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Abstract

‘We show phase space localization at suitable energies for zero order pseudod-
ifferential operators, implying non-propagation properties for the associated evolu-
tion groups. This extends previous results which only treated configuration space
anisotropic behavior. The proofs rely on Rieffel’s strict deformation quantization of
C*-algebras acted by a vector group and on a quasiorbit analysis of some connected
locally compact dynamical systems.



1 Introduction

The main purpose of this thesis is to prove some phase-space localization results for the
functional calculus and for the evolution group of certain Weyl pseudodifferential oper-
ators H = DOp(f) acting in the Hilbert space H := L*(R™) with symbols presenting full
phase-space anisotropy. Very roughly, a symbol

R'X®RY) 2 (x,6) = f(x,§) eR

has full phase-space anisotropy if it has non-trivial behavior both for |x| — oo and |£] —
oo ; of course more assumptions will be needed to make our theory work. For us, the
trivial behavior would be convergence to either zero or infinity.

To describe the localization issues let us consider a (maybe unbounded) self-adjoint
operator H in the Hilbert space H := L*(R") . We think it to be the quantum Hamiltonian
of a physical system moving in R", so its evolution group {¢” |1 € R} describes the time
evolution of the quantum system. Thus, if at the initial moment the system is in a state
modellized by the normalized vector v € H , at time ¢ it will be in the state associated to
v, 1= ey,

By general principles of Quantum Mechanics, the probability at time ¢ for the system
to be localized within the Borel subset U of R" is given by the number

lwe™v|l = f dx (0P
17

Very often one is interested in the behavior of this quantity when the initial state v has a
certain localization in energy. If E is a Borel subset of R, an interval for instance, we say
that the state has energy belonging to E if v = yz(H)v, where the characteristic function
of E is applied to the self-adjoint operator A via the usual Borel functional calculus.
For technical reasons we also consider as interesting vectors satisfving the condition v =
p(H)v, where p : R — R. is a continuous (or a smooth) function; it can be, for example,
a continuous approximation of the characteristic function yr . Anyhow, we are motivated
to consider the dependence of the quantity ||y ye™ p(H)v|?* on the parameters U, p and ¢.
The normalization of v is not essential, so we shall replace it by an arbitrary vector u .

The type of result we are looking for would say that, under certain assumptions on H
and p and for a given family U of non-void Borel subsets of R", for every & > 0 there is
an element U of the family 2/ such that

lxve™p(Hul? < e |lul* forall reR and ue H. (1.1)

Admitting that in some sense the family U/ converges to some region F (eventually situ-
ated “at infinity”), this means roughly that states with energies contained in the support
of the function p cannot propagate towards F .



All these being said, let us notice however that (1.1), although dynamically significant,
does not really have a dynamical nature. It is perfectly equivalent to the estimate

Ly vpe(H) lsgn < €, (1.2)

written in terms of the operator norm of B(7), the C*-algebra of all linear bounded
operators in the Hilbert space . It is obvious that such an estimate needs some tuning
between the energy-localization function p and the family 9/ ; without it one can only
write

x vl s <llxullsanlloUD llsgn = sup p(d),
Aesp(H)

and clearly we are interested in the case in which the support of p has a non-trivial inter-
section with the spectrum sp(H) of the Hamiltonian H .

A simple-minded relevant situation is as follows: If the support of the function p is
disjoint from the essential spectrum sp,,(H) of H, it is known that the operator p(H) is
compact (finite-rank actually). If, in addition, this support contains points of the discrete
spectrum $py;(H) := sp(H) \ sp,(H), then p(H) # 0. Let U be the filter formed by the
complements of all the relatively compact subsets of R*. Then the family of operators of
multiplication by xy converges strongly to zero. Multiplication with a compact operator
improves this to norm convergence, so for each & > 0 there is a sufficiently large (rela-
tively) compact set K € R" such that || y x-p(H) |ls¢) < €. In dynamical terms, this would
mean that states localized in the discrete spectrum cannot propagate to infinity.

For less trivial situations we consider the case of generalized Schrédinger operators
H = Op(f) in L*(R") defined by the Weyl quantization of the symbol

f(x%.8) = h(&) + V(x),

where
VR >R, h:R"Y >R

are convenient functions. Then
H =0p(f) = k(D) + V(Q),

where (J is the position operator, D := —iV is the momentum and A(D), V(Q) can also be
constructed by the usual functional calculus associated to (families of commuting) self-
adjoint operators. Of course (D) is a convolution operator and even a constant coefficient
differential operator if 4 is a polynomial , while V(Q) is the operator of multiplication with
the function V.

Assume now that n = 1, that V is continuous and

im V(x)=V, e R with V_ < V.

X—+00

and take for simplicity A(£) := £2, so
H=-A+V(Q)



is a one-dimensional Schrodinger Hamiltonian with configuration space anisotropy. Be-
low V_ the spectrum of H is discrete, so one can apply the discussion above. But it is more
interesting to take p supported in the interval (V_, V). If the convergence of V towards
the limits V. is fast enough, propagation towards infinity is possible in this region. But
for physical reasons one expects this to happen only “'to the left”. This is not difficult to
prove rigorously: for every € > 0 there exists a real number a such that

¥ (6, +0)(@(H) |IBary < £

Thus “propagation to the right is forbidden™ at energies smaller than V, . In this example
we make use of the filter base U := {(a, o0)|a € R} formed of neighborhoods of the point
+00 In the two-point compactification [—oo, +o0] of the real axis.

A more complicated version is less easy to guess just by physical grounds. We con-
sider the same Hamiltonian H = —A + V(@) for » = 1 but now

Aim [V(x) = V()] = 0,
where V. are two periodic functions, with periods T, > 0. In this case
SDess(H) = SP(H.) U sp(HL),
where the asymptotic Hamiltonians
H, :=-A+V(Q),

being periodic, have a band structure for the spectrum. We don’t know if this intuitive
enough, but it can be shown however, that if the support of p does not meet sp(H, ), then
propagation to the right is impossible in the same precise meaning as above. It is not
difficult to construct a two-tori compactification of R of the form

Q:=R/T-Z)URU R/T.Z)

such that V satisfies the stated conditions if and only if it extends to a continuous function
on this compactification. Then the two asymptotic Hamiltonians are fabricated from the
restrictions of this extension to the two tori and the regions of non-propagation can be
once again described in terms of neighborhoods of these tori in the compactification.

To illustrate the different types of anisotropy on the simple example of generalized
Schrédinger operators, assume again that n = 1 and

J(x.8) = h(&) + V(%)

(the case f(x, &) = h(£)V(x) can also be discussed along the same lines), where V : R” —
R and A : (R")" — R are continuous functions. Let us assume for simplicity that

lim A(£) = k. and lim V(x) = V.;
£t X—too



the limits are elements of the extended real axis. If A, = oo (orif Ay = ) and V. € R, the
operator is said to possess configuration space anisotropy (especially if V_ # V.). But if
hy € Rand V. € R, we are in the presence of a full phase-space anisotropic problem. Let
us keep this classification incomplete. For larger dimension # and with more complicated
types of behavior at infinity it might not be so easy to say exactly what kind of anisotropy
we are dealing with, so the reader should take the present discussion at a heuristic level.

