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A B S T R A C T   

Despite years of research, the mechanisms governing the onset, relapse, symptomatology, and treatment of 
schizophrenia (SZ) remain elusive. The lack of appropriate analytic tools to deal with the heterogeneity and 
complexity of SZ may be one of the reasons behind this situation. Deep learning, a subfield of artificial intelli
gence (AI) inspired by the nervous system, has recently provided an accessible way of modeling and analyzing 
complex, high-dimensional, nonlinear systems. The unprecedented accuracy of deep learning algorithms in 
classification and prediction tasks has revolutionized a wide range of scientific fields and is rapidly permeating 
SZ research. Deep learning has the potential of becoming a valuable aid for clinicians in the prediction, diagnosis, 
and treatment of SZ, especially in combination with principles from Bayesian statistics. Furthermore, deep 
learning could become a powerful tool for uncovering the mechanisms underlying SZ thanks to a growing 
number of techniques designed for improving model interpretability and causal reasoning. The purpose of this 
article is to introduce SZ researchers to the field of deep learning and review its latest applications in SZ research. 
In general, existing studies have yielded impressive results in classification and outcome prediction tasks. 
However, methodological concerns related to the assessment of model performance in several studies, the 
widespread use of small training datasets, and the little clinical value of some models suggest that some of these 
results should be taken with caution.   

1. Introduction 

Schizophrenia (SZ) is a heterogeneous and complex disorder, aptly 
coined the “group of schizophrenias” by Bleuler in 1911 (Bleuler, 1950). 
SZ is perhaps best understood as an umbrella term, comprising several 
distinct disorders with partially overlapping phenomenology and neural 
correlates (Alnæs et al., 2019; Brugger and Howes, 2017; Farmer et al., 
1983). Furthermore, SZ seems to result from the complex interactions of 
many endogenous and exogenous factors shaping neurodevelopment 
(Alnæs et al., 2019; Bowen et al., 2019; Brugger and Howes, 2017; Guest 
et al., 2013; Liang and Greenwood, 2015; Voineskos, 2015). Thus, it is 
becoming increasingly clear that it is unlikely, and overly simplistic, that 
single-cause mechanisms or simple (linear) relationships between small 
sets of biomarkers could explain or even classify the different forms of 
SZ. The lack of appropriate analytic tools to address this heterogeneity 
and complexity is likely one of the reasons why, after years of research 

using traditional statistical and machine learning (ML) approaches, the 
mechanisms governing the onset, relapse, phenomenology, cognitive 
deficits, and treatment of SZ remain elusive. However, during the past 
five years, a collection of powerful techniques, algorithms, and ideas 
coming from a subfield of ML called deep learning has infused the field of 
neuropsychiatry with an accessible way of modeling and analyzing 
complex, high-dimensional, nonlinear problems. 

Artificial intelligence (AI) is the science and engineering of making 
computers (machines) solve problems and behave in ways generally 
considered to be intelligent or, until recently, unique to human intelli
gence (McCarthy, 1983). ML is one of the many branches of AI and it 
refers to a family of methods for solving problems such as classification, 
prediction, and system modeling. Differently from standard computer 
programs, ML algorithms learn to solve problems by training over large 
numbers of examples through an iterative optimization process (e.g., 
error minimization). Deep learning is a type of ML that uses deep neural 
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networks (DNNs), algorithms inspired by the nervous system consisting 
of multiple interconnected layers of nonlinear processing units called 
artificial neurons. Similar to the nervous system, DNN learning consists 
of changes in the strength (weights) of the connections between neurons 
that occur during training (LeCun et al., 2015). 

One of the main differentiating factors of deep learning approaches is 
the type of input data that they work on. Traditional ML (e.g., support 
vector machines [SVMs], decision trees, and random forests) and sta
tistical (e.g., multivariate regressions) approaches operate over highly 
processed data, i.e., they utilize a limited number of features extracted 
from high-dimensional raw data under the theory-motivated assumption 
that they are relevant for a task (e.g., power ratios between electroen
cephalography [EEG] frequency bands). In contrast, DNNs can work 
directly on high-dimensional raw or minimally processed data and learn 
to extract the best features for a task automatically. This difference is 
believed to underlie part of the high performance showed by deep 
learning compared to traditional ML on problems involving complex 
high-dimensional data and nonlinear input/output relationships, 
including mapping high-dimensional unstructured data to categories (e. 
g., diagnosing SZ using simultaneous EEG/functional magnetic reso
nance imaging [fMRI] multimodal data) or predicting the future 
behavior of nonlinear dynamical systems (e.g., patient prognosis from 
electrophysiological data). 

While the theoretical background for DNNs has been around for 
decades (LeCun et al., 1998; Rumelhart et al., 1986), cheap access to 
high-powered processors (GPUs), development of large electronic 
datasets, and algorithmic improvements in the past 10 years led to the 
recent widespread adoption and development of DNN technology. This 
expansion has afforded results that seemed impossible just a few years 
ago. For example, DNNs are capable of translating brain activity directly 
into language (Anumanchipalli et al., 2019), beating humans in the 
ancient game of Go (Silver et al., 2016), and outperforming experts in 
the detection of melanoma in dermoscopic images (Brinker et al., 2019). 
The field of psychiatry has been slow to adopt DNNs, but it is catching up 
and delivering promising results, including the classification of SZ pa
tients from neuroimages (Kim et al., 2016) and speech patterns (Naderi 
et al., 2019), among others. 

While it is easy to see how DNNs may benefit diagnosis, subtyping, 
and treatment decisions in SZ, it is less clear how DNNs could improve 
our understanding of the mechanisms underlying the disorder. DNNs are 
commonly considered “black box” models, meaning that the series of 
nonlinear transformations and high-dimensional representations used 
by DNNs to solve problems are too complicated to be interpreted. Thus, 
differently from regression models in which the model's coefficients (β) 
can provide easy-to-interpret information on the relationship (direction, 
strength) between the inputs and outputs of a system (e.g., traumatic 
event/PTSD), DNN models would not provide any insight into the in
ternal mechanism of problems or systems. This hard notion of “black 
box” is being increasingly softened by a growing number of explainable 
AI techniques designed to reveal the inputs that were most relevant for 
generating the output, after the DNN has made a prediction. Further
more, researchers have started working on DNNs equipped with cause- 
and-effect models (hypotheses) of reality (problems), that eventually 
may lead to novel mechanistic explanations of SZ. 

The purpose of this article is to introduce the SZ researcher to the 
possibilities that DNNs offer to the field. We will review some of the 
latest developments in DNNs used for diagnosing and predicting clinical 
outcomes in SZ, and we will go over some of the techniques that could be 
used to better understand the neural mechanisms of the disorder. 
Finally, we will briefly review and discuss some of the current trends in 
AI including Bayesian and causal models, examine ethical issues asso
ciated with using deep learning for SZ research, and outline some future 
directions in the field of AI-powered SZ research. 

2. Deep learning 

2.1. General overview 

Deep learning refers to the use of deep (multi-layer) artificial neural 
networks (DNNs), a family of problem-solving or system-modeling al
gorithms inspired by the nervous system that, differently from tradi
tional software, learns how to solve problems through training (LeCun 
et al., 2015). DNNs have excelled in tasks that, until recently, were 
thought to be the exclusive domain of human expertise. For example, 
DNNs have surpassed human performance in complex tasks such as the 
ancient game of Go (Silver et al., 2016) and have demonstrated excellent 
performance in speech recognition (Baevski et al., 2020), language 
translation (Arivazhagan et al., 2019), text understanding and genera
tion (Brown et al., 2020a), and object detection and recognition in im
ages and videos (Liu et al., 2020), among others. 

The basic element of any artificial neural network (ANN) is the 
artificial neuron, a mathematical model inspired by the input integra
tion and nonlinear activation (output) of biological neurons (Fig. 1). In 
general, an artificial neuron consists of a weighted sum of numerical 
inputs followed by a nonlinear differentiable (smooth) activation func
tion that transforms the result of the sum into the neuron's numerical 
output (activation). The weights multiplying the inputs are the learnable 
parameters of ANNs, and they model the synaptic strength of the af
ferents of biological neurons. Furthermore, the numerical output or 
activation of artificial neurons represents the action potential of bio
logical neurons. Similar to action potentials that are generated only after 
the neuron's membrane potential crosses the threshold potential, the 
output of artificial neurons mimics an active state only after the 
weighted sum of the inputs crosses an activation threshold (usually 0). 

Several activation functions with different properties, advantages, 
and disadvantages have been proposed over the years. Early ANNs 
mostly used smooth approximations to on/off switches, such as the 
sigmoid function, which is bounded between 0 (inhibition) and 1 
(activation), and the hyperbolic tangent function, which is bounded 
between − 1 (inhibition) and 1 (activation). The main problem with 
these functions is that after reaching values close to the active state 
(~1), their growth rate (gradient) stunts (e.g., a sigmoid would output 
0.9933, 0.9954, 0.9999 for inputs 5, 10, and 15, respectively), which 
stalls ANN training based on gradient descent (see Section 2.2), espe
cially for large networks. The rectified linear unit (ReLU) function was 
proposed as an alternative (Glorot et al., 2011), which outputs 0 for 
negative inputs and replicates the input value (identity function) for 
positive inputs, allowing faster computation due to its simplicity, and 
better convergence during training due to its non-stunted growth rate 
for positive inputs. These benefits make ReLU the most popular choice in 
modern ANNs except in neurons where a bounded output is required for 
a specific operation (e.g., in gated memory manipulations) or for 
convergence (e.g., in recurrent loops and adversarial training). Despite 
the benefits of ReLU, neurons using this activation have the risk of 
becoming permanently inactive (0) during training, behaving effectively 
as “dead,” limiting the capacity of ANNs. Several alternatives to ReLU 
have been proposed (Nwankpa et al., 2018), including adaptive acti
vation functions with parameters that can be adjusted during training 
(Apicella et al., 2021), however, they have been used to a lesser extent. 

