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The increasing number of studies reporting the presence of Salmonella in environmental
water sources suggests that it is beyond incidental findings originated from sparse
fecal contamination events. However, there is no consensus on the occurrence of
Salmonella as its relative serovar representation across non-recycled water sources.
We conducted a meta-analysis of proportions by fitting a random-effects model using
the restricted maximum-likelihood estimator to obtain the weighted average proportion
and between-study variance associated with the occurrence of Salmonella in water
sources. Moreover, meta-regression and non-parametric supervised machine learning
method were performed to predict the effect of moderators on the frequency of
Salmonella in non-recycled water sources. Three sequential steps (identification of
information sources, screening and eligibility) were performed to obtain a preliminary
selection from identified abstracts and article titles. Questions related to the frequency
of Salmonella in aquatic environments, as well as putative differences in the relative
frequencies of the reported Salmonella serovars and the role of potential variable
moderators (sample source, country, and sample volume) were formulated according
to the population, intervention, comparison, and outcome method (PICO). The results
were reported according to the Preferred Reporting Items for Systematic Review and
Meta-Analyzes statement (PRISMA). A total of 26 eligible papers reporting 148 different
Salmonella serovars were retrieved. According to our model, the Salmonella frequency
in non-recycled water sources was 0.19 [CI: 0.14; 0.25]. The source of water was
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identified as the most import variable affecting the frequency of Salmonella, estimated
as 0.31 and 0.17% for surface and groundwater, respectively. There was a higher
frequency of Salmonella in countries with lower human development index (HDI). Small
volume samples of surface water resulted in lower detectable Salmonella frequencies
both in high and low HDI regions. Relative frequencies of the 148 serovars were
significantly affected only by HDI and volume. Considering that serovars representation
can also be affected by water sample volume, efforts toward the standardization of water
samplings for monitoring purposes should be considered. Further approaches such as
metagenomics could provide more comprehensive insights about the microbial ecology
of fresh water and its importance for the quality and safety of agricultural products.

Keywords: agriculture, epidemiology, foodborne pathogens, meta-analysis, one health, salmonellosis, systematic
review

INTRODUCTION

Salmonellosis is a cosmopolitan disease caused by Salmonella
enterica, a major pathogen causing human foodborne illness
worldwide (Majowicz et al., 2010; Hendriksen et al., 2011;
European Food Safety Authority [EFSA], 2016; Tack et al.,
2019). Salmonella species are estimated to cause 93.8 million
cases of gastroenteritis worldwide annually, leading to 59,100
deaths (Majowicz et al., 2010; Roth et al., 2018). In the
United States (USA), gastroenteritis caused by non-typhoidal
Salmonella only was estimated to affect approximately one
million people annually resulting in approximately US$ 3.7
billion medical costs (Majowicz et al., 2010; Batz et al., 2012).
Salmonella was associated with 33% of the foodborne illness
cases registered in 2018 in ten sites covering 15% of the USA
population and has been cited as the second most prevalent
foodborne pathogen, preceded only by Campylobacter spp.
(Tack et al., 2019).

The microbiological condition of water used in agriculture,
regardless of the source, is crucial for the safety of agri-
food products. Salmonellosis outbreaks have been associated
with the use of contaminated water in agricultural settings
(Harris et al., 2003; Walsh et al., 2014; Liu et al., 2018).
As the gastrointestinal tract of vertebrates is generally
considered the natural habitat of Salmonella enterica, the
use of recycled water from animal production systems
is usually considered a major risk factor for produce
contamination (Abulreesh, 2012). However, Salmonella
occurrence in water sources might go beyond short-term
accidental findings determined by the transient presence of
bacteria as a result of scattered fecal contamination events.
Viability mechanisms can enable Salmonella organisms to
successfully survive in natural aquatic environments for several
months (Domingo et al., 2000; Liu et al., 2018). In laboratory,
however, Salmonella has been observed to survive for up to
5 years in phosphate-buffered solution at room temperature
(Liao and Shollenberger, 2003).

Although Salmonella can survive in a wide range of
pH (4.05–9.5) and temperature (7–48◦C) under controlled
laboratory conditions (Cox et al., 2014), the natural environment
associated with irrigation water sources such as rivers or

lakes may impose challenging conditions for the long-term
viability of Salmonella. Variations in physicochemical properties
(temperature, salts, pH, oxygen), nutrient availability, interaction
with other microorganisms, and exposure to UV radiation
(Wilkes et al., 2011; Wanjugi and Harwood, 2013) have been
shown to reduce Salmonella viability in water over time, generally
up to 30 days (Steele and Odumeru, 2004). On the other
hand, the production biofilm can facilitate the survival of
Salmonella in water and aquatic invertebrates, such as free-
living protozoa and vertebrate hosts (Sha et al., 2011; Liu
et al., 2018; Chen et al., 2019). Furthermore, re-introduction of
Salmonella into irrigation ponds should be also considered, as
previously demonstrated for Salmonella Newport (Li B. et al.,
2015). Re-introduction events are usually caused by animal
waste contamination through sewage discharges, rainfall, or
associated surface run-off events. Therefore, natural or non-
recycled water sources such as rivers and irrigation canals
have been shown to act as reservoirs of viable Salmonella
(Baudart et al., 2000; Li et al., 2014; Martínez et al., 2017)
and play a critical role as contamination sources of Salmonella
and other microbes to fresh produce (Hanning et al., 2009),
circulating back to humans and other animals (Li B. et al.,
2015).