For a given self-adjoint operator L we denote by sp(L) the spectrum and by sp, (L) the
essential spectrum. In the example above, if k., = oo (anisotropy in configuration space),
denoting min{g(y)} by g» and max{g(y)} by g, one has

SPess(H) = [y + min(V_, V,), 00) = sp[A(D) + V_] U sp[h(D) + V.]. (1.3)
It is easy to generalize a result above to this case and show that if supp(p) does not meet
splr(D) + V.] = [ + V., 00),
then for every £ > 0 there exists @ > 0 such that

X (a,+00) (D) (H) Iy < € -
A similar result leading to "non-propagation to the left” is available by replacing + by —
and (a, +oo) with (—co, —q).
On the other hand, for full phase-space anisotropy (k. € R and V. € R) , the essential
spectrum is given by four contributions
SPess () = sp[A(D) + V_1 U sp[A(D) + V. ] U sp[V(Q) + h_] U sp[V(Q) + h.]
= [+ Vo, hpyy + VU Ry + Vi Ry + V2] (1.4)
UTho + Vi, e + Vgl U [hy + Vi, by + Vi)

In this case one can show once again that || y (s +.0)(Q)0(H) |lrex) can be made arbitrary
small for big a € R, if

supp(p) N splA(D) + V,] =0
and that || y(-c,—2)(Q)p(H) |lz#;, can be made arbitrary small for big a € R, if
supp(p) NsplA(D)+ V_]1=0.

But a new phenomenon appears, connected to the presence of the two other components
in the essential spectrum of H : Suppose that the support of p does not meet sp[V(Q)+4.] .
Then it can be shown that for every & > 0 there exists b € R, such that

X200y (DY H) lB30)< €

(and a similar result for + replaced by —). This can be converted in an estimate of the
form

X breo( D) p(Hu || < & ||u|



which is uniform in 7 € R and € L*(R). It is no longer a statement about the probability
of spatial localisation, but one about the probability of the system to have momentum
larger than the number b.

In both cases the essential spectrum of the Hamiltonian H = Dp(f) can be written
as union of spectra of “asymptotic Hamiltonians” that can be in some way obtained by
extending the symbol f(x,&) = h(£) + V(x) to a compactification of the phase space
E := RxR* having the form of a square and then restricting it to the four edges situated “at
infinity” (some simple reinterpretations are needed). Notice that the partial (configuration
space) anisotropy is simpler: the restrictions to two of the edges do not contribute. In some
sense the two corresponding asymptotic Hamiltonians are infinite and their spectrum is
void. The reader is asked to imagine what would happen both at the level of the essential
spectrum and at the level of localization estimates in the case of a pure momentum space
anisotropy, when

EETM wE) =h: €R and lim V(x) = o0,

X300

In n dimensions and for more general types of anisotropy (recall the periodic limits)
one expects more sophisticated things to happen. Suppose that our Hamiltonian H is
obtained via Weyl quantization from a convenient real function f defined in phase-space
E := R"x(R")*. If its behaviour at infinity in both variables (x, £) is sophisticaded enough
(corresponding to what could be called “phase-space anisotropy”) then one could expect
the following picture:

1. The essential spectrum is the (closure of the) union of spectra of a family of asymp-
totic Hamiltonians” H(F) associated to remote regions F of phase-space. There are
several ways to express this. One would be to say that the behavior of f at infin-
ity in E can be described by a compactification £ = = LI 6% of Z and that F is a
conveniently defined subset of “the boundary at infinity” JZ.

2. If a bounded continuos function p is supported away from one of the components
splH(F)], then “propagation towards F is forbidden” at energies belonging to the
support of p. This would be deduced from an estimate of the form

1OpCrw)p(H) s < &

written in terms of the Weyl quantization

Op(xw) = xw(Q. D)

of a smooth regularization of the characteristic function yw of a subset W of Z.
For small £, the set W should be very close to the set F ; for example it can be the
intersection with E of a small neighborhood ‘W of F in the compactification X .

Until recently, there have been few general results for the essential spectrum of phase-
space anisotropic pseudodifferential operators and this was the main obstacle to getting



localization estimates. Techniques involving crossed products, very efficient for config-
urational anisotropy [12, 13, 14, 24, 2], are not available in such a case. In [26, 27] this
problem was solved in a rather general setting, by using the good functorial properties
of Rieffel’s pseudodifferential calculus [38, 39], developed in the context of strict defor-
mation quantization [40]. Roughly, if the symbol presents full phase-space anisotropy,
the essential spectrum of the corresponding pseudodifferential operator can be written as
the closed union of spectra of a family of “asymptotic” pseudodifferential operators. To
obtain the symbols of these asymptotic operators one constructs a compactification of the
phase space, which is naturally a dynamical system, and then determines the quasi-orbits
of this dynamical system which are disjoint from the phase space itself. The extensions
of the initial symbol to these quasi-orbits define the required asymptotic operators that
contribute to the essential spectrum.

In the present thesis we are going to show that Rieffel’s calculus can also be used to
get the localization estimates, leading in their turn to non-propagation results for the evo-
lution group; this extends the treatment in [2, 30, 21] of purely configurational anisotropic
systems.

Let us describe briefly the content of this work.

First, in the next section, we give a brief description of some previous results. This
will hopefully motivate our approach to cover the full anisotropy.

Section 3 will review some properties of the Rieffel quantization, one of our main
tools. It has as basic data the action ® of the vector space = on a C*-algebra A (for
our purposes it is enough to take it commutative). The canonic symplectic form on = is
used to twist the product on A. This twisting is done first on the set of smooth elements
of A under the action. Then a C*-norm is found on the resulting non-commutative *-
algebra. The outcome will be a new C*-algebra U (the quantization of A, composed of
pseudodifferential symbols) also endowed with an action of the vector space =.

In Section 4 we prove our first abstract result; it refers to the algebra of symbols. The
proof has three steps: the first is basically topological, involving Abelian C*-algebras; the
second replaces the pointwise commutative composition with the relevant pseudodifferential-
theoretical one and the third corrects the C*-algebraic norm.

To get familiar statements, refering to pseudodifferential operators, one applies Hilbert
space representations to this abstract result; this is done in Sections 5, 6 and 7 at various
levels of generality.

The final section 8 is dedicated to some examples.

Finally, let us mention that in [5] localization estimates and the structure of the essen-
tial spectrum have been obtained for finite-difference operators on certain graphs, con-
nected to the 1-dimensional Heisenberg model of ferromagnetism. Besides a certain C*-
algebraic background, the connections with the present work are rather limited. Results
on the essential spectrum of natural families of discrete operators on rooted trees can be
found in [15, 11].



2 A short review of previous results

As we said in the Introduction, we are interested in estimates of the form (1.2). After some
preliminary previous results contained in [7], such estimates have been obtained in [2] for
Schrodinger operators H := —A+V , where A is the Laplace operator and V is the potential
(the operator of multiplication by a real continuous function on R”). Thus in suitable units
H is the Hamiltonian of a non-relativistic particle moving in R" in the presence of the
potential V and “localization” or “non-propagation” refers to this physical system. In [30]
and [21] the results were significantly extended to certain psendodifferential operators
with variable magnetic fields, using the magnetic version of the Weyl calculus [28, 29, 17].

Leaving the magnetic fields apart, for simplicity, the Hamiltonians have now the form
H = 0p(f),
being defined as the Weyl quantization of some real symbol f defined in phase-space
E=R"xX®R"Y.
The order of the elliptic symbol f (in Hormander sense) is strictly positive, so one has
im f(x,£) = o0

and the behavior in x € R” is modelled by a C*-algebra of bounded, uniformly continuous
functions on R". So the symbols defining the operators are still confined to the restricted
configuration space anisotropy.

To be more precise, to suitable functions # defined on the phase space =, one assigns
operators acting on functions u : £~ ;= R" — C by

[Op(h](x) := (27)" f f dyde & h(22 gJucy). @.1)
o Ja- 2

This is basically the Weyl quantization and, under convenient assumptions on A, (2.1)
makes sense and has nice properties in the Hilbert space H := L2(Z") or in the Schwartz
space S(Z).

Letk : E — R be an elliptic symbol of strictly positive order m. This means that & is
smooth and satisfies estimates of the form
(6200n) )] < Cugl1 + D™, VaBeN, V(&) eE 22)
and
h(x, &) = C(1 + €)™,  V(x,&) € E, || large enough. (2.3)

It is well-known that under these assumptions Op(h) makes sense as an unbounded self-
adjoint operator in H, defined on the m’th order Sobolev space. The problem is to evaluate
the essential spectrum of this operator and to derive estimates for its functional calculus.



