly depend on their microstructure and could be divided into two main different
phenomena at the micro-level [28]: Bragg scattering and Local Resonance.

Bragg scattering-type bandgaps require a lattice constant (i.e. cell periodicity) comparable
to the wavelength of the bandgap, but by adding internal resonators (normally periodically)
the elastic energy with specific frequency could be constrained [29], generating bandgaps
that at lower frequencies than those of bragg scattering. Local resonators were originally
investigated in the Maxwell–Rayleigh model [30]. Various continuous models, including ex-
tensional rods, Euler and Timoshenko beams [31] and so on have been discussed to illustrate
the dynamic behaviors of materials containing local resonators [32].

From the first local resonant sonic crystals, an increasing number of acoustic metamate-
rials have been investigated based on the local resonant idea [33–36]. These materials could
be applied to absorb impact energy [37], vibration suppression [38] and simultaneous vibra-
tion suppression and energy harvesting functions [1]. The external vibration energy could be
trapped and transferred into the kinetic energy of the resonators and then further converted
into electric energy through the mechano-electrical conversion, for example integrating piezo-
electric elements.
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There is much research on the formation and control of bandgaps due to electromechanical
coupling in structures with piezoelectric layers [39–43]. It has been seen in the literature that
when piezoelectrics are incorporated into periodic structures, they can have a double effect of
energy harvesting and vibration attenuation [44–46]. Shen et al. demonstrated experimen-
tally that the flat band of frequencies in metastructures can generate energy harvesting by
adding piezoelectric patches [47]. This problem was theoretically investigated by Hu et al. for
discrete [44] and continuous [48] structures, he also presented an extension of his work by cou-
pling the internal resonators [49], which generated great improvements in energy harvesting
and vibration suppression. This phenomenon was investigated experimentally by Li et al. [1]
using a 3D printed panel, which corresponds to an extract of a periodic structure of a square
unit cell with piezoelectric cantilevers at its vertices, similar to the configuration presented
in figure 2.2. This configuration is very interesting since it can have various applications in
the mechanical and civil industry (non-structural walls and machine enclosures/supports).
The study of piezoelectric metamaterials for these applications is an incipient research field,
since the studies have been restricted to 2D metastructures (frames) subjected to in-plane
vibrations and no efforts have been made to achieve optimal designs.

A standard piezoelectric energy harvester (PEH) can convert dynamic deformations into
electrical power when subjected to vibrations. The most common configuration consists of a
unimorph cantilevered beam, which is composed of two layers, one that serves as structural
support (substructure layer), and another that allows energy conversion (piezoelectric layer).
Two piezoelectric layers can also be considered, which generates a bimorph configuration. A
scheme of these configurations is shown in figure 1.1.

Figure 1.1: Scheme of (a) unimorph and (b) bimorph PEH.

Multiple models have been developed to describe and predict the PEHs electromechanical
behavior, one of them is the model of Erturk and Inman, who presented the analytical dis-
tributed parameter solutions for unimorph [50] and bimorph [51] PEH configurations. Based
on these models, De Marqui et al. [52] presented an electromechanical FE plate model for
piezoelectric energy harvesting, and performed an optimization of piezoceramics incorpo-
rated in an unmanned air vehicle (UAV). Despite the development of high fidelity models,
mismatches between numerical and experimental observations were detected by Peralta et
al. [53] after studying the dynamic response of a group of PEHs with identical nominal elec-
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tromechanical properties, raising the concern about the characterization of the uncertainties
involved in the electromechanical properties. This is why it is interesting to find mechanisms
to make efficient the repeated evaluation of models associated with metamaterials with piezo-
electrics, which can generate a great saving of computational resources in the quantification
of uncertainties and optimizations. In the case of periodic structures a source of savings
may be to narrow the domain of the wave vectors that are evaluated in the Floquet–Bloch
periodic condition [54].

The metamaterials used in this study are inspired by the configuration presented by Li
et al. [1], so they correspond to periodic structures with square unit cells and incorporated
bimorph PEH resonators. The questions that motivate this research are: How to increase
the computational speed to characterize the bandgaps produced by local resonances? How
do the physical and geometric parameters of the metamaterial influence the bandgap? What
is the degree of dependence between energy harvesting and bandgap?

This research has 4 main objectives. The first is to develop and validate an electrome-
chanically coupled finite element model using Bernoulli beam elements, to model periodic
metamaterials formed by square unit cells with embedded piezoelectric-based bimorph res-
onators. The second consists of exploring different architectures to show that the domain of
wave vectors that must be evaluated in the Floquet–Bloch periodic condition can be restricted
to identify bandgaps generated by local resonators, which allows considerably reducing the
computational cost of optimizations. The third consists of performing a parametric analysis
based on the configuration shown in Li et al. [1] work, to see how the model parameters
influence the bandgap. The fourth corresponds to seeing the degree of independence between
the bandgap and the energy generation by calculating frequency response functions (FRFs)
in panels made up of finite repetitions of the unit cells of the metamaterials.

The rest of the paper is organized as follows. Section 2 presents the metamaterial archi-
tecture used in the rest of the paper. Section 3 presents the numerical electromechanically
coupled finite element model and its validation. Section 4 presents an analysis of the wave
vectors that must be considered to know the size and location of the bandgaps due to local
resonances, saving computational resources. Section 5 present a parametric study. Section 6
presents the combined effect of the variation of several parameters simultaneously, and some
borderline cases that try to optimize the bandgap according to the results of the parametric
analysis. Section 7 presents numerical examples of frequency response functions (FRF) on
finite panels. Section 8 concludes the study.
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Chapter 2

Metamaterial Architecture

Periodic structures are those obtained from the tessellation of a unit cell and can be described
by a lattice called direct lattice, which is a regular arrangement of discrete points that are
defined through vectors called direct lattice vectors, which must satisfy that for any point
x of the lattice the distribution of points must be the same as when observed from another
point x̃ obtained from a displacement corresponding to a linear combination of the lattice
vectors. In the two-dimensional case only 2 lattice vectors are required, then the mentioned
property corresponds to x̃ = x + n1e1 + n2e2, where e1 and e2 are the direct lattice vectors,
and n1 and n2 are integer weights. An example of direct lattice is shown in figure 2.1, in
which the lattice vectors and the unit cell are shown. In the case of two-dimensional lattice,
there are 5 arrangements that meet the requirements presented which are called Bravais lat-
tices (oblique, rectangular, rhomboid, square, and hexagonal).

Figure 2.1: Extract from a square lattice of vectors e1 and e2, the unit cell is shown shaded.

The periodic cellular structures that are studied in later sections consist of two-dimensional
panels made up of beams and cantilevers based on square unit cells as shown in figure 2.2.
The cantilevers act as internal resonators and 2 layers of piezoelectric material are added to
make them bimorph piezoelectric energy harvesters. The unit cell presented in the figure has
only 4 cantilevers, but more cantilevers could be considered at each node. In later sections,
cantilevers are called resonators.

Figure 2.3 shows the 6 types of unit cells used in later sections. Types I and IV have
horizontal, vertical, 45o and 135o symmetries, where type I has only one cantilever at each
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Figure 2.2: Infinite 2D panel built from a square unit cell with cantilevers in its corners, which have
2 layers of piezoelectric attached, which transforms them into bimorph energy harvesters.

node, while type IV has 2. Given the symmetries that must be met, all the cantilevers must
have the same physical and geometric properties. Types II and V have no internal symme-
tries, with the particularity that in type II all cantilevers must have the same physical and
geometric properties, but they can be at different angles, and in type V the physical and
geometric properties of the two cantilevers of a node can be defined independently, but the
other 3 nodes must have the same 2 cantilevers (may be at different angles). In cases III and
VI there are no internal symmetries either, and in this case each cantilever can be defined
independently, so type III accepts 4 different cantilevers and type VI accepts 8.
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Figure 2.3: Square unit cells with resonators at their nodes. These are grouped into 6 types, type
I, II and III correspond to cells with 1 resonator in each node, in which (a) type I comply with
horizontal, vertical and oblique symmetries, (b) type II does not present symmetry axes but all
the resonators must have the same physical and geometric properties, and (c) type III do not have
symmetries and the resonators can have different properties. On the other hand, type IV, V and VI
unit cells have 2 resonators at each node, (d) type IV must be symmetrical just like type I, (e) type
V do not have symmetries but only 2 different resonators can be defined since all the nodes must
have the same 2 resonators, and the (f) type VI do not present any requirement on the resonators.
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Chapter 3

Numerical Model and Validation

The studied metamaterials are built by adopting a finite element approach. The resonators
have piezoelectric layers attached, so an electromechanically coupled model must be devel-
oped. This section details the development of the model and also presents its validation and
comparison with what is found in the literature.

