
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

ESTUDIO DE PROTOCOLOS DISTRIBUIDOS INTERACTIVOS SOBRE CLASES DE
GRAFOS HEREDITARIOS.

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MATEMÁTICAS

APLICADAS

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL MATEMÁTICO

BENJAMÍN ANTONIO JÁUREGUI FLORES

PROFESOR GUÍA:
IVÁN RAPAPORT ZIMERMANN

PROFESOR GUÍA 2:
PEDRO MONTEALEGRE BARBA

COMISIÓN:
MARTÍN MATAMALA VÁSQUEZ

Este trabajo ha sido parcialmente financiado por Proyecto Fondecyt 11190482, CMM ANID
PIA AFB170001, CMM ANID BASAL ACE210010 y CMM ANID BASAL FB210005

SANTIAGO DE CHILE
2022

Resumen

ESTUDIO DE PROTOCOLOS DISTRIBUIDOS INTERACTIVOS SOBRE CLASES DE
GRAFOS HEREDITARIOS.

En el presente trabajo se estudian protocolos distribuidos para el reconocimiento de ciertas
clases de grafos geométricos. En estos protocolos, existe un probador con poder ilimitado
pero no confiable, llamado Merĺın, que le entrega mensajes a los nodos de un grafo, buscando
convencerlos de que el grafo cumple un cierto predicado. Posterior a que Merĺın entrega los
mensajes, los nodos pueden entrar de inmediato en la etapa de verificación, durante la cual
intercambian los mensajes que poseen con sus vecinos y, cada uno, de forma local, decide con
esta colección de mensajes si acepta o rechaza. Se debe cumplir que si el grafo satisface el
predicado, entonces existe una asignación de mensajes de Merĺın a los nodos que hace que
todos acepten. Si no cumple el predicado, para cualquier colección de mensajes entregados
por Merĺın, al menos un nodo debe rechazar. Este modelo, donde inmediatamente después
de recibir los mensajes dados por Merĺın los nodos entran en la etapa de verificación, es el
modelo llamado proof labeling schemes. Si se permite que haya más rondas de interacción
entre los nodos y Merĺın, al modelo lo llamamos protocolos interactivos distribuidos.

El primer caṕıtulo se dedica a definir toda la teoŕıa necesaria de Teoŕıa de Grafos y
algunos resultados de Teoŕıa de Números, junto con protocolos distribuidos para resolver
ciertos problemas particulares que son usados como subrutinas en los protocolos distribuidos
aqúı diseñados. También se introducen las clases de grafos geométricos de intersección que
son estudiados en este trabajo: Grafos de permutación, trapezoidales, circulares, k-circulares-
poligonales y cuadrado unitario.

En el segundo caṕıtulo, se estudian los grafos de permutación y trapezoidales, donde se
da una caracterización de ellos y un protocolo (proof labeling scheme) para reconocerlos.

En el tercer caṕıtulo se introducen y resuelven de forma distribuida dos problemas in-
dependientes, llamados Corresponding Order y Linear Assignation, que permiten
compartir información verificable entre nodos que no son vecinos.

En el cuarto caṕıtulo se estudian las clases de grafos circulares, k-circulares-poligonales y
de cuadrado-unitario. Para estas tres clases se presentan algoritmos distribuidos interactivos
que necesitan de 3 rondas de interacción alternada entre Merĺın y los nodos para reconocerlas.

Finalmente, en el quinto caṕıtulo se prueba que el largo de los mensajes que son necesarios
para reconocer cualquiera de las clases estudiadas en este trabajo es de Ω(log n).

i

THE STUDY OF INTERACTIVE DISTRIBUTED PROTOCOLS ON HEREDITARY
GRAPH CLASSES.

In the present work distributed protocols for the recognition of certain classes of geo-
metric graphs are studied. In these protocols, there is an unreliable prover with unlimited
computational power, called Merlin, who sends messages to the nodes of a graph, seeking to
convince them that the graph meets a certain predicate. Once Merlin sends the messages,
the nodes can immediately enter the verification stage, during which they exchange the in-
formation they have with their neighbors and each node locally decides with this information
whether to accept or reject. It must be true that if the graph satisfies the predicate, then
there is a Merlin assignment of messages to nodes that makes them all accept. If it does
not satisfy the predicate, for any information delivered by Merlin, at least one node must
reject (that is, Merlin cannot fool the nodes). This model, where immediately after receiving
the information given by Merlin the nodes enter the verification stage, is the proof labeling
schemes model. If we allow more rounds of interaction between the nodes and Merlin, where
the information that nodes send to Merlin are random bits, the model is called distributed
interactive protocols.

In the first chapter of the present thesis we recall some well-known notions of Graph
Theory and some results of Theory of Numbers, together with some distributed protocols
(interactive and non-interactive) that solve particular problems that are used as subroutines
in our distributed protocols. The classes of geometric intersection graphs that are studied in
this work are also introduced: permutation, trapezoid, circle, k-polygon circle and unit-square
graphs.

In the second chapter, permutation and trapezoid graphs are studied, and we obtain a
characterization that allows us to give an algorithm with only one round of interaction (proof
labeling scheme) to recognize (separately) both classes of graphs, with messages of maximum
length O(log n).

In the third chapter, two independent problems, called Corresponding Order and
Linear Assignation, are introduced and solved in a distributed way. These algorithms
have a relevance beyond the application given in this work, since they allow messages to be
shared between pairs of nodes that are not neighbors, being able to verify that both received
the correct messages.

In the fourth chapter, the classes of circle, k-polygon circle and unit-square graphs are
studied. For these three classes the interactive distributed algorithms which are introduced
use 3 rounds of interaction between Merlin and the nodes to recognize them, with a maximum
message length of O(log n) bits.

Finally, in the fifth chapter, Ω(log n) lower bounds are presented in the number of bits
necessary to recognize any of the classes studied in this work. This implies that the algorithms
presented in Chapter 2 are optimal in terms of shared information, and the protocols in
Chapter 4 are optimal in terms of shared information, and they could only be improved by
reducing the number of interaction rounds.

ii

Para mi mamá, papá y hermana.

iii

Acknowledgments

Primero que todo, agraceder a mis profesores gúıas Ivan Rapaport y Pedro Montealegre por
su gran ayuda durante todo el proceso. Gracias por la ayuda para avanzar en el desarrollo
de mi investigación, las gratas conversaciones y relación que se tuvo durante el proceso.
También agradecer al profesor Martin Matamala por su dedicación en la lectura de mi tesis,
que produjo que los que leerán a continuación (espero) este mejor redactado.

Agradecer también a los profesores y funcionarios del DIM. Especialmente al profesor
Marcos Kiwi con quien trabaje como a en diversos ramos, y a Karen y Silvia, por ayudarme
con mis dudas y los (no pocos) errores burocraticos que cometi en el camino.

También, agradecer por su enorme apoyo y cariño a mi familia. Gracias a mi madre por
el amor y preocupación eterna, por apoyarme siempre, levantarme en momentos dificiles,
y ser ejemplo de superación y resiliencia. Gracias a mi padre por su amor y dispocisión
infinita a ayudarme, por irme a buscar a la hora que sea, y emocionarse tanto con cada logro
que consigo. A mi hermana por su amor, ser una segunda madre y amiga. Por apoyarme,
guiarme y ser un ejemplo. Gracias a los tres por creer en mi cuando a veces ni yo lo hago,
y por apoyarme en cada decisión que tomo. También agradecer a todas mis mascotas por
alegrarme la vida. Especialmente al Boby, Chiqui y Donald por acompañarme en tantas
noches de estudio.

Gracias a mis amigos y grandes personas que conoćı a lo largo de mi paso por la Univer-
sidad. Mis primeros en la Universidad, Caro, Javier, Jota, Carlos y Pipin. A mis amigos del
DIM Gonzalo, Manu, Mariano, Pedro, Fabian, la oficina 435 y tantos otros por el aguante, los
momentos de estudio, y sobre todo los momentos de distensión a lo largo de la ardua traveśıa
del DIM. También agradecer a Yorsh por las siempre gratas (y duras) conversaciones de la
vida.

A mis amigos de toda vida Pelao, Andy, Chino, Nicky y Chelbi, por la gran amistad que
hemos forjado a lo largo de los años, y las risas interminables en cada junta. Cada momento
dificil fue mas ameno después de juntarme con ustedes.

Finalmente, agradecer a mi querido Colo Colo, por las alegŕıas y las penas en todos estos
años. Gracias por los buenos momentos que tanta felicidad me dan, y por los malos momentos
que me permit́ıan descargar la frustración en el estadio (o frente a un televisor) durante 90
minutos.

iv

Table Of Content

1.1 Distributed Model . 5

1.2 Geometric Intersection Graph Classes . 6

1.3 Toolbox . 10

1.3.1 Spanning Tree and Related Problems 10

1.3.2 Problems Equality and Permutation 12

2 Proof Labeling Schemes 15

2.1 Permutation Graphs . 15

2.2 Trapezoid Graphs . 20

3 Distributed Interactive Protocols 25

3.1 Corresponding Order Problem . 25

3.2 Linear Assignation Problem . 28

4 Three-round Distributed Interactive Protocols 30

4.1 Circle Graphs . 30

4.2 Polygon Circle Graphs . 33

4.3 Unit-Square Graphs . 37

5 Lower Bounds 49

5.1 Permutation and Trapezoid Graphs . 49

5.2 Circle And k-polygon-circle Graphs . 51

5.3 Unit Square Graph . 53

v

Bibliography 66

vi

List of Figures

1.1 An example of a permutation graph with its corresponding intersection model. 7

1.2 An example of a circle graph with its corresponding intersection model. . . . 7

1.3 An example of a permutation graph with its corresponding intersection model. 8

1.4 An example of a 3-polygon circle graph with its corresponding intersection
model. 8

1.5 An example of a unit square graph with its corresponding intersection model. 9

2.1 Each trapezoid T is defined by the set T = {b1, b2, t1, t2}. 20

2.2 Representation of the two possible intersection cases. 21

4.1 Example of a graph G in the left hand, and a proper unit-square model in the
right hand. 37

4.2 Left: A unit square graph G. Right: A nice unit square model of G 39

4.3 . 40

4.4 Unit square model of K4 . 41

4.6 Four orders of Figure 4.4. 41

4.7 To the left, a path with 5 nodes and to the right an invalid unit square model 42

4.8 Invalid model for the path of 5 nodes in Figure 4.7 43

5.1 Graph Q3 and a permutation model for Q3. 50

5.2 Graph σ12
▷◁ (Q3), where in red are represented the crossing edges. Observe that

this graph is not a trapezoid graph, as it contains an induced cycle of length 4. 50

5.3 width=0.2 . 51

5.4 Graph σi,i+1
▷◁ (M4), where in red are represented the crossing edges. 51

vii

5.5 Graph S1 . 53

5.8 Sets H1 and H2 in S2 . 54

viii

Introduction

Distributed Computing seeks to study scenarios in which the participants of a network,
characterized as nodes of a graph, must carry out a certain task, or make a decision regarding
a global property of the network (for example, if there is a certain number of participants all
connected to each other). The key point is that, for these tasks, the nodes only have local
information that they can share with their network neighbors (those with whom they are
connected) to carry out, each of them, the specified task.

Specifically, in the tasks that correspond to decision algorithms, the nodes must decide
whether or not the network satisfies a certain predicate, and for this, as each node only has
local information (for example, the number of neighbors it has) together with information
delivered by its neighbors in a certain number of rounds, it must decide locally whether to
accept or reject. To be correct, distributed decision algorithms must satisfy that, if the
graph satisfies the property being studied, then all the nodes of the graph must accept; and,
if it does not, then at least one node must reject.

The local nature of the information known by each participant brings an inherent problem:
For some cases it is necessary for two nodes whose distance in the network is very large to
share information with each other. For instance, in order to determine if the network (seen
as a graph) has a cycle of odd size. This means that, despite the fact that the number of
messages exchanged in each round is small, many interaction rounds are needed in order to
verify whether or not the network meets the proposed predicate.

One way to measure the efficiency of distributed algorithms is to study the maximum
amount of bits that needs to be exchanged in each round by the nodes, called the proof-
size of the algorithm. In this sense, in recent years a distributed algorithm model called
proof labeling schemes (PLS) has been proposed, which correspond to distributed decision
algorithms in which the nodes first receive messages delivered by an all-powerful but untrusted
prover called Merlin, and then perform a round where they exchange messages with their
neighbors. Finally, each node makes a decision of where to accept or reject . The proof-
size of the algorithms in this model corresponds to the maximum number of bits that needs
to be exchanged (by Merlin or between the nodes) to carry out the decision. An example
of this model may be to form a valid spanning tree. To do this, Merlin communicates to
each node the root r ∈ V of the spanning tree, as well as who is its parent and the distance
to the root. With this information, the nodes exchange messages between themselves and
verify that they all were told that the same node r was the root, in addition to verifying that
if its distance from the root is d, then the distance from its parent to the root is d − 1. If
all nodes check this information, then the spanning tree proposed by Merlin is valid and all
nodes accept; if not, the model is invalid and at least one node rejects.

The fact that there is an entity with unlimited computing power is not a problem for
the model, since these models are inherently algorithms of verification, so the aim is that,
regardless of the messages delivered by Merlin, he is not able to fool the nodes if the graph
does not satisfy the property. In this sense, this round between the nodes can be understood
as the distributed version of the NP class, because it is known that the NP class is equal to
the class of languages which have a deterministic interactive proof (dIP class).

1

There are some problems for which lower bounds on the proof-size of proof labeling
schemes have been found. For example, any PLS solving the symmetry problem, where
the nodes are asked to decide whether the graph G has a non-trivial automorphism (i.e.,
a non-trivial one-to-one mapping from the set of nodes to itself preserving edges) requires
a proof-size of Ω(n2) [76]. To study how many rounds of interaction affects the proof-
size necessary to solve certain problems, the notion of distributed interactive protocols was
introduced in [99] and subsequently studied in [35, 62, 126, 128]. Specifically, this model
seeks to study protocols where, by allowing the interaction between the nodes and Merlin,
the proof-size is significantly reduced . In the case of symmetry problem, if three rounds of
interaction between the nodes and Merlin are allowed, the proof-size is reduced to O(log n)
bits [99], which represents an exponential optimization compared with the proof-size needed
in the PLS model.

In this work we are interested in developing distributed decision algorithms to decide if
a graph is in some geometric intersection graph class. A graph G = (V, E) is a geometric
intersection graph if every node v ∈ V is identified with a geometric object of some partic-
ular type, and two nodes are adjacent if the corresponding objects intersect. The geometric
intersection class have all the graphs defined by the same geometric object. Geometric inter-
section graph classes have been studied from both the theoretical and practical point of view.
On the one hand, many hard problems can be efficiently solved or approximated when the
input graph is restricted to a geometric intersection class of graphs. On the other hand, these
graphs appear naturally in many applications such as sensor networks, scheduling problems,
and others. The recognition of graph classes has started to be intensively studied. Differ-
ent results related to the recognition of trees, bipartite graphs, bounded diameter graphs,
triangle-free graphs, planar graphs, bounded genus graphs, H-minor free graphs, etc., have
been obtained. [52, 53, 19]

The goal of the present work is to design efficient distributed protocols for the recogni-
tion of relevant geometric intersection graph classes, namely permutation graphs, trapezoid
graphs, circle graphs, polygon-circle and unit square. More precisely, for the two first classes
proof labeling schemes are given to recognizing them with logarithmic proof-size. For the
other two classes, three-round distributed interactive protocols with O(log n) proof-size are
presented. Finally, logarithmic lower-bounds on the proof-size of any proof labeling schemes
recognizing any of the aforementioned geometric intersection graph classes are given.

Organization

In Chapter 1 we present the basic definitions related to graph theory needed in this work as
well as the formal definition of the distributed models, along with some known and important
distributed result used as sub-routines in some of the results presented later.

In Chapter 2 the proof-labeling schemes to recognize the classes of permutation and
trapezoid graphs are presented. For this, first we present some structural results related to
this classes that are used later to present the distributed protocols. Finally, the correctness
of algorithms are proved.

In Chapter 3, two important distributed interactive protocols are presented, the Cor-

2

responding Order Problem and Linear Assignation Problem. This two problem
are used later in the recognition of the remainder geometric intersection classes, but they
have have their own value because they represent two specific problems related to the order
and how information is transmitted in a distributed network that appear inherently in many
problems when they seek to be solved in a distributed model.

In Chapter 4, we present distributed interactive protocols to recognize the class of cir-
cle, polygon-circle and unit square graphs. Each of them needs three rounds of interaction
between the nodes and Merlin. For the first two of them, we first present some structural
characterization to be used later in the protocols. For the recognition of unit square graphs,
it is necessary to first define some characterizations of the square model used in the definition
of the class, with the idea to define a more appropriate language to later present the protocol.

Finally, in Chapter 5 we present lower bounds to the size proof of each class studied in this
work in the proof-labeling scheme model, which give us that the PLS presented in Chapter 2
are optimal respect the proof-size of them. Also, this gives a clue that the only improvement
in the algorithms presented in Chapter 4 are respect the number of round needed, but no
regarding the proof-size. The technique used to achieve this lower bounds relieve in a useful
theorem to get lower bounds, where the main work is in create an appropriate graph.

Results
The results obtained in the present work can be summarized in the following table.

Class Rounds Proof-size
permutation 1 O(log n)

trapezoid 1 O(log n)
circle 3 O(log n)

polygon-circle 3 O(log n)
unit-square 3 O(log n)

Also, regarding lower bounds, we get, for the proof labeling scheme model, a lower bound
on the proof-size of O(log n) bits.

3

Preliminaries

A simple and undirected graph is a pair G = (VG, EG) of sets such that E ⊆ {{u, v}}u,v∈V ,
where the elements of V are called the nodes of the graph and the elements of E the edges.
To avoid heavy notation, the edges e ∈ E with e = {u, v} will be denoted simply as e = uv1.
If the graph G is obvious by context we omit the subindex and we simply denote G = (V, E).
A graph G = (V, E) is complete if for all u, v ∈ V , uv ∈ E.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there exists a one-to-one
function f : VG → VH such that for all u, v ∈ VG, uv ∈ EG iff f(u)f(v) ∈ EH .

Given a graph G = (V, E), we define the open neighbor of a node v as N(v) = {u ∈
V : uv ∈ E}. The closed neighbor is denoted as N [v] and correspond to N(v) ∪ {v}. The
degree of v is the size of N(v) and it is denoted as d(v).

Given two graphs H = (VH , EH) and G = (VG, EG), we say H is subgraph of G when
VH ⊆ VG and EG ⊆ EG. In the same way, given a subset of nodes U ⊆ V , the induced
subgraph given by U is (U, E(U)), where E(U) are the edges with both nodes in U .

Given a graph G = (V, E), a path P = (VP , EP) in G is a subgraph of G such that there
exists an enumeration of the nodes VP = {v1, ..., vk} and EP = {{vi, vi+1} : i ∈ [k − 1]}. The
nodes v1 and vk are called the endpoints of the path. The graph G is said to be connected if
there exists a path between every pair of nodes.

A cycle C = (V, E) is a graph such that C is a path and the two endpoints are connected,
i.e., v1vk ∈ E. Given a graph T , we say T is a forest iff T does not have any cycle as
subgraph. If T is also connected, then we say that T is a tree. A clique of a graph G = (V, E)
is a subset of vertices C ⊆ V such that every two distinct vertices in the clique are adjacent.
That is, the induced subgraph by C is complete.