It comes out that the relevant information is contained in the behavior at infinity of 4 in
the x variable. This one is conveniently taken into account through an Abelian algebra &/
composed of uniformly continuous functions un &, which is invariant under translations
(ifo e & andy € & then 6,(p) := (- +y) € &). Let us also assume (for simplicity)
that & is unital and contains the ideal Cy(Z") of all complex continuous functions on %~
which converge to zero at infinity. We ask that the elliptic symbol & of strictly positive
order m also satisfy

(626lh)(.E)e o, Va.BeN', VEe 2™ (2.4)

Then the function 4 extends continuously on Q x 27, where Q is the Gelfand spectrum
of the C*-algebra &7, this space Q is a compactification of the locally compact space 2.
By translational invariance of & , it is a compact dynamical system under an action of the
group £ . After removing the orbit 2", one gets a 2 -dynamical system Q. := Q\ Z;
its quasi-orbits (closure of orbits) contain the relevant information about the essential
spectrum of the operator H := Dp(h). For each quasi-orbit @, one constructs a self adjoint
operator Hg. It is actually the Weyl quantization of the restriction of & to @x 2%, suitably
reinterpreted. Using the notations sp(T") and sp, (1), respectively, for the spectrum and
the essential spectrum of an operator 7', one gets finally

SPess(H) = || sp(Ha) . 2.5)
Q

Many related results exist in the literature, some of them for special type of functions
h, but with less regularity required, others including anisotropic magnetic fields, others
formulated in a more geometrical framework or referring to Fredholm properties. We
only cite [1, 4, 6, 10, 12, 13, 14, 16, 19, 18, 20, 21, 22, 23, 24, 30, 32, 33, 34, 35, 36, 37];
see also references therein. As V. Georgescu remarked [12, 13], when the function h does
not diverge for £ — oo, the approach is more difficult and should also take into account
the asymptotic values taken by k in “directions contained in 2™

Now, in the framework above, we indicate the localization results. Let H = Op(h) be
a Weyl pseudodifferential operator with elliptic symbol of order m > 0. For some unital
translation-invariant Abelian C*-algebra & composed of uniformly continuous functions
on 2 and containing Cy(2"), assume that h(x, £) is & -isotropic in the variable x, i.e.
(2.4) holds. Choose a quasi-orbit Q in the boundary €, := Q\ % of the Gelfand spectrum
of & . As said above, one associates to @ a self-adjoint operator H(Q) ; its spectrum is
contained (very often strictly) in the essential spectrum of H. We also fix a bounded
continuous function p : R — [0, o0) whose support is disjoint from sp[H(Q)]. Then for
every € > 0 there exists a neighborhood U of Q in Q such that, setting U := U N .Z",

I AQp(H) llag < & (2.6)

and
Ixu(@eFpHulln < ellully, VieR ueH. 2.7)



We recall that y(Q) is, by definition, the operator of multiplication by the function y in
the Hilbert space H = L*(2") . Concrete examples has been indicated in [2, 30].

As remarked by V. Georgescu, a very efficient tool for obtaining some of the results
cited above was the crossed product, associated to C*-dynamical systems. In the setting
presented before, one uses the action 6 of 2 by translations on the C*-algebra & to
construct a larger, non-commutative C*-algebra @/=,%" . After a partial Fourier transform,
this one can be seen to be generated by pseudodifferential operators of strictly negative
order, with coefficients in &. So it will contain resolvent families of elliptic strictly
positive order Weyl operators satisfying (2.4) and the structure of the crossed product will
rather easily imply spectral results. A basic fact is that the crossed product is a functor,
also acting on equivariant morphisms, and that it behaves nicely with respect to quotients
and direct sums. One drawback is, however, that £-anisotropy cannot be treated easily.
The symbols of order 0 are not efficiently connected to the crossed products (treating them
as multiplier would not be enough for our purposes).

As a substitute for crossed products, in [26, 27] Rieffel’s version of the Weyl pseudod-
ifferential calculus has been used to investigate the essential spectrum of full phase-space
anisotropic Hamiltonians. Since it will also be needed for our study of localization results,
we dedicate the next section to a recall.
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3 Rieffel’s pseudodifferential calculus

We shall recall briefly Rieffel’s deformation procedure, sending to [38] for proofs and
more details. Some convention will be different. Rieffel’s main purpose was to provide
a unified framework for a large class of examples in deformation quantization (cf. also
[40]) and to study their convergence to some corresponding Poisson algebras, but this will
not be important here.

Let us denote by 2" the vector space B" on which, when necessary, the canonical base
{e1,...,e,) will be used. Tts dual is denoted by 2™ with the dual base (e,1,.-.,€m)-
Then “the phase space” = = 2" x 2" with points generically denoted by

X=xE,Y=(mZ=(z)
is canonically a symplectic space with the symplectic form
XYl :=x-n—-y-¢. (3.1

The duality between x € 2" and £ € 2" has been denoted by a dot; by abuse we could
think of it as a scalar product on R", identified with its own dual.

We start with a classical data, which is by definition a quadruplet
(ﬂ) ®’ E’ .,-7 ]I) 2

where (A is a C*-algebra and a continuous action ® of = by automorphisms of A is also
given. For (f, X) € A x £ we are going to use the notations

O(f. X) = 0x(f) e A

for the X-transformed of the element f . The function @ is assumed to be continuous and
the automorphisms @y, @y satisfy

®X0®y:®X+y, VX,YEE

Let us denote by A™ the vector space of all smooth elements f under @, those for
which the mapping & 3 X — Ox(f) € A is C in norm; it is a dense "-algebra of 7. It is
also a Fréchet *-algebra for the family of semi-norms

; 1
IF1 = D o@Dl ol ke
lul<k

In the sequel we are going to use the abbreviations 2¥ f = F(Ox(f ))ixto for all the
nmuiti-indices g € N> All the operators ©¥ are well-defined, linear and continuous on
the Fréchet "-algebra A~ .
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Then one introduces on A* the product

fHgi=a" f f dYdz 1 @y (f) @z(g), (3.2)

rigorously defined as an oscillatory integral. There are three equivalent ways to give a
meaning to this kind of expression; we review them briefly, sending to [38] for details.

1. Integration by parts. For f, g € A™ we set
F(Y,Z) := Oy(f) Oz(g) € A,

but the arguments below are valid for many other functions F'. We can define a
scalar valued function by

K(.2) = (1+1x2))

and My as the operator of pointwise multiplication by K. Using integration by
parts it can be shown for every positive integer m that

ﬁ f dydz #U Ay, z) = f j: dydz *1¥ [((1 + Z)MK)’” F](y, Z),

where A denotes a constant coefficient operator of second order in all 4n dimen-
sions. Since the first-order derivatives of K are of the form KB, where B is a
bounded rational function, using a induction argument we can express the product
as

fHg = f f dydz eMAK™NY,Z) 3" B,(Y, Z)PF)Y,Z) (3.3)

BB li<2m

for a family (B,), of bounded functions. This, the fact that f, g are smooth vectors
of the action @ and the decay of K™ show that (3.3) makes sense for m large enough.

2. Partition of unity. One can use a representation of the composition f#g given by
[38, Lemma 1.6, Cor. 1.7], in terms of a regular partition of unity of Z. Let £ be a
lattice in = ; for example one could take

2n
8 = Za',-eila,-ez ;
i=1

Pick then a non-trivial positive, smooth, compactly supported function ¢ on = such
that
Y(X) = Zw(X—P) >0, VXe=
Peg
and set i := /¥ and

() :=o(-—P), VPel.
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Then {/p | P € £} will be a locally finite partition of unity on =. It can be shown
that the infinite sum

fig=a" 3 f f dYdz ™4 yp(Y) Y o(Z) @y (f) Oz(g) (3.4)

PQen ¥ EVE
converges absolutely .

