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RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
CON MENCIÓN MATEMÁTICAS APLICADAS
MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL MATEMÁTICO
POR: JAVIER IGNACIO CASTRO MEDINA
FECHA: 2022
PROF. GUÍA: CLAUDIO MUÑOZ CERÓN

DESCRIPCIÓN DE ECUACIONES LOCALES Y NO-LOCALES USANDO TÉCNICAS
DE DEEP LEARNING

En este trabajo se aborda la ecuación de Kolmororov mediante técnicas de aprendizaje profundo,
en esencia se muestran dos resultados de interés independiente. En efecto, estudiamos la aplicación
de las técnicas actuales de redes neuronales en la aproximación de soluciones EDPs no locales y
en espacios de dimensión infinita. Con esto, generalizamos el trabajo de Hure, Pham y Warin en
[HPW19] en dos direcciones particulares. Comenzamos introduciendo la ecuación de Kolmogorov
lineal en Rd y su relación con las ecuaciones estocásticas. Destacamos la importancia de esta
relación para el desarrollo de esquemas estocásticos para resolver ecuaciones diferenciales par-
ciales (EDPs). Dado que nuestro marco es general, requerimos de las recientemente desarrolladas
DeepOnets [LMK21] para describir en detalle el procedimiento de aproximación. Estos objetos
actúan como una generalización de las Redes Neuronales a un contexto de dimensión infinita.
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DESCRIPTION OF LOCAL AND NON-LOCAL EQUATIONS USING DEEP LEARNING
TECHNIQUES

This work deals with the Kolmororov equation using deep learning techniques, in essentially two
results of independent interest. Indeed, we study the application of current techniques of artificial
neural networks to the approximation of solutions to the considered PDE in the non-local and the
infinite dimensional settings. As a byproduct, we also generalize the work of Hure, Pham and Warin
in [HPW19] in two particular directions. We start by introducing the linear Kolmogorov equation
in Rd and its relation with random evolution equations. We remark the importance of this relation
for the development of stochastic schemes to solve Partial Differential Equations (PDEs). Since
our framework is general, we require the recently developed DeepOnets architectures [LMK21] to
describe in detail the approximation procedure. These objects acts as a generalization of Neural
Networks to an infinite-dimensional framework.
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Quiero agradecer a mi mamá y a mi papá por todos los sacrificios realizados para que yo, mi
hermana y mi hermano pudieramos estudiar y desarrollarnos libremente como personas sin que
nunca nos faltara nada. Fueron y son un ejemplo de perseverancia, siempre estaré en deuda por
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Chapter 1

Introduction

1.1 The Kolmogorov equation

The main subject of study of this thesis is the representation via deep learning techniques of solu-
tions of Kolmogorov Equations. Let d ∈ N with d ≥ 1 and T > 0, a linear backward Kolmogorov
equation can be written as{

∂tu(t, x) + L[u](t, x) = 0, (t, x) ∈ [0, T ]× Rd,

u(T, x) = ϕ(x), x ∈ Rd.
(1.1)

Here u : [0, T ] × Rd → R is the unknown of the problem, ϕ : Rd → R is a terminal condition and
∇ represents the Fréchet derivative with respect to x ∈ Rd. Finally, L is a second order parabolic
operator defined for certain functions f : [0, T ] × Rd → R. A. N. Kolmogorov introduced these
equations in his foundational work [Kol38] by considering a stochastic model in which we do not
know the exact state of a system but we rather know the probability that the system takes any of
the possible states. This is, given a random evolution (X t,x

s )s∈[t,T ] suitable to equation (1.1) and
starting with X t,x

t = x, it can be proved that the function u(t, x) = E
(
ϕ(X t,x

T )
)

has the required
regularity and is a solution of (1.1). The resulting theory allows to prove existence, uniqueness and
properties of the solution of the parabolic equation by means of probabilistic ideas.

In this manuscript we are concerned with a slightly general framework which consist in adding
a non-linear perturbation to equation (1.1); we consider a function ψ : [0, T ]× Rd × R× Rd → R
and the target PDE transforms into{

∂tu(t, x) + L[u](t, x) + ψ(t, x, u(t, x),∇u(t, x)) = 0, (t, x) ∈ [0, T ]× Rd,

u(T, x) = ϕ(x), x ∈ Rd.
(1.2)

We shall also study the non-local version of this equation where the parabolic operator L addi-
tionally contains an integral operator as well as ψ having an extra integral dependence on u. The
variable x will be taken in a Hilbert space in a second statement.

This thesis is mainly composed of two articles:
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• J. C. Deep Learning Schemes For Parabolic Nonlocal Integro-Differential Equations , Preprint
2021, see https://arxiv.org/abs/2103.15008.

• J. C. The Kolmogorov Infinite Dimensional Equation in a Hilbert space Via Deep Learning
Methods, Preprint 2022, see https://arxiv.org/abs/2206.06451.

These two articles contain the main details presented in this thesis; however, here we have chosen
to expand and explain most of the standard ideas that are simply assumed in those papers. Our
main results are Theorems 4.7 and 5.9. The first one deals with the nonlocal Euler scheme for
the Kolmogorov model, the second one considers the Hilbert-valued case.

1.1.1 Brief historical review

Equation (1.2) can be recast as a nonlinear parabolic model, generalizing the classical Heat equa-
tion. The mathematical theory in this case is well-known, see e.g. [Eva10, Section 2.3]. Of great
importance to the present work is the well known relation between probabilities and parabolic mod-
els, As we stated before, A. N. Kolmogorov was the first (of many) to notice these relations in his
foundational work [Kol38], the resulting theory allows to prove existence, uniqueness and proper-
ties of solutions to parabolic models, known as Kolmogorov equations, by means of probabilistic
ideas. These models, also known as diffusion equations, has many applications in Finance and
other areas such as physics, biology, chemistry and economics. The success in applications came
from the fact that these equations are describing the general phenomena of particles interacting
under the influence of random forces (see e.g. [Cra16]).

However, if we replace Rd by a separable Hilbert space H , (1.2) becomes a highly complicated
model that requires sophisticated treatment and generalizations for the classical existence and reg-
ularity theories. Infinite dimensional Kolmogorov equation was first investigated by Yu. Daleckij
[Dal66] and L. Gross [Gro67]. In the context of PDEs it is common to define weaker notion of
solutions. In this particular framework, mild solutions of (1.9) are treated in [FT02]. A function
u : [0, T ]×H → R is called a mild solution to (1.9) if it satisfies u ∈ C0,1([0, T ]×H), there exists
C > 0 and p ∈ N such that |⟨∇u(t, x), h⟩H | ≤ C ∥h∥H (1 + ∥x∥pH) for all t ∈ [0, T ] and x, h ∈ H
and the following weaker formulation of (1.9) is satisfied

u(t, x) = −
∫ T

t

E
(
ψ(s,X t,x

s , u(s,X t,x
s ), G(s,X t,x

s )∗∇u(s,X t,x
s ))

)
ds+ Eϕ(X t,x

s ),

where (X t,x
s )s∈[t,T ] is the solution to a stochastic evolution equation starting with X t,x

t = x. In
[FT02] the authors prove that there exists a unique mild solution to (1.2) which is related to the
stochastic equations through u(t, x) = Y t,x

t , where Y t,x is part of the solution to the stochastic
equation in [t, x] starting with X t,x

t = x. As you may see in Section 5.1, for our framework we
need a strong solution of (1.2) in order to be able to use Itô lemma. The existence of said solution
can be seen as a strong assumption in our model, nevertheless, see [BHJ21, Lemma 2.2] for an
existence result.

The mathematics presented here is strongly inspired by the article [HPW19] written by Hure,
Pham and Warin, where they rely on the stochastic representation of (1.2) and the use of neural
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networks to approximate a solution of the PDE and its spatial gradient. Due to the importance of
this work to us, we provide a detailed enough description of the scheme presented in [HPW19] and
certain ideas of generalization; Consider a partition π of [0, T ]. By taking advantage of the relations
Yt = u(t,Xt) and Zt = σT (t,Xt)∇u(t,Xt) showed in [PP90] and the Itô formula, mentioned
authors proposed a pair of neural networks Ut(·; θ) and Zt(·; θ) for every t ∈ π such that

Ut(X
π
t ; θ) ≈ Yt and Zt(X

π
t ; θ) ≈ Zt, t ∈ π.

Where Xπ is a suitable Euler approximation of the diffusion X and θ represents the neural network
parameters (see [HPW19, Section 3]). Then, by imposing that the neural network representation
satisfies the Ito formula with a cost incurred by the approximation, an iterative backward induction
is produced such that at each time step a loss function representing the cost is minimized. This
process generates optimal neural networks for every time step t ∈ π. The backward form of the al-
gorithm emerges from the knowledge of the solution at the final time, also known as terminal condi-
tion. It is important to mention that Hure et al. extend this approach to treat variational inequalities.
In Chaper 4 we study the non-local form of (1.2). This modification introduces complications such
as the need of a general diffusion which admits discontinuities (see Chapter 2 for details). This type
of processes are known in the literature as Lévy processes and are suitable to obtain the desire rep-
resentation as in the local case (see [PP90]). Examples of non-local terms includes integrals with
respect to a Levy measure λ, only finite Levy measures are taking under consideration in Chapter
4, this restriction leaves out interesting operators such as fractional laplacian. Other complication
that we encounter setting is the need of a third neural network to approximate the non-local term. A
different approach to treat the non-locality is considered by Lukas Gonon and Christoph Schwab in
[GS21a, GS21b], they prove that NNs of a particular structure are able to approximate expectation
of a certain type of functions defined on the space of stochastic processes with jumps, which can
express certain PDEs solutions. In their proof, L. Gonon and C. Schwab provide dimension-explicit
bounds evidencing that their scheme is free from the curse of dimensionality (mentioned below).
These articles are a generalization of the method presented previously in [HJK+20, HJKN20], for
more details see the references there in.

Now we describe the two frameworks worked in this thesis.

1.1.2 Finite-dimensional non-local framework

Let d ≥ 1 and T > 0. For the non-local case we consider the following target Partial Integral
Differential Equation (PIDE),{

Lu(t, x) + f(t, x, u(t, x), σ(x)∇u(t, x), I[u](t, x)) = 0, (t, x) ∈ [0, T ]× Rd,

u(T, x) = g(x), x ∈ Rd.
(1.3)

Here, u = u(t, x) is the unknown of the problem. The operator L above is of parabolic nonlocal
type, and is defined, for u ∈ C1,2([0, T ]× Rd), as follows:

Lu(t, x) = ∂tu(t, x) +∇u(t, x) · b(x) + 1

2
Trace(σ(x)σ(x)TD2u(t, x))

+

∫
Rd

[u(t, x+ β(x, y))− u(t, x)−∇u(t, x) · β(x, y)]λ(dy),
(1.4)
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where λ is a finite measure on Rd, equipped with its Borel σ-algebra, and a Lévy measure as well
which means that

λ({0}) = 0 and
∫
Rd

(1 ∧ |y|2)λ(dy) <∞.

On the other hand, the non-local, integro-differential operator I is defined as

I[u](t, x) =
∫
Rd

(
u(t, x+ β(x, y))− u(t, x)

)
λ(dy). (1.5)

Together with PIDE (1.3), consider the following stochastic system,

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
Rd

β(Xs− , y)µ(ds, dy), (1.6)

Yt = g(XT ) +

∫ T

t

f(Θs)ds−
∫ T

t

Zs · dWs −
∫ T

t

∫
Rd

Us(y)µ(ds, dy), (1.7)

Γt =

∫
Rd

Ut(y)λ(dy), (1.8)

where Θs = (s,Xs, Ys, Zs,Γs) for 0 ≤ s ≤ T and x ∈ Rd. Note that (Zt)0≤t≤T is a vector valued
process. Functions f, σ, β, b and g, satisfies the standard Lipschitz conditions in order to ensure the
existence and uniqueness of solutions to the stochastic equations (see Assumptions 2.10 below).

1.1.3 Hilbert local framework

LetH,V be separable Hilbert spaces with inner products ⟨·, ·⟩H and ⟨·, ·⟩V , and T > 0. We consider
the infinite dimensional Kolmogorov model{

∂tu(t, x) + L[u](t, x) + ψ
(
t, x, u(t, x), B∗(t, x)∇u(t, x)

)
= 0, (t, x) ∈ [0, T ]×H,

u(T, x) = ϕ(x), x ∈ H.
(1.9)

Here u : [0, T ] × H → R is the unknown of the problem, B∗(t, ·) is the formal adjoint of a suit-
able mapping B, ϕ : H → R is a terminal condition and ψ represents the non-linear character
of the problem. ∇ represents the spatial gradient in H . Finally, the operator L is defined for
f ∈ C1,2([0, T ]×H) and (t, x) ∈ [0, T ]×H , as follows:

L[f ](t, x) = ⟨∇f(t, x), Ax+ F (t, x)⟩H +
1

2
tr
(
∇2f(t, x)(B(t, x)Q1/2)(B(t, x)Q1/2)∗

)
. (1.10)

The precise details on these terms are fixed below in Assumptions 2.12. As well as in the finite
dimensional case, we have to consider a stochastic system. In this setting we have a decoupled
system of stochastic partial differential equations (SPDEs) for (Xt, Yt, Zt)t∈[0,T ],

Xt = x+

∫ t

0

(AXs + F (s,Xs))ds+

∫ t

0

B(s,Xs)dWs, (1.11)

Yt = ϕ(XT ) +

∫ T

t

ψ(s,Xs, Ys, Zs)ds−
∫ T

t

⟨Zs, ·⟩0dWs, (1.12)

4



where ⟨·, ·⟩0 is a suitable L based inner product to be defined below.

Forward Backward stochastic systems such as (1.6)-(1.7) were first studied by Pardoux and
Peng in the finite dimensional local case [PP90], whereas Barles, Buckdahn and Pardoux [BBP97]
generalized it to the case where also a non continuous process is considered. For the stochastic
equation posed on infinite dimensional spaces (1.11)-(1.12), we mention [FT02] as an important
article in the subject, see also the book [DPZ92] and [AGM+16].

1.2 Deep Learning

The huge amount of available data, due to social media, astronomical observatories and even
Wikipedia, together with the progress of computational power, have allowed us to train more and
more efficient Machine Learning (ML) algorithms and consider data that years ago were not pos-
sible to analyze. Deep Learning is a part of supervised ML algorithms and it concerns with the
problem of approximating an unknown nonlinear function f : X → Y , where X represents the
set of possibles inputs and Y the outputs, for example, Y could be a finite set of classes and
therefore f has a classification task. In order to perform a DL algorithm we need a set of obser-
vations D = {(x, f(x)) : x ∈ A} of the phenomenon under consideration; in the literature this set
is also known as training set. Here, A is a finite subset of X . The next step is to define a family
of candidates

{
f θ : θ ∈ Ξ

}
where we can search for a good approximation of f , with Ξ ⊂ Rκ

for some κ ∈ N. Finally, how good the approximation is, will be measured by a cost function
L(·;D) : Ξ → R and therefore, intuitively, we take f θ∗ as the chosen approximation where θ∗

minimizes L(·;D) over Ξ.

1.2.1 Brief review of the literature

Neural Networks (NNs) are not recent. In [MP43] and [Ros58], published in 1943 and 1958 re-
spectively, the authors introduce the concept of NN but far from the actual definition. Through the
years, the use of NNs as a way to approximate functions, started to gain importance for its well per-
formance in applications. A rigorous justification of this property was proven in [Hor91, LLPS93],
using the Stone-Weierstrass theorem. These papers state that under suitable conditions on the ap-
proximated functions, measured in some mathematical terms, NNs have a remarkable performance.
See [WR17, ATY+19] for a review on the origin and state of the art survey of DL, respectively.

The complexity and generality of the problem that DL is trying to solve, makes it useful to a large
variety of disciplines in science. In astronomy, the large amount of data recollected by observatories
makes it a suitable place to implement ML, see [Bar19] for a review of ML in astronomy and
[AKF+17] for a concrete use of Convolutional Neural Networks (CNN) to classify light curves. See
[Bou19] for a review of ML on experimental high energy physics and [TMC+18] for an application
of NN on quantum state tomography. In [MBS17], the authors use DL to find patterns in fashion
and style trends by space and time using data from Instagram. In [Alq19] the authors train a CNN
to classify brain tumors into Glioma, Meningioma, and Pituitary Tumor reaching high levels of
accuracy. See [LKB+17] for a survey on the use of DL in medical science where CNN are the most
common type of DL structure.
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In recent developments, finite dimensional Deep Learning (DL) has proven itself to be an efficient
tool to solve nonlinear problems such as the approximation of PDEs solutions (see [ATY+19]). In
particular, in high dimensions d ≫ 1, typical methods such as finite difference or finite elements
suffer from the fact that the complexity of the problem grows exponentially on d, problem known in
the literature as curse of dimensionality. Without being exhaustive, we present some of the current
developments in this direction. First of all, Monte Carlo algorithms are an important and widely
used approach to the resolution of the dimension problem. This can be done by means of the classi-
cal Feynman-Kac representation that allows us to write the solution of a linear PDE as an expected
value, and then approximate the high dimensional integrals with an average over simulations of
random variables. On the other hand, Multilevel Picard method (MLP) is another approach and
consists on interpreting the stochastic representation of the solution to a semilinear parabolic (or
elliptic) PDE as a fixed point equation. Then, by using Picard iterations together with Monte Carlo
methods for the computation of integrals, one is able to approximate the solution to the PDE, see
[BHH+20, HJK+20] for fundamental advances in this direction. As another option, the so-called
Deep Galerkin method (DGM) is another DL approach used to solve quasilinear parabolic PDEs
of the form L(u) = 0 plus boundary and initial conditions. The cost function in this framework
is defined in an intuitive way, it consists of the differences between the approximated solution û
evaluated at the initial time and spatial boundary, with the true initial and boundary conditions plus
L(û). These quantities are captured by an L2-type norm, which in high dimensions is minimized
using Stochastic Gradient Descent (SGD) method. See [SS18] for the development of the DGM
and [MNdH20] for an application. The article [EHJ17] by E, Han and Jentzen, is considered one
of the first attempts to solve this issue by means of Deep Learning (DL) techniques. In said paper,
the authors proposed an algorithm for solving parabolic PDEs by reformulating the problem as
a stochastic control problem. This connection also come from the Feynman-Kac representation,
proving once more that stochastic representations are a key tool in the area. More recent develop-
ments in this area can be found in Han-Jentzen-E [HJE18] and Beck-E-Jentzen [BEJ19].

The problem to generalize neural networks to an infinite dimensional framework has been inves-
tigated in dynamical systems and PDEs. In our case, following [HPW19, Cas21, Cas22] given
the partition π = {t}t∈π of [0, T ], we want to approximate the solution u(t, ·) to (1.9) and a fixed
function of its gradient ∇u(t, ·) for t ∈ π, which in general are nonlinear operators from H to
some other separable real Hilbert space (W, ⟨·, ·⟩W , ∥·∥W ). Thus, we need a general Deep Learn-
ing framework which considers the approximation of operators F : H → W by a neural network
F θ : H → W , where θ is a finite dimensional parameter. Sandberg [San91] defined a set of infi-
nite dimensional mappings parameterized by finite dimensional parameters, providing a universal
approximation theorem for those mappings. Other important article in the development of infinite
dimensional neural networks and an key reference for the theory presented here, is [CC95] by Chen
and Chen. They deal with the approximation of mappings defined on a compact subset of C(K)
with values in R and C(K), where K is a compact subset of a finite dimensional space. A key
lemma ([CC95, Lemma 7]) presented in there says that, for a compact set V in C(K), one can con-
sider a transformation T and define T (V ) = {Tu : u ∈ V } such that every function in V is close
to its transformation. One can compare these ideas with the approximation of measurable func-
tions with simple functions in integral-type distance and continuous functions with polynomials in
uniform norm. The transformed set is constituted by, in some sense, simpler functions that can be
easily described by finite dimensional neural networks which allows them to create a proper archi-
tecture. Our Lemma 3.15 is the counterpart of [CC95, Lemma 7] for a compact set V in a Hilbert
space. Here, the considered transformation is the projection into a finite-dimensional subspace.

6



Chen and Chen also demonstrate that their architectures approximate any continuous mapping in
uniform norm. More recently Lu, Jin and Karniadakis, based on [CC95], introduced an architecture
called DeepONets [LJP+21], these are mappings between Banach spaces of continuous functions.
DeepONets rely on representing the input function as its evaluation on a fixed finite set of points.
Then, via an activation function, one takes the finite dimensional information to an element of the
set of continuous functions.

It is common in machine learning and, more generally, in some statistics frameworks, to consider
mean square error due to its convexity properties. Here this framework emerges naturally because
we make use of stochastic processes, which will be essentially square integrable random variables.
The quantity used to measure the error incurred in our scheme will depend on how good our ar-
chitectures are able to approximate elements of L2(H,µ;W ). Here, µ is the law of an H-valued
random variable X (this random variable will be related to a stochastic process). Then, it is natural
to consider the L2-distance or mean square error

E
∥∥F (X)− F θ(X)

∥∥2
W

=

∫
H

∥∥F (x)− F θ(x)
∥∥2
W
µ(dx),

where F is some mapping and F θ the proposed architecture.

1.3 Thesis Layout

In Chapter 2 we provide the mathematical framework for the development of our results. A review
on stochastic processes, Hilbert spaces and Linear operators is also presented.

Chapter 3 serves as a mathematical guide for Deep Learning techniques. We begin by defining
Neural Networks as functions mapping the Euclidean spaces and parameterized by a set of finite
dimensional parameters. This simple but key setting is useful when one generalizes to infinite
dimensional problems. Indeed, our second PDE problem is posed on a Hilbert space, where we
work with the so called DeepOnets, the generalized version of finite dimensional Neural Networks.
These very recent objects were introduced by Lanthaler et al. in [LMK21], and consist on maps be-
tween Banach spaces of continuous functions. Taking advantage of the structure of Hilbert spaces,
we define Deep-H-Onets and derive their key properties. We also prove density properties for
Deep-H-Onets.

In Chapters 4 and 5 our main goal is to prove the main results for the two Kolmogorov models con-
sidered in this thesis. In the first one we extend Hure, Pham and Warin to the nonlocal case, where
jump Lévy processes are needed to fully describe the stochastic setting. We prove consistence of
suitable Euler schemes based on approximative neural networks. Finally, Chapter 5 is fully devoted
to the Hilbert-posed case, and in this case Deep-H-Onets are used to prove consistence of the pro-
posed Euler scheme. The difficulties here are in terms of the Hilbert valued stochastic setting, as
well as well-posedness results in the considered framework.
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Chapter 2

Mathematical Preliminaries

2.1 Notation

We cannot continue without introducing some notation needed along the manuscript.

Finite dimension. For any m ∈ N, Rm represents the finite dimensional Euclidean space with
elements x = (x1, ..., xm) endowed with the usual norm ∥x∥2Rm =

∑m
i=1 |xi|2. We will simply

write ∥x∥ when no confusion can arise. Note that for scalars a ∈ R we also denote its norm as
|a| =

√
a2. For x, y ∈ Rm their scalar product is denoted as x · y =

∑m
i=1 xiyi. Finally, along this

paper we will use several times that for x1, ..., xk ∈ R, the following bound holds,

(x1 + · · ·+ xk)
2 ≤ k(x21 + · · ·+ x2k). (2.1)

Along this manuscript, C > 0 will denote a constant that may change from one line to another,
specially in the proofs. Also, the notation a ≲ b means that there exists C > 0 such that a ≤ Cb.

Banach spaces. Consider now two real Banach spaces E,F . Given a subset A ⊂ E we denote
as ⟨A⟩ the set containing all the finite linear combination of elements in A. Separable real Hilbert
spaces will be denoted as (H, ⟨·, ·⟩H , ∥·∥H). We denote by Cm(E;F ) the set of all m times contin-
uously differentiable functions from E to F and Cm(E) when F = R.

Measures. We also denote by B(E) the Borel σ-algebra on E. For a general measure space
(E,H, ν) and p ≥ 1, Lp(E,H, ν;F ) represents the standard Lebesgue space of all p-integrable
functions from E to F , with its Borel σ-algebra, and endowed with the norm

∥f∥pLp(E,H,ν;F ) =

∫
E

∥f(x)∥pF ν(dx).

We write Lp(E,H, ν) when F = R and Lp(E, ν) when F = R and H is the Borel σ-algebra
B(E). See the “Appendix A” section of [WL15] for a definition of the above Bochner integral and
its properties. We also write ∫

E

f(s)ds =


∫
E
f1(s)ds

...∫
E
fm(s)ds

 ,
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whenever f : E → Rm with f = (f1, ..., fm).

Stochastic processes. We refer to [DPZ92] for a detailed development of Stochastic Calculus in
infinite dimensions. Here we will need the following definitions.

