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RESUMEN TESIS PARA OPTAR AL
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EMBEDDING DE ANTI-ÁRBOLES EN GRAFOS ORIENTADOS

La pregunta que dio inicio a esta tesis fue decidir si semigrado mínimo mayor a k
2

en un grafo
orientado garantiza tener como subgrafo a cualquier camino orientado de k aristas. Este
enunciado correspondería a la extensión natural de un resultado clásico para grafos simples,
que en vez de semigrado pide grado mínimo k

2
.

El resultado obtenido responde la pregunta para los caminos de largo k cuyas aristas
alternan dirección, llamados anticaminos, en grafos suficientemente grandes con semigrado
mínimo mayor a k

2
, para todo k ∈ N. Aún mejor, también funciona para todo antiárbol

balanceado con k aristas y grado máximo acotado.

Para llegar al resultado, se introduce el concepto de antimatching conexo y se utiliza
el Lema de Regularidad, en su versión para grafos orientados. El proceso de embedding
consiste en dividir el antiárbol en unos antiárboles más pequeños y distribuirlos en las aristas
del antimatching encontrado en el grafo reducido orientado y hacer las conexiones.

i
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EMBEDDING ANTI-TREES IN ORIENTED GRAPHS

The question that marked the beginning of this thesis was to decide if minimum semide-
gree greater than k

2
in an oriented graph guarantees having any oriented path with k edges

as a subgraph. This statement would correspond to the natural extension for digraphs of
a classic result for simple graphs, that instead of minimum semidegree asks for minimum
degree k

2
.

The obtained result answers the question for the paths of length k with edges that al-
ternate directions, called antipaths, for sufficiently large graphs with minimum semidegree
greater than k

2
, for every k ∈ N. And, even better, it also works for every balanced antitree

with k edges and bounded maximum degree.

In order to prove the result, we introduce the concept of connected antimatching and
use the Regularity Lemma in its version for oriented graphs. For the embedding, we split
our antitree in smaller antitrees, distribute them in the antimatching edges of our reduced
oriented graph and make the connections.
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“And it was the most fun I’ve had in my life.”
- Kozume Kenma
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Chapter 1

Introduction

The purpose of this chapter is to present the context necessary to understand the work done
in this thesis. We will go through results, questions and conjectures about Extremal Graph
Theory in Section 1.1, delving into oriented graphs in Section 1.2, to finalize with a sketch of
the main proof done in the present work Section 1.3. The formal definitions for the concepts
included in this chapter will be found in Chapter 2.

1.1 Extremal Graph Theory

Extremal Graph Theory studies how global graph properties influence its local substructures.
An interesting question in the area is knowing how many edges are enough to force a certain
subgraph H. A graph G on n vertices with the largest possible numbers of edges such that
H ⊈ G is called extremal for n and H, and its number of edges is denoted by ex(n,H).

One of the first approaches on this matter can be attributed to Mantel [16], who proved
in 1907 that a graph on n vertices without triangles has, at most, n2

4
edges. In the 1940’s,

Turán analyzed the same question but for any complete subgraph:

Theorem 1.1 (Turán [20]) For all integers r, n with r > 1, every graph G with Kr ⊈ G on
n vertices and ex(n,Kr) edges is a T r−1(n), this means, an (r−1)-partite graph on n ≥ r−1
vertices whose partition sets differ in size by at most 1.

A few years later, Erdős and Stone [10] generalised this result for any r-partite graph
with exactly s vertices in each class, Kr

s .

Theorem 1.2 (Erdős-Stone [10]) For all integers r ≥ 2 and s ≥ 1, and every ε > 0, there
exists an integer n0 such that every graph with n ≥ n0 vertices and at least

e(T r−1(n)) + εn2

edges contains Kr
s as a subgraph.
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This theorem led to an interesting asymptotic result for any graph H, in function of its
chromatic number χ(H).

Corollary 1.3 (Erdős-Simonovits [9]) For every graph H with at least one edge,

lim
n→∞

ex(n,H)

(
n

2

)−1

=
χ(H)− 2

χ(H)− 1
.

Conditioning on the number of edges is equivalent to conditioning on the average degree.
In fact, statements asking for requirements on the degree are very typical, not only on the
average degree, but also on the minimum degree, maximum degree or a combination of them
as well. To illustrate this, a widely known conjecture on the average degree is the one made
by Erdős and Sós,

Conjecture 1.4 (Erdős-Sós [8]) Let k ∈ N. Every graph with average degree greater than
k − 1 contains every tree with k edges as a subgraph.

On the other hand, there exists a variety of results with minimum degree as a condition.
A classic one is Dirac’s theorem [7], which states that any graph on n ≥ 3 vertices and
minimum degree at least n

2
has a cycle on n vertices. An easy observation in a similar

direction is that, for every integer k, a minimum degree of k implies having every tree on
k edges as a subgraph. For paths, this result can be improved, using a condition similar to
Dirac’s condition scaled down to the size of our path.

Theorem 1.5 (Erdős-Gallai [11]) If δ(G) ≥ k
2
, G is connected and |V (G)| ≥ k + 1, then G

contains a path of length k.

1.2 Oriented Graphs

A digraph consists on a set of vertices V and edges E, which are ordered pairs of distinct
vertices. An oriented graph is a digraph that allows at most one edge between a pair of
vertices. If an edge in a digraph G is directed from u to v, we write uv ∈ E(G), denoting v as
an out-neighbour of u and u an in-neighbour of v. The set of out-neighbours of a vertex v is
denoted by N+(v) and the set of in-neighbours, N−(v). We call a complete oriented graph a
tournament. The underlying graph of an oriented graph is the corresponding graph without
the orientations.

The questions in extremal graph theory we presented in the previous section have their
analogous statements for graphs with directed edges. Let us start analyzing Theorem 1.5.
Observe that in this theorem we ask for a path. If we are looking for its analogue for oriented
graphs, the first thing to notice is that there are lots of orientations of a path with k edges. For
example, orienting every edge in the same direction gives us the directed path, and alternating
directions is what we call an antidirected path. So, we shall ask for every graph that has a
path as its underlying graph.

Another important question is: what do we do with the degree condition? One could
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replace δ(G) with the minimum degree of the underlying graph of G. But is easy to show
that such a condition would not be sufficient: it suffices to consider an oriented graph G
with two tournaments on k

2
vertices joined to a cutvertex v such that for every vertex u ̸= v,

uv ∈ E(G). In that case, this oriented graph does not contain a directed path of length
k. One could think that this example fails because of the non existent connectivity (in the
digraph sense). So, consider now an oriented graph D consisting of four sets {V1, V2, V3, V4}
of k/4 vertices each and a central vertex v such that:

• for every v1 ∈ V1, N+(v1) = V2 ∪ V4 and N−(v1) = {v},

• for every v2 ∈ V2, N+(v2) = V3 and N−(v2) = V1 ∪ {v},

• for every v3 ∈ V3, N+(v3) = {v} and N−(v3) = V2 ∪ V4, and

• for every v4 ∈ V4, N+(v4) = V3 ∪ {v} and N−(v4) = V1.

V1 V2

V3V4

Figure 1.1: Oriented graph D from the counterexample with connectivity.