3. Cut-off. Forevery k € Nletv, € C(ExE), with uniform bounds on the derivatives
and such that vi(¥, Z) is equal to 1 in ball B(0, ry) of radius 7, that diverges to .
Then we have

ftg = lim i f f dydz e* 2y, (Y, Z) ®y(f) Oz(g) . (3.5)

Since the three expressions (3.3), (3.4) and (3.5) coincide, they are also independent
of the various choices i, £, v, .

To complete the algebraical structure, we keep the same involution * ; one gets a *-
algebra (A®,#,”). This *-algebra admits a C*-completion ¥ in a C*-norm || - ||y which
is defined by Hilbert module techniques. Since the construction is rather involved and
it will not play an explicit role for us, we only refer to [38, Ch. 4] for the details and
justifications.

The deformation can be extended to Z-morphisms, giving rise to a covariant functor.
Let

(‘-?{_,H @j,E, II's 5]]) " j = 152
be two classical data and let
R ..';ll =3 \_ﬂz

be a E-morphism, i.e. a (C*-)morphism intertwining the two actions:
Ro®;x=0,x0oR, VXeE.
Then R sends A}’ into A3’ and extends to a morphism
R:UA -,

that also intertwines the corresponding actions.

For us, the main property of this functor is that it preserves short exact sequences
of Z-morphisms. Let 7 be a (closed, self-adjoint, two-sided) invariant ideal in A and
denote by J its deformation, using the procedure indicated above. Then J is isomorphic
(and will be identified) with an invariant ideal in A. In addition, on the quotient A/ 7
there is a natural quotient action of =, so we can perform its Rieffel deformation. This
one is canonically isomorphic to the quotient A/J .

If h € U, the spectrum of its canonical image in the quotient C*-algebra A/J will be
denoted by sp«(h) . Later we are going to need



Lemma 3.1. I. Let p : R — R, a bounded continuous function.
L. If h € Wand supp(p) N spy(h) =0, thenp(h) € J .
2. If h € A= and supp(p) N sps(h) = O, then p(h) € J™.

Proof. 1. This is a minor variation of [2, Lemma 1]. It holds for every closed bi-sided
self-adjoint ideal of a C*-algebra.

2. The second assertion follows from the first one; J is invariant under the action ®
and clearly 3 = A* N 3. m|

Actually we are interested in deforming Abelian C*-algebras. Let (X, ®, E) be a topo-
logical dynamical system with group £ = R*", This means that T is a locally compact
space, @ : £ X E — X is a continuous map and, using notations as

B, X) = 0x(o)=0,X), VXeE ocek,
each @y : £ — ¥ is a homeomorphism and one has
By c By = By,y, YX,YekE.

One denotes by B(X) the C*-algebra of all bounded complex functions on X with point-
wise multiplication, complex conjugation and the obvious norm

Il f lloo:= sup |f (o)l
The action ® of Z on T induces an action of = on B(X) (also denoted by @) given by

©x(f) := f o Ox. (3.6)

In general this action fails to have good continuity or smoothness properties, so we intro-
duce

Be(X) = {f e BX)|E 3 X Ox(f) € B(X) is norm - continuous} 3.7

and
BaX):={feBXE)|E3 X Ox(f) € B(X) is C” in norm} . (3.8)

We also denote by Cq(X) the C*-algebra of all complex continuous functions f on Z
such that for any £ > 0 there is a compact subset X of X such that

fo)<eif oK.

Notice that Cy(Z) is a C*-subalgebra of Bg(X), but not an ideal in general. When X is
compact, C(Z) is unital. The action ® of E on X induces an action on Cp(X) ; we denote
by C;(Z) the set of smooth elements. The Rieffel deformations of Be(X) and Cp(X) will
be denoted, respectively, by Bg(X) and §y(X) . Clearly, the deformation procedure can be
applied to any C*-subalgebra of Be(X) that is invariant under the action @ .



14

Later on we shall need the following smoothing procedure. For ¢ € C°(Z) and g €
B(X) one sets

¢ =progi= [ dVANOAQ). 39)

If the action @ consists in translations: [@y(f)] (X) := f(X + Y), then g coincides with
the usual convolution. In this case g¥ € BC”(X) = BC,(X)* and supp(g¥) C supp(g) +
supp(y) . We are going to need the next more general statement.

Lemma 3.2. 1. One has g¥ € B(X).
2. For every multi-index & € N*" one has D°g* = g7%.

3. One has supp(g¥) C Oy [supp(g)] .

Proof. By a change of variables one easily gets
Ox(g¥) = g™, where (Txe)Y):=¢(Y +X).

This and a standard application of the Dominated Convergence Theorem lead easily to
the statements 1. and 2.

Now we show 3. Since ® is continuous, supp(y) is compact in Z and supp(g) is closed
in X, it follows easily that @ [supp(g)] is closed in . Let o € Oguppi [Supp(g)] ; then
there exists a neighborhood V of o such that

V N Oguppiey[Supp(g)] = 0.

For each ¢’ € V one has

(prole) = [ aresio (o]
supp(y)

and if ¥ € supp(yp) then O_y(c”) € supp(g) . This shows that V is disjoint from supp(g?).

|

An important example to which Rieffel deformation apply is given by Z-algebras,
i.e. C*-algebras B8 composed of bounded, uniformly continuous function on =, under the
additional assumption that the action 7~ of E on itself by translations, raised to functions
as in (3.6), leaves B invariant. Let us denote by X the Gelfand spectrum of 8. By Gelfand
theory, there exists a continuous function : Z + X with dense image, which is equivariant
with respect to the actions 7~ on E, respectively ® on Z. The function is injective if and
only if Co(E) C B.

The largest such C*-algebra B is BC,(E), consisting of all the bounded uniformly
continuous functions : E +— C. It coincides with the family of functions g € BC(E) (just
bounded and continuous) such that

E5X goTy=g(-+X) € BCE)
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is continuous. Then the Fréchet *-algebra of C™-vectors is
BC.(E)Y* =BC™(®) :={f e C*®) || (6°/) (X)| < C;, YV, X}.

Another important particular case is 8 = Cy(E) (just put £ = = in the general construc-
tion). It is shown in [38] that at the quantized level one gets the usual Weyl calculus and
the emerging non-commutative C*-algebra €y(E) is isomorphic to the ideal of all compact
operators on an infinite-dimensional separable Hilbert space.
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4 Localization in the symbolic calculus

We are given a topological dynamical system (X, @, Z) to which we associate, as in sec-
tion 3, the Abelian C*-algebras Bp(X) and Cy(X) as well as their Rieffel deformations
Be(X) and Tp(X). Recall that, with respect to the canonical basis (e, .., €;,) of =, one
defines the higher-order partial derivatives

D f = F[Ox()lx=0»

where y is a multi-index and f € B5(X). Recall also the form of the seminorms of the
Fréchet space Bg(X)

1 1
Iy = > 11Dl = > 1D Slle, 4.1)
ll<j =i
and of the Fréchet space By (X)
- 1
1712 g5= > 12 Flleac (4.2)
=i

We fix a closed invariant set F ¢ X; invariance means that @x(F) ¢ F forevery X € E.
Then

Co®" = {f € Co(D)| flr = 0}

is an invariant ideal of Cy(ZT); its Rieffel quantization €y(Z)” is identified to an ideal of
€o(X) . As explained above, the quotient €y(Z)/Cy(Z)* can be regarded as the deformation
of the Abelian quotient Cy(L)/Co(Z)” , which in its turn can be identified with C(F), the
C*-algebra of all continuous functions on the compact space F. Along these lines, we
identify €o(X)/Co(X)F with the Rieffel quantization €(F) of C(F).