Artificial neurons are organized in a series of interconnected layers; 
the number of intermediate or hidden layers between the first and the 
last determines the depth of an ANN. While three or more hidden layers 
are expected for a DNN, state-of-the-art DNNs may have hundreds of 
layers organized in specialized modules. During training, the series of 
layers learn a processing hierarchy, in which the level of abstraction or 
complexity of the features extracted by the layers increases gradually 
from the first to the last layers, in a way that loosely resembles the 
functional hierarchy of the sensory cortices. Using the visual system as 
an example, the primary visual cortex processes basic-level features such 
as vertical edges while the fusiform gyrus, a high-level visual association 
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area, processes faces, a complex type of stimulus. 
The processing hierarchy of layers makes DNNs a powerful technique 

for integrating and extracting information from multimodal data 
(Fig. 2), i.e., data collected through multiple complementary modalities 
(e.g., behavioral measures, EEG, and fMRI data). While early layers 
extract basic-level, modality-specific, “perceptual-like” features, layers 

located further up the hierarchy extract high-level, abstract or “concept- 
like” features. Thus, in the case of multimodal data, while each modality 
(e.g., images, audio, and text) will require a dedicated set of early 
“perceptual-like” layers (a modality-specific module), high-level layers 
extracting abstract features can be shared between modalities (modal
ity-free module). Information from each modality would enrich the 
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Fig. 1. Basic elements of artificial neural networks. 
(A) Artificial neural networks are sets of inter
connected artificial neurons organized in layers. Each 
layer receives a multidimensional input and gener
ates a multimodal output with as many dimensions as 
neurons are in the layer. The multidimensional 
output is the input of the next layer. (B) An artificial 
neuron computes a linear combination of the inputs, 
where the bias and weights are its learnable param
eters; the resulting value is fed into a nonlinearity 
called activation function that generates the neuron's 
activation (output), loosely resembling the activation 
of biological neurons.   
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Fig. 2. Deep learning multimodal data fusion. 
Each data modality requires a dedicated set of layers 
to extract modality-specific features. The architecture 
of each unimodal branch is specially designed to suit 
the characteristics of the data type. In this case, con
volutional layers are better suited for fMRI images and 
recurrent layers are better suited for EEG time series. 
After the branches, a shared set of layers combines 
modality-specific features and predicts the class.   
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abstract concept-like representations of high-level layers, making the 
DNN more robust in cases of unimodal partial or distorted information. 
For example, while different sets of perceptual layers are necessary to 
process the visual and auditory information associated with the shape 
and sound of a flute, both streams of information can contribute to 
enriching the concept of a flute. 

Based on the direction of the information flow, DNNs can be broadly 
classified as feedforward or recurrent. In feedforward DNNs, the direc
tion of the information flow is from input to output without feedback 
loops (e.g., analogous to feedforward connections from V1 to V2 in the 
visual system). Feedforward multilayered DNNs are universal approx
imators, i.e., they can approximate any mapping (function) between 
inputs (e.g., images) and outputs (e.g., categories in a classification task) 
of a static system with arbitrary precision (Hornik et al., 1989). This type 
of DNN is most widely used in tasks that do not involve temporal 
changes (e.g., image recognition). In turn, recurrent DNNs include 
feedback loops in which layers send feedback information to themselves 
and/or to layers located earlier in the hierarchy (e.g., analogous to 
feedback connections from V2 to V1 in the visual system). Analogously 
to feedforward DNNs, recurrent DNNs are universal approximators of 
dynamical systems (Schäfer and Zimmermann, 2007). This type of DNN 
is generally used in tasks involving time-changing or ordinal data (e.g., 
weather forecasting or language translation). Empirical results have 
shown that the capacity of DNNs to approximate complex, multivariate, 
nonlinear systems by far surpasses the results that have been obtained 
with traditional shallow networks and ML approaches. 

One of the reasons for the enormous success of DNNs in solving 
complex tasks is that, unlike traditional statistical and ML approaches, 
DNNs are end-to-end approaches, i.e., they not only learn to solve a task 
(e.g., speech recognition) but also to automatically extract an optimal 
set of features from the raw data that will be used to solve the task. By 
learning to extract features directly from raw data, DNNs can overcome 
some of the limitations and biases affecting manually designed features, 
resulting in higher performance with less task-specific customization. 
For example, a DNN architecture that classifies animal species using raw 
images as input can be trained (without adjustments other than the 
output/classification layer) to solve a wide range of other tasks such as 
face recognition, cell type classification, or MRI-based disease diagnosis. 
The advantages of automatic extraction come at the cost of large training 
datasets because DNNs have to learn a large number of parameters in 
order to separate relevant from irrelevant information in the typically 
high-dimensional and noisy input space. 

However, notwithstanding the recent advances in automatic DNN 
design (Elsken et al., 2018; Zela et al., 2018), three crucial aspects 
continue to rely largely on human decision: 1) network architecture: 
specific arrangement of neurons and connections determining the flow 
of information (see Box 1); 2) learning rules (training algorithm): 
procedures for updating the network weights during training; and 3) 
objective functions: measures of performance or cost associated with 
an output (e.g., error, reward) that DNNs learn to minimize or maximize 
during training (Richards et al., 2019). These aspects are designed to 
address specific characteristics of the task at hand. For example, con
volutional layers are usually included in the design of DNNs for image 
recognition tasks because they are tailored to extract features that are 
invariant to translation, which is especially suitable for extracting visual 
elements that remain the same irrespective of their location in an image. 
Thus, a convolutional layer located high up in the layer hierarchy of a 
DNN trained for tumor detection would be able to locate a tumor in a CT 
scan irrespective of the tumor's location in the image. 

2.2. DNN training 

Error backpropagation (BP) (Rumelhart et al., 1986) is the most 
widely used algorithm for training DNNs (Fig. 3). In its simplest form, BP 
can be characterized as a two-step procedure: In the first or forward 
step, the network is fed an input (a training example), predicts an 

output, the output is compared to the correct output (e.g., a label), and a 
prediction error (a measure of the difference between the correct and 
predicted output) is calculated. In the second or backward step, the 
contribution of each weight in the network to the prediction error is 
estimated through the gradient (derivative of the prediction error with 
respect to each weight), and the prediction error is reduced by adjusting 
the values of the weights in a direction opposite to the gradient (a 
process known as “gradient descent”). Nowadays, DNNs are trained 
using a number of sophisticated variants of this method (e.g., Adam 
(Kingma and Ba, 2014)). 

The capacity of DNNs to learn arbitrarily complex mappings between 
inputs and outputs, and decision boundaries between categories, is a 
double edge sword. While it allows DNNs to reach unprecedented levels 
of accuracy solving complex tasks, it also makes them vulnerable to poor 
generalizability caused by overfitting the training dataset, i.e., memo
rizing the correct answers for a task on the training dataset instead of 
extracting general relationships or decision boundaries that could be 
used to solve the same task on data collected independently. To reduce 
the chances of overfitting, models are usually developed using three 
datasets commonly referred as training, validation, and test datasets. 
The training dataset is a set of examples used to minimize the model's 
prediction error for a given task by adjusting the model's parameters (e. 
g., weights of the connections between neurons) using BP or a related 
training algorithm (Ma et al., 2020). The validation dataset is an in
dependent dataset used to find the best performing model by tuning the 
model's hyperparameters, i.e., variables related to the architecture of the 
network (e.g., adding extra layers), training algorithm (e.g., learning 
rate in BP), and objective function (e.g., formula to calculate prediction 
error). Finally, the testing dataset consists of data that has not been 
used for training, adjusting, or validating the model in any way and is 
used to obtain an unbiased assessment of the model's performance; this 
assessment can provide information on the model's generalizability. 

3. Deep learning research in schizophrenia 

In this section, we review deep learning applications for diagnosis 
(classification) and outcome prediction in the study of psychosis. Our 
main goal is to explore the potential of DNN algorithms for delivering 
high-performance models, and thus we focus on articles that used these 
models rather than traditional ML techniques to solve SZ-related prob
lems. Nevertheless, we include some original applications of traditional 
ML techniques that could motivate future research. 

To make it easier for the reader to get a broad idea of the potential 
generalizability of the results reported in the text, we classified the 
model testing procedures of the studies into 2 broad categories (in- 
distribution and out-of-distribution testing) with 2 subcategories 
(independent and non-independent testing) each (Teney et al., 2020). 
These categories are based on the statistical relationship between the 
testing (performance assessment) and both the training (parameter 
adjustment) and validation (model selection) datasets. Furthermore, we 
provide information about the sample sizes and cross-validation (CV) 
schemes used in the studies, if applicable. A detailed list of all the studies 
on diagnosis and outcome prediction in SZ that were reviewed for this 
manuscript can be found in Tables 1 and 2, respectively. 

The categories for classifying testing procedures were defined in the 
following way: In-distribution testing (IDT) refers to the process of 
assessing a model's performance on a testing dataset obtained from 
sampling the same pool of data that was used for building the training 
and validation datasets; thus, the testing dataset will have the same 
distribution as the validation and training datasets. The easiest way to 
conduct IDT on an independent (I) dataset (IDT–I) is by selecting the 
cases for training, validation, and testing using a random, non- 
overlapping partition of all the available data. Unfortunately, it is 
common “bad practice” to conduct IDT on non-independent (NI) 
datasets (IDT-NI) by using testing data for both testing and model se
lection (validation) purposes. Performance reports obtained with IDT-I 
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are more likely to reflect the real performance of a model on new data 
(generalization) than reports obtained with IDT-NI. Out-of-distribu
tion testing (ODT) refers to the process of assessing model performance 
using testing datasets collected under different conditions (e.g., at 
another institution, with equipment from a different manufacturer, etc.) 
than the training and validation datasets. While measurements continue 
to be the same across the training, validation, and testing datasets (e.g., 
resting state EEG), changes in the data collection conditions can shift the 
distribution of the testing data in ways that have been shown to render 
state-of-the-art diagnostic DL models unusable, when deployed in real 

clinical settings and fed data collected in situ (Beede et al., 2020; Taori 
et al., 2020). Thus, depending on the characteristics of the data, ODT 
conducted on independent (ODT–I) datasets can provide one of the 
best assessments of a model's generalizability. Unfortunately, it is 
common among studies using ODT to select models (validation) using all 
the data available, including the testing dataset. This bad practice leads 
to conducting ODT on non-independent (ODT-NI) datasets and, 
therefore, reduces the chances of getting an accurate estimate of a 
model's generalizability. In the following sections, when a study did not 
provide enough information to determine the type of testing that was 

Box 1 
Most popular neural network architectures. 

Depending on the types of layers used, most neural networks can be broadly classified as multilayer perceptrons (MLPs), convolutional neural 
networks (CNNs), or recurrent neural networks (RNNs). MLPs are feedforward neural networks consisting of fully-connected layers of artificial 
neurons (perceptrons). The term fully-connected indicates that all neurons in a given layer are connected to all neurons in the immediately 
upper layer. On the other hand, the architecture of CNNs is inspired in the visual system of mammals, following the work of Hubel and Wiesel 
(1968). It has been tailored to include invariances to translation, scaling, and distortion. CNNs are composed of layers of convolutional filters 
that focus on receptive fields, similarly to biological neurons in the retina and visual cortices. The convolutional layers extract a hierarchy of 
features. To solve a prediction or classification task in an end-to-end manner, a few layers of a fully-connected ANN (an MLP) or recurrent ANN 
are typically added on top of the convolutional layers. Finally, RNNs have recurrent connections that allow ANNs to use past outputs in addition 
to current inputs. Modern RNNs, such as Long Short-Term Memory (LSTM) ANNs and Gated Recurrent Unit (GRU) ANNs, include memory cells 
that are protected from irrelevant perturbations through gates. Usually, these gates regulate the read and write access to a memory cell when a 
new input arrives and allow a memory cell to be reset when its content becomes obsolete. In this way, modern RNNs can learn long term 
dependencies more easily. 

