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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS
MENCIÓN EN FÍSICA
POR: BERNARDITA RIED GUACHALLA
FECHA: 2022
PROF. GUÍA: DOMENICO SAPONE

PRIORS INFORMATIVOS QUE MINIMIZAN EL ERROR TOTAL:
RESTRICCIONES INTERPRETABLES DE LOS PARÁMETROS

COSMOLÓGICOS A PESAR DE LOS COMPLEJOS EFECTOS NUISANCE

La cosmología moderna pretende comprender la física del universo, es decir, los procesos
cinemáticos y dinámicos, el contenido, la estructura, el origen y la evolución cósmica. Para
comprenderla plenamente, los surveys cosmológicos deben analizarse con los conocimientos
estadísticos más avanzados posibles, debido a que los próximos surveys abarcarán todo el
cielo. Los conjuntos de datos venideros nos obligarán a considerar modelos físicos de escalas
más pequeñas y estadísticas de mayor orden que las habitualmente estudiadas hasta la fecha.
Por ello, llamamos a esta época la era de la precisión cosmológica.

Particularmente, cuando los modelos aumentan su complejidad añadiendo parámetros,
sin restringir su información previa, surge un desafío en un análisis Bayesiano: el efecto de
volumen de prior (o prior volume en inglés). Este efecto puede llevar las interpretaciones cos-
mológicas a supuestos radicalmente erróneos y a tensiones inexistentes. Nuestra propuesta
incluye un marco sistemático que deriva distribuciones de priors informadas y minimizadoras
del error total de los parámetros nuisance a partir de un conjunto de posibles efectos nuisance.

En este trabajo, presentamos una revisión bibliográfica exhaustiva tanto de la cosmología
como de la estadística para sentar las bases de la investigación. Esta incluye los fundamentos
de la cosmología y la formación de la estructura cósmica en los capítulos 2 y 3, respectiva-
mente. Las revisiones y discusiones exhaustivas en torno al uso de las probabilidades y la
inferencia estadística se incluyen en los capítulos 4 y 5, respectivamente. Incorporamos una
revisión del problema del tanque alemán en el capítulo 6 y comentamos su importancia en
relación con el análisis cosmológico. El principal resultado científico se muestra en el capítulo
7, donde proponemos un método para corregir el efecto de volumen de prior mediante un
análisis de probabilidad simulada. Lo probamos con los modelos de shot-noise del density
split statistics [1, 2] con datos del Dark Energy Survey (DES) Y1. Este novedoso método
extiende el enfoque del análisis de verosimilitud, no limitado a la cosmología observacional,
sino a todas las áreas en las que se tienen en cuenta los análisis Bayesianos.
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INFORMED TOTAL-ERROR-MINIMIZING (ITEM) PRIORS:
INTERPRETABLE COSMOLOGICAL PARAMETER CONSTRAINTS

DESPITE COMPLEX NUISANCE EFFECTS

Modern physical cosmology aims to understand the physics of the universe, i.e., the ki-
nematical and dynamical processes, the contents, the structure, and the cosmic origin and
evolution. To fully understand it, the cosmological probes must be analyzed with the latest
statistical knowledge possible, specifically due to the forthcoming entire sky surveys. The up-
coming datasets will require us to consider physical models of smaller scales and higher-order
statistics than the usually studied in cosmology. Because of that, we call this epoch the era
of precision cosmology.

A particular challenge arises when models increase their complexity by adding parameters
without constraining their preliminary information for an accurate Bayesian analysis: the
prior volume effect. This effect can lead cosmological interpretations to radical wrong assum-
ptions and tensions that might not even exist. Our proposal includes a systematic framework
that derives informed and total error minimizing prior distributions to nuisance parameters
from a set of possible nuisance effects.

In this work, we present a thorough literature review of both cosmology and statistics to
set the investigation’s basis. The former includes the basics of physical cosmology and the
cosmic structure formation in Chapters 2 and 3, respectively. Comprehensive reviews and
discussions around the use of probabilities and statistical inference are included in Chapters
4 and 5, respectively. We incorporate an examination of the German tank problem in Chapter
6 and remark on its importance relative to cosmological analysis. The main scientific result
is shown in Chapter 7, where we propose a method to correct the prior volume effect th-
rough a simulated likelihood analysis. We test it with the shot-noise models from the density
split statistics framework [1, 2] with data from the Dark Energy Survey (DES) Y1. This
novel method extends the approach of the likelihood analysis, not limited to observational
cosmology, but to all the areas in which Bayesian analyses are taken into account.
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Essentially, all models are wrong,
but some are useful.

Box &&& Draper 1987
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Chapter 1

Introduction

Cosmology is the study of the physical laws that govern the universe. This area of active re-
search aims to describe, through a mathematical language, large-scale observed phenomena
such as the homogeneous distribution of the cosmic structures. The standard model of cos-
mology has successfully predicted findings such as the Cosmic Microwave Background [3, 4]
and addressed observations that support an expanding universe [5–7], and more recently, at
an accelerated rate [8, 9]. Variations of the theory of a hot Big Bang origin of the cosmos
started to be debated among cosmologists [10], being nowadays constantly validated, rejec-
ted, or extended through the use of combined probes of cosmology [11].

The intuition relies on tracing a world-line: if the universe is currently expanding, in the
past, all the components should have been clustered in a hot and dense cosmic soup. The
first stages of the young universe would have had primordial interactions that would manifest
in today’s observations. Observational cosmology aims to test these kinds of hypotheses by
matching them with the information obtained through telescopes and experiments. Other
areas, such as particle physics, are fundamental too because they explore different relevant
physical scales for early epochs of the universe [12].

Cosmological analyses have experienced enormous advances in the last century due to the
exponential growth of data but still tend to be over-simplistic on large scales [10]. In recent
decades, telescopes have provided large amounts of data that have decreased the random
uncertainties associated with cosmological measurements. Collaborative groups have coope-
rated to generate surveys that have mapped the sky and traced changes on the lines of sight
through time [13].

Statistics allow us to extract information from observations and numerically validate the for-
mulated physical concepts, decreasing the random uncertainties. Nevertheless, with smaller
error bars, systematic effects have recently arisen and changed the research focus towards the
era of precision cosmology due to the rise of statistical disagreements, being the Hubble ten-
sion one of the prominent examples [14]. This incongruity associated to the Hubble constant
when observing the early and late universe could be explained by two non-mutually exclusive
solutions: variations of the ΛCDM model and a more thorough statistical approach. Obser-
vational cosmology aims to solve this through statistics and machine learning algorithms
trained with unprecedented computational power. The combination of physical knowledge
and artificial intelligence can help us fill the gaps when the information is hard to disentangle.
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The Bayesian theory of probabilities has been widely used among cosmologists to validate
or reject cosmological theories. One key aspect of this interpretation of probabilities is the
condensation of prior information into a prior distribution of probabilities. More often than
not, this goal has not been addressed with the accuracy the precision cosmology era demands.
Some of the classic errors include the assignation of non-informative prior distributions to
nuisance parameters. Our models include these to account for relevant astrophysical and sys-
tematic effects. Some collaborations nowadays contain dozens of these parameters in their
analysis, surpassing the cosmological ones in large quantity (See [15] for an example, and [16]
for a list of classic nuisance parameters from large galaxy surveys).

One of the biggest problems that come to light with the vast number of parameters is the prior
volume effect. This corresponds to the biases due to the marginalizations done to nuisance
parameters that have non-informative priors and, therefore, provide an excess of volume in
the space of parameters. This can lead to mistaken cosmological interpretations for cases in
which the probability distribution is highly non-Gaussian in some parameter space dimension.

This thesis presents a standardized methodology to assign prior distributions to nuisance
parameters when prior information is not available or is hard to condense in a simple mathe-
matical description. The Informed Total-Error-Minimizing priors (or ITEM priors) reduce
the biases concerning some realistic data realizations and enforce a frequentist interpretation
of the posterior constraints associated with the parameters of interest. Our method splits the
vector of the model parameters into target and nuisance and generates posteriors using seve-
ral different candidate priors for the latter. We next filter the candidates using requirements
on the statistical bias and coverage for the marginalized target posteriors. The resulting prior
will be the one that minimizes the uncertainty of the total error.

Given the importance of this problem in cosmology, we test this method in a re-analysis of
the shot-noise of tracer galaxies from the Density Split Statistics (DSS) [1, 2] measured in
Dark Energy Survey Year 1 data [17] and present them at the results section of this thesis.

As this work uses tools from the areas of physical cosmology and statistics, it has been initially
divided into three parts. The first one introduces fundamental notions needed to model the
cosmic large-scale structure: Chapter 2 presents an overview of cosmology that includes the
basics of general relativity and the ΛCDM model of cosmology, while Chapter 3 describes
the large-scale structure formation and introduces the density split statistics framework.

The second part describes the basics of the probabilistic and statistical knowledge needed
to do cosmological data analysis: Chapter 4 is an overview of probabilities, whereas Chapter
5 covers many of the topics on statistical inference needed to accomplish the goal of this work.

The final part is the presentation of the main result: the ITEM prior formalism in the
future publication Ried et al. 2022 (in prep.) in Chapter 7 leads to new constraints on the
nuisance parameters and reduces the prior volume effect substantially. We finally discuss the
achievements of this work and its contribution to the broad scientific community in Chapter
8.
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Chapter 2

Basics of physical cosmology

There is substantial observational evidence to support that the universe is expanding [5–
7], and in an accelerated way [8, 9]. Cosmologists, the scientists that study the physics of
the universe, have observed that the space between galaxies increases as the cosmic evo-
lution [12]. The further we observe, the higher this effect manifests because the expansion
is the same everywhere. From this phenomenon, some logical questions to make are: What
will happen with galaxies in the future? Are they going to continue separating until the gra-
vitational bounds are too faint? Is there going to be a turning point in which galaxies collapse?

In this chapter, fundamental aspects of cosmology are presented to set the scene to answer
those questions, including the cosmological principle in Sec. 2.1, the Einstein’s theory of
gravitation in Sec. 2.2, the physical evidence for an expanding universe in Sec. 2.3 and the
standard model of cosmology, the ΛCDM model at Sec. 2.4. We conclude by describing the
different cosmic distances that can be measured in our universe in Sec. 2.5. This introductory
chapter is based on the books [12, 18] and lecture notes [19].

2.1. Cosmological principle
When observing physical distances larger than 100 Mpc, the mass distribution of the uni-
verse has proved to be essentially homogeneous and isotropic [20] assuming the Copernican
principle: humans are not privileged observers and the physical laws are the same [21]. In
other words, the average density of matter fluctuations looks the same in any direction (no
preferred center). It does not change if there is a change in the position (no edges)1.

The distributions of galaxies and clusters in space stand as evidence, but how did scientists
derive this principle without observations? At the beginning of the twentieth century, there
was no data to support the cosmological principle. Still, Einstein’s field equations were con-
sistent, allowing physicists like Friedmann and Lemaître to make inferences about general
relativity, establishing the basis on which modern cosmology relies.

1 It seems unlikely that our galaxy is located at the center of a spherically symmetric universe, giving us
the impression of homogeneity and isotropic. Billions of galaxies outside the Milky Way seem equally good
observers, and it would be an enormous coincidence. [12]
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2.2. Gravitation
The general theory of relativity describes gravitation through geometry. It was published by
Albert Einstein in 1916 [22] and generalizes the special relativity theory of a flat space-time
geometry [23].

2.2.1. Special relativity
Galileo’s inertial transformations can be generalized: in special relativity, the fundamental
assumption is that the space-time interval ds2 = dt2 − dx2 − dy2 − dz2 = ηαβdx

αdxβ2 is
invariant under the Lorentz transformations

yα = Λα
βx

β + aα, (2.1)

with y = (t′, x′, y′, z′), x = (t, x, y, z) and dx = (dt, dx, dy, dz) 4-vectors and Λα
β , aα constants

and where ηαγ is the Minkowski metric:

ηαγ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.2)

The invariance of the space-time interval ds2 implies that the matrix Λα
β must follow the

property:

Λα
βΛγ

δηαγ = ηβδ . (2.3)

2.2.2. General relativity
Eq. 2.3 can be generalize by assuming that the gravitational fields can be described by a
general and symmetric metric:

gαβ = ηµν
∂yµ

∂xα

∂yν

∂xβ
(2.4)

when doing a general coordinate transformation from xα to yα. In particular, if ∂yµ

∂xα = const.,
we would recover the Minkowski metric (Eq. 5.2). This means that, locally, the gravitational
field can be described by a space-time without curvature.

It is also possible to derive the equation of motion (or geodesic equation) in a system with a
general metric gαβ:

d2xλ

ds2 + dxα

ds

dxβ

ds
Γλ

αβ = 0, (2.5)

where Γλ
αβ = ∂2xµ

∂xα∂xβ
∂xµ

∂xλ is the Christoffel symbol.

The derivation of the metric can be introduce (gαβ,µ = ∂gαβ

∂xµ ) to obtain the geometry and the
dynamical properties of the theory of general relativity [12]:
2 We considered c = 1.

4



Γµ
αβ = 1

2g
µν(gαν,β + gβν,α − gαβ,ν), (2.6)

where gµν is the inverse of the metric, also called the contravariant metric.

2.2.3. The FLRW metric

During the 1920s-1940s, four physicists (Alexander Friedmann [24], Georges Lemaître [5, 25],
Howard P. Robertson [26–28] and Arthur Geoffrey Walker [29]) worked independently and
derived a metric that describes a homogeneous and isotropic universe. The name for it is
the Friedmann–Lemaître–Robertson–Walker metric, or simply, the FLRW metric. It can be
expressed with spherical coordinates as:

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2(θ)dϕ2)
]
, (2.7)

where a(t) is the time-dependent scale factor and the constant k describes the curvature and
can take any value.3 The evolution of a(t) depends on the energy components of the universe,
as will be showed in Sec. 2.3.3.

It can be shown that this metric solves Einstein’s field equations of general relativity [19]. It
also allows a universe to expand or contract.

2.2.4. Einstein equations

It is possible to assume that particles in space-time are a perfect fluid, which implies that,
with respect the center of mass and in a rest frame, it is homogeneous and isotropic. The
conservation laws are:

ρ̇ = 0,
∇p = 0,

(2.8)

where ρ is the energy density and p = (px, py, pz) is the pressure. We can define the stress-
energy tensor Tµν as:

Tµν = diag(ρ, px, py, pz), (2.9)

where diag means a diagonal matrix. This tensor describes the properties of matter in the
universe [19]. If isotropy is required, then Tµν = diag(ρ, p, p, p).

Using the notation proposed by [12], Einstein’s equations relate the metric itself (geometry)
at the LHS with the presence of matter (energy) at the RHS5 as:

Rµν − 1
2gµνR = κ2Tµν , (2.10)

3 There are three possible scenarios: A flat universe (k = 0) correspond to one that follows a Euclidean
geometry, i.e. the trajectories of particles in their geodesics remain parallel4. In a closed universe (k > 0),
the trajectories of free particles will converge, while in an open universe (k < 0), the trajectories will
diverge. [10]

5 LHS and RHS are acronyms for Left-Hand Side and Right-Hand Side.
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where Rµν is the Ricci tensor :

Rαβ = Γµ
αβ,µ − Γµ

αµ,β + Γµ
σµΓσ

αβ − Γµ
σβΓσ

µα, (2.11)

which describes the properties of curvature of space-time. R is the curvature scalar :

R = gαβRαβ. (2.12)

Finally, κ2, the Einstein gravitational constant is defined as:

κ2 = 8πG
c4 . (2.13)

2.3. An expanding universe
In 1917, Albert Einstein proposed a static universe using General Relativity by an additional
term, the cosmological constant Λ [30]:

Rµν − 1
2gµνR − Λgµν = κ2Tµν , (2.14)

which is independent of the observer’s motion. This model is unstable, and therefore, it was
discarded shortly after.

In 1918, de Sitter [31] demonstrated that a universe dominated by a cosmological constant
would be expanding. But it was not until ten years later that there was observational data
to prove it. Therefore, the cosmological constant was first rejected as a possible way of
modeling the universe. However, in the last decades, it has become a candidate again with
the observation of an accelerated expansion of the universe.

2.3.1. First evidence: The Hubble-Lemaître Law

At the end of the 1920s, scientists Georges Lemaître [5], and Edwin Hubble [6] discovered
independently that galaxies farther away from us would move faster than nearby galaxies.
They derived a linear relationship between the recession velocity v and the distance from us
x:

v = H0x. (2.15)

This is the famous Hubble–Lemaître Law. Its importance relies on the fact that it was the
first observational evidence to support an expanding universe.

Fig. 2.1 is the original plot made by Edwin Hubble in 1929, which relates the distance and
the recessive velocity of galaxies measured from the Earth [6].

In Fig. 2.2 we included the data used by Edwin Hubble in 1929 to derive the resulting esti-
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Figure 2.1: Original plot made by Edwin Hubble in 1929. [6] It relates the
distance and the recessive velocity of galaxies measured.

mates on the Hubble constant6. [6]

Nowadays, the estimated value for H0 differs by a factor of 9 and 7 from the ones found by
Lemaître and Hubble, respectively. The inconsistencies are solved with a better calibration
of the distances 7. This discovery changed our conception of the universe.

These observations could be explained by the redshift effect derived from Friedmann’s solu-
tions to Einstein’s equations of general relativity. [24]

6 It is worth mentioning that what Lemaître and Hubble measured were the apparent and absolute mag-
nitudes (m and M), not the distances directly. The apparent magnitude measures the brightness of an
astronomical object observed from Earth. In contrast, the absolute magnitude is equal to the apparent
magnitude that the object would have if it were viewed from a distance of 10 pc. They then derived the
proper distance x(t) between us and the galaxies:

x(t) = 10( m−M+5
5 ). (2.16)

However, the results for H0 were higher because Hubble used a wrong zero-point calibration of the standard
candles. All distances were thus too small (by a factor of 7), and then, H0 was too large by the same factor.

7 Hubble used a least-square linear regression on 24 measurements of distances and recessional velocities of
galaxies. In Section 5.2.2, we reproduce those results and introduce the least-squares method.
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Figure 2.2: The galaxies used by Hubble in his original work [6]. He included
the distances (in the table labeled as r), the velocities v and the magnitudes
mt and Mt.

2.3.2. Redshift, scale factor and Hubble rate

The expansion of space proportionally elongates the light wavelength (λemit < λobs), and
inverse proportionally decreases the momentum and energy of the photon. Therefore, we will
be observing a different type of light from the one emitted. We call this effect redshift because,
in the electromagnetic spectra, in the optical range, the color red has a longer wavelength.8
We can measure this phenomenon with the semi-positive quantity z as follows:

1 + z = λobs

λemit

. (2.17)

Therefore, if z = 0, there would be no stretch at all and λemit = λobs.9

The relative expansion of the universe is parameterized by a dimensionless time-dependent
cosmic scale factor a(t). This relates the proper physical distance x(t) (which can change

8 The opposite of this effect is called blueshift because blue has a shorter wavelength.
9 If z = 1, it implies that 2λemit = λobs, which is equivalent to saying that the distances at the time of the

observation are twice as they were original.
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over time, unlike the distance measured along a null geodesic ds = 0, also called comoving
distance (see Section 2.5 for a deeper discussion) between two points in different times. The
formula for this is:

x(t) = a(t)x(t0), (2.18)

where x(t) is the proper distance at the time t, x(t0) is the comoving distance (t0 is set
to be the present age of the universe), and a(t) is the scale factor.10 This function allows
for homogeneous expansion or contraction of space over time. By definition, x(t0) = x0 and
a(t0) = 1.

To quantify the change in the scale factor, we use the Hubble rate H(t) which is the rate of
expansion of space. [10] For small and radial propagation distances dθ = dϕ = 0, the Hubble
rate can be approximated by dividing the recession velocities of galaxies by their distance
from us. This expansion rate is defined as:

H(t) = 1
a

da

dt
. (2.19)

The Hubble rate varies with time, being the Hubble constant H0 the current value:

H(t = 0) = H0. (2.20)

We can measure the Hubble rate in units of velocity per distance:

H(t) ∝
[

km
s · Mpc

]
, (2.21)

where Mpc = 106 pc. If we calculate the derivative of x(t) = a(t)x0, we obtain the velocity:

v(t) = d(x(t))
dt

= a(t)x0

dt
= da

dt
x0, (2.22)

where d(x0)
dt

= 0 because it is constant. Then, if we substitute the above definition of the
Hubble rate gives:

v = da

dt
x0 = H0x(t) = H0x, (2.23)

which is the famous Hubble–Lemaître Law. [10] This law applies to any system that expands
(or contracts) in a homogeneous and isotropic way. However, this relation is no longer valid
for larger distances and velocities.

Furthermore, the final Hubble rate depends on other factors, such as the universe’s energy
content. In Section 2.4, we will explore the case of a universe filled with matter (baryonic
and dark matter), radiation, and dark energy.

10 The scale factor is determined by the equations of general relativity, which are related to the distribution
of density of energy and other details. See Section 2.4 for an example.
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2.3.3. Friedmann Equations

It can be shown that the components of the Ricci tensor are:

R00 = −3 ä
a
,

Rii = −gii

a2 (aä+ 2ȧ2 + 2k)
(2.24)

and the R curvature scalar:

R = − 6
a2 (ȧ2 + aä+ k). (2.25)

These can be introduced into the Einstein field equations (Eq. 2.10) to obtain the Friedmann
equations. The temporal and spatial parts (the 00 and ii components) combined will return
two independent relations:

H2 = 8π
3 ρ− k

a2 ,

ä

a
= −4π

3 (ρ+ 3p).
(2.26)

From which we can derive the conservation equation:

ρ̇+ 3H(ρ+ p) = 0. (2.27)

These expressions describe an expanding universe in and homogeneous and isotropic regime,
filled with a perfect fluid with a given mass density ρ and pressure p.

It is possible to define a the critical density ρc:

ρc = 3H2

8πG, (2.28)

such that the components of the fluid are described by a density parameter Ω(a):

Ω = ρ

ρc

. (2.29)

Introducing Eq. 2.29 into the first Friedmann equation (Eq. 2.26), will imply that

1 = Ω − k

a2H2 . (2.30)

It is common to define a curvature component that accounts for the overall geometry of the
universe:

Ωk(a) = − k

a2H2 (2.31)

and its corresponding critical density

ρk = − 3k
8πa2 , (2.32)
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such that

1 = Ω(a) + Ωk(a). (2.33)

Eq. 2.33 will vary depending on the considered models and components interacting in the
universe at a specific epoch.

2.4. ΛCDM model of the Universe
Also known as the standard model of cosmology, the ΛCDM model is one of the simplest ones
that fit the experimental observations. It allows us to predict how the energy density should
evolve with time and the temperature decrease.

2.4.1. Cosmic inventory

The ΛCDM model divides the energy-momentum sources into three components (also called
cosmic inventories):

• Matter:

One of the characteristic of the massive particles, or matter, is that

|p| ≪ ρ. (2.34)

A fluid with zero pressure (p = 0) approximates matter as non-interacting particles with
velocities that are non-relativistic.

From Eq. 2.27, we can derive a density relation11:

˙ρm

ρm

= −3 ȧ
a

⇒ ρm

ρc

= Ωm(1 + z)3. (2.35)

The ΛCDM model considers two types of matter-components:

– Baryonic matter:

In this context, baryons refers to all the nuclei and electrons of the universe12. The
main characteristic of the baryonic matter is that it interacts with radiation. The-
refore, its observations are related to the light coming from galaxies (e.g., we can
infer the amount of matter in a star by studying its luminosity). Baryonic matter is
not only distributed in bright objects, like stars, but also in the interstellar medium.
This can be observed when studying the spectra of distant quasars and measuring

11 It is also possible to derive that relation by considering that the energy of a non-relativistic particle, such
as matter, will be equal to its rest mass energy [10].

12 This is somehow wrong because electrons are leptons. Still, as nucleons are substantially more massive,
this is not a poor assumption.
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the absorption lines from intervening hydrogen in the line of sight.

When comparing the matter quantity measured from light sources, there is a subs-
tantial difference with the one estimated using the gravitational field of a system.
That disagreement is solved with dark matter.

– Cold dark matter:

Dark matter is a concept that was first introduced by Zwicky in 1933 [32] and la-
ter corroborated by Vera Rubin in 1983 [33, 34] when studying the rotation curve
of spiral galaxies. It solved the evident miss-match between the observed baryonic
matter and the one estimated from the gravitational interaction.

As dark matter is still a mystery, there are many candidates. Some of them are
particles that are not included in the standard model of particles [35].

In the ΛCDM model, the CDM stands for Cold Dark Matter. The cold comes from
requiring the dark matter particles to be able to clump efficiently in the early uni-
verse, having a negligible pressure or, equivalently, with a non-relativistic velocity
[18].

• Radiation:

Relativistic particles, such as photons, neutrinos, and other quantities from which the
energy density is dominated by its kinetic energy, will be denoted radiation. The main
characteristic is that their pressure is related to the density as:

p = 1
3ρ. (2.36)

The corresponding density relation would be given by:

ρ̇r

ρr

= −4 ȧ
a

⇒ ρr

ρc

= Ωr(1 + z)4. (2.37)

• Dark energy:

In 1998, the High-redshift Supernova Search Team (HSST) [8] and the Supernova Cos-
mology Project [9] independently observed supernovae of type Ia (SNIa)13 and inferred
that the universe is lately expanding in an accelerated way. This phenomenon can be
described as a negative pressure:

13 Supernovae are explosions that happens when the Chandrasekhar limit is reached, and depending on the
nature of the system, there would be a different emission of chemical elements. If there is a lack of a
spectral line of hydrogen, we will classify the supernova as a Type I. In addition, if the spectra include
an absorption line of ionized silicon, it would be sub-classified as a Type Ia. These supernovae occurs in a
binary system of a white dwarf absorbing gas from a companion star. [19]
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p = −ρ. (2.38)

The corresponding density relation would be given by:

ρ̇Λ

ρΛ
= 0 ⇒ ρΛ

ρc

= ΩΛ. (2.39)

Since the energy density does not dilute with the scale factor, energy has to be trans-
formed from another source as the universe expands. [18]

As in the case of dark matter, dark energy is still one of the major challenges in current
cosmological research.