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space. Given a E-valued random vari-
able X : Ω → E, we write EX = E(X) and EtX = Et(X) = E(X|Ft) for any t ≥ 0. We
denote by σ(X) the σ-algebra generated by X and by Ps the predictable σ-algebra of [0, s] × Ω.
Let us denote by S 2 = S 2

T (E) the space of E-valued predictable processes (Xt)t∈[0,T ] endowed

with the norm ∥X∥S 2 = E

(
sup

t∈[0,T ]

∥Xt∥2E

)
. We denote M 2

T (E) ⊂ S 2
T (E) the space of E-valued

continuous, square integrable martingales (Mt)t∈[0,T ] such that M0 = 0 endowed with the norm
∥M∥M 2 = ∥M∥S 2 . Note that if X ∈ L2(Ω,F ,P;E), then Mt = E(X|Ft) defines a martingale in
M 2

T (E). We also have that if M is a continuous martingale, then Doob’s inequality holds,

E

(
sup

t∈[0,T ]

∥Mt∥2E

)
≤ 4 sup

t∈[0,T ]

(
E ∥Mt∥2E

)
.

If no confusion arises, we will drop the parentheses (·) in each E.

2.2 Hilbert spaces and Linear Operators

Our main result of Chapter 5 is posed in a Hilbert space framework. Here we set up notation and
terminology about these spaces, for a detailed presentation on these spaces we refer to [Bre11,
Section 5]. We will also define a couple of spaces of bounded linear operators. In what follows
consider a separable real Hilbert space H doted of a scalar product ⟨·, ·⟩H and a corresponding
norm ∥·∥H , this will be denoted as (H, ⟨·, ·⟩H , ∥·∥H). Along this manuscript, the norm and scalar
product of a Hilbert space H will always contains the subscript ·H . It will be important for the
proof of our main results the existence of an orthonormal basis in H defined below.

Definition 2.1 A collection (en)n∈N in H is said to be an orthonormal basis of H if it satisfies the
following properties:

• ∥en∥H = 1 and ⟨en, em⟩H = 0 for all n ̸= m,

• the linear space spanned by {en}n∈N is dense in H .

The following results are well-known in the theory of Hilbert spaces, they will be used along
this manuscript.

Theorem 2.2 Let (en)n∈N be a orthonormal basis in H . Then for every x ∈ H , we have

x =
∞∑
n=1

⟨x, en⟩Hen
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and

∥x∥2H =
∞∑
n=1

|⟨x, en⟩H |2.

PROOF. See [Bre11, Corollary 5.10]

Theorem 2.3 Every separable Hilbert space has an orthonormal basis.

PROOF. See [Bre11, Theorem 5.11]

Let now (V, ⟨·, ·⟩V , ∥·∥V ) be another separable Hilbert space with an orthonormal basis (fk)k∈N.
We denote byL(V,H) the normed vector space of continuous linear operators T : V → H endowed
with the usual operator norm ∥T∥L(V,H) = sup

∥v∥V =1

∥Tv∥H , we write L(V ) = L(V, V ). Consider

now the following particular linear operators spaces.

Definition 2.4 An operator Q ∈ L(V ) is called a trace class operator if

Tr(Q) =
∞∑
k=1

⟨Qfk, fk⟩V <∞ (2.2)

Remark 2.5 Note that in finite dimension, expression (2.2) coincide with the well-known trace of
a matrix A ∈ Rd×d. We have therefore that every linear operator in L(Rd) is of trace class.

Definition 2.6 Let L2(V,H) be the space of Hilbert-Schmidt operators T ∈ L(V,H) such that

∥T∥2L2(V,H) =
∞∑
n=1

∥Tfn∥2H <∞.

The set L2(V,H) is endowed with the norm ∥T∥L2(V,H).

Setting 2.7 From now on, we fix the following

• Separable real Hilbert spaces H, V . Recall the respective scalar products,

• Q ∈ L(Q) a nonnegative trace class operator,

• V0 = Q1/2V =
{
Q1/2v

∣∣ v ∈ V
}

which is another Hilbert space endowed with ⟨·, ·⟩0 =

⟨Q−1/2·, Q−1/2·⟩V and the corresponding norm ∥·∥0.

Operator Q will appear in the definition of the operator L present in (1.2) when the equation is
posed on a Hilbert space.
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Remark 2.8 Note that L(V,H) ↪→ L2(V0, H). Also, observe that if we replace H by R, then for
every v ∈ L(V,R) = V ∗ (up to isomorphism),

∥v∥2L2(V,R) =
∞∑
j=1

|⟨v, fj⟩|2 = ∥v∥2V .

Therefore in this particular case L(V,R) = L2(V,R).

We shall assume

Assumptions 2.9 There exists a bounded sequence of nonnegative real numbers (λk)k∈N such that
Qfk = λkfk for k ∈ N.

Due toQ been trace class, one can prove that Tr(Q) =
∑∞

k=1 λk <∞, result known as Lidskii’s
theorem. We provide an example of trace class operator: consider the usual Hilbert space V (could
be any Hilbert space) and v, w ∈ V , define the bounded linear operator Tv,w ∈ L(V ) such that
Tv,wz = ⟨z, w⟩V v for any z ∈ V . Then Tr(Tv,w) = ⟨v, w⟩V . Furthermore, any bounded linear
operator with finite-dimensional rank is trace class.

2.3 Assumptions

The existence and uniqueness of solution to both stochastic systems is strongly related with the
structure of the non-linearities and the others functions involved. In this section we fix those struc-
tures in order to continue. Recall system (1.6)-(1.7), we assume the following:

Assumptions 2.10 There exists a universal constant K > 0 such that

• (Regularity) g : Rd → R, b : Rd → Rd and σ : Rd → Rd×d are K-Lipschitz real, vector and
matrix valued functions, respectively.

• (Boundedness)β : Rd × Rd → Rd and supy∈Rd |β(0, y)| ≤ K.

• (Uniformly Lipschitz) supy∈Rd |β(x, y)− β(x′, y)| ≤ K|x− x′|, ∀ x, x′ ∈ Rd.

• (Hölder continuity) For each t, t′ ∈ [0, T ], y, y′, w, w′ ∈ R and x, x′, z, z′ ∈ Rd, one has

|f(t, x, y, z, w)− f(t′, x′, y′, z′, w′)| ≤ K
(
|t− t′|1/2 + |x− x′|+ |y − y′|+ |z − z′|+ |w − w′|

)
.

• (Invertibility) For each y ∈ Rd, the map x → β(x, y) admits a Jacobian matrix ∇β(x, y)
such that the function a(x, ξ; y) = ξT (∇β(x, y)+I)ξ satisfies, for all x, ξ ∈ Rd, a(x, ξ; y) ≥
|ξ|2K−1 or a(x, ξ; y) ≤ −|ξ|2K−1.

Remark 2.11 In the literature (see [BBP97, Del13]) a Lipschitz condition imposed on β is often
written as

|β(x, y)− β(x′, y)| ≤ K1|x− x′|(1 ∧ |y|), for some K1 > 0 and for all x, x′, y ∈ Rd.
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The reason to impose this requirement is to ensure that∫
Rd

|β(x, y)− β(x′, y)|2λ(dy) ≤ K2|x− x′|2,

for some constant K2 > 0, this is another way of saying that β is Lipschitz with respect to its
first variable in an integral sense. Our uniformly Lipschitz requirement on β and λ being a finite
measure is enough to satisfy the said restriction.

In the other hand, the infinite dimensional framework in system (1.11)-(1.12) is subject to:

Assumptions 2.12 There exists a constant K > 0 such that,

1. Structure of L. The operator L is defined for f ∈ C1,2([0, T ]×H;R) and (t, x) ∈ [0, T ]×H
as in (1.10), where

• ∇f ∈ H is the standard gradient, and ∇2f is the bilinear operator second derivative;

• A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup {S(t), t ≥ 0} on
H , with D(A) dense in H and x ∈ D(A).

• F is a drift term and B is an diffusion operator satisfying

F : [0, T ]×H → H, B : [0, T ]×H → L2(V0, H),

are (B([0, T ])⊗B(H))-B(H) and (B([0, T ])⊗B(H))-B(L2(V0, H)) measurable map-
pings, respectively. Furthermore, they satisfy that for all x, y ∈ H and t ∈ [0, T ],

∥F (t, x)− F (t, y)∥H + ∥B(t, x)−B(t, y)∥L2(V0,H) ≤ K ∥x− y∥H ,

and

∥F (t, x)∥2H + ∥B(t, x)∥2L2(V0,H) ≤ K2(1 + ∥x∥2H).

These mean that F and B are uniformly Lipschitz, with linear growth.

• For all r, s ∈ [0, T ] with r < s and y ∈ H ,

S(s− r)F (r, y) ∈ D(A), S(s− r)B(r, y) ∈ D(A).

And, there exists positive functions g1, g2 ∈ L1([0, T ]) such that

∥AS(s− r)F (r, y)∥H ≤ g1(s− r) (1 + ∥y∥H) ,
∥AS(s− r)B(r, y)∥2L2(V0,H) ≤ g2(s− r)

(
1 + ∥y∥2H

)
.

Note that this tells us that F and B are uniformly bounded in [0, T ] for fixed x ∈ H . We also
denote as B∗ the adjoint operator of B.

2. Structure of the nonlinearity. ψ : [0, T ] × H × R × V → R is the nonlinearity in (1.9),
which satisfies that for t, t′ ∈ [0, T ], x, x′ ∈ H, y, y′ ∈ R and z, z′ ∈ V ,

|ψ(t, x, y, z)− ψ(t′, x′, y′, z′)| ≤ C(|t− t′|1/2 + ∥x− x′∥H + |y − y′|+ ∥z − z′∥V ).
(2.3)
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These assumptions are standard in the literature, see e.g. [HPW19]. In particular, condition
(2.3) on ψ is required to control our numerical scheme in a satisfactory way. As for the conditions
on L, these are also common in the infinite dimensional literature, as expressed for example in
[FT02]. For any u ∈ V we have that

∥∥Q1/2u
∥∥
V

≤
∥∥Q1/2

∥∥
L(V )

∥u∥V =
∥∥Q1/2

∥∥
L(V )

∥∥Q1/2u
∥∥
0
,

which will be implicitly used during the paper.

2.4 Stochastic Calculus

In this section we gather some necessary definitions and results involving the stochastic side of
our problem. We consider a general probabilistic setting posed on a separable Hilbert space H ,
the finite dimensional case will follows naturally as a particular case by taking H = Rd for some
d ∈ N. The definitions presented here are detailed in [DPZ92].

2.4.1 A review on Stochastic processes

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space satisfying the usual conditions: (Ft)0≤t≤T is
right continuous, and F0 is complete (contains all zero measure sets). A H-valued random variable
is a strongly F-B(H) measurable functionX : Ω → H , here B(E) denotes the Borel sigma algebra
for any topological space E. Given a real interval I ⊂ R, a family of random variables (Xt)t∈I is
called a stochastic process. In this thesis there are two important stochastic process, Wiener and
Poisson process, we introduce them both and provide theirs basis properties

Hilbert-valued Wiener processes

For this part, we refer to [DPZ92, Chapter I]. Recall the finite trace operator Q ∈ L(V ) from Set-
ting 2.7. To introduce a V -valued Wiener process, first we need to talk about Gaussian probability
measures defined on (V,B(V )).

Definition 2.13 A probability measure µ on (V,B(V )) is called Gaussian if for an arbitrary v ∈ V
there exist m ∈ R and q ≥ 0 such that,

µ ({⟨v, ·⟩V ∈ A}) = µ ({w ∈ V : ⟨v, w⟩V ∈ A}) = N(m, q)(A), ∀A ∈ B(R).

Here,

N(m, q)(A) =

∫
A

1√
2πq

e
− (x−m)2

2q2 ,

is the Gaussian probability measure in R.

From [DPZ92, Lemma 2.15], it can be proved that if µ is a Gaussian measure on V , then there
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exists m ∈ V and Q ∈ L(V ) such that∫
H

⟨v, w⟩V µ(dw) = ⟨m, v⟩V , ∀v ∈ V, (2.4)∫
H

⟨v1, w −m⟩V ⟨v2, w −m⟩V µ(dw) = ⟨Qv1, v2⟩V , ∀v1, v2 ∈ V. (2.5)

Moreover, µ is uniquely determined bym andQ. Vectorm is called the mean andQ the covariance
operator.

Definition 2.14 A V -valued process (Wt)t≥0 is called a Q-Wiener process if

(i) W0 = 0,

(ii) W has continuous trajectories and independent increments and,

(iii) The law of (Wt −Ws) is a Gaussian measure on V with 0 mean and covariance operator
(t− s)Q for t ≥ s ≥ 0.

An important observation here is that from the third point in Definition 2.14 and (2.4)-(2.5), for
every v ∈ V and t ≥ s ≥ 0, the random variable ⟨Wt −Ws, v⟩V : Ω → R is a real-valued random
variable with 0 mean and variance ⟨Qv, v⟩V .

Proposition 2.15 Let (Wt)t≥0 be a Q-Wiener process. We have the following representation for
t ≥ 0

Wt = lim
n→∞

W n
t . (2.6)

With

W n
t =

n∑
k=1

√
λkβ

k
t fk, (2.7)

and

βk
t =

1√
λk

⟨Wt, fk⟩V .

Limit (2.6) is in L2(Ω,F ,P;V ) and (βj)j∈N is a sequence of independent real valued Brownian
motions on (Ω,F ,P).

PROOF. See [DPZ92, Proposition 4.3].

Definition 2.16 For a Hilbert space K (usually R or H), we define the set N 2
W (0, T ;L2(V0, K))

of L2(V0, K)-valued predictable processes Φ: [0, T ]× Ω → L2(V0, K) such that

∥Φ∥2N 2
W (0,T ;L2(V0,K)) = E

∫ T

0

∥Φs∥20ds <∞,

endowed with the corresponding norm, i.e. ∥·∥N 2
W (0,T ;L2(V0,K)) which we also denote as ∥·∥N 2

W

when no confusion arises.
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Following the notation of Definition 2.16, such processes are suitable to integrate with respect
to (Wt)t∈≥0 obtaining another K-valued stochastic process∫ t

0

ΦsdWs, t ≥ 0, (2.8)

which is a continuous square integrable martingale and the Itô isometry holds for every t ∈ [0, T ],

E
∥∥∥∥∫ t

0

ΦsdWs

∥∥∥∥2
K

= E
∫ t

0

∥Φs∥2L2(V0,K) ds.

See [DPZ92, Section 4.3] for key properties of this integral.

Remark 2.17 In the case where V = Rd, Q = IRd and K = R, the corresponding space takes the
form Φ ∈ N T

W (0, T ;L2(Rd,R)) (recall Remark 2.8) and therefore such processes can be identified
as vectors in Rd. The following notation holds,∫ T

0

ΦsdWs =

∫ T

0

Φs · dWs.

Lévy processes and Poisson random measures on Rd

For this part of the section we work in a finite dimensional framework, the same definitions and
results has their own version even in the Banach space case (see [AR05, Section 2] or [VM13,
Chapter 2 and 3]). An important feature of Wiener processes is its continuity, in contrast, the
canonical example of processes that admits “jumps” or discontinuities are called Poisson processes.
Briefly, a Poisson process (N(t))t≥0 is a stochastic process such that takes jumps of size 1 every
exponentially distributed interval of time (see [Nor97, Section 2.4] for details). Those jumps are
such that the trajectories, t → N(t)(ω), are right continuous with left limits, property also known
as cádlág from the french continue à droite, limite à gauche. A generalized version of a Poisson
point process is given below. Let d ∈ N, for the results in this subsection we refer to [App09,
Chapter 1] or [Del13, Chapter 2].

Definition 2.18 A Rd-valued stochastic process (Xt)t∈[0,T ] is said to be a Ft-Lévy process on
(Ω,F ,P) if

• (Xt)t∈[0,T ] is adapted to (Ft)t∈[0,T ],

• X0 = 0 a.s.,

• Xt −Xs is independent of Fs for s ∈ [0, t),

• Xt −Xs has the same distribution as Xt−s for s ∈ [0, t),

• (Xt)t∈[0,T ] is stochastically continuous or continuous in probability, i.e. for all ε > 0 and for
all s ≥ 0.

lim
t→s

P (∥Xt −Xs∥ > ε) = 0.
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Remark 2.19 Note that a Wiener process is also a Lévy process because it is, in particular, stochas-
tically continuous.

Let (Xt)t∈[0,T ] be a Rd-valued Lévy process, set Xt− = lim
s↗t

Xs and ∆Xs = Xs − Xs− . In the

following we introduce the Poisson random measure associated to a Lévy process. As usual, Ā and
Ac denotes respectively the closure and complement of a given set A. Let now A ⊂ Rd be such
that A ∈ B(Rd) and 0 /∈ Ā, this means that 0 is sufficiently “far” from A. We can count for any
t ∈ [0, T ] the number of jumps of (Xt)t∈[0,T ] of size bellowing to A by setting,

µ(t, A) =
∑
0<s≤t

1A(∆Xs).

Note that µ(t, A) defines a random variable.

Theorem 2.20 If 0 /∈ Ā, (µ(t, A))t∈[0,T ] is a Poisson process.

PROOF. See [App09, Thorem 2.3.5].

Theorem 2.21 For any ω ∈ Ω there is a unique σ-finite measure on B(Rd \ {0}) such that

µ(t, ·)(ω) : B(Rd \ {0}) −→ [0,+∞)

A 7−→ µ(t, A)(ω).

PROOF. See [AR05, Corollary 2.5].

Definition 2.22 µ(t, ·) is called the Poisson random measure of the Lévy processes (Xt)t∈[0,T ].

Theorem 2.23 There is a unique σ-finite measure on the σ-algebra B(Rd \ {0}) such that

λ : B(Rd \ {0}) −→ [0,+∞)

A 7−→ E (µ(1, A)) .

Moreover, λ is a Lévy measure.

PROOF. See [AR05, Corollary 2.8]

Definition 2.24 A Lévy measure is a σ-finite measure on (Rd \ {0} ,B(Rd \ {0})) such that∫
Rd\{0}

(1 ∧ ∥x∥2H)λ(dx) <∞.

Definition 2.25 The compensated Poisson random measure (cPrm) µ̄ is defined by

µ̄(dt, dx) = µ(dt, dx)− dtλ(dx).

We are now with a proper set up to introduce the stochastic integral with respect cPrm and state
its principal properties.
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Definition 2.26 we define the set N 2
µ (0, T ;R) of predictable processes U : [0, T ]×Rd\{0} : Ω →

R such that

∥U∥2N 2
µ (0,T ;H) = E

∫ T

0

∫
Rd\{0}

|U(s, x)|2λ(dx)ds <∞,

endowed with the corresponding norm, i.e. ∥·∥N 2
µ (0,T ;R) which we also denote as ∥·∥N 2

µ
when no

confusion arises.

For those processes U , the stochastic integral∫ t

0

∫
Rd\{0}

U(t, x)µ̄(dt, dx) t ∈ [0, T ],

is well-defined, is a càdlàg local martingale and the Itô isometry holds for every t ∈ [0, T ].

E

[∫ t

0

∫
Rd\{0}

U(t, x)µ̄(dt, dx)

]2
= E

∫ t

0

∫
Rd\{0}

|U(t, x)|2ν(dx)dt.

See [Del13, Theorem 2.3.3].

2.4.2 Stochastic system in finite-dimensional non-local framework

Recall the stochastic system (1.6)-(1.7). Following lemmas provide well-known results concerning
the existence and uniqueness of a solution to the required system. We only check that our hy-
potheses match those of [App09] and [BBP97], these results are the same as those given in [BE08]
and [Del13, Section 4.1]. For this section, let (Wt)t∈[0,T ] be a Rd-valued Wiener process and set
B2 = S 2

T (Rd)× NW (0, T ;Rd)× Nµ(0, T ;R).

Lemma 2.27 There exists a unique solution X ∈ S 2
T (Rd) to (1.6) such that.

E
(

sup
s≤u≤t

∥Xu −Xs∥2Rd

)
≤ |t− s|

(
1 + E∥Xs∥2Rd

)
. (2.9)

PROOF. Recall Remark 2.11. Observe that Assumptions 2.10, particularly those imposed on β,
implies that ∫

Rd

∥β(x, y)− β(x′, y)∥2Rdλ(dy) ≤ K2λ(Rd)∥x− x′∥2Rd .

This, together with the rest of Assumptions 2.10 are enough to fulfill the Lipschitz and growth
hypotheses needed on [App09, Section 6.2] to ensure the existence and uniqueness of a solution
X ∈ S 2

T (Rd) to the FSDEJ (1.6). Estimate (2.9) follows by considering the process (Xu−Xs)u∈[s,t]
and using Doob’s maximal inequality [Pro04, Theorem 20, Section 1] and Gronwall inequality.

Lemma 2.28 There exists a solution (Y, Z, U) ∈ B2 to (1.7).
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PROOF. We apply Theorem 2.1 of [BBP97] with k = 1, Q = g(XT ) and a nonlinearity f̄ : Ω ×
[0, T ]× R× Rd × L2(Rd,B(Rd), λ) → R defined as

f̄(ω, t, y, z, w) = f

(
t,Xt(ω), y, z,

∫
Rd

w(x)λ(dx)

)
,

for (ω, t, y, z, w) ∈ Ω× [0, T ]× R× Rd × L2(Rd,B(Rd), λ).

By the Lipschitz property on g and the bound given in Lemma 2.27 we can see thatQ ∈ L2(Ω,FT ,P).
The Lipschitz condition on f implies that for all ω ∈ Ω, t ∈ [0, T ], y, y′ ∈ Rd, z, z′ ∈ Rd and
w,w′ ∈ L2(Rd,B(Rd), λ),

|f̄(ω, t, y, z, w)− f̄(ω, t, y′, z′, w′)|

=

∣∣∣∣∣f
(
t,Xt(ω), y, z,

∫
Rd

w(x)λ(dx)

)
− f

(
t,Xt(ω), y

′, z′,

∫
Rd

w′(x)λ(dx)

) ∣∣∣∣∣
≤ K

(
|y − y′|+ |x− x′|+

∣∣∣ ∫
Rd

(w − w′)λ(dy)
∣∣∣)

≤ K
(
|y − y′|+ |x− x′|+ λ(Rd)1/2 ∥w − w′∥L2(Rd,B(Rd),λ;R)

)
,

this proves the Lipschitz condition on f̄ . Using the previous bound is clear that,

E
∫ T

0

|f̄(·, t, 0, 0, 0)|2dt <∞.

These computations allow us to directly apply Theorem 2.1 of [BBP97] this finishes the proof.

Combining previous lemmas we get that there exist a unique solution (X, Y, Z, U) to the system
(1.6)-(1.7) in the space S 2

T (Rd)× B2 this implies,

E

(
sup

s∈[0,T ]

∥Xs∥2Rd

)
+ E

(
sup

s∈[0,T ]

|Ys|2
)

+ E
∫ T

0

∥Zs∥2Rdds+ E
∫ T

0

∫
Rd

|Us(y)|2λ(dy)ds <∞.

(2.10)

Following lemma strongly depends on the filtration under consideration, recall that (Ft)t∈[0,T ]

is generated by the two independent objects W and µ which allows us to state the representation
property. See the end of Section 2.4 in [Del13] where it is stated that when the filtration is generated
by a Brownian Motion and an independent jump process the required representation holds.

Lemma 2.29 (Martingale Representation Theorem) For any square integrable martingaleM there
exists (Z,U) ∈ N 2

W (0, T ;Rd)× N 2
µ (0, T ;R) such that for t ∈ [0, T ]

Mt =M0 +

∫ t

0

Zs · dWs +

∫ t

0

∫
Rd

U(s, y)µ(ds, dy).

We will need the next property involving conditional expectation, Itô isommetry and that W is
independent of µ.
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Lemma 2.30 (Conditional Ito isometry) For V 1, V 2 ∈ N 2
µ (0, T ;R) and H,K ∈ N 2

W (0, T ;Rd),

Ei

(∫ ti+1

ti

Hr · dWr

∫ ti+1

ti

Kr · dWr

)
= Ei

(∫ ti+1

ti

Hr ·Krdr

)
,

(2.11)

Ei

(∫ ti+1

ti

∫
Rd

V 1(s, z)µ(ds, dz)

∫ ti+1

ti

∫
Rd

V 2(s, z)µ(ds, dz)

)
= Ei

(∫ ti+1

ti

∫
Rd

V 1(s, z)V 2(s, z)λ(dz)ds

)
,

Ei

(∫ ti+1

ti

∫
Rd

V 1(r, y)µ(dy, dr)

∫ ti+1

ti

Hr · dWr

)
= 0.

PROOF. Follows from the classical Ito isommetry and using the definition of conditional expecta-
tion.

Lemma 2.31 (Conditional Fubini) Let H ∈ N 2
µ (0, T ;R) and t > 0, then

E
(∫

Rd

∫ ti+1

ti

H(s, y)dsλ(dy)

∣∣∣∣Fti

)
=

∫
Rd

E
(∫ ti+1

ti

H(s, y)ds

∣∣∣∣Fti

)
λ(dy).

PROOF. The proof is standard, but we included it by the sake of completeness. Let A ∈ Fti , we
have to prove that∫

A

(∫
Rd

Ei

(∫ ti+1

ti

H(s, y)ds

)
λ(dy)

)
dP(ω) =

∫
A

(∫
Rd

∫ ti+1

ti

H(s, y)(ω)dsλ(dy)

)
dP(ω).

