Tabla de Contenido

1.	Introducción			1
	1.1.	Objeti	vos del trabajo	4
		1.1.1.	Objetivo general	4
		1.1.2.	Objetivos específicos	5
2.	Ant	eceden	ntes	6
	2.1.	Tricho	oderma reesei	6
		2.1.1.	Proliferación	6
		2.1.2.	Fuentes de carbono	8
	2.2.	Condi	ciones favorables para la conidiación del organismo	9
		2.2.1.	Exposición lumínica	9
		2.2.2.	Estado de carbono y nitrógeno	10
		2.2.3.	pH ambiente	10
		2.2.4.	Señalización de calcio	11
		2.2.5.	Compuestos orgánicos volátiles (COV)	11
	2.3.	Microg	gravedad	11
		2.3.1.	Física	11
		2.3.2.	Implicancias generales en la vida	13
		2.3.3.	Viabilidad fúngica en el espacio	14
3.	Mét	odos o	le encapsulación	17
	3.1.	Encap	sulación fisicoquímica	17

		5.4.2.	Componentes de la cápsula	36	
		5.4.1.	Trichoderma viride y Trichoderma reesei	35	
	5.4.	Electro	ohilado	35	
		5.3.2.	Componentes de la cápsula	34	
		5.3.1.	Beauveria bassiana y Trichoderma reesei	33	
	5.3.	Secado	por aspersión	33	
	5.2.	Monta	je capa por capa (LbL)	32	
		5.1.2.	Componentes de la cápsula	32	
		5.1.1.	Trichoderma asperellum y Trichoderma reesei	30	
	5.1. Gelificación iónica				
5.	Eva	luaciór	n de factibilidad	30	
4.	Met	odolog	gía de trabajo	27	
		3.3.8.	Electrohilado	25	
		3.3.7.	Extrusión	24	
		3.3.6.	Montaje capa por capa (LbL)	23	
		3.3.5.	Enfriamiento por aspersión	23	
		3.3.4.	Secado por aspersión	22	
		3.3.3.	Atrapamiento en liposomas	21	
		3.3.2.	Co-cristalización	20	
		3.3.1.	Gelificación iónica	19	
	3.3.	Encap	sulación mecánica	19	
		3.2.1.	Polimerización interfacial	19	
	3.2.	Encap	sulación química	19	
		3.1.2.	Inclusión molecular	18	
		3.1.1.	Coacervacion	17	

8.	Eva	luaciór	n de viabilidad	48
	7.5.	Compa	aración de las metodologías	46
	7.4.	Electro	ohilado	45
	7.3.	Secado	p por aspersión	45
	7.2.	Monta	je LbL	44
	7.1.	Gelific	ación iónica	44
7.	Con	Comparación de costos		
	6.6.	Encap	sulación de esporas	42
		6.5.3.	Preparación de poliacrilamida	42
		6.5.2.	Instrumentos y técnicas de caracterización	42
		6.5.1.	Materiales	41
	6.5.	Propu	esta de encapsulación vía electrohilado	41
		6.4.3.	Preparación de cápsulas mediante secado por aspersión	41
		6.4.2.	Instrumentos y técnicas de caracterización	41
		6.4.1.	Materiales	40
	6.4.	Propue	esta de encapsulación vía secado por aspersión	40
		6.3.4.	Encapsulación LbL de esporas de <i>T. reesei</i>	40
		6.3.3.	Síntesis de lignina catiónica Kraft	39
		6.3.2.	Instrumentos y técnicas de caracterización	39
		6.3.1.	Materiales	39
	6.3.	Propue	esta de encapsulación vía montaje LbL	39
		6.2.3.	Encapsulación de esporas por gelificación iónica	38
		6.2.2.	Instrumentos	38
		6.2.1.	Materiales	37
	6.2.		esta de encapsulación vía gelificación iónica	37
6.1. Crecimien			mento de <i>T. reesei</i> y recolección de esporas	37

	8.1.	Estudio de crecimiento	48
		8.1.1. Liberación de esporas	48
		8.1.2. Preparación del medio de cultivo	49
		8.1.3. Porcentaje de germinación	49
		8.1.4. Propuestas de estudio	50
	8.2.	Desarrollo bajo microgravedad	50
	8.3.	Montaje experimental	52
9.	Con	clusión	53
Bi	bliog	rafía	56
Aı	nexos	3	71
Α.	Cálo	culos para la demostración de la microgravedad	71
	A.1.	Fuerza de gravedad	71
	A.2.	Velocidad tangencial	71
В.	Fuer	ntes de carbono	73
	B.1.	Fuentes de carbono solubles	73
	B.2.	Fuentes de carbono polisacáridos puros e insolubles	74
	В.3.	Fuentes de carbono lignocelulosas e insolubles	75
C.	Diái	metro promedio de esporas	76
	C.1.	Trichoderma reesei	76
	C.2.	Trichoderma asperellum	79
D.	Det	erminación de costos	81
	D.1.	Gelificación iónica	81
	D.2.	Montaje LbL	86
	D.3.	Secado por aspersión	94

	D.4.	Electrohilado	98		
Ε.	. Escalamiento y costos proyectados				
	E.1.	Estimación de materiales	105		
		E.1.1. Gelificación iónica	105		
		E.1.2. Montaje LbL	105		
		E.1.3. Secado por aspersión	106		
		E.1.4. Electrohilado	106		
	E.2.	Escalamiento	107		
F.	. Aproximación de tiempos de implementación				
	F.1.	Gelificación iónica	108		
	F.2.	2. Montaje LbL			
	F.3.	Secado por aspersión	110		
	F 4	Electrohilado	111		