The energy density parameter ρ includes the energy density contribution from all the species
from the considered model. It includes matter, radiation, and dark energy, and as we are not
assuming a flat universe, there would be an additional term for the curvature. Unless stated
differently, we will consider a flat ΛCDM universe (Ωk = 0) throughout this work.

Finally, the Friedmann equation of a ΛCDM model would be equivalent to:

H(a) ≡ ȧ

a
= H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ (2.40)

from which

Ωm + Ωr + ΩΛ = 1. (2.41)

It is possible to determine the epochs in which an element dominated the scale factor and,
therefore, the cosmic expansion.

Originally, radiation dominated due to the low spatial density, which forced particles to have
a larger pressure than matter. This transition (the matter-radiation equality) happened at
z ∼ 3400. Recent observations have shown that the scale factor does not follow the matter-
dominated predictions but the one described by a dark energy-dominated era (dark energy-
matter equality happened at z = 0.4). See Figs. 1.2 and 1.3 from [10] and Table 3.1 from [18].

One of the main extensions that can be made to the ΛCDM model is cosmic inflation. It
corresponds to a phase that occurred approximately 10−33 seconds after the theoretical Big
Bang, and it lasted ∼ 10−36 seconds. It is a theory of exponential growth of space in the early
universe, and it would explain the homogeneity observed in the CMB. [36]. However, despite
that it solves the flaws of the ΛCDM model, inflation is not predicted by the standard model
of particle physics and is still largely debated.

2.4.2. Observational evidence
Some of the observational evidence that supports the ΛCDM model of the universe is:

• Cosmic microwave background: One of the key results from the CMB observation is the
small anisotropies present on it, i.e. temperature fluctuations also support homogeneity.
It is still a major discovery that the early universe was very smooth.
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Figure 2.3: The Cosmic Microwave Background data from the Planck sate-
llite mission [37].

• Big bang nucleosynthesis: Shortly after the discovery of the CMB, Peebles studied the
consequences it had over the formation of nuclei in the first few minutes of the hot dense
universe, determining the abundance of light elements created in that epoch [38].

• Hubble-Lemaître Law: Observations made independently by Hubble and Lemaître sho-
wed that galaxies are moving away from Earth at speeds proportional to their distance.
In Sec. 2.3.1 we address in more detail on this observational evidence of cosmic structure
expansion.

• Large-scale structure: Since the fist large surveys of galaxies of the last decades of the
twentieth century (like the Sloan Digital Sky Survey [39] and the Two-degree-Field
Galaxy Redshift Survey [40]) we have substantial evidence to state that galaxies are
not distributed randomly in the sky (see Fig. 2.4). These features are obtained from the
ΛCDM model when perturbations around the smooth background are included [10]. In
Chapter 3 we will study the theory of cosmic structure formation.

2.5. Cosmic distances
Distances in cosmology are estimated by inferring a celestial object’s absolute magnitude
(intrinsic brightness). A common approach is to use a standard candle. They are defined as
the type of astronomical object that has a known absolute magnitude, i.e., the same intrinsic
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Figure 2.4: The SDSS’s map of the Universe. Each dot is a galaxy; the color is
the g-r color of that galaxy. As redshift increases, the filament structure, also
known as the cosmic web, shows no random distribution of galaxies. Image
Credit: M. Blanton and SDSS https://www.sdss.org/science/orangepie/

brightness. Two examples are Cepheid variables14 and Type Ia supernovae15.

From the Friedmann equation (Eq. 2.26) with different contributions to the energy den-
sity, and using the same notation as [43], we can derive an expression for the cosmological
expansion:

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ, (2.42)

where the density parameters are as they would be measured today. This expression gives us
direct information about the composition of the universe. We can use it to measure distances,
14 Red giant near the end of their life stars that have a clear relation between the pulsation period and their

luminosity [19, 41]. They can be find in low redshift (∼ 10Mpc)
15 They are distributed in a large redshift range, but most distant known is in redshift z = 1.914 [42]
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which is not trivial since points in space are not static. The Hubble distance dH is given by:

dH = c

H0
. (2.43)

Another fundamental way of measuring distances in the universe is the comoving distance
dC (remains fixed as the universe expands), which is measured between two nearby objects
that are moving with the Hubble flow. Therefore, it depends on the redshift as:

dC(z) = dH

∫ z

0

dz′

E(z′) , (2.44)

with E(z) being equivalent to:

E(z) = H(z)
H0

=
√

Ωm(1 + z)3 + ΩΛ. (2.45)

When two events are at the same redshift but are separated in the sky by some angle, we use
the transverse comoving distance dM , and it is related to the line-of-sight comoving distance
dC as:

dM(z) =



dH√
Ωk

sinh
(√

ΩkdC(z)
dH

)
Ωk > 0

dC(z) Ωk = 0
dH√
|Ωk|

sin

√

|Ωk|dC(z)
dH

 Ωk < 0

, (2.46)

where Ωk gives us the curvature of space being derived from the other energy density quan-
tities:

Ωk = 1 − Ωm − ΩΛ. (2.47)

If we re-scale dM(z) by the scale factor, we obtain the angular diameter distance:

dA(z) = adM(z), (2.48)

which for the case Ωk = 0, this would be the proper distance between a source and the
observer at the time of emission.

The final distance we will derive is the luminosity distance dL, that is related to the transverse
comoving distance by

dL(z) = (1 + z)dM(z). (2.49)

This last one is defined in terms of the relationship between the apparent magnitude m and
absolute magnitude M of an astronomical object.

m = 5 log10 (H0dL) + M. (2.50)

For a deeper explanation of distance measures in cosmology, see [43].
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Chapter 3

Cosmic structure formation

The cosmological principle states that the average matter density universe is homogeneous
and isotropic on large scales. However, when observing the spatial distribution of galaxies, as
illustrated in Fig. 2.4, galaxies are not randomly distributed: they form clusters, voids, and
filaments. Specific points in space with high matter density (such as galaxies) and large zones
that are almost empty (voids) in the late universe imply that it is highly inhomogeneous.

Figure 3.1: On the left part of the figure, we have Planck’s measurements
[44] of the anisotropies from the CMB, while in the right, we show the
Millenium Run simulation [45] today’s dark matter distribution following
the seeds from the CMB. Figure from [46].

This was not always the case: the measured CMB temperature fluctuations are small, sug-
gesting that the distribution of matter was highly homogeneous in the early universe. One
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implication is the symmetry of the underdense and overdense regions (abundance and ampli-
tudes) in very early times. The initial overdensities generated a gravitational potential that
made matter collapse into the current structures, while initial underdensities grew and stayed
mainly underdense. In Fig. 3.1 we show how primordial perturbations seed the large-scale
structure16 (LSS) in the universe through a gravitational instability mechanism.

Everything points that initial and small perturbations of the homogeneous density were
amplified, generating the large structures that we find in the universe nowadays. If matter
distribution started from a smooth density field that had slight inhomogeneities, what me-
chanism explains this phenomenon? Or in other words, how did matter density fluctuations
evolve through time and the universe’s expansion? [20]

We answer those questions in this chapter: In Sec. 3.1 we present the preliminary mathema-
tical and physical knowledge needed to model the evolution of the matter field. In Sec. 3.2 a
linear perturbation solution of the equations of motion of the cosmic fields is summarized, in
addition to a description of the point statistics and the cosmic probability density function
of matter density. In Sec. 3.3 we relate the matter density field with the observations we can
make of the cosmic structure. We summarize some of the current and future sky surveys that
allow us to infer the density field at Sec. 3.4. We end outlying a higher-order technique to
trace the matter density field called density split statistics at Sec. 3.5 and focus on the spe-
cific models that describe the galaxy-matter connection. This chapter is based on the books
[36, 38], the review [47] and the thesis work [48].

3.1. Preliminaries
There are three main quantities we will focus when studying the cosmic structure formation
of the universe: mass density ρ(x, t), velocity v(x, t), pressure p(x, t) and a self-gravitational
potential Φ(x, t), where x and t corresponds to a given location and time respectively.

3.1.1. Equations of motion

Matter, in cosmological scales, can be assumed as a self-gravitating classic fluid without shear
or viscosity. Fluids like this are described by three fundamental equations: the continuity
equation, the Euler equation and the Poisson equation. These three relate to the fluid’s mass
density, streaming velocity, and pressure.

• Continuity equation: Describes the evolution of the matter density field due to the
fluxes in a system, in which the fluid moves but it is neither destroyed nor created:

∂ρ

∂t
+ ∇(ρv) = 0. (3.1)

• Euler equation: Describes the evolution of the velocity field due to the forces, in which
the fluid is accelerated by both, pressure and gravity:

16 Refer to all structures that are bigger than galaxies.
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∂v

∂t
+ v∇v + 1

ρ
∇p = −∇Φ. (3.2)

• Poisson equation: Relates the matter density field to its self-gravitational potential:

∇2Φ = 4πρ. (3.3)

3.1.2. Density fluctuations

We can consider perturbations on the matter density contrast δ(x, t) as:

δ(x, t) = ρ(x, t) − ρ

ρ
, (3.4)

where ρ is the mean density of all space, and because of this definition, −1 ≤ δ < ∞. It
also mathematically implies that we consider density perturbations on top of a homogeneous
background density:

ρ(x, t) = ρ(1 + δ(x, t)). (3.5)

These perturbations will cause deviations of the other quantities, such as the velocity field and
the gravitational potential (deviations from the Hubble flow due to the density fluctuations).
A way of decoupling the perturbations from the Hubble flow is to work with co-moving
coordinates. Following the approach from Chapter 6 of [36], the equations of motion of the
perturbation can be written given by:

• Continuity equation:

δ′ + ∇([1 + δ]u) = 0. (3.6)

• Euler equation:

u′ + (u∇)u + Hu = −∇ϕ. (3.7)

• Poisson equation:

∇2ϕ = 4πa2ρδ. (3.8)

where u is the co-moving velocity perturbations, ϕ the scalar metric perturbation, ′ denotes
derivation in the conformal time τ and H is the conformal expansion rate: H = a′

a
.

These equations are equivalent to introducing small deviations to a homogeneous background
universe. These perturbations can be added to the FLRW metric for a universe, e.g., filled
with matter, affecting the distribution fields directly [36].
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3.1.3. Initial Conditions

When photons from the CMB were emitted, the universe was not entirely homogeneous: there
were small differences (of the order 10−5) in density and temperature that can be observed
in the left panel of 3.1. The inflationary theory (briefly explained in Sec. 2.4) predicts that
the primordial density fluctuations are homogeneous, isotropic and Gaussian17 [47]:

P (δ)dδ = 1√
2πσ

e−δ2/(2σ2)dδ. (3.9)

Small perturbations, present in the early universe, are such that δ ≪ 1. This can be un-
derstand as that in space, ρ(x, t) ∼ ρ, and therefore, the difference is relatively small
due to the symmetry between under-dense (ρ(xunder-dense, t) < ρ) and over-dense regions
(ρ(xover-dense, t) > ρ). Due to the effect of gravity, these fluctuations grew with the cosmic
history, and remain Gaussian until the onset of non-linearity, which implied δ ≥ 1 in the later
universe. The solutions of perturbation theory must account for this feature in their initial
conditions.

3.2. Physics of the cosmic structure
In the ΛCDM model of the universe, Eqs. 3.6, 3.7, and 3.8 can be solved through different
methods, including exact and numerical solutions. In this work, we solve the linear equations
of motion through perturbation theory to illustrate how fields evolve through the cosmic
history in the simplest case. We refer to [36] for a review on non-linear perturbation theory.

3.2.1. Linear perturbation theory

The terms δu and (u∇)u from Eqs. 3.6 and 3.7 respectively, are second order. For small
perturbations, these terms can be neglected, and therefore, offer simpler equations of motion
and solutions. In the linear regime, the equations of motion can be written as:

δ′ + ∇u = 0, (3.10)

u′ + Hu = −∇ϕ. (3.11)

After taking the divergence of Eq. 3.11 and combining 3.8 and 3.10, it is possible to derive a
third equation:

δ′′ + Hδ′ − 4πa2ρδ = 0, (3.12)

which has the general solution:

δL(x, τ) = D(τ)
D(τ0)

δ(x, τ0), (3.13)

where δL stands for linear, D(τ) is the linear growth factor and τ0 refers to the conformal
time today. It is common to set D(τ0) = 1 and to use the following expression for D from [49]:

17 See Section 4.2.2 for an explanation on continuous probability distributions.
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D(z) = 5
2ΩmE(z)

∫ ∞

z

1 + z′

E3(z′)dz
′. (3.14)

3.2.2. Correlation functions
In statistics, the n-point correlation function correlates n variables in some coordinate (e.g.
spatial or temporal distances). Let x1, ...,xN be locations in the universe. The n-point corre-
lation function of the density contrast δ will be:

ξ(n)(x1, ...,xN , τ) = ⟨δ(x1, τ)δ(x2, τ)...δ(xN , τ)⟩c, (3.15)

where the subscript c denotes the connected parts of the joint ensemble average of the density
in an arbitrary number of locations. (See Eq. 125 from [47] for a derivation.)

In particular, the two-point correlation function can be interpreted as the average of the
density at two different locations, or as the measure of clustering of a distribution in space:

ξ(r) = ⟨δ(x)δ(x + r)⟩. (3.16)

where we assume a fixed τ , that ξ(r) depends only on the norm of r due to statistical homo-
geneity and isotropy [47].

3.2.3. Power spectrum
The density contrast δ(x) can be written on its Fourier components:

δ(x) =
∫
δ(k) exp{ik · x}d3k. (3.17)

The matter power spectrum P (k) is the Fourier transform of the two-point correlation fun-
ction:

⟨δ(k)δ(k′)⟩ = δD(k + k′)P (k), (3.18)

where δD is the Dirac delta function and:

P (k) = 1
(2π)3

∫
ξ(r) exp{ik · r}d3r. (3.19)

The power spectrum can be used to estimate the abundance of the cosmic contents (radiation,
baryonic matter, and dark matter) through the analysis of its shape in the early universe. It
can also be used to determine the growth of structure because it is possible to see its evolution
through different observables (CMB and galaxy distribution). In Fig. 3.2 we illustrate today’s
power spectrum, where k is the wavenumber and it related to the wavelength as λ = 2π/k.
In large scales, the linear growth factor from Eq. 3.14 acts on the power spectrum as:

P (k, τ) = D2(τ)P (k, 0), (3.20)

where τ = 0 is set to be a time shortly after the end of inflation. P (k, 0) is also known as the
primordial matter power spectrum.
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Figure 3.2: The linear matter power spectrum at z = 0 constructed from
different cosmological probes. Image from [50].

This expression should be extended to the non-linear regime because the linear approxima-
tion underestimates the growth of structures on the scales in which collapses occur.

The power spectrum, as the correlation function, can be generalized into an n-point descrip-
tor:

⟨δ(k1)...δ(kN)⟩c = δD(k1 + ...+ kN)PN(k1 + ...+ kN). (3.21)

For n = 3, P3(k1 + k2 + k3) is called the bispectrum and usually denoted B(k1,k2,k3).

3.2.4. The cosmic density PDF

It is common to define the probability density function (PDF) of matter density fluctuations
in the universe using the correlation functions. We will first illustrate the case for the two-
point correlation function.

The probability dP that two particles at volume elements dV1 and dV2 are separated by
distance x12 = |x1 − x2|, is given by:

dP = n2[1 + ξ(x12)]dV1dV2, (3.22)
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where n is the mean density. [47]

If ξ(x12) = 0, i.e., there is no clustering, the probability is simply the mean density squared,
independently of the distance. For the case in which ξ(x12) > 0, there would be an excessive
clustering, while for ξ(x12) < 0, objects would be anti-correlated and probabilities of finding
mass concentrated will be lower.

With a similar reasoning, the probability of having three particles at volume elements dV1,
dV2 and dV3 will be:

dP = n3[1 + ξ(x12) + ξ(x23) + ξ(x13) + ξ(3)(x12, x23, x13)]dV1dV2dV3, (3.23)

where ξ(3) is the three-point correlation function.

One of the main characteristics of Gaussian random fields is that they can be described
entirely with their first two moments. The theory of inflation predicts that in the early uni-
verse, the density contrast field δ(x, τ) followed a Gaussian distribution. This is equivalent
to stating that all the cosmological information was initially condensed in its two-point co-
rrelation function and, therefore, in its power spectrum. With the formation of the cosmic
structure due to fluctuations, the n-point correlation functions become nonzero, developing
higher-order statistics of the density field.

It is common to smooth the density distribution with some filter WR of size R and derive the
moments δR:

δR(x, τ) =
∫
WR(|x − x′|)δ(x′)d3x′, (3.24)

where WR can be a Gaussian window:

WGaussian
R (r) = 1

(4π/3)R3 exp
{
−r2/(2R2)

}
, (3.25)

or a top-hat window:

WTop-hat
R (r) = 1

(2π)3/2R3H(R − r), (3.26)

where H(x) is the Heaviside step function18. The fourier transform of both functions would
be:

WGaussian
R (k) = exp

{
−k2R2/2

}
, (3.27)

WTop-hat
R (k) = 3j1(kR)

kR
, (3.28)

where j1(x) is the spherical Bessel function of order one.

With all these relations, it is possible to derive a fundamental quantity: σ8. The auto-
correlation function ξ(0) will be equivalent to:
18 H(x) = 1 for x > 0 and H(x) = 0 for x < 0.
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ξ(0) = lim
r−→0

∫ ∞

0
P (k) sin (kr)kdk

=
∫ ∞

0
∆2(k)|WR(k)|2d log k,

(3.29)

where ∆2(k) = k3P (k)
2π2 . Finally, using the top-hat filter, the above equation would be equi-

valent to:

σ2(R) =
∫ ∞

0
∆2(k)

(
3j1(kR)
kR

)2

d log k. (3.30)

This quantity is the rms amplitude (squared) of mass fluctuations smoothed over the scale
R. Historically, the size R = 8h−1Mpc have been used in cosmology because it is the typical
size of the galaxy clusters:

σ8 = σ(R = 8h−1Mpc, z = 0). (3.31)

We finally define the cumulant generating function (CGF) as:

ψR(y, τ) =
∞∑

n=0

⟨δR(τ)n⟩c

n! yn, (3.32)

where we have averaged over the spatial coordinates x, and due to homogeneity, it will not
have a spatial dependence. The CGF will allow us to derive the PDF P (δR|τ):

P (δR|τ) = 1
2π

∫ ∞

−∞
exp{−iyδR(τ) + ψR(iy)}dy. (3.33)

A final quantity that can be defined to account for higher-order features of the PDF is the
Sn constant [51]:

Sn = ⟨δR(τ)n⟩c

{⟨δR(τ)2⟩c}n−1 . (3.34)

where, in particular, the S3 and S4 are proportional to the skewness and the kurtosis, res-
pectively.

3.3. Observations of the cosmic structure
Galaxies and clusters are used to infer the density fields of the whole universe and, therefore,
study the large-scale structure. It is not possible to measure the total density field δ(x, τ)
neither the power spectrum P (k, τ) directly. Usually, we can observe the light emitted from
the interactions of baryonic matter (specifically the galaxy density field) or the effects of
lensing (cosmic shear field) that trace the matter density.

Cosmologists calculate the variance of density fluctuations as a function of scale through the
two-point statistics to deduce the statistical properties of the density fields. Other higher-
order features are also studied, e.g., the skewness, that accounts for the unbalanced evolution
of the underdense and overdense regions in the sky.
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However, there are statistical and astrophysical challenges to overcome, such as noise in the
observations, the redshift estimation of galaxies, and other systematic biases that we will
address in Sec. 3.5.

3.3.1. Galaxy density field
One of the main supports of the theory of the cosmic structure is the observation of the
galaxy density field in the sky. Depending on the type of survey, the data might contain the
spectroscopic or photometric redshift, respectively.

The spectroscopic redshift zs is measured by identifying a shift of the emission and absorption
lines spectra for atoms well studied from Earth. On the other hand, photometric redshift zp

is commonly estimated from the magnitudes of the observed objects in different chromatic
filters. In the latter, an observed distribution of galaxies will have a specific redshift range:
ng(zp). We can think of this as the distribution of galaxies in some area or volume, restricted
to zp.

It is also common to define the galaxy density contrast, similar as in Sec 3.1.2:

δg(x, z) = ng(x, z) − ng

ng

, (3.35)

where ng is the mean galaxy density field.

3.3.2. Galaxy bias
As mentioned in Sec. 3.3, there is a systematic bias when trying to trace δ from δg. Ga-
laxy clustering can be used as a cosmological probe when the mass-to-light ratio is modeled.
Theory predicts that the halos of dark matter were initially originated from peaks of higher
density as illustrated in Fig. 3.3.

There are other complexities that arise from mixing a discrete field with a continuous one,
or from the selection process: a galaxy might or not appear in a survey due to its optical
properties. From an astrophysical perspective, galaxy formation is a complicated process,
and locally, the density of galaxies is non-linear: massive galaxies will preferentially form in
a dense environment, amplifying the universe’s matter density contrast. Therefore, galaxies
are stochastic tracers and are biased when trying to trace the matter field.

The systematic mismatch is usually approached with a linear approximation:

δg ≈ b · δ, (3.36)

where the factor b is called the linear galaxy bias and is only valid on large scales. There
is an additional component associated with the random effects arising from smaller scales
to the larger ones to consider: the galaxy stochasticity. In [1, 2], this intrinsic shot-noise of
the distribution of galaxies is considered in two possible models that we do explore in the
primary research from this thesis, shown in Chapter 7.

Given some number density of galaxy n(z) centered at a redshift distribution z, and assuming
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Figure 3.3: Illustration of the galaxy bias. A long wave fluctuation present a
density increase, called density boost, which surpass the threshold of collapse.
Galaxies are believed to form in the small peaks from the zones of high
density, being their smoothed density contrast δg augmented with respect
to δ. This is parameterized with the bias parameter b. Figure adapted from
Fig. 1 from [16] and Fig. 9.1 from [48].

isotropy, we can define the line-of-sight projection of the 3D density contrast δ2D as:

δ2D =
∫
q(w)δ(w)dw, (3.37)

where w is the co-moving distance corresponding to a redshift z and the projection kernel
q(w) is given by:

q(w) = n(z[w])dz[w]
dw

. (3.38)

We can also define the average density field δm as the average δ2D field over some filter. In
Eq. II.3 from [2], an average density field is defined using a top-hat filter with aperture radius
θT . In Sec. 3.5 the field δm is extensively used due to the observational limitations.

3.3.3. Higher-order statistics
As mentioned earlier, two-point correlation function measurements only allow us to recover
the first two moments of the PDF. Higher-order moments do not necessarily return more
complete estimates on the cosmological parameters. Still, they enable us to break degene-
racies with two-point statistics and explore the properties of galaxies and matter density.
Alternative methods exist to explore the universe’s large-scale structure on non-linear scales.
These non-linearities can be studied when computing the three-point correlation function or
when observing, e.g., peak statistics and the cluster mass function [47].
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3.3.4. Gravitational lensing

Due to the gravitational tidal forces that the large-scale structure generates, light traveling
from distant sources deflects, virtually distorting the images from the background. That ef-
fect can be visualized in the upper panel from Fig. 3.4. The light gets deflected (i.e. the
source changes its position), the observation gets magnified and sheared (i.e. the shapes gets
distorted). These three effects can be appreciated in the lower panel from Fig. 3.4. Gravita-
tional lensing can be either faint or intense, receiving the names of weak lensing and strong
lensing respectively. In the later, images of individual light sources end at distinct positions
or stretched into large arcs.

We can analyze patterns from the deformed galaxies and estimate the intervening total mat-
ter density field (both baryonic and dark matter). The gravitationally distorted galaxy field
is called the cosmic shear field, which include all the galaxies observed because the shear
effect is present in the whole line of sight due to the presence of intermediate matter. The
measurement of this weak lensing effect averages the shear on a set of galaxies, considering
assumptions like the mean shape of galaxies (elliptical) and their orientation (random). If we
measure deviations from the random orientations, we will be under the presence of a lensing
effect. See [52] for a theory review with applications of weak lensing.

As done with the galaxy field, cosmologists have applied the two-point correlation function
to the cosmic shear signals [53–55] and then combine the analysis with the information with
the galaxy density field through a cross-correlation function [15, 56].
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(a) Illustration of how gravitational lensing affects the background galaxy
sources. Image credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO),
Y. Hezaveh et al.

(b) Abell 370 cluster of galaxies generating gravitational lensing due to the
hundreds of galaxies that compose it. Credits: NASA, ESA, R. Bouwens
and G. Illingworth (University of California, Santa Cruz)

Figure 3.4: Explanation and example of the gravitational lensing effect.
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3.4. Sky surveys
A sky survey is a map of a section of the sky that establishes all its measurable contents [13].
With the evolution of astronomical science and instrumental experiments, these observations
have provided fundamental information about the universe’s contents, galaxy formation, and
evolution. The data is in the format of images and spectra of galaxies, with some redshift in-
formation (photometric or spectroscopic), providing a three-dimensional map of the universe.
In addition, observations contain information encoded in the characteristics of galaxies, such
as their positions, colors, and shapes.

In 2006, the Dark Energy Task Force report [57] defined the Stage-III and Stage-IV classifi-
cation of galaxy surveys as the ongoing (started in the 2010s) and future (will begin in the
2020s) dark energy experiments, respectively.