3.1. Generalized Hamilton’s principle for a piezoelec-
tric energy harvester

In the absence of magnetic effects and for a set of discrete mechanical forces f applied at
locations (xi, yi) and for a set of discrete electric charge outputs q extracted at locations (xj,
yj), the generalized Hamilton’s principle for an electroelastic body is [52]:

∫ t2

t1

[∫
Vs

ρsδu̇tu̇ dVs +
∫

Vp

ρpδu̇tu̇ dVp −
∫

Vs

δStcsS dVs −
∫

Vp

δStcE
p S dVp

+
∫

Vp

δStetE dVp +
∫

Vp

δEteS dVp +
∫

Vp

δEtεsE dVp +
nf∑
i=1

δu(xi, yi, t) · f(xi, yi, t)

+
nq∑

j=1
δφ(xj, yj, t)q(xj, yj, t)dt = 0

(3.1)

where u is the vector of mechanical displacements, S is the vector of mechanical strain
components, E is the vector of electric field components, ρ is the mass density, V is the
volume, c is the elastic stiffness matrix, e is the matrix of piezoelectric constants, ε is the
matrix of permittivity components, nf is the number of discrete mechanical forces, φ is the
scalar electrical potential and nq is the number of discrete electrode pairs, t denotes trans-
pose when it is used as a superscript (otherwise it stands for the time) and an over-dot
represents differentiation with respect to time. Subscripts s and p stand for the substructure
and piezocelectric layers, respectively, and superscript E and S denote that the parameters
are measured at constant electric field and constant strain, respectively.
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3.2. Finite Element Model for Piezoelectric Beams
The structural model is built by adopting a finite element approach. The models are com-
posed entirely of one-dimensional elements, which are modeled using Bernoulli beams with
two nodes per element and three degrees of freedom per node (one rotation and two displace-
ments), as shown in figure 3.1, where Le corresponds to the length of the element.

Figure 3.1: 2D Euler-Bernoulli beam element of length Le, with two nodes per element and three
degrees of freedom per node.

In many cases, in finite element development, it is convenient to use "Natural coordinates",
which are dimensionless coordinates that facilitate the process of obtaining the interpolation
functions and allow to use curved sides or faces in the elements in the flat or three-dimensional
case, transforming the geometry to a simplified situation. Figure 3.2 shows two schemes of a
Bernoulli beam with the reference system in Cartesian and Natural coordinates, locating in
both cases the reference system in the center of the element.

Figure 3.2: Bernoulli beam with nodes i and j and its local reference system located at the center
of the element in (a) Cartesian and (b) Natural coordinates.

The position of any point within the element expressed in Cartesian coordinates is the
following:

xe
(x) =

[
N1(x) N2(x)

] [
xe

1
xe

2

]
= N(x)xe (3.2)

where N1(x) = 1
2 − x

Le
and N2(x) = 1

2 + x
Le

are the shape functions in Cartesian coordinates.

In the case of Natural coordinates, the position of any point within the element is the
following:
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xe
(ξ) =

[
N1(ξ) N2(ξ)

] [
xe

1
xe

2

]
= N(ξ)xe (3.3)

where N1(ξ) = 1
2 − ξ

2 and N2(ξ) = 1
2 + ξ

2 are the shape functions in Natural coordinates.

Since the two parameterizations must be consistent, it must be satisfied that x
Le

= ξ
2 ,

which implies that ∂ξ
∂x

= 2
Le

.

The displacement in the axial direction associated with the tension of the bar (ue
a(ξ,t))

responds to a first-order differential equation, so interpolation functions of type C0 are re-
quired, which means that the same functions used to define the geometry of the element
(N1(ξ) and N2(ξ)) can be used for the axial displacement. Given this, the displacement is
determined as follows:

ue
a(ξ,t) =

[
N1(ξ) N2(ξ)

] ue
1(t)

ue
2(t)

 = N(ξ)qe
1(t) (3.4)

For the bending problem, continuity is needed in the deflection and in its derivative (ro-
tation), so it is a problem of 4 variables (2 deflections and 2 rotations), this implies that a
cubic approximation of deflection is needed. The deflection (ve

(ξ,t)) and rotation (θe
(ξ,t)) are

determined with the following equations:

ve
(ξ,t) = a(t) + b(t)ξ + c(t)ξ

2 + d(t)ξ
3 (3.5)

θe
(ξ,t) = dv(ξ,t)

dx
= dv(ξ,t)

dξ

dξ

dx
=

(
b(t)ξ + 2c(t)ξ + 3d(t)ξ

2
) 2

Le

(3.6)

where a, b, c and d are time-dependent coefficients to be determined as a function of nodal
deflections and rotations ve

1(t), θe
1(t), ve

2(t) and θe
2(t). For this, the equations 3.5 and 3.6 must

be evaluated at the ends of the beam (ξ = −1 and ξ = 1), which generates the following
system of equations:

ve
1(t) = ve

(ξ=−1,t) = a(t) − b(t) + c(t) − d(t)

θe
1(t) = θe

(ξ=−1,t) = (b(t) − 2c(t) + 3d(t))
2
Le

ve
2(t) = ve

(ξ=1,t) = a(t) + b(t) + c(t) + d(t)

θe
2(t) = θe

(ξ=1,t) = (b(t) + 2c(t) + 3d(t))
2
Le

(3.7)

If the value of the coefficients a, b, c and d are solved as a function of the nodal dis-
placements and rotations, and this is replaced in the equation 3.5 and 3.6, the following
expressions are obtained for ve

(ξ,t) and θe
(ξ,t):
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ve
(ξ,t) =

[
H1(ξ)

Le

2 H2(ξ) H3(ξ)
Le

2 H4(ξ)

]

ve

1(t)
θe

1(t)
ve

2(t)
θe

2(t)

 = H(ξ)qe
2(t) (3.8)

θe
(ξ,t) = 2

Le

[
H ′

1(ξ)
Le

2 H ′
2(ξ) H ′

3(ξ)
Le

2 H ′
4(ξ)

]

ve

1(t)
θe

1(t)
ve

2(t)
θe

2(t)

 = 2
Le

H′
(ξ)qe

2(t) (3.9)

where qe
2(t) is a vector that has the vertical displacement and rotations at the nodes, and

the Hi(ξ) and their derivatives (for i = 1, 2, 3 and 4) are the shape functions, and are given
by the following expressions:

H1(ξ) = 1
4(2 − 3ξ + ξ3) H ′

1(ξ) = 1
4(−3 + 3ξ2) H ′′

1(ξ) = 1
4(6ξ)

H2(ξ) = 1
4(1 − ξ − ξ2 + ξ3) H ′

2(ξ) = 1
4(−1 − 2ξ + 3ξ2) H ′′

2(ξ) = 1
4(−2 + 6ξ)

H3(ξ) = 1
4(2 + 3ξ − ξ3) H ′

3(ξ) = 1
4(3 − 3ξ2) H ′′

3(ξ) = 1
4(−6ξ)

H4(ξ) = 1
4(−1 − ξ + ξ2 + ξ3) H ′

4(ξ) = 1
4(−1 + 2ξ + 3ξ2) H ′′

4(ξ) = 1
4(2 + 6ξ)

(3.10)

The equations 3.4 and 3.8 can be joined to obtain a system of equations for displacements
along the beam in terms of the nodal displacements and rotations:

ue
a(ξ,t)

ve
(ξ,t)

 =
[
N1(ξ) 0 0 N2(ξ) 0 0

0 H1(ξ)
Le

2 H2(ξ) 0 H3(ξ)
Le

2 H4(ξ)

]


ue
1(t)

ve
1(t)

θe
1(t)

ue
2(t)

ve
2(t)

θe
2(t)


= Γ(ξ)qe

(t) (3.11)

The derivative with respect to time of equation 3.11 only requires obtaining the derivative
of the nodal values and the same shape functions Γ(ξ) are used because these do not depend
on time, so the expression for the derivative is the following:

u̇e
a(ξ,t)

v̇e
(ξ,t)

 = Γ(ξ)q̇e
(t) (3.12)

The displacement in the axial direction of a point (ue
f(ξ,t)) in the cross section at a distance

"y" from the neutral axis, considering small deformations, can be calculated by the following
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expression:

ue
f(ξ,t) = −yθe

(ξ,t) = −2y

Le

H′
(ξ)qe

2(t) (3.13)

where θe
(ξ,t) was obtained by the equation 3.9.

The total displacement in the axial direction (ue
(ξ,t)) can be calculated as the sum of ue

a(ξ,t)
and ue

f(ξ,t) (equations 3.4 and 3.13). Based on this, and applying the chain rule, the axial
deformation is expressed by the following expression:

εe =
∂ue

(ξ,t)

∂x
=

∂ue
a(ξ,t)

∂ξ

∂ξ

∂x
+

∂ue
f(ξ,t)

∂ξ

∂ξ

∂x

= 2
Le

N′
(ξ)qe

1(t) − y
4

L2
e

H′′
(ξ)qe

2(t)

= B(ξ)qe
(t)

(3.14)

where B(ξ) is defined in terms of the shape functions, and corresponds to the following
vector:

B(ξ) =
[

2
Le

N ′
1(ξ)

−4y

L2
e

H ′′
1(ξ)

−2y

Le

H ′′
2(ξ)

2
Le

N ′
2(ξ)

−4y

L2
e

H ′′
3(ξ)

−2y

Le

H ′′
4(ξ)

]
(3.15)

To obtain the elementary stresses (S), the deformation of equation 3.15 is used in a linear
elastic constitutive law with proportionality constant cs as follows:

S = csε
e = csB(ξ)qe

(t) (3.16)

Due to the geometry of the beams and cantilevers (rectangular cross section), the piezo-
electric layer is poled in the thickness direction (y-direction), so the non-zero electric field
component E (which is assumed to be uniform) can be calculated by the following equation:

E = −∂φ

∂y
= − vp

hp

= −BEvp (3.17)

where hp is the thickness of the piezoelectric layer.