Let us denote by ¢ € CZ(Z)] the family of all positive functions ¢ € Cg°(E) which
satify the normalization condition fz @ =1. If W C Z is an open (or closed) set, the
function

Koy = 0vexw = [ ¥ o) xe,m
belongs to B3 (Z) by Lemma 3.2 and one has

Supp()(iv) c G)supp(go)[supp()(W)] = ®Supp(§0)((w) . (43)

Notice that in general the characteristic function y« is not an element of Bg(X).

Let us also fix a basis of open neighborhoods Ny of F in the space X.

Theorem 4.1. Let h € CF(X) and p : R — [0, ) a continuous function with support
disjoint from the spectrum of h* := h|r computed in the non-commutative C*-algebra
C(F). Forany p € CX(E),, € > 0and k € N, there exists W € Nr such that

Lt o) g s, < & 4.4)
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Remark 4.2. The Theorem is our main abstract localization result, expressed in terms
of the symbolic calculus defined by Rieffel’s deformatlon Note that it contains a rich
amount of information, involving all the seminorms || - ”ﬂa > for £ = 0 one gets the
norm of the C*-algebra Bg(X) . It will be turned into an assertion about pseudodifferential
operators in the next sections.

Remark 4.3. 1t is clear that 1 — X’;;, = X?i;./c , whose support is included in ®gupp(W°) .
Therefore X,W 1 on the complement of B (W*). Taking ‘W open, W will be
closed and included in & \ F , which is ®-invariant. Then @gpp (W) will also be closed
and disjoint from F, so x%,, = 1 on an open neighborhood of F'.

Remark 4.4. As an example of closed invariant subset one can consider a quasi-orbit, i.e.
the closure of an orbit. Any closed invariant set F C £ is the union of all the quasi-orbits it
contains. Note that the spectrum of A" := h|r computed in €(F) is an increasing function
of F. So for small closed invariant subsets F (as quasi-orbits, for instance), the support
of the localization p will probably allowed to be large. The interesting case is, of course,
that in which supp(p) has a large intersection with the spectrum in €7 (X) of the initial
symbol k (which is obtained formally setting F = ).

We are going to prove Theorem 4.1 in several steps.

Proposition 4.5. For every f € C3(2), & > 0, j € Nand ¢ € CT(E)} there exists
U € Ny such that

et lgao, <2 (4-3)

Proof. One has

1
HX%fH;)@@) = Z;ﬁ“@u()‘ifﬂ”%m Z‘w ZC“

<] i © Ve

:Z)u*v © va HB@(E) :

s0 one must estimate H Doxs, DFf H Bo(T) for a finite number of multi-indices @, 5.

We know from Lemma 3.2 that D%, = x5 . Then

|2 D7 e, = | [ @pmosta o],
<16l _sup || O-r(a) DFf |lg, g,

Yesupp(y)

= 16°¢llue sup || O-y[xu O (@] |,
Yesupp(e)

= 10°%lle sup sup|[@y (@]

Yesupply) ol

= [|8%llne sup sup|(DFF) [By(a)]].

Yesupplyp) el
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Therefore one can write

Wt |2 < 3= Zc‘* 16 el sup { | @D | 7 € Ougpin()
Pl (4.6)

< C(j pymax sup| | (D7) | T € Ouuppin (W) | ,

where C(j, ¢) is a finite constant depending on j and .
Given & > 0 we now find 2/ . Since the action @ is strongly continuous, for every
Z € supp(y) there exists a ball B(Z, 67) centered in Z such that if ¥ € B(Z, 6z) one has for

ally| < j .
|0+ D"H) = 02D Nl < 3655 @47

The balls B(Z, §7) form a covering of the compact set supp(¢) , from which we extract a
finite subcovering indexed by {Z; | i € I}. Since

®z(D'f) €Co(R), Vi,v,

there exists U} € Ny such that

Yo eU. 4.8
ToeTL = (“48)

| [02(D"N)0)| <
Setting
U= \{W]ieLM<j)eNs

one gets from (4.7) and (4.8)

| [0 < VoeU, VY esuppl), Y < J.

L
C(jo)’
Inserting this into (4.6) finishes the proof. O

Now we prove an estimation as (4.5), but with the pointwise product - replaced by the
deformed product #.

Proposition 4.6. For any f € CX(E) = CP(E), ¢ € CP(E);, € > 0and j € N, there
exists V € Nr such that

”Xﬁ/#f ”3@(2) & e
Proof. For the composition y5,#f we are going to use the representation (3.4).
For G € BC*(E x Z; BZ (X)) and j,m € N we set

|Gllg7G = max Z o Sip | @82 |5 s,
" irem 1 (4.10)
= A e ~Z _,HDQ[("’W‘T D) g

[(u)i<m

Jel<i
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By [38, Prop. 1.6], for every k > 2n we have estimates given by

; @) ;
| [ [arazemay,muwe@cea)|, | <CoIGIgE,. @11
where 3, Cpo(k) < co. Applying this to
G4, Z) := Oy ©7-r()]
and relying on the representation (3.4), one gets

| [[ [avazwmyunmo@esi, 0crh) |, < Crod| &% -

A direct computation shows that the quantity H G’ H(" “ s bounded uniformly in V,
because it is dominated by a finite linear combmatlon o% terms of the form

5 |25 . < [ Pl | 27 .-
Thus, for any £ > 0, there exists m; € N such that for every V € Ny one has

| [ [arazevmyurmoedeomsi|,. <otz

IPl+I0l>m;  YEYE

We still have to bound by £/2 the remaining finite family of terms, this time for some
special neighborhood V of F. Using the continuity of the action ® and the compacity of
the support of p, o, there exists a finite family of balls {B(Y;, §;) X B(Z;, 6))}ie; which
covers the suport of ¥p ® ¥, such that for (¥, Z) € B(Y;, 6;) x B(Z;, 67} one has

”X?;; (fo-Y. - fZ—Y) Hg;(}:} <gf2M, VjZk, 4.12)
where
fx = 0_x() e CFEYF
and M is some positive number. In addition, by Proposition 4.5, for every i € I there is
some V; € N such that
% fomr oy < €/2M. i<k 4.13)

One takes the finite intersection V = [),;V: and then, by (4.12), (4.13) and the fact
that the action @ is isometric with respect to all the semi-norms, we can estimate the
compactly supported integral

| [ [erazemagumyozer, oxn]|

6]
By(L)

< Mpg sup{qu,fz_y I ¥ € supp(ws), Z € supp(wQ)}

< Mpg S_UP H){ji,fz‘-—}’; “5903

+ Mpgsupsup {5 Uz, = for g | ¥ € BT, 6).Z € B(Z, )

P4 £ Mp
£ )= oo,

<M
PQ(ZM oM M
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Then, choosing M := 3 CppMpg, one gets the estimation. m)
1PI+Qt<m;

Now we change the semi-norms.

Proposition 4.7. For any f € C(Z), ¢ € CZ(E), € > O and k € N, there exists
W e Nr such that 5
||, #f ||%® <e. (4.14)

Proof. This follows from our Proposion 4.6 and the equivalence [38, Ch. 7] of the families
of seminorms (4.1) and (4.2), which is a rather deep result. O

End of the proof of Theorem 4.1.

To finish the proof of Theorem 4.1, one uses Lemma 3.1 with A := C(T) and  :=
Eo(2)F . Notice the identification

SPeyr () = sp(A”|C(F)) .

This allows us to take f = p(h) € (Eg"(}:)F in Proposition 4.7 and to get

x50 ||g. 5, < (4.15)

under the stated conditions. The case k = 0 is enough for our purposes.
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5 The simplest main represented result

We start with the simplest situation. We take X to be a locally compact space containing
= = R?" densely. If T is even compact, it will be a compactification of Z. One denotes by
As(E) the C*-algebra composed of restrictions to E of all the elements of Co(Z). Then
As(Z) is a C*-subalgebra of BC(E) which is canonically isomorphic to Cp(Z) by the ex-
tension/restriction isomorphism. Thus the Gelfand spectrum of Az(Z) is homeomorphic
to X.