Despite the increasing number of studies reporting the
presence of Salmonella in natural aquatic environments, there
is no agreement on its average frequency and relative serovar
representation across water sources. Because of this knowledge
gap and the great importance of water for the sustainability
of food production worldwide, this meta-analysis aimed at
determining the weighted average proportion and between-
study variance of Salmonella frequency in non-recycled water
environments and the role of putative moderators affecting both
the frequency and relative representation of serovars.

MATERIALS AND METHODS

Three sequential steps were performed by the authors in order
to obtain a preliminary selection from identified abstracts and
article titles: Identification of information sources, Screening and
Eligibility. The selected articles were finally included in the study.
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Identification of Information Sources
The identification of putative information sources was guided
by questions that were formulated according to the population,
intervention, comparison, and outcome method (PICO) (Santos
et al., 2007). The following questions were asked: What is the
occurrence of Salmonella in aquatic environments? Are there
differences in the presence of Salmonella between surface and
groundwater? Which serovars are most prevalent in surface
water? Which serovars are most prevalent in groundwater?
Which serovars are present in both surface and groundwater?
Are there differences in frequency and diversity of Salmonella
serovars among countries? Could differences in the frequency
and diversity of Salmonella be attributed to sample volume?
Are there differences in presence and abundance related to
seasonality?

A literature search was performed using Medical Subject
Headings (MeSH) terms on Pubmed, Web of Science, and
Embase databases. The search components are described below.
The initial screening process was performed from April to
November 2020. Further directed searches were carried out by
checking the reference lists of relevant articles.

Search component 1 (SC1)—population: Water OR
groundwater OR lake OR pond OR river.

Search component 2 (SC2)—intervention: Salmonella spp. OR
Salmonella enterica OR Salmonella∗.

After retrieving the search components results, the Boolean
operator “AND” was used to combine SC1 and SC2.

Screening
The research considered only papers in English published
between 2015 and 2020 and duplicate articles were excluded.
Editorials, letters, and Ph.D. thesis were also excluded. Based
on the title and abstract contents, only articles presenting
proper identification of the serovars isolated from surface or
groundwater sources were selected.

Eligibility
The eligibility assessment was performed after the complete
analysis of the entire manuscript. For serotyping characterization,
publications using the standard Kauffmann-Le Minor scheme
were first selected, but some articles using serotyping through
pulsed-field gel electrophoresis (PFGE) were also included. The
exclusion of publications using rapid methods of Salmonella
detection was justified by two key reasons. Firstly, publication
reporting serovar identification provides more information for
biological interpretation and therefore fit better the purpose
of our study, as these publications can be used to respond
all the focus questions. For instance, the assessment of
the frequencies of Salmonella serovars could be biased by
the inclusion of articles using primers targeting a small
group of serovars. Secondly, although some rapid tests could
provide higher sensitivity values for Salmonella detection
compared to conventional microbiological culture (Cox et al.,
2014), the comparative analysis could be biased by the large
methodological variation represented by the numerous available
tests, including commercial and in-house methods. Therefore,

the publications considered in the present study described
microbiological isolation methods performed according to
standard methodologies such as BAM and AOAC, although
minor differences existed, mainly in terms of types of media.
Importantly, as the large number of serovars usually requires the
use of a combination of culture media (Cox et al., 2014), there
is possibility of bias in the comparative analysis of the serovars
across the different studies. Finally, the results were reported
according to the Preferred Reporting Items for Systematic Review
and Meta-Analyses Statement (PRISMA) (Moher et al., 2015).

Risk of Bias Assessment
Possible sources of bias included study inclusion/exclusion
criteria and the impact of missing data, missing primary results,
the chosen database, date, language, number of articles, and
article type selected for this study.

Statistical Analyses
Information regarding the identification of manuscripts
(authors, publication year, country), total number of collected
samples, number of positive samples, number of Salmonella
serovars, sample source (superficial or ground water), and
water sample volume were obtained and kept in excel
spreadsheets. Frequencies of Salmonella serovars were calculated
by dividing the number of positive samples of each serovar
by the total number of collected samples. Spreadsheets
containing the data used in this meta-analysis are available
as Supplementary Material. Because of the existence of
proportions outside the range of 0.2–0.8, the frequency values
were logit-transformed before analysis. The summary effect
size (i.e., the weighted average proportion) was obtained by
fitting a random-effects model using the restricted maximum-
likelihood estimator (RMLE), assuming there are within- and
between-study variances across the studies. The estimates of
summary proportions and their confidence intervals were
visualized according to forest plot as proposed by Lewis and
Clarke (2001). In order to assess the true variation in effect
sizes (between-study variance), the study heterogeneity (τ2) was
calculated and tested for significance according to Q-test at 95%
probability. Heterogeneity was also quantified by I2 statistics
as proposed by Higgins et al. (2003). When the effect sizes had
high heterogeneity, we conducted a moderator analysis by means
of meta-regression in order to investigate potential sources
of systematic variation between the studies. Three potential
moderators were investigated: (1) Sample source: surface water
or groundwater; (2) Water sample volume: small (<999 mL)
or large (≥1,000 mL); and (3) Sample origin: samples from
countries with low (<0.8) or high (≥ 0.8) human development
index (HDI), according to the latest Human Development
Index Ranking (United Nations Development Programme
[UNDP], 2020). We used China’s HDI for the reports from
Taiwan. The analyses were performed using metafor package in
R (Viechtbauer, 2010; RStudio Team, 2019; R Core Team, 2020).
In addition, a decision tree was built by supervised machine
learning using rpart package in R (Therneau et al., 2013), and the
Pearson correlation coefficient between observed and estimated
frequencies was calculated.
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The influence of the moderators on the relative frequency
of the reported Salmonella sorovars was verified with
canonical correspondence analysis, using the vegan package
in R (Oksanen et al., 2011). Diversity indexes Shannon
and Pielou were also calculated for richness and evenness
estimates, respectively.