Based on the Hamilton’s principle given by equation 3.1, and using the equations 3.12,
3.16 and 3.17 for the mechanical velocity, the mechanical strain and the electric field, the
element mass matrix in local coordinates (ml), stiffness matrix (kl), electromechanical cou-
pling vector (Θ) and capacitance (cp) can be calculated by the following integrals:
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ml =
∫

Vs

ρsΓtΓ dVs +
∫

Vp

ρpΓtΓ dVp (3.18)

kl =
∫

Vs

BtcsB dVs +
∫

Vp

BtcE
p B dVp (3.19)

Θ = β
∫

Vp

Bte31BE dVp (3.20)

cp = α
∫

Vp

BEεS
33BE dVp (3.21)

where α and β are constants that depend on whether the piezoelectric harvester is uni-
morph or bimorph and are explained later, and only the e31 and εS

33 components are considered
because the piezoelectric layer is poled in the thickness direction. The volume differentials
can be expressed as:

dVs = dAdx = Le

2 dAdξ

dVp = dAdx = Le

2 dAdξ

(3.22)

If the integrals above are developed, the following results are obtained:

ml = Le

420(ρsAs + ρpAp)



140 0 0 70 0 0
0 156 22Le 0 54 −13Le

0 22Le 4L2
e 0 13Le −3L2

e

70 0 0 140 0 0
0 54 13Le 0 156 −22Le

0 −13Le −3L2
e 0 −22Le 4L2

e


(3.23)

kl =



YsAs+YpAp

Le
0 0 −YsAs+YpAp

Le
0 0

0 12(YsIs+YpIp)
L3

e

6(YsIs+YpIp)
L2

e
0 −12(YsIs+YpIp)

L3
e

6(YsIs+YpIp)
L2

e

0 6(YsIs+YpIp)
L2

e

4(YsIs+YpIp)
Le

0 −6(YsIs+YpIp)
L2

e

2(YsIs+YpIp)
Le

−YsAs+YpAp

Le
0 0 YsAs+YpAp

Le
0 0

0 −12(YsIs+YpIp)
L3

e
−6(YsIs+YpIp)

L2
e

0 12(YsIs+YpIp)
L3

e
−6(YsIs+YpIp)

L2
e

0 6(YsIs+YpIp)
L2

e

2(YsIs+YpIp)
Le

0 −6(YsIs+YpIp)
L2

e

12(YsIs+YpIp)
L3

e


(3.24)
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Θ = β
e31b

2 (hp + hs)



0
0
1
0
0

−1


(3.25)

cp = α
ε33bLe

hp

(3.26)

where b, h, I, A, Y are the width, thickness, moment of inertia, area and Young’s mod-
ulus, respectively (the elastic stiffness cs and cE

p are replaced by Ys and Yp, respectively).
Subscripts s and p stand for the substructure and piezocelectric layers, respectively.

If a unimorph piezoelectric energy harvester is considered, only one layer of piezoelectric
must be considered in the calculation of the mass and stiffness matrices, and additionally
α = β = 1 must be used in equations 3.20 and 3.21. On the other hand, if a bimorph har-
vester is considered, the mass and stiffness must consider the presence of the two piezoelectric
layers (which mainly affects the calculation of Ap and Ip), and the value of the coefficients α
and β depends on the way the two piezoelectric layers are connected to the external electrical
load. For parallel connection (larger current), the two layers are poled in the same direction
and α = β = 2, for the series connection (larger voltage), the two layers are poled in the
opposite direction and α = 1/2 and β = 1.

Tip masses at the ends of the cantilevers (as shown in figure 2.3), are modeled as unde-
formable point masses. To add them in the elementary matrices, the value of the tip mass
must be added in the components ml[1,1] and ml[2,2] if the mass is added in node i, and in
the components ml[4,4] and ml[5,5] if the mass is added at node j (see figure 3.1).

The mass and stiffness matrices (equations 3.23 and 3.24) should be referred to the same
global coordinate system. For this reason, the local matrices of each element must be trans-
formed using the matrix R presented in equation 3.27), whose function is to carry a matrix
of local to global coordinates, or vice versa. The angle ϕ in the equation corresponds to the
inclination of the element with respect to the horizontal axis of the global coordinate system,
measured counterclockwise. Equations 3.28 and 3.29 present the transformation from local
to global coordinates of the mass and stiffness matrices, respectively.

R =



cos(ϕ) sin(ϕ) 0 0 0 0
−sin(ϕ) cos(ϕ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(ϕ) sin(ϕ) 0
0 0 0 −sin(ϕ) cos(ϕ) 0
0 0 0 0 0 1


(3.27)

kg = RtklR (3.28)
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mg = RtmlR (3.29)

After changing from local to global coordinates the elementary matrices, they must be
assembled (add the components of various elements that concur in the same node) to obtain
the global equations of motion, which are the following:

MΨ̈ + CΨ̇ + KΨ − Θv = f (3.30)

Cpv + Q + ΘtΨ̇ = 0 (3.31)

where M is the global mass matrix (nm x nm), K is the global stiffness matrix (nm x nm),
C is the global mechanical damping matrix (nm x nm), Θ is the global electromechanical
coupling matrix (nm x ne), Cp is the global capacitance matrix (ne x ne), F is the global
vector of mechanical forces (nm x 1), Q is the global vector of electric charge outputs (nm x
1), Ψ is the global vector of nodal displacements and rotations (nm x 1) and v is the global
vector of voltage outputs (ne x 1). The coefficients nm and ne are the number of degrees of
freedom and the number of elements of the structure, respectively. The global mechanical
damping matrix is assumed to be proportional to the mass and stiffness matrices:

C = γ1M + γ2K (3.32)

where γ1 and γ2 are the constants of proportionality.

Piezoelectric layers come from the manufacturer with thin and very conductive electrode
layers on the top and bottom surfaces. It is therefore reasonable to assume that all finite el-
ements that correspond to the same beam generate the same voltage output. For example, if
beam i is discretized in ni elements, it is true that vi

1 = ... = vi
k = ... = vi

ni
= vi

p ∀ i ∈ [1, Nb],
where vi

k indicates the voltage output of the element k of the beam i, and Nb is the total
number of beams in the structure, such that ∑Nb

i=1 ni = ne. If these considerations are applied,
the voltage vector (v) can be simplified as follows:
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v =




v1

1
...

v1
n1


...

vi
1
...

vi
ni


...

vNb
1
...

vNb
nNb





=



rn1 x1 · v1
p

...
rni x1 · vi

p
...

rnNb
x1 · vNb

p


=



rn1 x1 0 0 0 0
0 . . . 0 0 0
0 0 rnk x1 0 0
0 0 0 . . . 0
0 0 0 0 rnNb

x1





v1
p
...

vi
p
...

vNb
p


= Ivp (3.33)

where r is a vector of ones with the dimension indicated in the subscript, vp contains the
voltages of each piezoelectric beam (Nbx1), and the I matrix (nexNb) is the one that relates
the voltage vector (v) with the reduced voltage vector (vp).

Taking the time derivative of equation 3.31 and pre-multiplying by the (nexNb) matrix
It, one can obtain the following equation:

ItCpv̇ + ItQ̇ + ItΘtΨ̇ = 0 (3.34)

If equation 3.33 is replaced in equation 3.34, the following equation is obtained:

ItCpIv̇p + ItRIvp + ItΘtΨ̇ = 0 (3.35)

If the variable changes are made C̃p = ItCpI, R̃ = ItRI and Θ̃ = ΘI, the following
equations of motion are obtained:

MΨ̈ + CΨ̇ + KΨ − Θ̃vp = f (3.36)

C̃pv̇p + R̃vp + Θ̃tΨ̇ = 0 (3.37)

which are the governing electromechanical equations.

If the structure is subjected to harmonic displacements at the base, the voltage and rela-
tive tip motion output to base acceleration FRF can be obtained from equations 3.36 and 3.37:
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vp

−ω2Y0ejωt
= jω

(
R̃ + jωC̃p

)−1
Θ̃T

(
−ω2M + jωC + K + jω

(
R̃ + jωC̃p

)−1
Θ̃Θ̃t

)−1
m∗

(3.38)

wrel

−ω2Y0ejωt
= −

(
−ω2M + jωC + K + jω

(
R̃ + jωC̃p

)−1
Θ̃Θ̃t

)−1
m∗ (3.39)

where m* is an (nm x 1) mass vector obtained from the global forcing term f for the base
excitation problem.

3.3. State space formulation

If the variable z =
[
Ψ Ψ̇ vp

]t
is replaced in the equation 3.36 and 3.37, we get the follow-

ing expression for ż:

ż =

A︷ ︸︸ ︷
0 I 0

−M−1K −M−1C M−1Θ̃
0 −C̃−1

p Θ̃t −C̃−1
p R̃

z +

b︷︸︸︷
0
f
0

 (3.40)

The natural frequencies can be obtained by solving the eigenvalue problem associated with
matrix A.

3.4. Bloch theorem
The development presented in the previous sections is valid for any structure, which is very
useful for working with finite arrangements (for example, the panels of section 7). In case
it is required to work with the unit cell of an infinite periodic structure, the Floquet–Bloch
periodic condition must be applied.