Note that because of H ∈ N 2
W (0, T ;R),∫

Ω

∫ ti+1

ti

∫
Rd

|H(s, y)(ω)|2λ(dy)dsdP(ω) <∞;

this means that H can be seen as an element of ∈ L2(Ω× [ti, ti+1]×Rd) ⊂ L1(Ω× [ti, ti+1]×Rd),
both spaces endowed with the correspondent finite product measure. Then we can use classical
Fubini theorem:∫

A

(∫
Rd

∫ ti+1

ti

H(s, y)(ω)dsλ(dy)

)
dP(ω) =

∫
Rd

(∫
A

∫ ti+1

ti

H(s, y)(ω)dsdP(ω)
)
λ(dy)

=

∫
Rd

(∫
A

Ei

(∫ ti+1

ti

H(s, y)(ω)ds

)
dP(ω)

)
λ(dy)

=

∫
A

(∫
Rd

Ei

(∫ ti+1

ti

H(s, y)(ω)ds

)
λ(dy)

)
dP(ω).

This finishes the proof.

2.4.3 Stochastic system in Hilbert framework

Some useful lemmas

In this section we have compiled some basic but essential facts that will be used in the proof for
introductory results to state main Theorem 5.9. Of particular importance is the Martingale Repre-
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sentation Theorem 2.34 which allows us to find a solution for the backward stochastic equation.

Lemma 2.32 The integral (2.8) can be approximated as follows: for n ∈ N consider the Wiener
process (W n

t )t∈[0,T ] in (2.7), then

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0

ΦsdWs −
∫ t

0

ΦsdW
n
s

∥∥∥∥2
)

→ 0 as N → ∞,

for any (Φs)s∈[0,T ] ∈ NW ([0, T ];L2(V0, K)).

Lemma 2.33 Let n ∈ N and (Φs)s∈[0,T ] ∈ NW (0, T ;L2(V0, H)), then the following holds,∫ t

0

Φ(s)dW n
s =

n∑
j=1

∫ t

0

Φ(s)(Q1/2fj)dβ
j
s .

Where W n is given by (2.7).

PROOF: First, note that we have n integrals of H-valued processes with respect to real valued stan-
dard Brownian Motions (the associated covariance operator in this case is just 1). In our case,
the space that gives sense to these integrals is NW (0, T ;L2(R, H)). It is straightforward that
L2(R, H) = H . We proceed by proving the property for elementary processes and conclude by
taking the proper limit. For that purpose let N ∈ N, {ti}Ni=0 be a partition of [0, T ] with t0 = 0 and
tN = T , {Φi}Ni=1 ⊂ L(V,H) and an elementary process Φ defined as

Φ(s) =
N∑
i=1

Φi1[ti−1,ti)(s).

Then by using the linearity of the operators Φi, definition (2.7) and Q1/2fk = λ1/2fk,∫ t

0

ΦsdW
n
s =

N∑
i=1

Φi(W
n
ti+1∧t −W n

ti∧t) =
N∑
i=1

Φi

(
n∑

k=1

√
λkfkβ

k
ti+1∧t −

n∑
k=1

√
λkfkβ

k
ti∧t

)

=
N∑
i=1

Φi

(
n∑

k=1

(Q1/2fk)(β
k
ti∧t − βk

ti−1∧t)

)
=

n∑
k=1

N∑
i=1

Φi(Q
1/2fk)(β

k
ti∧t − βk

ti−1∧t)

=
n∑

k=1

∫ t

0

Φs(Q
1/2fk)dβ

k
s .

It is easy to see that for every j ∈ N, (Φs(Q
1/2fj))s∈[0,T ] is an elementary process in NW (0, T ;L2(R, H));

therefore, the property is satisfied for those processes. Now, given a sequence of elementary pro-
cesses such that Φk → Φ in NW (0, T ;L2(V0, H)), we also have that for every j ∈ NΦk(Q1/2fj) →
Φ(Q1/2fj) in NW (0, T ;L2(R, H)). For any k ∈ N it holds that,∫ ·

0

Φk
sdW

N
s =

n∑
j=1

∫ ·

0

Φk
s(Q

1/2fj)dβ
j
s .

The property follows by taking limit in M 2
T (H) as k → ∞ in both sides.
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Theorem 2.34 (Martingale Representation Theorem) Let W be a Hilbert space and r, s ∈ [0, T ]
with r < s. Then, for every X ∈ L2(Ω,Fs,P;W ) there exists (Zt)t∈[r,s] ∈ NW ([r, s];L0

2(V,W ))
such that

X = E(X|Ft) +

∫ s

t

ZudWu, t ∈ [r, s].

PROOF. See for instance [FT02, Proposition 4.1].

The forward process

Now we recall the mathematical structure associated to the forward process (Xt) in (1.11), whereA,
B and F were specified in Assumptions 2.12. For further details, the reader can consult [DPZ92].

Definition 2.35 (Strong and mild solutions)

1. A predictableH-valued stochastic process (Xt)t∈[0,T ] is said to be a strong solution of (1.11)
if for all t ∈ [0, T ] Xt ∈ D(A) P-a.e.,∫ T

0

∥AXs∥H ds <∞, P-a.e.

and equation (1.11) is satisfied for all t ∈ [0, T ].

2. A predictable H-valued stochastic process (Xt)t∈[0,T ] is said to be a mild solution of (1.11)
if

P
(∫ T

0

∥Xs∥2H ds <∞
)

= 1,

and for all t ∈ [0, T ] we have the weak formulation of (1.11):

Xt = S(t)x+

∫ t

0

S(t− s)F (s,Xs)ds+

∫ t

0

S(t− s)B(s,Xs)dWs, P-a.e. (2.12)

The following result gives existence of mild solutions in a very general setting.

Theorem 2.36 There exist a unique mild solution (Xt)t∈[0,T ] to (1.11), unique among the stochastic
processes satisfying,

P
(∫ T

0

∥Xs∥2H ds <∞
)

= 1.

Moreover, X possesses a continuous modification and for any p ≥ 2 there exists a constant C =
C(p, T ) > 0 such that,

sup
s∈[0,T ]

E ∥Xs∥pH ≤ C(1 + ∥x∥pH).
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PROOF. See [DPZ92, Theorem 7.2].

Now we provide a proof of existence of strong solutions to (1.11), which follows closely
[AGM+16, Theorem 2].

Proposition 2.37 Assuming Assumptions 2.12 there exists a strong solution (Xt)t∈[0,T ] to the equa-
tion (1.11) and C = C(T ) such that

sup
s∈[0,T ]

E ∥Xs∥2H ≤ C and P
(∫ T

0

∥Xs∥2H ds <∞
)

= 1. (2.13)

PROOF. By applying Theorem 2.36 we have a mild solution already satisfying (2.13) and then, due
to Assumptions 2.12, from (2.12) we get that for all t ∈ [0, T ], Xt ∈ D(A) P-a.e. and∫ t

0

AXs =

∫ t

0

AS(s)xds+

∫ t

0

∫ s

0

AS(s− r)F (r,Xr)drds︸ ︷︷ ︸
I

+

∫ t

0

∫ s

0

AS(s− r)B(r,Xr)dWrds︸ ︷︷ ︸
II

.

Basically, the idea here is to use Fubini theorem and its stochastic version (see [DPZ92, Section
4.5]) together with the fact that S(t)y − y =

∫ t

0
AS(s)ds for y ∈ D(A). The bounds that F and B

satisfy in Assumptions 2.12 imply that,∫ T

0

∫ s

0

∥AS(s− r)F (r,Xr)∥H drds ≤
∫ T

0

∫ s

0

g1(s− r)drds+

∫ T

0

∫ s

0

g1(s− r) ∥Xr∥H drds

≤ ∥g1∥L1([0,T ])

(
T +

∫ T

0

∥Xr∥H dr
)
<∞ P-a.e..

And,∫ T

0

E
∫ s

0

∥AS(s− r)B(r,Xr)∥2L2(V0,H) drds ≤
∫ T

0

∫ s

0

g2(s− r)drds+

∫ T

0

E
∫ s

0

g2(s− r) ∥Xr∥2H drds

≤ ∥g1∥L1([0,T ])

(
1 + TE

[
sup

r∈[0,T ]

∥Xr∥2H

])
<∞.

Then, by Fubini Theorem,

I =

∫ t

0

S(t− r)F (r,Xr)dr −
∫ t

0

F (r,Xr)dr and,

II =

∫ t

0

S(t− r)B(r,Xr)dWr −
∫ t

0

B(r,Xr)dWr.

Therefore, ∫ t

0

AXsds = S(t)x− x+

∫ t

0

S(t− r)F (r,Xr)dr −
∫ t

0

F (r,Xr)dr

+

∫ t

0

S(t− r)B(r,Xr)dWr −
∫ t

0

B(r,Xr)dWr.

Hence,

Xt = x+

∫ t

0

AXsds+

∫ t

0

F (r,Xr)dr +

∫ t

0

B(r,Xr)dWr P-a.e.,

and the proof is complete.

22



The backward process

Now we provide existence results for the backward process (1.12), following ideas in [FT02,
Lemma 4.2].

Lemma 2.38 Let η ∈ L2(Ω,FT ,P) and f ∈ NW (0, T ;R). Then there exist a unique pair (Y, Z) ∈
S 2

T (R)× NW (0, T ;L0
2(V,R)) such that,

Yt = η +

∫ T

t

fsds−
∫ T

t

⟨Zs, ·⟩0dWs. (2.14)

Furthermore, the following bounds are satisfied,

E
(∫ T

0

e2βs ∥Zs∥20 ds
)
∧ E

(
sup

s∈[0,T ]

e2βs|Ys|2
)

≤ 4

β
E
∫ T

0

e2βs|fs|2ds+ 8e2βTE|η|2. (2.15)

Where ∧ indicates the maximum between both quantities.

PROOF. For uniqueness to the first part of [FT02, Lemma 4.2]. First, we prove existence, define
ξ = η +

∫ T

0
fsds ∈ L2(Ω,FT ,P). Then, by Theorem (2.34), there exists Z ∈ NW (0, T ;L0

2(V,R))
such that

ξ = E(ξ|Ft) +

∫ T

t

⟨Zs, ·⟩0dWs, (2.16)

where we applied Remark 2.8 to notice that L2(V0,R) = V0. Define now Yt = E(ξ|Ft)−
∫ t

0
fsds,

follows that

Yt = η +

∫ T

t

fsds−
∫ T

t

⟨Zs, ·⟩0dWs. (2.17)

To conclude that (Yt)t∈[0,T ] ∈ S 2
T (R) we just note that by (2.16), (2.17) and the definition of ξ, one

has for every t ∈ [0, T ]

E|Yt|2 ≤ 3

(
E|η|2 + TE

∫ T

0

|fs|2ds+ E
∫ T

0

∥Zs∥20 ds
)

≤ 27

(
E|η|2 + E

∫ T

0

f 2
s ds

)
<∞.

In order to prove estimate (2.15), we bound both quantities at left side by the right side. Sssume the
existence and uniqueness of a solution (Y, Z) and note that for almost all s ∈ [0, T ], E|fs|2 < ∞,
thus by Theorem 2.34 there exists (K(u, s))u∈[0,s] ∈ NW (0, s;L0

2(V,R)) such that,

fs = E(fs|Ft) +

∫ s

t

K(u, s)dWu, t ∈ [0, s]. (2.18)

We extend K to [0, T ]× [0, T ] in the following way,

K : [0, T ]× [0, T ]× Ω −→ L0
2(V,R)

(u, s, ω) 7−→ K(u, s)(ω)1[0,s](u) =

{
K(u, s)(ω), u ≤ s

0, ∼ .
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(PT ×B([0, T ]))-measurability ofK is discussed in [FT02], but it is no difficult to convince oneself
of this. In the same way there exists (Lt)t∈[0,T ] ∈ NW (0, T ;L0

2(V,R)) such that,

η = E(η|Ft) +

∫ T

t

LsdWs, t ∈ [0, T ]. (2.19)

By taking E(·|Ft) in (2.14) then using conditional Fubini’s theorem, and replacing (2.18) and (2.19)
we have that for all t ∈ [0, T ],

Yt = η −
∫ T

t

fsds−
∫ T

t

LsdWs +

∫ T

t

∫ T

t

K(u, s)1[t,s](u)dWuds.

Due to
∫ T

t
E
∫ T

t
∥K(u, s)∥20 1[t,s](u)duds < ∞ (it can be bounded by a factor of ∥f∥N ), we may

apply stochastic Fubini theorem (see [DPZ92, Section 4.5]) getting,

Yt = η −
∫ T

t

fsds−
∫ T

t

(
Lu −

∫ T

u

K(u, s)ds

)
dWs.

Then by uniqueness,

Zu = Lu −
∫ T

u

K(u, s)ds, ∀u ∈ [0, T ],

which allows us to compute,

E
∫ T

0

e2βu ∥Zu∥20 du = 2E
∫ T

0

e2βu ∥Lu∥20 du︸ ︷︷ ︸
I

+2E
∫ T

0

e2βu
∥∥∥∥∫ T

u

K(u, s)ds

∥∥∥∥2
0

du︸ ︷︷ ︸
II

.

By standard procedures and using (2.19) we get I ≤ 8e2βTE|η|2. To work with II we first note that
for any u ∈ [0, T ],∥∥∥∥∫ T

u

K(u, s)ds

∥∥∥∥2
0

≤
∫ T

u

e−2βsds

∫ T

u

e2βs ∥K(u, s)∥20 ds ≤
e−2βu

2β

∫ T

u

e2βs ∥K(u, s)∥20 ds,

where we applied Bochner’s estimate (
∥∥∫ f∥∥ ≤

∫
∥f∥) and Hölder’s inequality. Then, by replacing

the last relation in II and using Fubini theorem,

II ≤ 1

β
E
∫ T

0

∫ T

u

e2βs ∥K(u, s)∥20 dsdu =
1

β
E
∫ T

0

∫ T

0

e2βs ∥K(u, s)∥20 1[u,T ](s)dsdu

=
1

β

∫ T

0

e2βsE
(∫ s

0

∥K(u, s)∥20 du
)
ds ≤ 4

β

∫ T

0

e2βsE|fs|2ds

Now for the second bound we first note that by taking E(·|Ft) we have,

Yt = E(η|Ft)− E

(∫ T

t

fsds

∣∣∣∣∣Ft

)
,
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and then,

E sup
t∈[0,T ]

e2βt|Yt|2 ≤ 2E sup
t∈[0,T ]

e2βt|E(η|Ft)|2︸ ︷︷ ︸
A

+ 2E sup
t∈[0,T ]

e2βt

∣∣∣∣∣E
(∫ T

t

fsds

∣∣∣∣∣Ft

)∣∣∣∣∣
2

︸ ︷︷ ︸
B

.

Using Doob’s inequality we get A ≤ 8e2βTE|η|2. For the second term,

B ≤ 2E sup
t∈[0,T ]

e2βt

∣∣∣∣∣E
√∫ T

t

e−2βsds

√∫ T

t

e2βs|fs|2ds

∣∣∣∣∣Ft

∣∣∣∣∣
2

≤ 1

β
E sup

t∈[0,T ]

∣∣∣∣∣E
√∫ T

0

e2βs|fs|2ds

∣∣∣∣∣Ft

∣∣∣∣∣
2

≤ 4

β
E
∫ T

0

e2βs|fs|2ds.

Where we used Doob’s inequality on the last inequality. By putting all together we conclude the
proof.

Existence for the Forward-Backward system

The existence and uniqueness of a solution (Y, Z) to the backward equation (1.12) is well-known,
here we follow the proof given in [FT02]. The argument, as we are working in a non-linear frame-
work, relies on an application of Banach’s fixed point theorem. The problem is that with the
parameters as they are, the fixed-point functional does not necessarily contract. A solution to this
issue is possible by giving equivalent norms to NW (0, T ;L0

2(V ;R)) and S 2
T (R) parameterized by

a positive real number β. Let β > 0, consider

∥Y ∥2S 2
T,β

= E

(
sup

s∈[0,T ]

e2βs|Y |2
)

and ∥Z∥2NW,β
= E

(∫ T

0

e2βs ∥Z∥20 ds
)
.

With a bit of work we can see that ∥·∥S 2
T,β

and ∥·∥NW,β
are equivalent to ∥·∥S 2

T
and ∥·∥NW

, respec-
tively.

Proposition 2.39 Given a H-valued stochastic process (Xt)t∈[0,T ] such that

E
(∫ T

0

ψ(s,Xs, 0, 0)
2ds

)
<∞, (2.20)

there exist a unique solution (Y, Z) ∈ S 2
T (R) × NW (0, T ;L0

2(V,R)) to equation (1.12) and there
exists C = C(K,T ) > 0 such that,

∥Y ∥2S2
T
+ ∥Z∥2NW

≤ C

(
Eϕ(XT )

2 + E
∫ T

0

ψ(s,Xs, 0, 0)
2ds

)
. (2.21)
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PROOF. Again, we follow the proof given in [FT02, Proposition 4.3]. The following result is proven
as the majority of existence of solutions to non-linear equations results, this is, by considering an
adequate operator from a Banach space to itself and applying Banach’s fixed point Theorem. For
β > 0 consider Kβ = S 2

T (R)× NW (0, T ;L0
2(V,R)) which is a Banach space endowed with,

∥(Y, Z)∥2Kβ
= ∥Y ∥2S 2

T,β
+ ∥Z∥2NW,β

= E sup
s∈[0,T ]

e2βs|Ys|2 + E
∫ T

0

e2βs ∥Zs∥20 ds.

Let Ψ: Kβ → Kβ be defined as Ψ(U, V ) = (Y, Z) where (Y, Z) is such that,

Yt +

∫ T

t

⟨Zs, ·⟩0dWs = ϕ(XT ) +

∫ T

t

ψ(s,Xs, Us, Vs)ds.

Given (U, V ) ∈ Kβ , Ψ(U, V ) is well-defined by Lemma 2.38 taking (fs)s∈[0,T ] = (ψ(s,Xs, Us, Vs))s∈[0,T ]

which is an element of NW (0, T ;R) due to the Lipschitz condition imposed on ψ and (2.20), the
existence is proven if we show that Ψ is a contraction. Let (U, V ), (Ū , V̄ ), (Y, Z), (Ȳ , Z̄) ∈ Kβ be
such that Ψ(U, V ) = (Y, Z) and Ψ(Ū , V̄ ) = (Ȳ , Z̄), follows that for all t ∈ [0, T ],

Yt − Ȳt +

∫ T

t

⟨Zt − Z̄t, ·⟩0dWS =

∫ T

t

(
ψ(s,Xs, Us, Vs)− ψ(s,Xs, Ūs, V̄s)

)
ds.

This means that (Y − Ȳ , Z − Z̄) satisfies Lemma 2.38 with η = 0 and fs = ψ(s,Xs, Us, Vs) −
ψ(s,Xs, Ūs, V̄s). Thus

∥∥Ψ(U, V )−Ψ(Ū , V̄ )
∥∥2

Kβ
≤ 8K

β
E
∫ T

0

e2βs
(
|Us − Ūs|2 +

∥∥Vs − V̄s
∥∥2
0

)
ds

≤ 8K

β
E

(
T sup

s∈[0,T ]

e2βs|Us − Ūs|2 +
∫ T

0

e2βs
∥∥Vs − V̄s

∥∥2
0
ds

)

≤ 8K(T + 1)

β

∥∥(U, V )− (Ū , V̄ )
∥∥2

Kβ
.

By taking β = 17K(T +1) we show that Ψ is a contraction, and therefore, the existence is proven.
Uniqueness follows easily by standard arguments. Consider now the solution (Y, Z) by estimates
(2.15),

∥Y ∥2S2
T,β

+ ∥Z∥2NW,β
≤ 16e2βTEϕ(XT )

2 +
8

β
E
∫ T

0

ψ(s,Xs, Ys, Zs)
2ds︸ ︷︷ ︸

I

.

Now, by the Lipschitz condition,

I ≤ 2KE
∫ T

0

e2βs
(
|Ys|2 + ∥Zs∥20

)
+ 2e2βTE

∫ T

0

ψ(s,Xs, 0, 0)
2ds

≤ 2K(T + 1)
(
∥Y ∥2S2

T,β
+ ∥Z∥2NW,β

)
+ 2e2βTE

∫ T

0

ψ(s,Xs, 0, 0)
2ds.
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Hence,

∥Y ∥2S2
T,β

+ ∥Z∥2NW,β
≤ 16e2βTEϕ(XT )

2 +
16

β
e2βTE

∫ T

0

ψ(s,Xs, 0, 0)
2ds

+
16K(T + 1)

β

(
∥Y ∥2S2

T,β
+ ∥Z∥2NW,β

)
.

Chosen β ensure that 16K(T + 1)/β < 1 and therefore,

∥Y ∥2S2
T
+ ∥Z∥2NW

≤ ∥Y ∥2S2
T,β

+ ∥Z∥2NW,β

≤
[
1− 16K(T + 1)

β

]−1
(
16e2βTEϕ(XT )

2 +
16

β
e2βTE

∫ T

0

ψ(s,Xs, 0, 0)
2ds

)
.

Hence, estimate (2.21) follows. The method that we have used remains valid if we intend to prove
the existence of solutions (Y, Z) ∈ S 2

T (K) × NW (0, T ;L0
2(V,K)) and ψ, ϕ also taking values in

the Hilbert space K.

Previous proposition lets us state, given our assumptions (2.12), that from now on we can refer
to a solution (X, Y, Z) of the system (1.11)-(1.12) with (Y, Z) ∈ S 2(R) × NW (0, T ;L0

2(V,R))
and X a strong solution of the forward equation (1.11) given by Proposition 2.37.
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Chapter 3

Universal Approximation Theorems and
Deep-H-Onets

In this chapter, our main objective is to obtain precise bounds on the terms εvi , εzi and εγi that
appears on both main theorems. These bounds will be given in terms of (in)finite dimensional
neural networks. Our main result for this section, Theorem 3.19, will provide the required control.

3.1 Finite Dimensional Neural Networks

The mathematical framework presented here is inspired by [HJKN20], we provide a slightly sim-
pler development that adapts to our motivations. Finite dimensional Neural Networks are building
blocks to their infinite dimensional version, we refer to this generalization as Infinite Dimensional
NN (NN∞ for short). NNs are also used as an intermediate step in the proof of the Universal
Approximation theorem for NN∞.

To fix ideas, in this section we focus on a setting where the input and output variables belong to
multidimensional real spaces Rd and Rm respectively with d,m ∈ N. The following definition is
general and introduce the notion of finite dimensional Neural Network with an arbitrary activation
function.

Definition 3.1 Consider L+1 ∈ N as the number of layers within the network with li ∈ N neurons
each for i ∈ {0, ..., L} where l0 = d and lL = m, weight matrices

{
Wi ∈ Rli×li−1

}L
i=1

, bias vectors{
bi ∈ Rli

}L
i=1

, and an activation function σ : R → R. Let θ = (Wi, bi)
L
i=1, which can be seen as an

element of Rκ with κ =
∑L

i=1(lili−1 + li), and a function σ : R → R. We define the neural network
f θ,σ : Rl0 → RlL as the following composition,

f θ,σ(x) = (AL ◦ σ ◦ AL−1 ◦ · · · ◦ A2 ◦ σ ◦ A1) (x),

where Ai : Rli−1 → Rli is an affine linear function such that Ai(x) = Wix + bi for i ∈ {1, ..., L}
and σ is applied component-wise. One says that the function f θ,σ is the realization of the parameter
θ as a NN. Numbers (li)i∈{0,...,L} represents the amount of units on each layer, note that the first
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layer has l0 = d units and the last one has lL = m as they stand for the input and output variables
respectively, the remaining L− 1 layers are also known as hidden layers.

In previous definition, nothing prevent us from taking L = 1 and getting 0 hidden layers,
observe that such neural network is just an affine linear function. We introduce some necessary
conditions concerning activation functions. We follow the definitions given in [CC95].

Definition 3.2 A function σ : R → R is called TW (Tauber-Wiener) if the set〈{
N∑
i=1

ciσ(λix+ θi)
∣∣∣λi, θi, ci ∈ R i ∈ {1, ..., N}

}〉

is dense in C([a, b]) for a, b ∈ R and a < b.

From the definition it is not obvious how to determine if a function is TW, Chen and Chen
[CC95, Theorem 1] provide us with a result that makes it easier to know.

Theorem 3.3 Suppose that σ is a continuous function and that σ ∈ S ′(R), the set of tempered
distribution. Then, σ is TW if and only if σ is not a polynomial.

In this paper we work with an activation function known as ReLu denoted by σReLu : R → R and
is such that σReLu(x) = max(x, 0) for all x ∈ R. We can see that this function satisfies hypothesis
of Theorem 3.3. In the following we make a formal definition of neural network and the set of
parameters that defines them.

Definition 3.4 The set of parameters of Neural Networks associated to l0 = d, lL = m ∈ N and a
function σ : R → R is defined by,

Nσ,L,d,m =
⋃
κ∈N

Nσ,L,d,m,κ

where,

Nσ,L,d,m,κ =
{
θ ∈ Rκ

∣∣∣ θ = {Wi, bi}Li=1 , l0 = d, lL = m, Wi ∈ Rli×li−1 , bi ∈ Rli , li ∈ N,

i ∈ {1, ..., L} , κ =
L∑
i=1

(lili−1 + li)
}
.