The relative frequencies of serovars were submitted to cluster
analysis of row and columns, based on binary distance and
hierarchical clustering. Hierarchical clustering of the 26 articles
condiering the relative frequencies of the serovars was built using
average linkage was built from a binary distance matrix in R
4.11. The optimal number of clusters was defined according
to the FOM (figure of merit) index using the clValid package
in R (Brock et al., 2008). Heatmaps were obtained using the
ComplexHeatmap package in R (Gu et al., 2016).

RESULTS

Literature Search
A total of 1,723 articles were identified at PubMed, 1,277 at Web
of Science, and 2,194 at Embase, totaling 5,194 papers. Of these,
1,972 duplicates or triplicates were detected and excluded. A total
of 3,222 remaining publications were obtained after the exclusion
of redundant papers. Most articles (n = 101) were excluded for
not informing the proper identification of serovars.

After titles and abstracts were read, 26 papers addressing
both Salmonella and non-recycled environmental water were
considered adequate and included in the present study (Figure 1).
For statistical analysis, these 26 publications resulted in 29
observations as three papers reported Salmonella occurrence for
both surface and groundwater.

A total of 148 different serovars were reported. Of these,
139 originated from surface water, from which 123 serovars
were reported only in this water source. A total of 25 serovars
were reported in groundwater, including nine serovars that
were exclusively reported in this source. Only 16 serovars were
reported in both sources.

The United States was identified as the country with
the highest number of papers reporting the identification of
Salmonella serovars (13), followed by Canada (3), and Taiwan
(2). The remaining articles originated from Burkina Faso, China,
Croatia, Ghana, Mexico, Spain, Sri Lanka, and Uganda.

Table 1 presents the relative frequency ranges of
Salmonella serovars observed in non-recycled surface water
and groundwater. Only serovars that were reported in
at least five different studies were included in this table.
Supplementary Tables 1, 2 provide detailed information about
the occurrence of all reported Salmonella enterica serovars in the
26 publications.

The frequency of Salmonella enterica in water samples varied
from 1.14 (Stokdyk et al., 2020) to 100% (Maurer et al., 2015;
Kovačić et al., 2017) as observed in Figure 2. The highest number
of isolates reported in a single study (n = 247) was associated with
surface water samples (Kadykalo et al., 2020), while the highest
serovar diversity (35 different serovars) was observed by Jokinen
et al. (2015).

Considering groundwater only (Table 1), the relative
frequency of Salmonella enterica varied from 3.85 to 100%. The
higher number of isolates for this type of water (n = 26) was
reported by Dekker et al. (2015). Except for Kovačić et al. (2017),
which reported the occurrence of Salmonella Enteritidis in
a single sample (100%), the highest frequency of Salmonella
and the greatest diversity of serovars were observed in a study
conducted in Sri Lanka (Mahagamage et al., 2020). Importantly,
although the study from Kovačić et al. (2017) refers to a single
sample related to an outbreak investigation, no minimum sample
size was predetermined as inclusion criteria for the present
meta-analysis and therefore that study has been included in the
present investigation.

The Forest plot showing the summary effect size of the
Salmonella proportions in water is shown in Figure 3. According
to our results, Salmonella frequency in non-recycled water
sources was 0.19 [CI: 0.14; 0.25]. Although a significant
(P < 0.0001) and high heterogeneity (τ2 = 0.0711; I2 = 99.72%)
was observed, only source was identified as a significant
mediator (P < 0.10) in the meta regression analysis. The
descriptive average frequencies were 31.97 and 20.85% in surface
water and groundwater samples, respectively, as shown in
Supplementary Tables 1, 2.

The decision tree (Figure 4) obtained by supervised
machine learning resulted in a 0.48 Pearson correlation
coefficient between observed and estimated frequencies. All
three moderators (water source; HDI, and sample volume)
were shown to affect Salmonella frequency in water but
source was identified as the most relevant one. Estimate
frequencies of 0.31 and 0.17% for surface and groundwater
were obtained, respectively. Considering surface water only,
samples from countries with lower HDI resulted in a higher
Salmonella frequency (0.42) compared to developed regions
(0.26). Sampling of small water volumes resulted in lower
detectable Salmonella frequencies in both high and low HDI
regions. The water sampling technique reported by the majority
of the studies consisted of transporting determined volume of
water to the laboratory for filtering. The use of less than 1
L water samples was reported by seventeen studies (65.38%),
while other six studies (23.08%) described the use of 1–
4 L water samples. Only two publications (7.69%) reported
the use of in situ water filtration (10 L) by means of the
modified Moore swab technique (MMS) (Allard et al., 2019;
Callahan et al., 2019) and only a single study reported the
use of in situ ultrafiltration (728 L) with commercial dialyzers
(Stokdyk et al., 2020). Detailed information is shown in
Supplementary Tables 1, 2.