From the direct lattice, it is possible to build a secondary lattice called reciprocal lattice,
which is useful to study the physical phenomena of wave behavior. Like the direct lattice,
the reciprocal one can also be completely constructed by basis vectors that are denoted ej

(j = 1, 2 for two-dimensional case), and must comply with the same properties of the direct
lattice. The reciprocal lattice vectors can be calculated from the direct lattice vectors using
the following relationship:

ei · ej = 2πδij (3.41)

where δij is the Kronecker delta, so δij = 1 for i = j and δij = 0 otherwise, and ei (i = 1,
2) are the direct lattice vectors.

16



Figure 3.3a shows 9 nodes of a square direct lattice with periodicity A, and figure 3.3b
shows 9 points of the associated reciprocal lattice, which has a periodicity of 2π

A
. The gray

square of the reciprocal lattice corresponds to the first Brillouin zone (BZ), and the wave
vectors that belong to the vertices, the middle of the sides and the center are indicated (N,
Y, M, X, O, Y , M , X and Γ).

Figure 3.3: (a) Extract of a square direct lattice of periodicity A, and its (b) reciprocal lattice of
periodicity 2π

A . The Brillouin Zone is indicated in gray, and the main wave vectors are detailed (N,
Y, M, X, O, Y , M , X and Γ).

The wavelength and direction of wave propagation is described by the wave vector. Any
point k from the reciprocal space (not necessarily belonging the lattice) represents a flat
wave with wave vector k, this is why the reciprocal lattice is scaled by 2π in equation 3.41,
so that the coordinates of the wave vector can be expressed with the same vector base of the
reciprocal lattice. In this way, a generic wave vector k can be written as follows:

k = k1e1 + k2e2

where k1 and k2 are real numbers.

According to the Floquet–Bloch wave theory, the displacement (u) for a periodic unit cell
satisfies the following relationship:

u(x + r) = u(x)eikr (3.42)

where i2 = −1, k is the wave vector, r is the cell periodicity and x is a position within
the periodic array.

In figure 3.3 a generic square unit cell is presented, where ΨBL, ΨL, ΨTL, ΨT, ΨTR, ΨR,
ΨBR, ΨB are the points that lie on the edge of the unit cell, where the subscripts T, B, L and
R stand for top, bottom, left and right, respectively. Also, the points inside the unit cell are
represented by ΨI. It is important to highlight that only the points that are in the corners
(those with 2 subscripts) are unique points, while the nomenclature that represents the other
points refers to sets of points (there can be several internal points ΨI, several points in the
left side ΨL, etc). The figure also shows the direct lattice vectors e1 and e2.

17



Figure 3.4: Representation of a 2D square unit cell, grouping its components into ΨBL, ΨL, ΨTL,
ΨT, ΨTR, ΨR, ΨBR, ΨB.

Applying equation 3.42 in the configuration presented in figure 3.4, the matrix system
indicated in equation 3.43 is obtained.

Ψ︷ ︸︸ ︷

ΨL

ΨR

ΨB

ΨT

ΨBL

ΨBR

ΨTL

ΨTR

ΨI



=

P︷ ︸︸ ︷

I 0 0 0
Ieik·e1 0 0 0

0 I 0 0
0 Ieik·e2 0 0
0 0 I 0
0 0 Ieik·e1 0
0 0 Ieik·e2 0
0 0 Ieik·(e1+e2) 0
0 0 0 I



Ψ︷ ︸︸ ︷
ΨL

ΨB

ΨBL

ΨI

 (3.43)

The matrix system and its derivatives with respect to time can be summarized in the
following variable changes:

Ψ = PΨ; Ψ̇ = PΨ̇; Ψ̈ = PΨ̈ (3.44)

If the variable changes are carried out in equations 3.36 and 3.37, and the equation 3.36
is multiplied by the left by PH , the following equations are obtained:

PHMPΨ̈ + PHCPΨ̇ + PHKPΨ − PHΘ̃vp = PHf (3.45)

C̃pv̇p + R̃vp + Θ̃tPΨ̇ = 0 (3.46)
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To reduce the notation, the following variable changes are made: M = PHMP; C =
PHCP; K = PHKP; Θ = PHΘ̃; f = PHf. With this we obtain the equations 3.47 and
3.48, which have the same form as the equations 3.36 and 3.37, but by having the Bloch
conditions applied the matrices M, C and K will depend on the wave vector, as well as Θ
and f vectors.

M Ψ̈ + C Ψ̇ + K Ψ − Θvp = f (3.47)

C̃pv̇p + R̃vp + Θt Ψ̇ = 0 (3.48)

Since the equations have the same form as those presented in previous sections, the state
space is the same as in section 4.3 but with the change of variable made, in such a way that:
ż = Az + b, where A and b are given by:

A =


0 I 0

−M−1K −M−1C M−1Θ
0 −C̃−1

p Θt −C̃−1
p R̃

 ; b =


0
f
0

 (3.49)

The dispersion diagrams can be obtained by solving the eigenvalue problem associated
with matrix A.

3.5. Bandgap identification
The Floquet–Bloch periodic condition require evaluating the wave vector in the BZ, however,
for time independent harmonic systems, the properties of a wave propagating along an axis
do not depend on its sense, so the BZ can be halved as shown in figure 3.5a (when referring to
the BZ in later sections it is referring to the upper half). On the other hand, it has been seen
in the literature that to determine the size and location of the bandgaps in highly symmetric
unit cells, the domain of the wave vectors can be limited to the contour of the irreducible
Brillouin zone (IBZ), which corresponds to a reduction of the BZ due to all the symmetries
of the lattice, and it is shown in figure 3.5b [55].

The bandgaps studied in this work are those that have their origin in the local resonances
of the cantilevers incorporated in the unit cells, so they are located around their fundamental
frequency. Figure 3.6 shows the dispersion diagram of a type I unit cell that is described in
more detail in section 6.2. In figure 3.6a the wave vectors that run through the BZ are used,
while in figure 3.6b the contour of the IBZ is used. In both figures the size and location
of the bandgap is the same, so in this case no information about the bandgap is lost if the
domain of the wave vectors is reduced to the contour of the IBZ, this is because type I unit
cells are highly symmetric.

In both dispersion diagrams presented there is a horizontal band at a frequency of 1828.10
[Hz], which corresponds to the natural frequency of the resonators. The bandgap extends
above and below this horizontal band, and they are called upper bandgap and lower bandgap
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Figure 3.5: (a) Upper half of the Brillouin Zone (BZ) and (b) contour of the irreducible Brillouin
zone (IBZ).

in this work, respectively. A constant dispersion band (independent of the wave vector) in-
dicates that the wave is not propagated by the cell, which means that the lower and upper
bandgap can be added to quantify the total bandgap generated by local resonances. The
distinction is made between the upper and lower bandgap to quantify the contribution of
each one to the total bandgap.

Figure 3.6: Dispersion diagrams of a type I unit cell, in which the domain of the wave vectors is
considered (a) the entire the BZ and (b) in the contour of the IBZ.

To know the size and position of the bandgap, it is enough to evaluate the wave vector
that gives the minimum frequency of the upper band of the bandgap and the wave vector
that gives the maximum frequency of the lower band of the bandgap, which occurs at Γ for
the upper band and at M for the lower band of figure 3.6b, these wave vectors are called
"bandgap extrema" in this research, to be consistent with the nomenclature used by Maurin
et al. [55] who did a study on bandgap extrema in porous phononic crystal. The problem
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is that the bandgap extrema is not known in advance, and evaluating only some vectors
can generate loss of valuable information, which can lead to overestimating the size of the
bandgap or generate bandgaps that does not really exist, therefore, the full BZ should be
evaluated to ensure that the results are correct.

3.6. Numerical Validation Approach
Figure 3.7 shows 3 square type I unit cells with their respective dispersion diagrams, which
are performed by evaluating the wave vectors of the IBZ contour in the Floquet–Bloch pe-
riodic condition. Figure 3.7a corresponds to a square lattice, figure 3.7b to a square lattice
with resonators and figure 3.7c to a square lattice with resonators and tip masses attached.
The parameters used to evaluate the model are presented in table 3.1, where the difference
is made between the beams that make up the square matrix and the elements that are used
as resonators in cases b and c, the material used in all elements is acrylonitrile butadiene
styrene (ABS).

The fundamental bending natural frequency of a resonator beam is given by f1 = 1.8752

2π

√
EI

ρAL4

[56], where E, I, ρ, A and L are the Young’s modulus, moment of inertia, density, area
and length for the resonator beam, respectively. Evaluating the material and geometric
parameters of the table 3.1, we can get f1 = 684.6[Hz], which coincides with the horizon-
tal line that falls in the bandgap seen in figure 3.7b. On the other hand, if a tip mass
is added to the resonators, an approximation of the fundamental frequency is given by
fT ip Mass

1 = 1
2π

√
3EI/L3

(33/140)ρAL+Mt
[57], where Mt corresponds to the tip mass. If the resonator

parameters are evaluated, it follows that fT ip Mass
1 = 145.1[Hz], which coincides with the

horizontal line that falls in the bandgap of figure 3.7c.

The results obtained are consistent with what is found in the literature [1], and allow us
to appreciate how the incorporation of resonators can generate bandgaps at low frequencies,
specifically around the fundamental frequencies of the resonators.

Table 3.1: Geometric and material parameters of the substructure of the matrix beams and the
resonators (Res.) [1].

Geometric
parameters

Matrix
Beams

Res. Material parameters Matrix
Beams

Res.