Naturally,

Nσ,d,m,κ =
⋃
L∈N

Nσ,L,d,m,κ and Nσ,d,m =
⋃
L∈N

⋃
κ∈N

Nσ,L,d,m,κ

Note that a parameter is eliminated when the union is taken over that parameter. For a set of
parameters N ∈ {Nσ,d,m,Nσ,L,d,m,Nσ,d,m,κ}, the set of Neural Networks is then defined by,

R(N ) =
{
f θ,σ

∣∣∣θ ∈ N
}
.

Here f θ,σ : Rd → Rm.
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Now, for completeness,we present two basic but important results. The first shows that the
composition of two NNs produce another NN bellowing to certain space Nσ,L,d,m and he second
proves that NNs have a growth that is controlled by its parameters and the activation function . We
write f θ = f θ,σ when no confusion arise.

Lemma 3.5 Let fγ ∈ R(Nσ,M,m,n) and f θ ∈ R(Nσ,L,d,m), then fγ ◦ f θ ∈ R(Nσ,L+M,d,n).

PROOF. Let,

fγ = BM ◦ σ · · ·σ ◦B1

f θ = AL ◦ σ · · ·σ ◦ A1.

Then,

fγ ◦ f θ = BM ◦ σ · · ·σ ◦B1 ◦ AL ◦ σ · · ·σ ◦ A1.

Therefore the composition produce an additive property on the number of layers and fγ ◦ f θ ∈
R(Nσ,L+M,d,n).

Previous lemma hints that the composition of NNs translate as a concatenation operation for its
parameters, we introduce this notion in Definition 3.6:

Definition 3.6 For σ, d,m we define the concatenation of parameters ◦ : Nσ,M,m,n × Nσ,L,d,m →
Nσ,L+M,d,n as,

{Vi, ci}Mi=1 ◦ {Wi, bi}Li=1 = {W1, b1, ...,WL, bL, V1, c1, . . . , VM , cM} . (3.1)

Then we have that for θ ∈ Nσ,L,d,m and γ ∈ Nσ,M,m,n f
θ ◦ fγ = f θ◦γ .

Remark 3.7 Note that the order of composition at the left side of equation (3.1) differs from that
of the right side. This is because the composition of functions is written in the opposite direction to
the flow in a neural network (left to right).

Lemma 3.8 Assume that |σ(a)| ≤ |a| for any a ∈ R. Let θ ∈ Nσ,L,d,m with L ≥ 1. Then there
exist positive constants c1, c2, depending on θ, such that,∥∥f θ,σ(x)

∥∥2 ≤ c1 ∥x∥2 + c2, ∀x ∈ Rd.

PROOF. Let A ∈ Rm×n, here we denote ∥A∥2 =
∑m,n

i=1,j=1A
2
i,j , the Frobenius matrix norm. We

proceed by induction; the base case is L = 1, the NN takes the form of an affine linear function
from Rd to Rm which satisfy the property. For the inductive step, let θ ∈ Nσ,L+1,d,m and assume
that that property holds for L, then∥∥f θ(x)

∥∥p = ∥(AL+1 ◦ σ ◦ · · ·σ ◦ A1) (x)∥p

=
∥∥WL+1

([
σ ◦ AL ◦ · · · ◦ A1

]
(x)
)
+ bL+1

∥∥p
≤ 2p−1dp/2 ∥WL+1∥p ∥(AL ◦ σ ◦ · · · ◦ σ ◦ A1) (x)∥p + 2p−1 ∥bL+1∥p

≤ 2p−1dp/2 ∥WL+1∥p
(
cL1 ∥x∥

p + cL2
)
+ 2p−1 ∥bL+1∥p .
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Note that we applied the property for θ̂ = (Wi, bi)
L
i=1 with constants cL1 and cL2 . Now, defining

cL+1
1 = cL1 2

p−1dp/2 ∥WL+1∥p and cL+1
2 = 2p−1

(
dd/2 ∥WL+1∥p cL2 + ∥bL+1∥p

)
,

we finish the induction proof.

If the activation function σ is continuous, the elements in R(Nσ,d,m) are continuous functions
bellowing to C(Rd;Rm). This is because they are composition of continuous mappings itself.
Definition 3.4 is general, the first approximation theorem presented here is written a subset H of
Nσ,2,d,1 defined by

H = Nσ,2,d,1 ∩
{
θ ∈ Nσ,2,d,1 | θ = {W1, b1,W2} ∈ Rnd+n+n, b2 = 0, n ∈ N

}
. (3.2)

Note that in this definition the free parameter κ from definition 3.4 depends on the size n ∈ N of
the first (and only) hidden layer in the following way, κ =

∑2
i=1(lili−1 + li) = nd + n + n + 1.

It is straightforward that a function f θ,σ ∈ R(H), set of real-valued mappings, takes the following
form

f θ,σ(x) = W2 · σ(W1x+ b1) =
n∑

i=1

W2,iσ

(
d∑

j=1

W2,i,jxj + b1,i

)
,

for θ = {W1, b1,W2} ∈ Rnd+n+n, n ∈ N and x ∈ Rd. One of the first rigorous proof about the
capabilities of Neural Networks is due to the work of Hornik in [Hor91] where the following result
is given.

Theorem 3.9 ([Hor91], Theorem 1) If σ : R → R is bounded and non-constant, then R(H) is
dense in L2(Rd,B(Rd), µ;R) for every finite measure µ in Rd.

Let m ∈ N. For a measure µ on Rd, consider the space L2(Rd,B(Rd), µ;Rm) of square inte-
grable vector valued functions endowed with the norm

∥h∥2L2(Rd,B(Rd),µ;Rm) =

∫
Rd

m∑
i=1

|hi(x)|2µ(dx)

for h = (h1, ..., hm) and hi a scalar function for i ∈ {1, ...,m}. We also need to approximate the
derivative ∇u of the solution u to PIDE (1.3), the following proposition proves density of NNs in
the space of square integrable vector valued functions taking advantage of Theorem 3.9.

Lemma 3.10 Let m ∈ N with m ≥ 1. If the activation function σ is bounded and non-constant,
then Nσ,2,d,m is dense in L2(Rd,B(Rd), µ;Rm) for every finite measure µ on Rd.

PROOF. Given ε > 0 and a function h = (h1, ..., hm) ∈ L2(Rd,B(Rd), µ;Rm) we need to find
f θ,σ = (f1, ..., fm) ∈ Nσ,2,d,m such that∫

Rd

|h(x)− f θ,σ(x)|2µ(dx) < ε.
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First, observe that H ⊂ Nσ,2,d,1 which implies, by using Theorem 3.9, that Nσ,2,d,1 is also dense
in L2(Rd,B(Rd), µ;R) and therefore for every i ∈ {1, ...,m} we can find f θi,σ

i (·) with θi =
(W i

1, b
i
1,W

i
2, b

i
2) and κi = nid+ ni + ni + 1, depending on ε, such that∫

Rd

|hi(x)− f θi,σ
i (x)|2µ(dx) < ε

m
.

Consider f ∈ Nσ,2,d,m defined by θ̂ =
(
Ŵ1, b̂1, Ŵ2, b̂2

)
with

Ŵ1 =

W 1
1

...
Wm

1

 ∈ R(
∑m

i=1 n
i)×d, b̂1 =

 b11
...
bm1

 ∈ R
∑m

i=1 n
i

Ŵ2 =

W
1,T
2 0 0

0
. . . 0

0 0 Wm,T
2

 ∈ Rm×
∑m

i=1 n
i

, b̂2 =

 b12
...
bm2

 ∈ Rm,

and which satisfies that for x ∈ Rd

f θ̂,σ(x) = Ŵ2ϕ(Ŵ1x+ b̂1) + b̂2 =

 W 1,T
2 σ(W 1

1 x+ b11) + b12
...

Wm,T
2 σ(Wm

1 x+ bm1 ) + bm2

 =

f θ1,σ
1 (x)

...
f θm,σ
m (x)

 .

Therefore, ∫
Rd

|h(x)− f θ̂,σ(x)|2µ(dx) =
∫
Rd

m∑
i=1

|hi(x)− f θi,σ
i (x)|µ(dx) < ε.

This ends the proof.

Lemma 3.10 allows us to state that if we take some function h : Rd → Rm inL2(Rd,B(Rd), µ;Rm),
then the quantity

inf
θ∈Rκ

∫
Rd

|f θ,ϕ(x)− h(x)|2µ(dx) (3.3)

can be made arbitrarily small by possible making κ growing sufficiently large, whenever µ is a
finite measure on Rd and the activation function that defines the NN is bounded and non-constant.

The second universal approximation theorem that we present here, is due to Chen and Chen in
[CC95, Theorem 3]. The main difference with Theorem 3.9 is the type of distance to measure de
approximation.

Theorem 3.11 Let K be a compact set in Rd, U a compact set in C(K) and σ : R → R a TW
activation function. Then, for all ε > 0 there exists a parameter θ depending on g ∈ U as θ(g) =
{W1, b1,W2(g)} ∈ H such that

sup
x∈K,g∈U

|g(x)− f θ(g)(x)| < ε.
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In particular, the latter theorem states that R(H) is dense in C(K) endowed with the uniform
topology in the sense that for every ε there exist a NN with a sufficiently large hidden layer that
meets the said accuracy in uniform distance. The following lemma extends Theorem 3.11 proving
the density of R(Nσ,2,d,m) in C(K,Rm) for a compact K ⊂ Rd and m ≥ 1.

Lemma 3.12 Let m ∈ N with m ≥ 1 and K a compact set in Rd. If the activation function σ is
TW, then R(Nσ,2,d,m) is dense in C(K,Rm).

PROOF. Given ε > 0 and a function h = (h1, ..., hm) ∈ C(K;Rm) we need to find f θ,σ =
(f1, ..., fm) ∈ R(Nσ,2,d,m) such that

sup
x∈K

∥∥h(x)− f θ,σ(x)
∥∥ < ε.

First, observe that R(H) ⊂ R(Nσ,2,d,1) which implies, by using Theorem 3.11, that R(Nσ,2,d,1) is
also dense inC(K) and therefore for every i ∈ {1, ...,m} we can find f θi,σ with θi = {W i

1, b
i
1,W

i
2, b

i
2}

and κi = nid+ ni + ni + 1, depending on ε, such that

sup
x∈K

|hi(x)− f θi,σ(x)| < ε√
m
.

Consider θ̂ ∈ Nσ,2,d,m with θ̂ =
{
Ŵ1, b̂1, Ŵ2, b̂2

}
defined by

Ŵ1 =

W 1
1

...
Wm

1

 ∈ R(
∑m

i=1 n
i)×d, b̂1 =

 b11
...
bm1

 ∈ R
∑m

i=1 n
i

Ŵ2 =

W
1,T
2 0 0

0
. . . 0

0 0 Wm,T
2

 ∈ Rm×
∑m

i=1 n
i

, b̂2 =

 b12
...
bm2

 ∈ Rm,

and which satisfies that for x ∈ Rd

f θ̂,σ(x) = Ŵ2σ(Ŵ1x+ b̂1) + b̂2 =

 W 1,T
2 σ(W 1

1 x+ b11) + b12
...

Wm,T
2 σ(Wm

1 x+ bm1 ) + bm2

 =

f θ1,σ(x)
...

f θm,σ(x)

 .

Therefore,

sup
x∈K

∥∥∥h(x)− f θ̂,σ(x)
∥∥∥ = sup

x∈K

(
m∑
i=1

|hi(x)− f θi,σ(x)|2
)1/2

< ε.

This ends the proof.

The following lemma will be useful in the section devoted to NN∞, it is presented in [LMK21,
Lemma C.1] as the Clipping lemma. Here we follow their proof as we need the explicit form of the
NN given in the lemma.
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Lemma 3.13 Let ε > 0, d ∈ N and fix 0 < R1 < R2. There exist a ReLu NN parameter
θ ∈ NσReLu,5,d,d, depending on ε and R1, such that{∥∥f θ(x)− x

∥∥ < ε, ∥x∥ ≤ R1,∥∥f θ(x)
∥∥ < R2, ∀x ∈ Rd.

Remark 3.14 The previous lemma is used in the proof of more general universal approximation
theorems (See the following section), therefore it force us to stick to ReLu NNs from now on.

PROOF. For any a ∈ R, a⃗ represents the vector (a, . . . , a) ∈ Rd and as we are only working with
ReLu activation function, we drop the σReLu from the NNs notation. Without loss of generality
we may assume ε < R2 − R1. Consider γ : Rd → [−R1, R1]

d defined for x ∈ Rd as γ(x) =
min(max(x,−R1), R1), which depends on R1 and can be represented exactly by a ReLu NN in
NσReLu,3,d,d as,

γ(x) = −max
(
−max

(
x+ R⃗1, 0

)
+ 2R⃗1, 0

)
+ R⃗1.

Taking θγ =
{
Id, R⃗1,−Id, 2R⃗1,−I, R⃗1

}
follows that γ = f θγ . Note that for any x ∈ [−R1, R1]

d,

f θγ (x) = x. The next step is to define a continuous function ϕ : Rd → Rd by,

ϕ(x) =

{
x, ∥x∥ ≤ R1

R1
x

∥x∥ , ∥x∥ > R1.

We have that ϕ ∈ C([−R1, R1]
d), then, by Theorem 3.12, there exists f θε ∈ NσReLu,2,d,d such that,

sup
x∈[−R1,R1]d

∥∥ϕ(x)− f θε(x)
∥∥ < ε.

Define now θ = θε ◦ θR1 , which is well defined and belong to NσReLu,5,d,d by Lemma 3.5 and
Definition 3.6. Then, for any ∥x∥ ≤ R1.∥∥f θ(x)− x

∥∥ =
∥∥f θε(f θγ (x))− ϕ(x)

∥∥ =
∥∥f θε(x)− ϕ(x)

∥∥ < ε,

and,

sup
x∈Rd

∥∥f θ(x)
∥∥ ≤ sup

x∈[−R1,R1]d

∥∥f θε(x)− ϕ(x)
∥∥+R1 < R2.

This finishes the proof.

3.2 Infinite Dimensional Neural Networks: Hilbert-valued Deep-
Onets

In this section we work with a particular type of NN∞ called DeepOnets. Based on the definitions
given in [LMK21], we provide a proper and rigorous treatment of this object and prove important
results that allows them to be used on our PDE and stochastic setting.
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Through this entire section (H, ⟨·, ·⟩H , ∥·∥H) and (W, ⟨·, ·⟩W , ∥·∥W ) will denote separable Hilbert
space with orthonormal basis (ei)i∈N and (gi)i∈N respectively, H is equipped with a Borel probabil-
ity measure µ. In the following we are devoted to study the approximation of functionals of the form
F : H → W by functions parameterized by finite dimensional parameters. The main idea to define
such functions is to take a sufficiently large d ∈ N such that the approximations

∑d
i=1⟨x, ei⟩Hei are

good enough to approximate x ∈ H and encode x as the vector (⟨x, e1⟩H , ..., ⟨x, en⟩H) ∈ Rd, then
use a finite dimensional neural network to go from Rd to Rm for some m ∈ N. At last, we take
the resulting vector to W by considering its m components as coefficients for {g1, ..., gm}. The
structure of Hilbert spaces allow us to take advantage of results such as Lemma 3.15, which we
present below with a proof due to Aris Daniilidis. Note that it is valid for every Hilbert space.

Lemma 3.15 (Daniilidis) Let K be a compact set on H . For every k ∈ N consider the operator
Pk : H → H defined as Pk(x) =

∑k
i=1⟨x, ei⟩Hei for x ∈ H . Then, for every ε > 0 there exists

k ∈ N such that for all x ∈ K,

∥Pkx− x∥H ≤ ε.

PROOF. First, lets establish that for all k ∈ N, Pk ∈ L(H) and ∥Pk∥H ≤ 1. Pk is clearly linear, to
prove the bound let x be any non-zero vector in H ,

∥Pkx∥2H =

∥∥∥∥∥
k∑

i=1

⟨x, ei⟩Hei

∥∥∥∥∥
2

H

=
k∑

i=1

|⟨x, ei⟩H |2 ≤
∞∑
i=1

|⟨x, ei⟩H |2 = ∥x∥2H .

This means that ∥Pk∥L(H) ≤ 1.

We argue by contradiction. Suppose that there exists ε > 0 such that for all n ∈ N we can find
xn ∈ K verifying ∥Pn(xn)− xn∥H ≥ ε. Due to the compactness of K, there is a subsequence that
converges to some x ∈ H , we denote this subsequence as xn as well. Then,

∥Pn(xn)− xn∥H ≤ ∥Pn(xn)− Pn(x)∥H + ∥Pn(x)− x∥H + ∥x− xn∥H
≤ 2 ∥xn − x∥H + ∥Pn(x)− x∥H .

The first term can be made as small as we want due to the convergence of xn to x and the second
because we have that Pn(x) → x in H as n→ ∞. Then, for some large n we can break the bound
and thus, the contradiction.

From now on we fix σ = σReLu.

Definition 3.16 Recall Definition 3.4. Given L, d,m ∈ N consider the functions

EH,d : H −→ Rd

x 7−→
(
⟨x, ei⟩H

)d

i=1

,

ÊW,m : Rm −→ W

a 7−→
m∑
i=1

aigi.
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Let θ ∈ Nσ,L,d,m, for (H, d, θ,m,W ) we define the DeepOnet FH,d,θ,m,W : H → W by

FH,d,θ,m,W = ÊW,m ◦ f θ ◦ EH,d. (3.4)

Unless is extremely necessary, we omit H,W and just use F d,θ,m. Also, define the following sets of
DeepOnets parameters,

NH→W
σ =

⋃
d,m∈N

{d} × Nσ,d,m × {m} ,

NH→W
σ,L =

⋃
d,m∈N

{d} × Nσ,L,d,m × {m} .

With L ∈ N, observe that NH→W
σ,L ⊂ NH→W

σ (the less parameters specified, the bigger the set). Let
N = NH→W

σ or N = NH→W
σ,L , it is straightforward to define,

R(N ) =
{
FH,d,θ,m,W

∣∣∣ (d, θ,m) ∈ N
}
.

Note that d is not readable as an input dimension, here it becomes a parameter of the DeepOnet
and represents how many elements of the base (ei)i∈N we are using to project with in order to get
the finite dimensional representation (⟨x, ei⟩H)di=1 for x ∈ H . Last action is carried out by mapping
EH,d. The same goes for m but in the opposite direction and in this case, it is done by ÊW,m, which
allows us to take a collection of real numbers to a Hilbert space. Observe that functions in R(N )
are continuous because they are composition of continuous functions itself.

Remark 3.17 We remark the following,

• We have that ERd,d = Id and ÊRd,d = Id. Note that with this consideration we recover the
finite dimensional theory by taking H = Rd and W = Rm.

• We could just denote F d,θ,m as F θ because the information about the input and output di-
mension of the NN is codified in the parameter θ, but we decide to specify d,m for a better
understanding. Also the order of the parameters makes clearer in which order the composi-
tion are taken.

• Note that the number of parameters to define a DeepOnet is the same as of NNs only adding
d,m.

• If H is a functional space such as L2(Rd,B(Rd), dx), DeepOnets also admits a “neural
network representation” where the first layer is in some sense dense as has an infinite number
of units which are all captured by ⟨·, ·⟩ to be transferred to the next finite layer.

Proposition 3.18 (See e.g. Theorem 4 in [CC95]) Let m ∈ N, K ⊂ H be a compact set and
f : K → Rm be a continuous function. Then, for any ε > 0 there exists (d, θ,m) ∈ NH→Rm

σ,2 such
that,

sup
x∈K

∥∥F d,θ,m(x)− f(x)
∥∥ ≤ ε.

In other words,
{
F |K : F ∈ R(N∞

σ,2)
}

is dense in C(K) endowed with the uniform norm.
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PROOF. Consider the operators Pk from Lemma 3.15. The said Lemma tells us that for δk ↘ 0 we
can find a set of natural numbers (nk := n(δk))k∈N such that,

∀k ∈ N, ∀u ∈ K, ∥Pnk
(u)− u∥H < δk.

Given the continuity of Pk, Pk(K) is also a compact set in H for all k ∈ N. Now we prove that the
set

A :=

(
∞⋃
k=1

Pnk
(K)

)
∪ V,

is also compact in H . Indeed, let (xi)i∈N be a sequence in A. If there exists a subsequence such
that it remains in K, there is nothing to prove because K is compact. The other case is that we
can extract an infinite subsequence that lies in the infinite union. This means that there exists
(ki)i∈N ⊂ N and (ui)i∈N ⊂ K such that,

xi =

nki∑
j=1

⟨ui, ej⟩ej.

Due to compactness of K, up to a subsequence that we also denote (ui)i∈N as well, (ui)i∈N con-
verges to some u ∈ K. We have two options, the first is that the sequence (ki)i∈N does not grow to
infinite when i ↗ ∞ and thus, up to a subsequence on i, we can find ι such that ∀i ≥ ι, ki = kι
which implies that, for i ≥ ι,

xi =

nkι∑
j=1

⟨ui, ej⟩Hej −→
nkι∑
j=1

⟨u, ej⟩Hej ∈ Pnkι
⊂ A.

The second option is that up to a subsequence, ki ↗ ∞ as i↗ ∞, note that

xi =

nki∑
j=1

⟨ui, ej⟩Hej = Pnki
(ui),

and then,

∥xi − u∥H ≤
∥∥∥Pnki

(ui)− ui

∥∥∥
H
+ ∥ui − u∥H ≤ δki + ∥ui − u∥H ,

where, taking i→ ∞ we prove that, up to a subsequence, xi −→ u ∈ K ⊂ A. Thus, A is compact
in H .

The next step is to use the well-known Tietze-Urysohn theorem [Mun00, Chapter 4, Theorem
35.1] which gives us a continuous extension fex : A → Rm with fex(x) = f(x) for x ∈ K. The
compactness of A implies that fex is uniformly continuous, then, for ε > 0 we can find δ > 0
depending only on ε such that ∥x− y∥H < δ implies ∥fex(x)− fex(y)∥ < ε. Lets fix k ∈ N such
that δk < δ, let F : K → Rm be a function to be specified later and x any element of K, then

∥f(x)− F (x)∥ ≤ ∥fex(x)− fex(Pnk
(x))∥+ ∥fex(Pnk

(x))− F (x)∥ < ε

2
+ ∥fex(Pnk

(x))− F (x)∥ .

37



By the continuity of EH,nk
follows that EH,nk

(K) is a compact set in Rnk . Consider the function f̄
defined by

f̄ : EH,nk
(K) −→ Rm

y 7−→ f̄(y) = fex

(
nk∑
j=1

yjej

)
.

Note that the extension is essential because EH,nk
could not be a subset of K, where f is defined.

By the universal approximation Theorem 3.12 there exists θ ∈ Nσ,2,nk,m such that

sup
y∈EH,nk

(K)

∥∥f̄(y)− f θ(y)
∥∥ = sup

y∈EH,nk
(K)

∥∥∥∥∥fex

(
nk∑
i=1

yiei

)
− f θ(y)

∥∥∥∥∥
= sup

x∈K

∥∥∥∥∥fex

(
nk∑
i=1

⟨x, ei⟩Hei

)
− f θ ((⟨x, ei⟩H)nk

i=1)

∥∥∥∥∥
= sup

x∈K

∥∥∥fex (Pnk
(x))−

(
ÊRm,m ◦ f θ ◦ EH,nk

)
(x)
∥∥∥ < ε

2
.

Recall the first point in Remark 3.17. It suffices to take (nk, θ,m) ∈ NW→Rm

σ,2 which concludes the
proof.

The main result of this section, concerning the approximation of a square integrable functional,
is presented below and is closely related to the approximation of PDEs by DL techniques. We
divide the proof in steps for a clear reading and follow the lines of [LMK21, Theorem 3.1].

Theorem 3.19 Let (W, ⟨·, ·⟩W , ∥·∥W ) be a separable Hilbert space with orthonormal basis (gi)i∈N.
LetG : H → W be a L2(H,µ;W ) mapping. Then, for any ε > 0 there exist a DO F d,θ,m : H → W
such that, ∫

H

∥∥G(x)− F d,θ,m(x)
∥∥2
W
µ(dx) ≤ ε.

PROOF. Step 1. Let ε > 0 and define δ =
√
ε/8. First we prove that without loss of generality we

can assume that G is bounded. Consider M > 0 and

GM(x) :=


G(x), ∥G(x)∥W ≤M

M
G(x)

∥G(x)∥W
, ∼

Then, for any function F : H → W we get,

∥G− F∥L2(H,µ;W ) ≤ ∥G−GM∥L2(H,µ;W ) + ∥GM − F∥L2(H,µ;W ) .

We have that ∥GM −G∥2W → 0 and ∥GM −G∥2W ≤ 4 ∥G∥2W µ-a.e., so applying dominate con-
vergence theorem we take M such that,

∥G− F∥L2(H,µ;W ) ≤ δ + ∥GM − F∥L2(H,µ;W ) .
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Then, assuming ∥G∥W ≤M on H , we prove that ∥G− F∥L2(H,µ;W ) < δ for certain DeepOnet F .