Again, is not possible to form a directed path on k edges if k > 4, as we would need to pass
repeated times through the central vertex. To avoid this kind of complications, we will use
a condition on the minimum semidegree, which is defined as δ0(G) := min{δ+(G), δ−(G)},
with δ+(G) the minimum |N+(v)| and δ−(G) the minimum |N−(v)|, for v ∈ V (G). Observe
that in Figure 1.1, δ0(D) = 1. This leads to the following conjecture:

Conjecture 1.6 [17] Every oriented graph D with δ0(D) > k
2

contains every oriented path
on k edges.

If true, the conjecture would be tight: it is enough to observe that an antidirected path
of length k cannot be found in the digraph obtained by a blow-up of the directed triangle,
replacing each vertex with an independent set of size k

2
[17]. Before the formulation of

the conjecture, Jackson [12] was already studying directed paths and his results give that
the conjecture is true for this orientation. Recently, Stein and Klimošová [18] showed that
Conjecture 1.6 is true for antipaths if the condition on the minimum semidegree is changed
from k

2
to 3k

4
.

As Conjecture 1.6 considers every orientation of a path, others authors have also con-
sidered every length of a path. Kelly, Kühn and Osthus proved a result using a condition
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on the minimum semidegree that gives us every orientation and every length of an oriented
cycle. Observe that the condition used is strong, as it is based on the number of vertices of
the graph:

Theorem 1.7 (Kelly, Kühn, Osthus [14]) For any α > 0 there exists n0 = n0(α) such that
every oriented graph G on n ≥ n0 vertices with minimum semidegree δ0(G) ≥ (3/8 + α)n
contains every possible orientation of an l-cycle, for all 3 ≤ l ≤ n.

From now on, we will focus on the antidirected orientation. This orientation has been
studied as well, not only for paths as Klimošová and Stein did, but also for trees. For instance,
Addario-Berry, Havet, Linhares Sales, Reed and Thomassé have a well known conjecture for
antitrees.

Conjecture 1.8 (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé [1]) Every digraph
D with more than (k − 1)|V (D)| edges contains each antitree on k edges.

The same authors proved their conjecture for antitrees of diameter at most 3. They also
show that it does not hold for other orientations of trees, as we could consider a bipartite
graph G = (A,B) with every edge oriented from A to B. They also note that restricted to
symmetric digraphs, this is a digraph D such that uv ∈ E(D) ⇔ vu ∈ E(D), Conjecture 1.8
is equivalent to Conjecture 1.4.

So, we could ask ourselves if it is possible to extend Conjecture 1.6 to include every
oriented tree on k edges, maintaining the condition on the degree. In this thesis we answer
this question for a specific class of oriented trees: the ones that are antidirected (every
vertex v has d+(v) = 0 or d−(v) = 0), balanced (the number of vertices with d+(v) = 0
is equal to the number of vertices with d−(v) = 0) and have bounded maximum degree
∆(T ) := maxv∈V (T ){|N+(v)|, |N−(v)|}.

Theorem 1.9 For all η ∈ (0, 1),∆ ∈ N, there exists n0 such that for every oriented graph D
on n ≥ n0 vertices and for every k ≥ ηn, if δ0(D) > (1 + η)k

2
then D contains an embedding

of every balanced rooted antidirected tree T with k edges and ∆(T ) ≤ ∆.

Observe that antipaths of odd length are included in this type of trees. For an antipath
of even length l, we could add a vertex and an edge to obtain an antipath of odd length. This
new antipath is balanced and, because the semidegree is an integer, using l

2
or l+1

2
would be

equivalent. Hence, for sufficiently large graphs, Theorem 1.9 improves the advances made
for antipaths on Conjecture 1.6 in [18]. In the following section we present an outline of the
proof for Theorem 1.9, which will help to understand the full proof, which can be found in
Chapter 3.

1.3 Sketch of Proof

Before proving Theorem 1.9, we introduce a new concept: connected antimatchings. Roughly,
a connected antimatching in an oriented graph D is defined as a set M of disjoint edges in
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D such that for every pair of edges in M , there exists an antiwalk in D that contains them.
A more detailed and formal definition is given in Section 3.1.

a1

a2

a3

b1

b2

b3

D

Figure 1.2: The set of edges {a1b1, a2b2, a3b3} forms a connected antimatching in D.

Now, we can start the proof. First, we apply the Diregularity Lemma in our oriented
graph D, which gives us an oriented graph D′ partitioned in r clusters. Each cluster Ci is
further divided into two sections: a small one, C1

i , and a big one, C2
i . This division will be

useful in the embedding. Lastly, we obtain the corresponding reduced oriented graph R, with
a minimum semidegree greater than t := (1 + η

2
) k
2n
r.

In Section 3.1, we prove that graphs with minimum semidegree at least d have a connected
antimatching of size d and that for every pair of edges in this antimatching there is an antiwalk
of length at most 16d that contains them. Therefore, we have a connected antimatching in
R of size ⌈t⌉.

D RD
′

Figure 1.3: Starting with D, we obtain D′ and lastly R, with a connected antimatching
marked in red.

Now we work with our antitree T . A β-decomposition is a partition of our tree into a set
W of vertices (often called seeds), of size at most 1

β
+ 2, and a family T of disjoint subtrees

of size at most βk, such that the root of each S ∈ T has a w ∈ W as a parent.

After obtaining such a decomposition, we consider the trees in T but without their first
16t levels. Those new antiforests are almost balanced, thanks to the original balance of T .
Thus we prove in Section 3.1 that it is possible to distribute these antiforests into ⌈t⌉ sets
such that none of them will have more than |C2

1 | in-vertices (vertices v with d+(v) = 0) or
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more than |C2
1 | out-vertices (vertices v with d−(v) = 0). This means that there will be enough

space in the big slices of a pair of clusters to embed one of these set of antiforests. Since
there are also ⌈t⌉ antimatching edges, we will associate each one of the ⌈t⌉ sets of antiforests
to an antimatching edge.

P1 P⌈t⌉

...

...

S8

S7

...

S1

S4

S5

...

...

︸ ︷︷ ︸
16t +2 levels

...

S2

...

S10

...

P2

Figure 1.4: Example of distributing the antitrees {Si} in T without their first 16t+ 2 levels
in the ⌈t⌉ sets.

Having this, the idea of the embedding is the following: let C1C2 be the first edge of the
antimatching. We embed the root of T , r(T ), in a vertex from C1

1 that has more than
√
ε|C1

2 |
neighbours in C1

2 . Then, there exists S ∈ T that has r(T ) as its parent. We also know that
S has a corresponding antimatching edge CiCj, because of the partition in ⌈t⌉ parts. Define
S ′ as S plus the seeds w ∈ W that have its parent in S. So, we embed the first 16t+2 levels
of S ′ in an antiwalk of length at most 16t+ 2 using only the small slices of the clusters, and
arrive at Ci, where we embed the rest of S ′ in C2

i and C2
j . And then we repeat the process

tree by tree until we have embedded all T .

D
′

...

︸ ︷︷ ︸

16t+ 2 levels

...

S

r(S)w

w

r(S)

Figure 1.5: Example of the process of embedding an antitree S in D′.

The basic concepts and notations about graphs and regularity can be found in Section 2,
and the details of the proof and the auxiliary lemmas in Section 3.
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Chapter 2

Preliminaries

We dedicate this chapter to introduce the concepts, notations and previous results necessary
for this thesis. The concepts presented in this section are all standard, and more details can
be found in [4] and [6].