Length, L (mm) 35 13.98 Mass density, ρ (kg m−3) 1099 1099
Width, b (mm) 10 10 Young’s mod., Y (MPa) 1900 1900
Thickness, h (mm) 1 0.63 Tip mass, Mt (gm) - 0.5

To find the appropriate mesh refinement for the finite element model, a type I unit cell is
divided into 8, 16, 24, 32, 40 and 80 elements. Both the matrix beams and the resonators
are divided into the same number of elements, so if the cell is divided into 40 elements it
means that each beam and resonator is divided into 5 elements (type I is made up of 4 matrix
beams and 4 resonators). The physical and geometric properties of the substructure are those
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Figure 3.7: Topologies of the type I unit cell and the corresponding dispersion diagrams: (a)
original square lattice, (b) modified square lattice with resonators, and (c) modified square lattice
with resonators and tip masses attached.

indicated in table 3.1, and the piezoelectrics considered in the bimorph resonators are PVDF
whose properties are indicated in table 3.2. The dispersion diagrams of each refinement are
presented in figure 3.8.

Table 3.2: Geometric, material and electromechanical properties of PVDF layers of the bimorph
harvesters [58].

Geometric parameters Piezo.
PVDF

Material parameters Piezo.
PVDF

Length, L (mm) 13.98 Mass density, ρ (kg m−3) 1780
Width, b (mm) 10 Young’s modulus, Y (GPa) 3
Thickness, h (mm) 0.028 (each) Piezo. Constant, d31 (pmV −1) -23

Permittivity, εs
33 (pFm−1) 106

To quantify the results, the fundamental natural frequency of the resonators and the
bandgap size are measured. These results are presented in table 3.3. From the results pre-
sented, it can be observed that with 24 elements (3 for each beam and resonator) sufficiently
precise results are obtained, so considering that number of divisions is reasonable for the
model. If unit cells with more resonators are used, more elements must be considered, in the
case of a type IV unit cell, 36 elements would have to be considered to maintain the same 3
for each beam and resonator.

To validate the electromechanically coupled finite element model, the results obtained are
compared with the analytical multi-mode model presented by Erturk and Inman [51], for
a resonator bimorph harvester configuration with a tip mass under base excitation, whose
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Figure 3.8: Dispersion diagrams with different mesh refinements for a type I unit cell containing
bimorph harvester resonators, and whose properties are indicated in tables 3.1 and 3.2. The dia-
grams consider mesh refinements with (a) 8, (b) 16, (c) 24, (d) 32, (e) 40 and (f) 80 elements.

piezoelectric layers has a series connection (as presented in figure 3.9 b). The geometry and
materials used for the substructure and the piezoelectric layers are presented in table 3.4.

Equations 3.38 and 3.39 allow obtaining the electromechanical FRFs. The mass, stiffness,
damping, coupling term, effective capacitance and vector forcing matrices must be modified
accordingly to account for the effect the effect of the additional piezoelectric layer. In addi-
tion, the tip mass must be included in the extreme elements of the resonators.

Figure 3.10 presents the results of the FRFs obtained for 8 resistance values (1 kΩ, 7
kΩ, 22 kΩ, 47 kΩ, 100 kΩ and 470 kΩ), considering 10 modes in the Erturk and Inman
model and a discretization of 10 elements in the FE model. In the case of the FE model,
the displacement and speed correspond to the vertical degree of freedom of the free end of
the resonator. The mechanical FRFs obtained from the FE model are in agreement with the
analytical multi-mode model results.
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Table 3.3: Resonator frequency and bandgap size for the 6 mesh refinements considered in figure
3.8.

Number of FE Resonator frequency [Hz] Bandgap [Hz]
8 174.802 31.233
16 174.800 31.053
24 174.800 31.043
32 174.800 31.042
40 174.800 31.041
80 174.800 31.041

Figure 3.9: Bimorph cantilever configurations with (a) series and (b) parallel connection of piezo-
electric layers.

Table 3.4: Geometric, material and electromechanical properties of the substructure (brass) and
piezoelectric layers (PZT-5A) for a bimorph harvester [51].

Geometric
parameters Piezo. Sub. Material parameters Piezo. Sub.

Length, L (mm) 50.8 50.8 Mass density, ρ (kg m−3) 7800 9000
Width, b (mm) 31.8 31.8 Young’s mod., Y (Gpa) 66 105
Thickness, h (mm) 0.26 (each) 0.14 Piezo. Cons., d31(pmV −1) -190 -
Tip mass, Mt(kg) 0.012 Permittivity, εs

33 (F m−1) 1500ϵ0 -
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Figure 3.10: (a) Voltage FRF, (b) tip displacement FRF, (c) current FRF and (d) power FRF for
6 different values of load resistance (the electromechanically coupled finite element model are the
colored lines, while the analytical multi-mode model presented by Erturk and Inman are presented
as black asterisks).
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Chapter 4

Bandgap and its relation with the
wave vector

In this section we study whether it is possible to reduce the domain of wave vectors to identify
bandgaps due to local resonances for the 6 types of unit cells of figure 2.2. The methodology
used consists in choosing an initial unit cell configuration of any of the 6 types analyzed, and
perform 10,000 different random variations of all the original parameters. These variations
have a value less than or equal to 50% of the original parameters, this range of variation is
defined arbitrarily in order to achieve configurations that make physical sense (if it is not
limited, there could be cases with very large resonators compared to the matrix beams, very
large tip masses for the rigidity of the resonators or other incompatibilities) and that are in a
limited area around the original configuration (there are clearly physically possible configu-
rations that are beyond the range of variation, which may eventually result in unit cells much
larger or much smaller than the original cell). Each time the properties are varied randomly,
the dispersion diagrams are calculated covering the BZ (blue area of the figure 3.5a), and the
bandgap extrema are identified. In this way, it is possible to see if for this type of resonators
it is reasonable to reduce the domain of wave vectors to the contour of the IBZ as was done
in figure 3.6b, or if the domain could be reduced even further.

To correctly interpret the results of subsequent sections, it should be noted that in each
of the 10,000 random variations of the parameters, the length of the beams of the matrix
is varied, which generates changes in the dimensions of the BZ. This is why a BZ with a
unit side (normalized BZ) is defined, which is used to compare the locations of the wave
vectors in cells that have different dimensions. Normalization simply consists of dividing the
components of the identified wave vector by π

A
, where A is the periodicity of the unit cell

(length of the matrix beams) obtained from the random variation of parameters.

4.1. Bandgap Location - Case 1: Types I and IV unit
cells

Type I and IV unit cells have several axes of symmetry, therefore, when making the random
variation of parameters, the required symmetries must be maintained, which implies that an
angle of 45o must be maintained for type I cells, and that there is only one degree of freedom
to vary the angles of type IV unit cells (if all angles change independently, symmetry is lost).
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The initial configuration of the type I and type IV unit cells on which the random variations
are performed considers the properties of the tables 3.1 and 3.2 (the 2 cantilevers of each
node of type IV unit cells must have the same properties to maintain symmetry).

The results obtained when applying the random variations for the type I and type IV unit
cells indicate that to obtain the size and position of the bandgap, it is enough to evaluate
the wave vectors that are located at N, Y, M, X̄ and Γ, i.e., in none of the random variations
the upper and lower bandgap extrema was found in another wave vector different from those
mentioned. The percentage of times that the upper and lower bandgap extrema is found in
each of these wave vectors is indicated in table 4.1. In both type I and type IV unit cells,
the upper bandgap extrema is found predominantly in the Γ wave vector, while the lower
bandgap extrema is found mainly between the M and N wave vectors.

Figures 4.1 and 4.2 show scatter plots of the bandgap versus the resonator frequency for
the upper and lower bandgap for type I and type IV unit cells, respectively. The bandgaps are
presented as percentages with respect to the frequency of the resonators, and the graphs were
grouped according to the bandgap extrema, which is indicated at the top of each graph. The
results show that as the resonators stiffen, higher values are obtained for the lower bandgap,
while the upper bandgap does not show frequency dependence.

Table 4.1: Percentage of times that the upper and lower bandgap extrema is located in each wave
vector, with respect to the 10,000 random variations of type I and type IV unit cells.

Type I Type IV

Wave
Vector

Upper
Bandgap

[%]

Lower
Bandgap

[%]

Upper
Bandgap

[%]

Lower
Bandgap

[%]
N 1.19 48.95 1.91 48.25
X̄ 1.12 1.35 0.98 1.24
Γ 95.18 0.02 94.38 0.03
Y 1.14 1.06 1.09 1.13
M 1.37 48.62 1.54 49.35
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Figure 4.1: Bandgap size (as a percentage of resonator frequency) versus resonator frequency for (a)
upper and (b) lower bandgap in type I unit cells. In each case, the bandgap extrema is indicated.

Figure 4.2: Bandgap size (as a percentage of resonator frequency) versus resonator frequency for (a)
upper and (b) lower bandgap in type IV unit cells. In each case, the bandgap extrema is indicated.

4.2. Bandgap Location - Case 2: Types II and V unit
cells

Type II and V unit cells have no symmetry requirements, so all resonator angles are varied
independently in each of the random variations. The initial configuration of the type II unit
cell on which the random variations are performed considers the properties of the tables 3.1
and 3.2. For type V unit cell, the same properties are considered, but in this case there is an
additional resonator at each node, which starts with the properties of tables 3.1 and 3.2, but
considering half of the tip mass and half length (0.5Mt and 0.5L), these modifications cause
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this additional resonator to have a higher frequency, so it is called high frequency resonator
and the other is called low frequency resonator (with random variations it could happen that
the resonator that initially has a lower frequency remains with a higher frequency, but the
names are used only to differentiate them).