For Stage-III galaxy surveys, the data has been taken in the last decade and it is still ge-
nerating production of articles and discussions among the community. Several experiments
were displayed all over the world, including the Dark Energy Survey (DES) [58, 59], the
Kilo-Degree Survey (KiDS) [60], the Hyper Suprime-Cam HSC [61] and the Extended Baryon
Oscillation Spectroscopic Survey (eBOSS) [62].

On the other hand, Stage-IV surveys are generating large expectations due to the unpreceden-
ted amount of data that will be collected through the telescopes, in addition to the concept
of time-domain characteristic they will have. The images and spectra will cover nearly the
entire extra-galactic sky. Some of these are already observing the large-scale structure, such
as the Dark Energy Spectroscopic Instrument (DESI) [63]. There are others that will start
to operate relatively soon, such as the Legacy Survey of Space and Time (LSST) at the Vera
Rubin Observatory [64, 65], Euclid [66] and the Nancy Grace Roman Space Telescope [67].

3.4.1. The Dark Energy Survey

In particular, in Section 3.5 we present a framework that is based on the data products ge-
nerated from the Dark Energy Survey Year 1 Results (DES Y1) [68] and in Chapter 7 we
work on them directly.

Originally, DES mapped a total of 5000 deg2 of the sky (∼ 1/8 of the whole sky, see Fig.
3.5) using optical imaging observations of a total of 525 nights at the Blanco Telescope
in the Cerro Tololo Inter-American Observatory in Chile, using a digital camera with 570
Megapixels in 62 CCD’s called DECam. This task took 6 years (2013-2019), and it provides
the redshift and estimate of shapes of a total of 300 million galaxies up to z ∼ 1.5 in five
filters (grizY ), being the most extensive connecting map of the universe. It is composed
of more than 400 scientists from over 25 institutions grouped in a collaboration called the
DES collaboration19. The different combined probes, such as galaxy clustering and weak
gravitational measurements of three two-point correlation functions, have provided precise
constraints on the cosmological parameters. However, it also has exposed that systematic
effects must be considered in the Stage-IV sky surveys.

19 https://www.darkenergysurvey.org/
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Figure 3.5: Sky-map plot including the DES footprint in equatorial coordi-
nates. Image from [15].

3.5. Density split statistics
The density split statistics (DSS) is a method proposed by [1, 2] to infer the matter density
field, the skewness of the PDF and the galaxy bias from observations of the gravitational
lensing, and the count of galaxies in cells from DES Y1 data. It derives two-point and three-
point statistics of the large-scale cosmic structure by splitting the sky (on the line of sight) in
subareas of different galaxy density and studies how light from farther galaxies get distorted
due to lensing physics.

Throughout Sec. 3.5, we will resume the methodology and main results of the DSS, giving
a particular focus to the shot-noise parametrizations used on the galaxy bias. In Sec. 7, we
will answer one of the open questions from the DSS: the derivation of informed priors of the
shot-noise models to derive more certain cosmological constraints.

3.5.1. Methodology

The methodology of the density split statistics can be summarized in three steps, as presented
in [2]:

1. Split of the observed foreground galaxies in different densities:
The first step is to separate a sample of low redshift galaxies with distribution nl(z),
denoted as foreground, by the spatial number density in a sub-areas of equal size. This
is done by smoothing the position and counting the number of galaxies NT inside a
circular aperture, in particular, a top-hat aperture of radius θT = 20′. Different parts of
the sky will give a distinct value for NT . Then, the sky is divided into regions of different
galaxy number density in quintiles of growing density. (See the top panel from Fig. 1 of
[2] for an illustration.)
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2. Use gravitational lensing to trace the matter density field in each sky quintile
of the foreground sample:
The second step is to consider a second sample of galaxies, denoted as background, with
higher redshift and study how the light emitted from them suffers gravitational lensing
effects when passing through the foreground sample. For each galaxy density quintile,
the tangential shear is measured, and a density split lensing signal is obtained to trace
the foreground matter density field. The advantage of dividing the total signal is that it
allows detecting the skewness present in the density PDF and the overall underdensity
of the observed universe. (See the right panel from Fig. 1 of [2] to visualize a lensing
signal split by the quintiles of galaxy density.)

3. Obtain the mean counts-in-cells per density quintile:
Cosmological constraints derived from the lensing signals can be improved when con-
necting the galaxies observed in the foreground sample with the density field inferred
from the cosmic shear field. Three different bias models are proposed in [2], from which
two account for galaxy stochasticity. We will analyse these models at Sec. 3.5.2 and Sec.
3.5.3.

Therefore, the main question that DSS aims to answer is what would be the matter density
contrast δm,T given a number of galaxies NT found around a line-of-sight? Or equivalent,
what would be P (δm,T |NT )? This can be answered using the Bayes’ theorem (see Sec. 4.3.2
for an explanation):

P (δm,T |NT ) = P (NT |δm,T )P (δm,T )
P (NT ) , (3.39)

where P (NT |δm,T ) is the probability of finding NT galaxies given δm,T , P (δm,T ) is the PDF of
matter density contrast and P (NT ) is the probability of having NT galaxies in the light of si-
de. In the original DSS work, different models were propose to describe P (δm,T ), the expected
value of the lensing convergence signal given the density contrast ⟨κ|δm,T ⟩ and P (NT |δm,T ).
We will focus on the latter and refer to chapters IV.A and IV.B from [2] for an explanation
of the first two.

The conditional probability P (NT |δm,T ) models the probability of finding NT galaxies in a
circular aperture of radius θT given the projected density contrast δm,T in that area. In [69]
it is shown that for a simple linear bias connection for the matter and density contrast (Eq.
3.36) and pure Poissonian shot-noise, P (NT |δm,T ) would be equivalent to:

P (NT |δg,T ) = [N(1 + δg,T )]NT

NT ! e−N(1+δg,T ) = [N(1 + bδm,T )]NT

NT ! e−N(1+bδm,T ), (3.40)

where N = ⟨NT ⟩ and b being the only free parameter. This model implies that:

⟨NT |δg,T ⟩ = N(1 + δg,T ), (3.41)

and

Var[NT |δg,T ] = ⟨NT |δg,T ⟩. (3.42)

In the DSS, two variations are proposed to extend this relation into higher-orders:
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3.5.2. Shot-noise model 1: joint log-normal distribution

The first model presented in the DSS framework uses the ansatz that the matter and galaxy
fields are joint log-normal random variables with two free parameters: b (the galaxy bias)
and r (the galaxy stochasticity). In particular, for a bivariate log-normal distribution, there
will be a total of five parameters describing the joint distribution: the means, the standard
deviations, and the covariance of both.20 In particular, in the DSS framework, the variance
and the skewness of the density fields are related as:

⟨δ2
g,T ⟩ = b2⟨δ2

m,T ⟩, (3.43)

⟨δ3
g,T ⟩ = b3⟨δ3

m,T ⟩ (3.44)

and

⟨δg,T δm,T ⟩ = br⟨δ2
m,T ⟩. (3.45)

See Sec. IV A 1 and Appendix D from [2] for a formal derivation.

The r parameter can be interpreted as a Pearson correlation coefficient:

r = ⟨δg,T δm,T ⟩√
⟨δ2

g,T ⟩⟨δ2
m,T ⟩

, (3.46)

for which the case of r = 1 will not only recover the original Poisson distribution from Eq.
3.40 but will imply that there is a direct correlation between the fields δg,T and δm,T . This
leaves no space for higher-order information or galaxy stochasticity. The general distribution
of P (NT |δm,T ) will be given by the numerical evaluation of

P (NT , δm,T ) =
∫
P (δg,T |δm,T )P (NT , δg,T )dδg,T , (3.47)

where P (δg,T |δm,T ) can be derived from the joint log-normal distribution derivation as done
in Appendix D from [2].

3.5.3. Shot-noise model 2: super-Poissonianity

The second model is an extension of the Poisson distribution from Eq. 3.40. It allows sto-
chasticity to be more flexible than the previous shot-noise model because of the addition
of two stochasticity parameters. In total, the model of super-Poissonianity has three free
parameters: b, α0 and α1 (two galaxy stochasticities) that arise from allowing the following
extensions in Eq. 3.42:

Var[NT |δg,T ] = ⟨NT |δg,T ⟩ · α(δm,T ), (3.48)

where

α(δm,T ) = α0 + α1 · δm,T . (3.49)

20 One interesting feature is that the skewness can be derived from the listed quantities. See Sec. 4.2.2 for a
summary of this distribution.
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This will impact the general distribution as:

P (NT |δm,T ) ∝ 1
α(δm,T ) × [N(1 + bδm,T )/α(δm,T )]NT /α(δm,T )

(NT/α(δm,T ))! e−N(1+bδm,T )/α(δm,T ), (3.50)

where we have set a proportional relation because it must be normalized in case α is not an
integer. In particular, if α0 = 1 and α1 = 0, we recover the original Poissonian distribution
from Eq. 3.40.

3.5.4. Priors assigned to the shot-noise models
The two models listed in Sec. 3.5.2 and in Sec. 3.5.3 introduce two and three free parame-
ters to the general DSS likelihood analysis, respectively. The Bayesian statistical inference
performed in the DSS requires restrictions summarized in their corresponding prior distri-
butions. (See Sec. 4.3.2 for an introduction to Bayesian probabilities and the corresponding
prior distributions).

In the shot-noise model 1, the originally assigned priors are:

P (b) = U(0.8, 2.5) and P (r) = U(0, 1), (3.51)

where U denotes an uniform distribution (see Sec. 4.2.2 for a definition). The prior on b was
determined from MCMC analytic posterior runs. In contrast, the prior on r is motivated
by the fact that matter and galaxy densities must be positively correlated, and therefore
0 ≤ r ≤ 1. If the universe shows low stochasticity, the value of r would be close to the unity.

In the shot-noise model 2, the originally assigned priors are:

P (b) = U(0.8, 2.5), P (α0) = U(0.1, 3.0) and P (α1) = U(−1.0, 4.0). (3.52)

The priors on the galaxy stochasticity parameters α0 and α1 are derived from the following
arguments: the lower bound in α0 is not 0.0 because of computational costs, and the other
prior bounds are determined after visualizing the 2 − σ confidence region of Buzzard simula-
tions of the DES Y1 like signals. [70]

One of the weaknesses of the priors assigned to the α parameters is that they are mildly
informative [2]. (See final discussion at Sec. 4.3.2.) The same work states that stronger priors
can be motivated and additional articles are enumerated with findings on physical bounds
for both α0 and α1.

3.5.5. Results from DSS
The considered cosmological parameters to test the DSS were Ωm and σ8 (and therefore S8).
The skewness of the matter density field was included in an additional parameter S3:

S3 = ⟨δ3
m⟩

⟨δ2
m⟩2 , (3.53)

which can be straightly obtained from Eq. 3.34 by setting n = 3.
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In addition to the already mentioned tracer galaxies parameters (the already presented b, r,
α0, α1 in the shot-noise models), there were more nuisance quantities: parameters describing
photometric redshift and shear biases (see Table I from [1] for a complete list).

The posterior distribution was obtained through an MCMC sampling in the already men-
tioned parameter space. The final marginalized constraints of the cosmological parameters
for the different shot-noise parametrizations of the DSS are summarized in Fig. 10 from [1],
while the corresponding confidence limits are summarized in Table II from the same publica-
tion. Both shot-noise models described in a similar way the extension of the linear behavior
(and the super-Poissonian shot-noise) as a function of the matter overdensity (see Fig. 8
from [2]). The constraints on Ωm from both shot-noise models agrees (Ωm = 0.26+0.04

−0.03 and
Ωm = 0.28+0.05

−0.04 for the (b, r) and (b, α0, α1) models respectively), but there is a divergence
in the final estimation of σ8 when analyzing DES data (σ8 = 0.97+0.07

−0.06 and σ8 = 0.80+0.06
−0.07

respectively).

One of the remarkable findings from the DSS is that DES data tends to prefer shot-noise
models beyond the linear bias. Nevertheless, some improvements can be made in the prior
modeling of the stochasticity parameters. In Chapter 7 we address the first of the listed future
research tasks suggested in Sec. VII. from [1]: The derivation of informed priors for the shot-
noise nuisance parameters that decrease the uncertainties of the cosmological parameters. To
reach this goal, we do a thorough analysis of the probabilistic and statistical considerations
that must be taken into account in Chapters 4 and 5 respectively.
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Chapter 4

Basics of probabilities

Astronomy has been the discipline that has carried the primary advances in probability and
statistics. From Hipparchus [190-120 BC], who suggested the use of the mid-range quantity
to estimate the length of the year [71], to the modern use of artificial intelligence algorithms
to classify real-time photometric alerts in unprecedented sky surveys. Cosmology has been
one of the sub-fields that has caught more attention in the last hundred years due to advan-
ces in the conceptual background and the discovery of independent cosmological observables
[72–74].

Until recently, independent cosmological proofs have tended to converge in the standard
theory of ΛCDM Model that would have explained with great confidence the evolution and
contents of our universe, as introduces in Chapter 2. Though the respective errors have de-
creased with the perfectionism of the analysis and augmentation of available data, there are
systematics errors that have led to notable tensions (see Section 5.6 for a detailed example).
One question that needs to be asked is whether our theory is inaccurate or how we extract
and use the data is not optimum.

A cosmological model could not be sufficient to explain observations due to two reasons. First,
the reality could be different from what the theory predicts: it could be more or less complex.
The second reason would be that the theory could be correct, but we cannot overcome the
present selection biases and systematics when collecting the data.

For millennia, astronomical understanding has oscillated between overcoming these barriers
for some period to finding other inconsistencies due to the increase in the quantity and quality
of data. In this continual seesawing among conciliation and decay of concepts, theories had
to choose how to increase their complexity while avoiding over-fitting the data. Nowadays,
there is a fundamental difference: the exponential rate of increment of data and the evolution
of theories. In the 21st-century, researchers might need to change their scientific conclusions
after a couple of years. The shrinking of these periods of acceptance-rejection requires us to
change our conception of making cosmological inferences. In that line, we propose and choose
to adopt the following perspectives:

We will first adopt a pessimist view of the statistical methodology in cosmological inference.
For the following chapters, we will assume that models are anything but useful inventions:
underlying causal relationships can not be discovered uniquely through the study of patterns
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in the observable phenomena. We extract our conception from the following two statements:

“[Statistical] models can provide us with ideas which we test against data, and about which we
build up experience. They can guide our thinking, lead us to propose courses of action, and so
on, and if used sensibly, and with an open mind, and if checked frequently with reality, might
help us learn something that is true. Some statistical models are helpful in a given context,
and some are not. (...) What we do works (when it does) because it can be seen to work, not
because it is based on true or even good models of reality.” (Speed 1992, addressing a meeting
of astronomers) [75]

“The object [of statistical inference] is to provide ideas and methods for the critical analysis
and, as far as feasible, the interpretation of empirical data. (...) The extremely challenging
issues of scientific inference may be regarded as those of synthesising very different kinds of
conclusions if possible into a coherent whole or theory. (...) The use, if any, in the process of
simple quantitative notions of probability and their numerical assessment is unclear...” (Cox
2006) [75]

In Sec. 4.1 we will define the fundamental axioms of the probability theory necessary to
distinguish hereafter the types of probabilities at Sec. 4.2. Finally, we end up presenting
the two main interpretations that have been used in the last centuries: the frequentist and
Bayesian concepts in Sec. 4.3.

4.1. The basics of probabilities
Even if a deterministic physical arrangement governs the interactions inside the universe, we
cannot access that information without some degree of uncertainty. The probability theory
provides us with tools to model the uncertainty of a given experiment.

4.1.1. Outcome spaces and events

For example, we cannot predict the redshift of a galaxy before its measurement, although
our prior knowledge of the photometric redshift distribution dispersion will constrain the
prediction. In this experiment, in which the result cannot be predicted with certainty a prio-
ri, the set of possible redshifts will account for the outcome space. One possible event, in
this example, would be the resulting galaxies that populate the redshift interval [0.8, 1.0]. In
Table 4.1, we define these concepts in further detail.

Probabilities are concerned with assigning numerical values to the degree of likeliness of an
event happening. These follow three primary axioms.

4.1.2. Axioms of probability

1. To each event A is assigned a non-negative real number P (A), such that

0 ≤ P (A) ≤ 1, (4.1)

where 0 indicates impossibility of the event and 1 indicates certainty.
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Table 4.1: Definitions of basic statistics adapted from Feigelson & Babu (2012) [75]

Term Definition
Any action that can have a set of possible results

Random Experiment where the actually occurring result cannot be
predicted with certainty prior to the action.

Sample Space (Ω) Set of all outcomes of an experiment.1
Event (A) Subset of the outcome space (A ⊂ Ω).

It is function that assigns numerical values to
Random Variable (X) each of an experiment’s outcomes. It can take

either discrete or continuous values.
Range of a Random Variable It is the set of possible values that a X can take.2

Probability (P (A)) Measurement of how likely the event A is to occur.
1 These sample spaces can be either finite or infinite. One example of a discrete sample
space would be the number of supernovae detected by a telescope. In contrast, a conti-
nuous sample space would be the possible measured temperature of the Cosmic Microwave
Background.
2 An event A is equivalent to a subset of a range of X.

2. The probability of occurrence of at least one of the elements in the sample space is

P (Ω) = 1. (4.2)

3. For mutually exclusive and pairwise disjoint events A1, A2, ..., An, the probability of
either occurring is denoted as P (A1 ∪ A2 ∪ ... ∪ An) and:

P (A1 ∪ A2 ∪ ... ∪ An) = P (A1) + P (A2) + ...+ P (An). (4.3)

From these, we can define the complementary event Ac, which is the event that A does not
occur, and derive its probability. These are mutually exclusive, that is, they cannot both
occur at the same time, and exhaustive (i.e. A ∪ Ac = Ω). Therefore, the probability of a
complementary event must be given by:

P (Ac) = 1 − P (A). (4.4)

Another quantity that one can define from these axioms is the conditional probability of one
event given the occurrence of another. For example, let B be the known event, then the
conditional probability of A given B is written as P (A|B) and is equivalent to the fraction
of probability B that intersects with A:

P (A|B) = P (A ∩B)
P (B) , (4.5)

where P (A ∩ B) is called the intersection of two events A and B or the joint probability of
both events happening simultaneously.

We suggest reading [76] for more implications of these axioms.
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4.2. Types of probabilities
We can look further into the definition of probabilities depending on the nature of the con-
sidered random sample. A probability distribution is a function that assigns probabilities to
the values that a random sample can take [77]. The random sample can be either discrete or
continuous.

4.2.1. Discrete probability distributions

For a discrete random variable XD we will have a finite21 number of values x1, x2, ..., xn, ....
The probability distribution that describes the probability of XD taking the value xn is given
by:

P (XD = xn). (4.6)

Another important function is the discrete cumulative probability distribution, which is the
probability of obtaining a value equal to or smaller than xi:

P (XD ≤ xn) =
n∑

i=0
P (XD = xi). (4.7)

Two classic examples of discrete probability distributions observed in cosmology are the Bi-
nomial and Poisson distributions.

Binomial distribution:

The Binomial distribution represents the number of successes n in a two possible outcomes
experiment of success or failure in N trials. Each of these realizations yields success with pro-
bability p, and all the trials are independent. Let XD ∼ Bin(n, p), its probability distribution
is given by:

P (XD = n) =
(
N

n

)
pn(1 − p)N−n, (4.8)

for n = 0, 1, 2, ..., N .

It is common to observe this distribution when selecting samples from survey data. One
example would be determining the probability distribution of selecting galaxy clusters con-
taining a dominant central galaxy.

Poisson distribution:

The Poisson distribution models the distribution of randomly distributed, independent, point-
like events. It expresses the probability of some occurrences n of an event in a fixed interval
(in observational cosmology, usually in time or space) if these events occur with a known
21 Or countable infinite.
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constant mean rate λ independent of the last occurrence. Let XD ∼ Poisson(λ), its probability
distribution is given by:

P (XD = n) = λn

n! e
−λ, (4.9)

for n = 0, 1, 2, ..., N .

It is possible to demonstrate that, under certain conditions, the Poisson distribution can be
derived from the Binomial distribution when p −→ 0 and Np −→ λ. (See [78] for an explicit
derivation)

The Poisson distribution is of particular importance in astronomy. It is present in various
sub-fields, from the photon noise [79] to the two-point correlation shot-noise of the distri-
bution of galaxies at large scales. (See Sec. 3.5 for an example of the Poissonian shot-noise
parametrization of the galaxy stochasticity).

4.2.2. Continuous probability distributions
For a continuous random variable XC , which can take any value in R, the probability of
obtaining a single value is always null: P (XC = x) = 0 due to the density of XC . However
the probability between intervals is given by the integral of the probability density function
f(x):

P (a ≤ XC ≤ b) =
∫ b

a
f(x)dx (4.10)

for any a, b ∈ R, such that a ≤ b.

There is also a continuous cumulative distribution (analogue to Eq. 4.7), which is given by:

F (x) = P (XC ≤ x) =
∫ x

−∞
f(x′)dx′. (4.11)

A probability density function will have the following properties:

• f(x) ≥ 0, ∀x ∈ R

•
∫∞

−∞ f(x)dx = 1

The Uniform, Gaussian, and Chi-squared distributions are three essential examples of conti-
nuous probability distributions observed in cosmology. We also briefly present the Log-normal
distribution.

Uniform distribution:

The Uniform distribution describes an experiment where the probability of obtaining an
outcome from a fixed interval [a, b] is constant. Let XC ∼ U(a, b), its probability density
function is given by:

f(x; a, b) =


1

b−a
for a ≤ x ≤ b,

0 otherwise
. (4.12)
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Gaussian distribution:

The Gaussian distribution represents one of the most common observed distributions in
nature. It can be derived using the central limit theorem (see [77] for a derivation). Let
XC ∼ N (µ, σ), its probability density function is given by:

f(x;µ, σ) = 1√
2πσ

e− (x−µ)2

2σ2 , (4.13)

where µ would be the mean and σ2 the variance. It is also common to find its multivariate
version, when the random variable sample is obtained from a vector (XC = (X1, . . . , Xk)T),
such that XC ∼ N (µ, Σ), where µ would be the mean vector and Σ = ⟨xxT⟩ − ⟨x⟩⟨xT⟩ =
⟨(x − µ)(x − µ)T⟩ the covariance matrix. Its probability density function is given by:

f(x; µ,Σ) = 1√
det(2πΣ)

e− 1
2 (x−µ)TΣ−1(x−µ). (4.14)

The Gaussian distribution is often observed in the noise of the observations and in the features
of the cosmological density fields (such as the cosmic microwave background, the large-scale
structure, etc.).

Chi-squared distribution:

The Chi-squared distribution appears usually in science because it can be derived from the ad-
dition of k independent random variables Z1, . . . , Zk such that Zi ∼ N (0, 1), ∀i = 1, 2, . . . , k.
The addition of these random variables:

X = Z2
1 + Z2

2 + · · · + Z2
k (4.15)

=
k∑

i=1
Z2

i (4.16)

will follow a Chi-squared distribution of k degrees of freedom (X ∼ χ2
k). Its density function

is given by the following expression:

fX(x; k) =

(
1
2

) k
2

Γ
(

k
2

)x k
2 −1e−x/2, (4.17)

where x > 0 and Γ is the Gamma function.

It is possible to develop further the underlying idea of this distribution. If we have a number
of observations Xi (usually called data vector), such that i = 1, ..., n is the number of the
observables. Despite the distribution of the individual random variable, if n is large, the
normalized joint distribution is well described by a Gaussian distribution in the observable
space. The addition of these will be represented by

χ2
n =

n∑
i=1

(
Xi − µi

σi

)2
. (4.18)
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There is a generalization of the Chi-squared distribution that allows it to be noncentral. In
this case, the k independent random variables Z1, . . . , Zk will be such that Zi ∼ N (µi, 1), with
µi their respective mean. Then, the random variable X = ∑k

i=1 Z
2
i will follow a noncentral

Chi-squared distribution with k degrees of freedom and a noncentrality parameter λ, which
is related to the mean of the random variables Zi by:

λ =
k∑

i=1
µ2

i . (4.19)

The probability density function is given by

fX(x; k, λ) =
∞∑

i=0

e−λ/2(λ/2)i

i! fY (x; k + 2i), (4.20)

where Y is distributed as Chi-squared with k + 2i degrees of freedom.

Log-normal distribution:

The log-normal distribution corresponds to the logarithm of a variable has a normal distri-
bution, i.e. log(XC) ∼ N (µ, σ). Its probability density function is given by:

f(x;µ, σ) = 1
xσ

√
2π

exp
(

−(log x− µ)2

2σ2

)
x > 0. (4.21)

One of the main features of this distribution is that its skewness ((eσ2 +2)
√
eσ2 − 1) is directly

related to its standard deviation (
√
eσ2(eσ2 − 1)) [80]. In Sec. 3.5 it is used its multivariate

version, which can be obtained from its joint probability density function:

f(x; µ,Σ) = 1
(x1 · ... · xn)

√
(2π)ndet(Σ)

e− 1
2 (log(x)−µ)TΣ−1(log(x)−µ), (4.22)

where x = (x1, ..., xn) and the other parameters are the same as the ones shown in the Multi-
variate Gaussian distribution from Eq. 4.14.

4.3. Interpretation of the probabilities
We can interpret probabilities from two main approaches: the frequentist and the Bayesianist
perspective of probabilities. The first one focuses on probabilities representing frequencies of
repeatable random experiments, while Bayesians use probabilities to describe their partial
knowledge of a fixed parameter.

4.3.1. Frequentist probability
Let A be an event in the outcome space Ω of some experiment. The probabilities are thought
of as the number of times A occurs over the total number of trials N in the limit of an infinite
series of equiprobable repetitions:

P (A) = #A
N

, (4.23)
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where #A denotes the number of event occurrences A. This relative frequency concept of
probabilities aims to describe the properties of the underlying theory rather than the pro-
perties of the studied data.