Let us also assume that Ay(Z) is contained in BC,(E) and it is invariant under transla-
tions. It follows easily that the action of E on itself by translations extends to a continuous
action ® of E by homeomorphisms of £. This action is topologically transitive: Z is an
open dense orbit. Let us set £, := X \ E for the boundary.

Since (Ax(E), ®, Z) is a (commutative) C*-dynamical system, one can perform Rief-
fel’s procedure to turn it in the (non-commutative) C*-dynamical system (Ug(=), ®, Z).
The common set of smooth vectors UL(Z) = AF(E) is contained in BC™(E).

It is known that BC™(E) is the family of smooth vectors of the Z-algebra BC(E),

whose Rieffel quantization will be denoted by BE,(=) . But on BC®(Z), by the Calderén-
Vaillancourt Theorem [8], one can apply the Schrodinger representation in H := L*(%2)

Op : BC®(E) — B(H) (5.1)

given in the sense of oscillatory integrals by

oopule) = 2n” [ ay [ dgeet (52 eJuy. 52)

In particular, this works for f € AT (E).

We also fix a closed @-invariant subset F of % ; it can be a quasiorbit for instance.
As in Section 4, we also consider a neighborhood basis N of the set F in . For every
W € Np we set W := ‘W N E. Then the function y¥, is the restriction of x¥,, to = and it

belongs to BC™(E), hence Dp(,yfv) makes sense as a bounded operator in I2(&).

Finally let 2 € C3’(X) = €F'(Z) be a real function and set H := Op(h) = H", a bounded
operator in H := L*(Z") (we use the same notation % for the restriction of £ : £ — R to
Z). Relying on [26], we give an operator interpretation for the set sp(h”), the spectrum
of ¥ := h|r computed in the non-commutative C*-algebra C(F). Let us write Q(F) for
the set of all quasi-orbits of the closed invariant set F and denote by Qy(F) a subset of
Q(F) such that F = { Jgeg,r) @ In each quasi-orbit O pick a point o such that the orbit
of this point is dense in Q. Then

Ko E R, h7(X) := h[@x(cp)] (5.3)

is an element of BC™(E), to which one can apply Op; let us set H7¢ := Op (h72). It can
be shown [26] that:
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The spectrum S € of the bounded self-adjoint operator H7¢ depends only of the
quasi-orbit @ and not of the generating point o .

One has

sT=spe)= | | se= | ] se. (5.4)
Qe(F) Qely(F)
Of course, if F is itself a quasi-orbit one can take Qo(F) = {F} and the statements
simplify a lot.

The set sp(k”) is contained in the essential spectrum sp,(H) of the initial operator
H.

Actually, if we cover I, by closed @-invariant sets F, one has

sy = J87= | ] s2. (5.5)

F Qel(Za)

Now we can state and prove

Theorem 5.1. Ler h € AF(E) = AF(E) be a real function and set H = DOp(h). Let
p : R = R, be a bounded continuous function such that supp(p) N S¥ = 0. For every
€ > 0 and for every positive function ¢ € CZ(E) with fs @ = 1 there exists W € Np such
that

|96l ) 2D |lg 50, < - (5.6)
‘In particular, one has uniformlyint e Randu € H
|op(x) ™ ptEnu]| < ellull. (5.7)

Proof. Ttis known (cf. [3, Lemma 3.1] or [26, Prop. 2.6]) that the mapping Op extends to
a faithful (therefore isometric) representation of BE,(E) in H . We can use its restriction
to our algebra Wy () and apply it to the element p(k) . Note however that x4, , element of
BC™(E) ¢ BC,(E), has a priori no reason to belong to Ax(E).

For the first estimate we use the fact that, being a representation, Op is multiplicative
and commutes with the functional calculus:

Op(x%, ) o) = Op(xy) P[] = Oo(x) Oplo()] = Op|x ()] .

We denoted by § the Weyl composition law of symbols [8], corresponding isomorphically
to the composition #. Then we use Theorem 4.1, the isomorphisms

WUp(BE) = () and BC(E) = Be(Z)
and the fact that Op is an isometry to write

19p0) 0D [l = [| PPl 5y = oD g <22 (58)

As it has been said repeatedly, the second estimate (5.7) follows from (5.6). O
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6 Other represented result

Here we treat a more general case. The action ® will no longer be composed of transla-
tions.

Our framework starts with a continuous action @ of = by homeomorphims of the
locally compact space X. @ is continuous and the homeomorphims @y,0y satisfy Oy o
Oy = Oy,y for every X,Y € E. The action ® of E on X induces a continuous action
of B on Cp(X) given by Ox(f) = f o @y . We want to realize the algebra (Co(X), @, E)
as a subalgebra of (BC,(E), 7, E) by a E-monomorphim (we denoted by 7" the usual
translations in E) . For this purpose, it is convenient to have a closer look at the quasi-orbit
structure of the dynamical system (Z, @, Z) in connection with C*-algebras and Hilbert
space representations.

Let us use the convenient notation ®,(X) := @x(o). For each o € X, we denote by
E; := ©,(E) the quasi-orbit generated by o and set
Por: Co(Z) - BCu(E), Pf)i=f008,.

The range of the Z-morphism #,. is called B, and it is a E-algebra. Defining analogously
P, . Co(E;) — BGC,(E) one gets a E-monomorphism with the same range B,, which
shows that the Gelfand spectrum of B, can be identified with the quasi-orbit E,, .

For each quasi-orbit E, one has the natural restriction map

Re : Co(X) = Co(E), Re(f) := flk,

which is a E-epimorphism. Actually one has P, = P, o Rg, .

Being respectively invariant under the actions ® and 7, the C-algebras Cy(E) and
B, are also subject to Rieffel deformation. By quantization, one gets C*-algebras and
morphisms

Re 1 GoX) — C(B), Po 1 G(E) — B, B Co(Ey) = B,

satisfying P, = B, o Rg,. While Rg and B, are epimorphisms, P/, is an isomorphism.

We also need Hilbert space representations. For each E-algebra B, we restrict Op
from BC™(Z) to B® = B> (the dense *-algebra of smooth vectors of B) and then we
extend it to a faithful representation in H = L*(Z") of the C*-algebra B. We can apply
the construction to the C*-algebras B,,. By composing, we get a family

{Op, :=OpoPB,|locek)

of representations of €y(Z) in H, indexed by the points of £. For f € €F(X) one has
P(f) € BY = B, and the action on H is given by

[op 0 = @ [ ey [ dget o s 6.1)
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in the sense of oscillatory integrals. If the function f is real, all the operators Op,(f) will
be self-adjoint. To conclude, a single element f € Ty(X) leads to a family

{H, = Op,(f)|oc€X)

of bounded operators in L?(2") . Note that, seen as a quantization of the symbol f, (6.1)
can be quite different from a Weyl operator.

Remark 6.1. The point o will be called of the first kind when Cy(E) € B, . It has been
shown in [27, Prop. 3.1] that in such a case Op(B,) contains all the compact operators in
H , thus Op,, is irreducible.

Remark 6.2. Notice that Op, is faithful exactly when B, is injective, i.e. when P,
is injective, which is obviously equivalent to E, = £. Consequently, if the dynamical
system is not topologically transitive (i.e. no orbit is dense in X), none of the Schrodinger-
type representations Op,. will be faithful. In such a case, we are not able to transform the
abstract algebraic Theorem 4.1 into an assertion involving operators. There is always
an injective representation, the so-called regular representation, but spectral analysis and
localization results in such a setting seem to have a limited interest.

So we restrict now to the case of a topologically transitive dynamical system and
study the operators Op,.(h) associated to a suitable symbol k and a generic point o € X,
i.e. a point generating a dense orbit. The non-generic points 7 will define subsets §, of
the essential spectrum of Op,.(h) as well as regions of non-propagation for its evolution

group.