According to the canonical correspondence analysis, both
HDI and sample volume significantly (P < 0.0001) affected
the relative frequencies of the 148 Salmonella serovars across
the studies. The hierarchical clustering of the 26 publications
considering the relative frequencies of the 148 Salmonella
serovars is shown in Supplementary Figure 1. Five distinct
clusters were observed. The larger cluster (2) is comprised only by
studies from countries with high HDI and the majority of these
studies reported the use of water samples with less than 1 L. On
the other hand, all but one (16) study in the Cluster 1 originated
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FIGURE 1 | PRISMA flow diagram showing the sequential steps for articles selection and inclusion in the meta-analysis.
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TABLE 1 | Relative representation of Salmonella enterica serovars associated with surface and groundwater sources that have been reported in peer-reviewed scientific
publications addressing the occurrence of Salmonella in aquatic environments between the years 2015 and 2020 (Only serovars reported in at least five different studies
are considered).

Serovar Source Relative representation, % References

S. Newport Surface water 1.14–58% Bell et al., 2015; Hsu et al., 2015; Jokinen et al., 2015; Li B. et al., 2015; Maurer et al.,
2015; Afema et al., 2016; Antaki et al., 2016; Bergholz et al., 2016; Topalcengiz et al.,
2017; Harris et al., 2018; Ho et al., 2018; Song et al., 2018; Truitt et al., 2018; Callahan
et al., 2019; Gu et al., 2019; Kadykalo et al., 2020; Mahagamage et al., 2020

Groundwater 5.55 and 43.18% Gu et al., 2019; Mahagamage et al., 2020

S. Typhimirium Surface water 0.29–37.31% Bell et al., 2015; Hsu et al., 2015; Jokinen et al., 2015; Maurer et al., 2015; Afema et al.,
2016; Falardeau et al., 2017; Song et al., 2018; Truitt et al., 2018; Callahan et al., 2019; Gu
et al., 2019; Díaz-Torres et al., 2020; Kadykalo et al., 2020; Mahagamage et al., 2020

Groundwater 9.09–90.91% Gu et al., 2019; Mahagamage et al., 2020; Stokdyk et al., 2020

S. Enteritidis Surface water 0.75–50% Jokinen et al., 2015; Li B. et al., 2015; Maurer et al., 2015; Afema et al., 2016; Bergholz
et al., 2016; Falardeau et al., 2017; Santiago et al., 2018; Song et al., 2018; Callahan et al.,
2019; Gu et al., 2019.

Groundwater 100% Kovačić et al., 2017.

S. Bareilly Surface water 1.69–16.21% Hsu et al., 2015; Li B. et al., 2015; Maurer et al., 2015; Harris et al., 2018; Ho et al., 2018;
Truitt et al., 2018; Callahan et al., 2019; Gu et al., 2019; Mahagamage et al., 2020

Groundwater 0%

S. Thompson Surface water 1.17–18.3% Bell et al., 2015; Jokinen et al., 2015; Li B. et al., 2015; Maurer et al., 2015; Bergholz et al.,
2016; Song et al., 2018; Truitt et al., 2018; Gu et al., 2019; Kadykalo et al., 2020

Groundwater 36.36% Gu et al., 2019

S. Infantis Surface water 0.29–76% Bell et al., 2015; Jokinen et al., 2015; Maurer et al., 2015; Bergholz et al., 2016; Truitt et al.,
2018; Callahan et al., 2019; Kadykalo et al., 2020

Groundwater 0%

S. Saintpaul Surface water 0.89–19.54% Jokinen et al., 2015; Li B. et al., 2015; Maurer et al., 2015; Antaki et al., 2016; Topalcengiz
et al., 2017; Harris et al., 2018; Truitt et al., 2018; Gu et al., 2019

Groundwater 0%

S. Agona Surface water 1.83–86.67% Hsu et al., 2015; Jokinen et al., 2015; Santiago et al., 2018; Song et al., 2018; Díaz-Torres
et al., 2020; Kadykalo et al., 2020; Mahagamage et al., 2020

Groundwater 0%

S. Give Surface water 1.15–12.31% Jokinen et al., 2015; Maurer et al., 2015; Traoré et al., 2015; Bergholz et al., 2016; Harris
et al., 2018; Callahan et al., 2019; Kadykalo et al., 2020

Groundwater 3.85% Dekker et al., 2015

S. Javiana Surface water 0.44–24.89% Bell et al., 2015; Jokinen et al., 2015; Li B. et al., 2015; Topalcengiz et al., 2017; Truitt et al.,
2018; Gu et al., 2019; Mahagamage et al., 2020

Groundwater 9.1% Gu et al., 2019

S. Anatum Surface water 0.85–9.52% Maurer et al., 2015; Topalcengiz et al., 2017; Harris et al., 2018; Ho et al., 2018; Truitt et al.,
2018; Callahan et al., 2019