Some of the main criticisms of the frequentist probabilities are the following [81]:

• Sampling-size effect: The number of repetitions that must be done in an experiment to
achieve the asymptotic properties of the estimators is not precise.

• Unrepeatable event: The repetitions of an experiment might not be possible. One clear
example is the universe: we only observe one realization.

Indeed, there are inaccuracies in the frequentist formalism that are interpretable and solved
by the Bayesian methods, but they also have their own flaws.

4.3.2. Bayesian probability
If probabilities are conceptualized as a measure of the degree of belief about a proposition,
Bayes’ theorem arises almost naturally using the axioms of probability presented in Section
4.1.2.

Let A and B be two events. From Eq. 4.5, the joint probability of both events equals the
conditional probability of A given B times the probability of B occurring on its own, and
vice versa:

P (A ∩B) = P (A|B)P (B),
P (B ∩ A) = P (B|A)P (A).

(4.24)

Given P (A ∩B) = P (B ∩ A), it is straightforward to derive the Bayes’ theorem:

P (A|B) = P (B|A)P (A)
P (B) . (4.25)

Let θ be the set of parameters describing a given model M, and let D be the observed data.
The corresponding Bayes’ theorem would be:

P (θ|D) = L(D|θ)P (θ)
P (D) . (4.26)

In Eq. 4.26, we have used L(D|θ) instead of P (D|θ), the conditional probability of D as a
function of θ. From Eq. 4.26, we identify four fundamental terms:

• Likelihood function L(D|θ) (also written as L(θ)): it is a function that assigns a proba-
bilistic prediction to the observed data D to each parameter value θ in the parameter
space.

• Prior distribution P (θ): it describes all the previous knowledge for the hypothesis of an
uncertain quantity before some evidence is taken into account.

• Bayesian evidence (also known as Marginal likelihood) P (D): it can be interpreted as
the probability of the evidence (data for us) given all possible hypotheses of the model
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M when we extend the marginalization as:

P (D) =
∑
θi

P (D|θi)P (θi), (4.27)

for the discrete case, and
P (D) =

∫
P (D|θ)P (θ)dθ, (4.28)

for the continuous case for one dimension.
The Bayesian evidence is fundamental for model comparison purposes. Still, for Bayesian
statistical inferences, if the data is already available, we do not compute it and simply
normalize over the numerator. Therefore, we will focus on the following version of the
Bayes’ theorem:

P (θ|D) ∝ L(D|θ)P (θ). (4.29)

• Posterior distribution P (θ|D): it represents the state of belief of our model after consi-
dering the observed data.

The difference between Eq. 4.25 and Eq. 4.26 is our interpretation of the quantities involved.
There is no logical indication of how and when to determine the prior. Therefore, it is sub-
jected to our judgment.

Usually, in the area of cosmology, the likelihood functions, under Gaussian assumptions (see
Eq. 4.18), will be:

L ∝ exp
[
−1

2

n∑
i=1

(
Xi − µi

σi

)2]
≡ exp

[
−1

2χ
2
n

]
, (4.30)

with χ2
n being a Chi-squared distribution of n degrees of freedom.

While the Bayesian set has lead to enormous advances in science, it has one big challenge
that is discussed below:

• Subjective nature of priors
There is no strict and standard definition of the most suitable prior for a statistical
problem. As the prior function aims to describe the knowledge about a quantity before
additional evidence is taken into account, all the possible and reliable past information
has to be considered and mathematically synthesized. If the priors keep inferences in a
reasonable range, they are called informative. 22

It is also possible that the prior distribution is broad concerning the actual parameter
values. In this case, the prior is called non-informative. Usually, a large uniform distri-
bution is assigned to a quantity because where the actual value lies in the parameter
space is unknown. By doing this, all values will be considered equally likely. However,

22 There are cases in which prior information is not available, or it cannot be directly mapped in a function
with hyperparameters. In cosmology, this can be overcome when there is an extensive study of the prior
knowledge of the astrophysical theory and the empirical studies of the proposed models. However, even if
the prior knowledge is available, it may not be obvious how to convert that into a direct prior distribution.
It is a current challenge to determine the mapping of the prior knowledge from one model to another.
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if a non-linear change of variables is performed, the uniform prior distribution will be
uninformative in the second space. In addition, if we also do not have a valid argument
for assigning the bounds of a uniform prior, then there would not be a clear argument
to set one distribution over another. This can lead to mistaken inferences due to this
overestimation of the prior distributions. 23

Recent analyses of cosmological data have shown no consensus on how to constrain a
parameter if the prior knowledge is not enough, even with a large data set. In Chapter
7 we provide an alternative solution to define a prior distribution that is updated after
demanding to the posterior certain statistical requirements in a simulated likelihood
analysis.

4.3.3. Which probabilistic approach should we use?

Both the frequentist and Bayesianist approaches are expected to be equivalent for simple
problems and lead to the same results. However, there are cases in which they diverge sig-
nificantly for more complicated situations. This difference usually relies on the philosophical
nature of both families of probabilities. While the first one is fundamentally related to the
derived frequencies of events, the second is inherently related to our prior knowledge. There
are some examples in the literature in which we observe this divergence. (See [79] for two
examples.)

In addition, Bayesian analysis deals with the data that is actually being observed. How
can general statements be made if the knowledge is not complete or biased towards a high
probability of occurring events? Is it possible to overcome these systematics using a Bayesian
perspective? On the other hand, frequentist methods focus on the distribution of potential
data that have not been obtained. Deductions should not be based on what could have
happened. The answer to this crucial point might be hidden in combining these two methods:
In [82] the necessity of using both interpretations of probability is described as necessary
for future statistical analysis. In [83], and [84], we see cases in which frequentist consistency
tests are used to measure the accuracy of the Bayesian methods, and in [85], there is a
demonstration of the correspondence between frequentist and Bayesian tests. In Chapter 7
we combine these two approaches to derive more absolute and consistent inferences.

Prior information can also be derived from the underlying theoretical model or from the results of experi-
ment simulations changing initial conditions. Regardless of how they were obtained, the lack of a standard
prior function has led to not worrying about the effects these might have in the resulting analysis. There
could be two main scenarios: It is possible that the prior considered is excessively constrained because the
prior knowledge is biased, not enough, or limited. In these cases, priors would be underestimated. In a
worst-case scenario, the parameter could be fixed, leading to inherent biases. (See the left panel from 7.1
for an illustrative example).

23 One example of this is the prior volume effect, in which the projection in some subset of the parameter
space can lead to biases due to a highly non-Gaussian distribution. (See the right panel from 7.1 for a
simple two-dimensional example).

44



Chapter 5

Statistical inference

As cosmologists, we aim to reach conclusions about the premises and history of our universe.
The most significant challenges are to quantify relationships between properties and test if
the cosmological observations agree with the theories we have developed and presented th-
roughout this work. Statistical inference uses data analysis to test hypotheses and measure
the degree of agreement between models and data. It is also defined as the process by which
we infer population properties from sample properties [86].

The statistical inference can be classified in parametric or non-parametric. Suppose the analy-
sis uses a priori suppositions for the model. In that case, a parametric inference will be per-
formed. In contrast, the non-parametric uses the data exclusively to infer unknown quantities
of interest while making as few assumptions as possible.24 During this theoretical explora-
tion, we will concentrate on the parametric statistical inference (specifically on frequentist
and Bayesian statistical inference to estimate relevant points and intervals) and suggest the
reader see [75] for a detailed study on non-parametric inference methods.

Throughout this chapter, we will describe the fundamentals of statistical inference, starting
with the Law of large numbers in Sec. 5.1. In Sec. 5.2 and 5.3 we will focus on estimators that
allow us to do the statistical inference and we will discuss how to choose the most suitable
in Sec. 5.4. We will also present the basics of the sampling methods in 5.5 to obtain more
information about the probability distributions. We will finish examining the uncertainties
and errors that can appear in statistical inference at Sec. 5.6.

5.1. Law of large numbers
The law of large numbers states that if the samples X1, X2, ..., XN of a random variable X are
independent and identically distributed random variables, then the sample average converges
to some true mean µ as:

1
N

N∑
i=1

Xi −→ µ. (5.1)

24 There is also an intermediate approach, the semi-parametric inference methods, which uses techniques from
both.
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We will denote µ̂ = 1
N

∑N
i=1 Xi to the the sample average.

5.2. Point estimators
Let θ = (θ1, θ2, ..., θp) be the vector of the parameters that describe a given model. When a
measurement takes place, and there is a probability associated, it is possible to summarize
information into these interpretable parameters that describe the outcome. This single value
is a point in the parameter space and allows us to make inferences about the observed data
and the tested model. The point estimate, which we will denote θ̂, usually has a deviation
with respect to the true value25, which we will call θ∗.

There are many point estimates listed in the literature, but the selection should be made
considering the scientific goal of the ongoing experiment. Here we list the three criteria used
by Fisher in his famous work On the Mathematical Foundations of Theoretical Statistics [87]
to determine the quality of a point estimator:

• Consistency: “A statistic satisfies the criterion of consistency, if, when it is calculated
from the whole population, it is equal to the required parameter.” (Fisher 1922) We will
say that an estimator is consistent if the difference between the estimator and the target
population parameter becomes smaller as we increase the samples. A consequence of
consistency is unbiasedness: An estimator is considered unbiased if its expected value is
equal to that parameter. We will study this in detail in Section 5.6.

• Efficiency: “The criterion of efficiency is satisfied by those statistics which, when de-
rived from large samples, tend to a normal distribution with the least possible standard
deviation” (Fisher 1922) Therefore, given two unbiased estimators for a parameter, the
one with a smaller variance is more efficient.

• Sufficiency: “A statistic satisfies the criterion of sufficiency when no other statistic
which can be calculated from the same sample provides any additional information as to
the value, of the parameter to be estimated.” (Fisher 1922).

We will now present well known and used point estimators in cosmology:

5.2.1. Method of moments

The method of moments is based on the law of large numbers, which allows us to derive
equations that relate the moments of a distribution µr to the unknown parameters θ. Depen-
ding on the nature of the considered random variable, these would have a different derivation.

For the discrete case, the non-central moments are given by:

µr = E(Xr
D) =

N∑
i=1

xr
i · P (XD = xi). (5.2)

We can derive the expected value (case r = 1), also called mean:
25 If this last one is actually deductible.
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E(XD) =
N∑

i=1
xi · P (XD = xi) = µ1. (5.3)

The central moments are the ones calculated with respect to the mean µ1:

µ̃r = E((XD − µ)r) =
N∑

i=1
(xi − µ1)r · P (XD = xi). (5.4)

From these, we can derive the variance of a discrete random variable:

µ̃2 = V ar(XD) = σ2 =
N∑

i=1
(xi − µ1)2 · P (XD = xi). (5.5)

Similar to the discrete case, the moments for a continuous random variable XC are given by:

µr = E(Xr
D) =

∫ ∞

−∞
xrf(x)dx. (5.6)

The mean and variance are calculated similarly:

µ1 = E(XD) =
∫ ∞

−∞
xf(x)dx, (5.7)

V ar(XC) = σ2
XC

=
∫ ∞

−∞
(x− µ1)2f(x)dx. (5.8)

Then, to estimate the parameter vector θ, we must express the first p moments as:

µ1 = E(X) = g1(θ1, θ2, ..., θp),
µ2 = E(X2) = g2(θ1, θ2, ..., θp),

...
µp = E(Xp) = gp(θ1, θ2, ..., θp),

(5.9)

where g1, g2, ..., gp are functions that can be inverted into the functions h1, h2, ..., hp:

θ1 = h1(µ1, µ2, ..., µp),
θ2 = h2(µ1, µ2, ..., µp),

...
θp = hp(µ1, µ2, ..., µp).

(5.10)

Using the law of large numbers, we can estimate the moments as:
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µ̂1 = 1
N

N∑
i=1

Xi,

µ̂2 = 1
N

N∑
i=1

X2
i ,

...

µ̂p = 1
N

N∑
i=1

Xp
i .

(5.11)

We finally estimate the parameters substituting the sample averages µ̂j in the hj functions:

θ̂1 = h1(µ̂1, µ̂2, ..., µ̂p),
θ̂2 = h2(µ̂1, µ̂2, ..., µ̂p),

...
θ̂p = hp(µ̂1, µ̂2, ..., µ̂p).

(5.12)

See [88] for introductory examples and applications.

5.2.2. Method of least squares

The method of least squares was developed independently by Gauss, Legendre, and Adrain
[77]. This method allows us to find a regression equation that relates a dependent variable
with one or more independent variables. The regression can be linear or non-linear, and the
optimization of the parameters is obtained by deriving the minimum of the sum of squares
of the residuals (i.e., deviations from the regression).

Let us have n observations: X1, X2, ..., Xn, such that the number of parameters to estimate
p is smaller than the number of observations (p < n). Each observation will have a random
error (i.e., following a Gaussian distribution) associated as:

Xi = α + ϵi, (5.13)

where Xi would be the i-th measurement, α the true value of a physical quantity, and ϵi the
error in the i-th measurement. Our estimators for both α and ϵi are:

α̂ = a −→ estimate of α
ϵ̂i = ei −→ estimate of ϵi

(5.14)

This would be equivalent to have:

Xi = α + ϵi = a+ ei. (5.15)

The method’s goal is to estimate the regression coefficients (in this case α and ϵi) by mini-
mizing the sum of the squares (or other quadratic forms). The sum of the squares is
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n∑
i=1

e2
i =

n∑
i=1

(a−Xi)2. (5.16)

The minimum is obtained as

∂(∑n
i=1 e

2
i )

∂a
= 0 ⇒ a =

n∑
i=1

yi

n
= y, (5.17)

which the last term is equal to the arithmetic mean of the observations y, returning a simple
estimate of α. The corresponding estimation of the dispersion is the standard deviation from
y. The simplest case is when we apply a linear regression to a set of points x,y = {xi, yi}n

i=1
such that they follow a linear relation:

y = α+ βx, (5.18)

and the values xi are exact, while the values yi are subjected to some error ϵi. Following the
same approach, the observational equations would be given as:

yi = α + βxi + ϵi = a+ bxi + ei, (5.19)

where a, b, and ei are estimates of α, β and ϵi respectively. The optimization should be done
on

n∑
i=1

e2
i =

n∑
i=1

(a+ bxi − yi)2. (5.20)

We minimize both a and b by optimizing:

∂(∑n
i=1 e

2
i )

∂a
= 0 ⇒ na+ b

n∑
i=1

xi =
n∑

i=1
yi,

∂(∑n
i=1 e

2
i )

∂b
= 0 ⇒ a

n∑
i=1

xi + b
n∑

i=1
x2

i =
n∑

i=1
xiyi.

(5.21)

The solution would be:

a = n
∑n

i=1 xiyi −∑n
i=1 xi

∑n
i=1 yi

n
∑n

i=1 x
2
i − (∑n

i=1 xi)2 ,

b =
∑n

i=1 x
2
i

∑n
i=1 yi −∑n

i=1 xi
∑n

i=1 xiyi

n
∑n

i=1 x
2
i − (∑n

i=1 xi)2 .

(5.22)

were a and b would be the y-intersection and the slope of the linear regression respectively.

One classic application in cosmology of this method is the linear regression of the Hubble–
Lemaître Law done by Edwin Hubble in 1929 [6].

Application of the method of least squares: Hubble–Lemaître Law

At the end of the 1920s, both Edwin Hubble and Georges Lemaître discovered that galaxies
farther away from us are moving faster than nearby galaxies [5, 6]. They derived a linear
relationship between the recession velocity v and the distance from us d:
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v = H0d. (5.23)

This is the famous Hubble–Lemaître Law. Its importance relies on the fact that it was the
first observational evidence to support an expanding universe.

Hubble proposed a value of H0 ∼ 500 [km s−1 Mpc−1] [6]. As seen in Fig. 5.1, we obtained
a value of H0 = 454.2 [km s−1 Mpc−1] using the method of least squares in the same data.
Nowadays, the estimated value for H0 differs by a factor of 7 from the ones found by Hub-
ble. (See Fig. 5.11) The inconsistencies are solved with a better calibration of the distances.
Despite having different coefficients, the linear approximation was correct.
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Figure 5.1: Least square approximation of Hubble’s data [6].

5.2.3. Maximum likelihood method

The maximum likelihood method is almost immediately associated with Fisher.26 His main
contribution relies on the formality, definition, and study of properties of this method [91].
In Eq. 4.26, we introduced the concept of likelihood. Its first definition appeared a century
ago in Fisher’s work.27

26 Nevertheless, the first records of statisticians using this method take us to 1760 with Lambert’s Photometria
[89]. Other mathematicians, throughout the years, used the methodology, such as Lagrange between 1770-
1773 [90].

27 In 1912, Fisher published the original statements that founded the maximum likelihood method [92],
without defining (for the first time) the likelihood function until 1921 [93]. In the following year, he published
[87] and proved the properties in a way we would consider not rigorous enough but still fundamental to
the statistics of the 20th century.
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Fisher’s critics of the methods of moments and the method of least squares relied on the
arbitrary choice of moment equations and the lack of invariance under a scale change in the
variables. This motivated him to introduce the formalism we use nowadays.

Let X = (X1, X2, ..., Xn) be a random sample, θ = (θ1, θ2, ..., θp) a parameter vector and let
L(θ) be the likelihood function originally obtained through the joint probability distribution
for the random variables. In the case the samples are independent and identically distributed,
the likelihood is equivalent to the product of the individual probability density function:

L(θ) =
n∏

i=1
fθ(Xi). (5.24)

We would say that any θMLE such that maximizes L(θ) is called the maximum likelihood
estimator of the unknown true parameters θ [77].

θMLE = arg max
θ

{ n∏
i=1

fθ(Xi)
}
. (5.25)

Usually, the log(L(θ)) function is maximized due to the invariant property of the estimator.

In the case of a pure n-dimensional multivariate Gaussian distribution in the parameters
L(θ) ∝ exp(−χ2

n/2). Then, the maximum likelihood Lmax would be equivalent to the mini-
mum Chi-squared χ2

min. (Similar to Eq. 4.30.)

If we apply the maximum likelihood method to the data from the Hubble-Lemaître law from
Section 5.2.2, we will obtain the same estimators as the ones found in Eq. 5.22. This is
a special case when we assume that the observations follow a Gaussian distribution with
unknown mean and variance:

fθ(Xi) = 1√
2πσ2

e− 1
2σ2 (a+bxi−yi)2

. (5.26)

The optimization would be:

log
{ n∏

i=1

1√
2πσ2

e− 1
2σ2 (a+bxi−yi)2

}
∝

n∑
i=1

(a+ bxi − yi)2. (5.27)

The RHS value is the same result as the one observed in Eq. 5.20. If the errors from the
observations are non-Gaussian, this proportionality is no longer true.

5.2.4. Maximum a posteriori

The method of maximum a posteriori aims to estimate the most likely θ giving the data and
our prior knowledge [94]. It is a common mistake to assume that this estimate is the same as
the maximum likelihood encountered value (see Section 5.2.3). The last one determines the
value of parameters that makes the data most likely.

Mathematically, we would say that any θMAP such that maximizes the posterior P (θ|D) is
called the maximum a posteriori estimator of the unknown true parameters θ:
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θMAP = arg max
θ

{
P (θ|D)

}
. (5.28)

If we use the Bayes’ theorem (Eq. 4.26) and in the case the samples are independent and
identically distributed, Eq. 5.28 would be equivalent to:

θMAP = arg max
θ


n∏

i=1
fθ(Xi)P (θ)

P (D)

. (5.29)

The logarithm of the above expression is:

θMAP = arg max
θ

{ n∑
i=1

log(fθ(Xi)) + log(P (θ)) − log(P (D))
}
. (5.30)

When we optimize Eq. 5.30, the Evidence P (D) would not be considered because it does not
depend on θ:

θMAP = arg max
θ

{ n∑
i=1

log(fθ(Xi)) + log(P (θ))
}
. (5.31)

If the prior is non-informative (i.e. P (θ) = 1), then θMAP = θMLE.

5.2.5. Other point estimators
We invite the reader to study other point estimator techniques, such as

• Uniformly minimum-variance unbiased estimator: see chapter 2 from [95] for a
large review of this estimators based on the unbiasedness property.

• Minimum mean squared error estimator: also known as the posterior mean:

θ̂(x) = E[θ|x] =
∫
θ p(θ|x) dθ.

See [96] for more comments on this.
• Median unbiased estimator: see [97] for an introduction of the best median-unbiased

estimators in simple standard problems.

5.3. Interval estimators
An interval estimator bounds the possible values of a parameter in a range with some degree
of sense. Estimating an interval allows us to draw inferences about a population of interest.
They aim to comprise the true underlying parameter.

The interval estimators contrast to the already studied point estimators from Section 5.2
because they assign an interval of possible values rather than a specific one. As in the point
estimates, interval estimation can be complex, and they are not uniquely defined. Their de-
finition is even more entangled when considering many dimensions.
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In many areas of science, and in particular, in cosmology, the most used interval estimators
are the confidence intervals. However, as we will see in the following subsections, it is a
common mistake to understand them from a Bayesian perspective, while they came from the
frequentist theory counterpart.

5.3.1. Confidence Intervals
The confidence intervals was first presented by Neyman in 1937 [98], and, currently, they are
the most used interval estimators. These are the resulting intervals estimated using frequen-
tist reasoning and summarize the concept of coverage of the true parameter in independent
realizations of an experiment. In other words, the confidence intervals ensures an interval in
which, after independent realization of the experiment, some fraction will fall inside of this
interval with some probability.

The interval is determined at a certain confidence level, which represents the long-run fre-
quency of confidence intervals that contain the true value of the parameter.28 Common con-
fidence levels are 68.3 %, 95.4 % and 99.7 % (these are the 1 −σ, 2 −σ and 3 −σ ranges away
from a common Gaussian distribution) and it might not necessarily be always symmetric
(or centered with respect to a point estimate) [77]. The extension of this interval in many
dimensions is the confidence region.

Let X be a sample from some probability distribution. Let θ be the parameter of interest. A
confidence interval for the θ, with confidence level 1−α, is an interval with random endpoints
[θmin(X), θmax(X)] such that in

P (θmin(X) < θ < θmax(X)) = 1 − α. (5.32)

We will present a simple illustration of the idea of confidence intervals in this work: let θ
be the parameter of interest and [θmin, θmax] the confidence interval for its estimate at a
1 −α = 75 % confidence level. If we sample 20 times independently from the original popula-
tion, we would expect that the truth parameter θ∗ lies within the confidence interval a total
of 15 times out of 20 approximately. Fig. 5.2 represents the example.

The probability distribution that describes the coverage will correspond to a binomial distri-
bution if the experiment is repeated a fixed number of times.29 We will call this a binomial
proportion confidence interval.

The confidence level and the sample size will affect the width of the estimated confidence
interval. Still, it would be often desired to have a valid estimates (the coverage probability
should be achieved approximately) [100].

In many dimensions, the concept of the 1-σ, 2-σ, and 3-σ makes no sense anymore because
28 See [99] and Lecture 17 from [88] for a classical approach to derive confidence intervals and page 13 from

[81] to derive them from the expansion of the log-likelihood distribution. These last approximations of
the distributions assume a Gaussian-shaped probability distribution, and in consequence, the well-known
empirical rule of the confidence intervals of the mean with the standard deviations. (See pages 505-508
from [99].)

29 Each trial of the experiment has two possible outcomes (inside or not of the interval), the probability of
success is the same for each trial, and the trials are independent.
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Figure 5.2: Example coverage of 20 samples of θ. A total of 15 relied inside
the confidence interval [θmin, θmax], which is expected for a confidence level
of 1 − α = 75 %.

there is no addition of standard deviations, but the corresponding probabilities are still used
to construct the confidence levels. An usual approach is to first calculate the maximum
likelihood estimator Lmax from Sec. 5.2.3 and then select the bounds x1 and x2 such that:∫ x2

x1
L(x)dx = 0.683

∫ ∞

∞
L(x)dx. (5.33)

The same can be done with 95.4 % and 99.7 % in the RHS part of Eq. 5.33. Some other
attributes can be demanded, such as symmetry with respect to the Lmax.

It is fundamental to reiterate the meaning of the confidence intervals: if an experiment is
repeated, the truth parameter will lie a certain fraction of times inside of it. In cosmology, we
only have one realization of the observable universe. This state opens philosophical discussions
and a fundamental point when analyzing the confidence intervals of cosmological parameters.
Many articles express that the true cosmology is bounded inside the confidence interval limits,
but this is a misconception of its frequentist nature. There is a whole family of interval
estimators that accounts for this Bayesian perspective that we will review hereafter.

5.3.2. Credible Intervals

A credible interval describes the probability of a parameter being contained in an interval.
It is calculated in the one-dimensional posterior probability distribution, and it is the com-
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monly estimated interval of the Bayesian statistics. It can be determined considering a point
estimate. The extension of this interval in many dimensions is the credible region.

In simple words, the subjective probability that θ lies between θmin and θmax is 1− (α1 +α2),
being θmin ≤ θ ≤ θmax the corresponding 1 − (α1 + α2) credible interval. See Fig. 5.3 for an
illustration.

P
D

F
(θ

)

θmin θmax
θ

1 - (α1 + α2)

α1 α2

Figure 5.3: Illustration of the credible interval [θmin, θmax] in which the true
parameter θ lies inside with a is 1 − (α1 + α2) probability.

In the case α1 = α2, we would call it the centered credible interval, while α1 ̸= α2 would be
called the non-centered credible interval.

The spaces that can account for this are more complex to define in many dimensions. It is
common to use the isodensity lines in two dimensions, which are lines that join points with
the same probability density value. The hyper-volume encapsulated accounts for the credible
region. In Fig. 5.4 we show the projection of the isodensity lines for two bivariate Gaussians.
It is important to recall that the credible intervals are not unique. It is possible to center
the intervals on a posterior distribution with respect to point estimators. That includes the
maximum a posteriori (highest posterior density interval), the median (equal-tailed interval)
and the mean.