In the rest of the work, we always assume that the input graph is connected. For more
details about graph definitions we refer to the textbook of Diestel [43].

In the following, all graphs G = (V, E) are simple and undirected. When the nodes of an
n-node graph are enumerated with unique values in [n], we denote G = ([n], E).

On other side, given n, m ∈ N with n < m, we denote as Zn the set {0, ..., n − 1}, [n] the
set of integers {1, ..., n}, [n, m]N = [n, m] ∩N (where [n, m] is the standard real interval) and
Sn the set of permutations of [n].

1Notice that as the graph is undirected, then e = uv = vu

4

1.1 Distributed Model

Let G be a simple connected n-node graph, let I : V (G) → {0, 1}∗ be an input function
assigning labels to the nodes of G, where the size of all inputs are polynomially bounded
on n. Let id : V (G) → {1, . . . , poly(n)} be a one-to-one function assigning identifiers to the
nodes. A distributed language L is a (Turing-decidable) collection of triples (G, id, I), called
network configurations.

A distributed interactive protocol consists of a constant series of interactions between
a prover called Merlin, and a verifier called Arthur. The prover Merlin is centralized, has
unlimited computing power and knows the complete configuration (G, id, I). However, he
cannot be trusted. On the other hand, the verifier Arthur is distributed, represented by the
nodes in G, and has limited knowledge. In fact, at each node v, Arthur is initially aware
only of his identity id(v), and his label I(v). He does not know the exact value of n, but
he knows that there exists a constant c such that id(v) ≤ nc. Therefore, for instance, if one
node v wants to communicate id(v) to its neighbors, then the message is of size O(log n).

Given any network configuration (G, id, I), the nodes of G must collectively decide whether
(G, id, I) belongs to some distributed language L. If this is indeed the case, then all nodes
must accept; otherwise, at least one node must reject (with certain probabilities, depending
on the precise specifications we are considering).

A proof labeling scheme (or just PLS) is a distributed algorithm in which there is an initial
round used by the prover Merlin to give a certificate of information c(v) to each node v ∈ V .
After this, there is a verification round where the neighbors u, v can interchange information
cv,u (that can be their id, label (v) and/or certificate c(v)) between neighbors, and then each
of them decides if accepts or rejects.

The proof-size of a PLS is O(f(n)) if the size of the largest message interchanged (including
the certificates given by Merlin and the messages shared between neighbors) in a n-node graph
G is bounded by a constant factor of f(n).

A correct distributed algorithm has to satisfied two conditions.

Completeness. If the configuration (G, id, I) is in the distributed language L, then there
exist certificates {c(v)}v∈V ´that make all the nodes accept.

Soundness. If the configuration (G, id, I) is not in the distributed language L, then for any
collection of certificates {c(v)}v∈V given by Merlin, at least one node rejects.

Distributed Interactive protocols are an extension of PLS and have two phases: an in-
teractive phase and a verification phase. If Arthur is the one which starts the interactive
phase, he picks a random string r1(v) at each node v of G and send them to Merlin. Merlin
receives r1, the collection of these n strings, and provides every node v with a certificate c1(v)
that is a function of v, r1 and (G, id, I). Then again Arthur picks a random string r2(v) at
each node v of G and sends r2 to Merlin, who, in his turn, provides every node v with a
certificate c2(v) that is a function of v, r1, r2 and (G, id, I). This process continues for a fixed
number of rounds. If Merlin is the party that starts the interactive phase, then he provides

5

at the beginning every node v with a certificate c0(v) that is a function of v and (G, id, I),
and the interactive process continues as explained before. In the last interaction round, the
verification phase begins. This phase is a one-round deterministic algorithm executed at each
node. More precisely, every node v broadcasts a message Mv to its neighbors. This message
may depend on id(v), I(v), all random strings generated by Arthur at v, and all certificates
received by v from Merlin. Finally, based on all the knowledge accumulated by v (i.e., its
identity, its input label, the generated random strings, the certificates received from Merlin,
and all the messages received from its neighbors), the protocol either accepts or rejects at
node v. Note that Merlin knows the messages that each node broadcasts to its neighbors
because there is no randomness in this last verification round.

Definition 1.1 Let V be a verifier and M a prover of a distributed interactive proof
protocol for languages over graphs of n nodes. If (V , M) corresponds to an Arthur-
Merlin k-round, with proof-size O(f(n)), we write (V , M) ∈ dAMprot[k, f(n)].

Definition 1.2 Let ε ≤ 1/3. The class dAMε[k, f(n)] is the class of languages L over
graphs of n nodes for which there exists a verifier V such that, for every configuration
(G, id, I) of size n, the two following conditions are satisfied.
Completeness. If (G, id, I) ∈ L then, there exists a prover M such that (V , M) ∈
dAMprot[k, f(n)] and

Pr
[
V accepts (G, id, I) in every node given M

]
≥ 1 − ε.

Soundness. If (G, id, I) /∈ L then, for every prover M such that (V , M) ∈
dAMprot[k, f(n)], and

Pr
[
V rejects (G, id, I) in at least one nodes given M

]
≥ 1 − ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)], and omit the subindex ε when its
value is obvious from the context.

Note that the definition of Completeness and Soundness changes in the interactive model
because in this case the algorithms are probabilistic, and then one is looking for a very small
probability of fail the original conditions.

For small values of k, instead of writing dAM[k, f(n)], we alternate M’s and A’s. For
instance: dMAM[f(n)] = dAM[3, f(n)]. In particular dAM[f(n)] = dAM[2, f(n)]. Moreover,
we denote dM[f(n)] the model where only Merlin provides a certificate, and no randomness
is allowed (in other words, the model dM is the PLS model).

1.2 Geometric Intersection Graph Classes

A graph G = (V, E) is a geometric intersection graph if every node v ∈ V is identified with a
geometric object of some particular type, and two vertices are adjacent if the corresponding

6

objects intersect. The two simplest non-trivial, and arguably two of the most studied geo-
metric intersection graphs are interval graphs and permutation graphs. In fact, most of the
best-known geometric intersection graph classes are either generalizations of interval graphs
or generalizations of permutation graphs. It comes as no surprise that many papers address
different algorithmic and structural aspects, simultaneously, in both interval and permutation
graph [6, 58, 59, 90, 116, 105, 146].

In both interval and permutation graphs, the intersecting objects are (line) segments,
with different restrictions imposed on their positions. In interval graphs, the segments must
all lie on the real line. In permutation graphs, the endpoints of the segments must lie on two
separate, parallel real lines. In Figure 1.1 we show an example of a permutation graph.

Figure 1.1: An example of a permutation graph with its corresponding intersection model.

Although the class of interval graphs is quite restrictive, there are a number of practical
applications and specialized algorithms for interval graphs [74, 80, 101]. Moreover, for several
applications, the subclass of unit interval graphs (the situation where all the intervals have
the same length) turns out to be extremely useful as well [16, 92].

The class of permutation graphs behaves as the class of interval graphs in the sense that,
on one hand, permutation graphs can be recognized in linear time [105] and, on the other
hand, many NP-complete problems can be solved efficiently when the input is restricted to
permutation graphs [28, 110]. A graph G is a circle graph if G is the intersection model of
a collection of chords in a circle (see Figure 1.2). Clearly, circle graphs are a generalization
of permutation graphs. In fact, permutation graphs can be characterized as circle graphs
that admit an equator, i.e., an additional chord that intersects every other chord. Circle
graphs can be recognized in time O(n2) [142]. Many NP-complete problems can be solve in
polynomial time when restricted to circle graphs [97, 144].

Figure 1.2: An example of a circle graph with its corresponding intersection model.

The class of trapezoid graphs is a generalization of both interval graphs and permutation
graphs. A trapezoid graph is defined as the intersection graph of trapezoids between two
horizontal lines (see Figure 1.3). Ma and Spinrad [115] showed that trapezoid graphs can be
recognized in O(n2) time. Trapezoid graphs were applied in various contexts such as VLSI
design [37] and bioinformatics [3]. Also, trapezoid and circle graphs are incomparable: the

7

trapezoid graph of Figure 1.3 is not a circle graph, while the circle graph of Figure 1.2 is not
a trapezoid graph.

Figure 1.3: An example of a permutation graph with its corresponding intersection model.

Recall that the way permutation graphs were generalized to circular graphs is by placing
the ends of the segments in a circle (as chords) instead of placing the ends of the segments
in two parallel lines. The same approach is used to generalize trapezoidal graphs and thus
introducing polygon circle graphs.

More precisely, a polygon circle graph is the intersection graph of convex polygons of k
sides, all of whose vertices lie on a circle. In this case we refer to a k-polygon circle graphs.
In Figure 1.4 we show an example of a 3-polygon circle graph. Both trapezoid graphs and
circle graphs are proper subclasses of polygon circle graphs. Note that the polygon circle
graph of Figure 1.4 is neither a trapezoid graph nor a circle graph.

Figure 1.4: An example of a 3-polygon circle graph with its corresponding intersection model.

The problem of recognizing whether a graph is a k-polygon circle graphs, for any k ≥
3, is NP-complete [133]. Nevertheless, many NP-complete problems have polynomial time
algorithms when restricted to polygon circle graphs [66, 67]. In an unpublished result, M.
Fellows proved that the class of polygon circle graphs is closed under taking induced minors.

There is another natural generalization of interval graphs, which is based on the dimen-
sion. More precisely, since interval graphs are defined in one dimension (in the real line), they
can be generalized to two (or more) dimensions. But this generalization is neither unique
nor straightforward. For instance, intervals may be generalized to rectangles or they may be
generalized to disks or squares.

In the particular case of unit interval graphs (intervals graphs where all the segments have
the same size), these fixed-size intervals are typically generalized either to unit disks (if we
consider the Euclidean norm), or to unit squares (if we consider the Manhattan norm). Unit
disks and unit square are particularly relevant in the context of wireless networking, where
servers are modeled as points in the plane and the range of wireless transmission is assumed
to be constant [31, 123].

8

Many graph problems which are NP-complete become tractable when the input is re-
stricted to unit disk graphs. For example, finding a maximum clique can be solved in poly-
nomial time for unit disk graphs [30]. On the other hand, Breu and Kirkpatrick showed that
the recognition of unit disk graphs is NP-hard [22]. Regrettably, is not known whether the
recognition of unit disk graphs is in NP. A naive certificate for the recognition problem would
be the coordinates of the centers of the corresponding disks. Nevertheless, in some cases, the
number of bits required to represent these coordinates is far too big. In fact, McDiramid and
Müller showed in [120] the existence of a family of unit disk graphs on n vertices for which,
in any realization, the center of at least one disk must be encoded with 22O(n) bits.

Going from unit disks graphs to unit square graphs removes geometric intricacies and tends
to simplify the structure of graphs and its representation maintaining several key aspects.A
unit-square graph corresponds to the intersection model of a set of squares in the plane, all
of the same size. See Figure 4.1 for an example.

Figure 1.5: An example of a unit square graph with its corresponding intersection model.

The recognition of unit square graphs is also NP-hard. The proof is a simple adaptation
of the one given by Breu and Kirkpatrick for unit disk graphs [22]. Nevertheless, in the case
of unit square graphs, in contrast with unit disk graphs, the recognition problem is known to
be in NP. In fact, in [127] the authors prove that any unit square graph can be represented
with all the centers of the squares specified by rational coordinates of at most O(log(n)) bits.
Hence, the recognition of unit square graphs is indeed NP-complete.

Just as it happens with unit disk graphs, restricting the input to unit square graphs often
simplifies many graph problems, allowing the existence of efficient algorithms. For instance,
Neuen proved that the graph isomorphism problem for unit square graphs can be solved in
polynomial time [130].

This motivation takes us in this work to study and design distributed algorithms to verify
if a given graph G = (V, E) is some of these geometric graphs. Formally, we are interested
in recognize the following distributed algorithms

Permutation-Recognition = {⟨G, id⟩ s.t. G is a permutation graph}.
Trapezoid-Recognition = {⟨G, id⟩ s.t. G is a trapezoid graph}.
Circle-Recognition = {⟨G, id⟩ s.t. G is a cicle graph}.
k-Polygon-Circle-Recognition = {⟨G, id⟩ s.t. G is a k-polygon-circle graph}.
Unit-Square-Recognition = {⟨G, id⟩ s.t. G is a unit-square graph}.

The five graph classes studied in this work are hereditary. A graph class is hereditary it
is closed under induced subgraphs.

9

1.3 Toolbox

In our results we use some previously defined and studied protocols as subroutines. In some
cases, we consider protocols that solve problems which are more general than just decision
problems (as, for instance, the construction of a spanning tree).

But before describing these distributed problems, we present a result regarding density
of prime numbers, which is necessary to allow us describe more compact protocols in the
distributed interactive setting.

Theorem 1.3 (Bertrand’s Postulate) For any integer n bigger than 1, there exists a
prime number p such that n ≤ p ≤ 2n.

Also, in some protocols we want to shrink the proof-size, and in order to do that, we
use hash functions to compact the messages interchanges in a way collision occurs with very
small probability.

Theorem 1.4 Let m, p ∈ N, where p is prime. There exists a family of functions
h : {0, 1}m → Zp of size |H| = p such that for x, y ∈ {0, 1}m, we have the following
properties.

(1) Linearity: h(x + y) = h(x) + h(y) mod p.

(2) Small collision probability: If x ̸= y, then

Ph∈H (h(x) = h(y)) ≤ m

p

1.3.1 Spanning Tree and Related Problems

The construction of a spanning tree is an important building block for several protocols in
the PLS model. Given a network configuration ⟨G, id⟩, the Spanning-Tree problem asks
to construct a spanning tree T of G, where each node has to end up knowing which of its
incident edges belong to T .

Proposition 1.5 There is a 1-round protocol for Spanning-Tree with certificates
of size O(log n).

The following Protocol allows the nodes, helped by Merlin, to construct a valid spanning
tree.

Protocol 1.6 First, Merlin gives to each node v ∈ V the following information

• The root’s identifier r ∈ V of the spanning tree.

• The identifier pv of it’s father in the tree.

10

• Its distance d(v) and the distance of its father d(pv) to the root r.

Then, in the verification round, each node v ∈ V verifies

• All of them receives the same root r ∈ V .

• Its father p(v) is its neighbor.

• If d(pv) = k, then d(v) = k + 1.

Each node accepts only if the three conditions are satisfied. If not, rejects.

Now we analyze the Correctness and Soundness of the Protocol.

Correctness. An honest prover provides an unique root and the correct distances in the
three so all nodes accept.

Soundness. If Merlin gives two or more different roots, then the nodes reject because
there are two neighbors u, v with different root node. If the three given by Merlin forms a
cycle, then there exist two nodes such that u is father of v but d(v) < d(v), then v rejects.
Then the three constructed by Merlin has to be correct and thus the distance too.

Proof-size analysis. The identifiers of the node can be encoded in O(log n) and the
maximum distance in a n-node graph between two nodes is n − 1, thus the distances d(v)
can also be encoded in O(log n).

From the protocol of Proposition 1.5 it is easy to construct another one for problem Size,
where the nodes, given the input graph G = (V, E), have to verify the precise value of |V |
(recall we are assuming the nodes are only aware of a polynomial upper bound on n = |V |).

Proposition 1.7 [104] There is a 1-round protocol for Size with certificates of size
O(log n).

Protocol 1.8 In the first round, Merlin gives to each node v ∈ V a certificate with the
following information

• The information needed according to Protocol 1.6 to construct a valid spanning tree T

• The number of nodes cv in Tv, the T-subtree rooted in v.

Then, in the verification round each node v ∈ V validate that the spanning tree con-
structed is correct according to verification round of Protocol 1.6 and that

cv = 1 +
∑

ω children
of v

cω

. The root r of the tree also checks that cr = n. If the verification goes well then the node
accepts and if one of them fails, reject.

11

Finally, for two fixed nodes s, t ∈ V , problem s, t − Path is defined in the usual way:
given a network configuration ⟨G, id⟩, the output is a path P that goes from s to t. In other
words, each node must end up knowing whether it belongs to P or not; and, if it belongs to
the path, it has to know which of its neighbors are its predecessor and successor in P .

Proposition 1.9 [104] There is a 1-round protocol for s, t − Path with certificates of
size O(log n).

1.3.2 Problems Equality and Permutation

A second important building block to be used in interactive protocols, is a protocol to solve
problem Equality, which it is defined as follows. Given G a connected n-node graph, each
node v receives a pair of lists {ai

v}i∈[ℓ] and {bi
v}i∈[ℓ], with ℓ < n and each value ai

v, bi
v can

be encoded with O(log(n)) bits. The problem Equality consists of verifying whether the
multi-sets A = {ai

v : v ∈ V, i ∈ [[ℓ]]} and B = {bi
v : v ∈ V, ı ∈ [ℓ]} are equal.

Proposition 1.10 [128] Problem Equality belongs to dAM1/3[log n].

Protocol 1.11 The following two-round protocol resolves Equality using O(log n) bits.

Given a value a which representation has c log n bits can thought as a member of a finite
field Fq with nc+3 ≤ q ≤ 2nc+3. Now, given the multi-sets A and B, we define the polynomials
pA(x) and pB(x) as follow

pA(x) =
∏
a∈A

(a − x), pB(x) =
∏
b∈B

(b − x)

Since A and B have at most ℓ · n elements, pA(x) and pB(x) are polynomial of degree at
most ℓ · n ≤ n2. Whit this, pA and pB can coincide in at most n2 points (unless they are
equal).

Then, if A ≠ B, by taking an element s ∈ Fq uniformly at random, the probability that
pA(s) = pB(s) is at most 1

n
.

As the nodes don’t have shared randomness, we simulate in the following way.

In the first round, each node u sample su at random, along with a random number
αu ∈ [n2] and sends them to Merlin.

Now, in the second round, Merlin first answer a pair (s, α) supposed to be a pair (su, αu)
send it by a node with minimal αu. Also, sends the information needed according to protocol
1.6 to construct a valid spanning tree with root u∗. Finally, the prover sends each to node u
the evaluation in the value x = s of the polynomials on the subtree Tu,

As
u =

∏
ω∈Tu,i∈[ℓ]

(s − aω,i), Bs
u =

∏
ω∈Tu,i∈[ℓ]

(s − bω,i)

12

Finally, in the verification round the nodes verify

1. The correctness of the spanning tree given by Merlin according to Protocol 1.6.

2. The existence of a node v that sent (s, αs) and the correctness of αs.

3. Considering Cv to be the set of children of v at T , it holds that

As
u =

∏
ω∈Cv

As
ω ×

∏
i∈[ℓ]

(ai
v − s), Bs

u =
∏

ω∈Cv

Bs
ω ×

∏
i∈[ℓ]

(bi
v − s)

If Cv = ∅ (v is a leaf) then simply verifies As
u = ∏

i∈[ℓ](ai
v − s) and Bs

u = ∏
i∈[ℓ](bi

v − s).

4. If v = u∗ is the root of the spanning tree, then also check that As
u∗ = Bs

u∗ .

If the above is verify, then the node accepts. Else, rejects.