2.1 The Basics

A graph G is a pair (V,E) such that V is a set and E ⊆
(
V
2

)
. The elements of V are the

vertices and the elements of E are the edges. If H is a graph with V (H) ⊆ V (G) and
E(H) ⊆ E(G), then we say H is a subgraph of G. A subgraph H of G is induced if it contains
all the edges {x, y} ∈ E(G) for every x, y ∈ V (H).

An edge {u, v} will be simply denoted uv (or vu). If uv ∈ E(G), then we say that u
and v are neighbours, and the set that contains every neighbour of v is called neighbourhood,
denoted by NG(v), or simply N(v) if is clear by the context. The degree of a vertex v, dG(v)
or d(v), is the number of neighbours of v in G. We define the minimum degree of a graph G as
δ(G) := min{d(v) : v ∈ V (G)} and the maximum degree as ∆(G) := max{d(v) : v ∈ V (G)}.

A graph D such that its edges are ordered pairs in V (D)× V (D) instead of sets is called
a digraph. The edge (u, v) will be simply denoted uv, and therefore in digraphs, contrary
to non oriented graphs, the edges uv and vu are different. An oriented graph is a digraph
such that there are no edges of the form (u, u) and for every pair of vertices there is at most
one edge between them. We define the underlying graph of an oriented graph as the graph
without the orientations.

The in-neighbourhood of a vertex v, N−
D (v) or N−(v), is the set of all vertices in V (D)

such that uv ∈ E(D), and the out-neighbourhood, N+
D (v) or N+(v), is defined in a similar

manner, but with vu ∈ E(D). The in-degree, d−(v), counts the number of vertices in N−(v).
The minimum in-degree corresponds to δ−(D) := min{d−(v) : v ∈ V (D)} and the maximum
in-degree to ∆−(D) := max{d−(v) : v ∈ V (D)}. All these notions have their analogous out-
version. We define the minimum semidegree of a digraph as δ0(D) = min{δ+(D), δ−(D)}.

7



We also need to define a few special graphs that will be useful in the next chapters: a
walk of length k is a sequence of vertices v0v1v2...vk joined by edges of the form vivi+1. A
path of length k, Pk, is a walk of length k such that all vertices (and thus also all edges) are
distinct. If we add the edge vk+1v1 to Pk, we obtain the cycle of size k, Ck. In an oriented
graph, a directed path of length k is an oriented graph such that its underlying graph is a
path of length k and every edge is oriented from vi to vi+1. An antipath of length k is an
oriented graph such that its underlying graph is a path of length k and the edges alternate
directions. An antiwalk of length k is a sequence of vertices v0v1v2...vk joined by edges of the
form vivi+1 if i is even and vi+1vi if i is odd, or of the form vivi+1 if i is odd and vi+1vi if i is
even. In the same manner we define directed cycle and anticycle (which exists only for even
lengths).

Figure 2.1: On the left, a directed path of length 3. On the right, an antipath of length 3.

A graph is called a tree if it does not have cycles and is connected, this means that for
every pair of vertices u, v there exists a path that starts in u and ends in v. An antitree is an
oriented graph such that its underlying graph is a tree and it does not have a directed path
of length 2 as a subgraph.

Figure 2.2: Example of an antitree.

Let T be an antitree. We define Vin(T ) as the set of vertices of T that do not have out-
neighbours, and we define Vout(T ) analogously. Observe that {Vin(T ), Vout(T )} partitions T if
T is an antitree. An antitree is balanced if |Vin(T )| = |Vout(T )|. When T is rooted we denote
its root by r(T ).

Let T be a rooted oriented tree. We define the i-th level of T as the set of vertices
t ∈ V (T ) such that there exists an oriented path from t to r(T ) of length i.

2.2 Diregularity

Let G be a graph, let ε > 0 and let A,B be two disjoint subsets of V (G). We define the
density of the pair (A,B) as d(A,B) = |E(A,B)|

|A|·|B| , with |E(A,B)| denoting the number of edges
between A and B. The pair (A,B) is ε-regular if |d(X,Y ) − d(A,B)| < ε holds for every
X ⊆ A and Y ⊆ B satisfying |X| > ε|A| and |Y | > ε|B|.

8



Let (A,B) be an ε-regular pair with density d and let Y ⊆ B be such that |Y | > ε|B|.
A vertex x ∈ A is called ε-typical (or simply typical) with respect to Y if it has more than
(d− ε)|Y | neighbours in Y . A useful lemma about typical vertices is the following:

Lemma 2.1 [6] Let (A,B) be an ε-regular pair of density d. Let Y ⊆ B with |Y | ≥ ε|B|.
Then A has at most ε|A| vertices that are not typical with respect to Y .

Let {V0, ..., Vk} be a partition of V . This partition is called an ε-regular partition of G if:

(i) |V0| ≤ ε|V |,

(ii) |V1| = ... = |Vk|,

(iii) all but at most εk2 of the pairs (Vi, Vj), with 1 ≤ i < j ≤ k, are ε-regular.

Lemma 2.2 (Regularity Lemma, Szemerédi [19])
For every ε > 0 and every integer M ′ ≥ 1, there exist two integers M and n0 such that every
graph G with n ≥ n0 vertices has an ε-regular partition {V0, V1, ..., Vk} with M ′ ≤ k ≤ M .

From this lemma it is possible to obtain what is known as the “degree form” of the
statement:

Lemma 2.3 (Degree Form of the Regularity Lemma) For every ε ∈ (0, 1) and every integer
M ′, there are integers M and n0 such that if G is a graph on n ≥ n0 vertices and d ∈ [0, 1]
is any real number, then there is a partition of G into V0, ..., Vk and a spanning subdigraph
G′ of G, called regularized graph, such that the following holds:

• M ′ ≤ k ≤ M ,

• |V0| ≤ εn,

• |V1| = . . . = |Vk| =: m,

• dG′(x) > dG(x)− (d+ ε)n for all vertices x ∈ V (G),

• for all 1 ≤ i < j ≤ k, the bipartite graph (Vi, Vj)G′ whose vertex classes are Vi and Vj

and whose edge set consists of all the Vi-Vj edges in G′ is ε-regular and has density
either 0 or at least d,

• for all 1 ≤ i ≤ k the digraph G′[Vi] is empty.

Let D be a digraph and let A,B ⊆ V (D) disjoint. We denote by (A,B) the oriented
subgraph of D with vertex set A ∪ B and every edge directed from A to B in D. In this
case, we say the pair (A,B) is ε-regular if the underlying graph is ε-regular. Having these
notions and the Regularity Lemma for graphs without orientation, it is possible to extend it
to digraphs:
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Lemma 2.4 (Degree form of the Diregularity Lemma, Alon and Shapira [3])
For every ε ∈ (0, 1) and every integer M ′, there are integers M and n0 such that if D is a
digraph on n ≥ n0 vertices and d ∈ [0, 1] is any real number, then there is a partition of the
vertices of D into V0, V1, ..., Vk and a spanning subdigraph D′ of D, called regularized digraph,
such that the following holds:

• M ′ ≤ k ≤ M ,

• |V0| ≤ εn,

• |V1| = . . . = |Vk| =: m,

• d+D′(x) > d+D(x)− (d+ ε)n for all vertices x ∈ D,

• d−D′(x) > d−D(x)− (d+ ε)n for all vertices x ∈ V (D),

• for every ordered pair ViVj with 1 ≤ i, j ≤ k and i ̸= j, the bipartite graph (Vi, Vj)D′

whose vertex classes are Vi and Vj and whose edge set consists of all the Vi − Vj edges
in D′ is ε-regular and has density either 0 or at least d,

• for all 1 ≤ i ≤ k the digraph D′[Vi] is empty.