Step 2. By Lusin’s ([Bog07]) theorem, there exists a compact set K = K(δ,M) ⊂ H such that
G|K is continuous and µ (H \K) < δ2

M2 . Now, consider the compact set K ′ = G(K) ⊂ W . In
virtue of Lemma 3.15, there exist κ = κ(K ′) ∈ N such that,

sup
w∈K′

∥w − Pκ(w)∥W ≤ δ.

Let G̃ = Pκ ◦G : K → W . Note that,

sup
x∈K

∥∥∥G(x)− G̃(x)
∥∥∥
W

= sup
w∈K′

∥w − Pκ(w)∥W ≤ δ.

Step 3. Applying Proposition 3.18 for the continuous function EW,κ ◦ G̃ : K → Rκ, we can take
(d, θ1, κ) ∈ NH→Rκ

σ,2 such that,

sup
x∈K

∥∥∥FH,d,θ1,κ,Rκ

(x)− (EW,κ ◦ G̃)(x)
∥∥∥ < δ.

Take any x ∈ K and the DO generated by (H, d, θ1, κ,W ),∥∥∥F (H,d,θ1,κ,W )(x)− G̃(x)
∥∥∥
W

=
∥∥∥(ÊW,κ ◦ f θ ◦ EH,d)(x)− G̃(x)

∥∥∥
W

=

∥∥∥∥∥
κ∑

i=1

(f θ ◦ EH,d)(x)igi −
κ∑

i=1

⟨G(x), gi⟩Wgi

∥∥∥∥∥
W

=
∥∥(f θ ◦ EH,d)(x)− (⟨G(x), gi⟩W )κi=1

∥∥
Rκ

=
∥∥∥FH,d,θ1,κ,Rκ

(x)− (EH,κ ◦ G̃)(x)
∥∥∥
Rκ
< δ. (3.5)

Then, by using previous estimate, Lemma 3.15 and that G is bounded, one has the following bound∥∥FH,d,θ1,κ,W (x)
∥∥
W

≤
∥∥∥FH,d,θ1,κ,W (x)− G̃(x)

∥∥∥
W

+
∥∥∥G̃(x)−G(x)

∥∥∥
W

+ ∥G(x)∥W < 2δ +M.

Step 4. Applying the clipping Lemma 3.13 with δ, κ, R1 = M + 2δ and R2 = 2M , note that we
can assume δ small enough such that R1 < R2, we can take θ2 ∈ Nσ,5,κ,κ such that,{∥∥f θ2(x)− x

∥∥ < δ, ∥x∥ < M + 2δ∥∥f θ2(x)
∥∥ ≤ 2M, ∀x ∈ Rκ.

(3.6)

Recall that the norm used in previous equation is the usual norm in Rκ and that during this entire
section, σ = σReLu. Consider the following composition and its equivalences,

ÊW,κ ◦ f θ2 ◦ ÊRκ ◦ f θ1 ◦ EH,d = ÊW,κ ◦ f θ2◦θ1 ◦ EH,d = FH,d,θ1◦θ2,κ,W .

Where we made use of Definition 3.6. Such DO satisfies the following,∥∥∥FH,d,θ2◦θ1,κ,W (x)− G̃(x)
∥∥∥
W

≤
∥∥FH,d,θ2◦θ1,κ,W (x)− FH,d,θ1,κ,W (x)

∥∥
W

+
∥∥∥FH,d,θ1,κ,W (x)− G̃(x)

∥∥∥
W

≤

∥∥∥∥∥
κ∑

i=1

f θ2
i

(
f θ1 (EH,d(x))

)
gi −

κ∑
i=1

(
f θ1 ◦ EH,d

)
i
(x)gi

∥∥∥∥∥
W

+ δ

≤
∥∥f θ2

(
f θ1 (EH,d(x))

)
− f θ1 (EH,d(x))

∥∥
Rκ + δ < 2δ,
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where we used estimates (3.5) and (3.6).

Step 5. Now we use all previous bounds, let F = FH,d,θ2◦θ1,κ,W with (d, θ2 ◦ θ1, κ) ∈ {d} ×
Nσ,7,d,κ × {κ}, then∫

H

∥G(x)− F (x)∥2W µ(dx) =

∫
H\K

∥G(x)− F (x)∥2W µ(dx) +

∫
K

∥G(x)− F (x)∥2W µ(dx)

≤ 2

∫
H\K

∥G(x)∥2W µ(dx) + 2

∫
H\K

∥F (x)∥2W µ(dx)

+ 2

∫
K

∥∥∥G(x)− G̃(x)
∥∥∥2
W
µ(dx) + 2

∫
K

∥∥∥G̃(x)− F (x)
∥∥∥2
W
µ(dx)

≤ µ (H \K) (2M2 + 2M2) + 2δ2 + 2δ2 ≤ 8δ2 = ε,

which is the desired conclusion.

Note that the theorem above only contribute with the existence of a parameter (d, θ,m) such that
the generated DO is a good approximation, in order to overcome the said curse of dimensionality
we may have to provide proper bounds on the size of (d, θ,m). Following lemma provides us with
a useful bound for DeepOnets.

Remark 3.20 Recall the notation from Step 5 from the proof above. Given the parameters (d, θ2 ◦
θ1, κ) ∈ {d} × Nσ,7,d,κ × {κ}, we have that θ2 ◦ θ1 ∈ Rη for some η ∈ N; therefore

inf
(p,θ,q)∈N×Rη×N

∫
H

∥∥G(x)− F p,θ,q(x)
∥∥2
W
µ(dx) ≤

∫
H

∥∥G(x)− F d,θ2◦θ1,κ(x)
∥∥2
W
µ(dx) ≤ ε. (3.7)

This observation allows us to state that for any ε > 0 we can find a sufficiently large η ∈ N such
that the left side of (3.7) is bounded by ε.

Lemma 3.21 Let p ≥ 2 and (d, θ,m) ∈ NH→W
σ,2 , then there exists c1, c2 > 0 such that |F θ,d(x)|p ≤

c1 ∥x∥pH + c2 for every x ∈ H .

PROOF. Let x ∈ H , then by using Lemma 3.8 there exists a1, a2 > 0 such that,

Defining c1 = 2
p−2
2 a

p/2
1 and c2 = 2

p−2
2 a

p/2
2 concludes the proof.
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Chapter 4

Non-local Kolmogorov equation on finite
dimensions

In this chapter we introduce the scheme for the Kolomogorov equation introduced in Section 1.1.2.
In Section 4.1 we derive an iterative scheme based on NNs, this scheme is intended to approximate
strong solution of (1.3). In Section 4.2 we define auxiliary processes that are necessary for starting
the proof of the main result and prove properties of these. Finally, Section 4.3 is devoted to the
consistency proof of the presented scheme.

4.1 Numerical scheme

By applying Itô’s lemma (see [Del13, Thm 2.3.4]) to the solutionXt in (1.6) and a C1,2([0, T ]×Rd)
solution u of PIDE (1.3) as Yt in (1.7), we obtain the compact stochastic formulation of (1.3):

u(t,Xt) = u(0, X0)−
∫ t

0

f(s,Xs− , u(s,Xs−), σ(Xs−)∇u(s,Xs−), I[u](s,Xs−))ds, (4.1)

+

∫ t

0

[σ(Xs−)∇u(s,Xs−)] · dWs +

∫ t

0

∫
Rd

[u(s,Xs− + β(Xs− , y))− u(s,Xs−)]µ(ds, dy),

valid for t ∈ [0, T ]. This tells us that whatever we use as approximations of

u(t,Xt), σ(Xt)∇u(t,Xt) and u(t,Xt + β(Xt, ·))− u(t,Xt),

must satisfy (4.1) in some proper metric. An important statement here is that the conditions (2.10)
ensure the existence of a viscosity solution u ∈ C([0, T ] × Rd) with at most polynomial growth
such that u(t,Xt) = Yt (see [BBP97, Thm 3.4]), and this is the reason why our scheme seek to
approximate the solution to the FBSDEJ (1.6)-(1.7). Recall Chapter 3 where we introduce Neural
Networks.

From now on, fix a constant step partition of the interval [0, T ], defined as π =
{

iT
N

}
i∈{0,...,N},

ti =
iT
N

, and set ∆Wi = Wti+1
−Wti . Also, define h := T

N
and (with a slight abuse of notation),
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∆ti = (ti, ti+1]. Recall the compensated measure µ from Definition 2.25. Let

Mt := µ((0, t],Rd) and ∆Mi =: µ((ti, ti+1],Rd) =

∫ ti+1

ti

∫
Rd

µ(ds, dy). (4.2)

It is well-known that an Euler scheme for the first equation in (1.6) obeys the form

Xπ
0 = x, (4.3)

Xπ
ti+1

= Xπ
ti
+ b(Xπ

ti
)h+ σ(Xπ

ti
)∆Wi +

∫
Rd

β(Xti , y)µ((ti, ti+1], dy). (4.4)

Note that this scheme neglects the left limits that appears on the original equation, although, it
satisfies the next error bound (see [Del13, Thm. 5.1.1], [BE08] or [GS21a]),

max
i=1,...,N

E

(
sup

t∈[ti,ti+1]

∥Xt −Xπ
ti
∥2
)

= O(h). (4.5)

Under suitable conditions, mostly Lipschitz and linear growth assumptions, it can be proved that
the constant behind O(h) in (4.5) does not depend exponentially on d, see Lemma 4.3 in [GS21a].
Adapting the argument of [HPW19] to the non-local case, and in view of (4.1), we propose the
following modified Euler scheme: for i = 0, 1, . . . , N ,

u(ti+1, X
π
ti+1

) ≈ Fi

(
ti, X

π
ti
, u(ti, X

π
ti
), σ(Xπ

ti
)∇u(ti, Xπ

ti
), u(ti, X

π
ti
+ β(Xπ

ti
, ·))− u(ti, X

π
ti
), h,∆Wi

)
,

where Fi : Ω× [0, T ]× Rd × R× Rd × L2(Rd,B(Rd), λ)× R+ × Rd → R is defined as

Fi(ω, t, x, y, z, ψ, h, w) := y − hf

(
t, x, y, z,

∫
Rd

ψ(y)λ(dy)

)
+ w · z +

∫
Rd

ψ(y)µ̄ ((ti, ti+1], dy) .

Note that ω is passed to Fi through its dependence on the compensated measure µ̄. The function Fi

is, indeed, a random variable.

Remark 4.1 Note that the nonlocal term in (1.3) forces us to define Fi in such a way that its fifth
argument must be a function ψ in L2(Rd,B(Rd), λ). In view of the integrals involved in Fi, it
appears that we are again facing the same high dimensional problem; however this problem may
be instead treated with Monte Carlo approximations, see below.

Remark 4.2 In the nonlocal setting, the function Fi also depends on the time interval (ti, ti+1] in
terms of the integrated measure µ̄ ((ti, ti+1], dy). This is an important change in the Euler scheme,
since we do not approximate the nonlocal term at time ti in this case, but instead take into account
how the measure µ̄ behaves on the time interval (ti, ti+1].

Recall Theorem 3.19 and let ϕ : R → R be a ReLu activation function. From now on we will
be using NNs with a single hidden layer parameterized by θ ∈ Ξ, where Ξ = Rκ for some free
parameter κ ∈ N depending on the size of the hidden layer. For every time ti on the grid consider,

uθi : Rd → R (4.6)

zθi : Rd → Rd (4.7)

wθ
i : Rd × R → R (4.8)

42



with uθi ∈ Nϕ,2,d,1,κ, zθi ∈ Nϕ,2,d,d,κ and wθ
i ∈ Nϕ,2,d+d,1,κ approximating

(u(ti, ·), σ(·)∇u(ti, ·), u(ti, ·+ β(·, ◦))− u(ti, ·)),

respectively, in some sense to be specified. Let also

⟨wθ
i ⟩(x) =

∫
Rd

wθ
i (x, y)λ(dy). (4.9)

We propose an extension of the DBDP1 algorithm presented on [HPW19]. The main idea of the
algorithm is that the NNs, evaluated on Xπ

ti
, are good approximations of the processes solving the

FBSDEJ. Let ûi+1 be the optimal approximation for step i+1 and let Li be a cost function defined
for θ ∈ Ξ as

Li(θ) = E
∣∣∣ûi+1(X

π
ti+1

)− Fi(ti, X
π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), wθ

i (X
π
ti
, ·), h,∆Wi)

∣∣∣2 . (4.10)

Algorithm 1: DBDP1 PIDE extension
Start with ûN(·) = g(·);
for i ∈ {N − 1, ..., 1} do

Given ûi+1;
Compute θ∗ = argmin

θ

Li(θ);

Update (ûi, ẑi, ŵi) = (uθ
∗

i , z
θ∗
i , w

θ∗
i );

end

For the minimization step we need to calculate an expected value, but this is a complicated task
due to the non linearity and the fact that the distribution of the random variables involved are not
always known. To overcome this situation, as well as in [HPW19], one has to use a Monte Carlo
approximation together with Stochastic Gradient Descent (SGD). See also Remark 4.1.

4.2 Previous Definitions and Results

First, introduce the conditional expectations of the averaged processes

Zti =
1

h
Ei

(∫ ti+1

ti

Ztdt

)
, Γti =

1

h
Ei

(∫ ti+1

ti

Γtdt

)
. (4.11)

these quantities allows us to define the L2-regularity of the solutions (Z,Γ) (see [BE08] and
[HPW19]) as follows

e(Z, (Zt)t∈π) := E

(
N−1∑
i=0

∫ ti+1

ti

∥Zt − Zti∥2dt

)
,

e(Γ, (Γt)t∈π) := E

(
N−1∑
i=0

∫ ti+1

ti

|Γt − Γti |2dt

)
.

(4.12)
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Both quantities can be made arbitrarily small as it is shown on [BE08] and presented in the follow-
ing theorem.

Theorem 4.3 Under Assumptions 2.10, there exists a constant C > 0 such that

e(Γ, (Γt)t∈π) ≤ Ch and e(Z, (Zt)t∈π) ≤ Ch.

PROOF. See [BE08, Theorem 2.1 (i)] for the bound on e(Γ, (Γt)t∈π) and [BE08, Theorem 2.1 (ii)]
for the bound on e(Z, (Zt)t∈π). Note that in the cited reference this result is presented, using our
notation, as follows,∥∥Γ− Γ

∥∥2
N 2

W (0,T ;R) ≤ CN−1 and
∥∥Z − Z

∥∥2
N 2

W (0,T ;Rd)
≤ CN−1.

Where Γt = Γti for t ∈ [ti, ti+1) and Zt = Zti for t ∈ [ti, ti+1).

We introduce a somehow auxiliary scheme that at the same time depends on the main one. Let
i ∈ {0, . . . , N − 1}. We follow the procedure taken in [HPW19], with key modifications. Let us
use the ideas of [BE08] to define F-adapted discrete processes

V̂ti = Ei

(
ûi+1(X

π
ti+1

)
)
+ f

(
ti, X

π
ti
, V̂ti , Ẑti , Γ̂ti

)
h, (4.13)

Ẑti =
1

h
Ei

(
ûi+1(X

π
ti+1

)∆Wi

)
, (4.14)

Γ̂ti =
1

h
Ei

(
ûi+1(X

π
ti+1

)∆Mi

)
, (4.15)

where V̂ti is well-defined for sufficiently small h by Lemma 4.4 and the variables Ẑti , Γ̂ti are
defined below.

Lemma 4.4 The process V̂ti is well-defined.

PROOF. Let i ∈ {0, ..., N − 1} and ψ : L2(Ω,F ,P) → L2(Ω,F ,P) be defined as

ψ(ξ)(ω) = Ei

(
ûi+1(X

π
ti+1

)
)
(ω) + f

(
ti, X

π
ti
(ω), ξ(ω), Ẑti(ω), Γ̂ti(ω)

)
h.

For all ξ ∈ L2(Ω,F ,P) and ω ∈ Ω. This function is well-defined by the properties of f and Lemma
3.8. Let ξ, ξ ∈ L2, then P a.s |ψ(ξ)− ψ(ξ)| ≤ h|ξ − ξ|, therefore∥∥ψ(ξ)− ψ(ξ)

∥∥
L2(Ω,F ,P) ≤ h

∥∥ξ − ξ
∥∥
L2(Ω,F ,P)

Taking sufficiently small h we can see that this function is a contraction on L2(Ω,F ,P), and there-
fore, by applying Banach’s fixed point theorem, we conclude the proof.

For fixed i ∈ {0, ..., N}, let Nt be a process defined as Nt := E
(
ûi+1(X

π
ti+1

)
∣∣∣Ft

)
for t ∈

[ti, ti+1]. Using Lemma 3.8, it is not difficult to see that Nt is a square integrable martingale
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and therefore, by Martingale Representation Theorem (see Lemma 2.29), there exist (Ẑ, Û) ∈
N 2

W (0, T ;Rd)× N 2
µ (0, T ;R) such that

Nt = Nti +

∫ t

ti

Ẑs · dWs +

∫ t

ti

∫
Rd

Ûs(y)µ(ds, dy).

By taking t = ti+1 and recalling that Ei(·) = E(·|Fti),

ûi+1(X
π
ti+1

) = Ei

(
ûi+1(X

π
ti+1

)
)
+

∫ ti+1

ti

Ẑs · dWs +

∫ ti+1

ti

∫
Rd

Ûs(y)µ(ds, dy).

By multiplying by ∆Wi and ∆Mi, then taking Ei and using Itô isometry,

Ẑti =
1

h
Ei

(∫ ti+1

ti

Ẑsds

)
,

Γ̂ti =
1

h
Ei

(∫ ti+1

ti

∫
Rd

Ûs(y)λ(dy)ds

)
.

Let

Û ti(y) :=
1

h
Ei

(∫ ti+1

ti

Ûs(y)ds

)
. (4.16)

By Lemma 2.31 one can see that

Γ̂ti =
1

h
Ei

(∫ ti+1

ti

∫
Rd

Ûs(y)λ(dy)ds

)
=

∫
Rd

Û ti(y)λ(dy). (4.17)

The last equality can be seen as an analogous to (1.8) and makes sense with the notation Γ̂ti = ⟨Û ti⟩.
Also, we can establish the following useful bound:

E
∣∣∣Γ̂ti − ⟨wθ

i ⟩(Xπ
ti
)
∣∣∣2 ≲ E

(∥∥∥Û ti(·)− wθ
i (X

π
ti
, ·)
∥∥∥2
L2(Rd,λ)

)
.

Indeed, from (4.17) and (4.9), Hölder inequality and the fact that λ is a finite measure

E
∣∣∣Γ̂ti − ⟨wθ

i ⟩(Xπ
ti
)
∣∣∣2 = E

∣∣∣∣∫
Rd

Û ti(y)λ(dy)−
∫
Rd

wθ
i (X

π
ti
, y)λ(dy)

∣∣∣∣2
≲ E

(∥∥∥Û ti(·)− wθ
i (X

π
ti
, ·)
∥∥∥2
L2(Rd,λ)

)
.

Following [HPW19], we can find deterministic functions vi, ζi, γi such that vi(Xπ
ti
) = V̂ti , ζi(X

π
ti
) =

Ẑti and γi(y,Xπ
ti
) = Û ti(y) for y ∈ Rd. The correspondent L2-integrability of these functions is

ensured by the properties of V̂ti , Ẑti and Û ti . With the previous setup, the natural extension of the
terms to estimate the error of the scheme shown on [HPW19] must be

εv,κi = inf
θ∈Rκ

E
∣∣vi(Xπ

ti
)− uθi (X

π
ti
)
∣∣2 , εζ,κi = inf

θ∈Rκ
E
∣∣ζi(Xπ

ti
)− zθi (X

π
ti
)
∣∣2

εγ.κi = inf
θ∈Rκ

E
(∫

Rd

∣∣γi(y,Xπ
ti
)− wθ

i (X
π
ti
, y)
∣∣2 λ(dy)) . (4.18)
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The expected values can be written as a integral with respect a probability measure in Rd and
therefore, applying the Theorem 3.9, these quantities can be made arbitrarily small as κ increases.

The following results will be useful in the proof of the main result. In Section 2.5 of [BE08], it
is explained that the results presented there still hold for a time-dependent non-linearity.

Proposition 4.5 There exists a constant C > 0 independent of the step h such that

N−1∑
i=0

E
(∫ ti+1

ti

|Ys − Yti |2ds
)

≤ Ch.

PROOF. See [BE08, Proposition 2.1].

We will also need the following result.

Lemma 4.6 Consider (X, Y, Z, U) ∈ S 2
T (Rd) × B2 the solution to (1.6) - (1.7), Γ defined as in

(1.8) and Θs = (s,Xs, Ys, Zs,Γs). Then,

E
(∫ T

0

|f(Θs)|2ds
)
<∞.

PROOF. First, note that by using useful bound (4.19) we have that for every s ∈ [0, T ]

|f(Θs)|2 ≤ 2(|f(Θs)− f(s, 0, 0, 0, 0)|2 + |f(s, 0, 0, 0, 0)|2).

Applying again (4.19) and the Lipschitz bound on f ,

|f(Θs)|2 ≤ 2
[
K25(∥Xs∥2 + |Ys|2 + ∥Zs∥2 + |Γs|2) + |f(s, 0, 0, 0, 0)|2

]
.

Then, integrating on Ω× [0, T ] with respect to dP× ds, using Hölder inequality and bound (2.10),

E
(∫ T

0

|f(Θs)|2ds
)

≤ 10K2TE

(
sup

s∈[0,T ]

∥Xs∥2 + sup
s∈[0,T ]

|Ys|2
)

+ 10K2

(
E
∫ T

0

∥Zs∥2ds+ λ(Rd)E
∫ T

0

∫
Rd

|Us(y)|2λ(dy)ds
)

+ 2T sup
s∈[0,T ]

|f(s, 0, 0, 0, 0)|2

<∞

this finishes the proof.

4.3 Main Result

As stated previously, the proof of our main result, Theorem 4.7, is deeply inspired in the case
without jumps considered in [HPW19]. We follow the lines of that proof with some important

46



differences because of the nonlocal character of our problem. Also, along the proof we use several
times that for x1, ..., xk ∈ R, the following holds

(x1 + · · ·+ xk)
2 ≤ k(x21 + · · ·+ x2k). (4.19)

Theorem 4.7 Under Assumptions 2.10, there exists a constant C > 0 independent of the partition
such that for sufficiently small h,

max
i=0,...,N−1

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + N−1∑

i=0

E
(∫ ti+1

ti

[
∥Zt − ẑi(X

π
ti
)∥2 + |Γt − ⟨ŵi⟩(Xπ

ti
)|2
]
dt

)

≤ C

[
h+

N−1∑
i=0

(Nεvi + εζi + εγi )+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π) + E |g(XT )− g(Xπ
T )|

2

]
,

with εvi , εζi and εγi given in (4.18), and e(Z, (Zt)t∈π) and e(Γ, (Γt)t∈π) defined in (4.12).

PROOF. Step 1

Recall V̂ti introduced in (4.13). The purpose of this part is to obtain a suitable bound of the term

E
∣∣∣Yti − V̂ti

∣∣∣2 in terms of more tractable terms. We have

Lemma 4.8 There exists C > 0 fixed such that for any 0 < h < 1 sufficiently small, one has

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ Ch2 + CE
(∫ ti+1

ti

|Ys − Yti |2ds
)
+ CE

(∫ ti+1

ti

∥Zs − Zti∥2ds
)

+ CE
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ ChE

(∫ ti+1

ti

f(Θr)
2dr

)
+ C(1 + Ch)E

∣∣∣Yti+1
− ûi+1(X

π
ti+1

)
∣∣∣2 , (4.20)

with Θr = (r,Xr, Yr, Zr,Γr).

The rest of this subsection is devoted to the proof of this result.

PROOF. Subtracting the equation (1.7) between ti and ti+1, we obtain

∆Yi = Yti+1
− Yti = −

∫ ti+1

ti

f(Θs)ds+

∫ ti+1

ti

Zs · dWs +

∫ ti+1

ti

∫
Rd

Us(y)µ(ds, dy). (4.21)

Using the definition of V̂ti in (4.13),

Yti − V̂ti = Yti+1
−∆Yi − V̂ti

= Yti+1
+

∫ ti+1

ti

[f(Θs)− f(Θ̂ti)]ds−
∫ ti+1

ti

Zs · dWs −
∫ ti+1

ti

∫
Rd

Us(y)µ(ds, dy)

− Ei(ûi+1(X
π
ti+1

)).
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Here Θ̂ti = (ti, X
π
ti
, V̂ti , Ẑti , Γ̂ti). Then, by applying the conditional expectation for time ti given

by Ei and using that, in this case, the stochastic integrals are martingales

Yti − V̂ti = Ei(Yti+1
− ûi+1(X

π
ti+1

)) + Ei

(∫ ti+1

ti

[f(Θs)− f(Θ̂ti)]ds

)
= a+ b.

Using the classical inequality (a+ b)2 ≤ (1 + γh)a2 + (1 + 1
γh
)b2 for γ > 0 to be chosen, we get

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ (1 + γh)E
[
Ei

(
Yti+1

− ûi+1(X
π
ti+1

)
)]2

+

(
1 +

1

γh

)
E
[
Ei

(∫ ti+1

ti

[f(Θs)− f(Θ̂ti)]ds

)]2
.