Two or more ANNs of any of the three types mentioned previously can be combined into a single model with specialized subnetworks. Popular 
examples are generative adversarial networks (GANs) and autoencoders. GANs consist of two ANNs, the generator and the discriminator, that 
compete in a zero-sum game. The generator ANN generates data from noise, and the discriminator ANN takes as input both generated data and 
true data. In this game, the discriminator tries to differentiate between the training real data and the generated data, and the generator tries to 
fool the discriminator. After successful training, the generator of a GAN can produce synthetic data with a distribution that is very similar to the 
training dataset. On the other hand, autoencoders consist of two neural networks: an encoder and a decoder. The encoder maps the input to a 
latent representation of lower dimensionality than the input, and the decoder takes the latent representation and outputs an approximation of 
the original input. This is an example of unsupervised learning, where no class labels are required. After training, the encoder can be used to 
obtain a compact representation of a dataset, useful for dimensionality reduction. A more sophisticated encoder-decoder architecture is the 
variational autoencoder (VAE), where the encoder maps the inputs into a distribution rather than a single point, from which latent represen
tations can be sampled.  
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Fig. 3. Deep neural network for supervised learning. 
The figure shows a typical deep neural network for image-based diagnosis (classification) with several layers of artificial neurons organized in a processing hierarchy. 
First, convolutional layers composed of neurons that interact with small input regions (local receptive fields) automatically extract optimal features from raw data. 
Next, dense or fully-connected layers composed of neurons that interact with the entire input (global receptive fields) differentiate between the available class 
categories. In supervised learning, a training dataset of examples with their corresponding classes (labels) is required, and the connections (weights) of the neural 
network are adjusted by minimizing the discrepancy between the prediction and the label (prediction error) using error backpropagation. 

J.A. Cortes-Briones et al.                                                                                                                                                                                                                      



Schizophrenia Research 245 (2022) 122–140

127

Table 1 
Reviewed studies focused on SZ diagnosis.  

Reference Classification 
task 

Data origin Sample 
(subjects) 

Task protocol Input features ML algorithm Performance 

Functional MRI and genomics data 
Li et al. 

(2020) 
SZ vs HC. 1 site. 183 SNP genotyped from blood 

sample. fMRI during 
sensorimotor task (block- 
design motor response to 
auditory stimulation). 

Loci of quality-controlled 
SNP data, and ROIs of fMRI 
voxels given by the AAL 
template. 

Canonical Correlation 
Analysis on features 
learned by two fully- 
connected, sparse 
autoencoders (one for each 
domain), followed by SVM. 

95.7 ± 0.1% 
accuracy for 
SNP domain; 
80.5 ± 0.2% 
accuracy for 
fMRI domain.  

Functional MRI and structural MRI data 
Salvador 

et al. 
(2019) 

SZ vs HC. 1 site. 211 fMRI from both resting- 
state and during working 
memory task (n-back 
task). 

Five 2D brain maps: gray 
matter voxel-based 
morphometry from sMRI; 
regression coefficients for 
1back-vs-baseline and 
2back-vs-baseline from task- 
based fMRI; amplitude of 
low-frequency fluctuations 
and weighted global brain 
connectivity maps from 
resting-state fMRI. 

1D convolutional ANN 
applied to the 
concatenated brain maps. 

84% accuracy.  

Functional MRI data 
Kim et al. 

(2016) 
SZ vs HC. 1 site. 100 Resting state and eyes 

open. 
Functional connectivity 
matrices computed from 
correlation of group ICA 
time courses, as 1D vector. 

Fully-connected ANN 
initialized from fully- 
connected, sparse 
autoencoder with adaptive 
sparsity level. 

86.5 ± 1.2% 
accuracy. 

Patel et al. 
(2016) 

SZ vs HC. 1 site. 80 Resting state and eyes 
open staring at a fixation 
cross. 

ROIs of active gray matter 
voxels according to 
covariance analysis and AAL 
template. 

SVM on the concatenated 
features learned by several 
fully-connected, sparse 
autoencoders (one for each 
ROI). 

92% accuracy. 

Dakka et al. 
(2017) 

SZ vs HC. 1 site. 95 Auditory oddball task. Voxels of 4D fMRI. Recurrent ANN with LSTM 
layers. 

66.4% 
accuracy. 

Zeng et al. 
(2018) 

SZ vs HC. 7 sites. 734 1st to 6th site: resting state 
and eyes closed. 7th site: 
three working memory 
tasks. 

Three functional 
connectivity matrices (multi- 
atlas), as 1D vectors. 

SVM on features learned by 
a fully-connected, sparse 
autoencoder with inter- 
class correlation 
penalization. Three such 
models, one for each input 
type, and decision by 
majority vote. 

85 ± 1.2% 
accuracy when 
pooling sites; 
81.0 ± 4.9% 
leave-one-site- 
out accuracy. 

Wang et al. 
(2019) 

SZ vs HC. 1 site. 131 Resting state and eyes 
open staring at a fixation 
cross. 

Functional connectivity 
matrices based on AAL 
template. 

Capsule ANN. 82.4% 
accuracy. 

Niu et al. 
(2019) 

SZ vs HC. 1 site. 82 Resting state. fMRI frame with 
augmentation techniques: 
different ICA orders to 
extract Default Mode 
Network component, and 
different spatial smoothing 
parameters after ICA. 

2D convolutional ANN. 90.8% 
accuracy. 

Yang et al. 
(2019) 

SZ vs HC. 3 sites. 222 Resting state. Three input types: 
coefficients from learned 
dictionaries with different 
sparsity regularizations; 
distances to other samples 
using Gaussian kernels with 
different parameters; 
functional connectivity 
matrices based on AAL 
template. 

Three capsule ANNs (one 
for each input type), and 
decision by a weighted 
average of outputs. 

82.8 ± 7.6% 
accuracy when 
pooling sites. 

Lei et al. 
(2019) 

SZ vs HC. 5 sites. 747 Resting state. Functional connectivity 
matrices based on AAL 
template, as 1D vector. 

Fully-connected ANN. 81 ± 2% 
accuracy when 
sites are 
isolated; 
62.5–68.1% 
leave-one-site- 
out accuracy. 

Matsubara 
et al. 
(2019) 

SZ vs HC; 
BD vs HC. 

1 site. 165 for SZ; 
63 for BD. 

Resting state. Single fMRI frame, using 
average voxel value of ROIs 
given by the AAL template. 

Fully-connected 
conditional variational 
autoencoder. 

SZ: 71.3% 
balanced 
accuracy. 
BD: 64% 

(continued on next page) 
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Table 1 (continued ) 

Reference Classification 
task 

Data origin Sample 
(subjects) 

Task protocol Input features ML algorithm Performance 

balanced 
accuracy. 

Oh et al. 
(2019) 

SSD vs HC. 1 site. 144 Audiovisual stimuli task 
(evoked negative and 
neutral emotion). 

3D activation map 
constructed based on the 4D 
fMRI data. 

3D convolutional ANN 
initialized from pretrained 
convolutional 
autoencoder. 

84.2% 
accuracy. 

Qureshi 
et al. 
(2019) 

SZ vs HC. 1 site. 144 Resting state and eyes 
open staring at a fixation 
cross. 

3D volumetric images from 
group ICA decomposition. 

3D convolutional ANN. 98 ± 1% 
accuracy. 

Yan et al. 
(2019) 

SZ vs HC. 7 sites. 1100 Resting state. Time courses of ICs. Convolutional and 
recurrent ANN: 1D 
convolutional layers 
followed by GRU layers. 

83.2 ± 3.2% 
accuracy when 
pooling sites; 
80.2 ± 3.0% 
leave-one-site- 
out accuracy. 

Zhao et al. 
(2020) 

SZ vs HC; 
MDD vs HC. 

7 sites for SZ; 
4 sites for 
MDD. 

1100 for SZ; 
555 for 
MDD. 

Resting state and eyes 
closed. 

Functional connectivity 
matrices computed by 
correlation of ICs, as 1D 
vector. 

Fully-connected 
generative adversarial 
network (GAN). 

SZ vs HC: 82.1 
± 0.7% 
accuracy when 
pooling sites; 
80.7 ± 3.8% 
leave-one-site- 
out accuracy. 
MDD vs HC: 
70.1 ± 0.6% 
accuracy when 
pooling sites; 
64.3 ± 2.9% 
leave-one-site- 
out accuracy.  

Structural MRI data 
Pinaya et al. 

(2016) 
SZ vs HC; 
tested on FEP. 

1 site. 226; 
And 32 FEP. 

– Cortical thickness of brain 
regions and volumes of 
anatomical structures from 
Desikan-Killiany atlas. 

Fully-connected ANN 
initialized from a deep 
belief network. 

73.6 ± 6.8% 
balanced 
accuracy. 
Only 56.3 ±
6.8% held-out 
FEP subjects 
predicted as SZ. 

Pinaya et al. 
(2019) 

SZ vs HC; 
ASD vs HC. 

1 site for 
classification; 
1 site for HC 
pretraining. 

75 for SZ; 
188 for ASD; 
1113 for HC 
pretraining. 

– Cortical thickness of brain 
regions from Desikan- 
Killiany atlas, and volume of 
neuroanatomical structures 
from whole-brain 
segmentation. 

Fully-connected 
autoencoder that also 
encodes age and sex, 
pretrained on HC data. 
Prediction based on 
reconstruction error. 

SZ: 0.707 AUC. 
ASD: 0.639 
AUC. 

Vieira et al. 
(2020) 

FEP vs HC. 5 sites. 956 – Volume and thickness of 
predefined cortical and 
subcortical regions extracted 
with FreeSurfer. 

PCA followed by fully- 
connected ANN. 

63 ± 6% 
balanced 
accuracy when 
sites are 
isolated. 
Poor cross-site 
performance. 

Oh et al. 
(2020) 

SZ vs HC. 6 sites. 926 – Voxels from 3D images. 3D convolutional ANN. 88.6% accuracy 
when pooling 
sites; 
70% accuracy 
when 
evaluating on 
held-out site.  

Genomics data 
Chen et al. 

(2018) 
SZ vs HC. 3 sites. 13,585 Genomic data (SNPs) from 

three SZ case-control 
studies. Genetic markers 
associated with SZ and 28 
comorbidities were 
identified from the 
literature. 

Independent polygenic risk 
scores for SZ and each 
comorbidity. 

Fully-connected ANN. 72.1% 
accuracy. 

Wang et al. 
(2018) 

SZ vs HC. 1 site. 710 Genomic (SNPs) and 
transcriptomic (gene 
expression, enhancer 
H3K27ac activation levels, 
cell fraction estimates, and 
co-expression module 
mean expression) data 
from Prefrontal Cortex. 

Binarized genomic and 
transcriptomic data by 
thresholding at the median 
value. 

Fully-connected, 
conditional deep belief 
network with sparse 
connectivity restrictions 
based on genomic analysis. 

73.6% 
accuracy.  

(continued on next page) 
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Table 1 (continued ) 

Reference Classification 
task 

Data origin Sample 
(subjects) 

Task protocol Input features ML algorithm Performance 

EEG data 
Calhas et al. 