Given a regularized digraph D′ with clusters V1, ..., Vt, the reduced digraph R is a digraph
with vertices V1, ..., Vt such that the edge ViVj exists only if D′ contains a ViVj edge. Observe
that, even if D′ is only oriented, R might have two edges between some vertices.

In [13], it is proved that discarding appropiate edges from the reduced digraph we can
preserve the semidegree and obtain the reduced oriented graph. This is formalized in the
following lemma.

Lemma 2.5 For every ε ∈ (0, 1) there exist integers M ′ = M ′(ε) and n0 = n0(ε) such that
the following holds. Let d ∈ [0, 1], let D be an oriented graph of order at least n0 and let
R′ be a reduced digraph and D′ the regularized digraph obtained by applying the Diregularity
Lemma to D with parameters ε, d and M ′. Then, R′ has a spanning oriented subgraph R
with

(a) δ+(R) ≥ (δ+(D)/|D| − (3ε+ d))|R|,

(b) δ−(R) ≥ (δ−(D)/|D| − (3ε+ d))|R|.

This oriented graph R is called the (ε, d)-reduced oriented graph.
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Chapter 3

Proofs

In the first section of this chapter we define new concepts and prove auxiliary lemmas neces-
sary to prove the main result of this thesis, which is shown in the second section. We finalize
the chapter with comments and conclusions regarding the results obtained in this work.

3.1 Auxiliary Lemmas

3.1.1 Connected antimatchings

Let P be an antiwalk. A vertex v ∈ V (P ) is called an out-vertex if P has one or more edges
of the form vx. If P has one or more edges of the form xv, v will be called in-vertex. Every
vertex in an antiwalk has to be an in- or an out-vertex, and it also can be both at the same
time. In the case that P has only one vertex v, we will say v is an in- and an out-vertex of
P .

Let C be a non-empty oriented graph and let a ∈ V (C). We say (C, a) is anticonnected if
for every v ∈ V (C) \ {a} there exists a non-trivial antiwalk Pv that starts in an edge of the
form ax and ends in v. This type of walk will be called an out-walk from a to v. We define
In(C, a) as the set of vertices v ∈ V (C) such that there exists an out-walk from a to v in
which v is an in-vertex. We define Out(C, a) as the set of vertices v ∈ V (C) such that v = a
or there exists an out-walk from a to v in which v is an out-vertex. Observe that In(C, a) and
Out(C, a) are not necessarily disjoint, and their union covers V (C) if (C, a) is anticonnected.

Let D be an oriented graph. We say M = {aibi}1≤i≤m is a connected antimatching of size
m in D if ai ̸= bj, ai ̸= aj, bi ̸= bj for every 1 ≤ i ̸= j ≤ m, and if there is a subdigraph C of
D such that M ⊆ E(C), (C, a1) is anticonnected and ai ∈ Out(C, a1) for every 1 ≤ i ≤ m.

Our first lemma links together this new concept, connected antimatching, with the min-
imum semidegree of an oriented graph. And the next one, Lemma 3.2, gives us a bound on
the distance between the edges of a connected antimatching in this context. Both proofs can
be done in an algorithmic way, as you may observe next.
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Lemma 3.1 Let d be a positive integer and let D be an oriented graph of minimum semidegree
δ0(D) ≥ d. Then D has a connected antimatching of size d.

Proof. Let M = {aibi}1≤i≤m be a connected antimatching of maximum size in D. For
contradiction, we assume that |M | < d. Note that |M | ≥ 1, because any single edge is a
connected antimatching. Define C as the largest induced subdigraph such that M ⊆ E(C),
(C, a1) is anticonnected and ai ∈ Out(C, a1) for every 1 ≤ i ≤ m. We claim that:

If v ∈ In(C, a1) (resp. v ∈ Out(C, a1)), then N−(v) ⊆ V (C) (resp. N+(v) ⊆ V (C)). (3.1)

Indeed, let v ∈ In(C, a1) and suppose that there exists a vertex x ∈ N−(v) \ V (C). By
definition, v is in-vertex in an antiwalk Pv from a1 to v. So, there exists an out-walk from a1
to x formed by Pv and the edge xv. This means that if we add the vertex x and the edge xv
to C, then we obtain a new subdigraph C ′ such that M ∈ E(C ′), (C ′, a1) is anticonnected
and C ′ is larger than C, a contradiction. The proof for v ∈ Out(C, a1) is analogous. This
proves (3.1).

Next, we show that:

If v ∈ In(C, a1) \ V (M) (resp. v ∈ Out(C, a1) \ V (M)), then N−(v) ⊆ V (M) (resp.
N+(v) ⊆ V (M)). (3.2)

In order to see this, take v ∈ In(C, a1)\V (M). By (3.1), we know N−(v) ⊆ V (C), so suppose
v has an in-neighbour x such that x ∈ V (C) \ V (M).

Define am+1 := x, bm+1 := v and let M ′ := {aibi}1≤i≤m+1. Then, M ′ ⊆ E(C) and
(C, a1) is anticonnected. Take an out-walk from a1 to v and add the edge xv at the end.
The resulting walk is an out-walk from a1 to x such that x is an out-vertex. Therefore, M ′

is a connected antimatching of size m + 1, a contradiction. We can proceed similarly for
v ∈ Out(C, a1) \ V (M). This proves (3.2).

We claim that |V (C) \ V (M)| ≤ 1. To prove this, suppose we have two vertices u, v in
V (C) \ V (M). Because of our assumption on the minimum semidegree of D and by (3.2),
u has at least d in-neighbours in V (M) or has at least d out-neighbours in V (M). And the
same holds for v. Since we assume that |M | < d, there is an edge xy ∈ M such that:

• one of xu, ux is in E(C), and

• one of yv, vy is in E(C).

Adding these edges that are in E(C) to M and removing xy gives us a larger connected
antimatching. This can be proved similarly as in the proof for (3.2). Thus, we conclude that
|V (C) \ V (M)| ≤ 1. In particular, and since we assume M to have less than d edges,

|V (C)| < 2d. (3.3)

Now, by definition of In(C, a1) and Out(C, a1), the out-neighbourhood of a1 is contained
in In(C, a1), and the in-neighbourhood of b1 is in Out(C, a1). Considering the minimum
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semidegree of D and (3.1), we have that |In(C, a1)|, |Out(C, a1)| ≥ d. By (3.3), we conclude
In(C, a1) ∩ Out(C, a1) ≠ ∅.

Take a vertex v ∈ In(C, a1) ∩ Out(C, a1). By (3.1), v has its in-neighbourhood and out-
neighbourhood contained in C. But this means that C has at least 2d vertices, since D is an
oriented graph and thus N+(v) ∩N−(v) = ∅, which contradicts (3.3).