The results obtained when applying the random variations for the type II and type V unit
cells indicate that to obtain the size and position of the bandgap, it is enough to evaluate
the wave vectors that are located at N, Y, M, X̄ and Γ, i.e., in none of the random variations
the upper and lower bandgap extrema was found in another wave vector different from those
mentioned. The percentage of times that the upper and lower bandgap extrema is found in
each of these wave vectors is indicated in table 4.2. In the case of type II unit cells, a behavior
similar to that of type I and type IV is obtained, with Γ being the predominant wave vector
for the upper bandgap extrema and for the lower bandgap extrema it is distributed mainly
between M and N. On the other hand, in type V unit cells, it happens that the bandgaps as-
sociated with the low frequency resonators behave the same as those of type I, II and IV unit
cells, but the bandgaps associated with the high frequency resonators have higher percent-
ages associated with the vectors X̄ and Y for both the upper bandgap and the lower bandgap.

Figure 4.3 shows the scatter plot of the bandgap versus the resonator frequency for the
upper and lower bandgap for type II unit cell. Since type V unit cells allow having 2 res-
onators with different natural frequencies, the scatter plots for each type of resonator are
differentiated, and are presented in figures 4.4 and 4.5 for each resonator. The results ob-
tained agree with those seen for type I and type IV unit cells, and figure 4.5b shows that the
size of the upper bandgap increases considerably for high frequencies of the resonators.

Table 4.2: Percentage of times that the upper and lower bandgap extrema is located in each wave
vector, with respect to the 10,000 random variations of type II and type V unit cells. This last
type of cell allows the incorporation of 2 cantilevers with different frequencies, which generate 2
bandgaps, which are indicated separately.

Type II Type V
Wave
Vector

Low freq. Resonator High freq. Resonator

Upper
Bandgap

[%]

Lower
Bandgap

[%]

Upper
Bandgap

[%]

Lower
Bandgap

[%]

Upper
Bandgap

[%]

Lower
Bandgap

[%]
N 0.56 49.22 0.65 49.88 2.05 42.49
X̄ 1.15 0.44 0.95 0.45 11.69 6.94
Γ 96.77 0.05 96.94 0.05 71.99 0.48
Y 0.93 0.52 0.93 0.43 12.17 6.53
M 0.59 49.77 0.53 49.19 2.1 43.56
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Figure 4.3: Bandgap size (as a percentage of resonator frequency) versus resonator frequency for (a)
upper and (b) lower bandgap in type II unit cells. In each case, the bandgap extrema is indicated.

Figure 4.4: Bandgap size (as a percentage of resonator frequency) versus resonator frequency for
(a) upper and (b) lower bandgap in type V unit cells low frequency resonators. In each case, the
bandgap extrema is indicated.
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Figure 4.5: Bandgap size (as a percentage of resonator frequency) versus resonator frequency for
(a) upper and (b) lower bandgap in type V unit cells high frequency resonators. In each case, the
bandgap extrema is indicated.

4.3. Bandgap Location - Case 3: Types III and VI
unit cells

Type III and VI unit cells do not always generate bandgaps due to local resonances, therefore,
it is not possible to carry out the analysis presented for the other types of unit cells. This is
why an example of the dispersion diagrams for each type of cell is presented, in which the
wave vectors in the entire BZ are evaluated.

For the type III example, the properties of tables 3.1 and 3.2 are considered for the sub-
structure and the piezoelectric, respectively. To achieve the required asymmetry in this type
of cell the tip mass of each cantilever is modified, the values considered in terms of Mt (mass
indicated in table 3.1) are 0.5Mt, Mt, 1.5Mt and 2Mt, which correspond to resonators with
natural frequencies of 241.30 [Hz], 174.80 [Hz], 143.91 [Hz] and 125.16 [Hz], respectively.
In the case of type VI example, 4 cantilevers are added to those already mentioned, whose
tip masses are 0.25Mt, 3Mt, 3.5Mt and 4Mt, which correspond to resonators with natural
frequencies of 326.12 [Hz], 102.63 [Hz], 95.13 [Hz] and 89.07 [Hz], respectively.

Figures 4.6a and 4.6b show the dispersion diagrams for the type III and type VI unit cell,
respectively. It can be seen that no bandgaps are generated in the resonator frequencies in
either type of unit cell.
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Figure 4.6: Examples of dispersion diagrams for (a) type III and (b) type VI unit cells.
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Chapter 5

Parametric Study

In this section, a parametric analysis is performed for type I and type V unit cells. This
analysis consists in defining nominal properties to the unit cell, and varying the value of each
physical and geometric parameter of the model by 50% (up and down), this percentage of
variation is defined in such way that the structure remains geometrically and physically pos-
sible (if the properties are varied a lot, it can happen that the cantilevers are excessively large
compared to the matrix or that the tip mass is too large for the rigidity of the cantilevers).
What is measured is the variation that occurs in the size and location of the bandgap asso-
ciated with the local resonances of the cantilevers.

The bandgaps are presented as a percentage with respect to the resonator frequency (after
varying the corresponding parameter), this way of measuring bandgaps is very convenient to
keep the bandgap at low frequencies since parameters that increase the bandgap but at the
same time increase the frequency of the cantilever are penalized.

5.1. Case 1: Single Resonator
The original configuration corresponds to a type I unit cell, whose substructure and piezo-
electric layers properties are indicated in table 3.1 and 3.2, respectively. The results of the
parametric analysis are presented in figure 5.1 as graphs of resonator frequency in Hz ver-
sus total bandgap presented as the percentage with respect to the resonator frequency. The
graphs are grouped into 4 categories: geometric properties of the matrix, geometric properties
of resonators, physical properties of piezoelectric layers and physical properties of substruc-
ture.

The extreme values of the parametric analysis are summarized in tables 5.1 and 5.2, which
correspond to a variation of -50% and +50% with respect to the original values, respectively.
These tables are very useful because the variation of parameters in the ranges used generate
strictly increasing, strictly decreasing or constant variations, this is why the extreme values
give information about the maximum or minimum values. The only parameter that escapes
this rule is the resonator length, which presents a maximum when there is an increase close
to 50%, so the value in the table is a little lower than the maximum value of the parametric
analysis for this parameter (this variation is irrelevant for the ranges of variation studied,
but could be an important phenomenon in other cases).
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Figure 5.1: Parametric analysis for type I unit cells, in which the properties are varied in a range
of ±50% with respect to the original ones. The parameters are grouped into 4 categories: (a)
geometric properties of the matrix, (b) geometric properties of resonators, (c) physical properties
of piezoelectric layers and (d) physical properties of substructure.

The second column of the tables presents a dimensionless value that corresponds to the
ratio between the frequency of the cantilever varying the indicated parameter and the orig-
inal frequency of the cantilever using the nominal values. In the third and fourth column,
additional information is provided to the figure 5.1, since it differentiates between the upper
and the lower bandgap. The fifth column presents the same information as the figure. The
rows of the tables are ordered in such way that they are divided into 3 groups, the first
corresponds to the rows that have a frequency ratio value less than 1, the second to those
that have a value equal to 1, and the third to those with a value greater than 1. Within
these groups they are ordered according to the total bandgap from lowest to highest.

If the results obtained in the tables are compared, it can be seen in which direction the
model parameters should move in order to obtain a larger bandgap:

• To enlarge the upper and total bandgap, the following modifications must be made:

– Increase the following parameters: beam Young’s modulus, piezoelectric resistance,
piezoelectric εs

33, tip mass, resonator length and piezoelectric e31.
– Decrease the following parameters: piezoelectric Young’s modulus, resonator Young’s

modulus, beam thickness, beam width, beam mass density, beam length, piezoelec-
tric thickness, resonator width, resonator thickness, piezoelectric mass density and
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Table 5.1: Values of the parametric analysis for type I unit cell when decreasing the original prop-
erties by 50%.

Parameter Frequency
ratio

Upper band
gap [%]

Lower band
gap [%]

Total band
gap [%]

Piezoelectric Young’s modulus 0.92 17.76 0.01 17.77
Resonator Young’s modulus 0.81 17.78 0.01 17.79
Piezoelectric thickness 0.92 17.77 0.01 17.79
Resonator width 0.72 17.88 0.01 17.89
Resonator thickness 0.42 17.91 0.00 17.92
Beam Young’s modulus 1.00 17.63 0.03 17.66
Piezoelectric e31 1.00 17.74 0.02 17.75
Piezoelectric resistance 1.00 17.74 0.02 17.75
Piezoelectric εs

33 1.00 17.74 0.02 17.76
Piezoelectric mass density 1.00 17.75 0.02 17.77
Beam thickness 1.00 23.27 0.03 23.30
Beam width 1.00 23.65 0.03 23.68
Beam mass density 1.00 23.70 0.02 23.72
Beam length 1.00 23.75 0.01 23.75
Tip mass 1.38 12.10 0.02 12.12
Resonator length 2.86 16.74 0.12 16.87
Resonator mass density 1.01 17.81 0.02 17.83

resonator mass density.

• To enlarge the lower bandgap, the following modifications must be made:

– Increase the following parameters: resonator mass density, beam length, beam mass
density, piezoelectric εs

33, piezoelectric resistance, piezoelectric mass density, res-
onator Young’s modulus, resonator thickness, piezoelectric Young’s modulus, piezo-
electric thickness, resonator width and piezoelectric e31.