(2020) 
SZ vs HC. 1 site. 84 Resting state and eyes 

closed. 
Time-frequency images 
using STFT. 

2D convolutional siamese 
ANN followed by XGBoost. 

95 ± 5% 
accuracy. 

Phang et al. 
(2020) 

SZ vs HC. 1 site. 84 Resting state and eyes 
closed. 

Three input types: time- 
domain VAR model 
coefficients matrix (2D); 
frequency-domain PDC 
matrix (2D); hand-crafted 
complex network measures 
(1D). 

Three convolutional ANNs 
(one for each input type), 
and decision by a weighted 
average of outputs. 

91.7% 
accuracy.  

Interview audio data 
Naderi et al. 

(2019) 
SZ vs MDD vs 
BD vs HC. 

1 site. 363 Audio recording when 
talking about their 
children without 
interruption. 

Audio and text transcription, 
divided in multiple segments 
based on changes in speech. 

Several recurrent and 
convolutional ANNs to 
extract generic language 
features and emotion- 
specific features from 
audio and text 
independently. The 
features are concatenated 
and processed by a 
recurrent ANN. 

74.4% average 
accuracy.  

Table 2 
Reviewed studies focused on SZ prediction.  

Reference Task Sample Task protocol Input features ML algorithm Performance 

Electronic health records (EHR) data 
Miotto et al. 

(2016) 
One-year new disease 
diagnostic prediction 
over 78 diseases, 
including SZ. 

794,587 subjects 
for ANN training; 
281,214 subjects 
for ML classifier. 

EHR from Mount Sinai data 
warehouse. 

Frequency of structured 
fields, and multinomials 
over 300 automatically 
extracted topics in clinical 
narratives. 

Random forest classifier on 
features learned by a fully- 
connected autoencoder. 

92.9% average 
accuracy. 

Holderness 
et al. (2019) 

Detection of 
readmission risk factor 
domains in clinical 
notes of FEP patients. 

2,100,000 
sentences for 
training (RPDR); 
4847 sentences 
for testing 
(McLean). 

EHR from Research Patient Data 
Registry (RPDR) and McLean 
Meditech. 

Words of a sentence. Fully-connected ANN on 
the average USE word 
embedding of the 
sentence. 

82.8% macro- 
average F1- 
score. 

Senior et al. 
(2020) 

Detection of OxMIS's 
suicidal risk factors in 
clinical notes of SZ 
and BD patients. 

308 documents 
containing 
10,151 
annotated text 
spans. 

EHR from Oxford Health NHS 
Foundation Trust. 

Words of a sentence. Convolutional ANN on the 
GloVe word embeddings of 
the sentence. 

83% micro- 
average F1- 
score.  

Interview transcription data 
Rezaii et al. 

(2019) 
Prediction of 
conversion to 
psychosis in 
prodromal subjects. 

40 subjects; 
30,000 Reddit 
users for feature 
extraction. 

Transcription of audio recorded 
during Structured Interview for 
Prodromal Syndromes (SIPS). 
Subjects were followed up for 2 
years or to conversion to SZ. 

Words of a sentence. Logistic regression on two 
features extracted from the 
word2vec word 
embeddings of the 
sentence. 

90% accuracy.  

Mental health journal data 
Shickel et al. 

(2017) 
Sentiment 
classification of 
responses sent to an 
online therapy service. 

1.6 million 
tweets for 
training; 
3872 patients' 
responses for 
testing. 

Patients' responses consist of 
daily thoughts and feelings. 

Words of a document. Recurrent ANN with GRU 
layers and attention 
mechanism, on GloVe 
word embeddings of the 
document. 

78% accuracy.  

EEG data 
Ahmedt 

Aristizabal 
et al. (2020) 

Detection of children 
at risk of conversion to 
SZ (RSZ). 

105 subjects. Auditory oddball task. RSZ 
children underwent three 
assessments: an initial one (A1), 
a 2-year follow-up one (A2), and 
a 4-year follow-up one (A3). 

Raw EEG signals. Convolutional and 
recurrent ANN: 2D 
convolutional layers 
followed by LSTM layers. 

When trained 
in A1: 
72.5% 
accuracy in A1, 
69.8% 
accuracy in A2, 
67.0% 
accuracy in A3. 

Fernando 
et al. (2020) 

Detection of children 
at risk of conversion to 
SZ (RSZ). 

104 subjects. Auditory oddball task. Raw EEG signals. Recurrent ANN: LSTM 
layers followed by a 
Neural Memory Network 
with plasticity mechanism. 

93.9 ± 0.2% 
accuracy.  
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used, we state the possible alternatives (e.g., “IDT-NI or I”). 

3.1. Patient diagnosis – pattern recognition and classification 

In general, most deep learning studies in SZ have been focused on 
solving the binary classification task (pattern recognition) of differen
tiating between SZ patients and healthy controls (Fig. 4). These studies 
utilized, in decreasing order of popularity, fMRI, MRI, genomics, and 
EEG data (Table 1). While one of the strengths of DNNs is their ability to 
automatically extract useful features directly from raw data, with the 
exception of an early study using convolutional and recurrent DNNs on 
fMRI data with poor results (66.4% accuracy, IDT-NI, n = 95, 10-fold 
CV) (Dakka et al., 2017), most studies using DNNs for SZ diagnosis 
have used manually-designed features. For instance, fully-connected 
ANNs, a basic type of ANN with limited feature extraction capabilities, 
have been used, with varying levels of success, to differentiate between 
SZ and healthy controls using features such as MRI-extracted cortical 
thickness and structural volume (three studies: 73.6% accuracy, IDT-NI, 
n = 226, 3-fold CV; 0.71 AUC2 ODT–I, n = 75; 63% accuracy, IDT–I, n 
= 191, nested 10-fold CV) (Pinaya et al., 2016; Pinaya et al., 2019; 
Vieira et al., 2020), fMRI-extracted functional connectivity (six studies: 
81 to 86.5% accuracy, IDT-NI, n = 100 to 1100, 5-fold or 10-fold CV) 
(Kim et al., 2016; Lei et al., 2019; Wang et al., 2019; Yang et al., 2019; 
Zeng et al., 2018; Zhao et al., 2020), and fMRI-extracted, atlas-based 
mean ROI activations (two studies: 71.3 to 92% accuracy, IDT-NI, n = 60 
to 165, 10-fold CV) (Matsubara et al., 2019; Patel et al., 2016). 

During the last couple of years, SZ research, like many other areas of 
research, has seen a rapidly increasing number of studies using deep 
learning methods on minimally-processed data. These studies have 
replicated the gains in prediction and classification accuracy resulting 
from using DNNs on minimally-processed data, that have been observed 
in other areas of research (e.g., computer vision). By replacing hand- 
engineered (e.g., theory-oriented) features with data-driven ones, deep 
learning may provide a way to uncover crucial patterns in the data that 
have been hiding in plain sight due to pre-existing assumptions and 
expectations about the disorder. 

DNNs have been used for SZ diagnosis (classification) on neuro
imaging data with very good results (accuracy ~90%). For example, 2D 
convolutional DNNs have been used on fMRI single-frame data (90.8% 
accuracy, IDT-NI, n = 82, 5-fold CV) (Niu et al., 2019) and EEG time- 
frequency (95% accuracy, IDT-NI, n = 84, leave-one-out CV) (Calhas 
et al., 2020) and connectivity (91.7% accuracy, IDT-NI, n = 84, 5-fold 
CV) (Phang et al., 2020) data. Accurate results have also been ob
tained using 3D convolutional DNNs on MRI voxel data (88.6% accu
racy, IDT–I, n = 866, 10-fold CV) (Oh et al., 2020) and fMRI 3D map 
(84.2% accuracy, IDT-NI, n = 144, 10-fold CV) (Oh et al., 2019) and 
volumetric (98% accuracy, IDT-NI, n = 144, 10-fold CV) (Qureshi et al., 
2019) data. Finally, recurrent DNNs have obtained high accuracy har
nessing the brain dynamics captured in fMRI time series data (83.2% 
accuracy, IDT-NI, n = 1100, 5-fold CV) (Yan et al., 2019). 

Just a handful of studies have used deep learning on data modalities 
other than neuroimaging. Studies using genetic data, such as polygenic 
risk score for SZ and comorbidities (Chen et al., 2018) and prefrontal 
genomics and transcriptomics (Wang et al., 2018), have shown that deep 
learning matched (72.1% accuracy, ODT–I, n = 1492) (Chen et al., 
2018) or surpassed (73.6% accuracy, IDT-NI, n = 710, 10-fold CV) 
(Wang et al., 2018) linear models' performance. In a recent and highly 
novel study, Naderi et al. (2019) reached relatively high accuracy 
(74.4%, IDT-NI or I, n = 363, 5-fold CV) using convolutional and 

recurrent DNNs in combination with a random forest algorithm to di
agnose mental disorders (SZ, major depressive disorder, and bipolar 
disorder) from audio recordings of speech. Importantly, this study took 
advantage of large pretrained models for audio and text processing that 
are openly available online. The easy and open access to pretrained 
models has an enormous potential for developing novel diagnostic tools, 
such as language-based systems based on large, state-of-the-art natural 
language processing (NLP) models (Brown et al., 2020b; Devlin et al., 
2018). 

As mentioned, deep learning is an extremely powerful tool for 
extracting, integrating, and using information from multimodal data (e. 
g., simultaneous EEG/fMRI); however, few studies have harnessed this 
capability in SZ research. For example, Salvador et al. (2019) used a 
small 1D convolutional ANN on brain MRI/fMRI maps, achieving ac
curacies comparable to traditional ML methods (84% accuracy, IDT-NI, 
n = 211, 10-fold CV). Also, Li et al. (2020) used a multi-step approach in 
which fMRI and genomic data were fed to fully-connected ANNs fol
lowed by canonical correlation analyses (CCA). Each data modality was 
decomposed into components (projections) containing high-level fea
tures that were common to both modalities. Each modality's components 
were used independently to classify subjects, achieving competent fMRI- 
based accuracy (80.5%, IDT-NI, n = 55) and high genomic-based ac
curacy (95.7%, IDT-NI, n = 55). 

3.2. Prediction of psychosis and early diagnosis 

SZ is a disabling, chronic mental disorder that usually starts in 
adolescence, following a prodromal phase with attenuated SZ-like 
symptomatology (Fusar-Poli et al., 2012). It is estimated that ~30% of 
patients in a prodromal phase convert to psychosis within a 3-year 
follow-up period (Fusar-Poli et al., 2012). The course of schizophrenia 
is punctuated by relapses (Robinson et al., 1999), with 80–90% of pa
tients experiencing one or more clinical decompensations within 5 years 
of the first episode (Robinson et al., 1999; Zipursky et al., 2014). 
Developing deep learning systems for monitoring the risks of conversion 
and relapse could allow the implementation of timely interventions to 
halt the onset and relapse of psychosis, or to minimize their conse
quences (Barnes et al., 2008; Marshall et al., 2005). 