In a digraph D, we define the distance between two edges e, e′ ∈ E(D) as the length of
the shortest antiwalk that begins in any order of the edge e and ends with any order of the
edge e′. We denote it as dist(e, e′). Observe that if M is a connected antimatching, then
dist(e, e′) is well defined for e, e′ ∈ M , since that antiwalk exists by definition.

Lemma 3.2 Let d ∈ N and let D be an oriented graph of minimum semidegree δ0(D) ≥ d.
Then there exists a connected antimatching M = {aibi}1≤i≤d such that dist(a1b1, aibi) ≤ 8d
for every 1 ≤ i ≤ d.

Proof. By Lemma 3.1, there exists a connected antimatching of size d in D. Let M :=
{aibi}1≤i≤d be one such that

∑d
i=2 dist(a1b1, aibi) is minimum.

For the sake of contradiction, suppose there exists k such that the shortest out-walk P
from a1b1 to akbk has length greater than 8d. We claim the following:

Every vertex in P appears at most once as an in-vertex and at most once as an
out-vertex. (3.4)

To see this, take a vertex v ∈ V (P ) and suppose it appears at least twice in P as in-vertex.
Let xv, yv ∈ E(P ). If v ̸= b1, then P has the form P1xvP2vyP3, with a1b1 the first edge of
P1 and akbk the last edge of P3. If v = b1, then P has the form xvP2vyP3, with xv = a1b1.
Observe that in both cases |P2| ≥ 2, as we need to start and end in v as an in-vertex. Since
both proofs are similar, we only show the proof for the case v ̸= b1. If we delete P2, we
are left with the subdigraph P ′ = P1xvyP3, which is an antiwalk, because P1 and P3 are
antiwalks and xv, yv ∈ E(P ). But this is a contradiction, because P ′ would be an out-walk
from a1b1 to akbk shorter than P . An analogous argument holds when v appears twice as an
out-vertex. This proves (3.4).

From (3.4) follows that a shortest out-walk does not repeat edges. Therefore, and since
we assumed that P has length greater than 8d,

|E(P )| > 8d. (3.5)

By (3.4) we obtain that every ai is incident to, at most, 4 edges in P . The same holds for
every bi. This gives us at most 8d edges having one of its extremes on M , and so, by (3.5),
there exists an edge f = xy such that x, y /∈ V (M).

Then we could replace akbk with f in M , with x taking the role of ak and y the role of
bk. This gives us a connected antimatching with the sum of the distances to a1b1 strictly less
than the sum for the original M , a contradiction.
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3.1.2 Tree decomposition

Let T be a tree. In this work we use the term tree decomposition not as it is used to define
treewidth, but as a partition of E(T ) in subtrees Ti. A type of tree decomposition is proved
by Ajtai, Komlós and Szemerédi [2]. The version we use can be found in [5]:

Lemma 3.3 (Besomi, Pavez-Signé, Stein [5]) Let β ∈ (0, 1), and let T be a rooted tree on
k+1 vertices. Then there exists a set W ⊆ V (T ) and a family T of disjoint rooted trees such
that

1. r(T ) ∈ W ;

2. T consists of the components of T −W , and each S ∈ T is rooted at the vertex closest
to the root of T ;

3. |S| ≤ βk for each S ∈ T ; and

4. |W | < 1
β
+ 2.

The pair (W, T ) will be called a β-decomposition of T .

Let T be an oriented rooted tree. We say (W, T ) is a β-decomposition of T if is a β-
decomposition for the underlying graph of T . Let (W, T ) be a β-decomposition of T . We
define Lm(T ) as the union of the first m levels of every S ∈ T . We now prove that after
removing Lm(T ) from T , the remainder of T still maintains a certain balance.

Lemma 3.4 Let k,m,∆ ∈ N+, α, β ∈ (0, 1
2
), such that 4

α
( 1
β
+ 2)∆m+1 ≤ k. Let T be a

balanced rooted antitree on k + 1 vertices, with ∆(T ) ≤ ∆. Then, for any β-decomposition
(W, T ) of T it is true that

1− α ≤ |Vin(T )− Lm(T )−W |
|Vout(T )− Lm(T )−W |

≤ 1 + α.

Proof. Let T be a balanced rooted antitree on k+1 vertices with ∆(T ) ≤ ∆ and let (W, T )
be a β-decomposition of T .

First, we are going to bound the size of Lm(T ) +W :

|Lm(T ) +W | < αk
4

. (3.6)

To see this, for every w ∈ W take the tree τw rooted in w that contains every S ∈ T such
that w is the parent of r(S), with r(S) a descendant of w in T . Observe that the first m
levels of any S ∈ T are included in the first m + 1 levels of some τw, and therefore the size
of Lm(T ) +W is at most the total size of the first m+ 1 levels of every τw.

Because ∆(T ) ≤ ∆, the first m + 1 levels of any subtree of T contains at most ∆m+1

vertices. This implies that |Lm(T )+W | ≤ ( 1
β
+2)∆m+1 < αk

4
, where the last inequality holds

by our condition on k, proving (3.6).
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Then, using the fact that |Vin(T )| = |Vout(T )| = k+1
2

, due to the balance of T , and applying
(3.6) we obtain the following:

|Vin(T )− Lm(T )−W |
|Vout(T )− Lm(T )−W |

≥
k+1
2

− |Lm(T ) +W |
k+1
2

≥ 1− αk

2k
≥ 1− α.

We calculate similarly for the upper bound:

|Vin(T )− Lm(T )−W |
|Vout(T )− Lm(T )−W |

≤
k+1
2

k+1
2

− |Lm(T ) +W |
≤ 1 +

αk

(2− α)k
≤ 1 + α,

which concludes the proof.

Let P = v0v1...vm be an antiwalk and T a rooted antitree. We say P and T are consistent
if at least one of the following holds:

i) |V (T )| = 1,

ii) r(T ) ∈ Vout(T ) and v0v1 is the first edge of P , or

iii) r(T ) ∈ Vin(T ) and v1v0 is the first edge of P .

Next, we prove a lemma that is helpful for embedding antitrees in antiwalks found in the
reduced oriented graph.

Lemma 3.5 Let ε ∈ (0, 1
4
), m,h, l ∈ N with 1 ≤ h ≤ l. Let D be an oriented graph and

C = C0...Ch−1Ch be an antiwalk in an (ε, 2
√
ε)-reduced oriented graph R of D. Let Z0 ⊆ C0

be a set with |Z0| > εm. For every 1 ≤ i ≤ h, let Zi ⊆ Ci be such that |Zi| ≥ 3
√
εm, with the

convention Zh+j = Zh−1, if j is odd, and Zh+j = Zh, if j is even. Let Xh−1 ⊆ Ch−1 \ Zh−1

and Xh ⊆ Ch \ Zh with |Xh−1|, |Xh| > εm. Let S be a rooted antitree with |S| < 2εm such
that C and S are consistent.

Then it is possible to embed the first l levels of S in ∪h
i=0Zi such that the i-th level of S

goes in Zi. Also, if the l-th level of S is not empty, then

a) if l−h is odd, every vertex in the level l is embedded in Zh−1 and is typical with respect
to Xh and to Zh, and

b) if l− h is even, every vertex in the level l is embedded in Zh and is typical with respect
to Xh−1 and to Zh−1.

Proof. Let r(S) be the root of S and denote the embedding by ϕ : V (S) −→ ∪h
i=0Ci. Without

loss of generality, suppose that C0C1 ∈ E(R), and r(S) ∈ Vout(S).