5.3.3. Other interval estimators

We invite the reader to study other estimator techniques, such as
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Figure 5.4: Two bivariate Gaussian probability density distributions and the
corresponding isodensity curves. Each isodensity line represents the combi-
nation of the parameters θ1 and θ2 with the same probability density. These
are used as an extension of the credible intervals to visualize credible regions
for the true parameters aimed to estimate.

• Bootstrap intervals: see pages 51-54 from [99] for a friendly introduction.

• Feldman-Cousins intervals: this interval is determined through the likelihood ratio
comparison across potential hypotheses:

Λθ(x) = L(x|θ)
L(x|θbest)

, (5.34)

where x is the measured value, θ is the true value, and θbest is the maximum likelihood
given the data. See Feldman and Cousins’ original paper [101] for more details.

5.4. Discussion on selecting estimators
There are open questions in statistical inference when analyzing cosmological data. Some of
them are the following:

• Which point and interval estimators should we use when doing a cosmological analysis?

• How can we relate point and interval estimators in many dimensions and in their mar-
ginalized spaces?

A common approach is a mid-point between the minimum variance and the highest proba-
bility of a point estimate. However, this is not evident when the underlying distribution is
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unknown, which is the typical case in cosmology.

One example of this tension is comparing the use of the MAP in many dimensions versus the
marginalized 1D mean. In Figure 7.1, we illustrate how much the point estimators may vary
if the shape of the distribution is highly non-Gaussian. On the other hand, if the distribu-
tion follows a multivariate Gaussian distribution, then the MAP would be equivalent to the
projected 1D mean:

θMAP = [θMAP,1, θMAP,2] = [θ1, θ2] = θ. (5.35)

In DES Y3 results [102, 103], the point estimates are presented as:

Parameter = 1D mean+upper 34 % bound
− lower 34 % bound(MAP value)

Another case where determining confidence intervals is not clear is when the number of reali-
zations of an experiment is small. This leads to conflicts, mainly because of divergent results
on the estimates. (E.g. some particle physics experiments were identified to have this pro-
blem; see Biller & Oster (2015) [104]).

An interdisciplinary study of how estimators vary in different experiments can help solve
the current statistical challenges of observational cosmology due to the enormous variety of
scale-dependent physics present in the universe.

5.5. Sampling methods
Sampling methods are widely used to infer properties about a distribution and can be used
to solve integration and optimization problems in large dimensional spaces. They also allow
us to simulate physical systems. There is not a unique sampling method, and all of them
have limitations. Some of them are random walks (such as the Gibbs sampling [105] and the
Metropolis Hastings [106, 107]), rejection sampling [108], sequential Monte Carlo (like the
importance sampling [109]), and many others. We will focus on two: Markov chains Monte
Carlo and Sequential Monte Carlo.

5.5.1. Markov chains Monte Carlo

To obtain a general sample of points that represents a probability distribution, the Markov
Chain Monte Carlo (MCMC) methods are a family of practical algorithms for that purpo-
se [110]. They mainly construct a Markov chain that will have an equilibrium distribution
equivalent to the sampled one, as the number of steps on it increase.

The intuition behind this family of sampling methods is to simulate a random thermal fluc-
tuation of a system from state to state throughout an experiment [111]. The chain will assign
a weight to each state (or step) that will be equal to the probability of having that particu-
lar state. The complete information would allow us to obtain estimators of the underlying
probability distribution and all the possible states of the system. The MCMC is obtained
by setting a transition dynamic from step to step following the Markov property: the future
state probability would only depend on the present state (with some uncertainty), but not
on the past states [110].
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There are many ways to construct a Markov chain according to the Markov property, but
its quality (and therefore convergence) will depend on other factors such as the number of
steps, the starting points, and anothers.

Metropolis-Hastings algorithm:

Introduced by Metropolis (1953) [107] and Hastings (1970) [106], this algorithm returns
a Markov chain in which each state xt+1 depends only on the previous state xt using a
proposal density distribution Q(xt+1|xt). The step will be selected with some random factor.
The algorithm is described as:

1. Initialize with an starting point x0.

2. Choose a proposal function Q(xt+1|xt) that determines how to transit from one state
to another30.

3. For i = 0, ..., N − 1:

• Make a proposal step xp.
• Calculate the ratio of the likelihood distribution evaluated at the proposal step xp

and the current state xt:
r = L(xp)

L(xt) .

• If r ≥ 1: xt+1 = xp

• If r < 1:
– Sample a random number u ∼ U [0, 1].
– If u ≤ r: xt+1 = xp

– If u > r: xt+1 = xt

Finally, the number of times the chain remained in the same state (weight) is proportional
to the probability distribution that wants to be sampled.

A common approach is to use an MCMC sampler to estimate cosmological parameters from
observations of Supernovae Type Ia (SNIa). Since the end of the twentieth century, these
have been used by cosmologists to estimate the acceleration of the universe’s expansion due
to being standard candles. (See Chapter 2 for a theoretical explanation of the underlying
physics.)

From the observed magnitude, redshift, and covariance of a total of 40 supernovae type Ia31

obtained from the Pantheon catalogue32, we will consider a simple version of the ΛCDM mo-
del, fixing Ωr, and studying three parameters: Ωm, ΩΛ and M. From these, the first two are

30 A common approach is to use a multivariate Gaussian with a covariance matrix comparable to the underl-
ying errors of the parameters.

31 Data originally provided by Prof. Dragan Huterer at the ICTP-Trieste/ICTP-SAIFR School on Cosmology
2021.

32 https://archive.stsci.edu/prepds/ps1cosmo/scolnic_datatable.html
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cosmological (the matter and dark energy density parameters, respectively) and one nuisance
(the absolute magnitude).

The apparent magnitude m from Eq. 2.50 would be the theoretical model µ:

m = 5 log10 (H0dL) + M = µ(Ωm,ΩL,M). (5.36)

We can then have a final likelihood distribution to infer the posterior distributions around
our parameters of interest ppp = (Ωm,ΩL,M):

L(xxx) ∝ exp
{

−1
2(xxx− µ(ppp))TC−1(xxx− µ(ppp))

}
. (5.37)

One fundamental ingredient from the Metropolis-Hastings algorithm is the use of a proposal
distribution Q(xt+1|xt). We will show the resulting chains when considering three different
Gaussian-distributed proposal distributions, which will return a random jump from a current
position in parameter space:

Q(xt+1|xt) = xt + N (0,Σi), (5.38)

where Σi would be a vector with the different standard deviations: Σi = (σΩm,i, σΩΛ,i, σM,i).
In Table 5.1 we present the different proposal distributions and in Figs. 5.5, 5.6 and 5.7 we
show three sampled chains with a total of 20,000 points each.

Table 5.1: Different cases for the steps of the proposal distributions, in-
cluding the acceptance rate of the tested MCMC for the inference of the
parameters Ωm, ΩL and M in the cosmological analysis of a sample of SNIa.

Case 1 Case 2 Case 3
Large step Efficient step Short step

σΩm 0.1 0.01 0.002
σΩΛ 0.1 0.01 0.002
σM 0.1 0.025 0.005

Acceptance rate 0.01 0.16 0.65

It is clear that cases 1 and 3 are not efficient chains. This is not only showed in the correspon-
ding acceptance rates, but in the performance of Figs. 5.6 and 5.7. The case in which the step
is large (case 1), the sampler rapidly reaches the convergence, but due to the far proposed
points, it usually reject most of the proposal points when it reaches high probability zones.
(See left panels from 5.5.)

The other extreme, the case in which the step is too short (case 3), we observe the opposite
phenomena. The close proposal points can make the sampler to get stuck in local minima,
taking a lot of time to reach the zone of convergence. (See right panels from 5.5.) The case
in which the step is considered efficient, shows an harmonic concentration towards the zone
of convergence. (See central panels from 5.5.)

59



0 5000 10000 15000 20000

0.2

0.4

0.6

0.8

1.0

Ω
m

0 5000 10000 15000 20000

0.2

0.4

0.6

0.8

Ω
m

0 5000 10000 15000 20000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ω
m

0 5000 10000 15000 20000

0.2

0.4

0.6

0.8

1.0

Ω
Λ

0 5000 10000 15000 20000

0.2

0.4

0.6

0.8

1.0

1.2

Ω
Λ

0 5000 10000 15000 20000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ω
Λ

0 5000 10000 15000 20000

23.75

23.80

23.85

23.90

23.95

24.00

M

(a) Case 1: Large step
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Figure 5.5: Resulting MCMC chains projected in each of the dimensions for
different proposal distributions (see Table 5.1) for the cosmological example
of SNIa. In the left panels, the proposal distribution reaches the actual
values in a few iterations, but it does not maintain the required stability.
In the center, the chain that is efficiently sampled is shown. At the right
panels, the steps are small, and therefore, the chain takes longer to reach
the best values.

The advantage this method offers is its mathematically simplicity: it is only a few lines of
coding. Nevertheless, there are a few aspects that must be taken into consideration:

• Initially, it is necessary to drop some fraction of the chain. If the distance between the
starting point and the zone where the sampler converges is too large, keeping it will bias
the results. This is known as burn-in stage.

• As shown in 5.1, the size of the step of the proposal distribution, and therefore the
acceptance rate, will determine how efficient our chain is. Usually, an acceptance rate
should be between 0.1 and 0.3.

For more comments on the limitations of the MCMC method, see [112].
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(c) Case 3: Short step

Figure 5.6: 2D Marginalized likelihood result chains for Ωm and ΩL.
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Figure 5.7: 2D weighted result chains for Ωm and ΩL.
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5.5.2. Sequential Monte Carlo

The sequential Monte Carlo is a method that approximates a probability distribution p(x)
using samples from a proposal distribution π(x). The goal is to estimate the posterior density
of some state variables given some observation variables [113].

Usually, sequential Monte Carlo problems consist of both hidden and observable variables.
Let x represent some of those hidden states and y represent an observation. The observa-
tions are related to the hidden states by some known functional form. The probability of
observing y given x would be given by the conditional probability p(y|x), also known as
filtering distribution, and is the one we will sample. Similarly, the dynamical system descri-
bing the evolution of the state variables is also known probabilistically. The expectation of
an observable µ(x) would be given by:

E[µ(x)|y] =
∫
µ(x)p(x|y)dx =

∫
µ(x)p(x|y)dx∫
p(x|y)dx . (5.39)

The goal will be to sequentially estimate some hidden states x1, ...,xN , given the values of
the observation process y1, ...,yN , at any time step.

This methodology provides an approximation of the conditional probability p(xi|yi) by cal-
culating weights obtained with a type particle algorithm. Importance sampling can be used
to model the full posterior p(x1, ...,xN |y1, ...,yN). To do this, we would use an alternative
and simpler function π(y|x).

Importance sampling:

Instead of using a grid over the space of parameters to observe y, we can draw weights
w(x) = p(x|y)

π(x|y) (called importance weights) that represent the probabilities using an impor-

tance sampling [114] technique.

The expectation of µ(x) would be as follows:

E[µ(x)|y] =
∫
µ(x)w(x)π(x|y)dx∫
w(x)π(x|y)dx

. (5.40)

Then, to approximate E[µ(x)|y], we just need to draw samples {xi}N
i=1 from π(x|y) and

calculate the discrete representation of the underlying probability:

E[µ(x)|y] = 1/N ∑N
i=1 µ(xi)w(xi)

1/N ∑N
i=1 w(xi)

=
N∑

i=1
µ(xi)w(xi), (5.41)

where w are the normalized importance weights. Those weights can be transformed, as done
in Sect. 5.5.1 to obtain the final posterior. (See Fig. 5.8 for a sketch that summarizes the idea
behind this method).
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(a) Sampling

(b) Weighting

(c) Re-sampling

Figure 5.8: Illustration of the three stages of importance sampling: sampling,
weighting and re-sampling.
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The sampling technique can be done iteratively. As the method follows the Monte Carlo
principle, the different results will return a sequence.

The main challenge of the method is to propose a distribution π(x|y) that supports33 the
filtering distribution p(x|y). (See Fig. 5.8, where the points drawn from π(x|y) are signi-
ficant). This characteristic will ensure that the samples are being obtained from zones of
high probability. With a sufficient number of points, it would be possible to make statements
about p(x|y), such as calculating point and interval estimators.

A common approach is to sample a Gaussian cloud of points using some representative point
estimator (such as the MAP or projected mean) as the multivariate mean and some cova-
riance matrix. Another approach is to use a Sobol sampling.

Sobol and Inverse transform sampling methods:

A Gaussian random cloud will have most points centered around the mean. An alternative
method is to cover a wider area, keep the elliptical shape, and use a Sobol sequence to sample
points.

Sobol sampling generates quasi-random numbers covering the space more evenly than a Gaus-
sian random sample. Rather than generating random numbers, Sobol sampling generates a
uniform distribution in probability space. It is a distribution which fills in unsampled regions.
In Section A we describe the mathematical background of the sequence.

It is possible to transform the Sobol sequence into N (number of dimensions) standard
normal distributions using the CDF (Cumulative Density Function) and then rotate it to the
coordinate system with the parameter covariance. This procedure is called Inverse transform
sampling [115], and it is illustrated in Fig. 5.9.

33 Their centers are near and have a comparable width.
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Figure 5.9: Example of an inverse transform sampling using a Sobol sampled
2D unit cube as a base for a multivariate Gaussian with mean µ = (2.0, 2.0)

and covariance Σ =
(

1.0 −0.25
−0.25 0.5

)
.

The inverse transformation sampling takes uniform samples of a number u between 0 and 1,
interpreted as a probability, and then returns the largest number from the sampled distribu-
tion such that its probability is less than u. In our case, u would be a number from one of
the dimensions of the Sobol sequence.

Both the Sobol and inverse transform methods were combined in Chapter 7 to sample in a
more efficient way the desired and described posterior.

5.6. Errors and uncertainties
Errors synthesize the uncertainties in an experiment. If we assume that there are no measu-
rements free of uncertainty, our goal should be to keep their magnitude to the minimum and
understand their origin. This is fundamental to make reliable inferences about the universe
when analyzing cosmological observations that are inherently noisy. There are two main ty-
pes of errors when estimating parameters: the random and the systematic errors, which are
illustrated in the top panel of Fig. 5.10.

When a measurement can be repeated, the distribution’s spread contributes to the uncer-
tainty of a measured quantity. These are called random errors, which are the random devia-
tions of the observations from a true value. An estimator is consistent if the error tends to
zero as the sample become larger [116], but we must ensure that the measurements are the
same each time we reproduce the experiment. One example is the Gaussian noise.

A large difference between two measurements decreases our reliability on the estimation.
There are cases in which, even if the same quantity is measured each time, repeated samples
do not always decrease the uncertainty. Those cases are called systematic errors. These are
given by inaccuracies due to the nature of the compilation of data and cannot be remo-
ved by increasing the sample size or choosing a different type of estimator [116]. Therefore,
the relative magnitude of the error does not decrease as the number of observations increases.
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In reality, it is not possible to know if models correctly describe phenomena, so systematic
errors are hard to evaluate and detect, unless their effect is evident. In the bottom panel of
Fig. 5.10, we illustrate this by taking out the target practice. This problem has been observed
in cosmology: In the last decade, the Hubble constant (H0) parameter estimate has decreased
its random errors significantly due to the augmentation of low and high redshift independent
observables. Late universe observations suggest that the expansion rate is now larger than in
the early universe. This inconsistency is called the Hubble tension, and it has been intensely
debated. It is not clear if it is produced by a misconception of the underlying physics, or if
it is produced by systematic errors in the collection and treatment of data. In Fig. 5.11, we
illustrate two independent proofs of H0 that decrease its error through time.
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(a) Random and systematic errors in target practice.

(b) Random and systematic errors without target practice.

Figure 5.10: The size of random errors depends on the distance between the
points. Therefore, they do not depend on the position of the circles, i.e., the
model. On the other hand, systematic errors can only be determined if the
points are systematically centered or not with respect to some reference.
(Image adapted from [117].)

68



2000 2005 2010 2015 2020
Year of publication

65

70

75

80

85

H
0

[k
m

s−
1

M
p

c−
1
]

Evolution of the Hubble tension

Late Universe

CMB

Figure 5.11: Hubble constant (H0) estimate and uncertainties changes over
time in the ΛCDM model 2.4. Observations of the early universe, corres-
ponding to the Cosmic Microwave Background (CMB) [44, 118–123], are
shown in red, while the purple measurements are given by late universe
standard candles, such as Supernovae and Cepheid variable stars [124–134].
Error bars are 1σ.

Fig. 5.11 illustrates a clear discrepancy. During the first decade (2000-2010), the estima-
ted intervals of the measurements appeared to converge and overlap, allowing cosmologists
to believe that the ΛCDM theory of the cosmos described the observations accurately. Ne-
vertheless, during the last decade (2010-2020), the difference between measured values for
H0 has become even more significant.

A second tension has increased the community’s interest: when comparing Planck’s data with
weak lensing measurements and redshift surveys, the value of the matter energy density Ωm,
and the amplitude or rate of growth of structure (σ8, fσ8). See Fig. 5 from [135] for quanti-
fication of this tension through the parameter S8, using different probe combinations.

In the last US Community Study on the Future of Particle Physics event (SnowMass 2021), an
extensive review of the cosmological tensions and anomalies associated with Particle Physics,
Astrophysics, and Cosmology was released [136]. One of the critical questions cosmologists
should answer in the following decade is

• Can these tensions, individually or together, be systematic errors in the current measu-
rements? Are these tensions statistical flukes, or are they pointing to new physics?

• If not due to systematics, what is the origin of the sharpened tension in the observed
and inferred values of H0, fσ8, and S8?
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• Are these tensions uncorrelated, or connected and different manifestations of a single
tension?

Solving these questions is fundamental to make substantial statements about ΛCDM.

5.6.1. Measuring the systematic errors

In 1-Dimension, the difference between the estimated point θ̂i and the true value θ∗
i will be

quantified by the bias B[θ̂i]:

B[θ̂i] = θ̂i − θ∗
i . (5.42)

In the case it is zero for all values of θi, the estimator is said to be unbiased. [137] In Fig.
5.12 we illustrate an example.

θ1

P
D

F
(θ

1
)

Point estimate

θ∗1

True value

θ̂1

Figure 5.12: In this simple plot, the bias would be equivalent to the difference
between θ̂1 and θ∗

1.

In many dimensions, this difference is not trivial to calculate. To define distances between
two points in a multivariate space, it is fundamental to have a clear notion of a metric. Let
x1 and x2 be two points in a n-dimensional space. A usual approach to define distances is to
use a Minkowski metric of order p [138]:

dp(x1, x2) =
(

n∑
k=1

|x1k − x2k|p
)1/p

, (5.43)

where p is an integer. Depending on the value of p, we would have specific distances:
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Table 5.2: Minkowski distances for different positive integer values of p.

p dP (x1, x2) Name

p = 1
n∑

k=1
|x1k − x2k| Manhattan distance

p = 2
(

n∑
k=1

(x1k − x2k)2
)1/2

Euclidean distance

... ... ...

p −→ ∞ lim
p→∞

(
n∑

i=1
|x1k − x2k|p

)1/p

= nmax
i=1

|x1k − x2k| Chebyshev distance

In the context of multivariate statistical analysis, if the errors are known, it is possible to
determine weighted distances to account for biases. One possible approach is to use the
metric distance between two points, scaling them by the covariance matrix. The most used
error-weighted distance is the Mahalanobis distance. This expresses the distance between an
observation x and an estimator, for example, the mean vector µ:

dM(x,µ) =
√

(x − µ)TΣ−1(x − µ), (5.44)

where Σ is the covariance matrix of the sample data x. It was first introduced by P. C.
Mahalanobis in 1936 [139]. In 1D, the equation would be:

dM(x, µ) = |x− µ|
σ

, (5.45)

where σ is the standard deviation of x.

To estimate biases in statistical inferences, it is advantageous to use error-weighted distances
rather than the common Minkowski distances. This would change the shape of the Euclidean
space to one that accounts for the correlation between the dimensions. In Fig. 5.13 we show
a 1D example:
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(a) Two Gaussian distributions N (µ1, σ1) = N (−1, 1) and N (µ2, σ2) =
N (1, 1).

(b) Two Gaussian distributions N (µ1, σ1) = N (−1, 1/4) and N (µ2, σ2) =
N (1, 1/4)

Figure 5.13: Example of two pairs of 1D Gaussians shifted two units away,
but with different standard deviations. It is clear that there is a larger
inconsistency in the lower panel, which is illustrated with the Mahalonobis
distance in Eq. 5.47. The Euclidean distance is not able to capture this
effect.

For the classic Euclidean distance, the difference between the means µ1 and µ2 of the two
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Gaussians from Fig. 5.13 is simple the absolute difference:

|µ1 − µ2| = 2 (5.46)

in both cases. On the other hand, the Mahalanobis distance would be:

dM(µ1, µ2) = |µ1 − µ2|
σ1,2

=

2 if σ1 = σ2 = 1
8 if σ1 = σ2 = 1/4

. (5.47)

The basic interpretation that can be done is that µ1 and µ2 are 2σ1,2 and 8σ1,2 away from
the other, respectively.

In many dimensions, it is direct to relate the Mahalanobis distance with the Chi-squared
distribution (see Fig. 1 from [140] for visualization purposes):

χ2
n =

n∑
i=1

(
Xi − µi

σi

)2
= (x − µ)TΣ−1(x − µ) = dM(x,µ)2. (5.48)

Besides quantifying the biases, this geometrical relationship allows us to calculate sample
probabilities using the Chi-squared cumulative probability distribution given some confidence
level. We will use this in Chapter 7.
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Chapter 6

Revision of the German tank problem

Throughout history, scientific knowledge had been used to both save lives but also to pro-
duce suffering. During wars, the espionage techniques based in secret intelligence increases
enormously. Statistical inference is not free from such acts.
During World War II, by 1943, the Allies tried to estimate the number of tanks produced
by the Germanic forces through the Economic Warfare Division of the American Embassy
in London [141]. To accomplish this, the Western forces used the printed serial numbers of
destroyed or captured tanks that were sequentially numbered. This was a key point to get
prepared for the confrontations: an over-estimation of the number of tanks imply committing
too many resources, while a sub-estimation would lead to a rapid defeat.

The Allies assumed that the numbers from the printed tanks were sequential and that the
first one is numbered 1. Then, estimating the total number of produced tanks would be equi-
valent to determining the largest number of the considered series. The formula derived for
the estimator by the Allies used a frequentist approach, being the results successful.

In this Chapter we present a review analysis of the tank problem, that was originally dis-
played in the weekly seminar of the Astrophysics, Cosmology, and Artificial Intelligence
Group of Professor Daniel Gruen at the Universitaets-Sternwarte Muenchen from the Ludwig-
Maximilians-Universität. We first list the presuppositions of the problem in Sec. 6.1. We then
address it using frequentist inference theory in Sec. 6.2 and then solve the same problem using
a Bayesian approach and compare their results in Sec. 6.3. We finally conclude in Sec. 6.4.

6.1. Presuppositions
Let N be the unknown total number of tanks produced, and let us assume each of them
had labeled a natural serial number. If we observe n serial numbers from a random sample
(X1, ..., Xn), being Xmax the maximum observed value Xmax = max (X1, ..., Xn), which would
be the best estimate for N?

For this problem, there are
(

N
n

)
ways to choose n numbers fromN without any order. To count

the number of sets of n serial numbers such that the maximum serial number is x, we have to
consider all the possible ways of having x as the maximum number and additional n−1 tanks.

Given that one of the n captured tanks must have serial number x, the remaining n−1 tanks
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must have been selected from the x− 1 tanks preceding the tank with the max serial number
x. Therefore, the subset of sample space such that x = Xmax is

(
x−1
n−1

)
.

Finally, the probability for observing Xmax = x in a sample of size n given N tanks is:

P (Xmax = x|N) =

(
x−1
n−1

)
(

N
n

) , if n ≤ x ≤ N, and 0 otherwise. (6.1)

We will first show how distinct frequentist estimators return different values for N and then
compare it with the final unbiased estimator (used by the Allies).

The monthly production of tanks through the months of June 1940, June 1941 and August
1942 was of 122, 271 and 342 tanks respectively. [141] The mean production is equivalent
to 245 tanks per month. We will do a frequentist and a Bayesian analyses for a total of 245
tanks, from which we will draw 25 random serial numbers from 50 independent observations.

6.2. Frequentist approach
Only using our intuition, it is possible to list different point estimators for N̂ . In Fig. 6.1 we
show the performance of following candidates:

1. Twice the median: N̂ = 2Xmedian

2. Mean + 2 Standard Deviations: N̂ = Xmean + 2σ

3. Maximum value + 0.25 Standard deviation: N̂ = Xmax + σ
4

4. Maximum value + Minimum value: N̂ = Xmin +Xmax

5. 1.1 times de Maximum value: N̂ = 1.1Xmax

6. Median + Inter Quartil Range: N̂ = Xmedian + (Q3 −Q1)
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Estimator 1: Twice the median

N = 245

N̂ = 2Xmedian

(a) Twice the median
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Estimator 2: Mean + 2 Standard Deviations

N = 245

N̂ = Xmean + 2σ

(b) Mean + 2 Standard Deviations
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Estimator 3: Maximum value + 0.25 Standard deviation

N = 245

N̂ = Xmax + σ
4

(c) Maximum value + 0.25 Standard deviation
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Estimator 4: Minimum value + Maximum value

N = 245

N̂ = Xmin +Xmax

(d) Maximum value + Minimum value

200 220 240 260 280 300
Estimated number of tanks

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0

5

10

15

20

25

F
re

q
u

en
cy

Estimator 5: 1.1 times de Maximum value

N = 245

N̂ = 1.1Xmax

(e) 1.1 times de Maximum value
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Estimator 6: Median + Inter Quartil Range

N = 245

N̂ = Xmedian + (Q3 −Q1)

(f) Median + Inter Quartil Range

Figure 6.1: Different histograms of the proposed frequentist estimators of
N̂ for a real number of N = 245 and a total of 25 random serial numbers
of 50 independent observations.