• Correctness. The protocol succeeds as long as αs is uniquely minimal value. However,
it is easy to see that P (∃i ̸= j : αi = αj) ≤ 1

n
. Thus, w.l.o.g. we assume all αi’s are

different.
If A = B as multisets, then for any s ∈ Fq it holds that pA(s) = pB(s). So for any tree
T with root u∗ and any value s ∈ Fq it holds that As

u∗ = Bs
u∗ .

For this, if A = B, an honest prover just has to send the correct information which
needs to deliver and then all the nodes accept with probability ≥ 1

3.

• Soundness. Assume that A ≠ B. Suppose that pA(s) ̸= pB(s). In order for the
prover to cheat, it must gives to the root u∗ values Âs

u∗ , B̂s
u∗ such that Âs

u∗ ̸= pA(s) or
B̂s

u∗ ̸= pB(s), since otherwise u∗ verifies that pA(s) ̸= pB(s) and it rejects. However,
since the root r performs a local verification of that values with its neighbors in the
tree, it must hold that the prover gaves wrong values to one of its children as well, lets
say this child is u. This argument continues with one of the children of u and then,
iterating the argument, it must hold that a leaf of the tree receives a wrong value by
Merlin, and this leaf can verify locally and output rejects because it checks that one
equality of 3. of the verification round doesn’t hold.
Then, we bound the probability that two products collide. Consider the polynomial
f(x) = pA(s) − pB(s), which has degree at most n over the field F.

Claim 1.12 f is not the zero polynomial.

Proof. Remember we know that A ≠ B. Suppose there exists an element z ∈ A\B.
Then, we get that pA(z) = 0 and p⌊(z) ̸= 0, therefore f(z) ̸= 0 and thus f is not the
zero polynomial. The same argument holds if z ∈ B\A. Since A and B are multisets,
there is a third possibility that the multisets share the same elements only with different
multiplicities. Let C = A ∩ B and define

g(x) = f(x)/
∏
c∈C

(c − x)

13

It is enough to show that g is not the zero function. Define A′ = A\C and B′ = B\C.
We know for these subsets that there must be an element that is in one set and not in
other. Assume without loss of generality that there exists an element z ∈ A′\B′. Since
z /∈ C we get that g(z) ̸= 0 and therefore f is not the zero polynomial.
The polynomial f has at most nℓ ≤ n2 roots and since the field F is of size nc+3 we
get that

Pr [pA(s) = pB(s)] = Pr [f(s) = 0] ≤ nℓ

nc+3 ≤ 1
n

And then, for n ≥ 3 we have that the probability of a collision between pA(s) and
pB(s), and thus the probability of have all the nodes answering accept , is less than 1

3.

Proof-size analysis. Construct a valid spanning three can be done with a proof-size
of O(log n) bits. The computation of As

u and Bs
u can be done with the local messages

{aω,i}ω∈N(v),i∈[ℓ], and as ℓ is fixed, every node just share its values {ai
u}i∈ℓ with its neighbors,

which can be done with O(log n) bits. Then, the overall messages shared have a size of
O(log n).

A closely related problem is Permutation, where a graph G = ([n], E) receives some
function π by an external entity, and the nodes must verify whether π is indeed a permutation
(a bijective function from [n] to [n]). Note that the input is given in a distributed way, by
given π(v) to each node v ∈ V . Using the protocol for Equality as subroutine, it is possible
to solve Permutation with proof-size O(log n).

Proposition 1.13 [128] Problem Permutation belongs to dMAM1/3[log n].

Protocol 1.14 The following three-round protocol resolves Permutation.

In the first round, Merlin sends to each node i its image π(i) and a value yi supposed to
be equal to π(i + 1 mod p). Also gives them the number of nodes n.

In the second and third round the nodes and Merlin interacts according to Protocol 1.11
to verify if A = {π(i) : i ∈ [n]} and B = {yi : i ∈ [n]} are equal as multi-sets.

In the verification round the nodes interact according to Protocol 1.11 and verifies the
number node n is correct according to verification round of Protocol 1.8.

The Completeness and Soundness of Protocol 1.14 is inherited by Protocol 1.8 and Pro-
tocol 1.11.

14

Chapter 2

Proof Labeling Schemes

In this chapter we give PLS to recognize the class of permutation and trapezoid graphs. Both
classes are studied in similar way. First, we give some characterization of the class nice to
work in a distributed setting, and then, using as main tool this characterizations, we give a
PLS to recognize each class.

2.1 Permutation Graphs

We begin this section with a characterization of permutation graphs. Then, we use this
characterization to prove the existence of a PLS solving the problem of recognize Permutation
Graphs.

Given π ∈ Sn, we say that a pair i, j ∈ [n] is an inversion under π if
(i − j)(π(i) − π(j)) < 0.

The definition of a permutation graph can be restated as follows (see [20]).

Definition 2.1 A graph G = ([n], E) is a permutation graph if there exists a permu-
tation π ∈ Sn such that for every i, j ∈ [n], the pair {i, j} is an edge of G, if and only
i, j is an inversion under π.
In such a case we say that π is a proper permutation model of G.

Let us fix a graph G = ([n], E) . In order to verify if G is a permutation graph, the
PLS proposed later has to be able of recognize if, given a permutation π ∈ Sn, it is satisfied
Definition 2.1. This means that, (c1) if two nodes are neighbors, they have to form an
inversion, and (c2) no-adjacent nodes don’t have to form an inversion under π. Since nodes
only receive local information from their neighbors, the most complicated part of the protocol
is verify (c2), because two non adjacent nodes i, j can form an inversion but they can be far-
away in graph distance.

To avoid heavy notation in order to work with (c2), we define a weaker notion of permu-
tation model for a graph.

15

Definition 2.2 Given a graph G = ([n], E), we say that a permutation π ∈ Sn is a
semi-proper permutation model of G if π satisfies that for every pair i, j ∈ [n], if {i, j}
is an edge of G then i, j is an inversion under π.

Thus, a semi-proper permutation model only satisfied (c1), but no necessary (c2).

The following proposition and lemma characterize permutation graphs.

Proposition 2.3 Let G = ([n], E) be a permutation graph, π a proper permutation
model and let {i, j} ∈ E such that i < j. The following two conditions holds

1. All values s ∈ [π(j) + 1, π(i) − 1]N satisfy that s = π(k), for some node k that is
neighbor of i or j.

2. All values h ∈ [i + 1, j − 1]N are neighbors of i or j.

Proof. First, let s ∈ [π(j) + 1, π(i) − 1]N. As π is a permutation, exists k ∈ [n] such that
π(k) = s. If k is no neighbor of i, then k < i, but then, as i < j it also holds that k < j,
so the pair j, k is an inversion under π and as π is a proper permutation model of G, then
{k, j} ∈ E. This prove 1., and the proof for 2. is analogous.

We denote N+
G (i) and N−

G (i) the sets of neighbors of node i with, respectively, higher and
fewer identifiers than i. Formally,

N+
G (i) = {j ∈ NG(i) : j > i}

N−
G (i) = {j ∈ NG(i) : j < i}

We also denote by d+(i) and d−(i) the number of neighbors of i with, respectively, higher
and lower identifiers than i. Formally, d+(i) = |N+

G (i)| and d−(i) = |N−
G (i)|. From previous

definition is direct that |NG(i)| = d+(i) + d−(i).

Remark 2.4 Remember that we are only considering undirected graphs, so the notation
N+(i), N−(i), d+(i) and d−(i) must not be confused with the in/out neighborhood or degrees
used for directed graphs.

With this, we are ready to give a characterization of permutation graphs in terms of local
conditions satisfied by the nodes.

Lemma 2.5 Let G = ([n], E) be a graph and let π be a semi-proper permutation
model of G. Then π is a proper permutation model of G if and only if, for every
i ∈ [n],

i + d+(i) = π(i) + d−(i).

Proof. Suppose first that G is a permutation graph and π is a proper permutation model
for G. Given a node i ∈ [n], observe that all neighbors j ∈ N+(i) satisfy 0 ≤ π(j) < π(i).
Otherwise, (i, j) would not be an inversion under π. Analogously, if j ∈ N−(i) then π(i) <
π(j) ≤ n. Hence, the pre-images of {1, 2, ..., π(i) − 1} under π are the nodes in N+(i) and

16

nodes in [i − 1] \ N−(i). Therefore, π(i) − 1 = d+(i) + (i − 1) − d−(i), from which the equality
i + d+(i) = π(i) + d−(i) is deduced.

Let us suppose that G is not a permutation graph. We show the existence of a node
i∗ ∈ [n] such that i∗ + d+(i∗) ̸= π(i∗) + d−(i∗). Remember that we are assuming that π is
a semi-proper permutation model for G. Then, we have that necessarily there exists a pair
{i, j} ̸∈ E such that i, j is an inversion under π. For a node i ∈ [n], let us denote by a−(i)
and a+(i) the number of nodes with, respectively, fewer and larger identifier than i, forming
an inversion with i, but that are not adjacent to i. Formally:

a+(i) = |{j ∈ {i + 1, . . . , n} : {i, j} /∈ E and {i, j} form an inversion under π}|

a−(i) = |{j ∈ {1, . . . , i − 1} : {i, j} /∈ E and {i, j} form an inversion under π}|

The pre-images of the set {1, . . . , π(i)−1} under π are: The d+(i) neighbors higher than i
(because the nodes in N+(i) form an inversion with i, as π is semi-proper); the a+(i) nodes
that are not neighbors of i but form an inversion with i; and the nodes in set {1, . . . , i − 1}
that do not form a inversion with i, which are exactly (i − 1) − (d−(i) + n−(i)), then we have
that π(i) − 1 = d+(i) + a+(i) + (i − 1) − (a−(i) + d−(i)), from which it is concluded that

i + d+(i) ̸= π(i) + d−(i) ⇐⇒ a−(i) ̸= a+(i).

Therefore, we have to show that there exists a node i such that a−(i) ̸= a+(i). Let U ⊆ V
be the set of nodes forming an inversion with another node that is not its neighbor. Formally

U = {j ∈ [n] : ∃k ∈ {j, k} /∈ E and {j, k} is a inversion under π}

Let i∗ = min U . Then, by definition of U there exists a k ∈ [n] such that {i∗, k} is an
inversion under π and {i∗, k} /∈ E. Also, since i∗ is the minimum node in U , necessarily
k > i∗. Hence a−(i∗) = 0 and a+(i∗) ≥ 1. Therefore i∗ satisfies the condition n−(i) ̸= n+(i)
and therefore i∗ + d+(i∗) ̸= π(i∗) + d−(i∗).

We are now ready to define our protocol and main result regarding the recognition of
permutation graphs.

Theorem 2.6 There is a PLS to recognize Permutation-Recognition with proof-
size of O(log n) bits.

Sketch of Proof. As commented before, the main idea of the PLS is the following. Merlin
gives to each node v its identifier ℓ1(v) ∈ [n] and image π(ℓ1(v)) under a supposed proper
permutation model π. The rest of the information given by the prover is to let the nodes
verify that effectively conditions (c1) and (c2) are satisfied. In fact, check (c1) for a node v
is easy because each neighbor ω ∈ N(v) shares with him it values ℓ1(ω) and ℓ2(ω), and then
v just has to verify they form and inversion. The main work on this protocol is to verify
condition (c2), for which it is necessary for the nodes to verify Merlin effectively gave them
a semi-proper permutation model (i.e., π is bijective and satisfies Definition 2.2), and then
check if equality of Lemma 2.5 is satisfied. If at least one node doesn’t satisfy it, then π is

17

not a proper permutation model and the node has to reject. In order to verify that π is at
least a semi-proper permutation model it is necessary to check that π is bijective, and to do
that, Merlin gives a path between the nodes with identifier 1 and n, and then, if π is not
bijective, one node of the path rejects because it notices condition of Proposition 2.3 is not
satisfied. In the same way the nodes verify if Merlin gave to each node a unique identifier in
[n]. Also, there are little details to be check, for example, check that Merlin gave them the
correct number nodes n.

Protocol 2.7 The next is a one round protocol for Permutation-Recognition : The
certificate provided by the prover to node v is interpreted as follows:

1. The certification of the number of nodes n, according to a protocol for Size.

2. Values ℓ1(v), ℓ2(v) ∈ [n], where ℓ1 and ℓ2 are injective functions from V to [n]. The pair
(ℓ1(v), ℓ2(v)) is interpreted as a value of a permutation π such that π(ℓ1(v)) = ℓ2(v).

3. Value pv corresponding to the minimum value grater than ℓ1(v) that not an image under
ℓ1 of a neighbor of v. Formally, pv = min{k ∈ {ℓ1(v)+1, . . . , n} : ∀u ∈ N(v), k ̸= ℓ1(u)}.

4. Value qv corresponding to the minimum value greater that ℓ2(v) that is not an image
under ℓ2 of a neighbor of v. Formally, qv = min{k ∈ {ℓ2(v)+1, . . . , n} : ∀u ∈ N(v), k ̸=
ℓ2(u)}.

5. The certification of a path Pℓ between the nodes u and w such that ℓ1(u) = 1 and
ℓ1(w) = n, according to the protocol for s, t − Path.

6. The certification of a path Pπ between the nodes u and w such that ℓ2(u) = 1 and
ℓ2(w) = n, according to the protocol for s, t − Path.

Then, in the verification round, each node shares with its neighbors their certificates.
Using that information each node v can compute d+(v) and d−(v), and check the following
conditions:

a. The correctness of the number of nodes n according to the protocol of Size.

b. The correctness of the paths Pπ and Pℓ according to the protocol of s, t − Path.

c. The values ℓ1(v), ℓ2(v) belong to the set {1, . . . , n}.

d. Forms an inversion with its neighbors, i.e., ∀ω ∈ N(v), (ℓ1(v)−ℓ1(ω))(ℓ2(v)−ℓ2(ω)) < 0.

e. The equality ℓ1(v) + d+(v) = ℓ2(v) + d−(v) holds.

f. For each ω ∈ N(v) such that ℓ1(ω) < pω < ℓ1(v), pω = ℓ1(u) for some u ∈ N(v).

g. For each ω ∈ N(v) such that ℓ2(ω) < qω < ℓ2(v), qω = ℓ2(u) for some u ∈ N(v).

18

We now analyze the soundness and completeness of our protocol.

Completeness. Suppose that G is a permutation graph. Then a honest prover chooses ℓ1
and ℓ2 such that π : [n] → [n] defined by π(ℓ1(v)) = ℓ2(v) is a proper permutation model
of G. If the prover sends the real value of n, the nodes verify condition a according to the
completeness of the protocol for Size. Similarly, if the paths Pℓ and Pπ are valid, condition b
is verified according to the completeness of the protocol for s, t − Path. Once that condition
a is verified, then c, d and e can be verified looking to the certificates in the neighborhood.
Finally, the correctness of pv and qv are verified by conditions f and g, which are satisfied by
Proposition 2.3.

Soundness. Suppose G is not a permutation graph. If a dishonest prover provides a false
value of n, or false paths Pℓ or Pπ, then at least one node rejects it by soundness of the
protocols for Size and s, t − Path, respectively. Then, we can assume that the prover has
not cheated on those values.

Suppose that the prover gives a function ℓ1 such that {ℓ1(v)}v∈V ̸= [n]. If some ℓ1(v)
is not in the set [n] then v rejects in the verification of condition b. Then, we assume the
existence of j ∈ [n] such that j ̸= ℓ1(v) for all v ∈ V . As Merlin cannot send an invalid path
Pℓ, necessarily 1 < j < n. Also, by correctness of the path, there exists nodes u1, u2 in the
path such that {u, v} ∈ E and ℓ1(u) < j < ℓ1(v). From all possible choices of u and v, let us
choose the pair such that ℓ1(u) is maximum. Now we prove that v fails to check condition f
and rejects. Indeed, as no vertex has j as image through ℓ1, then pu ≤ j. If pu = j, then v
fails to check condition f and rejects. Suppose that pu < j and v verifies condition f. Then
there must exist ω ∈ N(v) such that pu = ℓ1(ω) < j, contradicting the choice of u. We
deduce that if condition f is verified by every node, necessarily ℓ1 is an injective function
from V into [n].

By an analogous argument, we deduce that if condition g is verified by every node, then
necessarily ℓ2 is an injective function from V into [n].

Suppose then that the dishonest prover provides the right value of n, as well as injective
functions ℓ1 and ℓ2. If condition d is verified, then π is a semi-proper permutation model
of G. Then, since G is not a permutation graph, at least one node must fail upon verify
condition e by Lemma 2.5.

Proof-size Analysis. The certification for Size and s, t−Path has proof-size of O(log n)
bits, given by Proposition 1.7 and Proposition 1.9. On the other hand, for each v ∈ V , the
values ℓ1(v), ℓ2(v), qv, pv are O(log n) as they are numbers in [n]. Therefore, overall the total
communication is O(log n).

19

2.2 Trapezoid Graphs

The protocol for Trapezoid is a sort of generalization of the protocol for permutation graphs.
Indeed, for this class we can give an analogous characterization, that later is used to build a
compact one-round PLS to recognize Trapezoid graphs.

In a model of a trapezoid graph, there are two parallel lines Lt and Lb. We denote these
lines as the top and bottom lines, respectively. Each trapezoid has sides contained in each
line, and then is defined by four vertices, two in the top line, and two in the bottom line.
Formally, each trapezoid T is defined by the set T = {t1, t2, b1, b2}, where t1 < t2 and b1 < b2,
with t1, t2 ∈ Lt and b1, b2 ∈ Lb (see Figure 2.1).

T

b1 b2

t1 t2

Figure 2.1: Each trapezoid T is defined by the set T = {b1, b2, t1, t2}.

The definition of a permutation graph can be restated as follows (see [20])

Definition 2.8 A trapezoid graph G = (V, E) is the intersection graph of a set of
trapezoids {Tv}v∈V satisfying the following conditions. The vertices of each trapezoid
have values in [2n], two corresponding to the upper line and the other to the bottom
line. The vertices defining the set {Tv}v∈V , are all different, i.e., no pair of trapezoids
share vertices.

Therefore, in both the top and the bottom lines, all elements in [2n] correspond to a
vertex of some trapezoid. The trapezoid model in the example of Figure 1.3 satisfies these
conditions.

For v ∈ V , we call {t1(v), t2(v), b1(v), b2(v)} the vertices of Tv. Moreover, we say that
{t1(v), t2(v), b1(v), b2(v)} are the vertices of node v. In the following, a trapezoid model
satisfying these conditions is called a proper trapezoid model for G. Given a graph G = (V, E)
(that is not necessarily a trapezoid graph), a semi-proper trapezoid model for G is a set
of trapezoids {Tv}v∈V satisfying previous conditions, such that, for every {u, v} ∈ E, the
trapezoids Tv and Tu have nonempty intersection. The difference between a proper and a
semi-proper model is that in the first we also ask every pair of non-adjacent edges have
non-intersecting trapezoids.

Given a trapezoid graph G = (V, E) and a proper trapezoid model {Tv}v∈V , we define
the following sets for each v ∈ V :

Ft(v) = {i ∈ [2n] : i < t1(v) and i ∈ {t1(w), t2(w)}, for some w /∈ N(v)}
Fb(v) = {i ∈ [2n] : i < b1(v) and i ∈ {b1(w), b2(w)}, for some w /∈ N(v)}

20

Intuitively, the set Ft(v) has the positions in the upper line to the left of Tv which are
vertices of a trapezoid T (ω), with ω /∈ N(v). Analogous to Tb(v). We also call ft(v) = |Ft(v)|
and fb(v) = |Fb(v)|.