Theorem 6.3. Let (%, ©, E) a topologically transitive dynamical system, (Co(X), ®, E) its
associated C*-dynamical system and o € T a generic point.

For a fixed real function h € CJ(Z) = €5 () set H, := Op,(h). Choose a non-generic
point T € X, denote by E. its quasi-orbit (strictly contained in X) and set H, := Op_(h).
Let p : R — R, be a continuous function such that supp(p) N sp(H,) = 0.

For every € > 0 and for every positive function ¢ € CZ(Z) with f___ @ =1 there exists a
neighborhood ‘W of E. in Z such that

[|9po(x5) pH) ey < & 62)
In particular, one has uniformly int € R and u € L*(Z)

| 09 (x5y) €M p(HoIu || < &llull. 6.3)

Proof. Since (Z, 8, Z) is topologically transitive and o is generic, the mapping Op,. is a
faithful representation of our algebra €y(X).

Then the present result follows easily from Theorem 4.1, along the lines of the proof of
Theorem 5.1. The role of the closed invariant subset F is played here by the non-generic
quasi-orbit E. . (]



Remark 6.4. Recall that we set ng(){ﬁv) = Op (Xﬁu o @,') . The function x7,, 0 @, is a
mollified version of y+y o ®, , which in its turn is the characteristic function of the subset
O, (‘W) of the phase-space . By our choice of the points ¢, 7, one has O, N O, = @ and

E.cWCcCcE, =%,
where the inclusions are strict.

Remark 6.5. For a better understanding of the dependence on the points ¢~ and 7, we
recall some results from [26]. If o, o, belong to the same orbit (O,, = O,,), the two
operators H,, and H,, are unitarily equivalent. If the two points only generate the same
quasi-orbit .

E; =0, =0, = E,,

they may not be unitarily equivalent, but they still have the same spectrum and the same
essential spectrum. In applications, very often, there is a privileged generic point o
defining an interesting Hamiltonian H,, as in (6.1) and the remaining objects are auxil-
iary constructions. Their usefulness comes from the fact that the behavior of the symbol
requires a topological dynamical system encoding spectral information.
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7 An extension
The Weyl system 7t : & — U(H) defined for all X € Zand u € H := L}(Z") by
[2(XDul(y) := O Eu(y - x). (7.1)

It is a projective unitary representation with multiplier given by the imaginary exponential
of the symplectic form:

2(X)n(Y) = exp (%IIX, Y]])yr(X +Y), VYXYeE. 72)
We denote by
I:E - MtBEH)], COT := 2(X)Ta(-X) (7.3)

the automorphism group associated to . The C%vectors of this automorphism group
form a C*-subalgebra

BYH) :={S e B(H)| E3 X — II(X)S € B(H) |-|| —continuous},  (7.4)
while the C*°-vectors
BY(H) :={S eB(H)| E3 X — II(X)S € B(H) is C* in norm} (7.5)

form a dense *-subalgebra.

We also denote by §(2) the family of all ultrafilters on = that are finer than the Fréchet
filter. Recall from [27] that the essential spectrum of any self-adjoint operator A belong-
ing to BY(E) is given by

8Pess(H) = Uxesz) sp(Hx) , (7.6)
where the limits
Hy = )%m}( TI(XH)H (7.7)

are shown to exist in the strong sense.

The next result is a variant of Theorem 5.1.

Theorem 7.1. Let H be a self-adjoint operator in H = L Z") belonging to B*(H). Let
us fix an ultrafilter X on E finer than the Fréchet filter and choose a bounded continuous
Junction p : R — R, such thar supp(p) N sp(Hx) = 0.

For every € > 0 and ¢ € CZ(Z); there exists W € X such that

| 0p0e5) p(H) ||5 g < € (7.8)
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Proof. In [27, Prop. 3.1] it has been shown that BY(H) = Op [BC,(Z)], where BE,(E)
is the Rieffel quantization of the C*-algebra BC,(E) of all bounded uniformly continuous
functions on E. As we said above, this one is the largest one on which E acts continuously
by translations (that were denoted by 77). It is well-known that

m(X)Op(f)m(—X) = Op[Tx(f)], VYXE€EE.
Then, clearly, one also has
B=(H) = Op[BE*(E)] = Op[BC™(E)] .

Then the methods of the previous sections became available and the proof is very similar
to the proof of Theorem 5.1. O
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8 Some examples

Example 8.1. Let us first exploit the fact that the phase space Z is the Cartesian product
of the configuration space 2~ and the momentum space 2~ and that the translations in &
admit the decomposition 7y ¢ = 7,®7; in terms of translations in 2" and in 2™ , respec-
tively. We consider unital C*-algebras A(Z") C BC,(Z ) and A(Z™) ¢ BC(Z™). We
assume that A(Z") is 7-invariant and contains Co(Z) and similarly about A(Z*). The
relevant algebra will be A(E) := A(Z ) ® A(Z ™), which is a 7 -invariant C*-subalgebra
of BC,(E) containing the ideal Co(E) . Its Gelfand spectrum can be naturally regarded as
a compactification ¥ = Q x Q" of E, which is the product between a compactification
Q:= 2 UQ,of £ and a compactification Q* := Z* U Q] of .

Very simple elements of A®(E) (smooth symbols with A(X)-anisotropy) are finite
sums

h(%,€) = ) 60V (8.1)
=1

with ¢; € A(Z ) and ¢; € A®(Z™).
We denote by ® the action of Z on T which extends the translations. Then

E=(Z UQ)X(ZTUQ)=ELZX,, (8.2)
where we have the invariant decomposition
P = (F X Q) U Qo0 X 27 LU Qoo X 23) (8.3)

Let us fix an 2 -quasiorbit E € Q,, and a basis of neighborhoods Nz of E in Q. Similarly,
fix an 2 *-quasiorbit E* C Q,, and a basis of neighborhoods Ng- of E* in Q0 . We will be
interested in the quasiorbits Q x E* , E x Q* and E x E* of £, .

Assume that % C Q is a neighborhood of E and set U := U N Z . Then W :=
U x Q" is a neighborhood of F := EX QX inZandonehas W= WNE=UxZ".
Therefore yw = yy ® 1. It is convenient to choose the regularizing function ¢ of the form
@®f, where @ € CX(Z)" and B € CZ(Z ™)1 ; then obviously x§, = x7 ® 1 and thus
Op(x%) = ¥%(0)®1, where we recall that Q denotes the position operator in H = L*(.2)
and y7,(Q) is constructed via the usual functional calculus.

Coming now to the Hamiltonian, for simplicity, let us consider only the case

hi=¢@1+1QYy, Ax &) =a¢x)+YE), (8.4)

with ¢ € A®(Z") and ¢ € A*(Z™) real functions. By Weyl quantization one gets the
bounded self-adjoint operator

H = Op(h) = y(P) + ¢(Q), (8.5)

where P := —{V is the momentum operator.
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To construct the asymptotic Hamiltonian H” corresponding to the quasiorbit F =
E x Q" one has to choose a generic point w € E ; then (w, 0 ¢-) will generate F . With the
function
¢*: Z - R, ¢“(x):= ¢lr(w)]

one constructs the multiplication operator ¢“(Q) and the Hamiltonian
H*:=Dp(1ey+¢“@1) =y(P) + ¢“(Q). (8.6)

As said before, the spectrum S £ of this Hamiltonian only depends on the quasiorbit E .

All these being said, we can now make a statement, deduced from Theorem 5.1. Fix
a positive bounded continuous function p defined on R having a support disjoint of S%.
For every &€ > 0 and every @ € CP(2)} there exist a neighborhood U of E in Q such that

XS @E ||, < & 8.7)

The corresponding estimate on the evolution group is also available. Note that, although
the symbol of the Hamiltonian does have full phase-space anisotropy, due to the particular
form of the quasiorbit £ x Q*, one gets a configuration-space localization result.