A nontrivial problem of any forecasting system is the selection of a 
set of predictors suitable for anticipating an event within a certain 
timeframe (e.g., lifespan, six months, a few weeks, etc.). Most studies 
have used language to predict psychosis outcomes, under the assump
tion that the way in which someone's speech diverges from normal 
speech is an early sign of impending psychosis (first episode or decom
pensation). For example, Rezaii et al. (2019) used transcriptions of the 
Structured Interview for Prodromal Syndromes (SIPS) conducted on a 
small sample of young adults at clinical high risk of psychosis partici
pating in the North American Prodrome Longitudinal Study (NAPLS). 
Using a logistic regression model, they found that low semantic density 
(poverty of content) and talk about voices and sounds predicted the 
onset of psychosis within a 2-year period with high accuracy (90%, 
IDT–I, n = 10). These predictors were extracted from word embeddings 
learned automatically by an ANN trained on a large corpus of text 
(Word2Vec) (Mikolov et al., 2013a,b). Word embeddings map the words 
of a language into a vector space of reduced dimensionality that pre
serves word associations (i.e., words that occur in similar contexts are 
represented by similar vectors). The advantage of using word embed
dings is that they allow for the use of a rich trove of mathematical 
vectorial operations in the context of language analysis. 

Other studies have used electronic health records (EHRs) with very 
good results. The advantage of using EHRs is that there are enormous 
databases available online. Miotto et al. (2016) trained fully-connected 
ANNs on over one million patients to encode each patient's entire EHR 
into a vector that they called Deep Patient. Using a random forest clas
sifier on Deep Patient vectors, the authors were able to predict the 
diagnosis of 78 diseases, including SZ, within a 1-year time range with 

2 AUC stands for area under the Receiver Operating Characteristic (ROC) 
curve. It summarizes the overall performance of a binary classifier on a scale 
from 0.5 to 1, where 1 would correspond to a perfect classifier. The ROC curve 
is generated by plotting the sensitivity versus the false positive rate (1 minus 
specificity) of a classifier for every possible discrimination threshold. 
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an overall accuracy of 92.9% (IDT–I, n = 76,214). 
Few studies have used EEG data for prediction tasks (for details, see 

Table 2). Two studies used auditory mismatch negativity (MMN) EEG 
data collected longitudinally on children at risk of SZ and controls 
(Ahmedt Aristizabal et al., 2020; Fernando et al., 2020). MMN is an 
event-related potential response to oddball stimuli associated with 
cognitive dysfunction in SZ (Lee et al., 2017). One of the studies used a 
recurrent convolutional ANN to train and test on data from three time 
points: baseline, 2-year follow-up, and 4-year follow-up (Ahmedt Aris
tizabal et al., 2020). After training the model on baseline data alone, it 
achieved accuracies of 72.5% (IDT-NI, n = 105, 5-fold CV), 69.8% (ODT- 
NI, n = 110), and 67.0% (ODT-NI, n = 99) on testing data from the 
baseline, 2-year, and 4-year timepoints, respectively. In the other study, 
a type of recurrent ANN known as neural memory network was com
bined with a plasticity mechanism that strengthens or weakens the 
model's neuronal connections based on experience beyond training 

(Fernando et al., 2020). When trained and evaluated on data from the 
baseline period, the model achieved 93.9% accuracy (IDT-NI, n = 104, 
5-fold CV). 

Instead of directly predicting risk of diagnosis, some studies have 
built systems to extract useful predictors from data to be used by clini
cians or in combination with other tools to assess the risk of disease 
outcomes such as readmission, suicide, etc. For example, one study 
focused on the problem of readmission after discharge. They trained a 
fully-connected ANN to map sentences in EHRs from first-episode pa
tients to 7 readmission risk factor domains (Holderness et al., 2019). 
After training, they obtained good results, achieving 82.8% F1-score3 

(IDT–I, n = 4847 sentences), compared to the risk factors identified by 

Fig. 4. Review of binary diagnosis of schizophrenic (SZ) patients against healthy controls (HC). 
(a) Number of reviewed articles by ANN architecture. (b) Reported accuracy of the binary diagnosis task by ANN architecture. (c) Number of reviewed articles by 
data modality. (d) Reported accuracy of the binary diagnosis task by data modality. (e) Number of reviewed articles by ANN architecture and publication year. (f) 
Comparison of the accuracy reported by studies using datasets from multiple data collection sites, when models were evaluated on data from collection sites used 
during training (pooled sites evaluation) or on data from held-out sites that were not used during training (leave-one-site-out evaluation). In panels (b) and (d), the 
size of the circles represents the sample sizes (number of subjects) of the studies, and the orange circles highlight the five studies showed on panel (f). 

3 F1-score is a statistical measure of classification performance that balances 
false positives and false negatives. 
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clinicians. A study developing tools for assessing suicide risk within a 1- 
year timeframe fine-tuned a pretrained convolutional ANN to extract 17 
relevant variables from EHRs of SZ-spectrum and bipolar disorder pa
tients. After training, the model achieved an 83% F1-score (IDT–I, n =
1055 text spans) compared to variables extracted manually (Kormilitzin 
et al., 2020; Senior et al., 2020). Finally, a study classified sentiments 
from online mental health journals for risk assessment and well-being 
monitoring (Shickel et al., 2017). They fine-tuned a recurrent ANN 
pretrained on tweets, achieving 78% accuracy (IDT–I, n = 3872 re
sponses, 5-fold CV). 

4. Insights into the mechanisms of schizophrenia through the 
lens of deep learning 

The so called “group of schizophrenias” is a highly complex disorder 
at multiple levels. First, evidence suggests that there is not one unique 
causal path to SZ but many, each one comprising several risk factors 
interacting with each other. Second, SZ symptoms are heterogeneous 
among patients and involve almost every aspect of the human mind, 
including language (e.g., verbal hallucinations and poverty of speech), 
emotions (e.g., blunted affect), volition (e.g., avolition), cognition (e.g., 
working memory deficits), and motion (e.g., motor disinhibition), 
among others. Finally, SZ is a psychiatric disorder that concerns the 
brain, which is a high-dimensional nonlinear system at multiple levels 
(e.g., single neurons, local circuits, nuclei such as the striatum, large 
scale functional networks, etc.). Traditional statistical and ML methods 
have failed to model and harness the information contained in this 
complexity. While existing deep learning approaches are still insuffi
cient to completely model systems like this, they offer a novel way to 
predict and better understand SZ. 

4.1. The black box notion of deep neural networks 

As described earlier, it is commonly stated that one of the problems 
of DNNs is that, despite making remarkably accurate predictions, they 
are black boxes, i.e., the internal mechanisms underlying DNNs' out
comes are either unknown or too complicated to be interpreted in any 
meaningful way (Lipton, 2018). DNNs usually take thousands of input 
variables (e.g., a small grayscale image of 128 × 128 pixels has 16,384 
pixels or input variables), which are combined and transformed non
linearly multiple times using thousands (tens of billions in large, state- 
of-the-art DNNs) (Brown et al., 2020a) of trainable parameters 
(weights) to generate the outputs. Thus, it is not possible to obtain the 
kind of transparency in DNNs that linear models have, in which outputs 
are an interpretable linear combination of inputs. Another factor 
contributing to the lack of (algorithmic) transparency of DNNs is that, 
similarly to the nervous system, DNNs process information using 
distributed representations, i.e., each “concept” is represented by many 
neurons, and each neuron participates in the representation of many 
concepts (Roy, 2012). Thus, while it is possible to identify what kind of 
concept is being represented by some groups of neurons (e.g., neurons 
that respond exclusively to vertical edges), this is not always the case, 
especially for neurons or layers higher up in the processing hierarchy of 
a DNN. 

4.2. Extracting insights from deep learning predictions 

In fields like healthcare, in which decisions involve the well-being of 
human beings, clinicians and scientists may be reluctant to entrust de
cisions to algorithms without having a clear understanding of the 
criteria or variables involved in making those decisions (Lipton, 2018). 
There is no easy way to make a DNN transparent without simplifying it 
in a way that may compromise its performance (e.g., by using less input 
variables and neurons). However, there are many retrospective (post 
hoc) methods aimed at explaining a DNN's output after the output has 
been generated (for a review, see (Arrieta et al., 2020)). 

After processing an input (e.g., an MRI scan from a patient), post hoc 
methods allow researchers to determine what variables in the input (e. 
g., what voxels in an MRI scan) influenced the DNN's output (e.g., pa
tient classified as SZ) the most. While these methods do not provide a 
rationale, justification, or mechanistic explanation for a DNN's output, 
by uncovering the most relevant input variables, these methods are 
equipping clinicians and scientists with the basic building blocks to 
advance novel explanatory models and testable hypotheses. For 
instance, imagine a DNN trained to compare pairs of images of fruits and 
determine whether both fruits are of the same type (Fig. 5). If the DNN 
determines that a yellow pomelo and a banana are of different types, a 
post hoc method would probably reveal that pixels located at the fruits' 
contours were highly relevant for the output. Thus, we could build an 
explanatory model saying that the shape, and not the color, is the most 
relevant trait differentiating images of yellow pomelos and bananas. 
Instead, if the DNN determines that a yellow pomelo and an orange are 
of different types, a post hoc method would probably reveal that the 
most relevant pixels were spread over the interior regions of the fruits. 
Thus, we could hypothesize that the color, and not the shape, is the most 
important characteristic differentiating images of these types of fruits. 
Similarly, DNNs trained in SZ classification tasks can be used as 
powerful “microscopes” to examine the mechanisms of SZ. For example, 
a DNN trained to classify two psychiatric conditions using multimodal 
brain activity data (e.g., simultaneous EEG/fMRI) can be interrogated to 
reveal how relevant each variable (biomarker) is for classifying 
(differentiating) the conditions. In this case, while the magnitude of an 
input's relevance in a DNN can be interpreted analogously to the 
magnitude of a regression coefficient (β) in a linear regression, the 
relationship between inputs and output represented by the magnitude is 
completely different in both cases: nonlinear with complex high- 
dimensional interactions in a DNN and linear with simple low- 
dimensional interactions in a regression. 

Post hoc explanations of DNN predictions can be obtained either by 
methods that are directly applicable to any trained DNN without 
involving architectural modifications (Fig. 6a, b, and c), or by methods 
that incorporate special architectural designs into DNNs before training 
(Fig. 6d). Popular methods in the former include feature relevance, 
which estimates the effect that changing each input variable has on a 
DNN's output, and activity visualization, which visualizes features at the 
different levels of a network (Olah et al., 2017). The inclusion of 
attention modules into a DNN design is a widely used method in the 
latter that allows users to identify the elements in the input that “caught” 
a DNN's attention the most when it generated a particular output (e.g., a 
specific diagnosis) (Arrieta et al., 2020; Bahdanau et al., 2014; K. Xu 
et al., 2015). Another approach in the second group that is becoming 
increasingly popular is the implementation of generative models (e.g., 
deep belief networks), a special kind of DNN that, besides learning the 
distinctive features of each class (e.g., distinctive activation patterns in 
the fMRIs of SZ patients), learns to generate synthetic examples of the 
classes (J. Xu et al., 2015). The comparison between synthetic examples 
of different classes can be used to reveal class-specific features. 