The first case, the twice the median estimate N̂ = 2Xmedian lead to the worst estimate re-
sults. The deviation from the true value N = 245 is large, while there is no clear center. The
second, third and fifth cases N̂ = Xmean + 2σ, N̂ = Xmax + σ

4 and N̂ = 1.1Xmax respectively,
tend to over-estimate N . On the other hand, the fourth and last cases, N̂ = Xmin + Xmax

and N̂ = Xmedian + (Q3 −Q1) respectively, are not biased, but their variances are large.

It is possible to infer that the fourth case N̂ = Xmin + Xmax is the one that shows the best
performance. This relies on the fact that our sample is random and made over an uniform
discrete distribution of serial numbers. This implies that the lowest and higher values will

76



approximate to the real values as we increase the sample, Xmin ∼ 1 and Xmax ∼ N , and
therefore, Xmin +Xmax ∼ N + 1. From this mathematical fact, we can derive the most suc-
cessful and unbiased estimator.

Final unbiased estimator

Let us find the best estimate for Xmax. We calculate the expected value:

E(Xmax) =
N∑

x=n

x · P (Xmax = x). (6.2)

We substitute the probability:

E(Xmax) =
N∑

x=n

x

(
x−1
n−1

)
(

N
n

) , (6.3)

and expand the binomial coefficients:

E(Xmax) =
N∑

x=n

x
(x− 1)!

(n− 1)!(x− n)!
n!(N − n)!

N !

=
N∑

x=n

x!n
(x− n)!

(N − n)!
N !

=n(N − n)!
N !

N∑
x=n

x!
(x− n)!

=nn!(N − n)!
N !

N∑
x=n

x!
(x− n)!n!

=nn!(N − n)!
N !

N∑
x=n

(
x

n

)

=nn!(N − n)!
N !

(N + 1)!
(n+ 1)!(N − n)!

=n(N + 1)
(n+ 1) .

(6.4)

We then isolate N :

N = (n+ 1)
n

E(Xmax) − 1. (6.5)

As our best estimate for E(Xmax) is actually the observed Xmax, then

N̂ =
(
n+ 1
n

)
Xmax − 1, (6.6)

and the variance of N̂ is given by

V(N̂) = 1
n

(N − n)(N + 1)
(n+ 2) . (6.7)
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Let us see its performance for the case in which N = 245 and the samples are 25 for 50
independent observations:
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Unbiased Estimator

N = 245

N̂ = n+1
n Xmax − 1

Figure 6.2: Histogram of the unbiased frequentist estimator from Eq. 6.6 for
the same quantities as the listed in Fig. 6.1.

The resulting histogram is both, centered and with low variance, about the estimate of N .
For a low number of samples, e.g. n = 1, the estimate would be equivalent to N̂ ∼ 2Xmax −1.
This can be interpret that the estimates minimizes the bias using the fact that the sample
is uniform and the expected value should rely in the middle of the distribution. Therefore,
twice that quantity would be, statistically, close to the true value but with high chances of
error. We corroborate the statements here listed augmenting the number of observed serial
number per realization in Appx. B.1.

6.3. Bayesian approach
For any Bayesian analysis, it is necessary to assign a prior distribution to the parameters.
The posterior distribution can be calculated using the discrete version of the Bayes’ theorem
from Sec. 4.3.2:

P(N |x) =P(x|N)P(N)
P(x)

= P(x|N)P(N)∑∞
N ′=x P(x|N ′)P(N ′)

(6.8)

for N = x, x+ 1, ... and 0 otherwise.

The prior knowledge we have of this problem is that the total number of tanks must be a
positive integer. Besides of the logical considerations around the German capacity to produce
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tanks, it is not easy to define a possible maximum quantity considering how dangerous would
be to define an upper bound that is lower to the real value. The simplest case would be then
to consider an improper uniform prior, i.e., an uniform discrete prior without upper limit.
See Appx. B.2 for examples and a discussion about using other priors.

Improper uniform prior

The improper uniform prior is

P (N) = 1 for N = {1, 2, ...,∞}. (6.9)

This would give us the following posterior for Eq. 6.8:

P (N |x) = n− 1
x

(
x
n

)
(

N
n

) if N = x, x+ 1, x+ 2, ..., and 0 otherwise. (6.10)

The demonstration is described below:

P (N |x) = P (x|N)P (N)∑∞
N ′=x P (x|N ′)P (N ′)

=

(
x−1
n−1

)
(

N
n

) · 1

∑∞
N ′=x

(
x−1
n−1

)
(

N ′

n

) · 1

= 1(
N
n

) 1∑∞
N ′=x

1(
N ′

n

)

(6.11)
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∞∑
N ′=x

1(
N ′

n

) =
∞∑

i=0

1(
i+x

n

)
=

∞∑
i=0

n!(x+ i− n)!
(x+ i)!

=
∞∑

i=0

n!(x+ i− n)!
(x+ i)! · x!(x− n)!

x!(x− n)!

=n!(x− n)!
x!

∞∑
i=0

(x+ i− n)!x!
(x+ i)!(x− n)!

= 1(
x
n

) ∞∑
i=0

x!
(x+ i)!

(x+ i− n)!
(x− n)!

= 1(
x
n

) ∞∑
i=0

Γ(x+ 1)
Γ(x+ 1 + i)

Γ(x− n+ 1 + i)
Γ(x− n+ 1)

= 1(
x
n

) ∞∑
i=0

(x− n+ 1)i

(x+ 1)i

,

(6.12)

where we use that Γ(n) = (n− 1)! and ( )i is the Pochhammer symbol.

∞∑
N ′=x

1(
N ′

n

) = 1(
x
n

) ∞∑
i=0

(x− n+ 1)i

(x+ 1)i

= 1(
x
n

) ∞∑
i=0

(x− n+ 1)i

(x+ 1)i

· i! · 1i

i!

= 1(
x
n

) ∞∑
i=0

(x− n+ 1)i(1)i

(x+ 1)i

· 1i

i! , because (1)i = i!

= 1(
x
n

)2F1(x− n+ 1, 1;x+ 1; 1),

(6.13)

where we used the definition of the hypergeometric series: 2F1(a, b; c; z) = ∑∞
n=0

(a)n(b)n

(c)n

zn

n!

∞∑
N ′=x

1(
N ′

n

) = 1(
x
n

)2F1(x− n+ 1, 1;x+ 1; 1)

= 1(
x
n

) Γ(x+ 1)Γ(x+ 1 − (x− n+ 1) − 1)
Γ(x+ 1 − (x− n+ 1))Γ(x+ 1 − 1)

= 1(
x
n

) Γ(x+ 1)Γ(n− 1)
Γ(n)Γ(x)

= 1(
x
n

) x

n− 1 ,

(6.14)
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where we use that 2F1(a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) and Γ(n+ 1) = nΓ(n).

Therefore, the posterior for a improper uniform prior is:

P (N |x) = n− 1
x

(
x
n

)
(

N
n

) if N = x, x+ 1, x+ 2, ..., and 0 otherwise. (6.15)

The posterior mean, calculated by [142], is

E(N |x) = n− 1
n− 2 · (x− 1) for n > 2, (6.16)

and the posterior variance:

V(N |x) = (n− 1)(x− 1)(x− n+ 1)
(n− 2)2(n− 3) for n > 3. (6.17)

Due to the layer of mathematical complexity around the prior assignments, we will compare
the two approaches (frequentist and Bayesian) for the unbiased estimate and the improper
uniform prior respectively. In Fig. 6.3, we show the expected values E(N |x) for 50 indepen-
dent cases in which n = 25. The results are similar to the ones observed in Fig. 6.2.
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Figure 6.3: Histogram of the Bayesian expectation value of N for 50 in-
dependent observations of 25 samples from a total number of 245 for an
improper prior.

The two results converge with large values of n because (n − 1)/(n − 2) ∼ 1, and therefore,
E(N |x) ∼ Xmax − 1. The variance would also vanish with n ≫ 1. However, for n = 1, 2 we
find that it is not possible to estimate E(N |x), while for n = 3 we can only access to the
point estimate, but not to the associated uncertainty V(N |x). This divergent behaviour is
illustrated in the lower part of Fig. 6.4.
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Figure 6.4: Estimates of N from the the frequentist and Bayesian approaches
in cyan and purple respectively for different sample sizes n. The plotted
values for n are odd numbers, i.e. n = 1, 3, 5, ..., and the intervals correspond
to the standard deviation centered in each point estimate.

There is a clear general convergence towards the true value N as the number of samples in-
creases. Nevertheless, the case n = 1 does not have any estimate in the Bayesian framework,
while the case for n = 3 only has the corresponding expected value, but non associated un-
certainty. This implies that in these cases there is either not available constrain information,
or the estimate is certain and there is no way to measure a Mahalonobis distance (see Sec.
5.6.1) to determine how bias is the estimate with respect to its error. Therefore, we have pro-
ved that the tank problem can be approached using either frequentist inference or Bayesian
inference with success, however leading to different results when n = 1, 2, 3. We will discuss
the consequences of this in Sec. 6.4.

6.4. Discussions and conclusion
We have showed how to implement the simplest frequentist and Bayesian approximation of
the total number of a series from the tank problem, specifically, for the unbiased estimate
and the improper uniform prior respectively. These had similar (and converging) results as
the number of samples increases and are such that n ≥ 4, but the frequentist approach was
mathematically simpler than the Bayesian one.

On the other side, for smaller samples, the results clearly diverge, and in some cases, the
estimates are not even be determinable, leading to an inconsistency between theories when
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a improper uniform prior is assumed. Therefore, this is an example in which Bayesian and
frequentist analysis of probabilities are not equal.

This problem has a direct impact on what we have discussed throughout chapters 4 and 5.
The frequentist perspective of probabilities states that probabilities arise from the law of
large numbers when an experiment is repeated enough times to approximate the ratio of
occurrences to the total number of cases. The Bayesian interpretation, in the counter part,
concepts probabilities as the measure of degree of belief about a proposition. One would ex-
pect that under a small amount of repetition of an experiment, the Bayesian framework has a
better performance, however, if there is a lack of prior information, which one should one use?

If we assign a proper discrete uniform distribution (i.e. setting an upper bound Nu) to P (N),
how sure we can be that we are not underestimating N and, therefore, assigning a null proba-
bility to the true value? Or, in a more related discussion to Chapter 7, being non-informative
when there is no prior information available?

In the particular case of the tank problem, the frequentist approach is more desirable because,
in the absence of prior information, is able to derive a value and a degree of its uncertainty for
all the possible number of estimates in a more straightforward way. This case opens questions
regarded the analysis of our cosmos: If we are observing only one specific realization of the
universe, which interpretation of probability should we use? Are we using the prior informa-
tion accurately if we are inside of the same and do not account for random variations? Is it
possible to use both approaches complementary to increase our cosmos’ understanding?

This fundamental questions should be part of the itinerary of observational cosmology, due
to the strong impact their answers have in our models and in the treatment of systematics.
In Chapter 7 we do propose a standardized method to derive informed prior distributions to
nuisance parameters enforcing their validation considering, e.g. a validation of a frequentist
interpretation of the posterior constraints. We believe this will help to set a direction to
overcome the tensions that are arising in the area of cosmology.
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Chapter 7

Informed Total-Error-Minimizing
(ITEM) Priors: Interpretable
cosmological parameter constraints
despite complex nuisance effects

The following chapter presents a framework that proposes prior distributions that control
projection effects when marginalizing the dimensions of the parameters of interest. We test
the method in the shot-noise parametrization from the density split statistics [1, 2], and
derive priors to the nuisance parameters that decreased the total error and were informative
concerning the defined initial conditions.

The present chapter is under peer revision, and the author list includes Bernardita Ried,
Oliver Friedrich, Daniel Gruen, and Dylan Britt. Both OF and DG have provided the data
vectors, the covariance matrix, and the projected density maps used in this work to simulate
the data from the DSS.

7.1. Abstract
While Bayesian inference techniques are standard in cosmological analyses, the average au-
dience of these analyses interprets resulting parameter constraints with a frequentist intuition.
It is increasingly understood that this intuition can fail miserable when marginalising high-
dimensional parameter spaces onto subsets of parameters because of what has come to be
known as projection effects or prior volume effects. We present the method of Informed Total-
Error-Minimizing (ITEM) priors to address this effect. ITEM priors are prior distributions
on a set of nuisance parameters intended to enforce the validity of a frequentist interpretation
of the posterior constraints derived for a set of target parameters (e.g. cosmological para-
meters). Our method works as follows: We split the vector of model parameter into target
and nuisance parameters. For a set of realistic data realisations we generate target para-
meter posteriors using several different candidate priors for the nuisance parameters. Next,
we remove candidate priors that do not accomplish minimum requirements of bias (of point
estimates) and coverage (of 1-σ confidence regions) for the target parameters. Of the priors
that survive this cut we select the ITEM prior as the one that minimizes the total error of
the marginalized posteriors of the target parameters.
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As an example, we apply our method by re-analyzing the Density Split Statistics (DSS)
measured in Dark Energy Survey Year 1 data. We provide ITEM priors needed to model
the shot-noise of tracer galaxies that enter the DSS. We demonstrate that the ITEM priors
substantially reduce prior volume effects that arise when marginalising over these shot-noise
parameters.

7.2. Introduction
Present and future wide-area surveys of galaxies will provide an unprecedented volume of da-
ta over most of the extragalactic sky. Examples of these are the Dark Energy Survey (DES)34

[58, 59], the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST)35 [64, 65],
the Dark Energy Spectroscopic Instrument (DESI) survey36 [63], the space mission EUCLID37

[143], the 4m Multi-Object Spectroscopic Telescope (4MOST)38 [60], the Kilo-Degree Survey
(KiDS)39 [60] and the Hyper Suprime-Cam (HSC)40 [61]. The promise of precision cosmology
with these data can only be realized by accurately accounting for nuisance effects – both
astrophysical and in the calibration uncertainty of data – with increasingly complex models.

Examples of astrophysical effects include intrinsic alignments of galaxies as a nuisance for
weak lensing analyses (see [144] for a recent review and [145–147] for the latest analyses),
baryonic physics that impact the statistics of the cosmic matter density field such as star
formation, radiative cooling and feedback (e.g. [148–150]), galaxy bias and other parameters
describing the galaxy-matter connection (see [151] for a recent review, [135, 152–156]), syste-
matic effects on the baryon acoustic oscillations signal [157–159], or redshift-space distortions
[160]. Calibration-related nuisance effects include measurement biases on galaxy shapes (see
[161] for a review, [147, 162, 163]), the estimation of redshift distributions of photometric
galaxy samples (see Newman and Gruen in prep. for a review and [164–168]), or systematic
clustering of galaxies induced by observational effects [169].

A key step of the cosmological inference from survey data is to perform likelihood analyses
that results in a many-dimensional joint posterior distributions of cosmological and nuisance
parameters. A marginalized posterior for one or several parameters can be derived from
this joint posterior by projecting out the remaining parameters. We might desire for these
marginalized posteriors to have certain properties:

• Unbiasedness: An exercise that can fail in cosmological analyses with high-dimensional
parameter spaces goes as follows. Predict a data vector at a set of fiducial parameters,
using a theoretical modelling pipeline. Then derive parameter constraints from that
data vector - as if it was a noisy measurement - using the same modelling pipeline. We
demand, that the maximum posterior point (MAP) of each cosmological parameter in
that exercise have a bias w.r.t. the fiducial parameters that is smaller than some fraction

34 https://www.darkenergysurvey.org/
35 http://www.lsst.org/lsst
36 https://www.desi.lbl.gov/
37 www.cosmos.esa.int/web/euclid, www.euclid-ec.org
38 https://www.4most.eu/cms/
39 http://kids.strw.leidenuniv.nl/
40 https://hsc.mtk.nao.ac.jp/ssp/
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of the width of the corresponding confidence region.

• Reliability: We demand that in repeated trials the true value of a set of target parameters
is within a derived confidence region of those parameters at least some fraction of times.

• Robustness: We demand that the previous two requirements hold independent of which
of a list of plausible nuisance and physical realizations of the universe is actually realized.

• Precision: Among all the possible inference procedures whose confidence regions fulfill
the above requirements statements, we prefer the one which, on average, results in the
smallest total uncertainty on the target parameters.

(a) Bias due to underfitting a nuisance ef-
fect: When θNuisance is a free parameter of the
2D Gaussian model presented in the panel, the
true value of the target (e.g.∼cosmological) pa-
rameter θTarget = 0 is recovered with the 2D
Maximum a Posteriori (MAP). With a simpler
nuisance model that fixes θNuisance = 0 and thus
under-fits the nuisance, the 1D MAP (blue mark)
of θTarget can be biased.

θTarget

θ N
u

is
an

ce

(b) Prior volume effect: In this toy illustra-
tion, the plot shows the 2D and 1D margina-
lized posterior of a distribution in which the
nuisance parameter θNuisance presents a large
peak. This shape can have the MAP inside the
inner contour plots, as it does in the intersec-
tion of the black dashed lines. The problem
arises when the Probability Density Function
(PDF) is projected over θTarget as shown in the
right. Even if the posterior in the entire para-
meter space is centered around the correct pa-
rameters, the posterior marginalized over the
nuisance parameters can be off of the correct
target parameters. Such posteriors can, e.g.,
result from a model that is non-linear in the
nuisance parameters. One way of fixing this
projection effect is setting a prior that decrea-
ses this effect by constraining the nuisance pa-
rameter.

Figure 7.1: Sketches on how the treatment of nuisance parameters can cause
systematic errors on the target parameter posteriors.

There are two ways in which the treatment of nuisance parameters can cause systematic errors
in cosmology and, therefore, violate these statements. The first one is to assume a nuisance
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parameter model that is overly simplistic or constrained, e.g.∼fixing a nuisance parameter
that indeed needs to be free in order to accurately describe observed data. In the left panel
of Fig. 7.1, we present a simple sketch of this situation, in which the assumption that the
nuisance parameter θNuisance = 0 leads to a bias on the cosmological parameter θTarget. We
will call this effect underfitting of the nuisance, following [170].

The second effect is the opposite: assuming prior distributions over the nuisance parameters
that are too large with respect to the likelihood. When nuisance parameters are degenerate
with the cosmological parameters of interest, the projection of the posterior onto the para-
meters of interest can lead to an offset from their true value in the presence of large prior
volumes. This effect is known as prior volume effect and is illustrated in the right panel of
Fig. 7.1. A characteristic feature of this effect is that the marginalized posterior will have a
peak in a region of parameter space where the likelihood profile is flat. For real-life examples
of such projection effects, see e.g.∼[145, 171] on intrinsic alignments, [155, 172] on galaxy
bias or [173] on galaxy cluster mass profiles.

Another consequence of the prior volume effect is that the coverage fraction (the fraction
of marginalized confidence intervals in repeated trials that encompass the true target pa-
rameters) is not consistent with the associated confidence level. Assuming for the sake of
argument that there are indeed true values for the model parameters θ, this can be rephrased
as follows: the marginalized 1σ confidence contours obtained with repeated Bayesian analyses
in an ensemble of universes do not necessarily contain the true configuration θTarget of these
universes with a frequency of ∼ 68 %. One can indeed construct examples where seemingly
reasonable analysis choices lead to vast discrepancies between formal confidence levels and
their actual success frequency [174–176]. This may not constitute a problem from a purely
Bayesian standpoint since Bayesian statistics do not claim to satisfy frequentist expectations.
However, this does not change the fact that one may want to make probabilistic statements
about the true value of a physical parameter and that marginalized parameter constraints
quoted in cosmological publications are interpreted in a frequentist way by a large fraction (if
not the majority) of the cosmology audience. Projection effects in high-dimensional nuisan-
ce parameter spaces may hence cause a buildup of wrong intuitions in the inferred parameters.

This situation is further complicated by the fact that a precise model for nuisance effects,
with a finite set of parameters and well-motivated Bayesian priors, is often not available.
Commonly, at best, a number of plausible configurations of the nuisance effect are known.
These could e.g.∼be a set of summary statistics measured from a range of plausible hydrody-
namical simulations ([177, 178]) or a compilation of different models and parameters that
have been found to approximately describe the nuisance, as is the case for intrinsic alignment
[179–181], the galaxy-matter connection ([182–184], Britt et al. in prep.) or in the calibration
of redshift distributions [165].

In this paper, we adopt the simple philosophy that the paramount objective of the analysis
is to be able to make statements about the target parameters that fulfill the above criteria
of: unbiasedness, reliability, robustness and precision. Since the nuisance priors we construct
to satisfy these criteria is informed by knowledge of possible configurations of the nuisance
effects and minimizes the combination of systematic and statistical error, we will call them
Informed Total-Error Minimizing (ITEM) priors. How we construct these priors has two
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important consequences for the interpretation of the resulting parameter constraints:

• In the presence of limited information about the nuisance effect, the considered rea-
lizations can be used to tune the priors of the nuisance parameters to ensure certain
properties of the resulting constraints on the target parameters. We do not assume the
final prior to directly represent information about the nuisance effect. It is merely a tool
for the interpretable inference of the target parameters. As a consequence, we also give
up on the ability to derive posterior constraints on the nuisance parameters.

• The coverage fraction of any procedure to derive parameter constraints in a set of re-
peated experiments will be sensitive to the true values of cosmological and nuisance
parameters that underlie those experiments. Given a set of plausible realizations of cos-
mology and nuisances, we can hence only ensure a minimum coverage of the marginalized
constraints derived from ITEM priors.

The paper is structured as follows: We start by describing the philosophy and general metho-
dology for obtaining ITEM priors in Sec. 7.3. In Sec. 7.4 we investigate the performance of
the method in a test case: cosmological parameters constraints marginalized over models for
non-Poissonian shot-noise in Density Split Statistics (DSS, [1, 2]). We explore the change in
simulated and DES Y1 results of these statistics when using ITEM priors. Finally, discussion
and conclusions are given in Sec. 7.5.

7.3. Methodology
Assume that some observational data can be described in a data vector ξ̂̂ξ̂ξ of Nd data points.
Let ξξξ[θθθ] be a model for this data vector that depends on a parameter vector θθθ of Np para-
meters, and let Cov be the covariance matrix of ξ̂̂ξ̂ξ. In many cases, it is reasonable to assume
that the likelihood L of finding ξ̂̂ξ̂ξ given the parameters θθθ is that of a multivariate Gaussian
distribution:

ln L(ξ̂̂ξ̂ξ|θθθ) = −1
2
∑
i,j

[ξ̂i − ξi[θ]]C−1
ij [ξ̂j − ξj[θ]] + C , (7.1)

where C−1
ij are the elements of the inverse of the covariance matrix, and C is a constant as

long as the covariance does not depend on the model parameters. We derive the posterior
distribution P(ξ̂̂ξ̂ξ|θθθ) using Bayes’ theorem:

P(θθθ|ξ̂̂ξ̂ξ) ∝ L(ξ̂̂ξ̂ξ|θθθ)Π(θθθ) , (7.2)

with Π(θθθ) being a prior probability distribution incorporating a priori knowledge or assum-
ptions on θθθ.

In many situations the parameters θθθ can be divided into two types: target parameters θθθT
and nuisance parameters θθθN . This distinction is usually subjective and depends on which pa-
rameters one would like to make well-founded statements about (i.e., robust, valid, reliable,
and/or precise estimates) and which parameters are needed to describe the complexities of
the experiment but are not considered intrinsically of interest. For example, in a cosmological
experiment, the target parameters are usually those describing the cosmological model, such
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as ΛCDM and its variations. This could, e.g., include the present-day density parameters
(Ωx), the Hubble constant (H0), and the equation of state parameter of dark energy (w).
On the other hand, the nuisance parameters would be used to account for observational and
astrophysical effects or uncertainties in the modeling of the data vector. Nevertheless, this
target-nuisance classification is not fixed but depends on the focus of the analysis.

Recent cosmological analyses have proceeded by choosing an approximate nuisance model
with a limited number of free parameters for all these complex effects and either assuming a
wide flat prior distribution over them or a prior distribution set by simulation or calibration
measurements [15, 44, 146, 185].

Figure 7.2: Basic steps and concepts present in our methodology. In light
blue, we summarize the steps of our pipeline and highlight other ingredients
of the methodology with green.

As we explained in Sec. 7.2, precarious modeling of nuisance parameters can cause systematic
errors, leading to the following consequences:

• Limited modeling of the nuisance effects: The assumed model may not sufficiently des-
cribe the nuisance effects actually realized. For example, there could be an oversight of
one underlying source of the nuisance, the model of a nuisance effect may be truncated
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at a low order, or an effect entirely neglected. This could result in an intrinsic bias on
the inferred target parameters, as would e.g.∼be revealed by repeating the analysis on
simulated data that include the full nuisance effect.

• Prior-volume effects: A wide prior over one or multiple nuisance or target parameters
can lead to projection effects when analyzing the 1D marginalized posteriors of target
parameters if the model does not depend linearly on the parameters. Even if the prior
is physically motivated and reflects our knowledge on a nuisance effect, it could still
cause a significant projection effect. And a different nuisance prior could result in a less
uncertain yet more reliable inference of the target parameters.

We will now introduce a procedure aimed to identify prior distributions on nuisance para-
meters which ensure the criteria we presented in Sec. 7.2 for marginalized constraints on
target parameters (see also Fig. 7.2). We will call the resulting priors Informed Total-Error
Minimizing priors, or ITEM priors. As explained in Sec. 7.2, our procedure degrades nuisan-
ce priors to mere tools that ensure interpretability of the marginalised constraints on target
parameters in a Bayesian likelihood analysis. They do not represent actual prior knowledge
on the nuisance parameters and we also give up on the ability to derive posterior constraints
on them.