Similarly, if we consider the quasi-orbit Q x E* , one obtains easily momentum-space
estimates describing forbidden momenta for suitable energies.

Finally, let us take into account the quasiorbit F’ := E x E*. With choices of generic
points w € E and w* € E* we construct the asymptotic Hamiltonian

H““" := Op (1 Y +¢°® 1) = Y (P) + ¢“(Q) (8.8)

with spectrum S ¥ independent of the pair (w, ") (and contained in the previous set SZ
which in its turn is contained in the essential spectrum of H) . If the support of p is disjoint
from S, very much as above, for every & > 0 we get the phase-space localization
estimate

” Dp[szu-]P(H ) ||B('H) <4, .9

valid for U := UN Z and U* := U N 2", where U" is a small neighborhood of
E cQr.

Of course, if the C*-algebras A(Z") and A(2™*) are explicit and easy to understand,
the results of this Example can be made more concrete; sources of inspiration can be
found in [2], in which however 2~ or 2™ is replaced by Z. Some of the results described
in the Introduction can be obtained easily taking 2 = R and A(ZL"), A(Z*) be the C*-
algebras of continuous functions (on 2" and 2™, respectively) having (a priori different)
limits at +co .

Example 8.2. Assume that (£°, ®, E) is a topologically transitive dynamical system. To
have a concrete example in mind not consisting of translations, we could take = to be
R X R acting on the closed quarter plane [0, o) X [0, o) by dilations:

Oup( 1) := (', €n). (8.10)
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For bounded continuous functions f : £ — C and subsets L of = we define the oscillation
of f on L along the action @ by

osef(f) X o R, [oscR(N]@) = suplfiOx(@] - f@)].  ®.1D
Note the simple properties
[ose2(f + 8)](@) < [osc2(N](0) + [oscE @] (), (8.12)
[oscf(af)](@) = lal [ose2(N] (@), (8.13)
[0se2(P() = [osc? ()], (8.14)
[05c272))(@) <llgl[osc2P))(@)+ 11 £ e [o5c@)](@. (8.15)

The family VO®(Z°) of vanishing oscillations functions along the action ® is defined by
requiring that osc2(f) € Co(E°) for every compact subset K of . To make it interesting,
we assume that the locally compact space X° is not compact. Using (8.12), (8.13) (8.14)
and (8.15) we see that VO®(X?) is a unital *-algebra. The easy to prove inequality

llosc () — 0scP(@)llo < 2 I f — gl (8.16)

even shows that it is a C*-algebra. For ¥ € E and K C = compact, one has

0scR[®r(N)] < 0scP, () + 0scly(f), 8.17)

so VO®(Z°) is @-invariant. Thus Rieffel deformation apply, yielding a non-commutative
C*-algebra BO®(XY).

We need a certain understanding of the Gelfand spectrum of VO®(x?), denoted by .
Since ® : Ex X% — £0 is continuous, the set @x(Y") is compact in £°if K ¢ Eand Y ¢ °
are compact; this leads easily to a proof of the inclusion Co(E%) ¢ VO®(2?). It follows
that X is a compactification of £% and I := £ \ X° is a compact dynamical system under an
extension of the action ®. We are going to show that its elements vy are fixed points for
this extension, also denoted by ® . The point y is a character of VO®(Z%) which is trivial
on Co(X%). Thus for every X € E and every f € VO®(Z°) one has

[@x(y) = YI(f) =¥[®x(f) - fl=y[fe®x—f] =0,

because fo @y — f € Cy(E°). The proof also shows that VO®(XP) is the largest C*-algebra
having this property.

Let now k be a smooth element of the C*-algebra BO®(Z;). Recall that £° has been
supposed topologically transitive; then clearly I is also topologically transitive, because
20 is dense in £. Choosing a point ¢ belonging to a dense orbit one constructs in the
Hilbert space H := L*(Z") the generalized Weyl operator H,- := Opn(h ¢ ©,) (see Section
6, especially (6.1), for its definition).
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By general principles [26], the essential spectrum of H, is the closed union of spectra
of generalized Weyl operators defined by asymptotic symbols, which actually are restric-
tions to non-generic quasiorbits of the extension of 4 to Z (also denoted by 4) . In 20 there
could already exist such quasiorbits that we do not know. So we concentrate on those
that we do know, the fixed points belonging to I', that will only describe a subset of the
essential spectrum. The asymptotic symbol corresponding to such a point y is just given
by a real number A(y) which, after Weyl quantization, will yield the constant operator
h(y)14 with singleton spectrum {A(y)} . Consequently, one gets A(T") C sp.(H,-) and this
inclusion is an equality if there are no non-generic quasiorbits in £°.

Since the “boundary at infinity” I is difficult to understand, it helps to express A(I")
only in terms of the values taken by 4 on X°. Let us choose 7 € Z° generic (belonging to
a dense orbit). By mimiking arguments from [25] it can be shown that

KD = () {Al@=x(1 | K c & is compact} .

Of course this set is T-independent. It could be called the asymptotic range of the symbol
h along the action ® . Another description of the points of A(I') are in terms of é-level
sets. For A € R and 6 > 0 one sets

MPT(h;A) ;= {X € E||h[Ox(D)] - 2| < €).

Then A belongs to A(T') if and only if Mf"(h; A) € E is not relatively compact for any
6 > 0. Note the relation

MO ) = M () - Y

valid for two points 7 and @y (1) placed on the same (dense) orbit, that certifies once again
the independence of the condition on the generic point 7 € £°.

So let us now fix a bounded continuous function p : R — [0, co) which is zero in a
neighborhood of the point A = h(y) (which is the spectrum of the asymptotic Hamiltonian
h(y)14). By Theorem 6.3, for any & > 0 there exists a neighborhood ‘W of y in X such
that

|| Op (i) PH) [lgig0y < & (8.18)
with the usual consequence for the evolution group generated by H, .

It is difficult in general to describe properly the neighborhood W . For the case of
translations acting on £ = Z, one can adapt the analysis from [2] . This also can be
done quite easily for the action by dilations of R X R on [0, o) X [0, c0) . In this situation,
however, one has the extra three non-generic quasiorbits

{0} x {0}, [0,00)x {0} and {0} x[0,cx)

to be taken into account. It is easier to write the localization and the non-propagation
results for these quasiorbits. We indicate the nice simple form of the corresponding three
asymptotic Hamiltonians, following from (6.1):

Ho = 10,0)14,
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(Hy oyw)(x) = hie*, 0ju(x),
(Hox) = | dyFz=yu).
where k is the Fourier transform of the function
k: 2 >R, kin):=h0,¢€").

The contribution to the essential spectrum coming from these quasiorbits consists of the
two real segments /([0, co) x {0}) and A({0} x [0, ®)) . To be relevant and interesting, the
localization function p must now be supported away from these two segments but it should
be non-trivial at least on part of the set (") described above. At energies belonging to the
support of p propagation towards the two edges [0, o) X {0} and {0} X [0, o) is forbidden.

Remark 8.3. As a particular case of Example 8.2 one can take £’ := = on which © is
the action by translations. At the level of the essential spectrum this has been treated in
[26]. The localization results can easily be infered from the discussion above; no extra
non-generic quasiorbits are present here.

Remark 8.4. On the other hand, vanishing oscillation functions can be considered in the
setting of Example 8.1 for the C*-algebras A(Z") and/or A(Z™"). Notice that VO(Z)
and VO(Z") ® VO(Z™") are quite different, thus leading to different types of phase-space
localization results.

Remark 8.5. In [2] (see also [24, 25]) it was shown how to extend localization and propa-
gation results to C*-algebras generated by a mixture of vanishing oscillation and minimal
(in particular almost periodic) functions on a vector space. This can be further extended to
actions of vector groups on locally compact spaces, thus generalizing Example 8.2. Since
this is quite straightforward, we are not going to do this here.
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