(4.22)

With no lose of generality, because we are looking for bounds, we can replace [f(Θs) − f(Θ̂ti)]

by |f(Θs) − f(Θ̂ti)|. Also, we can drop the Ei due to the law of total expectation. The Lipschitz
condition on f in (2.10) allows us to give a bound in terms of the difference between Θs and Θ̂ti .
Indeed, for a fixed constant K > 0,

|f(Θs)− f(Θ̂ti)| ≤ K
(
|s− ti|1/2 + ∥Xs −Xπ

ti
∥+ |Ys − V̂ti |+ ∥Zs − Ẑti∥+ |Γs − Γ̂ti|

)
.

Therefore, we have the bound

E
(∫ ti+1

ti

|f(Θs)− f(Θ̂ti)|ds
)2

≤ Ch

[
h2 + E

(∫ ti+1

ti

∥Xs −Xπ
ti
∥2ds

)
+ E

(∫ ti+1

ti

|Ys − V̂ti|2ds
)

+ E
(∫ ti+1

ti

∥Zs − Ẑti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γ̂ti|2ds
)]

,

where the Lipschitz constantK was absorbed by C. Using now the triangle inequality |Ys−V̂ti|2 ≤
2|Ys − Yti |2 + 2|Yti − V̂ti |2, and the approximation error of the X scheme (4.5), we find

E
(∫ ti+1

ti

|f(Θs)− f(Θ̂ti)|ds
)2

(4.23)

≤ Ch

[
h2 + 2E

(∫ ti+1

ti

|Ys − Yti |2ds
)
+ 2hE

∣∣∣Yti − V̂ti

∣∣∣2
+E

(∫ ti+1

ti

∥Zs − Ẑti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γ̂ti |2ds
)]

, (4.24)

and therefore, replacing in (4.22),

E
∣∣∣Yti − V̂ti

∣∣∣2
≤ (1 + γh)E

∣∣∣Ei

[
Yti+1

− ûi+1(X
π
ti+1

)
]∣∣∣2

+ (1 + γh)
C

γ

[
h2 + E

(∫ ti+1

ti

|Ys − Yti |2ds
)
+ hE

∣∣∣Yti − V̂ti

∣∣∣2
+E

(∫ ti+1

ti

∥Zs − Ẑti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γ̂ti |2ds
)]

. (4.25)
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Recall Zti and Γti introduced in (4.11). Now, we are going to prove the following

E
(∫ ti+1

ti

∥Zs − Ẑti∥2ds
)

= E
(∫ ti+1

ti

∥Zs − Zti∥2ds
)
+ hE

∣∣∣Zti − Ẑti

∣∣∣2 . (4.26)

E
(∫ ti+1

ti

|Γs − Γ̂ti |2ds
)

= E
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ hE

∣∣∣Γti − Γ̂ti

∣∣∣2 . (4.27)

Let us prove the latter, the former is analogous. Recall that the Γ components represents the nonlo-
cal part and therefore is one dimensional.

|Γt − Γ̂ti |2 = |(Γt − Γti) + (Γti − Γ̂ti)|2 = (Γt − Γti)
2 + (Γti − Γ̂ti)

2 + 2(Γt − Γti)(Γti − Γ̂ti).

It is sufficient to establish that the double product is 0 when integrating and taking expectation.
Recall that Γti from (4.11) is a Fti measurable random variable. Then,∫ ti+1

ti

(
Γt − Γti

)
(Γti − Γ̂ti)dt =

(∫ ti+1

ti

(Γt − Γti)dt

)
(Γti − Γ̂ti)

=

[∫ ti+1

ti

Γtdt− Ei

(∫ ti+1

ti

Γtdt

)]
(Γti − Γ̂ti).

Due to the Fti-measurability of the right side of the last multiplication and the L2(P) orthogonality,
taking expectation annihilates the last term. Therefore, equations (4.26) and (4.27) are proven. By
multiplying (4.21) by ∆Wi and taking Ei,

Ei

(
∆WiYti+1

)
+ Ei

(
∆Wi

∫ ti+1

ti

f(Θr)dr

)
= Ei

(∫ ti+1

ti

dWr

∫ ti+1

ti

Zr · dWr

)
+ Ei

(∫ ti+1

ti

∫
Rd

Ur(y)µ(dy, dr)

∫ ti+1

ti

dWr

)
= Ei

(∫ ti+1

ti

Zrdr

)
= hZti ,

where we have used Lemma 2.11. Then, subtracting hẐti = Ei(ûi+1(X
π
ti+1

)∆Wi),

h(Zti − Ẑti) = Ei

[
∆Wi(Yti+1

− ûi+1(X
π
ti+1

))
]
+ Ei

(
∆Wi

∫ ti+1

ti

h(Θr)dr

)
.

By multiplying (4.21) by ∆Mi and taking Ei,

Ei

(
∆MiYti+1

)
+ Ei

(
∆Mi

∫ ti+1

ti

f(Θr)dr

)
= Ei

(∫ ti+1

ti

∫
Rd

µ(ds, dy)

∫ ti+1

ti

Zr · dWr

)
+ Ei

(∫ ti+1

ti

∫
Rd

µ(dr, dy)

∫ ti+1

ti

∫
Rd

Ur(y)µ(dr, dy)

)
= Ei

(∫ ti+1

ti

∫
Rd

Ur(y)λ(dy)ds

)
= hΓti .

Then, subtracting hΓ̂ti = Ei

(
ûi+1(X

π
ti+1

)∆Mi

)
,

h(Γti − Γ̂ti) = Ei

[
∆Mi

(
Yti+1

− ûi+1(X
π
ti+1

)
)]

+ Ei

(
∆Mi

∫ ti+1

ti

f(Θr)dr

)
.
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Summarizing, one has

h(Zti − Ẑti) = Ei

[
∆Wi

(
Yti+1

− ûi+1(X
π
ti+1

)− Ei

[
Yti+1

− ûi+1(X
π
ti+1

)
])]

+ Ei

[
∆Wi

∫ ti+1

ti

f(Θr)dr

]
;

h(Γti − Γ̂ti) = Ei

[
∆Mi

(
Yti+1

− ûi+1(X
π
ti+1

)− Ei

[
Yti+1

− ûi+1(X
π
ti+1

)
])]

+ Ei

[
∆Mi

∫ ti+1

ti

f(Θr)dr

]
.

For the sake of brevity, define now

Hi := Yti − ûi(X
π
ti
); (4.28)

note that it depends on i. By the properties related with Itô isometry, from the previous identities
we have

E
(
h2∥Zti − Ẑti∥2

)
≤ 2dh

(
E(H2

i+1)− E |Ei(Hi+1)|2
)
+ 2dh2E

[∫ ti+1

ti

f(Θr)
2dr

]
; (4.29)

E
(
h2|Γti − Γ̂ti |2

)
≤ 2λ(Rd)h

(
E(H2

i+1)− E |Ei(Hi+1)|2
)
+ 2λ(Rd)h2E

[∫ ti+1

ti

f(Θr)
2dr

]
.

(4.30)

Remark 4.9 Note that in the previous bound is important the finiteness of the Levy measure λ. The
case of more general integro-differential operators, such as the fractional Laplacian mentioned in
the introduction, it is an interesting open problem.

Let us work with equation (4.24). Using (4.26) and (4.27),

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ (1 + γh)E |Ei(Hi+1)|2

+ (1 + γh)
C

γ

[
h2 + E

(∫ ti+1

ti

|Ys − Yti |2ds
)

+hE|Yti − V̂ti |2

+ E
(∫ ti+1

ti

∥Zs − Zti∥2ds
)
+ hE∥Zti − Ẑti∥2

+E
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ hE

∣∣∣Γti − Γ̂ti

∣∣∣2] .
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Now use (4.29) and (4.30) to find that

E
∣∣∣Yti − V̂ti

∣∣∣2
≤ (1 + γh)E |Ei(Hi+1)|2

+ (1 + γh)
C

γ

[
h2 + E

(∫ ti+1

ti

|Ys − Yti |2ds
)

+ hE
∣∣∣Yti − V̂ti

∣∣∣2
+ E

(∫ ti+1

ti

∥Zs − Zti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γti|2ds
)

+ 2d
[
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

]
+ 2dhE

(∫ ti+1

ti

f(Θr)
2dr

)
+ 2λ(Rd)

[
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

]
+2λ(Rd)hE

(∫ ti+1

ti

f(Θr)
2dr

)]
.

Let γ = C(λ(Rd) + d) and define D := (1 + γh)C
γ

, then the above term is bounded by

(1 + γh)E |Ei(Hi+1)|2 +Dh2 +DE
(∫ ti+1

ti

|Ys − Yti |2
)
+DhE|Yti − V̂ti |2 +DE

(∫ ti+1

ti

∥Z − Zti∥2ds
)

+DE
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ (1 + γh)

C

γ
2dE

(
H2

i+1

)
+ 2dDhE

(∫ ti+1

ti

f(Θr)
2dr

)
+ (1 + γh)

C

γ
2λ(Rd)E

(
H2

i+1

)
+ 2λ(Rd)DhE

(∫ ti+1

ti

f(Θr)
2dr

)
− 2(1 + γh)E |Ei(Hi+1)|2

Note that the first and last term in the last expression are similar, therefore can be subtracted which
yields a negative number that can be bounded from above by 0. Also, we have the similar terms on
E
(
H2

i+1

)
and the integral of f that we put together and bound respectively. Due to the definition

of D, from now on the constant C has a linear dependence on the dimension d such that D ≤ C.

By replacing the last calculation and putting E
∣∣∣Yti − V̂ti

∣∣∣2 on the left side

(1− Ch)E
∣∣∣Yti − V̂ti

∣∣∣2
≤ Ch2 + CE

(∫ ti+1

ti

|Ys − Yti |2ds
)
+ CE

(∫ ti+1

ti

∥Zs − Zti∥2ds
)

+ CE
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ C(1 + Ch)E

(
H2

i+1

)
+ ChE

(∫ ti+1

ti

f(Θr)
2dr

)
.

Now we have to take h small such that, for example, Ch ≤ 1
2

and then

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ Ch2 + CE
(∫ ti+1

ti

|Ys − Yti |2ds
)
+ CE

(∫ ti+1

ti

∥Zs − Zti∥2ds
)

+ CE
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ ChE

(∫ ti+1

ti

f(Θr)
2dr

)
+ C(1 + Ch)E

(
H2

i+1

)
.

Finally, by recalling that Hi+1 = Yti+1
− ûi+1(X

π
ti+1

), we have established (4.20).
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Step 2

The last term in (4.20),

C(1 + Ch)E
∣∣∣Yti+1

− ûi+1(X
π
ti+1

)
∣∣∣2 ,

was left without a control in previous step. Here in what follows we provide a control on this term.
Recall the error terms e(Z, (Zt)t∈π) and e(Γ, (Γt)t∈π) introduced in (4.12). The purpose of this
section is to show the following estimate:

Lemma 4.10 There exists a constant C > 0 such that,

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ C

[
N

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + h+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π)

+ E |g(XT )− g(Xπ
T )|

2

]
. (4.31)

The rest of this section is devoted to the proof of this result.

PROOF. (of Lemma 4.10) We have that (a+ b)2 ≥ (1− h)a2 + (1− 1
h
)b2 and

E
∣∣∣Yti − V̂ti

∣∣∣2 = E
∣∣∣(Yti − ûi(X

π
ti
)
)
+
(
ûi(X

π
ti
)− V̂ti

)∣∣∣2 (4.32)

≥ (1− h)E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + (1− 1

h

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 .
Therefore, we have an upper (4.20) and lower bound for E

∣∣∣Yti − V̂ti

∣∣∣2. By connecting these
bounds,

(1− h)E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + (1− 1

h

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2
≤ Ch2 + CE

(∫ ti+1

ti

|Ys − Yti |2ds
)
+ CE

(∫ ti+1

ti

∥Zs − Zti∥2ds
)

+ CE
(∫ ti+1

ti

|Γs − Γti |2ds
)
+ ChE

(∫ ti+1

ti

f(Θr)
2dr

)
+ C(1 + Ch)E

(
H2

i+1

)
.

Using that for sufficiently small h we have (1− h)−1 ≤ 2, we get,

E
∣∣Yti − ûi(X

π
ti
)
∣∣2

≤ CNE
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + Ch2

+ C

[
E
(∫ ti+1

ti

|Ys − Yti |2ds
)
+ E

(∫ ti+1

ti

∥Zs − Zti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γti |2ds
)]

+ ChE
(∫ ti+1

ti

|f(Θs)|2ds
)
+ CE

∣∣∣Yti+1
− ûi+1(X

π
ti+1

)
∣∣∣2 .

52



Notice that the expression on time ti that we want to estimate, appears on the right side on time
ti+1, we can iterate the bound and get that ∀ i ∈ {0, ..., N − 1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2

≤ NC

N−1∑
k=i

E
∣∣∣ûk(Xπ

tk
)− V̂tk

∣∣∣2 + C(N − i)h2

+ C
N−1∑
k=i

[
E
(∫ tk+1

tk

|Ys − Ytk |2ds
)
+ E

(∫ tk+1

tk

∥Zs − Ztk∥2ds
)
+ E

(∫ tk+1

tk

|Γs − Γtk |2ds
)]

+ Ch
N−1∑
k=i

E
(∫ tk+1

tk

|f(Θs)|2ds
)
+ CE

∣∣YtN − g(Xπ
tN
)
∣∣2

≤ NC
N−1∑
k=0

E
∣∣∣ûk(Xπ

tk
)− V̂tk

∣∣∣2 + CNh2

+ C
N−1∑
k=0

[
E
(∫ tk+1

tk

|Ys − Ytk |2ds
)

+ E
(∫ tk+1

tk

∥Zs − Ztk∥2ds
)
+ E

(∫ tk+1

tk

|Γs − Γtk |2ds
)]

+ Ch
N−1∑
k=0

E
(∫ tk+1

tk

|f(Θs)|2ds
)
+ CE

∣∣YtN − g(Xπ
tN
)
∣∣2 .

Applying maximum on i ∈ {0, ..., N − 1}, recalling (4.12) and the bounds from Lemmas (4.6) and
(4.5),

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2

≤ C

[
N

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + h+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π) + E |g(XT )− g(Xπ
T )|

2

]
.

This is nothing that (4.31).

Remark 4.11 The classic bound used at the beginning of step 2 could have been stated using a
fixed parameter δ ∈ (0, 1) in the form: (a+ b)2 ≥ (1− hδ)a2 + (1− 1

hδ )b
2. This change makes N

become N δ, which is better. However, at some point of the proof the value δ = 1 is necessary.

Step 3

Estimate (4.31) contains some uncontrolled terms on its RHS. Here the purpose is to bound the
term

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 ,
in terms of more tractable terms. In this step we will prove
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Lemma 4.12 There exists C > 0 such that,

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ C

[
h+

N−1∑
i=0

(Nεv,κi + εζ,κi + εγ,κi ) + e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π)

+ E |g(XT )− g(Xπ
T )|

2

]
, (4.33)

with εv,κi , εζ,κi and εγ,κi defined in (4.18).

In what follows, we will prove 4.33.

PROOF. Fix i ∈ {0, ..., N − 1}. Recall the martingale (Nt)t∈[ti,ti+1] and take t = ti+1,

ûi+1(X
π
ti+1

) = Ei

(
ûi+1(X

π
ti+1

)
)
+

∫ ti+1

ti

Ẑs · dWs +

∫ ti+1

ti

∫
Rd

Ûs(y)µ(ds, dy).

Now we replace the definition of V̂ti ,

ûi+1(X
π
ti+1

) = V̂ti − f(ti, X
π
ti
, V̂ti , Ẑti , Γ̂ti)h+

∫ ti+1

ti

Ẑs · dWs +

∫ ti+1

ti

∫
Rd

Ûs(y)µ(ds, dy).

(4.34)

In what follows recall the value of F in the loss function Li(θ) (4.10) evaluated at the point

(ti, X
π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), wθ

i (X
π
ti
; ·), h,∆Wi),

and that ⟨wθ
i ⟩(Xti) is given in (4.9):

F
(
ti, X

π
ti , u

θ
i (X

π
ti), z

θ
i (X

π
ti), w

θ
i (X

π
ti , ·), h,∆Wi

)
= uθi (X

π
ti)− hf(ti, X

π
ti , u

θ
i (X

π
ti), z

θ
i (X

π
ti), ⟨w

θ
i ⟩i(Xti)) + zθi (X

π
ti) ·∆Wi +

∫
Rd

wθ
i (X

π
ti , y)µ

(
(ti, ti+1], dy

)
.

Now fix a parameter θ and replace (4.34) on Li(θ):

E
∣∣∣ûi+1(X

π
ti+1

)− F (ti, X
π
ti , u

θ
i (X

π
ti), z

θ
i (X

π
ti), w

θ
i (X

π
ti , ·),∆ti,∆Wi)

∣∣∣2
= E

∣∣∣V̂ti − f(ti, X
π
ti , V̂ti , Ẑti , Γ̂ti)h+

∫ ti+1

ti

Ẑs · dWs +

∫ ti+1

ti

∫
Rd

Ûs(y)µ(ds, dy)− uθi (X
π
ti)

+ hf(ti, X
π
ti , u

θ
i (Xti), z

θ
i (Xti), ⟨wθ

i ⟩(Xti))− zθi (X
π
ti) ·∆Wi −

∫
Rd

wθ
i (X

π
ti , y)µ(∆ti, dy)

∣∣∣2
= E

∣∣∣∣∣ [V̂ti − uθi (X
π
ti) + h

(
f(ti, X

π
ti , u

θ
i (X

π
ti), z

θ
i (X

π
ti), ⟨w

θ
i ⟩(Xπ

ti))− f(ti, X
π
ti , V̂ti , Ẑti , Γ̂ti)

)]

+

[∫ ti+1

ti

Ẑs · dWs −
∫ ti+1

ti

zθi (X
π
ti) · dWs +

∫ ti+1

ti

∫
Rd

Û(s, y)µ(ds, dy)−
∫ ti+1

ti

∫
Rd

wθ
i (X

π
ti , y)µ(ds, dy)

] ∣∣∣∣∣
2

= E |a+ b|2 .
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Note that b is a sum of martingale’s differences and therefore Ei(b) = 0. By independence of µ
with W , we can deduce that

E(b2) = E
(∫ ti+1

ti

[Ẑs − zθi (X
π
ti
)]dWs

)2

+ E
(∫ ti+1

ti

∫
Rd

[Û(s, y)− wθ
i (X

π
ti
, y)]µ(ds, dy)

)2

;

and, since the random variables that appears on a are Fti-measurable, E(ab) = E (Ei(ab)) =
E (aEi(b)) = 0, we have that

Li(θ) = E
(
V̂ti − uθi (X

π
ti
) + h

[
f(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), ⟨wθ

i ⟩(Xπ
ti
)))− f(ti, X

π
ti
, V̂ti , Ẑti , Γ̂ti)

])2
+ E

(∫ ti+1

ti

[Ẑs − zθi (X
π
ti
)]dWs

)2

+ E
(∫ ti+1

ti

∫
Rd

[Û(s, y)− wθ
i (X

π
ti
, y)]µ(ds, dy)

)2

︸ ︷︷ ︸
c0

.

By the same arguments on equations (4.26) and (4.27),

c0 = E
(∫ ti+1

ti

|Ẑs − Ẑti |2ds
)
+ hE

∣∣∣Ẑti − zθi (X
π
ti
)
∣∣∣2

+ E
(∫ ti+1

ti

∫
Rd

|Ûs(y)− Û ti(y)|2λ(dy)ds
)
+ hE

(∫
Rd

(
Û ti(y)− wθ

i (X
π
ti
, y)
)2
λ(dy)

)
.

With this decomposition of Li(θ), for optimization reasons, we can ignore the part that does not
depend on the optimization parameter θ. Let

L̂i(θ)

= E
(
V̂ti − uθi (X

π
ti
) + h

[
f(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), ⟨wθ

i ⟩(Xπ
ti
)))− f(ti, X

π
ti
, V̂ti , Ẑti , Γ̂ti)

])2
+ hE

∣∣∣Ẑti − zθi (X
π
ti
)
∣∣∣2 + hE

(∫
Rd

(
Û ti(y)− wθ

i (X
π
ti
, y)
)2
λ(dy)

)
.

Let γ > 0 and use Young inequality and the Lipschitz condition on f to find that

E
(
V̂ti − uθi (X

π
ti
) + h

[
f(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), ⟨wθ

i ⟩(Xπ
ti
)))− f(ti, X

π
ti
, V̂ti , Ẑti , Γ̂ti)

])2
≤ (1 + γh)E

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2

+

(
1 +

1

γh

)
h2K2E

(
|V̂ti − uθi (X

π
ti
)|2 + |zθi (Xπ

ti
)− Ẑti |2 + |⟨wθ

i ⟩(Xπ
ti
)− Γ̂ti|2

)
≤ (1 + Ch)E

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2 + Ch

[
E|zθi (Xπ

ti
)− Ẑti |2 + E

(∥∥∥Û ti(·)− wθ
i (X

π
ti
, ·)
∥∥∥2
L2(Rd,λ)

)]
.

Therefore, we have an upper bound on L(θ) for all θ

L̂(θ) ≤ CE
∣∣∣V̂ti − uθi (X

π
ti
)
∣∣∣2 + h

(
E|zθi (Xπ

ti
)− Ẑti |2

)
+ hE

(∥∥∥Û ti(·)− wθ
i (X

π
ti
, ·)
∥∥∥2
L2(λ)

)
.
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To find a lower bound, we use (a+ b)2 ≥ (1− γh)a2 +
(
1− 1

γh

)
b2 with γ > 0

E
(
V̂ti − uθi (X

π
ti
) + h

[
f(ti, X

π
ti
, V̂ti , Ẑti , Γ̂ti)− f(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
), ⟨wθ

i ⟩(Xπ
ti
)))
])2

≥ (1− Ch)E
∣∣∣V̂ti − uθi (X

π
ti
)
∣∣∣2 − h

2

(
E|zθi (Xπ

ti
)− Ẑti |2 + E|⟨G⟩i(Xπ

ti
; θ)− Γ̂ti |2

)
;

where we used γ = 6K2. Then,

L̂(θ) ≥ (1− Ch)E
∣∣∣V̂ti − uθi (X

π
ti
)
∣∣∣2

− h

2

[
E|zθi (Xπ

ti
)− Ẑti |2 + E

(∫
Rd

(
Û ti(y)− wθ

i (X
π
ti
, y)
)2
λ(dy)

)]
.

Connecting this bounds using that L̂(θ∗) ≤ L̂(θ) yields that ∀θ,

(1− Ch)E
∣∣∣V̂ti − uθ

∗

i (Xπ
ti
)
∣∣∣2 + h

2
E|Ẑti − zθ

∗

i (Xti)|2 +
h

2
E
(∫

Rd

(
Û ti(y)− wθ∗

i (Xπ
ti
, y)
)2
λ(dy)

)
≤ CE

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2 + h

(
E|Ẑti − zθi (X

π
ti
)|2
)
+ hE

(∥∥∥Û ti(·)− wθ
i (X

π
ti
, ·)
∥∥∥2
L2(Rd,λ)

)
.

By taking infimum on the right side and h small such that (1− Ch) ≥ 1
2

E
∣∣∣V̂ti − ûi(X

π
ti
)
∣∣∣2 + h

2
E|Ẑti − ẑi(Xti)|2 +

h

2
E
(∫

Rd

(
Û ti(y)− ŵi(X

π
ti
, y)
)2
λ(dy)

)
≤ C

(
εv,κi + hεζ,κi + hεγ,κi

)
. (4.35)

Using this bound on what we found on steps 1 and 2, we find

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ C

[
h+

N−1∑
i=0

(Nεv,κi + εζ,κi + εγ,κi ) +
N−1∑
i=0

E
(∫ ti+1

ti

|Ys − Yti|2ds
)

+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π) + E |g(XT )− g(Xπ
T )|

2

]
.

Finally, using Proposition 4.5, one ends the proof of (4.33).

Step 4

We are going to show some bounds for the terms involving the Γ and U components, the same
bounds holds for Z component and are shown in [HPW19]. By using (4.30) on (4.27),

E
(∫ ti+1

ti

|Γt − Γ̂ti |2dt
)

≤ E
(∫ ti+1

ti

|Γt − Γti |2dt
)
+ 2λ(Rd)

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
+ 2hλ(Rd)E

(∫ ti+1

ti

f(Θr)
2dr

)
,
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this implies, after using (4.12) and (4.6),

E

(
N−1∑
i=0

∫ ti+1

ti

|Γt − Γ̂ti |2dt

)
≤ E

(
N−1∑
i=0

∫ ti+1

ti

|Γt − Γti |2dt

)
+ C

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
+ Ch

= e(Γ, (Γt)t∈π) + Ch+ C
N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
.

From [HPW19] we get the analogous bound for the Z component, therefore, putting this two
together yields

E

(
N−1∑
i=0

∫ ti+1

ti

(
∥Zt − Ẑti∥2 + |Γt − Γ̂ti |2

)
dt

)
≤ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π)

+ Ch+ C
N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
.