First, we embed r(S) in a typical vertex of Z0 with respect to Z1. Such vertex exists since
|Z0| > εm and there are, at most, εm vertices that are not typical with respect to Z1. Next,
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we will embed the first k = min{h, l − 1} levels of S such that the i-th level goes to typical
vertices in Zi.

Suppose we are embedding the i-th level of S. Let v be a vertex in the i-th level and
denote its father by pv. Because pv is in the (i − 1)-th level, ϕ(pv) is in Zi−1 and is typical
with respect to Zi. Observe that we use at most 2εm vertices in total in the embedding
and |Zi| ≥ 3

√
εm, thus at any point of the process |Zi| > 2

√
εm. Also note that ϕ(pv) has

more than εm neighbours in Zi and at most εm of them are not typical with respect to Zi+1.
Therefore there exists a vertex u in Zi ∩ N(ϕ(pv)) that is typical with respect to Zi+1. Fix
ϕ(pv) = u and delete u from Zi. Repeat this process for every vertex in the i-th level. We
do this process until the first k levels are completely embedded.

For the remaining levels, we will start by embedding the levels h+ i, with 1 ≤ i < l − k,
if there are any. Take a vertex v in the (h + 1)-th level. Because pv is in level h, we know
that ϕ(pv) is typical with respect to Zh−1. In the same manner we chose the images for the
first k levels, it is possible to find a vertex u in Zh−1 ∩N(ϕ(pv)) that is typical with respect
to Zh. Then, fix ϕ(v) = u and delete u from Zh. Repeat for every vertex in the (h + 1)-th
level. For v in the (h + 2)-th level the process is analogous, but observing that since ϕ(pv)
is in Zh and typical with respect to Zh−1, the image of v will be in Zh−1 and will be typical
with respect to Zh.

Take a vertex v in the (h+ i)-th level with 2 < i < l−h. If i is odd, we repeat the process
made for i = 1. Then, the image of v will be in Zh and will be typical with respect to Zh−1.
On the other hand, if i is even, we repeat the process made for i = 2, with the image of v in
Zh−1 and typical with respect to Zh. We repeat this process for every 1 ≤ i < l − h.

Finally, we embed the l-th level of S, if it is not empty. To do this, take v in the level l
of S. Suppose l − h is even and thus ϕ(pv) ∈ Zh−1. The case of l − h and ϕ(pv) ∈ Zh odd is
analogous. Then, choose a vertex u ∈ N(ϕ(pv))∩Zh that is typical with respect to Xh−1 and
to Zh−1. Note that at most 2εm vertices are not typical with respect to both Xh−1, Zh−1 at
the same time. Since |Zi| > 2

√
εm at any point of the process, then |N(ϕ(pv)) ∩ Zh| > 2εm

and thus there exists such vertex u. Fix ϕ(v) = u and update Zh = Zh \ u. Repeating this
process for every vertex in the l-th level completes the embedding of S.

3.1.3 Partition

The following lemma shows that it is possible to partition a family in N2 under certain
conditions. This will be useful to partition the trees in T without their first levels, with
(W, T ) a β-decomposition.

Lemma 3.6 Let m, t ∈ N, α > 0 and let (pi, qi)i∈I ⊆ N2 be a family such that:

a) (1− α)
∑

i∈I pi ≤
∑

i∈I qi ≤ (1 + α)
∑

i∈I pi,

b) pi + qi ≤ αm, for all i ∈ I, and

c)
∑

i∈I pi,
∑

i∈I qi < (1− 10α)mt.
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Then, there exists a partition J of I of size t such that

∑
j∈J

pj ≤ (1− 7α)m,
∑
j∈J

qj ≤ (1− 7α)m

for every J ∈ J .

Proof. For every i ∈ I, we define δi as the difference pi−qi and, similarly for every set S ⊆ I,
we define δS as

∑
i∈S(pi − qi) =

∑
i∈S δi.

Take a partition {A1, ..., At, R} of I, allowing the sets to be empty, such that:

i) |R| is minimal,

ii) for every j ∈ [t],
∑

i∈Aj
pi ≤ (1− 9α)m and δAj

∈ [−αm,αm].

Observe that such partition exists, since A1 = ... = At = ∅ satisfies ii). Note that the
second condition implies that

∑
i∈Aj

qi < (1− 7α)m:

∑
i∈Aj

qj =
∑
i∈Aj

(pj − δAj
) ≤ (1− 9α)m+ αm < (1− 7α)m.

Therefore, if R was empty, we could conclude the proof taking J = {A1, ..., At}. So,
assume otherwise. We claim that

δiδj ≥ 0 for every i, j ∈ R. (3.7)

To see this, suppose there exists a, b ∈ R such that δa · δb < 0. Without loss of generality,
suppose that pa ≥ pb. Because |R| is minimal and a ∈ R, we know that adding a to any Ak,
k ∈ [t], the thus obtained partition would not satisfy ii):

pa +
∑
i∈Ak

pi > (1− 9α)m or δAk
+ δa /∈ [−αm,αm].

If the first of these two conditions holds for each k ∈ [t], then we have∑
i∈Ak

pi > (1− 9α)m− pa > (1− 9α)m− αm ≥ (1− 10α)m,

which is a contradiction, because we would have
∑

i∈I pi =
∑

k∈[t]
∑

i∈Ak
pi ≥ (1 − 10α)mt

and, at the same time by c),
∑

i∈I pi < (1− 10α)mt. Therefore,

there exists k such that pa fits in Ak, this is, such that
∑

i∈Ak
pi + pa ≤ (1− 9α)m. (3.8)

So δAk
+ δa /∈ [−αm,αm]. Suppose that δa < 0. The case δa > 0 is proved similarly. We

claim that

δAk
∈ [−αm, 0). (3.9)
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To see this, suppose that δAk
/∈ [−αm, 0) and therefore δAk

∈ [0, αm] by ii). Then, adding δa
to δAk

we would obtain that
−αm ≤ δAk

+ δa ≤ αm,

with the first inequality coming from b) and δAk
∈ [0, αm]. The second inequality comes

from ii) and the assumption that δa < 0. This would contradict that δAk
+ δa /∈ [−αm,αm],

proving (3.9).

Since we supposed that pa ≥ pb, by (3.8) pb fits in Ak. So δAk
+ δb /∈ [−αm,αm].

Because we assumed δa · δb < 0 and δa < 0, δb > 0. Also, δb ≤ αm by b). Thus, by (3.9),
δAk

+ δb ∈ [−αm,αm], a contradiction to i) since we could add b to Ak and reduce the size
of R. This proves (3.7).

Next, we will prove that it is possible to assign every index in R to one of the sets Ai:

There exists a partition {R1, ..., Rt} of R such that
∑

i∈Aj∪Rj
pi ≤ (1 − 7α)m and∑

i∈Aj∪Rj
qi ≤ (1− 7α)m, for each j ∈ [t]. (3.10)

Observe that if we prove this claim, then the proof of the Lemma is complete, taking J as
{A1 ∪R1, ..., At ∪Rt}, with {Ri}ti=1 as in (3.10).