Analogous to the previous section, the following Lemmas characterize trapezoid graphs
by equalities calculable by the nodes with local information given by their neighbors.

Lemma 2.9 Let G = (V, E) an n-connected trapezoid a graph. Then every proper
trapezoid model {Tv}v∈V of G satisfies for every v ∈ V :

fb(v) = ft(v)

Proof. Let {Tv}v∈V be a proper trapezoid model of G. Then, given a node v ∈ V , all the
coordinates in Ft(v) are vertices of some w ̸= N(v). Such trapezoids Tw have their two upper
vertices in the set {1, . . . , t1(v)} and their two lower vertices in {1, . . . , b1(v)}, as otherwise
Tw and Tv would intersect. Then, the cardinality of the set Ft(v) is equal to the cardinality
of the set Fb(v), as every position in {1, . . . , 2n} corresponds to a vertex of some node, so if a
position j < b1(v) is not in Fb(v), then has to be a vertex of some neighbor of v. Analogous
for the positions j < t1(v) in the upper line.

Lemma 2.10 Let G = (V, E) be a n-node graph that is not a trapezoid graph. Then,
for every semi-proper trapezoid model {Tv}v∈V of G, at least one of the following
conditions is true:

1. There exists a node v ∈ V such that some position in {b1(v), . . . , b2(v)} or
{t1(v), . . . , t2(v)} is a vertex of ω /∈ N(v).

2. There exists v ∈ V such that fb(v) ̸= ft(v).

Proof.

Let G be a graph that is not a trapezoid graph and {Tv}v∈V a semi-proper trapezoid model.
As G is not a permutation graph, by definition necessarily there exist a pair {v, ω} ̸∈ E such
that Tv ∩ Tω ̸= ∅. We distinguish two possible cases (see Figure 2.2):

• [b1(v), b2(v)]N ∩ [b1(ω), b2(ω)]N ̸= ∅ or [t1(v), t2(v)]N ∩ [t1(ω), t2(ω)]N ̸= ∅.

• [b1(v), b2(v)]N ∩ [b1(ω), b2(ω)]N = ∅ and [t1(v), t2(v)]N ∩ [t1(ω), t2(ω)]N = ∅.

Figure 2.2: Representation of the two possible intersection cases.

21

In the first case of Figure 2.2, depicted in left, at least one vertex of a trapezoid is
contained in the other. In the case of the right hand, the trapezoids intersect, but they not
contain each other vertex.

Clearly if the first case holds, then condition 1 is satisfied. Suppose then that there is no
pair {v, ω} ̸∈ E such that Tv ∩ Tω ̸= ∅ satisfying the first case. Then necessarily the second
case holds. Let u be a node for which there exists a node ω ∈ V \N(u) such that Tu ∩Tw ̸= ∅.
For all possible choices of u, let us pick the one such that b1(u) is minimum. Then u satisfies
the following conditions:

(a) There exists a node ω ∈ V such that ω /∈ N(v) and Tu ∩ Tω ̸= ∅

(b) All nodes ω ∈ V such that ω /∈ N(v) and Tu ∩ Tω ̸= ∅ satisfy that t2(ω) < t1(u) and
b2(u) < b1(ω)

(c) None of the positions in {1, . . . , b1(u)} is occupied by a vertex of a node ω such that
{u, ω} /∈ E and Tu ∩ Tω ̸= ∅. If not, minimality of b1(u) is contradicted.

Observe that conditions (a) and (b) imply that ft(u) > 0, while condition (c) implies
that fb(u) = 0. We deduce that condition 2 holds by u.

Theorem 2.11 There is a PLS to recognize Trapezoid-Recognition with proof-
size of O(log n) bits.

Sketch of Proof. The main idea to recognize trapezoid graphs involves Lemma 2.9 and
Lemma 2.10 as follow. Merlin gives to each node the vertices in [2n] at both, lower and
upper line, corresponding it’s trapezoid in a supposed valid model {Tv}v∈V . Next, the nodes
has to validate at least Merlin didn’t cheat giving the same vertex to two different nodes,
for which nodes uses Protocol 1.14, and then, they validate if equality of Lemma 2.9 is
satisfied (notice that this can be check by a node v only with local information given by its
neighbors). If this equality holds, then the node accepts, and if not reject. Later we prove the
Completeness and Soundness of the protocol using mainly the results of Lemmas lemma 2.9
and lemma 2.10 because they give us exactly what we want in a distributed algorithm: If
a graph G is a trapezoid graph, then Lemma 2.9 says that there exists a proper trapezoid
model {Tv}v∈V satisfying the conditions of the protocol below, and if G is not a trapezoid
graph, then Lemma 2.10 ensures that any semi-proper model of G would satisfied equality
of Lemma 2.9 in all nodes.

Protocol 2.12 Given an instance ⟨G = (V, E), id⟩, the certificate provided by the prover to
node v ∈ V is interpreted as follows.

1. The certification of the total number of nodes n, according to some protocol for Size.

2. The certification of a path Pt between the nodes with vertex 1 and 2n in the upper line
and a path Pb between the nodes with vertex 1 and n in the lower line according to a
protocol for s, t − Path.

22

3. Values b1(v), b2(v), t1(v), t2(v) ∈ [2n], such that b1(v) < b2(v) and t1(v) < t2(v), repre-
senting the vertices of a trapezoid Tv.

4. Value pv corresponding to the minimum position in the upper line greater that t1(v)
that is not a vertex of a neighbor of v.

5. Value qv corresponding minimum position in the lower line grater than b1(v) that is
not a vertex of a neighbor of v.

Then, in the verification round, each node shares with its neighbors their certificates.
Using that information each node v can compute ft(v) and fb(v), and check the following
conditions:

a. The correctness of the value of n, according to some protocol for Size.

b. The correctness of the paths Pb and Pt, according to a protocol for s, t − Path.

c. The vertices of the trapezoid of v are in [2n].

d. Tv ∩ Tω ̸= ∅ for all ω ∈ N(v).

e. All values in [t1(v)+1, t2(v)−1]N and [b1(v)+1, b2(v)−1]N are vertex of some neighbor
of v.

f. t2(v) < pv and b2(v) < qv.

g. If ω ∈ N(v) and pω < t2(v), then v verifies that pω is a vertex of some other neighbor.

h. If ω ∈ N(v) and qω < b2(v), then v verifies that qω is a vertex of some other neighbor.

i. fb(v) = ft(v).

Each node accepts if all conditions are satisfied. If not, the node rejects.

We now analyze the soundness and completeness of our protocol.

Completeness. Suppose that G is a trapezoid graph. An honest prover just has to send the
real number of nodes n, a trapezoid model {Tv}v∈V of G and valid paths Pb and Pt according
to the trapezoid model. Then, the nodes verify a, b by the completeness of the protocols for
Size and s, t − Path. Conditions c, d, e ,f, g and h are verified by the correctness of the
model {Tv}v∈V . Condition i is also verified, by Lemma 2.9.

Soundness. Suppose G is not a trapezoid graph. If a dishonest prover provides a wrong
value of n, or wrong paths Pt or Pb, then at least one node rejects verifying a or b. Then, we
assume that the prover cannot cheat on these values.

Suppose that the prover gives values {Tv}v∈V such that ⋃
v∈V {t1(v), t2(v)} ≠ [2n]. If

some vertex of a node is not in the set [2n], then that node fails to verify condition c and

23

rejects. Without loss of generality, we can assume that there exists a j ∈ [2n] such that
t1(v), t2(v) ̸= j, for every v ∈ V . If a node ω satisfies that t1(ω) < j < t2(ω), then node ω
fails to verify condition e and rejects. Then j is not contained in any trapezoid. As Pt is
correct, j must be different than 1 and 2n. Also by the correctness of Pt, there exist a pair
of adjacent nodes u, v ∈ V such that t2(u) < j < t1(v). From all possible choices for u and
v, we pick the one such that t2(u) is maximum. We claim that v fails to check condition g.
Since j is not a vertex of any node, then pu ≤ j. If v verifies condition g, then necessarily
pu < j. Then, there must exist a node ω ∈ N(v) such that pu = t1(ω). But since we are
assuming that j is not contained in any trapezoid, we have that t2(ω) < j, contradicting the
choice of u.

Therefore, if conditions a - h are verified, we can assume that the nodes are given a
semi-proper trapezoid model of G. Since we are assuming that G is not a trapezoid graph,
by lemma 2.10 we deduce that condition i cannot be satisfied and some node rejects.

Proof-size Analysis. the certification for Size and s, t − Path have proof-size of
O(log n) bits, given by proposition 1.7 and proposition 1.9. On the other hand, for each
v ∈ V , the values b1(v), b2(v), t1(v), t2(v), pv, qv are O(log n) as they are numbers in [2n].
Overall the total communication is O(log n).

24

Chapter 3

Distributed Interactive Protocols

Before present the main distributed interactive protocols in the next chapter, we present
two distributed problems which we prove to have a compact protocol to solve them. This
two problems are no just useful to solve our particular recognition graph protocols, but they
have their own value because represents two natural problems that arise in more general
distributed problems and we present a distributed interactive solution to them.

3.1 Corresponding Order Problem

First we tackle a problem that we call itCorresponding Order, which is defined as follow.

Corresponding order problem. Given a graph G = ([n], E) and a number N ≥ n, each
node receives an element n(i) ∈ [N] and its claimed position π(i) in the set {n(i)}i∈V , how
can we recognize the ordering {π(i)}i∈V with respect to {n(i)}i∈V is correct?

Notice that a natural problem in a distributed setting is that nodes are only in interaction
with it’s neighbors but there are situations when far-away graph nodes need to interact in
some way and validate an information. To solve Corresponding Order allows us in a
way to solve this because notice that the ordering π has no relation with the distance of the
nodes in the graph, so if this ordering can be validated, then the nodes would have a natural
ordering respect a collection {n(i)}i∈V (which may not be permutation) to share and validate
information.

Theorem 3.1 Corresponding Order has a dMAM1/3 [log n + log N] Protocol that
solves it. In specific, if N ∈ O(n), then the Protocol is dMAM1/3 [log n]

Protocol 3.2 In the first round, Merlin send to each node i ∈ V : a pair (n(i), π(i)) (the
number of [N] and the corresponding position π(i)), a pair (u(i), π(i) + 1 mod n) (u(i) the
claimed successor of n(i) in {n(i)}i∈V), the information needed according to Protocol 1.8
to give the number of nodes n, and the information needed according to Protocol 1.6 to

25

construct a valid spanning tree Tr rooted in r ∈ V .

In the following round (including verification round), besides to the explicit information,
the nodes shares the information to verify the number of nodes using Protocol 1.8 and that
{π(i)}i∈V is a permutation using Protocol 1.14.

Then, in the second round, each node v ∈ V sends to Merlin an index iv ∈ [|H|] (corre-
sponding to a hash function hiv).

In the Last round, Merlin sends to each node i ∈ [n].

• The index ir sent by the root in the previous round.

• The following vectors

hi =
∑

k∈Tr[i]
hir(ek)

ga
i =

∑
k∈Tr[i]

hir(e′
k)

Where Tr[i] = Tr(i) ∪ {i} and Tr(i) are the children of i in the tree Tr.
The vectors ek, e′

k ∈ {0, 1}n log N have n blocks of sizes log N each one. Both vectors
ek, e′

k have only one block distinct of 0log N , with the value |n(i)|2 in the π(k)th block
and u(k) in the (π(k) +n 1)th block, respectively, padding with 0′s if necessary.

In the Verification Round, first, each node verifies that {π(i)}i∈V is a permutation in
accordance of Protocol 1.14 and the correctness of the spanning tree running the verification
round of Protocol 1.6 . If it passes these verification, then it continues. Else, it rejects.

In addition, each node i ∈ [n] verifies the correctness of the hash values checking that

hi = hir(ei) +
∑

j∈Tr(i)
hj (3.1)

ha
i = hir(e′

i) +
∑

j∈Tr(i)
ha

j (3.2)

Finally, each node i ̸= r accept iff equalities 3.1 and 3.2 hold and the successor u(i) given
by Merlin is bigger than n(i). The root, in order to accept has to verify in addition that
hi = ha

i .

We analyze the correctness of the above protocol.

Correctness. If the ordering {π(i)}i∈[n] is correct respect {n(i)}i∈[n], then Merlin just has to
send the real successor u(i) of each node and a real information to construct a spanning tree
and the hash values hinha

i . Then, with this information the nodes verify {π(i)}i∈[n] = [n] and
then, each node i ̸= r verifies the correctness of the hash values, and the following vectors
are equal

26

e =
∑
i∈[n]

ei

e′ =
∑
i∈[n]

e′
i

So, by linearity of hir , we have hr = ha
r and then, the root accepts.

Soundness. If {π(i)}i∈[n] is not the correct order of {n(i)}i∈[n], then

∃i, j ∈ [n], n(i) < n(j) and π(i) > π(j) (3.3)

If the information sent by Merlin passes the verification of:
• {π(i)}i∈[n] = [n].

• The correctness of the spanning tree.

Suppose the root r accept, then hr = ha
r , and by Theorem 1.4, with probability 1

nc
we have

that e = ep.

If e = ep, Merlin gave to each node a valid successor u(i) ∈ {n(i)}i∈[n] such that there
exists a node j ∈ [n] to which Merlin gives the pair (u(i), π(i) + 1 mod n).

Then, by (3.3), there exists a pair of nodes u, v such that π(u) = π(v)+1 and n(u) < n(v)
(if not, vector e is increasing and this contradict 3.3), so v checks that the predecessor given
by Merlin is higher than n(v) and then v rejects.

That is, if {π(i)}i∈[n] is not the correct order of {n(i)}i∈[n], with probability ≥ 1 − 1
nc

a
node rejects to every input given by Merlin.

Proof-size Analysis. The proof-size needed to construct a valid spanning tree and check
the number-node n can be done with O(log n) bits by Protocols 1.6 and 1.8, respectively.
Also, by Theorem 1.4, |H| has size p and we take p to be polynomial on n, so the size of
|H| is polynomial in n and then encode j ∈ [|H|] can be done in O(log n). Finally, hi and
ha

i ∈ {0, ..., p − 1} also are encoded in O(] log n). Overall, the proof-size is of O(log n) bits.

Notice that Corresponding Order protocol can be extended to verify any total order
≼ in Rk (k fixed) which defines a order π : V → [n] to the nodes, according to some collection
of labels {ℓ(v)}v∈V with ℓ(v) ∈ Rk (i.e., π(v) < π(ω) iff ℓ(v) ≼ ℓ(ω)). Just it is necessary
to replace c(v) by ℓ(v) and use a hash function in Hkn2,p

1, and interact the same way in
Protocol 3.2, hashing the vectors ℓ(v) in this new hash function. As k is fixed, interchanging
ℓ(v) still is O(log n). We call this more general problem as and it is define as follow in the
next section.

1p chosen in a way still is satisfied that kn2

p
≤ 1

3

27

3.2 Linear Assignation Problem

Consider the next problem called Linear Assignation: Given a graph G = (V, E), each
node receive its position π(v) ∈ [n] according to a total order ≼ (known by the nodes) and
two values n(v), s(v) ∈ {0, 1}q for some q constant known (q ∈ O(n)), such that, supposedly,
the predecessor ω of v in the total order receive the value s(ω) = n(v) and s(v) = n(z), with
z the successor of v in the total order. Can the nodes verify correctness of values n(v) and
s(v) given to each node? Notice the predecessor/successor in the total order isn’t neighbors
necessarily.

Theorem 3.3 Linear Assignation problem has a dAM1/3[log n] algorithm that
solves it.

Protocol 3.4 (LAP) In the first round, each node v sends to Merlin a random bit bv ∈ [m],
with m = |Hnq,p|.

In the second round, Merlin sends to each node v ∈ V

• The position π(v) according to the total order ≼.

• The values n(v) and s(v) in {0, 1}q.

• Information to construct a valid spanning tree rooted in r ∈ V .

• The random bit br chosen by the root r of the spanning tree.

• The following vectors

hc
v =

∑
ω∈Tr[v]

hr(eω)

hs
v =

∑
ω∈Tr[v]

hr(e′
ω)

Where the vectors eω, e′
ω ∈ {0, 1}n×q have n blocks of sizes q each one. Both vectors

ek, e′
k have only one block distinct of 0q, with the value n(ω) in the π(ω)th block and

s(ω) in the (π(ω) +n 1)th block, respectively, padding with 0′s if necessary.

Finally, in the Verification round each node v ∈ V verifies

• The correctness of the spanning tree according to the verification round of Protocol
1.6.

• the following equalities holds

hc
v = hr(ev) +

∑
ω∈Tr(v)

hc
ω

hs
v = hr(e′

v) +
∑

ω∈Tr(v)
hs

ω

28

• If v = r, it verifies also that hc
r = hs

r.

If the above conditions are verified by the node, then it accepts. If not, it rejects.

• Completeness. If Merlin send honest information, then by Theorem 1.4, the hashed
values hc

r and hs
r with probability ≥ 2

3, and with the same probability the rest of nodes
verifies the correctness of hashed values on the spanning tree.

• Soundness. The Protocol should reject if

1. The order {π(v)}v∈V is not right. Equivalently2, it should rekect if there exists a
value k ∈ [n] such that π(v) ̸= k for all v ∈ V .

2. The equalities s(ω) = n(v) or s(v) = n(u) do not hold for ω and u the predecessor
of v, respectively.

In case 1., the k-block in ê = ∑
v∈V ev is equal to 0q, the same k-block in ê′ = ∑

v∈V e′
v

is 0q iff there is not a node with position π(ω) = k + 1. Then block k + 1 in ê is 0q.
Iteratively, there is not a node s with position π(s) = n. But Merlin gives to some
node this position. Then, it has to exists a position k̂ such that the k̂-block equal to 0q

in ê but not equal to 0q in ê′, so ê ̸= ê′ and then by Theorem 1.4 the root rejects with
probability ≥ 2

3.

In case 2., again denoting ê = ∑
v∈V ev and ê′ = ∑

v∈V e′
v. It is true that hc

r ̸= hs
r with

probability ≥ 2
3, and then, by construction of the vectors, it is satisfied that ê ̸= ê′

because there exists a node v such that s(ω) ̸= n(v) or s(v) ̸= n(u) with ω and u the
predecessor/successor of v, respectively. For this, ê and ê′ differs in the position π(v) or
the position π(v)+1, and then, again by Theorem 1.4, the root rejects with probability
≥ 2

3.

In any case, the Protocol rejects with probability ≥ 2
3.

Proof-size Analysis. All values shared not corresponding to hashed values are O(n)
so can be encoded with O(log n) bits. The size p of the hashed values again is chosen
such that p is O(nk) for some fixed k ∈ N, so they can also be encoded with O(log n)
bits.

2because all values π(v) are in [n]

29

Chapter 4

Three-round Distributed Interactive
Protocols

In this chapter, we study the recognition of Circle-Recognition ,k-Polygon-Circle-
Recognition and Unit-Square-Recognition in the distributed interactive setting. The
need of more rounds is in order to shrink the proof-size needed by the protocols, or to use
the protocols described in Chapter 4 in order of validate the correctness of some messages.
These messages are related to the same problem presented in Chapter 2, which is that, given
the definition of a geometric intersection graph class, it is relatively easy for two adjacent
nodes to check if they satisfy the geometric characterization of been neighbors, but it is hard
to check if two no-adjacent nodes effectively does not satisfy the condition. The distributed
interactive protocols here presented use three round of interaction and have proof-size of
O(log n) bits.