Several studies differentiating between SZ and healthy controls have 
tried to identify the inputs (usually brain regions) that were most rele
vant for making a diagnosis using post hoc explanatory approaches. 
While post hoc explanations are slowly starting to provide novel insights 
into the mechanisms of SZ, some of the most used post hoc explanations 
in SZ research have significant limitations that may have undermined 
the quality of the information obtained with them. Many of these limi
tations could be overcome using alternative post hoc approaches 
developed in other areas of research, such as image recognition and 
natural language processing. 

A group of studies used an approach that turned diagnostic DNN 
classifiers into simple linear transformations by focusing on the weights 
multiplying each layer's inputs and ignoring the nonlinear activation 
functions (e.g., sigmoid) between layers (see Section 2.1) (Kim et al., 
2016; Lei et al., 2019; Zeng et al., 2018). Similar to linear and logistic 
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regressions' coefficients (βs), in linearized DNNs the magnitude of the 
weight multiplying each input (all inputs are in the same scale) is 
interpreted as the relative relevance of the input (with respect of other 
inputs) for the network's final output (e.g., diagnosis). Furthermore, like 
in any linear system, in linearized DNNs the relative relevance (weight 
magnitude) of an input does not change with (is independent of) 
changes in the input's and other inputs' values. However, for nonlinear 
systems like the original DNN, this is not generally true. For example, for 
a DNN with ReLU activation functions (see Section 2.1), an input's 
contribution to the output can be effectively zero independently of the 
magnitude of its weight if the result of the weighted sum of all the inputs 
is negative (ReLU's output is 0 for negative inputs). 

A second group of studies used a method based on the reconstruction 
error of autoencoders, a type of ANN (see Box 1). In general terms, 
autoencoders are simultaneously trained to both compress a usually 
high dimensional input into a comparatively low dimensional encoding 
and use the encoding to reconstruct the original input with as little error 
as possible. The studies determined the reconstruction error resulting 
from feeding neuroimaging data from SZ patients to autoencoders 
trained or adjusted for processing data from a different diagnostic group 
(healthy controls) (Matsubara et al., 2019; Pinaya et al., 2019). The 
magnitude of each variable's (e.g., brain area) reconstruction error was 
interpreted as a measure of the variable's relevance for differentiating SZ 
from the other diagnostic group. An important problem with this 
approach is that it disregards that to compress and reconstruct data, 
autoencoders may leverage the interdependency between input vari
ables (e.g., correlation between brain areas of the default mode 
network). This problem may lead to crediting the reconstruction error, 
and therefore the relevance, to the wrong variables. For example, ima
gine an autoencoder DNN trained on a dataset of aerial photos taken 
under normal weather conditions. Suppose the same autoencoder is fed 
aerial photos of a city that has been flooded by heavy rains in which the 

roofs of a couple of cars in a parking lot are barely protruding out of the 
water. Under normal weather conditions, parking lot-sized bodies of 
water are usually ponds, and no car roofs ever stick out of them. Thus, 
the autoencoder might encode the image of the flooded parking lot as 
some sort of pond and, in the process, “clean” out the details that are 
non-essential for reconstructing a pond (this is the reason why autoen
coders are used for image denoising tasks). As a result, the reconstructed 
images of the flooded parking lot will likely depict a small water surface 
without car roofs, as expected for a small pond. The comparison between 
the original and reconstructed images will reveal that the largest 
reconstruction errors are not located on what is abnormal in the scene 
(1.5 m of water covering a parking lot), but on the few elements that 
remain normal (car roofs as seen from above). 

A third group of studies used an occlusion approach that assessed the 
performance drops of a trained DNN classifier resulting from removing 
(occluding) subsets of input variables (e.g., regions or connections be
tween regions) one at a time. The magnitude of the drop resulting from 
each occlusion was interpreted as a measure of the potential relevance of 
the occluded variables in the brain abnormalities underlying SZ (Fig. 6c) 
(Oh et al., 2020; Phang et al., 2020; Yan et al., 2019; Zhao et al., 2020). 
However, the occlusion approach is sensitive to the size of the occlusions 
and, most importantly, completely disregards the effects that in
teractions or interdependency between inputs may have on determining 
a diagnostic category. This is analogous to the problems affecting the 
reconstruction error approach discussed above. 

There are a number of alternative approaches from the fields of 
computer vision and natural language processing that have addressed 
the aforementioned limitations of the linearization, reconstruction 
error, and occlusion approaches. We suggest the readers explore tech
niques such as attention modules (Fig. 6d) (Arrieta et al., 2020; Bah
danau et al., 2014; K. Xu et al., 2015) and generative approaches like the 
popular DeepDream (Fig. 6a) (Mordvintsev et al., 2015; Simonyan et al., 
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Fig. 5. Hypothesis generation through post hoc ex
planations. 
A deep neural network trained to compare pairs of 
images of fruits and determine whether both fruits 
are of the same type. (A) A yellow pomelo and a 
banana are predicted to be of different types, and a 
post hoc explanation method applied to this predic
tion reveals that pixels located at the fruits' contours 
were highly relevant for the output. Hence, we can 
hypothesize that the shape, and not the color, is the 
most important characteristic distinguishing images 
of yellow pomelos and bananas. (B) A yellow pomelo 
and an orange are predicted to be of different types 
as well, but a post hoc explanation reveals that the 
most relevant pixels were spread over the interior 
regions of the fruits. Hence, we can hypothesize that 
this time the color, and not the shape, is the most 
important characteristic distinguishing images of 
yellow pomelos and oranges. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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2013). 
Two diagnosis studies employed approaches that depart significantly 

from the ones discussed thus far. These studies used approaches that 
take into account both the nonlinear aspects of DNNs and the in
teractions between input variables. The first study used a deep belief 
network (DBN), a special type of ANN that, after training in a classifi
cation task, can generate prototypical examples of the classes (SZ or 
healthy). The comparison between prototypes belonging to different 
classes revealed variables that were interpreted as relevant for differ
entiating the classes (Pinaya et al., 2016). An important aspect of this 
approach is that it takes advantage of the combinations of features or 
implicit statistical models that, through training, ANNs build and use for 
classifying cases. The models consist of combinations of features that 
were extracted and selected for their value for differentiating the classes, 
accounting for any potential interactions between the features. Thus, the 
prototypical examples generated from the internal models could be 
especially informative for discovering novel diagnostic-relevant differ
ences between classes. While generative networks such as DBNs and 
generative adversarial networks (GANs) are capable of generating class 
prototypes directly due to special architectural designs, techniques have 
been developed that allow users to extract class prototypes out of trained 
regular, non-generative DNN classifiers. In general terms, the latter 
techniques, which include DeepDream (Fig. 6a) (Mordvintsev et al., 
2015; Simonyan et al., 2013), use backpropagation to generate a 
configuration of input values (a prototype) that maximizes the proba
bility of being assigned to a target class (e.g., SZ). 

The second study employed a class saliency visualization approach to 
a trained convolutional DNN classifier (Oh et al., 2019). This type of 
approach uses backpropagation-like methods to assign weights to the 
input variables (e.g., voxels) representing the contribution of each input 
to a network's classification decision (diagnosis) in the specific context 
(set of interrelations) provided by the other inputs (Fig. 6b). The study 
used a simple version of this technique that estimates an input's rele
vance using the gradient of the DNNs output (diagnosis) with respect to 
the input (Simonyan et al., 2013). While appealing for its simplicity, this 
particular technique is known to be noisy and, sometimes, unreliable 
(Ancona et al., 2017). For this reason, more sophisticated and robust 
backpropagation-based methods for relevance maps have been proposed 
that we encourage the reader to explore (Ancona et al., 2017). 

The studies discussed above are a valuable first step into using deep 
learning to obtain novel biomarkers and testable hypotheses to be 
assessed using experimental designs. Furthermore, future studies should 
look for differences between psychiatric conditions to identify bio
markers that are specific to SZ, discarding the possibility that they 
reflect mental illness in general. 

To the best of our knowledge, the enormous potential offered by post 
hoc analysis methods in subtyping SZ remains unexplored. In classifi
cation tasks, the members of a class may have a large variability in their 
defining traits (e.g., the class of timekeeping devices will include images 
of wristwatches, pocket watches, pendulum clocks, sundials, hour
glasses, water clocks, etc.). Thus, well-performing trained DNNs can 
assign the same label to elements that may have little or nothing in 
common (e.g., images of an hourglass and a pocket watch). While there 
may be no features common to all the members of a class, subgroups of 
members of the class may be more homogeneous and share many fea
tures (e.g., 8-shaped contour shared by hourglasses and circle-shaped 

contour shared by pocket watches). In this case, post hoc methods 
applied to trained DNN classifiers could reveal that the set of features 
that were most relevant to classify some members of a class (e.g., 8- 
shaped contour for hourglasses), are different from the set of features 
used to classify other members of the same class (e.g., circle-shaped 
contour with hands for pocket watches). By learning to assign um
brella term-labels to inhomogeneous elements, DNN classifiers could 
learn to extract the sets of input variables that characterize the different 
subgroups of members belonging to a class. In the case of SZ research, 
the exploration of high performance DNN classifiers trained on large, 
diverse datasets can provide curated, theory-agnostic sets of input var
iables (e.g., fMRI connectivity patterns) that could be used for subtyping 
and better understanding the rich variability hiding under the blanket 
term of SZ. 

The field of explainable AI techniques is an active area of research, 
and each year more techniques are introduced, challenging the notion 
that DNNs are simple “black boxes”. Several challenges remain, as cur
rent explanations are still limited to highlighting the inputs associated 
with a specific output. Thus, they are insufficient to understand the 
complex input/output relationships modeled by DNNs (Darwiche, 
2018). 

4.3. Safety and knowledge generation: the increasing role of uncertainty 
and causality 

In healthcare and other areas involving the well-being of people, it is 
crucial to have a clear understanding of the uncertainty associated with a 
model's predictions. Uncertainty refers to the inability to anticipate if a 
prediction is right or wrong; thus, it is a measure of how trustworthy a 
model's predictions are. In general, ANN classifiers work by estimating 
the input's probability of belonging to each one of the possible classes 
and then assigning the input to the class with the highest probability (e. 
g., if the probabilities assigned to an MRI scan are 0.2 for healthy, 0.3 for 
bipolar, and 0.5 for SZ, the diagnosis would be SZ). While class proba
bilities reflect how confident a classifier is in its predictions, this confi
dence does not necessarily match the uncertainty of the classifier's 
predictions. In fact, it is common for standard ANN classifiers to be 
miscalibrated, that is, to be under- or overconfident compared to their 
real accuracy (Guo et al., 2017; Nixon et al., 2019). For example, a DNN 
plant classifier could be very confident (predicted probability greater 
than 0.9) in labeling images of poison hemlocks as wild carrots, despite 
being wrong and almost incapable of differentiating both plants (low 
accuracy). 