A collection {R1, ..., Rt} of subsets of R will be called good if the sets {R1, ..., Rt} are
pairwise disjoint, |R \ (R1 ∪ ... ∪ Rt)| is minimal and, for each j ∈ [t], the conditions∑

i∈Aj∪Rj
pi ≤ (1− 7α)m,

∑
i∈Aj∪Rj

qi ≤ (1− 7α)m are satisfied.

To see (3.10), take a good collection {R1, ..., Rt} of R. If R \ (R1 ∪ ...∪Rt) is empty, then
the proof is complete. If not, take k ∈ R \ (R1 ∪ ... ∪ Rt). Because |R \ (R1 ∪ ... ∪ Rt)| is
minimal, we have that

(1) pk +
∑

i∈Aj∪Rj
pi > (1− 7α)m, or

(2) qk +
∑

i∈Aj∪Rj
qi > (1− 7α)m.

From now on we assume that δi ≥ 0 for every i ∈ R, since by (3.7), there are only two
cases: δi ≥ 0 for every i ∈ R or δi ≤ 0 for every i ∈ R. The proof for the other case (that
is, δi ≤ 0 for every i ∈ R) is analogous and can be done inverting the roles of p and q in the
next part of the proof.

We know that∑
i∈Aj∪Rj

pi =
∑

i∈Aj∪Rj

(qi + δi) ≥
∑

i∈Aj∪Rj

qi + δAj
≥

∑
i∈Aj∪Rj

qi − αm, (3.11)

with the inequalities coming from δRj
≥ 0 and ii) for δAj

.

We claim that ∑
i∈Aj∪Rj

pi > (1− 10α)m. (3.12)

Indeed, this is easy to see if (1) holds. If (2) holds, note that
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∑
i∈Aj∪Rj

pi ≥
∑

i∈Aj∪Rj

qi − αm

> (1− 7α)m− qk − αm

> (1− 10α)m,

by (3.11) and b), proving (3.12).

Using (3.12) we calculate∑
i∈I

pi >
∑
j∈[t]

∑
i∈Aj∪Rj

pi > (1− 10α)mt

which contradicts c), completing the proof of (3.10).

3.2 Proving Theorem 1.9

Proof. Defining the constants.

Let ε := η4

106
. Using Lemma 2.4 with (ε, 2

√
ε) playing the role of (ε, d), we obtain constants

m0 and M0, such that we can apply the lemma to digraphs on n ≥ m0 vertices and the
resulting regularized digraph will be partitioned into, at most, M0 clusters.

Let β := ε
2M0

. Suppose ∆ ≥ 3 and set

n0 := max
{
m0,

1

βη
,
12M2

0

ε2

(
8M0(1 + η/2)

1 + η
+ 2

)
,
12M2

0

ε2
∆(∆− 1)8(1+η/2)· M0

1+η
+1
}

In conclusion, we have 1
n0

≪ β ≪ ε ≪ η < 1.

Let n ≥ n0 and k ≥ ηn given.

Preparing the graph.

Let D be a digraph on n vertices. We apply Lemma 2.4 with (ε, 2
√
ε) to obtain D′, a

digraph with r ≤ M0 clusters C1, ..., Cr of size m and δ0(D′) > (1 + η
2
)k
2
. We divide each

cluster of D′ into two slices: C1
i of size 4

√
εm and C2

i of size (1− 4
√
ε)m.

We define R as the reduced oriented graph of D′, which consists of vertices C1, ..., Cr,
and has minimum semidegree greater than ⌈(1 + η

2
) k
2n
r⌉ =: t, as stated in Lemma 2.5. By

Lemma 3.2, R has a connected antimatching M = {aibi}ti=1 such that

dist(a1b1, ajbj) ≤ 8t, for j ∈ [t]. (3.13)
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Preparing the tree.

Let T be a given balanced rooted antitree with k edges and ∆(T ) ≤ ∆. By Lemma 3.3,
we obtain a β-decomposition (W, T ) of T , with |W | < 1

β
+ 2. For each S ∈ T , we define

(pS, qS) := (|Vin(S)− L16t+2(T )|, |Vout(S)− L16t+2(T )|).

We claim that the family (pS, qS)S∈T satisfies a), b) and c) of Lemma 3.6, with I as T :
to see this, we choose α =

√
ε and, by Lemma 3.4, this gives us a) of Lemma 3.6.

Because we have a β-decomposition, we know that pS + qS ≤ |S| ≤ βk. So, we have

βk ≤ βn ≤
√
εn

2M0

≤
√
εm

which implies b): pS + qS <
√
εm for all S ∈ T , and thus, condition b) of Lemma 3.6

holds.

Lastly, to see c), we observe that by the way we chose our constants the following holds:∑
S∈T

pS ≤ k + 1

2
≤ 1

2
(1− ε)(1− 10

√
ε)(1 +

η

2
)
k

2

≤ (1− 10
√
ε) · (1− ε)n

r
· ⌈(1 + η

2
)
k

2n
r⌉

≤ (1− 10
√
ε)mt,

with the first inequality coming from the fact that T is balanced. Observe that the same
holds for

∑
S∈T qS, completing the proof of c).

Therefore, we can apply Lemma 3.6, obtaining a partition {Pj}tj=1 of T , such that

For every j ∈ [t],
∑

i∈Pj
pi,

∑
i∈Pj

qi ≤ (1− 7
√
ε)m. (3.14)

The embedding.

The idea of the embedding procedure is to execute an iterative process. To simplify the
explanation, we will refer as Cai (resp. Cbi) to the cluster corresponding to ai (resp. bi)
in our reduced oriented graph R, for every antimatching edge aibi. The process starts by
embedding the root of T in C1

a1
. After that, in every step of the process, we will embed,

for some S ∈ T , the antitree T [S ∪WS], where WS ⊆ W is the set of all seeds having their
parent in S. We choose S such that pr(S), the parent of r(S), has already an image ϕ(pr(S)) in
some cluster C̄. Suppose S ∈ Pj. By (3.13), we know that there is an antiwalk C̄C0...ChCaj

in R with h < 16t, as C̄ is in an edge of M or antiwalk in R. Then, thanks to the bounded
degree of T and the way we chose ϕ(pr(S)) earlier, we can assure that ϕ(pr(S)) has enough
neighbours in C0 to embed the root of S. So, we embed the first 16t+ 2 levels of T [S ∪WS]
in C1

0 , ..., C
1
h, C

1
aj

, and the rest in {C2
aj
, C2

bj
}, repeating the procedure until there are no more

antitrees left in T to embed.

Let us make this sketch more precise. Let V1 =
∪r

i=1C
1
i and V2 =

∪r
i=1 C

2
i . We embed

r(T ) in a vertex of C1
a1

that is typical towards C1
b1

. If N(r(T )) ⊆ W , we embed N(r(T )) in
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vertices of C1
b1

that are typical towards C1
a1

. We repeat this process every time until there
exists an S ∈ T with its root already embedded. We will show that at every step of the
process, this means, every time we embed a new antitree T [S ∪WS], the following conditions
are satisfied:

(A) for each S ∈ T , the first 16t+2 levels of T [S ∪WS] are embedded into V1, and the rest
into V2,

(B) for each S ∈ Pj, Vout(T [S ∪WS]) \ L16t+2(T ) is embedded in C2
aj

and Vin(T [S ∪WS]) \
L16t+2(T ) is embedded in C2

bj
,

(C) every vertex in Vin(T [S ∪WS]) (resp. Vout(T [S ∪WS])) is embedded in a cluster corre-
sponding to an in-vertex (resp. out-vertex) of an antiwalk of length at most 8t starting
in a1b1 and ending in another edge of M , and

(D) for every w ∈ W , the image of w is typical with respect to C1
i , with Ci a cluster in an

antiwalk of length at most 8t starting in a1b1 and ending in another edge of M .