4.1 Circle Graphs

First, we tackle the recognition of Circle-Recognition. Unlike the cases of permutation
and trapezoid graphs, for this class we are unable to provide a one-round protocol. In-
stead, we give a compact three round interactive protocol, which is based in the following
characterization of circle graphs (see [20]):

A graph G = (V, E) is a circle graph if and only each node v ∈ V can be associated to
an interval Iv = [mv, Mv] ⊆ R such that:

C1 For each u, v ∈ V , {u, v} ∈ E then Iu ∩ Iv ̸= ∅, Iu ̸⊆ Iv and Iv ̸⊆ Iu.

C2 For each u, v ∈ V , Iu ∩ Iv ̸= ∅, Iu ̸⊆ Iv and Iv ̸⊆ Iu then {u, v} ∈ E.

C3 For each v ∈ V , mv, Mv ∈ [2n], and {mv}v∈V ∪ {Mv}v∈V = [2n], i.e., for every
pair of different nodes u, v ∈ V , mu ̸= mv and Mu ̸= Mv.

In words, for every circle graph of size n there is a collection of n intervals with extremes

30

in [2n] whose extremes do not coincide, and where two nodes are adjacent if and only if
their corresponding intervals have nonempty intersection, and one interval is not included
in the other. We remark that the later characterization is not an intersection model of a
circle graphs, as we ask more than simply the intersection of the objects. Given a graph
G = (V, E), a set of intervals {Iv}v∈V satisfying conditions C1, C2 and C3 is called a proper
model for G. A set of intervals satisfying conditions C1 and C3 is called a semi-proper model
for G.

Let G = (V, E) be a graph, {[mv, Mv]}v∈V be a semi-proper model for G, and let v ∈ V .
We denote by nm(v) the number of nodes u ∈ N(v) whose lower limit mu is such that mv ≤
mu ≤ Mv and Mu /∈ [mv, Mv]. Similarly, we denote by nM(v) the number of nodes u ∈ N(v)
such that mv ≤ Mu ≤ Mv and mu /∈ [mv, Mv]. We also denote by πm(v) (respectively πM(v))
the position of mv (resp. Mv) respect {mu}u∈V (resp. {Mu}u∈V).

Analogously, for each v ∈ V we denote nm(v) (resp. nM(v) the number of nodes u /∈ N(v)
such that mu ∈ [mv, Mv] (resp. Mu ∈ [mv, Mv]).

Lemma 4.1 Let G = (V, E) be a graph, {[mv, Mv]}v∈V be a semi-proper model for
G and {πm(v)}v∈V , {πM(v)}v∈V the relative position of mv and Mv respect the sets
{mv}v∈V and {Mv}v∈V , respectively, for each v ∈ V . Then {[mv, Mv]}v∈V is a proper
model for G if and only if, for every v ∈ V ,

2(πM(v) + πm(v)) = Mv + mv + nm(v) − nM(v)

Proof. Let v ∈ V be an arbitrary node. Observe that there are n − πM(v) nodes u such
that Mu > Mv. Then, there are n − Mv + πM(v) nodes w such that mw > Mv, because if
a position in [Mv, 2n] is either the lower or upper limit of an interval. Similarly, there are
n−πm(v) nodes w satisfying mw ≥ mv, and then n−mv +πm(v) nodes u such that Mu > mv.

Then, in [mv, Mv] there are πm(v) + πM(v) − mv nodes u such that mu ∈ [mv, Mv] and
Mv − πm(v) − πM(v) nodes w such that Mw ∈ [mv, Mv]. For each v ∈ V , let us call Ss be the
set of nodes z such that [mz, Mz] ⊂ [mv, Mv].

Suppose that {[mv, Mv]}v∈V is a proper model for G, and for each v ∈ V . Then, we have
that nm(v) = πm(v)+πM(v)−mv −nm(v)−|Sv|, nM(v) = Mv −πm(v)−πM(v)−nM(v)−|Sv|
and nM(v) = nm(v) = 0, because as {[mv, Mv]}v∈V is a proper model, then if nM(v) > 0 or
nm(v) > 0 for some v ∈ V , exists u /∈ N(v) such that [mv, Mv] ∩ [mu ∩ Mu] ̸= ∅, which it is a
contradiction. We deduce that πm(v) + πM(v) − mv − nm(v) = Mv − πm(v) − πM(v) − nM(v),
from which we deduce 2(πM(v) + πm(v)) = Mv + mv + nM(v) − nm(v).

Suppose now that {[mv, Mv]}v∈V is not a proper model for G. Then, there exist a pair
of nodes {u, v} /∈ E such that [mu, Mu] ∩ [mv ∩ Mv] ̸= ∅ with the intervals not containing
each other. From all such pairs, let us pick one such that mv is minimum. Then necessarily
there exists mω ∈ [mv, Mv], Mω > Mv and {v, ω} /∈ E. This implies that nm(v) + |Sv| <
πm(v) + πM(v) − mv. On the other hand, the choice of v implies that all nodes such u
such that Mu ∈ [mv, Mv] either belong to N(v) or belong to Sv. Then nM(v) + |Sv| =
Mv −πm(v)−πM(v). We deduce that nm(v) > 0 and nm(v) = 0, and then 2(πM(v)+πm(v)) ̸=
Mv + mv + nM(v) − nm(v).

31

Now we are ready to give the main result of this section.

Theorem 4.2 Circle-Recognition belongs to dMAM[O(log n)].

Protocol 4.3 Consider the Protocols 1.8,1.14 and 3.2 for Size, Permutation and Corre-
sponding Order, respectively. Given an instance ⟨G, id⟩, consider the following three-round
protocol. In the first round, the prover provides each node v with the following information:

1. The certification of the total number of nodes n, according to the protocol for Size.

2. The limits of the interval Iv = [mv, Mv], and the values πm(v) and πM(v).

3. The certification of {mv}v∈V ∪ {Mv}v∈V = [2n] according to the protocol for Permu-
tation.

4. The certification of the correctness of {(mv, πm(v))}v∈V according to the protocol for
Corresponding Order.

5. The certification of the correctness of {(Mv, πM(v))}v∈V according to the protocol for
Corresponding Order.

Then, in the second and third round the nodes perform the remaining interactions of the
protocols for Permutation and corresponding order.

In the verification round, the nodes shares all the information given by Merlin and then,
each node checks first the correctness of 1-5 according to the verification rounds for Size,
Permutation and corresponding order. Then, each node v computes nm(v) and
nM(v), and checks the following conditions:

a. For every u ∈ N(v), Iv ∩ Iu ̸= ∅, Iv ̸⊆ Iu and Iu ̸⊆ Iv.

b. 2(πM(v) + πm(v)) = Mv + mv + nM(v) − nm(v).

We now analyze completeness and soundness.

Completeness. Suppose that input graph G is a circle graph. Then Merlin gives a
proper model {[mv, Mv]}v∈V for G. Merlin also provides the correct orders {πm(v)}v∈V and
{πM(v)}v∈V , the correct number of nodes n, and the certificates required in the sub-routines.
Then, the nodes verify correctness of 1-5 with probability greater than 2/3, by the correctness
of the protocols for Size, Permutation and Corresponding Order. Finally, condition
a is verified by definition of a proper model, and condition b is verified by Lemma 4.1. We
deduce that every node accepts with probability greater than 2/3.

Soundness Suppose now that G is not a circle graph. By the soundness of the protocols
for Size, Permutation and Corresponding Order, we know that at least one node

32

rejects the certificates not satisfying 1-5, with probability greater than 2/3. Suppose then
that conditions 1-5 are verified. Observe that each set of intervals satisfying condition a form
a semi-proper model for G. Since G is not a circle graph, by Lemma 4.1 we deduce that at
least one node fails to verify a or b. All together, we deduce that at least one node rejects
with probability greater than 2/3.

Proof-size Analysis. the certification for Size, Permutation and Corresponding
Order have O(log n) proof-size, given by Protocol 1.8, Protocol 1.14 and Protocol 3.2.
Also, for each v ∈ V , the values mv, Mv, πm(v), πM(v) can be encoded in O(log n) as they
are numbers in [2n] or [n]. Overall the total communication is O(log n).

4.2 Polygon Circle Graphs

In this section, we give a three-round protocol for the recognition of polygon-circle graph.
This extension is based in a non-trivial extension of the properties of circle graphs.

Remember that a n-node graph G = (V, E) is a k-polygon-circle graph if and only if G is
the intersection model of a set of n polygons of k vertices inscribed in a circle, namely {Pv}v∈V .
Further, every k-polygon-circle graph admits a model satisfying the following conditions [20]:
(1) for each v ∈ V , the polygon Pv is represented as a set of k vertices {p1(v), . . . , pk(v)} such
that, for each i ∈ [k − 1], 0 ≤ pi(v) < pi+1(v) ≤ n · k − 1, and (2) ⋃

v∈V

⋃
i∈[k]{pi(v)} = Znk.

In other words, each value in [k · n] corresponds to a unique vertex of some polygon. A set of
polygons satisfying conditions (1) and (2) are called a proper polygon model for G. Similar
to previous cases, when we just ask that adjacent nodes have intersecting polygons (but not
necessarily the reciprocal) we say that the model is a semi-proper polygon model for G.

Let G be a graph and {Pv} be a semi-proper model for G. For each v ∈ V . Let us call
α(v) the set of points in {1, . . . , p1(v)}∪{pk(v), . . . , kn} that do not correspond to a neighbor
of v. For each i ∈ [k], we also call βi(v) the set of positions j /∈ α(v) such that pi(w) = j for
some w ∈ V . Formally,

α(v) = {i ∈ [0, p1(v)]N ∪ [pk(v), kn − 1]N : ∀u ∈ N(v), i /∈ Pu}

βi(v) = {j ∈ α(v) : ∃ω ∈ V, pi(ω) = j}

Lemma 4.4 Let G = (V, E) be a graph, and let {Pv}v∈V a semi-proper model for G.
Then {Pv}v∈V is a proper model for G if and only if |α(v)| = k|β1(v)| for every v ∈ V .

Proof. Let us suppose first that {Pv}v∈V is a proper model for G and v be an arbitrary
node. If α(v) = ∅ the result is direct. Then, let us suppose that α(v) ̸= ∅, and let us pick
q ∈ α(v). Then necessarily there exists i ∈ [k] such that q belongs to βi(v). Observe that
for each node w such that pi(w) ∈ βi(v), the k the vertices V (Pw) are contained in α(v).
Otherwise, the polygons Pw and Pv have non-empty intersection, which contradicts the fact

33

that {Pv}v∈V is a proper model, because if pi(ω) ∈ α(v), then w /∈ N(v). This implies that
|α(v)| = k|βi(v)|, for every i ∈ [k]. In particular |α(v)| = k|β1(v)|.

Let us suppose now that {Pv}v∈V is not a proper model for G. Let us define the set C of
vertices having non-neighbor with intersecting polygons, formally

C = {v ∈ V : ∃w ∈ V, {v, w} ̸∈ E and Pv ∩ Pw ̸= ∅}.

Now pick v ∈ C such that p1(v) is maximum, and call Cv the set of non-neighbors of v whose
polygons intersect with Pv. Let w be an arbitrary node in Cv. By the maximality of p1(v),
we know that p1(w) ∈ β1(v). But since Pw ∩ Pv ̸= ∅, there must exist i ∈ [k] such that
pi(w) /∈ βi(v). This implies that |β1(v)| ≥ |βi(v)| for every i ∈ [k], and at least one of these
inequalities is strict. Since |α(v)| = ∑

i∈[k] |βi(v)|, we deduce that k|β1(v)| > |α(v)|.

Let G = (V, E) be a graph, and {Pv}v∈V be a semi-proper polygon model for G. For each
i ∈ [k] and v ∈ V , we denote by πi(v) the cardinality of the set {u ∈ V : pi(u) < pi(v)}, and
denote by σi(v) the cardinality of the set {q < pi(v) : ∃u ∈ V : p1(u) = q ∨ pk(u) = q}.For a
node v, we denote N1,k(v) the number vertices of polygons corresponding to neighbors of v,
that are contained [0, p1(v)]N ∪ [pk(v), kn]N. Formally,

N1,k(v) = |{q ∈ [0, p1(v)]N ∪ [pk(v), kn]N : ∃w ∈ N(v), q ∈ Pw}|

And N1 = |{q ∈ [0, p1(v)]N : ∃ω ∈ N(v), p1(ω) = q}|

Lemma 4.5 Let G = (V, E) be a graph, and {Pv}v∈V be a semi-proper polygon
model for G and {π1k(v)}v∈V the relative positions of p1(v) and pk(v) respect the set
{p1(v)}v∈V ∪ {pk(v)}v∈V for each v ∈ V . Then, σk(v) = π1k(v) − 1.

Proof. Direct by definition of σk(v) and {π1k(v)}v∈V .

Lemma 4.6 Let G = (V, E) be a graph, and {Pv}v∈V be a semi-proper polygon model
for G and {π1(v)}v∈V , {πk(v)}v∈V the relative positions of p1(v) and pk(v) respect the
sets {p1(v)}v∈V and {pk(v)}v∈V , respectively, for each v ∈ V . Then,

|α(v)| = kn − pk(v) + p1(v) − 1 − N1,k(v)
|β1(v)| = n − σk(v) + πk(v) + π1(v) − N1(v)

Proof. Let {Pv}v∈V be a semi-proper polygon model for G and v be an arbitrary node.
First, observe that there are p1(v) integer positions for vertices in [p1(v)] and (kn − 1) − pk

positions for vertices in [pk, kn − 1]. Then, there are kn − pk + p1(v) − 1 available integer
positions in [p1(v)] ∪ [pk(v), kn − 1]N. Since N1,k(v) of these positions are occupied by a
polygon corresponding some neighbor of v, we deduce that |α(v)| = kn − pk + p1(v) − 1 −
N1,k(v).

Second, observe that the set {p1(u), pk(u)}u∈V uses 2n of the kn possible positions. Then,
there are 2n−σk(v) positions in [pk(v)+1, n ·k−1]N used by elements of ⋃

u∈V {p1(u), pk(u)}∩
[pk(v)+1, kn−1]N. Of These 2n−σk(v) positions, there are n−πk positions used by vertices
in ⋃

u∈V {pk(u)} ∩ [pk(v) + 1, kn − 1]N. Therefore, there are n − σk(v) + πk(v) positions in

34

[pk(v), n · k − 1] used by elements of ⋃
u∈V {p1(u)} ∩ [pk(v) + 1, kn − 1]N. This means that

there are n − σk(v) + πk(v) elements of the set {p1(u)}u∈V in [pk(v), kn − 1]N. Finally,
noticing that there are π1(v)N 1(v) positions used by ⋃

u∈V {p1(u)} ∩ [0, p1(v)]N, we deduce
that |β1(v)| = n − σk(v) + πk(v) + π1(v) − N1(v).

We are now ready to give the main result of this section.

Theorem 4.7 k-Polygon-Circle-Recognition belongs to dMAM1/3[log n].

Proof. Consider the protocols for Size, Permutation and Corresponding Order of
Protocols 1.8, 1.14 and 3.2. Given an instance ⟨G, id⟩, consider the following three round
protocol. In the first round, the prover provides each node v with the following information:

1. The certification of the total number of nodes n, according to the protocol for Size.

2. The vertices of the polygon Pv, denoted V (Pv) = {p1(v), . . . , pk(v)}.

3. The values of π1(v), πk(v) and σk(v).

4. The certification to prove that ⋃
v V (Pv) = Zkn according to the protocol for Permutation.

5. The certification of the correctness of {(p1(v), π1(v))}v∈V according to the protocol for
Corresponding Order.

6. The certification of the correctness of {(pk(v), πk(v))}v∈V according to the protocol for
Corresponding Order.

7. The certification of the correctness of {(p1(v), σ1(v)}v∈V and the collection {pk(v), σk(v)}v∈V

according to the protocol for Corresponding Order.

Then, in the second and third round the nodes perform the remaining interactions of
the protocols for Permutation and Corresponding Order. In the verification round,
the nodes first check the correctness of 1-7 according to the verification rounds for Size,
Permutation and Corresponding Order, as appropriate.

Remark: In order to check 7, each node has to play two different roles v′, v′′: one to
verify {(p1(v), σ(v′)}v∈V , and the other one to verifies {(pk(v), σ(v′′)}v∈V , where σ(v′) = σ1(v)
and σ(v′′) = σk(v). To do so, Merlin gives to v the certificates of v′ and v′′, and v answers
with the random bits as if they were generated by v′ and v′′. Obviously, this increases the
communication cost by a factor of 2.

Then, each node v computes σk(v) according to Lemma 4.5 and |β(v)| and |α(v)| according
to the expressions of Lemma 4.6, and checks the following conditions:

a. ∀u ∈ N(v), Pu ∩ Pv ̸= ∅.

b. |α(v)| = k|β1(v)|.

35

We now analyze completeness and soundness.

Completeness. Suppose that input graph G is a k-polygon-circle graph. Then Merlin
gives a proper polygon model {Pv}v∈V for G. Merlin also provides the correct number of
nodes n, correct orders {π1(v)}v∈V ,{πk(v)}v∈V , {π1k(v)}v∈V , and the certificates required
in the corresponding sub-routines. Then, the nodes verify correctness of 1-7 with proba-
bility greater than 2/3, by the correctness of the protocols for Size, Permutation and
Corresponding Order. Finally, condition a is verified by definition of a proper model,
and condition b is verified by Lemma 4.4. We deduce that every node accepts with proba-
bility greater than 2/3.

Soundness. Suppose now that G is not a k-polygon-circle graph. By the soundness of the
protocols for Size, Permutation and corresponding order, we now that at least one
node rejects the certificates not satisfying 1-7, with probability greater than 2/3. Suppose
then that conditions 1-7 are verified. Observe that every set of polygons satisfying condition
a form a semi-proper polygon model for G. Since G is not a k-polygon-circle graph, by
Lemma 4.4 we deduce that at least one node fails to verify a or b. All together, we deduce
that at least one node rejects with probability greater than 2/3.

Proof-size Analysis. The certification for Size, Permutation and Corresponding
Order have O(log n) proof-size, given by Protocols Protocol 1.8, 1.14 and 3.2. On the other
hand, for each v ∈ V , the values π1(v), πk(v), π1k(v), V (Pv) can be encoded in O(log n) as they
are numbers in [n], [2n] or [kn] (k fixed). Overall the total communication is O(log n).

36

4.3 Unit-Square Graphs

Given a graph G = (V, E) of size n, an unit-square model of G is a function p : V → R2,
such that, every vertex v ∈ V is associated with a unit square Sv in R2 defined by:

Sv =
ß

z ∈ R2 : max |p(v) − z| ≤ 1
2

™
.

In words, a unit square model is an assignation of centers of closed balls of diameter 1
defined with the Manhattan norm. A unit square model p is called proper if, for every
u, v ∈ V ,

{u, v} ∈ E ⇐⇒ Su ∩ Sv ̸= ∅.