Bayesian ANNs, i.e., the combination of ANNs with the principles of 
Bayesian probability theory, offer a rigorous mathematical framework 
for quantifying uncertainty and, therefore, addressing the miscalibra
tion problem affecting the implementation of ANNs. In this context, 
uncertainty can be divided in two types: aleatoric and epistemic un
certainty (Jospin et al., 2020). Aleatoric uncertainty results from uncon
trollable random fluctuations in the data that arise from causes such as 
aleatoric changes in sensor sensitivity. This type of uncertainty is an 
intrinsic property of the data and cannot be reduced. Instead, epistemic 
uncertainty arises from a lack of knowledge about the system or problem 
that is being modeled due to insufficient data. Incomplete information, i. 
e., “holes” in the knowledge contained in the data, can increase pre
diction uncertainty when predictions are made near or inside the “holes” 

Fig. 6. Deep learning-based explanations for biomarker discovery. 
(a) The DeepDream method presents random noise to a trained ANN model and iteratively adjusts this input to maximize the probability of the SZ class, resulting in a 
prototypical example of the SZ class according to the model. (b) After the model predicts the SZ class for a particular example, the output score of the model can be 
backpropagated through the layers by following one of several saliency or relevance propagation methods, resulting in a heatmap at the input that quantifies the 
contributions of each region/variable to the observed output. (c) By quantifying the increase in the prediction error caused by a small occlusion centered at different 
regions/variables of the input, an occlusion map can be generated that indicates the most relevant regions/variables. Although appealing for its simplicity, generating 
an occlusion map is computationally expensive, is sensitive to the occlusion size, and ignores interactions between different regions/variables. (d) The architecture of 
an ANN model can include attention layers with multiple attention heads focusing on different parts or elements of the input, making the ANN model more 
interpretable by design. For a given prediction, attention coefficients can be visualized to observe the attended (relevant) regions/variables of the input. 
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(e.g., how will a DNN classifier trained on adult patients perform on 
pediatric patients?). This type of uncertainty can be reduced by 
increasing the amount and information content of the training data and 
can be estimated using Bayesian ANN methods. 

The process of training a non-Bayesian ANN consists in searching for 
a set of parameters (weights) that maximizes task performance. Training 
concludes with a point estimate of the parameters, usually by selecting 
the best set of parameters among those found during the search. 
Differently from this, in the Bayesian framework the objective is no 
longer to find a single parameter set for a task, but the full probability 
distribution of possible parameter sets given the training data. This 
probability distribution of models (one model per set of parameters) can 
be used to estimate the Bayesian model average, which is a weighted 
average of all the models' predictions (Wilson, 2020). This average re
flects the disagreement between the predictions of different models and, 
compared to class probabilities, provides a better estimate of how 
(epistemically) uncertain or trustworthy a prediction really is. 

Although most Bayesian methods are still not easily applicable to 
large scale DNNs, Bayesian ANNs are an active area of research in which 
novel techniques (Gal and Ghahramani, 2016) are slowly reducing the 
high computational burden (e.g., training several ANNs with different 
parameters) associated with estimating parameter distributions (Jospin 
et al., 2020). This type of research is likely to have a tremendous impact 
on the adoption of DNNs in the clinic, where miscalibrated (over- and 
underconfident) AI tools can become an unacceptable safety risk. This 
will likely benefit patients receiving AI-informed diagnosis and tailored 
treatment interventions. 

As mentioned, epistemic uncertainty can be reduced by increasing 
the amount of training data. This approach has worked well in areas 
such as natural language processing and computer vision, which have 
easy online access to massive datasets with billions of training examples 
(Brown et al., 2020a). However, in areas such as SZ research, this brute- 
force approach to reduce uncertainty is unfeasible and, therefore, it is 
necessary to look for alternative methods capable of harnessing the 
available data more efficiently. 

Judea Pearl, a pioneer in ML causality and the creator of Bayesian 
networks, has pointed out that the enormous power of the DNNs that are 
driving the ongoing AI revolution comes, almost entirely, from their 
capacity to learn complex input/output statistical associations (Pearl, 
2018, 2020). As discussed before (Section 2.2), DNNs learn these asso
ciations by minimizing the error in predicting the output that is most 
likely to co-occur with each input in an enormous collection of input/ 
output pairs (training dataset). While this data-driven, co-occurrence- 
learning strategy has succeeded in solving a wide range of prediction 
and classification tasks, it is a slow and data-inefficient strategy that, in 
many aspects, is analogous to the natural selection process driving 
Darwinian evolution (Pearl, 2018, 2020). Differently from this, human 
learning and problem solving is an active process that relies on the 
development and manipulation of explanatory causal models (hypothe
ses) of reality (problems) that are tested against data, specially selected/ 
collected for the purpose of falsifying or supporting the model (high 
data-efficiency). A causal model is a set of hypotheses that can explain 
the statistical associations in the data in terms of causal relationships; that 
is, relationships between couples of sequential events in which the first 
event of each couple, the cause, is a part of the mechanism that explains 
or generates the second event of the couple, the effect (e.g., a question 
elicits [causes] an answer or adrenaline induces [causes] changes in 
heart rate). 

Compared to association-learning systems, causal systems are fast 
and efficient (e.g., humans do not need to review tens of thousands of 
checkers matches to learn how to play), and have allowed humans, 
assisted by technology, to “evolve” at a super-evolutionary pace (Pearl, 
2018). For example, while it took hundreds of millions of years of nat
ural selection for birds to evolve the capacity to fly after the first feathers 
appeared, it took just a few decades for humans to build the first su
personic jet after the Wright brothers built the first heavier-than-air, 

motor-operated, aircraft. Furthermore, separate from purely statistical 
models, causal models allow to accurately predict the behavior of a 
system in situations that have never been encountered before in the 
training data (e.g., black holes were derived from the equations of 
general relativity decades before they were experimentally confirmed). 
Finally, causal models are the only ones capable of pursuing what is 
arguably the main goal of science, to find the reason why, i.e. the causal 
mechanisms underlying statistical associations (Castro et al., 2020; Pearl 
and Mackenzie, 2018). 

According to Pearl, in order to move the field of AI forward and 
reduce the gap between humans and machines in learning speed, data 
use efficiency, and problem-solving capacity, it is necessary to equip 
learning machines with causal reasoning tools (Pearl, 2018, 2020). That 
is, with mechanisms that allow machines to generate causal models 
(hypotheses) of problems (e.g., treatment selection), use the models to 
anticipate (predict) the effects of interventions (tests), compare the 
models' predictions with data specially selected or collected to test the 
models, and then actively decide the right course of action (e.g., refine 
the model, further interventions, collection of more data, etc.) (Pearl, 
2018; Pearl and Mackenzie, 2018). This type of causal model-oriented AI 
systems will underlie what has been called the third wave of AI, with the 
first wave being traditional machine learning (handcrafted knowledge), 
and the second, the ongoing AI revolution (statistical learning) 
(Launchbury, 2017). While causal AI is still in its early infancy, it is 
attracting the attention of on an increasing number of researchers that 
have started to work in the area (Bengio et al., 2019; Ke et al., 2019; 
Nauta et al., 2019). Until causality is fully embedded in deep learning 
models, insights related to the mechanisms of SZ extracted from DNNs 
must be assessed by researchers and followed up by empirical tests to 
discard spurious or irrelevant correlations (e.g., people take aspirin 
when they have a cold, thus, to prevent colds, aspirins should be 
avoided). 

5. Discussion 

In this article, we presented an overview of the existing literature on 
deep learning methods applied to SZ research. In general, existing 
studies have yielded impressive results in terms of accuracy in classifi
cation and outcome prediction tasks, justifying the increasing interest in 
deep learning approaches. However, methodological issues affecting the 
generalizability of the results in several studies suggest that some reports 
may be overoptimistic and should be taken with caution. The most 
relevant issues are the small size of the samples used for developing DNN 
models, and the lack of independence between the testing dataset and 
the training and validation datasets. 

When the training, validation, and testing datasets come from a small 
sample of subjects studied under specific experimental conditions (e.g., 
EEG data collected by a research group using the same EEG device and 
experimental setting), it is unlikely that these datasets will be repre
sentative of the rich variability of data collected under different exper
imental conditions (e.g., EEG data collected by a different research 
group using a different EEG system and experimental setting). Thus, it is 
unlikely that the results obtained on small datasets will generalize 
appropriately to the set of independent datasets. For example, diagnostic 
models trained on samples of 100–200 examples or less (a very small 
sample size for DNN training) usually reached accuracies >90%, while 
models trained on large multi-site datasets reached lower accuracies of 
~80% (Yan et al., 2019; Yang et al., 2019; Zeng et al., 2018; Zhao et al., 
2020). 

Current state-of-the-art deep learning models are trained on samples 
ranging between hundreds of thousands and hundreds of millions of 
examples (Devlin et al., 2018). It is unlikely that datasets with similar 
sample sizes will be available any time soon for training deep learning 
models in the context of SZ research. However, while this amount of real 
data is currently out of reach, it is possible to increase the size of datasets 
by complementing real data with synthetic data generated with data 

J.A. Cortes-Briones et al.                                                                                                                                                                                                                      



Schizophrenia Research 245 (2022) 122–140

137

augmentation techniques. Data augmentation includes techniques such 
as simulating data with physical or empirical models, generating data 
with generative adversarial networks (GANs), or modifying real data 
with transformations that preserve class assignment or are irrelevant for 
the task (e.g., rotating a headshot does not change the identity of the 
person depicted in it) (Lashgari et al., 2020; Shorten and Khoshgoftaar, 
2019). Moreover, novel algorithms have allowed researchers to use data 
augmentation to pre-train models on unlabeled data (e.g., fMRI from 
undiagnosed people) (Chen et al., 2020) that are usually easier to find 
than data from specific clinical populations. To our knowledge, only one 
study has used advanced data augmentation techniques to increase 
sample size while enriching the variability (diversity) of small datasets 
in SZ research (Niu et al., 2019). 

Another option to increase sample sizes would be to train models on 
multimodal data. Besides the improvements in performance resulting 
from training models on cases with data from multiple modalities, 
models designed for multimodal data have the advantage that they can 
be trained also on partial data, i.e., data that are missing one of the 
modalities (Guo et al., 2019). Thus, single-modality datasets can be 
combined and used to train the same model. Each modality will 
contribute to shape the high-level features of these models. Very few 
studies have used multimodal data to train deep learning models in SZ 
research (Li et al., 2020; Salvador et al., 2019). 