Groundwater 0%

S. Hartford Surface water 0.75–10.85% Maurer et al., 2015; Antaki et al., 2016; Topalcengiz et al., 2017; Truitt et al., 2018; Callahan
et al., 2019; Gu et al., 2019

Groundwater 0%

S. Kentucky Surface water 0.19–21.21% Jokinen et al., 2015; Maurer et al., 2015; Afema et al., 2016; Gu et al., 2019; Kadykalo
et al., 2020; Mahagamage et al., 2020

Groundwater 16.67% Mahagamage et al., 2020

S. Muenchen Surface water 0.89–14.84% Jokinen et al., 2015; Li B. et al., 2015; Maurer et al., 2015; Antaki et al., 2016; Topalcengiz
et al., 2017; Harris et al., 2018

Groundwater 0%

S. Rubislaw Surface water 4.72–20.52% Jokinen et al., 2015; Maurer et al., 2015; Antaki et al., 2016; Bergholz et al., 2016;
Topalcengiz et al., 2017; Harris et al., 2018

Groundwater 15.38% Dekker et al., 2015

S. Senftenberg Surface water 0.85–11.11% Bell et al., 2015; Jokinen et al., 2015; Maurer et al., 2015; Traoré et al., 2015; Afema et al.,
2016; Truitt et al., 2018

Groundwater 0%

S. Virchow Surface water 1.49–8.1% Li B. et al., 2015; Traoré et al., 2015; Afema et al., 2016; Ho et al., 2018; Santiago et al.,
2018; Song et al., 2018

Groundwater 0%
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FIGURE 2 | Frequency of Salmonella enterica serovars detected in non-recycled surface water (A) and groundwater samples (B) as per reported in 26 peer
reviewed scientific publications between the years 2015 and 2020.

Frontiers in Microbiology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 802625

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-802625 May 28, 2022 Time: 15:14 # 8

Rocha et al. Salmonella in Non-recycled Water Sources

FIGURE 3 | Forest plot showing the summary effect size of proportions of Salmonella frequencies in non-recycled water sources using 26 selected articles and 29
observations. This summary effect size was obtained in R 4.11 (package metafor) by fitting a random-effects model using the restricted maximum-likelihood
estimator (RMLE). Heterogeneity parameters and statistics are indicated in the model.

from countries with low HDI. Two manuscripts (17 and 25) were
not grouped in any cluster.

The heatmap representing the relative frequencies of
Salmonella serovars according to the cluster analysis of rows (y)
and columns (x) is shown in Figure 5. Cluster 1 (x) included
the 135 less representative serovars, while cluster 5 (x) was
comprised the most frequent serovars: S. Newport and S.
Typhimurium, which were identified in 19 and 16 studies,
respectively. Other frequent serovars were grouped in Clusters
2 (S. Barelly, S. Mbandaka, S. 4,[5],12:i:-, S. Braenderup),
3 (S. Rubislaw, S. Muenchen, S. Give, S. Hartford) and 4
(S. Kentucky, S. Stanleyville). Considering that the relative
frequencies of the Salmonella serovars across studies are affected
by HDI and volume, individualized heatmaps according to
these moderators are shown in Figures 6, 7, respectively. The
higher frequencies of some serovars such as S. Rubislaw, S.
Muenchen, S. Give, S. Hartford, S. Rissen, S. Saintpaul, and S.
Thompson across studies from high HDI countries is shown
in Figure 6. According to Figure 7, some serovars were more
frequently observed in studies using larger water samples, such

as S. Newport, S. Typhimurium, S. Mbandaka, S. Braenderup,
and S. Kentucky. On the other hand, S. Agona, S. Derby, and S.
Virchow were more frequently observed in some studies using
small volume water samples (8, 16, 19) than in studies using
greater water volume samples.

There were no differences (P > 0.05) in the diversity of
Salmonella serovars across water sources, HDI and volume as
measured by Shannon and Pielou indexes for richness and
evenness, respectively.

DISCUSSION

Occurrence of Salmonella in Aquatic
Environments
The overall weighted average proportion was 0.19 [CI: 0.14; 0.25]
for positive water samples, suggesting that viable Salmonella
organisms are frequently found in non-recycled water sources
worldwide. The increasing number of human salmonellosis
outbreaks associated with the consumption of fresh produce or
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FIGURE 4 | Decision tree predicting the frequency of Salmonella in non-recycled water sources in function of the moderator variables source (surface or
groundwater), human development index (HDI) of the country from which the samples originated (high or low) and water sample volume (< 1 L or ≥ 1 L). The
predictive algorithm has been built in R (package rpart) using meta-analysis data of 26 peer reviewed scientific publications between the years 2015 and 2020.

FIGURE 5 | Heatmap of the relative frequencies of Salmonella enterica serovars isolated from surface and groundwater sources as per reported in 26 peer-reviewed
scientific publications between the years 2015 and 2020. The heatmap was built in R (package ComplexHeatmap).
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FIGURE 6 | Heatmap of the relative frequencies of Salmonella enterica serovars isolated from non-recycled water sources according to the human development
index (HDI) of countries associated with 26 peer-reviewed scientific publications between the years 2015 and 2020. The heatmap was built in R (package
ComplexHeatmap).