In other words, a unit square model is proper if the intersection graph of {Sv}v corresponds
to G. A graph G is a unit square graph if it admits a proper unit square model. See Figure
4.1 for an example.

Figure 4.1: Example of a graph G in the left hand, and a proper unit-square model in the
right hand.

The certification protocol for the recognition of a unit square graph G includes a unit-
square model p for G; this is, the coordinates of the centers of the unit squares associated
to the vertices. Remember that in the verification round, the nodes interchange certificates
with their neighbors. Then, in the verification round the nodes can check if the squares of
their neighbors intersect with their square, and it immediately rejects if this is not satisfied.

Definition 4.8 Given G a unit square graph and a unit square model p for G. The
model p is called semi-proper if, for every pair of vertices, u, v ∈ V {u, v} ∈ E implies
that Su ∩ Sv ̸= ∅.

In other words, a semi-proper unit square model for a graph G is a model in which all
adjacent nodes have intersecting squares. The difference between a semi-proper and a proper
unit square model is that in a semi-proper we admit non-adjacent nodes with intersecting
squares.

Definition 4.9 Given G a unit square graph and p a semi-proper unit-square model.
A pair of vertices {u, v} are called ghosts between them if {u, v} /∈ E and Su ∩ Sv ̸= ∅.

37

Given some model p for a graph G, the local verification has two parts: For one side,
the nodes has to check that it’s unit squares intersects the unit squares of it’s neighbors,
and (2) it’s unit squares does not have to intersect the unit square of nodes that are not
it’s neighbors. In resume, it is necessary to difference between semi-proper and proper unit
square model for a graph.

Nice unit square models. As we mentioned in the introduction, in [127] it is shown that
every unit-square graph G = (V, E) admits a model where, for every v ∈ V , p(v) can be
encoded in O(log n) bits. Such models are called efficient.

Definition 4.10 Given a point q = (q1, q2) ∈ R2, it’s say that q is an integer point
if either q1 or q2 are integers. When q belongs to Z2, we say that q is a total integer
point.
A unit square model p of a graph G is called nice if p(v) is efficient, and p(v) is not an
integer point, for every v ∈ V .

Remark 4.11 The nice unit square models have the following useful property: for every
vertex v, the square Sv contains exactly one full-integer point.

Interestingly, every unit square graph admits a nice and proper unit square model, as we
show in the following lemma.

Lemma 4.12 Every unit-square graph admits a nice and proper unit-square model.

Proof. Let G be a unit square graph and let p be an efficient and proper unit square
model, provided by [127]. Suppose that p is not nice. Let us call X the set of non-integer
coordinates of points in p(V). Formally,

X = {x ∈ R : x /∈ Z and (∃v ∈ V : x = p(v)1 or x = p(v)2)}.

Suppose that X is nonempty. Define ε as the minimum distance between a coordinate of
X and a point in Z. Formally, ε = min{|x − a| : x ∈ X, a ∈ Z}. Observe that 0 < ε < 1
and can be encoded in O(log n) bits as well.

Now define the unit-square model p′ obtained from p translating each point in ε/2 · (1, 1).
Formally for every v ∈ V , p′(v) = p(v) + ε/2 · (1, 1). Observe that p′ is also an efficient and
proper unit-square model, as p′ corresponds to a translation of p and ε/2 can be encoded
in O(log n) bits. Let v be an arbitrary vertex. If some coordinate of p(v) is an integer,
then necessarily that coordinate is not going to be an integer in p′(v) (as ε /∈ Z). Also, by
definition of ε, if a coordinate of p(v) is not an integer, then neither that coordinate in p′(v)
is an integer. It’s deduced that p′ is a nice and proper unit square model for G.

Total integer components. Remark 4.11 implies that for every nice unit square model p
of a graph G = (V, E), we can define a partition of V consisting in the squares that contain

38

a given total integer point q ∈ Z2. More precisely, for q ∈ Z2 we define,

Vq = {v ∈ V : q ∈ Sv} and V =
⋃

q∈Z2

Vq.

For each q ∈ Z2, the set Vq is called the q-component of G. Observe that the some sets Vq

can be empty. In a proper unit square model, the non-empty q-components induce maximal
cliques of G.

Let (G, id) be a unit square graph where the nodes have unique id’s given by id. Let p
be a nice unit square model. For each non-empty q-component, the leader of Vq is defined as
the vertex v ∈ Vq with maximum id.

For each (i, j) ∈ Z2, we define the neighbor components of (i, j)-component as the set of
q-components such that the Manhattan distance between p and p is exactly 1.1. Observe that
in a nice semi-proper unit square model, every pair of adjacent nodes u, v belong to adjacent
components.

For q = (q1, q2) ∈ Z2, we denote by Sq = ∪v∈VqSv the area of the component, and by
∂Sq the set of square vertices on its perimeter. Relative to Sq, define the lower-left stair of
the q-component, denoted by ∂Sll

q , as the portion of the perimeter ∂Sq intersecting the set
{(x, y) : x ≤ q1 and y ≤ q2}. Similarly, the upper-right stair of the q-component, denoted
by ∂Sur

q , is the portion of ∂Sq that intersects the set {(x, y) : x ≥ q1 and y ≥ q2}. The
upper-left stair and lower-right stair are defined analogously and denoted as ∂Sul

q and ∂Slr
q ,

respectively.

The vertices of a stair are defined as the points of the stair that are the star and/or end
of a stair’s step.

For example, consider the next unit square model for K4.

Figure 4.2: Left: A unit square graph G. Right: A nice unit square model of G

Then, the lower-left and lower-right stair of the unit square model of Figure 4.2 are the
the white paths marked in Figure 4.3.

1If p = (i, j)), then q ∈ {(i − 1, j − 1), (i, j − 1), (i + 1, j − 1), (i − 1, j), (i, j), (i + 1, j), (i − 1, j + 1), (i, j +
1), (i + 1, j + 1)}

39

(a) lower-left stair marked with black
and its vertices v1, ..., v7

(b) lower-right stair marked with black
and its vertices v1, ..., v7

Figure 4.3

Now, the last notion needed is the node steps of a lower-left or lower-right stair.

Definition 4.13 Given a unit square model of a graph G and the lower-left stair of a
component (i,j), a node v in the component are said to be in the lower-left stair if its
left and lower sides are part of the stair. The step define by v, denoted by step(v) is
the horizontal border of Sv in ∂Sll

q .
The size of a stair is the number of squares participating in the stair, and the lower-left
stair of (i, j)-component with is represented by lefti,j : = (step(v1), ..., step(vk)), with
k the size of the stair and v1, ..., vk the nodes participating in the stair (from left to
right). The representation of the other stairs is defined analogously.

For example, in the above configuration, there are three nodes in the lower-left stair, with
steps (v3, v4) (red) and (v5, v6) (purple). Notice also that the red node is not part of the
lower-right stair.

Total orders in the two dimensional grid. We consider the following four total orders
that can be defined over [n]2.

1. Vertical order. Given by (a, b) ≼v (c, d) ⇐⇒ (a < c) ∨ (a = c ∧ b < d)

2. Horizontal order. Given by (a, b) ≼h (c, d) ⇐⇒ (b < d) ∨ (b = d ∧ a < c)

3. Positive diagonal. Given by (a, b) ≼dp (c, d) ⇐⇒ na,b < nc,d ∨ (pa,b = pc,d ∧ a < c)
Where pa,b is the only integer value such that b = a + pa,b

4. Negative diagonal. Given by (a, b) ≼dp (c, d) ⇐⇒ na,b < nc,d ∨ (na,b = nc,d ∧ a < c)
Where na,b is the only integer value such that b = −a + na,b

40

To exemplify, consider the following square model of K4.

Figure 4.4: Unit square model of K4

.

In this setting, as there is only one square intersecting each total integer point, so the
only possible representative set is V . Then, the four natural orders are:

(a) Vertical order. (b) Horizontal or-
der.

(a) Positive diago-
nal order.

(b) Negative diago-
nal order.

Figure 4.6: Four orders of Figure 4.4.

Where the position of each node is the position of the total integer point contained in it.

Notice that it is not well define what happens if we consider two square in the same total
integer point, but this case does not happen in our ordering on the Protocol.

We now have all the necessary to present the Protocol.

Theorem 4.14 There is a dMAM1/3[O(log n)] protocol to recognize
Unit-Square-Recognition.

41

Sketch of Protocol. In the first round, Merlin gives to each node v its respective unit
square Sv satisfying Lemma 4.12, defined by its rational center (xv, yv). Notice that if each
node share its square with their neighbors, then each node v locally can verify if Sv ∩ Su ̸= ∅
for all u ∈ N(v). Then, all the rest information shared is to verify that if two nodes u, v
aren’t neighbors, then Sv ∩ Su = ∅ (which, by only knowing Sv, the nodes cannot verify
locally). This is, each nodes needs to verify to no have ghosts.

In order too verify that there is no ghosts in the representation given by Merlin, we
separate the verification in three cases. Each node v in component (i,j) needs to verify

1. that v is neighbor of all nodes with square in the same component.

2. There is no node ω in components (i,j+1),(i,j-1),(i-1,j),(i+1) ghost of v.

3. There is no node ω in the diagonal components (i-1,j-1),(i-1,j+1),(i+1,j+1) or (i+1,j-1)
ghost of v.

In order to check this, the way of do it is the follow. To verify 1., Merlin chooses a
representative of each component with at least one square. Then the nodes needs to verify
that Merlin didn’t cheat. That is, the nodes verify that effectively Merlin just gave one
representative by component. If the nodes verify this, we prove that at least one node rejects
if there are ghosts u, v in the same component. With this, if a node v is not neighbor of all
the nodes in the same component, the Protocol rejects with high probability.

To verify 2., Merlin gives to each node the closest point ci,j in its component to the suc-
cessor component, and the closest point from the predecessor2 component to its component.
The nodes needs to verify the correctness of the closest point to the successor component
(which nodes can verify locally if they are neighbors of all the other nodes in the component),
and that, its successor receive the same value. To do this last verification, we use the Linear
Assignation Protocol to verify a correct assignation by Merlin. If the nodes can verify this,
if v and u are ghosts, assuming w.l.o.g., v is successor of u in vertical or horizontal order,
then v rejects, because Merlin sent the right closest point of u’s component, which is at least
a point in Su, and then v rejects because it realizes intersect a square containing the closest
point given by Merlin.

For example, consider the following graph and a model given by Merlin

Figure 4.7: To the left, a path with 5 nodes and to the right an invalid unit square model

In the model to the right, red and yellow nodes are ghosts,and then one of them should
reject. In this case, the red node is successor of yellow node in vertical order. So, if Merlin

2successor and predecessor respect both vertical and horizontal order

42

gave to the red node the correct closest point to component (i, j) in component (i, j − 1),
then this point is included in Sv, but then the red node realizes there is a square intersecting
it in component (i, j − 1), but it doesn’t has a neighbor in that component, so reject. If the
red node doesn’t have this information cannot realizes it has a ghost in component (i, j − 1).

Observation: The graph above is a unit square graph and has a valid unit square model,
but this model in specific is invalid.

To verify 3., if there exists ghosts u, v that are predecessor/successor in some diagonal
order, in this case Merlin give to each component its lower-(right/left) stair, and the lower-
(right/left) stair of the next component in both diagonal orders, then if two nodes u, v are
ghosts, suppose u is in component (i − 1, j − 1) and v in component (i, j). If u and v have
a common neighbor ω in component (i − 1, j − 1) or (i, j), then if u, v shares how many
neighbors they have in its neighbor components, ω rejects because can verify this value. For
example if ω is in component (i, j), is neighbor of all the nodes in that component (if not, is
guaranteed that the Protocol rejects by above argument), so is is neighbor of u, ω receives
from u its square Su and can calculate how many nodes in (i, j)-component are its neighbors
(if v is ghost of u then the number k of neighbors in (i, j)-component given by u to ω is
smaller than the real).

If u and v don’t have a common neighbor in one of its components and they are ghosts,
then u has to cross the lower-left stair of component (i, j). Assuming that v is part of the
lower-left stair (if v is not part of lower-left stair, exists other node z in (i, j)-component
ghost of u), then it is enough for the nodes in component (i, j) and (i − 1, j − 1) to both
construct part of the lower-left stair of component (i, j) where Su crosses the stair, because if
its construction is equal, then nodes in (i−1, j−1)-component notice Su crosses the lower-left
stair of (i, j)-component and then at least one of them rejects.

For example, consider the following unit square model for the same graph of Figure 4.7

Figure 4.8: Invalid model for the path of 5 nodes in Figure 4.7

In the model of Figure 4.8, the red and yellow nodes are ghosts again, and if red node
is in component (i, j), yellow node is in component (i − 1, j − 1). Notice that u crosses the
lower-left stair of component (i, j) (which it only step is given by v), so if Merlin gives to u
that portion of the lower-left stair of (i, j), then u notices that intersects a node in component
(i, j) and rejects. To prevent Merlin of sending an invalid lower-left stair of component (i, j)
to the nodes in component (i−1, j −1), Linear Assignation Protocol is used to verify the
lower-left stair constructed by the nodes in component (i, j) (they can construct it locally) is
the same that the one given to the nodes in its predecessor component. As the size of a stair
is O(n), compare the entire stair can need O(n log n) bits, so in order to shrink the message
interchanged, it is necessary to hash the stairs to be compared.

43

Now, we present the formal protocol to recognize Unit-Square-Recognition .

Protocol 4.15 In the First round, Merlin sends to each node v ∈ V :

1. The total number of nodes n, and the corresponding certification of this value according
to Protocol of Theorem 1.8;

2. a bit rb(v) indicating if v is representative of its component (rb(v) = 1) or not (rb(v) =
0) and the number of nodes in that component g(v). If rb(v) = 0, also sends the
representative’s id of the component, and if rb(v) = 1, the position πh(v), πv(v), πdp(v)
and πdn(v) of the (i, j)-component respect horizontal, vertical, diagonal positive and
diagonal negative order, respectively, and the corresponding predecessor component in
each order.

3. Number of neighbors ak,h in each neighbor’s component of Sv, with k, h ∈ {i − 1, i, i +
1} × {j − 1, j, j + 1}.

4. Values fh
1 (v) and f v

1 (v) representing the maximum values x0 and y0, satisfying that
there exists z0, w0 such that (x0, z0) and (w0, y0) are in some square of the predecessor
component, respect to horizontal and vertical order, respectively.

5. Values fh
2 (v) and f v

2 (v) representing the maximum values x1 and y1, satisfying that
there exists z1, w1 such that (x1, z1) and (w1, y1) are in some square of the component,
respectively.

6. A bit sdp and sdn indicating if the node v is part of the lower-left and lower-right stair,
respectively, and the step stepll(v) and steplr(v) defined by Sv in each stair, respectively.

7. If sdp = 1 (resp. sdn = 1), a bit tdp (resp. tdn) to indicate if there is a node in the
predecessor’s component respect diagonal positive (resp. negative) order which upper-
right vertex (resp. upper-left vertex) is under the step defined by Sv in the lower-left
(resp. lower-right) stair, respectively.

8. If Sv is under some step step(ω1) of component (i + 1, j + 1)-component, the step(ω1).
If Sv is under some step step(ω2) of component (i − 1, j + 1)-component, the step(ω2).

In the Second Round each node v ∈ V sends to Merlin

• A random string i1(v) according to Corresponding Order protocol to verify each
of four orders.

• A random string i2(v) ∈ [X] with X = |Hn2,q1| denoting a hash function hi2(v) to verify
correctness of lower-left and lower-right stair given by Merlin in next round

• A random string i3(v) ∈ [K] with K = |Hnq1,q2| indicating a hash function hi2(v) ∈
Hnq1,q2 to verify a correct distribution of the hashed stairs between the nodes and its
predecessors, given by Merlin in the next round.

44

• A random string according to Equality protocol to verify {f v
1 (v)}v∈V = {f v

2 (v)}v∈V

and {fh
1 (v)}v∈V = {fh

2 (v)}v∈V

In the Third Round, Merlin sends to each node v ∈ V , which square Sv is in component
(i, j):

• The information according to Corresponding Order Protocol to verify the positions
respect the four orders given.

• The information needed according to Equality Protocol, to verify {f v
1 (v)}v∈V =

{f v
2 (v)}v∈V and {fh

1 (v)}v∈V = {fh
2 (v)}v∈V .

• Two hashed vectors stc
r(v) and sts

r(v) claimed to be

stc
p(v) = hi2(r) (stepll(v1), ..., stepll(vk)))

sts
p(v) = hi2(r) (stepll(ω1), ..., stepll(ωk2))

Being v1, ..., vk1 the nodes in the lower-left stair and tdp = 1.
Analogously, step(ω1), ..., step(ωk2) the lower-left stair steps of component (i+1,j+1)
such that there is a node in the (i,j)-component with right upper vertex under that
steps. (Merlin gave this steps in point 8. of round 1). ´

• Analogously, give the same hash values stc
n(v) and sts

n(v) according to the lower-right
stair and negative diagonal order.

• The information needed according to Linear Assignation Protocol, using the hash
function hi3(r) ∈ Hnp,q given by the root.

Then, in the Verification round, each node shares all the messages given by Merlin. Then
each node v verifies:

1. Correctness of number-node n according to Protocol 1.8.

2. that Sv ∩ Su ̸= ϕ for all u ∈ N(v) and g(v) = g(z) for all neighbors z in the same
component.

3. Using the spanning three that ∑
v∈R g(v) = n with R set of representatives.

4. Correctness of positions in the four orders using verification round of Corresponding
Order Protocol.

5. That {f v
1 (v)}v∈V = {f v

2 (v)}v∈V and {fh
1 (v)}v∈V = {fh

2 (v)}v∈V according to Equality
Protocol.

6. Every node checks the is a unique representative of its component.

45

7. If ω is the component’s representative, v verifies that f v
1 (ω) and fh

1 (ω) are not in Sv

if ai−1,j(v) = 0 and ai,j−1(v) = 0, respectively. (If v has no neighbors in components
(i − 1, j) and (i, j − 1), then the closest points f v

1 (ω), fh
1 (ω) of this components to (i, j)

has to be outside Sv)

8. Correctness of stc
p(v) and stc

n(v) reconstructing the respective hash with the vertex of
all squares in the component such that sdp = 1 and sdn = 1, respectively.

9. Correctness of {stc
p(v)}v∈V and {sts

p(v)}v∈V respect DP order and {stc
n(v)}v∈V and

{sts
n(v)}v∈V respect DN order using verification round of Linear Assignation Pro-

tocol.

Node v accepts if the above verification are satisfied. If not, rejects.

In order to verify the Correctness and Soundness of the above Protocol, consider the
following proposition.

Proposition 4.16 Suppose there is two nodes u and v that are ghosts in the square
model given by Merlin in the above Protocol. If v is in the component (i,j), then is
satisfied

1. u is in a neighbor component of v

2. If u is in component (i,j), then in order to cheat the nodes, Merlin has to say to
two different nodes in some component, that they are the representative. These
two representatives are ghosts between them too.

3. If u is in component (i+1,j), (i-1,j), (i,j+1) or (i,j-1) and ak,h(v) = 0a, in or-
der to cheat the nodes, Merlin send wrong value f v

1 (u), f v
1 (v), fh

1 (u) or fh
1 (v),

respectively.