The independence of the testing dataset is one of the most basic re
quirements for developing any ML model and it is crucial for obtaining 
unbiased estimations of the model's generalizability. Several studies 
compromised the independence of the testing data by informing de
cisions about the model's hyperparameters and/or data preprocessing 
steps using results obtained on the testing dataset. A common mistake 
was to use cross-validation (single loop) instead of nested cross- 
validation (with an outer loop for testing and an inner loop for valida
tion) for both validation (e.g., hyperparameter selection and model 
design) and testing. Furthermore, few studies estimated their model's 
generalizability to data coming from a different population or acquired 
using different protocols (external dataset), where performance might 
drop significantly. For example, in a multi-site study, the accuracy of a 
classification model fell from 88.6% (n = 866, IDT–I, 10-fold CV) to 
70% (n = 60, ODT–I) when testing on a dataset collected from a held- 
out site (Oh et al., 2020). Other multi-site studies also showed accuracy 
drops ranging from 1.4% to 18.5% (see Fig. 4f) when switching from 
pooled-sites cross-validation (i.e., data from all sites are combined in a 
single dataset) to leave-one-site-out cross-validation (i.e., on each iter
ation, all the data collected at one of the study sites were used exclu
sively for testing), falling from 81–85% (n = 149 to 1100, IDT-NI, 5-fold 
or 10-fold CV) to 62.5–81% (n = 734 to 1100, ODT-NI, 5 or 7 sites) (Lei 
et al., 2019; Yan et al., 2019; Zeng et al., 2018; Zhao et al., 2020). 

5.1. Moving forward 

In most of the studies discussed here, deep learning models were 
trained to use brain imaging data (e.g., fMRI) to differentiate between SZ 
and healthy controls. While this is a valuable first step, these models 
have limited utility for clinicians who usually can easily distinguish 
between SZ patients and healthy people. Instead, it would be more 
relevant to focus on developing deep learning systems aimed at dis
tinguishing SZ from other psychiatric disorders with the purpose of 
aiding clinicians in the selection of treatment interventions, predicting 
clinical outcomes (e.g., the probability of a first episode of SZ) to 
implement prophylactic interventions, or predicting a patient's response 
to medication to select the most effective pharmacological treatment 
that has the least side effects (personalized medicine). While a few 
studies have addressed some of these issues (Ahmedt Aristizabal et al., 
2020; Fernando et al., 2020; Rezaii et al., 2019), urgent clinical needs 
remain unmet. For instance, we found no studies focused on predicting 
episodes of clinical decompensation in established SZ patients, despite 
decompensation remaining a major clinical problem (Robinson et al., 

1999; Zipursky et al., 2014). Redirecting research efforts to solving real 
problems encountered in clinical practice has the potential of improving 
treatment efficacy and relieving patients and their caregivers from some 
of the burden associated with SZ. 

5.2. Future directions and ethical AI development, deployment, and use 

One could argue that the onset of the ongoing deep learning revo
lution can be traced back to the creation of ImageNet in the late 2000s 
(Deng et al., 2009), a large, publicly available dataset of labeled images 
designed for ML projects. The open access to a common benchmark and 
the annual competition that followed, boosted the field of computer 
vision by providing an objective way for assessing and, most impor
tantly, comparing the performance of different ML approaches designed 
to identify the objects in ImageNet's images. In the field of SZ research, 
there is an urgent need for analogous large, easily accessible, multi- 
diagnosis datasets and agreed evaluation metrics that allow re
searchers to assess and compare ML approaches. We have no doubt that 
these resources will accelerate the development of more powerful and 
accurate ML models for SZ research. However, differently from what 
happened with ImageNet and other datasets, there are serious ethical 
issues associated with using data collected from humans for developing 
ML systems that need to be addressed. 

The first issue refers to the ethical collection and release of data: 
safeguards should be implemented to guarantee that the collection of 
data from SZ patients and other vulnerable populations respects the 
basic rights of the people from whom the data were collected. One such 
safeguard could be to ensure, for example, that the protocols used for 
data collection and sharing are reviewed and approved by a qualified 
institutional committee entrusted with the protection of human subjects. 
Furthermore, psychiatric diagnoses could be used for discriminatory 
practices by employers, insurance companies, and others, thus, it is 
crucial to take measures (e.g., stripping the data from personal identi
fiable information) to ensure the privacy of the people contributing to 
the dataset. 

The second, refers to ethical management of biased and unbalanced 
data: A bias can be understood as an unfair (unjustified) tendency to 
have a consistently favorable or unfavorable perception, attitude, or 
behavior towards individuals sharing a sensitive attribute such as race, 
gender, place of birth, religion, or social class. Biases are ubiquitous 
among individuals, institutions, and societies, therefore, along with 
useful associations (e.g., relationship between brain connectivity and 
SZ), datasets collected from humans will carry a raft of unfair associa
tions (biases) as well (e.g., patients with African ancestry have a higher 
risk of receiving a misdiagnosis of SZ (Akinhanmi et al., 2018)). 
Furthermore, sensitive attributes such as race (e.g., African and Hispanic 
vs European ancestry) and gender (e.g., LGBT vs heterosexual) are not 
uniformly distributed among the population, thus, randomly collected 
datasets will replicate the attribute unbalance and, therefore, are very 
likely to under-represent the characteristics of minorities and margin
alized groups in comparison to the hegemonic group/culture. 

ML systems learn the statistical patterns and associations in the data 
that are useful for solving the task at hand, and apply them to generate 
their outputs. Thus, unless special remediation mechanisms are put in 
place (as discussed next), biased and unbalanced datasets will lead to 
biased and selectively inaccurate ML systems. For instance, a DNN 
diagnosis system trained on brain connectivity measures collected on a 
large sample of mostly male SZ patients and controls, will likely disre
gard gender differences (Ingalhalikar et al., 2014; Li et al., 2016) and use 
male-derived patterns to classify both male and female patients. This 
situation may not only increase the risk of misdiagnosing females but 
also mischaracterize the neural underpinnings of female SZ patients. In 
fact, post hoc techniques applied to this classifier (see Section 4.2) would 
reveal biomarkers optimized for classifying male SZ patients that, by 
disregarding biases and unbalanced samples, would be attributed to 
female patients as well, hiding any potential gender differences. A 
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dramatic example of the real-life consequences that could follow from 
algorithmic biases is what happened with a widely used commercial 
algorithm used for identifying patients with complex conditions that will 
benefit from receiving extra care. It was found that at a given healthcare 
need score, black patients were considerably sicker than white patients. 
Furthermore, it was revealed that, without this disparity, the percentage 
of black patients that received extra care would have increased from 
17.7 to 46.5% (Obermeyer et al., 2019). 

During the last few years, ML fairness, i.e., the guarantee that sen
sitive attributes in the data do not affect the output of an ML algorithm in 
an unfair way, has become a highly active and increasingly growing area 
of research. As discussed above, disregarding ML fairness may seriously 
affect the well-being of patients and may hinder our understanding of 
the mechanisms underlying SZ. Thus, while reviewing the rich literature 
on ML fairness goes beyond the scope of this article, we provide a broad 
description of the classes of methods that can be used for ensuring ML 
fairness in SZ research and refer interested readers to the following re
visions of the literature (Chiappa and Isaac, 2018; Chouldechova and 
Roth, 2018; Oneto and Chiappa, 2020). In general terms, methods for 
ensuring ML fairness can be grouped in three classes, depending on what 
stage of the developing process of an ML algorithm they are applied 
(Oneto and Chiappa, 2020). The first class of methods are applied to the 
data to remove the biases before training the ML algorithm. The second 
class of methods are applied on the training process to force the ML 
algorithm to produce fair outputs despite being trained on biased or 
unbalanced data. Finally, the third class of methods are applied to the 
biased outputs of trained ML algorithms to correct them towards a fair 
(unbiased) output. 

The third and last issue refers to the ethical use of algorithms: ML 
algorithms trained for diagnosis, prediction of clinical outcomes, 
biomarker discovery, and related uses can improve patient diagnosis, 
boost personalized medicine, and lead to novel discoveries. However, 
the same algorithms could be easily adapted for different purposes such 
as screening candidates for a job, calculating insurance fees, targeted 
advertising, and student selection and admission, potentially leading to 
discriminatory practices that have a negative impact on the very people 
that these technologies are supposed to help. Thus, as stated by Joseph 
Redmon, the creator of the highly influential (~16,000 citations) You 
look only once (YOLO) algorithm for computer vision (Redmon et al., 
2016), “as researchers we have a responsibility to at least consider the harm 
our work might be doing and think of ways to mitigate it. We owe the world 
that much” (Redmon and Farhadi, 2018). 

The AI revolution that has been occurring during the last few years, is 
changing the way in which we do SZ research. Our ability to extract 
useful information from high-dimensional and multimodal data has 
never been better. Likewise, the accuracy of automatic data-based 
diagnosis and outcome prediction systems is higher than ever. These 
tools promise to increase our capacity for implementing prophylactic or 
more effective personalized treatment interventions. While these 
methods can help us to ease some of the burden of SZ from patients and 
caregivers, they may bring a series of ethical problems that need to be 
carefully assessed and addressed. In addition, considering the negative 
impact that a misdiagnosis or erroneous prediction may have on 
someone's life, deep learning-powered systems will require continuous 
error assessment and suitable protocols to safeguard the well-being of 
people. 
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García, S., Gil-López, S., Molina, D., Benjamins, R., 2020. Explainable Artificial 
Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward 
responsible AI. Inf. Fusion 58, 82–115. 

Baevski, A., Zhou, Y., Mohamed, A., Auli, M., 2020. wav2vec 2.0: a framework for self- 
supervised learning of speech representations. Advances in neural information 
processing systems 33. 

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning 
to align and translate. arXiv preprint arXiv:1409.0473. 

Barnes, T.R., Leeson, V.C., Mutsatsa, S.H., Watt, H.C., Hutton, S.B., Joyce, E.M., 2008. 
Duration of untreated psychosis and social function: 1-year follow-up study of first- 
episode schizophrenia. Br. J. Psychiatry 193 (3), 203–209. 

Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P., 
Vardoulakis, L.M., 2020. A human-centered evaluation of a deep learning system 
deployed in clinics for the detection of diabetic retinopathy, proceedings of the 2020 
CHI conference on human factors in computing systems, pp. 1–12. 

Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., Pal, C., 
2019. A meta-transfer objective for learning to disentangle causal mechanisms. arXiv 
preprint arXiv:1901.10912. 

Bleuler, E., 1950. Dementia praecox. International Universities Press, New York.  
Bowen, E.F.W., Burgess, J.L., Granger, R., Kleinman, J.E., Rhodes, C.H., 2019. DLPFC 

transcriptome defines two molecular subtypes of schizophrenia. Transl. Psychiatry 9 
(1), 147. 

Brinker, T.J., Hekler, A., Enk, A.H., Klode, J., Hauschild, A., Berking, C., Schilling, B., 
Haferkamp, S., Schadendorf, D., Holland-Letz, T., Utikal, J.S., von Kalle, C., Ludwig- 
Peitsch, W., Sirokay, J., Heinzerling, L., Albrecht, M., Baratella, K., Bischof, L., 
Chorti, E., Dith, A., Drusio, C., Giese, N., Gratsias, E., Griewank, K., Hallasch, S., 
Hanhart, Z., Herz, S., Hohaus, K., Jansen, P., Jockenhöfer, F., Kanaki, T., Knispel, S., 
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