Start by assuming we are in a step of the process and about to embed an antitree T [S∪WS],
with S ∈ T , such that the parent of r(S) is already embedded in a typical vertex of a cluster
C̄, by (D). Since S ∈ Pj, for some j ∈ [t], we are looking for an antiwalk of length at most
16t+ 2 from C̄ to Caj to embed the first 16t+ 2 levels of T [S ∪WS]. Because of (C), (3.13)
ensures the existence of a walk from C̄ to Ca1 and another from Ca1 to Caj , with total length
less than 16t+ 2.

Suppose r(S) ∈ Vin(S). To see that the first 16t+2 levels of T [S ∪WS] can be embedded
in that sequence of clusters, it suffices to apply Lemma 3.5. Let us see that the hypotheses
of the lemma are satisfied: we already have the desired path C0...Ch, with C1C0 and CajCbj

its first and last edges, and Ch−1 ∪ Ch = Caj ∪ Cbj .

Define Xh−1 as the unoccupied vertices of C2
h−1 and Xh as the unoccupied vertices of C2

h.
By (A), the only vertices in C2

h−1, C
2
h are seeds and antitrees in Pj without their first 16t+2

levels. By (3.14) and the size of C2
h−1, C

2
h, we conclude that |Xh−1|, |Xh| > 2

√
εm > εm.

Let pr(S) be the parent of r(S). Define Z0 as N(ϕ(pr(S)))∩C1
0 minus the already occupied

vertices of C1
0 . For 0 < i ≤ h, define Zi as C1

i minus its already occupied vertices. So, the size
of Zi is 4

√
εm minus the number of occupied vertices in C1

i . We will see that the number of
occupied vertices in any C1

i is at most
√
εm: because the tree has bounded maximum degree,

the first 16t + 2 levels of S ′ have at most ∆(T ) · (∆(T ) − 1)16t+1 vertices (or 16t + 2 in the
case ∆ < 3). By (A), we know that C1

i has only been occupied with vertices from L16t+2(T )
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and W . Hence, we can compute the amount of vertices used for embedding L16t+2(T ):

|W | ·∆(T ) · (∆(T )− 1)16t+1 ≤ 3

β
·∆(∆− 1)16t+1

=
3 · 2M0

ε
∆(∆− 1)16(1+η/2)· k

2n
·r+1

≤ 3 · 2M0

ε
∆(∆− 1)8(1+η/2)· M0

1+η
+1

≤ ε · n0

2M0

≤ εm

Using in the third line that r ≤ M0 and that k
n
≤ 1

1+η
, which comes from the fact that

n = |V (D)| > 2δ0(D) > (1 + η)k.

Then the number of occupied vertices for the first 16t+ 2 levels of every tree in T is, at
most, εm. Since the seeds are also bounded by εm, we have that the number of occupied
vertices in any C1

i is less than
√
εm.

Because ϕ(pr(S)) was chosen typical with respect to the unoccupied vertices of C1
0 , |Z0| ≥

3εm. For 0 < i ≤ h, we would have that |Zi| > 3
√
εm. Thus, we can apply Lemma 3.5 and

we conclude the embedding of the first 16t+2 levels of T [S ∪WS]. This construction proves
(A), (C) and (D) for the vertices in the first levels.

Now it is left to show that the remaining levels of T [S ∪ WS], if there are any, can be
embedded. Let v be a vertex in the level 16t + 3 of T [S ∪WS]. Its parent, pv, is embedded
in Zh or Zh−1, depending on the orientation of vpv in T . Suppose that ϕ(pv) ∈ Zh−1 and
that Ch−1 = Caj . Because of Lemma 3.5, ϕ(pv) is typical with respect to Xh. Observe that,
at any point of the process, |Xh| ≥ 2

√
εm. This is true because |C2

h| = (1 − 4
√
ε)m and

the number of occupied vertices in C2
h is, at most, (1 − 6

√
ε)m. This comes from (A) and

(B), both of which state that the occupied vertices in C2
h are only seeds, that are less than√

εm, and the in-vertices of Pj, that add less than (1 − 7
√
εm) by 3.14. This implies that

|N(ϕ(pv)) ∩Xh| ≥ 2εm.

If v ∈ S, we choose its image u in Xh typical with respect to Xh−1. If v ∈ WS, we choose
its image u in Xh and it has to be typical with respect to Zh−1 by (D). This is possible in
both cases since there are, at most, εm vertices in Xh that are not typical with respect to
Zh−1 or Xh−1 and |N(ϕ(pv)) ∩Xh| ≥ 2εm. Fix ϕ(v) = u and delete u from Xh. Repeat this
process for every vertex in the (16t+3)-th level of T [S∪WS]. This completes the embedding
of the whole (16t+ 3)-th level.

The process for the remaining levels of T [S ∪WS] is the same as the one we did for the
(16t + 3)-th level, so we repeat it until there are no more levels to embed. By construction,
(A), (B), (C) and (D) hold for T [S ∪WS]. This completes the embedding of T [S ∪WS].
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3.3 Conclusions

As usual in research, there are many questions and paths open to keep studying. For instance
our main result, Theorem 1.9, leaves place for questions and opportunities to be improved.
An example of these questions is:

Question 3.7 Does Theorem 1.9 remain true if the antitree is not balanced?

For simple graphs, there are results on embedding trees in which the maximum degree of
the tree is not bounded by a constant, but by a function in n, the order of the host graph:

Theorem 3.8 (Komlós, Sárközy and Szemerédi [15]) For all δ > 0, there are n0 and c such
that every graph G on n ≥ n0 vertices with δ(G) ≥ (1 + δ)n

2
contains each n vertex tree T

with ∆(T ) ≤ cn
log(n) .

So, instead of removing a condition as we asked in Question 3.7, improving one is what
inspires the following question.

Question 3.9 Could the condition on the maximum degree of the antitree in Theorem 1.9
be improved?

Although, as there exist conditions to be improved in Theorem 1.9, one that is tight is
the condition on the minimum semidegree. The example of the C3 blow-up mentioned in the
introduction for Conjecture 1.6 works, since the antipath is a balanced antitree. The example
also works for other antitrees, since the problem is the same: we would need vertices from
the three clusters, and is impossible to have that without going through a directed path of
length 2.

k

2

k

2

k

2

Figure 3.1: Blow-up of a C3.

Going back to Conjecture 1.6, this conjecture was stated for every orientation of an
oriented path and we only studied the antidirected one. Thus, the natural question to ask
given our result would be:
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Question 3.10 Does Theorem 1.9 work for oriented trees that are not antidirected?

The approach we followed in this thesis may not be useful for these unanswered questions.
In this thesis the Regularity Lemma and the connected antimatchings were very helpful tools,
since we benefited from the non existent directed paths in the tree. But, for example, for
other orientations of a tree, using antimatchings may not be the best approach. Though the
same idea elaborated on this thesis using a different structure depending on the orientation
we are looking for might work. So, innovating in methods and techniques could be a way to
answer the mentioned questions.
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