4. If u is in component (i-1,j-1), (i+1,j-1), (i-1,j+1) or (i+1,j+1) and ak,h(u) = 0
and 6. of Verification round is satisfied, then in order to cheat the nodes, Merlin
sent wrong value sts

p(u), sts
n(v), sts

n(u) or sts
p(v), respectively.

aThe corresponding k, h depending on which component is u

Proof. Given two nodes u and v ghosts such that v is in component (i, j).

1. Direct because Su and Sv are unit square.

2. If u, v are ghosts and there is a unique representative vertex ω in its component, then
ω if neighbor of v and u (if not u or v doesn’t have a representative) and checks that
g(ω) = g(v) = g(u). But g(v) and g(u) are less than the real number of nodes in that
component, so if there is only one representative ri,j by component, then ∑

g(ri,j) < n,
because g(ω) is less that the rial number nodes in that component, and each represen-
tative has g(ri,j) bounded by the rial number of nodes in the component.
Then, there have to be two representatives in some component to achieve ∑

g(ri,j) = n
in the verification round.

46

3. We prove that if u is in component (i-1,j), then Merlin send wrong value f v
1 (v) (the

other cases are analogous).
If u is in component (i-1,j) and Su ∩ Sv ̸= ∅, then the point (i, a) closest to (i, j) and
contained in some square of (i-1,j) component is at least (i, b), the point in the upper
boundary of Su. But is Merlin send the real value f v

1 (v), v can checks that this point
is in Sv and then should be neighbor of a node with square in component (i-1,j); but
Merlin said that ai−1,j(v) = 0, so v rejects. So in order to cheat, Merlin has to send a
wrong value f v

1 (v), lower than the real.

4. We prove that if Su is in component (i-1,j-1), then Merlin send a wrong value sts
p(u),

the other cases are analogous.
If ah,k = 0, then Merlin said to u that his upper-right vertex is under some step step(u)
of Sv’s lower-left stair. But this step is not a real step of Sv’s lower-left stair, because
as Su ∩ Sv, then the lower-left stair of v ’goes through’ Su, but the step given to u has
to be one that makes the suppose lower-left stair doesn’t go through Su.

With this, know it can be prove the Completeness and Soundness of the Protocol.

Completeness. Suppose that G is a unit square graph. An honest prover just has to send
the real number of nodes n, and correct information according to a valid unit square model
{Sv}v∈V . Then, all the hashed values have to be correct, so with probability ≥ 2

3 all nodes
accept.

Soundness. Suppose G is not a unit square graph. If a dishonest prover provides a wrong
value of n, or a wrong spanning tree, then the nodes reject by correctness of Protocol given
by Theorem 1.8.

If all nodes v ∈ V check that Sv ∩ Su ̸= ∅ for all u ∈ N(v) using the unit square model
given by Merlin, then, as G is not a unit square graph, there exists two nodes u, v ∈ V that
are ghosts between them.

There are three cases. Lets prove in each case that at least one node rejects with proba-
bility ≥ 2

3.

If node v is in component (i, j), then by Proposition 4.16 the node u is in a neighbor
component of (i, j).

First, if u is in the same component (i, j), by Proposition 4.16 there is a component (k1, k2)
with two different representatives ω1 and ω2. Merlin said to both they are in positions πv(ω1)
and πv(ω2) about vertical order. By Correctness of Corresponding Order Protocol,
w.l.o.g, if π(ω1) < π(ω2), then π(ω2) = π(ω1) + 1 (are consecutive), because if not, exists
a node ω3 such that π(ω1) < π(ω3) < π(ω2), and has ω3 is in a different component, and
its component cannot be in the same time greater and lower than (i, j)-component3, so by

3If ω3 is in the same component, we can iterate the argument

47

correctness of Corresponding Order Protocol, it rejects with probability ≥ 2
3. Then

π(ω2) = π(ω1) + 1 and Merlin should say to ω1 that ω2 is it successor and it is in the same
component, so ω1 rejects because they check there is other representative in the component.

Second, if u is in component (i+1,j), (i-1,j), (i,j+1) or (i,j-1), then Merlin cheats in a
value f v

1 (v), f v
2 (v), fh

1 (v) or fh
2 (v).

If Merlin cheats on f v
1 (v) or fh

1 (v), as v with probability ≥ 2
3 is neighbor of all the nodes

in its component, with the same probability v can verify the correctness of f v
1 (v) or f 2

1 (v) (it
can calculate the values f v

1 (v) or f 2
1 (v) if it is neighbor of all nodes in the component), then

v rejects with probability ≥ 2
3.

If Merlin does not cheat on f v
1 (v) and fh

1 (v), but cheats in some f v
2 (v) or fh

2 (v), then
exists nodes ω, v predecessor/successor in the respective order such that f v

1 (ω) ̸= f v
2 (v) or

fh
1 (ω) ̸= fh

2 (v), and then Linear Assignation Protocol rejects with probability ≥ 2
3.

Finally, if u is in component (i-1,j-1), (i+1,j-1), (i-1,j+1) or (i+1,j+1). Again two cases

1. If ak,h(v) > 0, then v has a neighbor z in component (k, h) which is neighbor of u with
probability greater than 2/34. The value ak,h(v) is smaller than the real and z can
count the rial number of square intersecting Sv and then, z rejects because check that
the value ak,h(v) is incorrect.

2. If ak,h = 0, by Proposition 4.16, Merlin sent a wrong hash value sts
p(u), sts

n(v) or sts
n(u)

(depending in which component is u). If u is in (i + 1, j + 1), then Merlin sent wrong
value sts

p(v) to v. If he sent the same wrong hash value to u to satisfy stc
p(u) = sts

p(v),

then u rejects with probability ≥ 2
3 because the nodes in (i+1,j+1) can evaluate the

correct step’s stair and validate that hashed value is not equal to stc
p(u). If Merlin sent

correct hashed value stc
p(u) to u, then stc

p(u) ̸= sts
p(v) and with probability ≥ 2

3, at
least one node rejects by Soundness of Linear Assignation Protocol.

Then, in any case, at least one node rejects with probability ≥ 2
3

Proof-size Analysis. The messages interchanged in the Protocol are square centers
(we assume are encoded in O(log n)), id’s, positions in four orders and single bits, being of
polynomial size in n the last three, thus the proof-size of Protocol 4.15 is O(log n).

4v and ω are neighbors, and with probability ≥ 2
3 ω is neighbor of all nodes in component (k, h), and

then neighbor of u

48

Chapter 5

Lower Bounds

In this section logarithmic lower-bounds are given in the certificate sizes of any PLS that
recognizes the class of permutation, trapezoid, circle or polygon-circle graphs. In order to
so, it is used a technique given by Fraigniaud et al [63], called crossing edge, and which we
detail as follows. Let G = (V, E) be a graph and let H1 = (V1, E1) and H2 = (V2, E2) be
two subgraphs of G. We say that H1 and H2 are independent if and only if V1 ∩ V2 = ∅ and
E ∩ (V1 × V2) = ∅.

Definition 5.1 ([63]) Let G = (V, E) be a graph and let H1 = (V1, E1) and H2 =
(V2, E2) be two independent isomorphic subgraphs of G with isomorphism σ : V1 → V2.
The crossing of G induced by σ, denoted by σ▷◁(G), is the graph obtained from G by
replacing every pair of edges {u, v} ∈ E1 and {σ(u), σ(v)} ∈ E2, by the pair {u, σ(v)}
and {σ(u), v}.

Then, the tool that we use to build our lower-bounds is the following.

Theorem 5.2 ([63]) Let F be a family of network configurations, and let P be a
boolean predicate over F . Suppose that there is a configuration Gs ∈ F satisfying
that (1) G contains as subgraphs r pairwise independent isomorphic copies H1, ..., Hr

with s edges each, and (2) there exists r port-preserving isomorphisms σi : V (H1) →
V (Hi) such that for every i ̸= j, the isomorphism σij = σi ◦ σ−1

j satisfies P(Gs) ̸=
P(σij

▷◁(G)s). Then, the verification complexity of any proof-labeling scheme for P and

F is Ω
Å

log(r)
s

ã
.

5.1 Permutation and Trapezoid Graphs

Let us consider first permutation and trapezoid graphs. Let F the family of instances of
Permutation-Recognition, induced by the family of graphs {Qn}n>0. Each graph Qn

consists of 5n nodes forming a path {v1, . . . , v5n} where we add the edge {v5i−3, v5i−1}, for

49

each i ∈ [n]. It is easy to see that for each n > 0, Qn is a permutation graph (and then also
a trapezoid graph). In fig. 5.1 is depicted the graph Q3 and its corresponding model.

Figure 5.1: Graph Q3 and a permutation model for Q3.

Given Qn defined above, consider the subgraphs Hi = {v5i−2, v5i−1}, for each i ∈ [n], and
the isomorphism σi : V (H1) → V (Hi) such that σi(v3) = v5i−2 and σi(v4) = v5i−1.

Lemma 5.1 For each i ̸= j, the graph σij
▷◁(Qn) it is neither a permutation graph nor

a trapezoid graph with σi : V (H1) → V (Hi) such that σi(v3) = v5i−2 and σi(v4) = v5i−1.

Proof. Given i < j, observe that in σij : V (Hj) → V (Hi), the nodes v5j−3, v5j−2, v5i−1,
v5i−3, v5i−2, v5j−1 form an induced cycle of length 6 (see fig. 5.2 for an example).

Figure 5.2: Graph σ12
▷◁ (Q3), where in red are represented the crossing edges. Observe that

this graph is not a trapezoid graph, as it contains an induced cycle of length 4.

As a trapezoid graph have induced cycles of length at most 4, we deduce that σij
▷◁(Qn) is

not a trapezoid graph.

Finally, as the class of permutation of permutation graph is contained in the class of
trapezoid graphs, then Qn neither it is a permutation graph.

By Theorem 5.2 and the above result, the lower bound result is direct.

Theorem 5.2 Any PLS for Permutation-Recognition or Trapezoid-
Recognition has a proof-size of Ω (log n) bits.

Proof. MQn is a permutation graph (and then also a trapezoid graph) for each n > 0,
and by Lemma 5.1 σi(Qn) is neither a permutation graph nor a trapezoid graph. As there
are r = O(n) such isomorphism σi and subgraphs Hi, each one with one edge, then by
theorem 5.2, any PLS that recognize `r k-Polygon-Circle-Recognition needs a proof-
size of Ω(log n) bits.

50

5.2 Circle And k-polygon-circle Graphs

We now tackle the lower-bound for circle and polygon-circle graphs. Let G the family of
instances of Circle-Recognition, defined by the family of graphs {Mn}n>2. Each graph
Mn consists of 6n nodes, where 4n nodes form a path {v1, . . . , v4n} where we add, for each
i ∈ [n], the edges {v4i−3, v4n+i}, {v4i−2, v5n+i} and {v4n+i, v5n+i}. It is easy to see that for
each n > 0, Mn is a circle graph (and then also a polygon-circle graph). In Figure 5.3 is
depicted the graph M4 and its corresponding model.

Figure 5.3: Graph M4 and a permutation model for M4.

Given Mn defined above, consider the subgraphs Hi = {v4n+i, v5n+i}, for each i ∈ [n], and
the isomorphism σi : V (H1) → V (Hi) such that σi(4n + 1) = v5n+i and σi(5n + 1) = v4n+i.

Lemma 5.3 For every k > 0 and each i ̸= j, the graph σij
▷◁(Mn) it is neither a k-

polygon-circle graph nor a circle graph with σi : V (H1) → V (Hi) defined as σi(4n+1) =
v5n+iand σi(5n + 1) = v4n+i.

Proof.

First, observe that in σij
▷◁(Mn) we have two induced cycles defined by C1 = v1, . . . , v4n,

and C2 = v4j−3, v4n+j, v5n+i, v4i−2, v4i−3, v4n+i, v5n+j. Moreover |V (C1)∩V (C2)| = 4, |V (C1)−
V (C2)| = 4n − 4 and |V (C2) − V (C1)| = 4. See fig. 5.4 for a representation of σi,i+1

▷◁ (M4).

Figure 5.4: Graph σi,i+1
▷◁ (M4), where in red are represented the crossing edges.

51

Claim 5.3 Every graph G consisting in two graphs C1 and C2 such that |V (C1)∩V (C2)| ≥ 4,
|V (C1) − V (C2)| ≥ 2 and |V (C2) − V (C1)| ≥ 2 is not a k-polygon-circle graph, for every
k > 0.

Proof. Let us denote by vi and vf two special nodes with degree 3, connecting the two
cycles. Suppose there exists a k-polygon-circle model for G. Observe that, if we delete
all polygons corresponding to nodes of V (C2) − V (C1), we obtain a polygon model for C1.
However, the cycle C1 has at least 4 nodes, because |V (C1) − V (C2)| ≥ 2 and |V (C1) ∩
V (C2)| ≥ 4. Then, there is no way to add the removed polygons corresponding to V (C2) −
V (C1), without intersecting a polygon of V (C1) − V (C2).

Then, by claim 5.3, we deduce that the graph induced by C1 ∪C2 is not a k-polygon circle
graph. Since the class of polygon-circle graphs is hereditary, we deduce that σij

▷◁(Mn) it is
not a k-polygon-circle graph.

Finally, as the class of circle graphs is contained in the class of k-polygon circle graph,
then Mn neither it is a circle graph.

Direct by Theorem 5.2 and Lemma 5.3 we deduce the following result.

Theorem 5.4 Any PLS for Circle-Recognition or k-Polygon-Circle-
Recognition has a proof-size of Ω(log n) bits.

Proof. Mn is a circle graph (and then also a k-polygon circle graph) for each n > 2, and
by Lemma 5.3 σi(Mn) is neither a circle graph nor a k-polygon circle graph. As there are
r = O(n) such isomorphism σi and subgraphs Hi, each one with 1 edge, then by theorem 5.2,
any PLS that recognize `r k-Polygon-Circle-Recognition needs a proof-size of Ω(log n)
bits.

52

5.3 Unit Square Graph

Finally, to show a logarithmic lower bound on any PLS recognizing Unit-Square-Recognition
consider the following graphs.

For all p ∈ N, consider Sp to be a graph defined recursively as:

• If p = 1, then G1 is as follow

Figure 5.5: Graph S1

• For p > 1, Sp consists in add the following graph, denoted as increase-graph, in one
endpoint of Sp−1.

Then, for example, S2 and S3 are as follow

(a) Graph S2
(b) Graph S3

Proposition 5.4 For all p, Sp is a unit square graph.

Proof. Notice that the following are valid unit square models for S1 and increase-graph.

(a) Unit Square Model of S1 (b) Unit Square Model of increase − graph

Then, can be built unit square model for each Sp joining the unit square models of S1
and increase-graph.

53

Now, for all Sp, consider the set of nodes H1, ..., Hr ⊂ V (Sp) to be each Hi the two nodes
vi

1, vi
2 which are in C6 and the diamond.

For example, in S2 there are two such sets H1 = {v1, v2} and H2 = {v3, v4}, being v1, v2, v3
and v4 the nodes marked in the following Figure

Figure 5.8: Sets H1 and H2 in S2

Notice that by construction, the set of nodes H1, ..., Hr are pairwise independent, isomor-
phism and r = O(n).

Lemma 5.5 For each Sp and subsets H1, ..., Hr as describe it above, the graph σij
▷◁(Sp)

is not a unit square graph. Where the isomorphism σi is one of the possible bijection
between H1 and Hi.

Proof. By contradiction, suppose there exists Sp and i < j such that σij
▷◁(Sp) is a unit

square graph. For each i < j, the stair of 6 nodes is a subgraph of σij
▷◁(Sp) as shown in the

following Figure

(a) Graph σij
▷◁(Sp). New edges drawn with orange.

(b) Stair subgraph of 6 nodes marked with red.

As observation, it’s easy to notice that the same subgraph is obtained if we use the other
possible bijection as isomorphism. Denote by E6 the stair graph of 6 nodes.

Now, as the class of unit squares are hereditary, E6 should also be a unit square graph,
so in order to conclude, we prove that E6 is not a unit square graph.

Claim 5.6 E6 is not a unit square graph.

Proof. Notice that the maximum number of unit squares intersecting just a fixed unit
square and no intersecting between them is 4, then it’s impossible to have a unit square model
in which 5 squares no intersect between them but yes intersect another fixed square.

And then, σij
▷◁(Sp) cannot be a unit square graph

54

Theorem 5.7 Any PLS for Unit-Square-Recognition has a proof-size of Ω(log n)
bits.

Proof.

Sn is a is a unit square graph for all n ≥ 1, and by Lemma 5.5 σi(Mn) is not a unit
square graph for all possible bijection between H1 and Hi. As there are r = O(n) such
isomorphism σi and O(n) subgraphs Hi, each one with 1 edge, then by theorem 5.2, any PLS
that recognize Unit-Square-Recognition needs a proof-size of Ω(log n) bits.

55

Bibliography

[1] NLHPC’s Guacolda-Leftraru’s infraestructure. https://www.nlhpc.cl/
infraestructura/. Accessed: 2020-08-14.

[2] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM Transactions on Computation Theory (TOCT), 1(1):1–54, 2009.

[3] Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Chaining algorithms for multiple
genome comparison. Journal of Discrete Algorithms, 3(2-4):321–341, 2005.

[4] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. Lls: A locality aware location service
for mobile ad hoc networks. In Proceedings of the 2004 Joint Workshop on Foundations
of Mobile Computing, DIALM-POMC ’04, page 75–84, New York, NY, USA, 2004.
Association for Computing Machinery.

[5] Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Message-optimal connected
dominating sets in mobile ad hoc networks. In Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking Computing, MobiHoc ’02, page 157–164,
New York, NY, USA, 2002. Association for Computing Machinery.

[6] Katerina Asdre, Kyriaki Ioannidou, and Stavros D Nikolopoulos. The harmonious
coloring problem is np-complete for interval and permutation graphs. Discrete Applied
Mathematics, 155(17):2377–2382, 2007.

[7] Sepehr Assadi, Gillat Kol, and Rotem Oshman. Lower bounds for distributed sketching
of maximal matchings and maximal independent sets. In Yuval Emek and Christian
Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020, pages 79–88. ACM, 2020.

[8] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter
graph decomposition is in nc. In Scandinavian Workshop on Algorithm Theory, pages
83–93. Springer, 1992.

[9] László Babai and Peter G Kimmel. Randomized simultaneous messages: Solution of a
problem of Yao in communication complexity. In Computational Complexity. Twelfth
Annual IEEE Conference, pages 239–246. IEEE, 1997.

[10] László Babai and Shlomo Moran. Arthur-merlin games: a randomized proof system,
and a hierarchy of complexity classes. Journal of Computer and System Sciences,
36(2):254–276, 1988.

56

https://www.nlhpc.cl/infraestructura/
https://www.nlhpc.cl/infraestructura/

[11] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. Journal of
the ACM (JACM), 48(5):1069–1090, 2001.

[12] Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling
schemes. In Symposium on Principles of Distributed Computing, pages 315–324, 2015.

[13] Florent Becker, Martin Matamala, Nicolas Nisse, Ivan Rapaport, Karol Suchan, and
Ioan Todinca. Adding a referee to an interconnection network: What can (not) be
computed in one round. In 2011 IEEE International Parallel & Distributed Processing
Symposium, pages 508–514. IEEE, 2011.