FIGURE 7 | Heatmap of the relative frequencies of Salmonella enterica serovars isolated from non-recycled water sources according to the water sample volume
used in 26 peer-reviewed scientific publications between the years 2015 and 2020. The heatmap was built in R (package ComplexHeatmap).

industrialized plant-based products, including fruits, vegetables,
legumes, grains, nuts, and seeds, has posed the question whether
environmental water could play a role as potential Salmonella
contamination source. The 127 peer-reviewed studies retrieved
after the initial screening test of this systematic review confirms
the increasing interest of the scientific community on this topic.
These publications reported the occurrence of Salmonella from
different aquatic environments under a wide range of conditions
(Domingo et al., 2000; Bell et al., 2015; Li B. et al., 2015; Liu
et al., 2018). Obviously, the capacity of Salmonella to survive
and to adapt to challenging environmental conditions is a
basic principle for the bacteria to fulfill their biological cycle
(fecal-oral route of transmission), suggesting the existence of
mechanisms to overcome stressors in aquatic and terrestrial
microcosms. Long-term persistence of S. enterica in irrigation
ponds has been previously reported (Greene et al., 2008; Luo

et al., 2015), indicating that this pathogen is able to adapt to
stressors in hydrological niches and highlighting the importance
of assessing the quality of irrigation water regularly (Winfield and
Groisman, 2003). However, little is known about the real ability
of Salmonella to adapt and evolve in natural environments such
as surface and groundwater sources.

Are There Differences in the Presence of
Salmonella Between Surface and
Groundwater?
The amount of true heterogeneity observed in our study,
represented by the between-study variance and expressed by
the parameter (τ2), (Borenstein et al., 2005) was large and
statistically significant, indicating the existence of systematic
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differences in effects across 26 articles used in the present meta-
analysis. Interestingly, the I2 parameter varies from 0 to 100%
and allows comparisons of the estimated heterogeneity across
different meta-analysis studies. In the case of the present study,
the observed I2 value was 99.72%. Therefore, there is evidence
that the variance is determined by the existence of importance
variable moderators. That said, we highlight the limited number
of moderators (n = 3) investigated in the present meta-analysis
that could act as sources of heterogeneity, as reflected by the
lack of important information across all studies in the meta-
analysis, for instance, the proximity of the sampled water of
potential contamination sources (agriculture, livestock, sewage),
psychochemical properties of water that might play an important
role in the survival of Salmonella and competing organisms, the
presence of other contaminants, characterization of wildlife in the
proximity of the water bodies, among others.

The fact that the source of water was identified as a significant
moderator for Salmonella frequency according to the meta
regression analysis and was also identified as the most relevant
moderator in the regression tree corroborates the hypothesis
that viable Salmonella is more frequently recovered from surface
water sources than groundwater. This finding was expected,
considering the greater exposure of surface water sources to
contaminants in general. Indeed, surface water is more easily
exposed to discharge of sewage, inadequate agricultural, livestock
and industrial run-offs, climatic events and visit of wild animals
(Bergholz et al., 2016; Karkey et al., 2016; Toro et al., 2016;
Gu et al., 2019; Jechalke et al., 2019). The latter is particularly
noteworthy, since a wide range of S. enterica serovars have been
extensively reported in wildlife (Maurer et al., 2015; Toro et al.,
2016; de Souza et al., 2020).

The lower frequency of Salmonella in groundwater compared
with surface water (0.17 vs.0.31, respectively) observed in our
study corroborates previous findings (Abulreesh, 2012; Gu
et al., 2019). Underground reservoirs have long been considered
excellent sources of drinking water to human and animal
populations, mainly because it is naturally filtered by the soil
underlying rock formations. Although they usually provide
superior microbial quality associated with lower microbial loads,
the belief that groundwater is pure and no treatment is needed
before consumption has been questioned (Li et al., 2018; Liu et al.,
2018; Stokdyk et al., 2020) by the increasing number of studies
reporting Salmonella contamination in groundwater (Dekker
et al., 2015; Li X. et al., 2015; Palamuleni and Akoth, 2015). There
are several possibilities of contamination of groundwater, even
though some of them are sporadic. Quality can be compromised
by insufficient well depth or during construction (Liu et al.,
2018) and well pollution may result from events such as
improperly functioning sewer systems, contaminated stormwater
and agricultural run-off, especially after storms and floods (Gu
et al., 2019). Contamination events can be sporadic or one-off,
nevertheless, the water sources can become compromised for
longer periods (Dekker et al., 2015). Some experimental studies
showed that Salmonella can remain viable for periods longer
than 100 days in water, and that viability is mainly affected
by ambient temperature (Domingo et al., 2000; Ibrahim et al.,
2019).

Importantly, there was a considerably higher number of
studies on the occurrence of Salmonella in surface water (n = 23)
compared with groundwater (n = 6). Possibly, the greater
interest in assessing surface water is related to its relevance
and economic importance for both rural and urban settings
worldwide. In fact, the majority of reports in the present
study originated from regions where surface water sources
have been commonly used for irrigation purposes in agri-food
production systems.

In summary, the occurrence of Salmonella in groundwater
should not be neglected. Further studies addressing Salmonella
contamination in groundwater are warranted as they could
be particularly important in regions where irrigation practices
depend on this type of water, such as semiarid settings.