– Decrease the following parameters: beam Young’s modulus, beam thickness, beam
width, tip mass and resonator length.

From the results obtained, it can be seen that the greatest benefits are obtained by re-
ducing 50% some parameters associated with the matrix beams: density, length, width and
thickness. Varying these parameters generates a double benefit, since not only generate the
greatest increases in the bandgap, but they also keep the resonator frequency constant (fre-
quency ratio equal to 1). This allows you to control the bandgap location by designing the
cantilevers and then optimize the bandgap size by modifying the parameters of the matrix
beams without changing the bandgap location. The beam Young’s modulus can be added to
the mentioned parameters, although it does not generate a great increase in the bandgap, it
still allows the cantilever frequency to be keep constant.
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Table 5.2: Values of the parametric analysis for type I unit cell when increasing the original prop-
erties by 50%.

Parameter Frequency
ratio

Top band
gap [%]

Lower band
gap [%]

Total band
gap [%]

Resonator mass density 0.99 17.69 0.02 17.70
Resonator length 0.54 17.75 0.00 17.76
Tip mass 0.82 21.55 0.02 21.57
Beam length 1.00 13.75 0.02 13.78
Beam mass density 1.00 14.16 0.02 14.17
Beam width 1.00 14.21 0.01 14.22
Beam thickness 1.00 14.27 0.01 14.28
Piezoelectric mass density 1.00 17.73 0.02 17.75
Piezoelectric εs

33 1.00 17.74 0.02 17.76
Piezoelectric resistance 1.00 17.75 0.02 17.76
Piezoelectric e31 1.00 17.75 0.02 17.77
Beam Young’s modulus 1.00 17.78 0.01 17.79
Resonator thickness 1.71 17.46 0.05 17.51
Resonator width 1.21 17.63 0.02 17.66
Resonator Young’s modulus 1.16 17.70 0.02 17.72
Piezoelectric thickness 1.08 17.71 0.02 17.73
Piezoelectric Young’s modulus 1.08 17.73 0.02 17.75

The physical properties of the piezoelectric also have a frequency ratio equal to 1 (mass
density, resistance, εs

33 and e31), but care must be taken with these properties because the
frequencies of the cantilevers change in a very small amount which is not appreciable due
to the limited range of variation that is considered (±50%), but larger variations could gen-
erate appreciable frequency changes. These properties generate very small variations in the
bandgap size.

Vary the physical and geometric properties of the cantilevers produce large changes in
their frequency (especially varying the geometric ones), but not all of them generate large
variations in the bandgap. Among these properties, the one that generates the greatest ben-
efit is the tip mass, since it allows the relative bandgap to be increased as the resonator
frequency is reduced.

5.2. Case 2: Double Resonator
The original configuration corresponds to a type V unit cell, whose substructure and piezo-
electric layers properties are indicated in table 3.1 and 3.2, respectively (the 8 resonators
have the same properties initially). The parametric analysis carried out is different from
the one presented in section 6.1, since this time we want to change the properties of one of
the two resonators of each node, keeping the properties of the other resonator constant, to
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see the relationship that exists between the bandgaps generated by both resonators (each
node will have a resonator with the initial properties, and another resonator that changes its
properties according to the analysis performed).

The results of the parametric analysis are presented in figure 5.2 as graphs of the percent-
age difference between the frequency of the resonator that is varied and the one that remains
constant versus frequency presented as a percentage with respect to the frequency of the
resonator that maintains the original properties. Only the graphs associated with the pa-
rameters whose variation appreciably modifies the frequency of the resonator were included.
In each graph there is a black zone that corresponds to the total bandgap generated by the
resonators that maintain their original properties, and a red zone that corresponds to the
bandgap generated by the resonators that change in frequency.

From the results it is obtained that the bandgap associated with the lower frequency res-
onator is reduced due to the higher frequency resonator, which is clearly seen in the black
zone, which decreases sharply after crossing the red zone, and then it increases as the red
zone moves to higher frequencies and has less influence on the black zone. The red zone
exhibits a similar behavior, as it has a very small width when it is below the black zone,
and increases once it is above it. It should be taken into account that once the red zone is
at the top, its width can decrease or increase depending on the frequency of the resonator,
and this variation is consistent with what is obtained in the parametric analysis of section 6.1.

The largest size of the bandgap associated with the resonator that maintains the original
properties (black zone) is 23.68% and occurs when both zones intersect, which means that it
occurs when all the resonators have the original properties. The bandgap size of the type I
unit cell used in section 5.1 has a value of 17.76% (point of intersection of the curves in figure
5.1), which means that adding several resonators with the same properties in the same node
allows to increase the size of the bandgap.
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Figure 5.2: Parametric analysis for type V unit cells, in which the properties of one of the resonators
of each node remain unchanged, and those of the other are varied in a range of ±50% with respect
to the original ones. The horizontal axis indicates the frequency difference in percentage between
the resonator that varies its properties and the one that keeps them constant, on the other hand, the
vertical axis corresponds to the frequency measured as a percentage with respect to the frequency of
the original resonator. The red zone indicates the total bandgap of the resonator whose parameters
are varied, while the black zone indicates the bandgap of the resonator that maintains its original
properties.
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Chapter 6

Effects of the simultaneous variation
of parameters on the bandgap

In this section, the behavior of the bandgap is analyzed when combining the variations of var-
ious parameters of the model, for which 2 interesting cases that emerge from the parametric
analysis of section 5.1 are analyzed. The first case corresponds to varying the parameters of
the matrix to widen the upper and lower bandgap without modifying the original frequency
of the resonator. In the second case, the same objective is sought, but all the parameters
are varied regardless of whether the frequency of the resonators changes. In both cases, the
parameters are varied by the same percentage starting from 0% up to a 50% variation (it
can be an increase or a decrease depending on what the parametric analysis indicates). In
addition, the most favorable dispersion curves for each case are presented.

6.1. Case 1: Optimize bandgap while maintaining res-
onator frequency

According to the results of the parametric analysis of section 5.1, by modifying the param-
eters of the matrix beams, the size of the bandgap can be modified while maintaining the
frequency of the resonators.

To enlarge the upper and total bandgap, the density, length, width and thickness of the
matrix beams should decrease, and the beam Young’s modulus of the matrix beam should
increase. Figures 6.1a, 6.1b and 6.1c show the bandgap as a percentage of the resonator
frequency depending on the percentage of variation of the parameters of the matrix beams
(all vary by the same percentage in the indicated directions) for the upper, lower and to-
tal bandgap, respectively. Figure 6.1d shows the number of bands that remain below the
resonator band, and figure 6.1e shows the frequency of the resonator as the parameters are
varied.

The results obtained agree with what was expected, since the frequency of the resonator
does not vary and the upper and total bandgap have a significant increase as the parameters
are varied. This increase is greater than that obtained by varying the parameters individually
in section 5.1, and it reaches its maximum value when all the parameters are varied by 50%
with respect to the original ones.
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Figure 6.1: (a) Upper, (b) lower and (c) total bandgap for variations between 0% and 50% of
the parameters of the matrix beams in the direction in which they increase the upper and total
bandgap. No changes are generated in the (d) number of bands below the resonator nor in (e) the
frequency of the resonators.

On the other hand, to enlarge the lower bandgap, the Young’s modulus, width and thick-
ness of the matrix beams should decrease, and the density and length of the matrix beams
should increase. Figure 6.2 shows the results for this case, which also behave as expected,
since the frequency of the resonators remains constant and the lower bandgap increases con-
siderably. However, there is an abrupt change in the curves, since when the parameters are
varied by 45.3% the bandgap goes to 0, and then grows rapidly, which is accompanied by an
increase from 3 to 5 in the bands below the resonators. This phenomenon occurs because in
order to enlarge the lower bandgap, the matrix beams must be made more flexible, which
causes their associated bands to drop to lower frequencies, which may even be lower than
the frequency of the resonators.

This fact is relevant when performing an optimization, since the objective function that
describes the bandgap has abrupt changes when the number of bands under the resonator
changes, so one way to attack the problem can be to optimize given a number of bands below
the frequency of the resonator.

To see the phenomenon mentioned above, a sequence of 6 configurations is made, whose
dispersion curves are presented in figure 6.3, in which figure a) uses the original properties
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Figure 6.2: (a) Upper, (b) lower and (c) total bandgap for variations between 0% and 50% of the
parameters of the matrix beams in the direction in which they increase the lower bandgap. There
is a change from 3 to 5 in the (d) number of bands below the resonator, and (e) the frequency of
the resonators is unchanged.

(tables 3.1 and 3.2), and in the other 5 figures the mass density and length of the matrix
beams are progressively increased and the Young’s modulus of the matrix beams is progres-
sively reduced. All changes are made simultaneously in amounts of 50%, 60%, 70%, 80% and
90% in figures b), c), d), e) and f), respectively. Table 6.1 summarizes the parameters of the
6 configurations used.

From the analysis of the combined effects of the variation of parameters, it can be seen
that the case that generates a greater variation in the upper and total bandgap is found in
figure 6.1 with a 50% variation of the parameters, while the greater variation of the lower
bandgap is shown in figure 6.3 also considering 50% variation. Figure 6.4a shows the disper-
sion bands of the original configuration used in the parametric analysis, while figures 6.4b
and 6.4c show the best case dispersion curves for the upper and lower bandgap, respectively.
The results obtained are summarized in table 6.2.