[14] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The simulta-
neous number-in-hand communication model for networks: Private coins, public coins
and determinism. In International Colloquium on Structural Information and Commu-
nication Complexity, pages 83–95. Springer, 2014.

[15] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The impact of
locality in the broadcast congested clique model. SIAM Journal on Discrete Mathe-
matics, 34(1):682–700, 2020.

[16] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability
of acyclic database schemes. Journal of the ACM (JACM), 30(3):479–513, 1983.

[17] Hans L Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theo-
retical computer science, 209(1-2):1–45, 1998.

[18] John A Bondy and Miklós Simonovits. Cycles of even length in graphs. Journal of
Combinatorial Theory, Series B, 16(2):97–105, 1974.

[19] Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local certification of graph de-
compositions and applications to minor-free classes. arXiv preprint arXiv:2108.00059,
2021.

[20] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.
Society for Industrial and Applied Mathematics, January 1999.

[21] Andreas Brandstadt, Jeremy P Spinrad, et al. Graph classes: a survey, volume 3.
Siam, 1999.

[22] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Com-
putational Geometry, 9(1-2):3–24, January 1998.

[23] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum
fill-in and treewidth for distance hereditary graphs. Discrete Applied Mathematics,
99(1-3):367–400, February 2000.

[24] Keren Censor-Hillel, Petteri Kaski, Janne H Korhonen, Christoph Lenzen, Ami Paz,
and Jukka Suomela. Algebraic methods in the congested clique. Distributed Computing,
32(6):461–478, 2019.

57

[25] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes.
Theoretical Computer Science, 2018.

[26] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes.
Theoretical Computer Science, 811:112–124, 2020.

[27] Yaotsu Chang, Chong-Dao Lee, and Keqin Feng. Multivariate interpolation formula
over finite fields and its applications in coding theory. arXiv preprint arXiv:1209.1198,
2012.

[28] HS Chao, Fang-Rong Hsu, and Richard C. T. Lee. An optimal algorithm for finding
the minimum cardinality dominating set on permutation graphs. Discrete Applied
Mathematics, 102(3):159–173, 2000.

[29] Serafino Cicerone, Gabriele Di Stefano, and Michele Flammini. Compact-port rout-
ing models and applications to distance-hereditary graphs. Journal of Parallel and
Distributed Computing, 61(10):1472–1488, 2001.

[30] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, December 1990.

[31] Francisco Claude, Gautam K Das, Reza Dorrigiv, Stephane Durocher, Robert Fraser,
Alejandro López-Ortiz, Bradford G Nickerson, and Alejandro Salinger. An improved
line-separable algorithm for discrete unit disk cover. Discrete Mathematics, Algorithms
and Applications, 2(01):77–87, 2010.

[32] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Googleâ€™s globally distributed database. ACM Trans-
actions on Computer Systems (TOCS), 31(3):1–22, 2013.

[33] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, 3(3):163–174, July 1981.

[34] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
March 2000.

[35] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interac-
tive proofs. In 33rd International Symposium on Distributed Computing (DISC 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[36] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed in-
teractive proofs. In Jukka Suomela, editor, 33rd International Symposium on Dis-
tributed Computing, DISC 2019, October 14-18, 2019, Budapest, Hungary, volume 146
of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[37] Ido Dagan, Martin Charles Golumbic, and Ron Yair Pinter. Trapezoid graphs and
their coloring. Discrete Applied Mathematics, 21(1):35–46, 1988.

[38] Elias Dahlhaus. Efficient parallel recognition algorithms of cographs and distance hered-
itary graphs. Discrete applied mathematics, 57(1):29–44, 1995.

58

[39] Guillaume Damiand, Michel Habib, and Christophe Paul. A simple paradigm for graph
recognition: application to cographs and distance hereditary graphs. Theoretical Com-
puter Science, 263(1-2):99–111, July 2001.

[40] Guillaume Damiand, Michel Habib, and Christophe Paul. A simple paradigm for graph
recognition: application to cographs and distance hereditary graphs. Theoretical Com-
puter Science, 263(1-2):99–111, 2001.

[41] Alessandro D’Atri and Marina Moscarini. Distance-hereditary graphs, steiner trees,
and connected domination. SIAM Journal on Computing, 17(3):521–538, June 1988.

[42] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2006.

[43] Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173, 2005.

[44] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested
clique model. In ACM symposium on Principles of distributed computing, pages 367–
376, 2014.

[45] Guillermo Durán, Luciano N Grippo, and Mart́ın D Safe. Structural results on circular-
arc graphs and circle graphs: A survey and the main open problems. Discrete Applied
Mathematics, 164:427–443, 2014.

[46] Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-
time distributed algorithms for detecting small cliques and even cycles. In 33rd Interna-
tional Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[47] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of bodlaender and courcelle. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 143–152. IEEE, 2010.

[48] Milan Erdelj, Tahiry Razafindralambo, and David Simplot-Ryl. Covering points of
interest with mobile sensors. IEEE Transactions on Parallel and Distributed Systems,
24(1):32–43, 2012.

[49] P Erdös. On extremal problems of graphs and generalized graphs. Israel Journal of
Mathematics, 2(3):183–190, 1964.

[50] Paul ErdHos and Alfréd Rényi. Asymmetric graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 14(3-4):295–315, 1963.

[51] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, et al. Three notes on
distributed property testing. In 31st International Symposium on Distributed Comput-
ing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[52] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila,
and Ioan Todinca. Local certification of graphs with bounded genus. arXiv preprint
arXiv:2007.08084, 2020.

59

[53] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila,
and Ioan Todinca. Compact distributed certification of planar graphs. Algorithmica,
pages 1–30, 2021.

[54] Laurent Feuilloley and Juho Hirvonen. Local verification of global proofs. arXiv preprint
arXiv:1803.09553, 2018.

[55] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossi-
bilities for distributed subgraph detection. In Symposium on Parallelism in Algorithms
and Architectures, pages 153–162, 2018.

[56] Orr Fischer, Rotem Oshman, and Uri Zwick. Public vs. private randomness in simulta-
neous multi-party communication complexity. In Proc. of the International Colloquium
on Structural Information and Communication Complexity, volume 9988 of Lecture
Notes in Computer Science, pages 60–74, 2016.

[57] Peter C Fishburn. Interval orders and interval graphs: A study of partially ordered
sets. Wiley New York, 1985.

[58] Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location–domination and metric dimension on interval and permutation
graphs. i. bounds. Theoretical Computer Science, 668:43–58, 2017.

[59] Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location-domination and metric dimension on interval and permutation
graphs. ii. algorithms and complexity. Algorithmica, 78(3):914–944, 2017.

[60] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David Peleg. Ran-
domized distributed decision. Distributed Computing, 27(6):419–434, 2014.

[61] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for
local distributed computing. Journal of the ACM (JACM), 60(5):1–26, 2013.

[62] Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan Tod-
inca. On Distributed Merlin-Arthur Decision Protocols. In International Colloquium
on Structural Information and Communication Complexity, pages 230–245. Springer,
2019.

[63] Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling
schemes. Distributed Computing, 32(3):217–234, 2019.

[64] Stefan Funke, Alexander Kesselman, Ulrich Meyer, and Michael Segal. A simple im-
proved distributed algorithm for minimum cds in unit disk graphs. ACM Transactions
on Sensor Networks (TOSN), 2(3):444–453, 2006.

[65] Frédéric Gardi. The roberts characterization of proper and unit interval graphs. Dis-
crete Mathematics, 307(22):2906–2908, 2007.

[66] Michael R Garey, David S Johnson, Gary L Miller, and Christos H Papadimitriou. The
complexity of coloring circular arcs and chords. SIAM Journal on Algebraic Discrete
Methods, 1(2):216–227, 1980.

60

[67] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters, 73(5-6):181–188, 2000.

[68] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks
i: Planar embedding. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, pages 29–38, 2016.

[69] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in
almost mixing time. In ACM Symposium on Principles of Distributed Computing,
pages 131–140, 2017.

[70] Emeric Gioan and Christophe Paul. Split decomposition and graph-labelled trees: char-
acterizations and fully dynamic algorithms for totally decomposable graphs. Discrete
Applied Mathematics, 160(6):708–733, 2012.

[71] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. Journal of the ACM
(JACM), 38(3):690–728, 1991.

[72] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. Journal of the ACM (JACM), 62(4):27, 2015.

[73] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[74] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[75] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of
Discrete Mathematics, Vol 57). North-Holland Publishing Co., NLD, 2004.

[76] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing.
Theory of Computing, 12(1):1–33, 2016.

[77] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer Berlin Heidelberg, 1993.

[78] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-bfs and
partition refinement, with applications to transitive orientation, interval graph recog-
nition and consecutive ones testing. Theoretical Computer Science, 234(1-2):59–84,
2000.

[79] Magnús M Halldórsson and Christian Konrad. Distributed algorithms for coloring
interval graphs. In International Symposium on Distributed Computing, pages 454–
468. Springer, 2014.

[80] Magnús M Halldórsson and Christian Konrad. Improved distributed algorithms for
coloring interval graphs with application to multicoloring trees. Theoretical Computer
Science, 811:29–41, 2020.

[81] Xin He. Parallel algorithm for cograph recognition with applications. Journal of Algo-
rithms, 15(2):284–313, 1993.

61

[82] Juho Hirvonen, Joel Rybicki, Stefan Schmid, and Jukka Suomela. Large cuts with local
algorithms on triangle-free graphs. arXiv preprint arXiv:1402.2543, 2014.

[83] Ch́ınh T Hoàng. Efficient algorithms for minimum weighted colouring of some classes
of perfect graphs. Discrete Applied Mathematics, 55(2):133–143, 1994.

[84] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 21(4):549–568, 1974.

[85] Edward Howorka. A characterization of distance-hereditary graphs. The Quarterly
Journal of Mathematics, 28(4):417–420, 1977.

[86] Sun-Yuan Hsieh, Chin-Wen Ho, Tsan-Sheng Hsu, Ming-Tat Ko, and Gen-Huey Chen.
Efficient parallel algorithms on Distance hereditary graphs. Parallel Processing Letters,
09(01):43–52, March 1999.

[87] Ruo-Wei Hung and Maw-Shang Chang. Linear-time algorithms for the hamiltonian
problems on distance-hereditary graphs. Theoretical Computer Science, 341(1-3):411–
440, September 2005.

[88] Taisuke Izumi and François Le Gall. Triangle finding and listing in congest networks.
In ACM Symposium on Principles of Distributed Computing, pages 381–389, 2017.

[89] H.A Jung. On a class of posets and the corresponding comparability graphs. Journal
of Combinatorial Theory, Series B, 24(2):125–133, April 1978.

[90] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and
Takeaki Uno. On the enumeration and counting of minimal dominating sets in interval
and permutation graphs. In International Symposium on Algorithms and Computation,
pages 339–349. Springer, 2013.

[91] Haim Kaplan and Yahav Nussbaum. A simpler linear-time recognition of circular-arc
graphs. In Scandinavian Workshop on Algorithm Theory, pages 41–52. Springer, 2006.

[92] Haim Kaplan and Ron Shamir. Pathwidth, bandwidth, and completion problems to
proper interval graphs with small cliques. SIAM Journal on Computing, 25(3):540–561,
1996.

[93] Jarkko Kari, Mart́ın Matamala, Ivan Rapaport, and Ville Salo. Solving the induced
subgraph problem in the randomized multiparty simultaneous messages model. In
International Colloquium on Structural Information and Communication Complexity,
pages 370–384. Springer, 2015.

[94] David G Kirkpatrick and T Przytycka. Parallel recognition of complement reducible
graphs and cotree construction. Discrete applied mathematics, 29(1):79–96, 1990.

[95] D.G. Kirkpatrick and T. Przytycka. Parallel recognition of complement reducible
graphs and cotree construction. Discrete Applied Mathematics, 29(1):79–96, November
1990.

[96] Lefteris M Kirousis and Dimitris M Thilikos. The linkage of a graph. SIAM Journal
on Computing, 25(3):626–647, 1996.

62

[97] Ton Kloks. Treewidth of circle graphs. In International Symposium on Algorithms and
Computation, pages 108–117. Springer, 1993.

[98] Gillat Kol, Rotem Oshman, and Raghuvansh Saxena. Interactive distributed proofs.
pages 255–264, 07 2018.

[99] Gillat Kol, Rotem Oshman, and Raghuvansh R Saxena. Interactive distributed proofs.
In ACM Symposium on Principles of Distributed Computing, pages 255–264. ACM,
2018.

[100] Christian Konrad and Viktor Zamaraev. Brief announcement: Distributed minimum
vertex coloring and maximum independent set in chordal graphs. In Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing, pages 159–161, 2018.

[101] Christian Konrad and Viktor Zamaraev. Distributed minimum vertex coloring and
maximum independent set in chordal graphs. In 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[102] Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees.
Distributed Computing, 20(4):253–266, 2007.

[103] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed
Computing, 22:215–233, 01 2005.

[104] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed
Computing, 22(4):215–233, 2010.

[105] Dieter Kratsch, Ross M McConnell, Kurt Mehlhorn, and Jeremy P Spinrad. Certifying
algorithms for recognizing interval graphs and permutation graphs. SIAM Journal on
Computing, 36(2):326–353, 2006.

[106] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

[107] Ilan Kremer, Noam Nisan, and Dana Ron. Errata for: “On randomized one-round
communication complexity”. Computational Complexity, 10(4):314–315, 2001.

[108] Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-
hoc routing: Of theory and practice. In Proceedings of the Twenty-Second Annual
Symposium on Principles of Distributed Computing, PODC ’03, page 63–72, New York,
NY, USA, 2003. Association for Computing Machinery.

[109] Eyal Kushilevitz. Communication complexity. In Advances in Computers, volume 44.
Elsevier, 1997.

[110] Evaggelos Lappas, Stavros D Nikolopoulos, and Leonidas Palios. An o (n)-time algo-
rithm for the paired domination problem on permutation graphs. European Journal of
Combinatorics, 34(3):593–608, 2013.

63

[111] Emmanuelle Lebhar and Zvi Lotker. Unit disk graph and physical interference model:
Putting pieces together. In 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing, pages 1–8. IEEE, 2009.

[112] Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What can be ap-
proximated locally? case study: Dominating sets in planar graphs. In Proceedings of
the twentieth annual symposium on Parallelism in algorithms and architectures, pages
46–54, 2008.

[113] R. Lin and S. Olariu. Fast parallel algorithms for cographs. In Lecture Notes in
Computer Science, pages 176–189. Springer Berlin Heidelberg, 1990.

[114] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

[115] Tze-Heng Ma and Jeremy P Spinrad. On the 2-chain subgraph cover and related
problems. Journal of Algorithms, 17(2):251–268, 1994.

[116] MS Madanlal, G Venkatesan, and C Pandu Rangan. Tree 3-spanners on interval,
permutation and regular bipartite graphs. Information Processing Letters, 59(2):97–
102, 1996.

[117] Swagata Mandal and Madhumangal Pal. Maximum weight independent set of circular-
arc graph and its application. Journal of Applied Mathematics and Computing,
22(3):161–174, 2006.

[118] MV Marathe, HB Hunt II, and SS Ravi. Geometry based approximations for inter-
section graphs. In Proceedings of the Fourth Canadian Conference on Computational
Geometry, pages 244–249, 1992.

[119] Ross M McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,
37(2):93–147, 2003.

[120] Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, January 2013.

[121] Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. Society
for Industrial and Applied Mathematics, January 1999.

[122] George B Mertzios and Ivona Bezáková. Computing and counting longest paths on
circular-arc graphs in polynomial time. Discrete Applied Mathematics, 164:383–399,
2014.

[123] Anisur Rahaman Molla, Supantha Pandit, and Sasanka Roy. Optimal deterministic
distributed algorithms for maximal independent set in geometric graphs. Journal of
Parallel and Distributed Computing, 132:36–47, 2019.

[124] Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport, and Ioan Todinca. Two
rounds are enough for reconstructing any graph (class) in the congested clique model. In
International Colloquium on Structural Information and Communication Complexity,
pages 134–148. Springer, 2018.

64

[125] Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport, and Ioan Todinca. Graph
reconstruction in the congested clique. Journal of Computer and System Sciences,
2020.

[126] Pedro Montealegre, Diego Ramı́rez-Romero, and Ivan Rapaport. Shared vs private
randomness in distributed interactive proofs. volume 181 of LIPIcs, pages 51:1–51:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[127] Tobias Muller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representa-
tions of convex polygon intersection graphs. SIAM Journal on Discrete Mathematics,
27(1):205–231, 2013.

[128] Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in
interactive proofs. In ACM-SIAM Symposium on Discrete Algorithms, pages 1096–115.
SIAM, 2020.

[129] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[130] Daniel Neuen. Graph isomorphism for unit square graphs. In Piotr Sankowski and
Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 70:1–70:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[131] Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round communi-
cation games. In Proc. of the 28th ACM Symposium on Theory of Computing, STOC
’09, pages 561–570, 1996.

[132] SebastiÃ¡n Perez-Salazar. El problema de la degenerancia de grafos en congested clique.
mathesis, Universidad de Chile, 2016.

[133] Martin Pergel. Recognition of polygon-circle graphs and graphs of interval filaments
is np-complete. In International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 238–247. Springer, 2007.

[134] Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-free graphs.
Information and Computation, 243:263–280, 2015.

[135] Diego Ramı́rez. Detecting graph classes in the distributed interactive proof model.
Mater’s Thesis, 2020.

[136] Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive
proofs for delegating computation. In ACM symposium on Theory of Computing, pages
49–62. ACM, 2016.

[137] Fred S Roberts. Indifference graphs. proof techniques in graph theory. In Proceedings
of the Second Ann Arbor Graph Conference, Academic Press, New York, 1969.

[138] Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325–357, 2004.

65

[139] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[140] D Seinsche. On a property of the class of n-colorable graphs. Journal of Combinatorial
Theory, Series B, 16(2):191–193, April 1974.

[141] Adi Shamir. Ip= pspace. Journal of the ACM (JACM), 39(4):869–877, 1992.

[142] Jeremy Spinrad. Recognition of circle graphs. Journal of Algorithms, 16(2):264–282,
1994.

[143] David P. Sumner. Dacey graphs. Journal of the Australian Mathematical Society,
18(4):492–502, December 1974.

[144] Alexander Tiskin. Fast distance multiplication of unit-monge matrices. Algorithmica,
71(4):859–888, 2015.

[145] Alan Tucker. Characterizing circular-arc graphs. Bulletin of the American Mathemat-
ical Society, 76(6):1257–1260, 11 1970.

[146] Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara. Enumeration
of nonisomorphic interval graphs and nonisomorphic permutation graphs. Theoretical
Computer Science, 806:310–322, 2020.

[147] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In ACM symposium on Theory of computing, pages 209–213,
1979.

66

	Distributed Model
	Geometric Intersection Graph Classes
	Toolbox
	Spanning Tree and Related Problems
	Problems Equality and Permutation

	Proof Labeling Schemes
	Permutation Graphs
	Trapezoid Graphs

	Distributed Interactive Protocols
	Corresponding Order Problem
	Linear Assignation Problem

	Three-round Distributed Interactive Protocols
	Circle Graphs
	Polygon Circle Graphs
	Unit-Square Graphs

	Lower Bounds
	Permutation and Trapezoid Graphs
	Circle And k-polygon-circle Graphs
	Unit Square Graph

	Bibliography