Which Serovars Are Most Prevalent in
Surface Water and Ground Water?
Between 2015 and 2020, S. Newport was the most frequent
serovar identified in both surface (464 isolates; 18.33%) and
groundwater (20 isolates; 0.78%). Furthermore, Callahan
et al. (2019) reported S. Newport as the most isolated
serovar throughout the year. S. Newport infection rates
have been stable over the decades, with approximately
750 confirmed cases per year in Europe (European
Food Safety Authority [EFSA], 2016). Wild birds are
considered important reservoirs as recurrent S. Newport
outbreaks have been reported due to direct contamination
of vegetables such as tomatoes, soil or irrigation water
(Bell et al., 2015). The factors causing variations in S.
Newport rates in the United States remain unknown
(Crim et al., 2018).

Salmonella Typhimurium was the second most frequent
serovar contaminating both surface water (9.56%) and
groundwater (0.63%). This serovar has been one of the
two leading serovars associated with human salmonellosis
since 1990 (Herikstad et al., 2002). The persistence of this
pathogen in freshwater microcosms has been associated with
the expression of the hilA gene, a regulatory system for the
expression of invasive Salmonella phenotypes, including
the expression of the sspC, invF, and orgA invasion genes
(Nutt et al., 2003). Therefore, it is possible that strains
circulating in environmental water sources could present
increased virulence.

S. Thompson, also a frequent serovar, has been associated
with sporadic salmonellosis outbreaks every year in different
countries (Friesema et al., 2012; Gaulin et al., 2017; Suijkerbuijk
et al., 2017; Eun et al., 2019). Under laboratory conditions, a
3 ppm chlorine water treatment induced the viable but not
cultivable state in S. Thompson (Highmore et al., 2018), raising
concerns about the efficacy of chlorine-based treatment of water
for human consumption. Therefore, S. Thompson may be a
potential pathogen of treated water for human consumption.

S. Javiana, S. Kentucky, and S. Rubislaw serovars have been
also identified as frequent serovars contaminating non-recycled
water sources. These serovars have been shown to play a role in
human salmonellosis. The number of cases of S. Javiana has been
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dramatically increasing in the USA in the last decades (Centers
for Disease Control and Prevention [CDC], 2013). It is worth
noting that drinking water has been reported as an important
source of human infection by S. Javiana (Clarkson et al., 2010;
Mukherjee et al., 2019). S. Kentucky is involved in approximately
100 cases of human salmonellosis yearly in the United States
(Centers for Disease Control and Prevention [CDC], 2016).
Although it is not one of the leading serovars causing human
salmonellosis, there is increasing concern with the emergence
of multidrug resistance particularly associated with this serovar
(Milton et al., 2018; Al-Gallas et al., 2021a,b). On the other hand,
S. Rubislaw has been mainly detected in environmental samples
(Maurer et al., 2015), and various free-living animals (Potter et al.,
2011; Rush et al., 2020; Hernandez et al., 2021).

Are There Differences in the Relative
Frequency of Salmonella Serovars
Among Regions?
According to our findings, there are indications that the origin of
samples, as determined by the HDI index related to the country of
origin, might contribute to both overall isolation frequency and
relative distribution of Salmonella serovars. Based on the decision
tree (Figure 4), the frequencies of Salmonella-positive samples in
surface water were higher in countries with low HDI compared
with countries with higher HDI (0.42 vs. 0.26, respectively).
This finding could be explained by contamination events that
are probably more frequent in developing regions as a result of
improper sewage treatment and disposal. However, the opposite
was observed for groundwater samples and frequency estimates
were 0.069 and 0.26 for low and high HDI, respectively.

Further investigations should be conducted to address the
differences in the relative frequencies of serovars between high
and low HDI countries. Some serovars such as S. Muenchen,
S. Give, S. Hartford, S. Rissen, S. Saintpaul, S. Rubislaw, and S.
Thompson were highly frequent across studies from high HDI
countries while others (S. Agona, S. Derby, S. Anatum) were
more frequently observed in studies from low HDI countries.
It is plausible to admit that the relative serovar frequencies
across the regions depend on natural, social and economical
drivers impacting the epidemiological and evolutionary aspects
of Salmonella enterica, and therefore very difficult to be predicted.

Although meta-analysis indicated Salmonella Agona as a
frequent serovar present in water samples from the low HDI
countries included in our study, it is among the ten leading
serovars associated with human salmonellosis in European
countries, with 378–582 cases per year (Popa and Popa, 2021).
Outbreaks of non-typhoidal salmonellosis associated with this
serovar has been linked to fresh food consumption (Estrada-
Acosta et al., 2014; Hassan et al., 2019; Ehuwa et al., 2021),
such as papaya (Hassan et al., 2019) and tomato (Estrada-Acosta
et al., 2014). Moreover, irrigation water is considered a major
contamination source in agricultural settings (Estrada-Acosta
et al., 2014). However, salmonellosis cases attributed to S. Agona
have also been attributed to the consumption of contaminated
processed foods such as peanut butter and infant formulae
(Ehuwa et al., 2021).