(4.36)

This tells us that the next mission in this proof is to give a suitable bound for E
(
H2

i+1

)
−E |Ei(Hi+1)|2.

Recall from (4.28) that Hi+1 = Yti+1
− ûi+1(X

π
ti+1

), then

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
=

N−1∑
i=0

E(H2
i+1)−

N−1∑
i=0

E |Ei(Hi+1)|2

= E
∣∣YtN − ûN(X

π
tN
)
∣∣+ N−2∑

i=0

E(H2
i+1)−

N−1∑
i=0

E |Ei(Hi+1)|2

≤ E
∣∣YtN − ûN(X

π
tN
)
∣∣+ E(H2

0 ) +
N−1∑
i=1

E(H2
i )−

N−1∑
i=0

E |Ei(Hi+1)|2

= E |g(XT )− g(Xπ
T )|

2 +
N−1∑
i=0

(
E(H2

i )− E |Ei(Hi+1)|2
)
.

(4.37)

From (4.32) and (4.24) we have an upper and lower bound on E
∣∣∣Yti − V̂ti

∣∣∣2. Indeed, first one has

(1− h)E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ E

∣∣∣Yti − V̂ti

∣∣∣2 + (1

h
− 1

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 . (4.38)

Second, we have that for all γ > 0

(1− h) E
∣∣Yti − ûi(X

π
ti)
∣∣2 ≤

(
1

h
− 1

)
E
∣∣∣ûi(Xπ

ti)− V̂ti

∣∣∣2 + (1 + γh)E |Ei(Hi+1)|2

+ (1 + γh)
C

γ

[
h2 + E

(∫ ti+1

ti

|Ys − Yti |2ds
)
+ hE

∣∣∣Yti − V̂ti

∣∣∣2 + E
(∫ ti+1

ti

∥Zs − Ẑti∥2ds
)
+ E

(∫ ti+1

ti

|Γs − Γ̂ti |2ds
)

︸ ︷︷ ︸
Bi

]
.

Let us call the expression inside the squared brackets by Bi. Subtracting (1− h)E |Ei(Hi+1)|2 and
dividing by (1− h),

E(H2
i )− E |Ei(Hi+1)|2 ≤

1

h
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + (h+ γh

1− h

)
E |Ei(Hi+1)|2 +

C

γ

(1 + γh)

(1− h)
Bi.
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For γ = 3C and sufficiently small h, we can force,

C

γ

(1 + γh)

(1− h)
≤ 1

2
and

1

1− h
≤ 1

2
.

Hence,

E(H2
i )− E |Ei(Hi+1)|2 ≤

1

h
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + ChE |Ei(Hi+1)|2 +
1

2
Bi.

Finally, note that,

N−1∑
i=0

E |Ei(Hi+1)|2 ≤ E |g(XT )− g(Xπ
T )|

2 +N max
i=0,...,N−1

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 . (4.39)

Remark 4.13 Note that in equation (4.39) appears N multiplying the last term. With the bounds
that we have, is impossible to get rid of the N , and this is why the δ improvement mentioned on
Remark 4.11 will not be of much help.

Coming back to (4.37),

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
≤ 2E |g(XT )− g(Xπ

T )|
2 +N

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2
+ ChN max

i=0,...,N−1
E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + 1

2

N−1∑
i=0

Bi.

Therefore, by plugging this bound in (4.36), noting that |Yti−V̂ti|2 ≤ 2|Yti−ûi(Xπ
ti
)|2+2|ûi(Xπ

ti
)−

V̂ti |2, hN = 1, and using Lemma 4.5, we have for some C > 0,

E
(N−1∑

i=0

∫ ti+1

ti

(
∥Zt − Ẑti∥2 + |Γt − Γ̂ti |2

)
dt

)
≤ C

[
E |g(XT )− g(Xπ

T )|
2
+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π) + h

+N

N−1∑
i=0

E
∣∣∣ûti(Xπ

ti)− V̂ti

∣∣∣2 + max
i=0,...,N−1

E
∣∣Yti − ûti(X

π
ti)
∣∣2 ].

Now, use (4.35) together with Lemma 4.12 to get

E
(N−1∑

i=0

∫ ti+1

ti

(
∥Zt − Ẑti∥2 + |Γt − Γ̂ti |2

)
dt

)
≤C
[
E |g(XT )− g(Xπ

T )|
2 + e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π)

+ h+
N−1∑
i=0

(Nεv,κi + εζ,κi + εγ,κi )

]
.

Again, recalling (4.35) using the previous bound and,

N−1∑
i=0

E
(∫ ti+1

ti

[
∥Zt − ẑi(X

π
ti)∥

2|Γt − ⟨ŵi⟩(Xπ
ti)|

2
]
dt

)

≤
N−1∑
i=0

E
(∫ ti+1

ti

[
|Zt − Ẑti |2 + |Γt − Γ̂ti |2

]
dt

)
+

N−1∑
i=0

hE

([
∥Ẑti − ẑi(X

π
ti)∥

2 +
∥∥∥Û ti(·)− ŵi(X

π
ti , ·)

∥∥∥2
L2(Rd,λ)

]
dt

)
,
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we conclude that there exist C > 0, independent of the partition, such that for h sufficiently small,

max
i=0,...,N−1

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + N−1∑

i=0

E
(∫ ti+1

ti

[
∥Zt − ẑi(X

π
ti
)∥2 + |Γt − ⟨ŵi⟩(Xπ

ti
)|2
]
dt

)

≤ C

[
h+

N−1∑
i=0

(Nεv,κi + εζ,κi + εγ,κi )+ e(Z, (Zt)t∈π) + e(Γ, (Γt)t∈π) + E |g(XT )− g(Xπ
T )|

2

]
.

Thus it has been demonstrated.

We state some remarks from the proof.

Remark 4.14 Note that the terms Ev
i , Ez

i and Eγ
i , can be made arbitrarily small, in view of Lemma

3.10. The challenge here, and in almost every DL algorithm, is that we do not know how many
units per layer, i.e., how large κ we need to take in order to achieve a fixed tolerance, we can only
ensure the existence of a NN architecture satisfying the approximation property.

Remark 4.15 The main difficulty of the adaptation of the proof given in [HPW19], was to give a
useful definition of the third NN with the mission of approximate the non local component. This was
problematic because we have two options, the first is to define the NN to approximate the whole
integral ∫

Rd

[u(ti, X
π
ti
+ β(Xπ

ti
, y))− u(ti, X

π
ti
)]λ(dy),

this seems intuitive because this will lead our third NN to approximate the nonlocal part of the
PIDE and, therefore, receive one parameter: Xπ

ti
. But, we also need to approximate or been able

to calculate the stochastic integral∫
Rd

[u(ti, X
π
ti
+ β(Xπ

ti
, y))− u(ti, X

π
ti
)]µ̄ ((ti, ti+1], dy) ,

that cannot be done by only knowing the first integral. To overcome this issue, we proposed the
idea to approximate what it is inside the integrals and solve the problem of actually integrate this
function with another tools.

Remark 4.16 The non local part of the PIDE (1.3) makes us add a Lévy process, which is a
canonical tool when dealing with non local operators such as the one that appears on equation
(1.3). This addition results in the natural definition of analogous objects from [HPW19] such as
the Γ, Γ̄ components for the nonlocal case.

Remark 4.17 The result of the theorem states that the better we can approximate vi, zi, γi by NN
architectures, the better we can approximate (Yti , Zti ,Γti) by (ûi(X

π
ti
), ẑi(X

π
ti
), ⟨ŵi⟩(Xπ

ti
)).

Remark 4.18 Because of the finiteness of the measure λ, the case of the Fractional Laplacian
mentioned in the introduction is not contained in Theorem 4.7. We hope to extend our results to
this case in a forthcoming result.
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4.3.1 Optimization step of the algorithm

In this subsection we give a brief explanation on how to compute the loss function from Algorithm
1 in order to perform it. As usual, we extend the computation of the loss function shown on
[HPW19] to our non local case for which we need to introduce the following definitions. For a
cadlag process (Cs)s∈[0,T ], ∆Cs := Cs − Cs− stands for the jump of C at time s ∈ [0, T ] and for a
process U ∈ N 2

µ (0, T ;Rd) the definition of stochastic integral with respect to µ ([App09, Sections
2 and 4]) is as follows,∫ t

s

∫
Rd

U(r, y)µ(ds, dy) :=
∑
r∈(s,t]

U(r,∆Pr)1Rd(∆Pr),

where (
Ps =

∫
Rd

xµ(s, dx)

)
s

,

is a compound Poisson process (see [App09, Thm 2.3.10]). And therefore,∫ t

s

∫
Rd

U(r, y)µ̄(ds, dy) =
∑
r∈(s,t]

U(r,∆Pr)1Rd(∆Pr)−
∫ t

s

∫
Rd

U(r, y)λ(dy)dr.

For simplicity assume that λ is a probability measure absolutely continuous with respect to Lebesgue
measure. As we will see, several simulation of Lévy process (Xt)t∈[0,T ] are needed.

As shown on Algorithm 1, given ûi+1 for i ∈ {0, ..., N − 1}, we need to minimize Li(·) and
define the NNs for step i. Recall the definition of Li in (4.10), the idea is to write the expected
value from the loss function as an average of simulations. LetM ∈ N and I = {1, ...,M}, generate
simulations {xik : k ∈ I},

{
xi+1
k : k ∈ I

}
, {δwk : k ∈ I} ofXπ

ti
,Xπ

ti+1
and ∆Wi respectively. Then,

Li(θ) ≈
1

M

∑
k∈I

(
ûi+1(x

i+1
k )− F (ti, x

i
k, u

θ
i (x

i
k), z

θ
i (x

i
k), w

θ
i (x

i
k, ·), h, δwi)

)2
.

Note that we are using an Euler scheme on the simulations of (Xt)t∈[0,T ], nevertheless, there exists
other methods depending on the structure of the diffusion, see [BR11] and [KHT10]. Recall that F
needs two different integrals of wθ

i (x
i
k, ·), to approximate these values let L ∈ N and J = {1, ..., L}

and consider, for every k ∈ I , simulations
{
ykl : l ∈ J

}
of a random variable Y ∼ λ, here is

important the finitness of the measure. Then, the quantities we need can be computed as follows,∫
Rd

wθ
i (x

i
k, y)λ(dy) = E(wθ

i (x
i
k, y)) ≈

1

L

∑
l∈J

wθ
i (x

i
k, y

k
l )∫

Rd

wθ
i (x

i
k, y)µ̄ ((ti, ti+1], dy) =

∫ ti+1

ti

∫
Rd

wθ
i (x

i
k, y)µ (dt, dy)−

∫ ti+1

ti

∫
Rd

wθ
i (x

i
k, y)dtλ(dy)

≈
∑

ti≤s<ti+1

wθ
i (x

i
k,∆Ps)1Rd(∆Ps)−

h

L

∑
l∈J

wθ
i (x

i
k, y

k
l ).
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Therefore, provided we can simulate: trajectories of (Xt)t∈[0,T ] and (Wt)t∈[0,T ], realizations of
Y ∼ λ and the compound Poisson process (Pt)t∈[0,T ], we can minimize Li, find the optimal θ∗ and
define

(ûi, ẑi, ŵi) = (uθ
∗

i , z
θ∗

i , w
θ∗

i ).

Remark 4.19 The nonlocal term in equation (1.3) adds complexity not only in the proof of the
consistency of the algorithm but in the algorithm itself. As we saw, it is key that the measure λ is
finite as well as the capability to simulate integrals with respect to Poisson random measures and
trajectories of the Lévy process. The implementation of this method and an extension to PIDEs with
more general integro-differential operators, such as fractional Laplacian, are left to future work.
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Chapter 5

Kolmogorov equation posed on a Hilbert
space

In this chapter we introduce the scheme for the equation presented in Section 1.1.3. As well as
in the previous chapter, in Section 5.1 we apply Itô lemma to a strong solution of (1.9) deriving
an recursive algorithm. In Section 5.2 we define auxiliary processes that are necessary for starting
the proof of the main result and prove properties of these. Finally, Section 5.3 is devoted to the
consistency proof of the presented scheme.

5.1 Functional Numerical Scheme

Throughout this section we will work with functions that we call approximators and are parameter-
ized by a finite dimensional parameter θ ∈ Θη ⊂ Rη for some η ∈ N, also let Θ = ∪η∈NΘη. As the
reader may anticipate, these functions will be the DeepOnets introduced in Section 3.2. We work
in generality first, to then apply our results to this particular case.

The following is a key assumption for the validity of our main results.

Assumptions 5.1 Assume we are given a function u ∈ C1,2([0, T ] × H) satisfying (1.9) and a
strong solution (Xt)t∈[0,T ] to (1.11).

This assumption is natural in finite dimensions, but its validity in infinite dimensions is far from
obvious. The scheme presented here is fully inspired by [HPW19] and relies on an application of
Itô Lemma to (u(t,Xt))t∈[0,T ] as follows (see [DPZ92, Theorem 4.32]),

u(t,Xt)

= u(0, X0) +

∫ t

0

⟨∇u(s,Xs), B(s,Xs)(·)⟩HdWs −
∫ t

0

ψ (s,Xs, u(s,Xs), B
∗(s,Xs)∇u(s,Xs)) ds

= u(0, X0) +

∫ t

0

⟨B∗(s,Xs)∇u(s,Xs), ·⟩0dWs −
∫ t

0

ψ (s,Xs, u(s,Xs), B
∗(s,Xs)∇u(s,Xs)) ds.
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Consider now a uniform partition π = {t0 = 0, ..., tN = T} with ti = iT
N

such that h = ti+1−ti > 0
for all i ∈ {0, ..., N − 1}, then

u(ti+1, Xti+1
) = u(ti, Xti) +

∫ ti+1

ti

⟨B∗(s,Xs)∇u(s,Xs), ·⟩0dWs

−
∫ ti+1

ti

ψ (s,Xs, u(s,Xs), B
∗(s,Xs)∇u(s,Xs)) ds.

Let η ∈ N be a fixed natural number and let Θη ⊂ Rη be also a fixed set. Now, let us introduce
some approximators as a collection of mappings uθi : H → R for i ∈ {0, ..., N} and zθi : H → V0
for i ∈ {0, ..., N − 1}. Additionally, consider an scheme Xπ = (Xπ

t )t∈π for the equation (1.11)
which we assume satisfies σ(Xπ

s : s ≤ t, s ∈ π) ⊂ Ft, Xπ
t ∈ L4(Ω,Ft,P;H) for t ∈ π. Here

Xπ is a Markov process. These approximators are assumed to be such that
{
uθi
}
θ∈Θ and

{
zθi
}
θ∈Θ

are dense in L2(H,µXπ
ti
) and L2(H,µXπ

ti
;V0) respectively. Also assume that the approximators has

polynomial growth at most.

Remark 5.2 Hilbert valued DeepOnets are a set of approximators. This is obtained by defining

Θη =
⋃

d,m∈N

{d} × Nσ,7,d,m,η × {m} . (5.1)

The size of the hidden layers of the NN (recall Definition 3.4) is the variable that may increase in
order to have a better performance of the DO.

We propose a scheme in which we intend to find θ ∈ Θη such that given ûi+1, the following
approximations hold as good as possible:

uθi (·) ≈ u(ti, ·)
zθi (·) ≈ B∗(ti, ·)∇u(ti, ·)

ûi+1(X
π
ti+1

) ≈ uθi (X
π
ti
) +

∫ ti+1

ti

⟨zθi (Xπ
ti
), ·⟩0dWs − ψ

(
ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
)
)
h,

each one in some proper measure for every i ∈ {1, ..., N − 1}. The above approximations moti-
vates the definition of a cost function, Li : Θη → [0,+∞), associated to θ ∈ Θη:

Li(θ) = E
∣∣∣ûi+1(X

π
ti+1

)− uθi (X
π
ti
)−

∫ ti+1

ti

⟨zθi (Xπ
ti
), ·⟩0dWs + ψ

(
ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
)
)
h
∣∣∣2.

We present the following algorithm as an infinite-dimension extension of the one already presented
in [HPW19] and [Cas21].

Algorithm 2: DBDP1 infinite-dimension extension
Start with ûN = ϕ;
for i ∈ {N − 1, ..., 1} do

Given ûi+1;
Compute θ∗ = argmin

θ∈Θη

Li(θ);

Update (ûi, ẑi) =
(
uθ

∗
i , z

θ∗
i

)
;

end

63



5.2 Previous Definitions and Results

Let us introduce the operator Ei = E(·|Fti) defined for every integrable real or vector valued ran-
dom variable. For the consistency proof of the algorithm we need to introduce a somehow auxiliary
scheme (V̂ti , Ẑti)i∈{0,...,N−1} that is inspired by [BT04], used in [HPW19] and we generalize to the
infinite-dimensional case as follows,

V̂ti = Ei(ûi+1(X
π
ti+1

)) + ψ(ti, X
π
ti
, V̂ti , Ẑti)h (5.2)

Ẑti =
1

h
Ei(ûi+1(X

π
ti+1

)∆Wi). (5.3)

Observe that these processes are adapted to the discrete filtration (Ft)t∈π. The discrete process
V̂ti for i ∈ {0, ..., N − 1} is well-defined for sufficiently small h as shown in Lemma 5.3 and by
Markov property of Xπ, there exists square integrable functions vi, zi for i ∈ {0, ..., N − 1} such
that

V̂ti = vi(X
π
ti
) and Ẑti = zi(X

π
ti
).

Lemma 5.3 Assume that for sufficiently small h and every i ∈ {0, ..., N − 1}, E|ûi+1(X
π
ti+1

)|4 <
+∞. Then there exists V̂ti ∈ L2(Ω,Fti ,P) such that (5.2) holds and Ẑti ∈ L2(Ω,Fti ,P;V ).

PROOF. Let i ∈ {0, ..., N − 1} and f : L2(Ω,Fti ,P) → L2(Ω,Fti ,P) be defined as

f(ξ)(ω) = Ei

(
ûi+1(X

π
ti+1

)
)
(ω) + ψ

(
ti, X

π
ti
(ω), ξ(ω), Ẑti(ω)

)
h.

For all ξ ∈ L2(Ω,Fti ,P) and ω ∈ Ω. This function is well-defined by the properties of ψ and the
approximators. Let ξ, ξ ∈ L2(Ω,Fti ,P), then P a.s |ψ(ξ)− ψ(ξ)| ≤ h|ξ − ξ|, therefore∥∥ψ(ξ)− ψ(ξ)

∥∥
L2(Ω,Fti ,P)

≤ h
∥∥ξ − ξ

∥∥
L2(Ω,Fti ,P)

.

Taking h < 1, which is independent of i, we can see that this function is a contraction onL2(Ω,F ,P),
and therefore, by applying Banach’s fixed point theorem, we conclude the first result of this lemma.
By standard computations,

E
∥∥∥Ẑti

∥∥∥2
V
= E

∥∥∥∥1hEi

(
ûi+1(X

π
ti+1

)∆Wi

)∥∥∥∥2
≤ 1

h2
E
(
Ei

∥∥∥ûi+1(X
π
ti+1

)∆Wi

∥∥∥
V

)2
≤ 1

h
E
(
|ûi+1(X

π
ti+1

)|2 ∥∆Wi∥2V
)

≤ 1

h

√
E|ûi+1(Xπ

ti+1
)|4
√
E ∥∆Wi∥4V <∞,

where we used the fact that Wt ∈ L4(Ω,F ,P;V ). The proof is completed.

We intent to write Ẑti as the average of some other process on [ti, ti+1], to be consistent with
the overline notation this process has to be denoted as Ẑt for t ∈ [ti, ti+1].
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Lemma 5.4 There exists a V0-valued process (Ẑt)t∈[ti,ti+1], which can be seen as an element of
NW (ti, ti+1;L2(V0,R)), such that,

Ẑti =
1

h
Ei

(∫ ti+1

ti

Ẑsds

)
∈ L2(Ω,Fti ,P;Q1/2V ).

PROOF. Consider Nt = E(ûi+1(X
π
ti+1

)|Ft) for t ∈ [ti, ti+1], this process is a square integrable
martingale because ûi+1(X

π
ti+1

) ∈ L2(Ω,Fti+1
,P). By the martingale representation theorem 2.34

there exists (Ẑt)t∈[ti,ti+1] ∈ NW (ti, ti+1;L2(V0,R)), which ensures the a.e. Bochner integrability
of (Ẑt)t∈[ti,ti+1], such that,

Nt = Nti +

∫ t

ti

⟨Ẑs, ·⟩0dWs.

By taking t = ti,

ûi+1(X
π
ti+1

) = Ei(ûi+1(X
π
ti+1

)) +

∫ ti+1

ti

⟨Ẑs, ·⟩0 dWs.

It follows that,

hẐti = Ei(Ei(ûi+1(X
π
ti+1

))∆Wi) + Ei

(∫ ti+1

ti

⟨Ẑs, ·⟩0 dWs

(
Wti+1

−Wti

))
.

Note that we took the equation from R to V . We can make the following elimination,

Ei(Ei(ûi+1(X
π
ti+1

))∆Wi) = Ei(ûi+1(X
π
ti+1

))Ei∆Wi = 0,

which yields,

hẐti = Ei

(∫ ti+1

ti

⟨Ẑs, ·⟩0 dWs

(
Wti+1

−Wti

) )
.

Recall that the representation (2.6) allows us to writeWti+1
−Wti =

∑∞
j=1 fj

√
λj(βj(ti+1)−βj(ti)),

where the series converges in L2(Ω,F ,P;V ). Therefore, we can take the summation out of Ei,

hẐti =
∞∑
j=1

fj
√
λjEi

(∫ ti+1

ti

⟨Ẑs, ·⟩0 dWs

∫ ti+1

ti

dβj(s)
)
.

Using Lemma 2.33 and the same argument as before with the L2(Ω,F ,P) limit∫ ti+1

ti

⟨Ẑs, ·⟩0dWs = lim
n→∞

∫ ti+1

ti

⟨Ẑs, ·⟩0dW n
s =

∞∑
k=1

∫ ti+1

ti

⟨Ẑs, Q
1/2fj⟩0dβk

s ,

we get,

hẐti =
∞∑
j=1

∞∑
k=1

λ
1/2
j fjEi

(∫ ti+1

ti

⟨Ẑs, Q
1/2fk⟩0dβk

s

∫ ti+1

ti

dβj
s

)

=
∞∑
j=1

Ei

(∫ ti+1

ti

⟨Ẑs, Q
1/2fj⟩0Q1/2fjds

)
.
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Where we used conditional Ito isometry. Last step is proving the following limit inL2(Ω,Fti ,P;V ),

lim
n→∞

n∑
j=1

∫ ti+1

ti

⟨Ẑs, Q
1/2fj⟩0Q1/2fjds =

∫ ti+1

ti

Ẑsds.

Indeed,

E

∥∥∥∥∥
∫ ti+1

ti

Ẑsds−
n∑

j=1

∫ ti+1

ti

⟨Ẑs, Q
1/2fj⟩0Q1/2fjds

∥∥∥∥∥
2

V

= E

∥∥∥∥∥
∫ ti+1

ti

∞∑
j=n+1

⟨Ẑs, Q
1/2fj⟩0Q1/2fjds

∥∥∥∥∥
2

V

≤ hE
∫ ti+1

ti

∥∥∥∥∥
∞∑

j=n+1

⟨Ẑs, Q
1/2fj⟩0Q1/2fj

∥∥∥∥∥
2

V

ds

= hE
∫ ti+1

ti

∞∑
j=n+1

|⟨Ẑs, Q
1/2fj⟩0|2⟨Q1/2⟩ds ≤ hE

∫ ti+1

ti

∥∥∥Ẑs

∥∥∥2
0
ds

(
∞∑

j=n+1

λj

)
,

which approaches to 0 as n→ ∞ because of Q been trace class.

Recall the uniform partition π with step h from Subsection 5.1 and that ∆Wi = Wti+1
−Wti .

Lemma 5.5 The following holds:

Ei ∥∆Wi∥2V = tr(Q)h.

PROOF. Consider the identity mapping IV : V → V . By Ito isometry, one has that

E ∥∆Wi∥2V = E
∥∥∥∥∫ ti+1

ti

IV dWs

∥∥∥∥2
V

= E
∫ ti+1

ti

∥IV ∥2L2(V0,V ) ds

= h ∥IV ∥2L2(V0,V ) = h
∞∑
k=1

λk = tr(Q)h.

It is useful to state and prove our main result to consider the following definition:

Definition 5.6 For i ∈ {0, ..., N − 1} let (Ms)s∈[0,T ] be an integrable process and (Li)i∈{0,...,N−1}
be a set of random variables, all random objects taking values in some Hilbert K. We define,

ei(M,L0) = E
∫ ti+1

ti

∥Ms − L0∥2K ds and e(M,L) =
N−1∑
i=0

ei(M,Li). (5.4)

Also,

Zti =
1

h
Ei

∫ ti+1

ti

Zsds ∈ L2(Ω,Fti ,P;Q1/2V ). (5.5)
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Let εvi , εzi given by

εv,ηi := inf
θ∈Θη

E|vi(Xπ
ti
)− uθi (X

π
ti
)|2, εz,ηi := inf

θ∈Θη

E
∥∥zi(Xπ

ti
)− zθi (X

π
ti
)
∥∥2
0
. (5.6)

Finally, consider

εv,η =
N−1∑
i=0

εvi , εz,η =
N−1∑
i=0

εzi . (5.7)

Previous definitions are related to the error committed in our scheme. Given the previous no-
tation, consider the following assumptions which depends on the behavior of solution (Y, Z) to
stochastic equation (1.12) and how good the assumed scheme Xπ is.