41



Figure 6.3: Sequence of dispersion diagrams for a type I unit cell exemplifying how certain bands
pass below the band associated with resonators. It begins with (a) the properties indicated in tables
3.1 and 3.2, and then the mass density and length of the matrix beams are progressively increased
and the Young’s modulus of the matrix beams is progressively reduced, these changes are made in
amounts of (b) 50%, (c) 60%, (d) 70%, (e) 80% and (f) 90%.

Figure 6.4: Dispersion diagrams for (a) the original type I unit cell, the unit cell with the modifi-
cations in the matrix beams to enlarge (b) the upper bandgap, and (c) the lower bandgap.
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Table 6.1: Characterization of the bandgaps and the amount of bands below the band of the
resonators of the 6 cases presented in the figure 6.3.

Case Upper
bandgap [%]

Lower
bandgap [%]

Total
bandgap [%]

bands below
resonator

a 17.74 0.02 17.76 3
b 9.21 0.05 9.26 3
c 5.96 0.06 6.02 3
d 11.40 0.09 11.49 5
e 9.95 0.14 10.09 5
f 4.97 0.30 5.27 5

Table 6.2: Characterization of the bandgaps and the amount of bands below the band of the
resonators of the 3 cases presented in the figure 6.4.

Case Resonator
frequency [Hz]

Upper
bandgap [%]

Lower
bandgap [%]

Total
bandgap [%]

bands below
resonator

a 174.80 17.74 0.02 17.76 3
b 174.80 33.50 0.02 33.52 3
c 174.80 24.75 0.19 24.94 5

6.2. Case 2: Optimize bandgap regardless of resonator
frequency

To enlarge the upper, lower and total bandgap regardless of the resonator frequency, all pa-
rameters must be modified in the direction indicated in section 5.1. Figures 6.1 and 6.2 show
the results obtained for the upper and total bandgap optimization, and figures 6.3 and 6.4
shows the results for the lower bandgap.

The case that generates a greater variation in the upper and total bandgap is found in
figure 6.5 with a 50% variation of the parameters, while the greater variation of the lower
bandgap is shown in figure 6.6 also considering 50% variation. Figure 6.7a shows the disper-
sion bands of the original configuration used in the parametric analysis, while figures 6.7b and
6.7c show the best case dispersion diagrams for the upper and lower bandgap, respectively.
The results obtained are summarized in table 6.3.
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Figure 6.5: (a) Upper (b), lower and (c) total bandgap for variations between 0% and 50% of all
model parameters in the direction in which they increase the upper and total bandgap. The (d)
number of bands below the resonator remains constant and (e) the frequency of the resonators
decreases as the variation of the model parameters increases.

Figure 6.7: Dispersion diagrams for (a) the original type I unit cell, the unit cell with the modifi-
cations in all the parameters to enlarge (b) the upper bandgap, and (c) the lower bandgap.
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Figure 6.6: (a) Upper (b), lower and (c) total bandgap for variations between 0% and 50% of all
model parameters in the direction in which they increase the lower bandgap. The (d) number of
bands below the resonator and (e) the frequency of the resonators increase as the variation of the
model parameters increases.

Table 6.3: Characterization of the bandgaps and the amount of bands below the band of the
resonators of the 3 cases presented in the figure 6.3.

Case Resonator
frequency [Hz]

Upper
bandgap [%]

Lower
bandgap [%]

Total
bandgap [%]

bands below
resonator

a 174.80 17.74 0.02 17.76 3
b 14.04 38.53 0.00 38.53 3
c 1828.10 19.15 14.08 33.23 13
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Chapter 7

FRF for finite panels

In this section, voltage FRFs are simulated for panels panels made up of repetitions of 10x10
unit cells and that are simply supported at their corners. Figure 7.1 shows a scheme of a
10x10 panel obtained from a type I unit cell. Specifically, 3 panels are considered, two of
which are formed by type I unit cells (called panel 1 and panel 2), and another formed by
type V unit cells (called panel 3). In all cases, coefficients γ1 = 4.9 [rad/s] and γ2 = 1.2 ·10−5

[s/rad] are considered to add damping to the system.

Figure 7.1: Panel of 10x10 repetitions of a type I unit cell with simple support at the corners.
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7.1. Case 1: Panels formed by type I unit cells
In this section, 2 panels formed by 10x10 type I cells are analyzed:

• Panel 1: The unit cell used corresponds to the same one used as the starting configura-
tion for the parametric analysis of section 5.1, so the properties of the substructure and
PVDF layers are those of tables 3.1 and 3.2, respectively.

• Panel 2: The unit cell used is the one that results from optimizing the bandgap main-
taining the frequency of the resonators by modifying the parameters of the matrix, which
corresponds to case b of section 6.1 (figure 6.4b).

Figures 7.2a and 7.2b show the voltage FRF and the dispersion diagrams of the type I
unit cell associated with panel 1, and figures 7.3a and 7.3b show the results for panel 2. The
frequency range covered by the bandgap is indicated by a gray band in both the FRF and
the dispersion diagrams. The FRF contains as many curves as there are resonators in the
finite panel, since each curve corresponds to the voltage associated with a resonator.

Figure 7.2: (a) Voltage FRF for panel 1 and (b) dispersion diagram for its type I unit cell.

The results obtained indicate that in the frequency range in which the bandgap occurs,
the energy harvesting decreases abruptly, which is consistent with the expected vibration
suppression. On the other hand, when modifying the properties of the matrix, the increase
in the suppression zone behaves as expected in section 6.1, and is evidenced when comparing
figures 7.2a and 7.3a, where the suppression zone is greater in this last.
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Figure 7.3: (a) Voltage FRF for panel 2 and (b) dispersion diagram for its type I unit cell.

7.2. Case 2: Panel formed by type V unit cells
An interesting fact occurs when the unit cells present resonators with different natural fre-
quencies, since specific zones of energy harvesting surrounded by zones of vibration suppres-
sion can be generated. This means that you can control the areas where energy harvesting
and vibration isolation occurs. That is why in this section a 10x10 panel formed from a type
V unit cell with two types of resonators is considered. The properties of the matrix beams
and one of the resonators of each node are shown in tables 3.1 and 3.2, the other resonator of
each node have the same properties but with a tip mass of 0.7Mt, where Mt is the tip mass
of table 3.1.

The results obtained for the panel voltage FRF and the associated unit cell dispersion
curves are presented in figures 7.4a and 7.4b, respectively. The results show how there are
two bandgaps associated with the resonators, the one with the lower frequency being smaller
than the one with the higher frequency, which agrees with the results of section 5.2.
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Figure 7.4: (a) Voltage FRF for the 10x10 panel and (b) dispersion diagram for its type V unit
cell.
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Chapter 8

Conclusions

In this study, an electromechanically coupled finite element model is developed using Bernoulli
beams applied to periodic structures based on square unit cells with bimorph resonators.
Based on this model, multiple simulations are carried out that allow us to conclude on the
domain of wave vectors that must be considered to obtain information on the size and po-
sition of the bandgap associated with the fundamental frequency of the resonators. With
this result, a parametric analysis is performed to see how the model parameters affect the
bandgap.

To identify the size and location of the bandgaps associated with local resonances of can-
tilevers, it is possible to limit the domain of the wave vectors evaluated in the Floquet–Bloch
periodic conditions to the vectors N, Y, M, X̄ and Γ (see nomenclature in figure 3.5), which
can save enormous computational resources if you want to optimize this type of bandgaps. To
ensure that the optimization result is adequate, a verification can be carried out by obtaining
the dispersion diagram of the optimal configuration using the full BZ.

The bandgaps generated in this work have a large component associated with the upper
bandgap and small contributions from the lower bandgaps, this means that obtaining the
largest upper bandgap is equivalent to obtaining the largest total bandgap. This phenomenon
occurs because the original configuration uses the same materials for the substructure and
resonators, and the parameters are varied only within a 50% range around this configura-
tion. To reach larger bandgaps, stiffer resonators and more flexible matrix beams must be
considered, which generates an exponential growth of the lower bandgap, and allows its con-
tribution to become greater than that of the upper bandgaps.

The number of bands below the bandgap is not always the same, since it depends on how
flexible the matrix beams are with respect to the resonators. Configurations close to the
change in the number of bands under the resonator generate abrupt decreases in bandgap.
For this reason, if you want to optimize the bandgap, it would be appropriate to perform
optimizations leaving the number of bands under the resonator fixed. On the other hand,
this can become a relevant issue when materializing a panel, since variations in the nominal
properties can lead to abrupt changes in the result, so it is interesting to propagate uncer-
tainties to stay at a point that prevent a large decrease in bandgap.

As future work, a simultaneous optimization of the bandgap and energy harvesting could
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be carried out. As a previous step to this optimization, a parametric analysis of the FRF
of panels can be done, as was done with the bandgap in this work, to see the way in which
the parameters affect the FRF. In general, the results obtained indicate that the electrical
parameters do not have a great influence on the bandgap, but they should be much more
preponderant in the energy harvesting.

All the analysis was done considering the bandgap associated to the fundamental frequency
of the resonators, but bandgaps associated to higher frequencies are also generated, some of
which could be interesting to analyze. Furthermore, other extensions of this work could con-
sider parallel connection of piezoelectric layers, use Timoshenko beam-type elements, and/or
consider out-of-plane panel motion.
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