Can Differences in the Frequency and
Diversity of Salmonella Be Attributed to
Sample Volume?
Interestingly, water sample volume was shown to significantly
affect the relative frequency of Salmonella serovars across the
different studies. According to the decision tree (Figure 4), higher
frequency of Salmonella was seen in larger water samples (≥ 1 L)
from both high and low HDI countries. In high HDI countries,
the frequencies were 0.31 vs. 0.14, while in low HDI countries,
a greater difference was observed (0.34 vs. 0.6). Although water
sample volume has been referred as critical factor for the
recovery of Salmonella enterica from water, there are no previous
reports directly assessing the role of water sample volume on
Salmonella isolation frequency. This meta-analysis study suggests
that water volume might play an important role on the recovery
of viable Salmonella serovars in environmental water. Moreover,
the relative frequency distribution findings reported in our study
and visualized as a heatmap (Figure 7) indicate a higher recovery
frequency of public health relevant Salmonella serovars when
large water samples are used (≥ 1 L), such as S. Typhimuiurm,
S. Newport, and S. Enteritidis.

Important aspects indicate that the occurrence of S. enterica
in natural water sources is underestimated. Firstly, a considerable
number of the studies in our investigation (27.58%) reported
using small-volume samples (<1 L), which may compromise
the microbiological recovery. Although there is a consensus
toward the use of larger water samples to detect microorganisms
present in low densities (Bisha et al., 2011; McEgan et al., 2013;
Sbodio et al., 2013), there is a lack of studies comparing the real
effect of water volume on the recovery of Salmonella serovars.
Furthermore, conventional microbiological isolation is limited in
terms of detection of viable but non-culturable bacteria (VBNC),
i.e., organisms presenting a very low metabolic rate or state
of dormancy (Lin et al., 2016). Problems in VBNC Salmonella
cultivation and identification have been well documented (Oliver,
2005; Morishige et al., 2017). This condition might be of
particular importance for Salmonella organisms in natural water
environments, as bacteria may be subjected to many stressors.

Considering how the number of viable organisms might affect
the accuracy of the conventional culture method, alternative
techniques have been proposed to overcome cost and logistic
problems associated with the transport of large volumes of water
to laboratories. Among these, the modified Moore swab (MMS)
stands out as a high efficient and low operating cost method
alternative for in situ filtration of large sample volumes (usually
10 liters or more) (Sbodio et al., 2013; Sharma et al., 2020; Sikorski
and Levine, 2020).

Are There Differences in Presence and
Abundance Related to Seasonality?
Due to the very limited number of publications with serovar
identification covering long periods of time, no statistical analysis
was performed to assess the relationship between S. enterica
frequency and season or climatic condition. Seventeen of the
twenty-six articles reported isolation of S. enterica from all or
most of the samples collected during the entire experimental
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period. There is no substantial variation regarding the frequency
of serovars throughout the different seasons of the year (Bell
et al., 2015; Dekker et al., 2015; Jokinen et al., 2015; Maurer
et al., 2015; Traoré et al., 2015; Afema et al., 2016; Bergholz et al.,
2016; Falardeau et al., 2017; Topalcengiz et al., 2017; Harris et al.,
2018; Ho et al., 2018; Santiago et al., 2018; Truitt et al., 2018;
Callahan et al., 2019; Gu et al., 2019; Díaz-Torres et al., 2020;
Stokdyk et al., 2020).

Four articles performed a single sampling per site (Hsu
et al., 2015; Li B. et al., 2015; Kovačić et al., 2017; Allard
et al., 2019). Despite having made multiple samplings from
the same sites over time, one study still analyzed the
data as a single set, because it focused on reporting the
incidence of antibiotic resistance in the isolated strains
and did not assess the variation of isolates over time
(Kadykalo et al., 2020).

Two studies carried out in Colorado and Georgia
(United States) showed higher isolation rates in different
seasons, spring and autumn, respectively (Antaki et al.,
2016; Ahlstrom et al., 2018). One study showed higher
frequency in the rainy season, between spring and early
summer (Song et al., 2018). Interestingly, Mahagamage et al.
(2020) reported increased frequencies of S. enterica isolation
from surface water in rainy seasons, while the contrary was
observed for groundwater. Overall, the relationship between
Salmonella isolation frequency and seasons of the year or dry
or rainy period seems to depend on several local variables.
Factors such as average temperature, predominant type of
exploitation in the region (agriculture, livestock or industry),
availability of water (scarcity or abundance, regardless of
the season), type of source and location of the source (level
of preservation or urbanization of the surroundings) seem
to have a strong influence on water contamination levels
throughout the year.

To better assess these relationships, it is necessary to include
further studies on the effects of climatic factors over long
periods of time.

In summary, this meta-analysis investigation established
the expected frequency of Salmonella recovery from water
samples. There is a higher recovery rate from surface water
compared with ground water. The serovar representation
across those samples can be affected by the investigated
region and collected water sample volume, mainly for
those serovars that are relevant in public health. Further
conclusions about other putative important moderators
were not possible because of the lack of information
in the accessed studies. In this sense, we encourage
longitudinal study designs and thorough serotyping that
enable conclusions on seasonal variations or the effects
of factors such as physicochemical parameters of water
and special-temporal information. Furthermore, high
throughput approaches such as metagenomics could provide
invaluable information about complex relationships between
Salmonella and other biotic factors. Given the importance
of water quality for agri-food systems and the public health
importance of Salmonella, it is extremely important to
better understand this dynamics, so that more effective

strategies to control and mitigate salmonellosis can be
envisioned and designed.
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