Assumptions 5.7 Assume that the processes (Y, Z) ∈ S 2
T (R) × NW (0, T ;L0

2(V,R)) satisfy that
there exist C > 0 and a function ρ : (0,∞) → (0,∞) such that,

e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π) ≤ ρ(h), (5.8)

where ρ(h) → 0 as h→ 0.

This assumption holds in the finite dimensional case, where the control on regularity is precise
and stipulated as a O(h). See e.g. [BE08, Theorem 2.1]. Note that in general the distance used
to measure the component related to Y is always expressed in a L∞-type of distance. Meanwhile,
terms related to Z are measured in L2-type of measure. The following is a typical but essential
preliminary result:

Lemma 5.8 Let (Xt)t∈[0,T ] be such that sup
s∈[0,T ]

E ∥Xs∥2H <∞ and (Y, Z) ∈ S 2
T (R)×NW (0, T ;L0

2(V )).

The following bound holds,

E
(∫ T

0

ψ(s,Xs, Ys, Zs)
2ds

)
<∞

PROOF. First note that ∫ T

0

E ∥Xs∥2H ds ≤ T sup
s∈[0,T ]

E ∥Xs∥2H <∞,

then, Fubini theorem can be applied together with the Lipschitz condition on ψ to get,

E
∫ T

0

ψ(s,Xs, Ys, Zs)
2ds ≤ 2KE

∫ T

0

(s+ ∥Xs∥2H + |Ys|2 + ∥Zs∥20)ds+ 2Tψ(0, 0, 0, 0)2

≤ CT 2

2
+ CT sup

s∈[0,T ]

E ∥Xs∥2H + CT sup
s∈[0,T ]

|Ys|2 + CE
∫ T

0

∥Zs∥20 ds+ CT

≤ C

(
1 + sup

s∈[0,T ]

E ∥Xs∥2H + ∥Y ∥2S 2
T (R) + ∥Z∥2NW (0,T ;L0

2(V,R))

)
<∞.

Thus, the proof is completed.
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5.3 Main Result

Now we are ready to state and prove the main result of this paper. Recall the properties of approx-
imators in Subsection 5.1.

Theorem 5.9 Under Assumptions 2.12, 5.1 and 5.7, there exists a constant C > 0 independent of
the partition such that for sufficiently small h,

max
i=0,...,N−1

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + N−1∑

i=0

E
(∫ ti+1

ti

∥∥Zt − ẑi(X
π
ti
)
∥∥2
0
dt

)
≤ C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2 +Nεv,η + εz,η + ρ(h)

]
,

with εv,η, εz,η given in (5.7).

PROOF. Step 1

Recall V̂ti introduced in (5.2). The purpose of this part is to obtain a suitable bound of the term

E
∣∣∣Yti − V̂ti

∣∣∣2 in terms of more tractable terms. We have

Lemma 5.10 There exists C > 0 fixed such that for any 0 < h < 1 sufficiently small, one has

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ Ch2 + CE
∫ ti+1

ti

|Ys − Yti|2ds+ CE
∫ ti+1

ti

∥∥Zs − Zti

∥∥2
V
ds+ ChE

∫ ti+1

ti

ψ(Θr)
2dr

+ C(1 + Ch)E
∣∣∣Yti+1

− ûi+1(X
π
ti+1

)
∣∣∣2 , (5.9)

with Θr = (r,Xr, Yr, Zr).

The rest of this subsection is devoted to the proof of this result.

PROOF. Subtracting the equation (1.12) between ti and ti+1, we obtain

∆Yi = Yti+1
− Yti = −

∫ ti+1

ti

ψ(Θs)ds+

∫ ti+1

ti

⟨Zs, ·⟩0dWs. (5.10)

Using the definition of V̂ti in 5.2,

Yti − V̂ti = Yti+1
−∆Yi − V̂ti

= Yti+1
+

∫ ti+1

ti

[ψ(Θs)− ψ(Θ̂ti)]ds−
∫ ti+1

ti

⟨Zs, ·⟩0dWs − Eiûi+1(X
π
ti+1

).

Here Θ̂ti = (ti, X
π
ti
, V̂ti , Ẑti). Then, by taking Ei and using that stochastic integration produces a

martingale

Yti − V̂ti = Ei(Yti+1
− ûi+1(X

π
ti+1

)) + Ei

(∫ ti+1

ti

[ψ(Θs)− ψ(Θ̂ti)]ds

)
= a+ b.
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Using the classical inequality (a+ b)2 ≤ (1 + γh)a2 + (1 + 1
γh
)b2 for γ > 0 to be chosen, we get

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ (1 + γh)E
[
Ei

(
Yti+1

− ûi+1(X
π
ti+1

)
)]2

+

(
1 +

1

γh

)
E
[
Ei

(∫ ti+1

ti

[ψ(Θs)− ψ(Θ̂ti)]ds

)]2
.

(5.11)

With no lose of generality, as we are seeking for an upper bound, we can replace [ψ(Θs)− ψ(Θ̂ti)]

by |ψ(Θs)−ψ(Θ̂ti)|. Also, in the second term, we can drop the Ei due to the law of total expectation.
The Lipschitz condition on ψ in Assumptions 2.12 allows us to give an upper bound in terms of the
difference between Θs and Θ̂ti . Indeed, we have that

E
[
Ei

(∫ ti+1

ti

[ψ(Θs)− ψ(Θ̂ti)]ds

)]2
≤ Ch

[
h2 + E

∫ ti+1

ti

∥∥Xs −Xπ
ti

∥∥2
H
ds+ E

∫ ti+1

ti

|Ys − V̂ti|2ds

+ E
∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
V
ds

]
,

where the Lipschitz constant of ψ was absorbed by C. Using now triangle inequality |Ys − V̂ti| ≤
|Ys − Yti |+ |Yti − V̂ti | and the definition of ei in (5.4), we find

E
[
Ei

(∫ ti+1

ti

[ψ(Θs)− ψ(Θ̂ti)]ds

)]2
≤ Ch

[
h2 + ei(X,X

π
ti
) + ei(Y, Yti) + hE

∣∣∣Yti − V̂ti

∣∣∣2
+E

∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
V
ds

]
. (5.12)

For the sake of brevity, define now

Hi := Yti − ûi(X
π
ti
). (5.13)

Therefore, replacing in (4.22),

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ (1 + γh)E|EiHi+1|2 + (1 + γh)
C

γ

[
h2 + ei(X,X

π
ti
) + ei(Y, Yti) + hE

∣∣∣Yti − V̂ti

∣∣∣2
+E

∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
V
ds

]
. (5.14)

Recall Zti introduced in equation (5.5). In order to work with last term in previous equation, we
prove the following,

E
∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
V
ds = E

∫ ti+1

ti

∥∥Zs − Zti

∥∥2
V
ds+ hE

∥∥∥Zti − Ẑti

∥∥∥2
V
. (5.15)

Indeed, ∥∥∥Zt − Ẑti

∥∥∥2
V
=
∥∥∥(Zt − Zti) + (Zti − Ẑti)

∥∥∥2
V

=
∥∥Zt − Zti

∥∥2
V
+
∥∥∥Zti − Ẑti

∥∥∥2
V
+ 2⟨Zt − Zti , Zti − Ẑti⟩V .
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It is sufficient to establish that the double product is null when we integrate and take expected
valued. Recall that Zti from (5.5) is a Fti measurable random variable. Then, by using elementary
properties of Bochner integral,

E
∫ ti+1

ti

⟨Zt − Zti , Zti − Ẑti⟩V dt = E
〈∫ ti+1

ti

(Zs − Zti)ds, Zti − Ẑti

〉
V

= hE
〈1
h

∫ ti+1

ti

Zsds− Zti , Zti − Ẑti

〉
V
= 0.

The latter is due to the fact that Zti − Ẑti ∈ L2(Ω,Fti ,P;V ) and 1
h

∫ ti+1

ti
Zsds − Zti is an orthog-

onal element to L2(Ω,Fti ,P;V ) ⊂ L2(Ω,F ,P;V ). Therefore, equation (4.26) is established. By
multiplying (4.21) by ∆Wi and taking Ei,

Ei

(
∆WiYti+1

)
+ Ei

(
∆Wi

∫ ti+1

ti

ψ(Θs)ds

)
= Ei

(∫ ti+1

ti

dWs

∫ ti+1

ti

⟨Zs, ·⟩0dWs

)
= Ei

∫ ti+1

ti

Zsds = hZti ,

where we used the arguments from the proof of Lemma 5.4. Subtracting hẐti = Ei(ûi+1(X
π
ti+1

)∆Wi)
and then noting that Ei(∆WiEi(Hi+1)) = 0,

h(Zti − Ẑti) =Ei

[
∆Wi(Yti+1

− ûi+1(X
π
ti+1

))
]
+ Ei

(
∆Wi

∫ ti+1

ti

ψ(Θs)ds

)
=Ei [∆Wi(Hi+1 − EiHi+1)] + Ei

(
∆Wi

∫ ti+1

ti

ψ(Θs)ds

)
By applying the conditional version of Holder inequality for the first term and its classical form to
the second one, follows that

h2E
∥∥∥Zti − Ẑti

∥∥∥2
V
= E

∥∥∥∥Ei

[
∆Wi(Hi+1 − EiHi+1)

]
+ Ei

(
∆Wi

∫ ti+1

ti

ψ(Θs)ds

)∥∥∥∥2
V

≤ 2E
(
Ei ∥∆Wi∥2V Ei[Hi+1 − EHi+1]

2
)
+ 2E

Ei ∥∆Wi∥2V Ei

[∫ ti+1

ti

ψ(Θs)ds

]2
≤ Ctr(Q)E

(
EiH

2
i+1 − (EiHi+1)

2
)
+ Ch tr(Q)E

∫ ti+1

ti

|ψ(Θs)|2ds; (5.16)

Putting all together,

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ (1 + γh)E |Ei(Hi+1)|2

+ (1 + γh)
C

γ

[
h2 + ei(X,X

π
ti
) + ei(Y, Yti) + ei(Z,Zti) + hE|Yti − V̂ti|2

+ tr(Q)EH2
i+1 − tr(Q)E|EiHi+1|2

+ htr(Q)E
∫ ti+1

ti

|ψ(Θs)|2ds
]
.
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Where we also used thatZt, Zti are V0-valued and implies
∥∥Zt − Zti

∥∥2
V
≤
∥∥Q1/2

∥∥2
L(Q)

∥∥Zt − Zti

∥∥2
0
.

Let γ = C2tr(Q) and note that (1 + γh)C
γ
≤ C and also γ ≤ C, then the above term transform to

Ch2 + Cei(X,X
π
ti
) + Cei(Y, Yti) + Cei(Z,Zti)

+ ChE|Yti − V̂ti |2 + C(1 + Ch)EH2
i+1 + ChE

∫ ti+1

ti

|ψ(Θs)|2ds.

Now we take h small such that Ch < 1 and then

E
∣∣∣Yti − V̂ti

∣∣∣2 ≤ Ch2 + Cei(X,X
π
ti
) + Cei(Y, Yti) + Cei(Z,Zti)

+ C(1 + Ch)EH2
i+1 + ChE

∫ ti+1

ti

|ψ(Θs)|2ds.

Finally, by recalling that Hi+1 = Yti+1
− ûi+1(X

π
ti+1

), we have established (4.20).

Step 2

The term,

C(1 + Ch)E
∣∣∣Yti+1

− ûi+1(X
π
ti+1

)
∣∣∣2 ,

in (4.20) was left without a control in previous step. Here in what follows we provide a control on
this term. The purpose of this section is to show the following estimate:

Lemma 5.11 There exists a constant C > 0 such that,

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2N +

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2
+ e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
. (5.17)

The rest of this section is devoted to the proof of this result.

PROOF OF LEMMA 5.11. Recall Hi+1 = Yti+1
− ûi+1(X

π
ti+1

). We have that (a + b)2 ≥ (1 − h)a2 +

(1− 1
h
)b2 and

E
∣∣∣Yti − V̂ti

∣∣∣2 = E
∣∣∣(Yti − ûi(X

π
ti
)
)
+
(
ûi(X

π
ti
)− V̂ti

)∣∣∣2 (5.18)

≥ (1− h)E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + (1− 1

h

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 .
Therefore, we have an upper (4.20) and lower (5.18) bound for E

∣∣∣Yti − V̂ti

∣∣∣2. By connecting these
bounds,

(1− h)E
∣∣Yti − ûi(X

π
ti)
∣∣2 + (1− 1

h

)
E
∣∣∣ûi(Xπ

ti)− V̂ti

∣∣∣2 ≤ Ch2 + Cei(X,X
π
ti) + Cei(Y, Yti) + Cei(Z,Zti)

+ ChE
∫ ti+1

ti

ψ(Θs)
2ds+ C(1 + Ch)E

(
H2

i+1

)
.
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Using that for sufficiently small h we have (1− h)−1 ≤ 2 ≤ C, we get,

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ CNE

∣∣∣ûi(Xπ
ti
)− V̂ti

∣∣∣2 + Ch2 + Cei(X,X
π
ti
) + Cei(Y, Yti) + Cei(Z,Zti)

+ ChE
∫ ti+1

ti

|ψ(Θs)|2ds+ CE
∣∣∣Yti+1

− ûi+1(X
π
ti+1

)
∣∣∣2 .

Notice that the expression on time ti that we want to estimate, appears on the right side on time
ti+1, we can iterate the bound and get that ∀ i ∈ {0, ..., N − 1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2

≤ CN
N−1∑
k=i

E
∣∣∣ûk(Xπ

tk
)− V̂tk

∣∣∣2 + C(N − i)h2 + C
N−1∑
k=i

[
ei(X,X

π
ti
) + ei(Y, Yti) + ei(Z,Zti)

]
+ Ch

N−1∑
k=i

E
∫ tk+1

tk

|ψ(Θs)|2ds+ CE
∣∣YtN − ϕ(Xπ

tN
)
∣∣2

≤ CN
N−1∑
k=0

E
∣∣∣ûk(Xπ

tk
)− V̂tk

∣∣∣2 + CNh2 + C
[
e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
+ Ch

N−1∑
k=0

E
∫ tk+1

tk

|ψ(Θs)|2ds+ CE
∣∣YtN − ϕ(Xπ

tN
)
∣∣2 .

Applying maximum on i ∈ {0, ..., N − 1} and recalling bound from Lemma (5.8),

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2N +

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2
+ e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
.

This is nothing that (5.17).

Step 3

Estimate (4.31) contains some uncontrolled terms on its RHS. Here the purpose is to bound the
term

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 ,
in terms of more tractable terms. In this step we will prove

Lemma 5.12 It holds that,

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + hE
∥∥∥Ẑti − ẑi(X

π
ti
)
∥∥∥2
0
≤ Cεvi + Chεzi , (5.19)

with εvi and εzi defined in (5.6).
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PROOF. Fix i ∈ {0, ..., N − 1}. Recall the martingale (Nt)t∈[ti,ti+1] and take t = ti+1,

ûi+1(X
π
ti+1

) = Eiûi+1(X
π
ti+1

) +

∫ ti+1

ti

⟨Ẑs, ·⟩0dWs.

Now we replace the definition of V̂ti (5.2),

ûi+1(X
π
ti+1

) = V̂ti − ψ(ti, X
π
ti
, V̂ti , Ẑti)h+

∫ ti+1

ti

⟨Ẑs, ·⟩0dWs. (5.20)

Now fix a parameter θ ∈ Θη and replace (4.34) on Li(θ):

Li(θ) = E
∣∣∣V̂ti − uθi (X

π
ti) + ψ(ti, X

π
ti , u

θ
i (X

π
ti), z

θ
i (X

π
ti))h− ψ(ti, X

π
ti , V̂ti , Ẑti)h+

∫ ti+1

ti

⟨Ẑs − zθi (X
π
ti), ·⟩0dWs

∣∣∣2
Note that the four first terms are Fti-measurable and the stochastic integral is a martingale differ-

ence, therefore

Li(θ) = E
∣∣∣V̂ti − uθi (X

π
ti
) + ψ(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
))h− ψ(ti, X

π
ti
, V̂ti , Ẑti)h

∣∣∣2
+ E

∫ ti+1

ti

∥∥∥Ẑs − Ẑti

∥∥∥2
0
ds+ hE

∥∥∥Ẑti − zθi (X
π
ti
)
∥∥∥2
0
.

Where we used Ito isometry and the same argument used on equation (4.26). With this decompo-
sition of Li(θ), we can easily see the part that depends on θ. Lets work with L̂i defined as follows,

L̂i(θ) = E
∣∣∣V̂ti − uθi (X

π
ti
) +

(
ψ(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
))− ψ(ti, X

π
ti
, V̂ti , Ẑti)

)
h
∣∣∣2 + hE

∥∥∥Ẑti − zθi (X
π
ti
)
∥∥∥2
0
.

Let γ > 0 and use Young inequality and the Lipschitz condition on ψ to find that

E
∣∣∣V̂ti − uθi (X

π
ti
) +

(
ψ(ti, X

π
ti
, V̂ti , Ẑti)− ψ(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
))
) ∣∣∣2

≤ (1 + γh)E
∣∣∣V̂ti − uθi (X

π
ti
)
∣∣∣2 + (1 + 1

γh

)
h2CE

(
|V̂ti − uθi (X

π
ti
)|2 +

∥∥∥zθi (Xπ
ti
)− Ẑti

∥∥∥2
0

)
≤ CE

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2 + ChE

∥∥∥zθi (Xπ
ti
)− Ẑti

∥∥∥2
0
.

Therefore, we have an upper bound on L(θ) for all θ ∈ Θη, to find a lower bound, we use (a+b)2 ≥
(1− γh)a2 +

(
1− 1

γh

)
b2 ≥ (1− γh)a2 − 1

γh
b2 with γ > 0

E
∣∣∣V̂ti − uθi (X

π
ti
) +

(
ψ(ti, X

π
ti
, V̂ti , Ẑti)− ψ(ti, X

π
ti
, uθi (X

π
ti
), zθi (X

π
ti
))
) ∣∣∣2 ≥ (1− Ch)E

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2

− h

2
E
∥∥∥zθi (Xπ

ti
)− Ẑti

∥∥∥2
0
;

where we used γ = 2C in order to force the 1
2

in the second term of the RHS. Then, connecting
these bounds and using that ∀θ ∈ Θ L̂(θ∗) ≤ L̂(θ) yields,

(1− Ch)E
∣∣∣V̂ti − ûi(X

π
ti
)
∣∣∣2 + h

2
E
∥∥∥Ẑti − ẑi(X

π
ti
)
∥∥∥2
0
≤ CE

∣∣∣V̂ti − uθi (X
π
ti
)
∣∣∣2ChE∥∥∥Ẑti − zθi (X

π
ti
)
∥∥∥2
0
.
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By taking h small such that (1−Ch) ≥ 1
2

and infimum on the right side with respect to θ ∈ Θη we
get (5.19),

E
∣∣∣V̂ti − ûi(X

π
ti
)
∣∣∣2 + hE

∥∥∥Ẑti − ẑi(X
π
ti
)
∥∥∥2
0
≤ Cεv,ηi + Chεz,ηi (5.21)

Thus the proof is completed.

Previous lemma and steps proves the following.

Lemma 5.13 It holds that,

max
i∈{0,...,N−1}

E
∣∣Yti − ûi(X

π
ti
)
∣∣2+ ≤C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2 +Nεv,η + εz,η

+ e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
. (5.22)

Step 4

In this step we show the desire bound for the remaining component.

Lemma 5.14 It holds that,

N−1∑
i=0

E
∫ ti+1

ti

∥∥Zs − ẑi(X
π
ti
)
∥∥2
0
ds ≤C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2 +Nεv,η + εz,η

+ e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
. (5.23)

PROOF. We will use triangular inequality passing through Ẑti . Note that the term containing∥∥∥Ẑti − ẑi(X
π
ti
)
∥∥∥2
0

is well-controlled by Lemma 5.12. By using (4.29) with Lemma 5.8 on (4.26),
we get

E
∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
0
ds ≤ CE

∫ ti+1

ti

∥∥Zs − Zti

∥∥2
0
ds+ CE

(
EiH

2
i+1 − (EiHi+1)

2
)

+ ChE
∫ ti+1

ti

|ψ(Θs)|2ds.

which implies, after summing over i ∈ {0, ...N − 1},

E
N−1∑
i=0

∫ ti+1

ti

∥∥∥Zt − Ẑti

∥∥∥2
0
ds ≤ C

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
+ Ch+ e(Z, (Zt)t∈π). (5.24)
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The next step is to give a suitable bound for E
(
H2

i+1

)
− E |Ei(Hi+1)|2. Recall from (5.13) that

Hi+1 = Yti+1
− ûi+1(X

π
ti+1

), then

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
=

N−1∑
i=0

E(H2
i+1)−

N−1∑
i=0

E |Ei(Hi+1)|2

= E
∣∣YtN − ûN(X

π
tN
)
∣∣+ N−2∑

i=0

E(H2
i+1)−

N−1∑
i=0

E |Ei(Hi+1)|2

≤ E |ϕ(XT )− ϕ(Xπ
T )|

2 + E(H2
0 ) +

N−1∑
i=1

E(H2
i )−

N−1∑
i=0

E |Ei(Hi+1)|2

= E |ϕ(XT )− ϕ(Xπ
T )|

2 +
N−1∑
i=0

(
E(H2

i )− E |Ei(Hi+1)|2
)
.

(5.25)

From (5.18) and (5.14) we have an lower and upper bound for E
∣∣∣Yti − V̂ti

∣∣∣2. Indeed, first one has

(1− h)E
∣∣Yti − ûi(X

π
ti
)
∣∣2 ≤ E

∣∣∣Yti − V̂ti

∣∣∣2 + (1

h
− 1

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 . (5.26)

Then, we have that for all γ > 0

(1− h) E
∣∣Yti − ûi(X

π
ti
)
∣∣2

≤
(
1

h
− 1

)
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + (1 + γh)E |Ei(Hi+1)|2

+ (1 + γh)
C

γ

[
h2 + ei(X,X

π
ti
) + ei(Y, Yti) + hE|Yti − V̂ti |2 + E

∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
0
ds︸ ︷︷ ︸

Bi

]
.

Let us call the expression inside the squared brackets by Bi. Subtracting (1 − h)E |EiHi+1|2 and
dividing by (1− h),

E(H2
i )− E |Ei(Hi+1)|2 ≤

1

h
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + (h+ γh

1− h

)
E |Ei(Hi+1)|2 +

C

γ

(1 + γh)

(1− h)
Bi.

For γ = 3C and sufficiently small h, we can force,

C

γ

(1 + γh)

(1− h)
≤ 1

2
and

1

1− h
≤ 1

2
.

Hence,

E(H2
i )− E |Ei(Hi+1)|2 ≤

1

h
E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2 + ChE |Ei(Hi+1)|2 +
1

2
Bi.

Finally, note that,

N−1∑
i=0

E |Ei(Hi+1)|2 ≤ E |ϕ(XT )− ϕ(Xπ
T )|

2 +N max
i=0,...,N−1

E
∣∣Yti − ûi(X

π
ti
)
∣∣2 . (5.27)
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Coming back to (4.37),

N−1∑
i=0

(
E
(
H2

i+1

)
− E |Ei(Hi+1)|2

)
≤ CE |ϕ(XT )− ϕ(Xπ

T )|
2 +N

N−1∑
i=0

E
∣∣∣ûi(Xπ

ti
)− V̂ti

∣∣∣2
+ ChN max

i=0,...,N−1
E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + 1

2

N−1∑
i=0

Bi.

Therefore, by plugging this bound in (4.36), noting that |Yti−V̂ti|2 ≤ 2|Yti−ûi(Xπ
ti
)|2+2|ûi(Xπ

ti
)−

V̂ti |2 and hN = 1, we have,

E
N−1∑
i=0

∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
0
ds

≤ C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2 +N

N−1∑
i=0

E
∣∣∣ûti(Xπ

ti
)− V̂ti

∣∣∣2
+ max

i=0,...,N−1
E
∣∣Yti − ûi(X

π
ti
)
∣∣2 + e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
.

Now, use Lemma 5.12 and Lemma 5.13 to get

E
N−1∑
i=0

∫ ti+1

ti

∥∥∥Zs − Ẑti

∥∥∥2
0
ds ≤C

[
h+ E |ϕ(XT )− ϕ(Xπ

T )|
2 +Nεv,η + εz,η

+ e(X,Xπ) + e(Y, (Yt)t∈π) + e(Z, (Zt)t∈π)

]
.

Thus, it has been demonstrated.

By combining Lemma 5.13 with Lemma 5.14 and using Assumptions 5.7, the proof of Theorem
5.9 is now complete.

We finish this work with the following closing remark.

Remark 5.15 Note that if the approximators are DeepOnets, then εv,η, εz,η → 0 as η → ∞. See
Remark 3.20.
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