7.3.1. Step 1: Obtain a set of data vectors that represent plausible
realizations of the nuisance effect

Assume that at fixed target (e.g.∼cosmological) parameters θθθT = (θ1
T , θ

2
T , ..., θ

Nt
T ), the range

of plausible realisations of a nuisance effect is well represented by a set of N different resulting
data vectors

ξ̂̂ξ̂ξi = ξξξ[θθθT , nuisance realization i], for i = 1, ..., N ; (7.3)

These could, e.g.∼be based on a model for the nuisance effect with different nuisance pa-
rameter values. Alternatively, the ξ̂̂ξ̂ξi could result from a set of simulations with different
assumptions that produce realizations of the nuisance effect (e.g.∼for the impact of baryonic
physics on the power spectrum as measures in a variety of hydrodynamical simulations, see
for example [186]). In some cases, direct measurement of the nuisance effect may be used,
and e.g.∼a bootstrapping of those measurements could yield a set of possible realizations.

For the sake of concreteness, let us assume that the nuisance realizations are given in terms
of particular nuisance parameter combinations θθθi

N = (θ1,i
N , θ2,i

N , ..., θNn,i
N ) of the considered

nuisance model:

ξ̂̂ξ̂ξi = ξ̂̂ξ̂ξ[θθθT , θθθ
i
N ] . (7.4)

In principle, it is possible to consider more than one realization of the target parameters as
well (e.g., more than one cosmology for the same nuisance parametrization). We will discuss
this extra layer of complexity that can be added to the pipeline in Sec. 7.5, but as a first
pass, we will limit ourselves to a fixed target parameter vector for simplicity.

For the following tests to be meaningful, we require these data vectors to contain no noise,
or noise that is negligible compared to the covariance considered in the likelihood analysis.
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7.3.2. Step 2: Devise a family of nuisance priors among which to
choose the ITEM priors

We will choose our ITEM prior among the space of nuisance priors, i.e.∼the space of the
parameters that describe a family of considered prior distributions Π(θθθN ). The details of that
family may depend on one’s preferred functional form of the priors, on consistency relations
that are a priori know, and on practical considerations like limits in the computational power
that is available to find the ITEM prior. As mentioned before, the distinction between target
and nuisance is also subjective, and these labels may change between iterations of the pipeline
(i.e., a prior on a target parameter can be fixed for one analysis, but it can be studied and
optimized as a nuisance in another).

For example, one may search for an ITEM prior among the set of uniform prior distributions
for one particular nuisance parameter, Π(θN ) ∼ U(a, b). In that case, we propose to sample
uniformly and independently over both a and b, subject to the consistency relation that a < b.

In practice, we can e.g. sample n lower bounds (ai ∈ [a1, a2, ..., an]) and m upper bounds
(bj ∈ [b1, b2, ..., bm]). Besides requiring that ai < bj for all tested pairs one could demanded
that other requirements are met, e.g. a minimum and maximum value for the prior width
bj − ai, or that some nuisance parameter values are contained within the considered priors.
When combining all these configurations, we will have a total of M ≤ n · m possible priors
with different widths and midpoints.

If we consider uniform priors for a set of nuisance parameters θl
N , with l = 1, . . . , Nn, then

we would obtain sets of Ml possible priors per nuisance parameter:

Πk(θl
N ) = U(θl

N |al
k, b

l
k), for k = 1, ...,Ml . (7.5)

The total number of considered priors would then be

M =
Nn∏
l=1

Ml . (7.6)

For any given measurement of the data ξ̂̂ξ̂ξ this will result in M different posteriors on the full
set of parameters θθθ.

Pj(θθθ|ξ̂̂ξ̂ξ) ∝ L(ξ̂̂ξ̂ξ|θθθ)Πj(θθθN ) for j = 1, ...,M . (7.7)

In the next steps of our pipeline we will generates such sets of posteriors for different data
vector realisations in order to determine, which priors meet the criteria we outlined in Sec.
7.2. To obtain all these posteriors, instead of running a large number of Monte-Carlo-Markov-
Chains (MCMCs), one can use importance sampling [187, 188] performed over the posterior
that was derived from the widest prior (i.e., the prior on the nuisance that encloses all the
other priors). While we have focused here on a family of uniform priors, it is straightforward
to generalise our pipeline to e.g. Gaussian prior distributions, or other functional forms that
are commonly used in cosmological analyses.
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7.3.3. Step 3: Determine the ITEM prior

Our goal is to find a prior on the nuisance parameters that returns robust, valid, reliable,
and precise posteriors for the target parameters. To determine this ITEM prior, we apply
a number of filters to the considered family of prior distributions. Among them are two
optional binary selections – setting an upper limit for the bias and a lower limit for the
coverage fraction of the posterior (cf. below for precise definitions of bias and coverage). The
third is an optimization that minimizes the total error, i.e.∼the combination of statistical
uncertainty and bias, on the target parameters. In Fig. 7.3 we synthesize the process in a
diagram.

Figure 7.3: Flowchart of the procedure to obtain the ITEM prior. First, a
set of M candidate prior distributions should be proposed over the nuisance
parameters. Then, the first criterion will filter some of the priors by requiring
that the bias on the target parameters in a simulated likelihood analysis
be less than x∗ times its posterior’s statistical uncertainty (see Eq. 7.9).
Secondly, we will require that the remaining priors result in a minimum
coverage y∗ (see Eq. 7.11) over the target quantities. This leads to fewer
candidate priors, which are refined finally by minimizing the error they
produce on the estimation of the target parameters, including statistical
and systematic error contributions (see Eq. 7.14). The optimal one is what
we call the ITEM prior.

• Criterion 1: Maximum bias of point estimate

Constraints on target parameters are commonly reported as confidence intervals around
a point estimate for those parameters. For example, that point estimate may be the
maximum of the marginalized posterior (MAP) or its projected mean. To devise a mea-
sure for the bias of this point estimate w.r.t. the true values of the target parameters let
us return to the exercise that was already mentioned in Sec. 7.2: Consider a noise-free
realisation ξ of a data vector, and a data vector model ξm(θθθ), which we assume to model
the data perfectly, if the correct parameters θθθ are known. Now use this model to run
an MCMC around ξ, as if the latter was a noisy measurement of the data. If the model
ξm(θθθ) is non-linear in the nuisance parameters, then e.g. the MAP of the marginalised
posterior for the target parameters obtained from that MCMC can be biased w.r.t. to
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the true parameters (even though ξ is noiseless and the model ξm(θθθ) is assumed to be
perfect).

In Sec. 7.3.1 we have obtained a set of realisations ξ̂̂ξ̂ξi (i = 1, . . . , N) of the data,
corresponding to N different realisations of the considered nuisance effects. We will
perform the above exercise for each of those data vectors and derive point estimates
θ̂θθ

i

T from each of the resulting chains. The difference between these estimates and the
true target parameters underlying our data vectors will then serve as a measure for
how much projection effects (or prior volume effects) bias our inference procedure. For
now, we leave the exact point estimator used in this procedure unspecified. But in our
example of Sec. 7.4 we will assume the θ̂θθ

i

T to be the MAPs of the marginalised posteriors.

If θθθT are the true target parameters and θ̂θθ
i

T are the point estimate from nuisance realisa-
tion i, then we will use the Mahalanobis distance [139, 140] to quantify the bias between
the two, i.e.

xi =
√

(θθθT − θ̂θθ
i

T )⊤C−1
i (θθθT − θ̂θθ

i

T ) . (7.8)

Here C−1
i is the inverse covariance matrix of the parameter posterior, which we directly

estimate from the MCMC for nuisance realisation i.

The value of xi measures how much the point estimate deviates from the truth compared
to the overall width (and orientation) of the posterior constraints. The first filter we
apply to our family of potential nuisance priors is now to demand that all xi be smaller
than a maximum threshold, which we denote with x∗. This means that we calculate xi

for each realization of the nuisance. We then determine the maximum

x = max
i

{xi}, (7.9)

of those Mahalanobis distances, and all candidate priors that do not meet the require-
ment

x ≤ x∗, (7.10)

will be excluded. In other words, we demand that the prior results in less than x∗ bias
for any realization of the nuisance with respect to the target parameter uncertainties.
That should leave us with a total of M ′ ≤ M candidate priors. The ratio M ′/M will
depend on the considered threshold quantity x∗. In the DES year-3 2-point function
analyses, this threshold was chosen as 0.3 for the joint, marginalised posterior of S8 and
Ωm [171], and we will choose the same value for most of our example case in Sec. 7.4.

• Criterion 2: Minimum frequentist coverage
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In our quest to find the ITEM prior we now apply a second filter to the candidate priors
which is concerned with the coverage probability of the 1-σ confidence region of the mar-
ginalised posterior distribution of the target parameters (i.e. the smallest sub-volume
of target parameter space that still encloses about 68 % of posterior). This coverage
probability measures, how often the true target parameters would be found within that
confidence region in repeated trials. In a Bayesian analysis it can in general not be ex-
pected that this coverage matches the confidence level of the considered region (in our
case 68 %). This has e.g. be extensively discussed by [176].

To measure the coverage probability, we proceed as follows. For each noise-less nuisance
realisation of the data, ξi, we generate a number of Nnoise noisy realisations by adding
multi-variate Gaussian noise according to our fiducial data covariance. For each of these
realisation we generate an MCMC and determine the 1-σ confidence region. The fraction
yi of these Nnoise confidence regions that contain the true target parameters is then an
estimate for the coverage probability that is to be expected, if the nuisance model i was
realised. In a spirit similar to our previous filter we consider the minimum coverage per
prior,

y = min
i

{yi} , (7.11)

and then require that

y ≥ y∗, (7.12)

in order for a candidate nuisance prior to pass our coverage criterion. In other words,
we will demand that all priors result in a coverage of at least y∗, regardless of which
nuisance realisation is actual. That should leave us with a total of M ′′ ≤ M ′ candidate
priors.

Note that part of any mismatch between coverage probability and confidence level will be
caused by the target parameter bias that we have considered in the previous subsection.
We would like to factor out this contribution by taking into account the bias as a source
of systematic uncertainty in the width of our target parameter posteriors. To motivate a
practical way to do so, let us assume that our target posteriors are multivariate Gaussian
distributions. In repeated trials, the Mahalanobis distance (cf. Eq. 7.8) between the
point estimates and the true parameters would follow a non-central χ2 distribution,
with an offset given by the target parameter bias xi (i.e. the bias measured also in the
Mahalanobis distance). The widths of our posteriors do not know about this systematic
error, and correspondingly the 68 % confidence regions will have a coverage of < 68 %.
To counteract this, we can simply raise the confidence level used to derive those regions.
To calculate the required confidence level, we proceed ass follows:

– calculate, for which value of χ2 the cumulative distribution function of a non-central
χ2-distribution, centered at xi, takes a value of 68 % ,

– at that value, calculate the value of cumulative distribution function of a central
χ2-distribution (with the same number of degrees of freedom). This will generally
be higher than 68 %.
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It is this higher confidence level which we use to calculate the 1-σ confidence region for
the noisy realisations of our data vectors ξi and to measure the coverage probabilities
yi. For a bias of xi = 0.3 and two degrees of freedom, we would e.g. require a confiden-
ce level of 69.6 % to calculate a confidence region for which we would expect a 68 %.
This expectation is however only valid if the target posteriors were indeed Gaussian;
non-Gaussianity of the posteriors can lead to mismatches between confidence level and
coverage probability beyond this mere biasing of the marginalised posterior.

• Criterion 3: Minimizing the posterior volume

The candidate priors that have passed our previous two filters exhibit our definitions
of unbiasedness, reliability and robustness. The ITEM prior will now be the one of the
remaining priors that yields the smallest posterior uncertainty on the target parameters.
This final selection step is necessary because it is in fact easier to meet our previous
criteria with wide posteriors that result from unconstrained nuisance priors.

We quantify the target parameter uncertainty by the volume that the 1-σ confidence
contours (68 %) enclose. As done in Sec. 7.3.3, we considered the bias and calculate an
expanded volume using a larger confidence region. This allows us to optimize both, the
random and systematic error. For a Gaussian posterior, the volume would be given in
terms of the parameter covariance matrix C as (cf. [189] for a derivation)

V (N) = πdet(C)1/2 , (7.13)

and for simplicity we will use that formula also for our (potentially non-Gaussian) pos-
teriors.

Let Vi(Nt) be the volume enclosed by the bias-expanded 1-σ ellipsoid of the ith data
vector in the posterior distributions that were obtained in Sec. 7.3.3. Then, for each
candidate prior, we propose to consider the mean of these volumes41, over all data
vectors,

V (Nt) =
∑N

i=1 Vi(Nt)
N

. (7.14)

We will then choose the prior that has the minimum V (Nt) at the ITEM prior. This
would be the nuisance prior distribution that will return, statistically, the combined
most unbiased, precise, and certain estimates in simulations for the target parameters.

7.4. ITEM Priors in the Density Split Statistics
In this section, we examine the determination and performance of the ITEM prior FOR a
higher-order statistic of the galaxy-matter density called Density Splits Statistics.

41 Other quantities, such as the maximum volume calculated per data vector, could be used alternatively.
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7.4.1. Density Splits Statistics

We test our ITEM prior methodology on the galaxy-matter connection model employed for
the Density Split Statistics (DSS) [1, 2], a framework that studies counts-in-cells (CiC) in
combination with lensing-around-cells. DSS obtains data vectors that are compressed versions
of the full joint PDF of matter density and galaxy count. For an overview of DSS, see Appx.
C.

7.4.2. Modeling of the nuisance quantities in DSS

In this subsection, we demonstrate the necessity of proposing alternatives to the prior mo-
deling of the nuisance of the DSS due to the presence of prior volume effects.

Our first analysis is limited to the five quantities listed in Table 7.1. The cosmological pa-
rameters are Ωm

42 and σ8
43. The parameters describing the galaxy-matter connection are

the linear bias b44, and the stochasticity parameters α0 and α1. These two last parameters
were introduced in the DSS modeling to have a higher-order statistic on the galaxy-matter
connection and do not have physically motivated prior distributions.

Table 7.1: The parameters used in the simulated likelihood analyses for
the α Model are presented here. We list their original prior ranges (using
U to denote a uniform prior), and the fiducial values used to simulate the
synthetic data for the two cases of stochasticity. The priors and the nuisance
realizations are chosen to be either the same or the derived results from [1, 2].
For the ITEM prior derivation, the cosmological parameters would be the
target ones, while the stochasticity parameters would be the nuisance ones.
Ωm, S8 and b will have fixed priors and unchanged values for the parameter
vectors.

DSS Original Parameter Vector 1 Parameter Vector 2
Prior Distribution Non-Stochasticity Buzzard Stochasticity

Target Parameters
Cosmological Parameters
Ωm U [0.1,0.9] 0.286 0.286
σ8 U [0.2,1.6] 0.82 0.82
Nuisance Parameters
Tracer Galaxies
b U [0.8,2.5] 1.54 1.54

Stochasticity
α0 U [0.1,3.0] 1.0 1.26
α1 U [-1.0,4.0] 0.0 0.29

42 The fractional energy density of matter, obtained when the total density of matter/energy needed for the
universe to be spatially flat, is normalized. It includes baryonic and dark matter.

43 The present-day linear theory root-mean-square amplitude of relative matter density fluctuations in spheres
of radius 8 h−1 Mpc.

44 The square root of the ratio of the galaxy and matter auto-correlation functions.
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As a derived parameter, we also consider S8
45:

S8 = σ8

√
Ωm/0.3 . (7.15)

Both Ωm and S8 will be the target parameters, while α0 and α1 are the nuisance parameters
whose priors we optimize. The prior on b will remain unchanged.

A fundamental ingredient to the ITEM prior method is using different realizations of the nui-
sance. We limit our analysis by considering only two realizations of the stochasticity listed
in the third and fourth column of Table 7.1.

The first one corresponds to a configuration of the Universe in which there is no stochasticity
in the distribution of galaxies, a common assumption on sufficiently large scales. That is
equivalent to set α0 = 1.0 and α1 = 0.0. These two values recover the Poissonian distribution
from Eq. C.5. We will call this the Non-Stochasticity case, and it will be the one usually
shown in figures in this paper unless otherwise indicated.

The second one will be the best-fit shot-noise parameters found by [2] on redMaGiC mock
catalogs [193], constructed given realistic DES Y1-like survey simulations called Buzzard-v1.1
[194]. These Buzzard mock galaxy catalogs46 have been used extensively in DES analyses
[196]. The values for the stochasticity parameters are α0 = 1.26 and α1 = 0.29. We will call
this the Buzzard Stochasticity case.

These two realizations should be considered a simple test case for the methodology. This
work emphasizes that the resulting ITEM prior is limited because of the few considered nui-
sance realizations. We believe a wide range of plausible stochasticities configurations could be
taken into account. In a companion paper, we will add diverse realizations of the shot-noise,
motivated by different halo occupation distribution (HOD) simulations (Britt et al. in prep.).

The priors presented on the second column of Table 7.1 are the ones used originally in the
DSS papers [1, 2]. We ran four MCMC chains, from which two were simulated fixing the sto-
chasticity parameters, while the remaining considered them free parameters with the original
broad priors. In Fig. 7.4 we find that in the cases in which we considered free stochasticity
parameters, the posterior returns more significant uncertainties over the cosmological para-
meters Ωm and S8.

To test the errors of our simulated likelihood analysis, we consider a 2D Gaussian distribu-
tion centered at the 2D marginalized MAP and with the covariance matrix from the original
chains (this would give us a point estimator and confidence contours of the target parame-
ters). The estimators return considerable biases for the two shot-noise configurations: Fig.
7.5 illustrates this for each chain with their original large priors. Both cases are highly biased:
in the case in which there is no stochasticity, the bias reaches a value of 0.66σ2D, more than
two times the DES threshold of 0.3σ2D.

45 The parameter S8 has been widely used these last years because it breaks degeneracies that Ωm with
σ8. It has also been manifested that there is a recent tension between the estimations of those quantities
measured in the late universe [44, 135, 190] and the CMB [146, 191, 192].

46 For a recent 2.0 version of the Buzzard see [195].
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In a second analysis we assumed the r Model from the DSS (detailed at Appx. C) as basis,
yet still use the α parameters detailed at Table 7.1 to generate the studied data vectors. With
this approach, we study how much information the ITEM prior can recover when there is
explicitly an intrinsic systematic.

This model is more straightforward than the α Model because it only considers one correla-
tion parameter r for the effect of stochasticity. One interesting aspect of this test thus is that
it checks whether the conditions demanded by the ITEM formalism can be met with such a
model that did not produce the analyzed data.

The original DSS prior used on r follows an uniform distribution: Π(r) ∼ U [0.0, 1.0]. Mathe-
matically, we would require r ≤ 1, but this sharp upper bound will intrinsically result in a
prior volume effect. In Fig. 7.6 it is possible to appreciate the projection effect generated by
this asymmetry of the prior. We explore the ITEM priors obtained in these situations in the
following subsections.
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Figure 7.6: Marginalized (Ωm, S8, r) constraints posteriors from simulated
DSS r Model using a non-stochastic parameter vector from the α Model
marked with the dashed line. The peak on the 1D projection posterior on r
indicates a bias that is explained on the sharp upper bound from the prior
on r.
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7.4.3. Obtaining the ITEM priors on the Density Splits Statistics
In this subsection, we detail the procedure we followed to obtain the ITEM priors for two
nuisance models: first, a simple approach considering the α Model and a second, when the
data is still simulated following the α Model but is analyzed assuming the r Model.

ITEM prior for the α Model

In DSS, the nuisance parameters α0 and α1 were assigned to uniform priors. We make the
same choice here and only vary the limits of these flat priors. We note that one could also
vary, e.g., the mean and width of a Gaussian prior.

We start by sampling the candidate priors as done in the example at Sec. 7.3.2. Then, we
narrow the bounds of the flat priors of the stochasticity parameters due to an excess of prior
volume with respect to the posteriors in the simulations for both nuisance realizations (i.e.,
the final posteriors on the stochasticity parameters were concentrated in a reduced fraction
of the original prior distributions because they were not informative enough). Finally, we
shrink the extremes (min[α0], max[α0], min[α1] and max[α1]) with a step of 0.1 units per cut
until they reach the closest rounded fiducial value of the data vector.

min[α0] ∈ {0.1, 0.2, ..., 0.9}
max[α0] ∈ {1.4, 1.5, ..., 2.7}

min[α1] ∈ {−1.0,−0.9, ...,−0.1}
max[α1] ∈ {0.3, 0.4, ..., 3.0}

This approach gives a total of 35,280 possible priors when combining each different bound.
We then apply an importance sampling to the original posteriors and follow the three steps
described in Sec. 7.3 to obtain the ITEM priors:

We first estimate, for each candidate prior, the maximum Mahalanobis distance x from Eq.
7.9 for the different posteriors. We decide to set the threshold to 0.3σ2D for the first filter of
the ITEM priors, following DES standards. There were, in total, 231 priors that had a bias
of less than 0.3σ2D (∼ 0.65 % of the original set).

Secondly, we demand the total error confidence region (the one re-scaled by the bias in Sec.
7.3.3) to enclose the true parameter values on the 2D contour plot of Ωm and S8 at least 68
times when simulating 100 noisy independent realizations per nuisance configuration. These
noisy realizations were simulated by adding multivariate Gaussian noise with the covariance
matrix from [1] to the noiseless data vectors of our two nuisance scenarios.

To save computational power, instead of running a total of 200 MCMC chains, we opt to
compute an importance sampling, assuming that a Gaussian sampling distribution would fit
approximate the actual shape. This allows us to derive approximations of the desired conto-
urs and obtain the coverage per prior to sample specifically the 1-σ zone of interest.
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Per noisy realization, we draw an elliptical cloud of points centered at the optimized MAP
estimate of the noisy data vector and use a 5 − σ extended covariance matrix of the original
noiseless MCMC to determine the area. The distribution of the points is obtained using an
inverse sampling of 210 points from a 5-dimensional unit cube following a Sobol sequence
[197] to be enough spread in the space of parameters. This is statistically more advantageous
than using a Gaussian cloud of points centered in the same MAP because in the case the
sampled distribution is highly non-Gaussian, the Sobol cloud will support with more certain
these cases.

We calculate the corresponding importance weights representing the underlying distribution
for each of these points and obtain the 1 − σ extended regions (i.e., considering the bias) of
confidence corresponding to all the proposed priors. We integrate the discrete weights until
they reach the minimum probability. From these, a total of 111 out of the 231 candidate
priors return a minimum total error coverage, for both nuisance realizations, over the exten-
ded 68 % confidence region.

To complement the previous result, we explore the frequentist probability distribution repre-
sentation of the coverage and the expected Bayesian counterpart. If both families of proba-
bilities match, the coverage Xcoverage will follow a Binomial distribution Xcoverage ∼ Bin(n, p),
where n is the number of noisy realizations and p = 0.68. The uncertainty would be given by
the inherently noisy nature of the considered noisy realizations.

We explore other minimum values for the coverage threshold keeping inside the a confidence
zone of Bin(100, 0.68). The mean and standard deviation would be µ = np = 68 and σ =√
np(1 − p) ≈ 4.665 respectively. From the cumulative distribution function of Xcoverage, we

will have that: P (Xcoverage ≥ µ−2σ) ≈ 0.986, which is consistent with the one obtained from
the data, illustrated in Table 7.2.

Table 7.2: Difference between the expected and the resulting fraction of
priors that had a minimum required coverage x for a extended confidence
region of 68 % for the α model.

x P (Xcoverage ≥ x) Final result Difference
µ 0.547 0.484 0.063

µ− σ 0.879 0.852 0.027
µ− 2σ 0.986 0.939 0.047

The three different possible minimum thresholds are consistent with the expected values if
there were a match between both probabilities, meaning that the priors are congruous with
the corresponding levels. We determine to set the threshold to 68 − 2σ, filtering the number
of candidate priors from 231 to 228. We also checked the ITEM priors derived with other
thresholds (68 and 68−σ), and we did not find substantial differences. We then proceed with
the final step: the minimization of the error from Eq. 7.14 to obtain the corresponding ITEM
prior.

The resulting ITEM priors for α0 and α1 are listed in the second row of Table 7.3. We first
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note that the prior volumes of both parameters were reduced considerably. In particular, α1
was narrowed to a final width of 24 % times its original value. The new configurations return
substantially less biased estimated and competitive coverages for both nuisance realizations.
They both had a bias of 0.16σ2D and 0.06σ2D for the target parameters as shown in Fig. 7.7,
respectively.

Table 7.3: The original and ITEM priors ranges for the α Model for the ca-
se in which there is a 0.3σ2D maximum required bias and the minimum
total error coverage is 68 % − 2σ. The bias and error coverage quanti-
ties from both nuisance realizations are illustrated for each prior as non-
stochasticity/buzzard stochasticity cases respectively. In the final three co-
lumns, we included the average error of the final estimate for Ωm and S8
from both nuisance realizations and the mean volume of the confidence ellip-
se extended with the systematic bias from Eq. 7.14.

Parameter Prior Prior Width Bias [σ2D] Extended Coverage σΩm σS8 V

Original Priors
α0 U [0.1, 3.0] 2.9 0.42 / 0.66 63 %/72 % 0.052 0.068 0.027
α1 U [-1.0, 4.0] 5.0
ITEM Prior
α0 U [0.3, 1.5] 1.2 0.16 / 0.06 62 %/68 % 0.036 0.037 0.009
α1 U [-0.1, 1.1] 1.2

0.22 0.24 0.26 0.28 0.30
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0.86

S
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0.42σ2D

Non Stochasticity (α Model)

0.42σ2D Original Prior [0.1, 3.0], [-1.0, 4.0]

0.16σ2D New Prior [0.1, 1.5], [-0.1, 1.2]

Fiducial Value

Original MAP

Optimized Prior MAP

(a) Simulated likelihood analysis for the data
vector without shot-noise (α0 = 1.0, α1 = 0.0).

0.22 0.24 0.26 0.28 0.30
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0.78
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0.84
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S
8 0.06σ2D

0.66σ2D

Buzzard Stochasticity (α Model)

0.66σ2D Original Prior [0.1, 3.0], [-1.0, 4.0]

0.06σ2D New Prior [0.1, 1.5], [-0.1, 1.2]

Fiducial Value

Original MAP

Optimized Prior MAP

(b) Simulated likelihood analysis for the data
vector with buzzard stochasticity (α0 = 1.26,
α1 = 0.29).

Figure 7.7: Parameter biases of the data vectors with original and ITEM
priors: the red and blue ellipses show wide contours, while the yellow and
green ones the 0.3σ2D required threshold for the 2D marginalized cons-
traints. Both are centered in their respective 2D projected MAP. Due to
parameter volume effects, the marginalized constraints from the baseline
prior analysis are not centered on the input cosmology. The dashed hori-
zontal and vertical lines indicate the fiducial parameter values.

In the last columns of Table 7.3, we appreciate the average standard deviations and the total
error of the target parameters being reduced. This can also be interpreted from the narrowed
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marginalized distributions shown in Fig. 7.8. In particular, we find that the marginalized
1D distributions of Ωm and S8 obtained with the ITEM prior are less correlated than the
original ones. The general constraint works for both 1D and 2D marginalized cases. These
results fall into what we would expect from an ITEM prior because it is built to accomplish
the requirements. Later in this section, in Table 7.5 and in Fig. 7.10, we present the impact
of the ITEM priors on the cosmological constraint from DES Y1 real data.
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Figure 7.8: The 1D and 2D marginalized posterior distributions for the si-
mulated likelihood chains from the α Model from DSS with the ITEM prior.
In the top and bottom panel we illustrate the non-stochasticity (α0 = 1.0,
α1 = 0.0) and the buzzard stochasticity (α0 = 1.26, α1 = 0.29) realizations
of the nuisance respectively. The larger contours correspond to the poste-
rior simulated using the original DSS α Model priors over the stochasticity
parameters α0 and α1. In contrast, the narrow contours illustrate the per-
formance of the ITEM prior methodology for a threshold of 0.3σ2D and a
minimum total error coverage of 68 %.

ITEM prior for r Model with a different basis model

In this subsection, we investigate how the ITEM priors can help us in cases where our assu-
med nuisance models are not the generators of the data. We used the same two-parameter
vectors (the non-stochasticity and the Buzzard stochasticity) from the previous analysis, lis-
ted in Table 7.1. But instead, we now use the r Model to obtain posteriors. The parameters
considered were Ωm, σ8, b and r. We use the same prior distribution over r as in the DSS
papers: Π(r) ∼ U [0.0, 1.0]. We then obtained two posteriors (the non-stochasticity and the
Buzzard realization of the nuisance).

As before, we sampled different priors for r, but in this case, we only change the lower bound
min[r] and keep max[r] fixed to 1.0:

min[r] ∈ {0.000, 0.005, ..., 0.990}
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Table 7.4: The original and best fit prior ranges for r Model for the case
in which there is a 0.5σ2D maximum required bias and the minimum total
error coverage is 68 %−2σ. As in Table 7.3, the bias and coverage quantities
from both nuisance realizations are separated with a backslash.

Parameter Prior Prior Width Bias[σ2D] Extended Coverage σΩm σS8 V

Original Prior
r U [0.00, 1.00] 1.00 0.33 / 0.55 62 %/63 % 0.038 0.059 0.017
ITEM Prior
r U [0.75, 1.00] 0.25 0.47 / 0.46 61 %/60 % 0.035 0.045 0.013

We repeat the three steps of the ITEM prior pipeline:

We first reduce the number of candidate priors from 199 to 45 by setting a threshold equi-
valent of 0.5σ2D (∼ 22.6 % of the original set). The threshold is larger than the one used in
the α Model analysis because the sharp upper bound of the prior on r leads to systematic
biases with any prior (see Fig. 7.6). We also ensure that the total error coverage passes the
minimum threshold with this higher value.

We secondly calculate the total error coverage of the noisy realizations required over Ωm-S8
to be more than 68 % − 2σ for the cosmological target parameters when simulating 200 noisy
realizations as done for the α model. This second filter reduces the number of candidate
priors from 45 to 39 (∼ 87 % of selection). The original prior had a minimum coverage of 62
for a 68 % confidence region.

We finally determine the ITEM prior by optimizing the volume V from Eq. 7.14. In Table 7.4
we summarize the resulting prior, with the corresponding biases, coverage, and mean errors.
We observe an equilibrium of the biases of the final ITEM prior relative to the original one.
This means that the ITEM prior can return similar biases for both nuisance realizations.
The reduction of the prior width ensures a decrease in the total uncertainty over the target
cosmological parameters in the last three columns. We can also visualize this in the pro-
jected posteriors of Ωm and S8 from Fig. 7.9. There is an uncertainty reduction in the 2D
marginalized posterior, specifically a decrease of the higher values of Ωm and S8.
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Figure 7.9: The resulting 1D and 2D marginalized posterior distributions
of the two configuration data vectors from α Model, but analyzed using r
Model as reference.

To further illustrate this method’s scopes, we use the obtained ITEM priors (on both α and
r models) on real DESY1 posterior data.

In Fig. 7.10 and Table 7.5 we reproduce Fig. 10 and Table II from [1] incorporating the
constraints obtained in this work with the ITEM priors.

The constraints on the matter density did not only converge in almost an identical 1D pos-
terior distribution (Ωm = 0.25+0.03

−0.02), but also led to a more consistent result with the case
in which there is only a linear bias (top left panel from Fig. 7.10). The constraints on the
amplitude of late-time structure formation kept the observed inconsistency (σ8 = 0.94+0.06

−0.04
and σ8 = 0.84+0.04

−0.05 for the r and α models respectively) due to a reduction of the difference
on the central value estimate, but also a major concentration.

These stronger priors reduce the cosmological uncertainty. In addition, the ITEM constraints
of the yellow and green contours in Fig. 7.10 are closer to the black region. However, it is not
feasible yet to discriminate between bias models with these results because their behavior is
symmetric w.r.t. the simple linear bias. That arises because we used the same data vectors
to derive the ITEM priors. Again, external information, e.g., additional nuisance realizations
included in the ITEM framework, will allow us to assess between shot-noise parametrizations.

The changes in the stochasticity parameters also deserve space for interpretation. For the r
model we find that for a prior that constraints the likelihood analysis to r ∈ U [0.75, 1.00], the
mean estimate does not change. There is only an rise of the lower bound (r = 0.77+0.10

−0.13 for
the original analysis to r = 0.77+0.10

−0.02 for the ITEM prior), which implies that the deviation
of r from unity is still at the 2σ level.

For the α model we find a determinant preference toward lower stochasticity values after
applying the ITEM priors. For α0 we considered two nuisance configurations ([1.00, 1.26])
which lead to an ITEM prior α0 ∈ U [0.3, 1.5] that decrease the excess of volume for high-
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Figure 7.10: The 1D and 2D forecasr constraints for the final cosmological
chains obtained from the DSS analysis of DESY1 data using the linearly
biased tracers with Poissonian noise in black, the r model in blue and α
models with red color. The smaller contours illustrate how the cosmological
inference would change if we apply an importance sampling using the ITEM
priors for the stochasticity parameters. With yellow, we show the constraint
of the using the ITEM prior with 0.3σ2D threshold over the α Model, whi-
le with green, we show the constraint using the ITEM prior with 0.5σ2D

threshold over the r Model. The original constraints are plotted in Fig. 10
from [1].

stochasticity values (α0 = 1.5+0.4
−0.6 for the original analysis to α0 = 0.9+0.4

−0.4 for the ITEM
prior). The ITEM prior α1 ∈ U [−0.1, 1.1] obtained from the original nuisance realizations
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([0.00, 0.29]) decrease the excess of volume for matter-dependent stochasticity (α1 = 1.7+1.1
−0.9

for the original analysis to α1 = 1.1+0.1
−0.5 for the ITEM prior). For α0 the estimate is agrees

with the case of non-stochasticity (α0 = 1.0 and α1 = 0.0), while for α1, there is a deviation
at the 2σ level, which is consistent with a super-Poissonian scatter in galaxy count at fixed
matter density and with the results obtained for the r model.

Table 7.5: DESY1 likelihood 1D constraints with the original and ITEM
priors respectively for both shot-noise models.

Model S8 Ωm σ8 b r α0 α1

r Original 0.90+0.11
−0.08 0.26+0.04

−0.03 0.97+0.07
−0.06 1.45+0.10

−0.11 0.77+0.10
−0.13 – –

r ITEM Prior 0.88+0.04
−0.06 0.25+0.03

−0.02 0.94+0.06
−0.04 1.49+0.10

−0.09 0.77+0.10
−0.02 – –

α Original 0.78+0.05
−0.04 0.28+0.05

−0.04 0.80+0.06
−0.07 1.75+0.22

−0.26 – 1.5+0.4
−0.6 1.7+1.1

−0.9

α ITEM Prior 0.76+0.03
−0.03 0.25+0.03

−0.02 0.84+0.04
−0.05 1.75+0.17

−0.19 – 0.9+0.4
−0.4 1.1+0.1

−0.5

7.5. Discussions and conclusion
This work presents the ITEM prior pipeline, and its first application in the shot-noise models
from the density split statistics. We show that it is possible to overcome projection effects
using a series of simulated likelihood analyses.

It is common to set a flat prior to parameters without exploring if there are projection effects
due to non-linear relationships between the variables. This situation is even more complicated
when higher dimensions are considered because connections can be more complex and less
evident. Bayesian analysis allows us to perform simulation likelihood tests to propose a prior
that, when facing the real data analysis, has some prior motivation.

With the increment of cosmological data and, therefore, systematic effects, we propose a
method to make statistically significant statements about the parameters of interest when
considering different nuisance realizations. The pipeline sets an equilibrium between the un-
derfitting and overestimation of the nuisance parameters in a model. This is done by requiring
that the biases on the target parameters are lower than a certain fraction of their errors and,
in the presence of noise, we still cover the original fiducial parameter values a certain amount
of times in some desired confidence region.

We test the ITEM prior pipeline using two different nuisance models from the DSS frame-
work: the extended Poissonian shot-noise model with galaxy stochasticity and a log-normal
model for the joint PDF with a correlation term. We simulate two realistic DESY1 data vec-
tors: one accounts for a case with no stochasticity between galaxy counts and the underlying
matter density contrast. Another one considers specific stochasticity motivated by previous
studies.

For these realizations, we were able to reduce the biases and the cosmological uncertainties
by choosing from a list of candidate priors the one that optimized both random and sys-
tematic errors under the ITEM prior pipeline. In a future work (Britt et al. in prep.), we
will consider other configurations of the shot-noise motivated by different halo occupation
distribution (HOD) simulations and study the impact on more realistic scenarios.
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We also studied the case in which the basic model is not the same as the one used to generate
the data. In this case, the nuisance models are inherently biased due to a non-linear mapping
between the models and a non-equivalent prior space. This second case returns more signi-
ficant discrepancies between the actual parameters and the estimated quantities regarding
their errors. This disparity required us to be less demanding when setting the threshold to
find the ITEM prior.

One of the advantages of the ITEM priors is that they are numerically adjustable. This
flexibility allows us to tune thresholds to values we consider more consistent and propose
different nuisance realizations and prior configurations. We aimed to explore a different ap-
proach to assigning prior distributions to nuisance parameters in the absence of a physical
or mathematical motivation to constrain them. We determined priors on two models using
our proposal.

It is important to recall that we present a pipeline whose results depend on the fiducial values
we assign to the parameter of interests. The use of ITEM priors with real data should also
consider different realizations of those values. However, in cosmology, a few different configu-
rations should be enough in the presence of smooth fields, like the ones we find in the space
of the cosmological parameters.

There are still some queries we should address in the future research, which include:
• How accurate is our Gaussian assumption on the Sobol sampling used to determine the

1 − σ confidence regions in the noisy realizations: the most precise constraints on the
contours can be obtained when performing the actual MCMC chains. By the time of
writing this thesis, alternative methods to save computational costs have been proposed
since the beginning of this work. We hope, e.g., to derive faster results using the alter-
native method presented by [198] and publish them in a final article shortly (Ried et al.
in prep.).

• How simulations on the halo occupation distribution can provide complementary nuisan-
ce realizations of the shot-noise according to a wider variety of plausible stochasticities
that could be present in the universe. This is currently being explored in a companion
article (Britt et al. in prep.).

• How do the considered fiducial values for the target parameters impact the determination
of the ITEM prior. This supplement would imply an extra layer of complexity of the
ITEM prior derivation that can be systematically added to the presented framework.

Given the extensive use of Bayesian statistical inference, we expect the ITEM priors to help
overcome the prior volume effect when there is a required nuisance modeling, but not limiting
itself only to the area of observational cosmology.
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Chapter 8

Conclusions

Through this work, we extensively examined the cosmological and statistical background to
address one of the difficulties that the era of precision cosmology is now facing. Fig. 7.1 can
be understood as the starting point to our motivation: how do we include nuisance parame-
ters in our cosmological models without falling into assigning non-informative priors that,
consequently, lead to projection effects?

We started answering this question concerning why we need nuisance parameters in cosmo-
logy in the first place. Once the basics of cosmology are presented in Chapter 2, we focus on
the cosmic large-scale structure formation and its observation in Chapter 3. In the latter, we
dig through the general theory of cosmic structure until we express the necessity of including
nuisance parameters to account for higher-order statistics. In particular, we focused on the
galaxy bias and possible extensions that account for astrophysical effects of smaller scales. We
concentrate on the two shot-noise models from the DSS framework, which had the remaining
task of exploring informative priors on their galaxy tracer quantities.

We likewise decided to answer the question from a statistical perspective, addressing if it
is possible to define a framework that systematically determines prior distributions to the
nuisance parameters. We asked ourselves which would be the properties we expect the mar-
ginalized posteriors of the cosmological parameters to have. These include unbiasedness,
reliability, robustness and precision. Consequently, it was necessary to review the basics of
probabilities and statistical inference as done in Chapters 4 and 5, respectively. We tho-
roughly examined the theory of point and interval estimators, including the different classes
and existing approaches. We also discussed their selection and which possible errors we can
encounter when performing a likelihood analysis.

Once we specified the desired properties, we explored how to condense those statistical desires
into a feasible pipeline that would help us to overcome the prior volume effect. One of the
main challenges was concentrating our Bayesian and frequentist thoughts on a series of check-
points for the nuisance priors. As the prior volume effect will lead us to shifted marginalized
distributions, the coverage fractions will not be consistent with the associated confidence
level. Therefore, our requirements included reducing the biases and demanding consistent co-
verages w.r.t. some fiducial configuration. This strategy could allow us to trust our Bayesian
analyses further because we will recover the input cosmology with some statistical certainty
in, e.g., an ensemble of universes.

110



The statistical training acquired with these discussions yielded the ITEM priors methodology
presented in Chapter 7. We elaborated a systematic framework to determine nuisance prior
distributions under an alternative method to concentrate prior information of realizations of
the nuisance. As mentioned, we are still studying if our alternative way of deriving confi-
dence contours is robust with respect to the MCMC sampling standard procedure. Despite
that technicality, we forecasted some possible scenarios with ITEM priors that decrease the
uncertainties on the cosmological parameters. We expect to publish the final results shortly.

Finally, we invite the scientific community to explore this method and study its implications in
other fields. We hope this derivation enhances statistical inferences and decreases systematic
errors in critical tensions like the ones we currently face in many areas of physics.
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Chapter 9

Glossary

• Astronomic distances:

An arcminute (’) is a unit of angular measurement equal to 1/60 of one degree. An
arcsecond (”) is 1/60 of an arcminute.

A astronomical unit (AU) is the mean distance between the Sun and the Earth. It is
equivalent to ∼ 1.49 · 108 km.

A light-year (ly) represents the distance light will travel in a straight line for a year. It
is equivalent to ∼ 9.46 · 1012 km.

A parsec (pc) is the distance in which one astronomical unit subtends an angle of one
arcsecond. It is equivalent to 3.26 light-years.

• Fourier formalism:

Let f(x) be a function such that x ∈ R3. The Fourier transform of this function will be:

f̃(k) =
∫
f(x)e−ix·kd3x,

with inverse transform:

f(x) = 1
(2π)3

∫
f̃(k)eix·kd3k.

• General Relativity notation:

– Symbols like xµ represent a contra-variant 4-vector.
– Greek letters indices: 0, 1, 2, 3
– Latin indices: 1, 2, 3
– Repeated indices implies sum (Einstein’s sum convention).
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– The kronecker symbol δβ
α is the identity matrix.

• Constants:

– Velocity of light: c
– Newtonian constant of gravitation: G

• Natural unit system:

Throughout this work we the natural unit system:

c = G = ℏ = kB = 1

unless stated otherwise.

• Dirac delta function:

The Dirac delta function is defined as zero everywhere except at the some point x′,
where it is infinite:

δD(x− x′) =

+∞, x = x′

0, x ̸= x′ .

One of the main identities is that:
∫ ∞

−∞
δ(x− x′)dx = 1.

• The expectation value ⟨·⟩ will be an ensemble average over all possible states of a system.

• The natural logarithm will be given by the log(·) symbol.
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Annexed A

Implementing the Sobol’s
quasi-random sampling

To sample the ith point of a Sobol sequence, we need to choose a polynomial of degree ni in
the space of Z2: xni + a1,ix

ni−1 + ...+ ani−1,ix+ 1, where the coefficients a1,...,ni−1,i are either
0 or 1 [199].

We define the recurrence relation:

mj,i = 2a1,imj−1,i ⊕ 22a2,imj−2,i ⊕ ...⊕ 2ni−1ani−1,imj−(ni−1),i ⊕ 2nimj−ni,i ⊕mj−ni,i, (A.1)

where the initial values m1,i, ...,mni,i are chosen such that each mj,i, 1 ≤ j ≤ ni, is odd and
less than 2j and ⊕ is the bit-by-bit exclusive-or operator. A consequence of this is that mj,i

will be positive integers. The direction numbers v1,i, v2,i, ... are defined by:

vj,i = mj,i

2j
. (A.2)

The jth component of the kth point in a Sobol sequence is given by:

vj,k = i1v1,k ⊕ i2v2,k ⊕ ... (A.3)

where ij is the jth digit from the right when i is written in binary i = (...i3i2i1)2.
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Annexed B

Extensions of the tank problem

B.1. Cases with a larger sample
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Estimator 1: Twice the median

N = 245

N̂ = 2Xmedian

(a) Twice the median
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Estimator 2: Mean + 2 Standard Deviations

N = 245

N̂ = Xmean + 2σ

(b) Mean + 2 Standard Deviations
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Estimator 3: Maximum value + 0.25 Standard deviation

N = 245

N̂ = Xmax + σ
4

(c) Maximum value + 0.25 Standard devia-
tion

200 220 240 260 280 300
Estimated number of tanks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
ty

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

F
re

q
u

en
cy

Estimator 4: Minimum value + Maximum value
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N̂ = Xmin +Xmax

(d) Maximum value + Minimum value
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(e) 1.1 times de Maximum value
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Figure B.1: Histograms of the frequentist estimators N̂ for N = 245 and
50 random sampled serial numbers of 50 observations, doubling the serial
numbers per observation w.r.t the case presented in Fig. 6.1.
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If we increase the size of the sample from to 50 in each of the observations from the frequen-
tist approach, the described behaviors from Sec. 6.2 hold as shown in Fig. B.1.

For the unbiased estimator (Eq. 6.6), as we increase the observed numbers, (n + 1)/n ∼ 1,
and therefore, N̂ ∼ Xmax − 1. We would also have a decrease of the variance V(N̂) ∼ 0,
independently of N . We corroborate that performance for the case in which we double the
samples from 25 to 50 in Fig. B.2.
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Figure B.2: Histogram of the unbiased frequentist estimator from Eq. 6.6
for the same quantities as the listed in Fig. B.1.

B.2. Other prior distributions for the Bayesian ap-
proach

It is also possible to derive the posterior for the case of a geometric prior:

P (N) = (1 − p)Np, (B.1)

where p accounts for the probability of success in each experiment. This would give us the
following posterior:

P(N |x) =

(
x
n

)
(1 − p)N−x(

N
n

)
2F1[1, 1 + x− n; 1 + x; 1 − p]

if N = x, x+1, x+2, ..., and 0 otherwise. (B.2)

The main challenge with this is that we need to assume even more information: a value for
p, which is not clear and will affect the estimates on N . The same problem arises when the
negative binomial prior distribution is considered:
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P (N) =
(
N + r − 1
r − 1

)
(1 − p)Npr, (B.3)

where we would have another quantity, r which represents the number of failures until the
experiment is stopped. This would give us the following posterior:

P(N |x) =

(
N+r−1

r−1

)(
x
n

)
(1 − p)N−x(

N
n

)(
N+r−1

r−1

)
3F2[1, 1 + x− n, x+ r; 1 + x, 1 + x; 1 − p]

if N = x, x+ 1, x+ 2, ...

(B.4)
and 0 otherwise.

The respective expected values will, therefore, depend on more information which is not
evident how to summary.
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Annexed C

Summary of the DSS and its
Stochasticity models

The spatial distribution of galaxies and matter can be described by their respective density
contrast fields

δ(x) = ρ(x) − ρ

ρ
, (C.1)

where ρ(x) is the density at position x and ρ is the mean density, of either matter or galaxies,
indicated in the following by subscripts m and g, respectively.

The distribution of matter δm is not directly observed, but it is traced by galaxies δg distri-
buted in the sky. On large scales, the relation between galaxy density contrast and matter
density contrast can be approximated as a constant multiplicative factor b between the two,

δg ≈ bδm, (C.2)

which is called linear galaxy bias.

We start by considering a certain distribution of galaxies in a fixed range around a redshift
zf , that we will call foreground galaxy population. The 2D density field of the position of
galaxies is obtained by applying a circular top-hat filter: at redshift zf , we would count how
many of the galaxies relies inside of it. With this information, the sky can be divided in
quintiles of spatial number density. Next, we add another set of galaxies, but extended and
located at a higher redshift zb (zf < zb) that we will call background galaxy population.

The light emitted by the background galaxies will be subject to gravitational shear by pas-
sing through the tidal gravitional field of the foreground. The effect will be stronger in zones
where the density of foreground galaxies is higher. To evaluate this, we measure the tangen-
tial shear that the background sources will suffer in each quintile of foreground density. The
observed lensed galaxies will trace the distribution and number density of the source galaxies.
This information will be synthesised in a data vector of both the distribution of foreground
galaxies and the lensing signals.

If galaxy counts and the matter density were perfectly correlated, then a split of the sky by
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galaxy density would be identical to a split by the matter density. In a realistic scenario,
however, the connection of these maps would be subjected to astrophysical and systematic
effects. The one we focus on is the shot-noise of galaxies, which appears at the two point
statistics and as a probe of higher-order statistics. Adding this effect to the linear bias model
from Eq. C.2 constitute a powerful probe of cosmology, because it accounts for the skewness
of the density field and the connection of galaxies and matter.

It is often assumed that the distribution of galaxy counts Ng traces a smooth field δg following
a Poisson shot-noise:

P (Ng|δm) = Poisson[Ng, (1 + bδm)N g], (C.3)

where N g is the mean count of galaxies in a random such region.

This means that the variance of Ng for fixed δg satisfies

Var[Ng|δg]
⟨Ng|δg⟩

= 1. (C.4)

When assuming a deterministic relationship between δm and δg, a consequence is that the
variance of Ng for fixed δm is also

Var[Ng|δm]
⟨Ng|δm⟩

= 1. (C.5)

In the DSS, a nonlinear biasing relationship between δg and δm is considered by adding
degrees of freedom to Eq. C.5 to account for the effect of stochasticity. This quantity is one
of the main ingredients of the DSS method, and in this context it could arise from either a
dependence on higher powers of δm, physical random processes in galaxy formation, or effects
from halo exclusion.

C.1. α Model: Parametric model for non-Poissonianity
As a way of generalizing the galaxy-matter connection, it is possible to add two stochasticity
parameters, α0 and α1, to obtain an equation for a generalized Poisson distribution,

Var[Ng|δm]
⟨Ng|δm⟩

= α0 + α1δm, (C.6)

in which, for α0 = 1.0 and α1 = 0.0, we recover Eq. C.5.

The original prior distributions for the α parameters assigned in the original work from [1, 2]
are described at Table 7.1. The only actual constraint in stochasticity is that α0 > 0, but
the boundary 0.1 < α0 was motivated with numerical arguments. See appendix E from [2]
for more details on the derivation for the other boundaries.
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C.2. r Model: correlation r ̸= 1etween galaxy density
and matter density

The second approach used in DSS is the introduction of a free parameter to the baseline linear
bias model: a correlation coefficient r ̸= 1 between the random fields δg and δm (described in
section IV. of [2]). This new degree of freedom captures a possible stochasticity. For r = 1
the random fields δg and δm would be perfectly correlated.

The covariance of δg and δm can be parametrized by the correlation coefficient:

r = ⟨δgδm⟩√
⟨δ2

g⟩⟨δ2
m⟩
. (C.7)

This can lead to a δm-dependence of the ratio in Eq. C.5 and in the general model for the
galaxy count:

Var[Ng] = Ng +Ng
2
b2Var[δm], (C.8)

Cov[Ng, δm] = NgbrVar[δm]. (C.9)

Theoretically, the possible values that r could take are −1 ≤ r ≤ 1. The given theory pre-
dicts a positive correlation value, so the original priors for r followed a uniform distribution
Π(r) ∼ U [0.0,1.0].
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