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Abstract

We show phase space localization at suitable energies for zero order pseudod-
iflcrential operators, implying non-propagation properties for the associated eyolu-
tion groups. This extends previous results wh.ich only t¡eated configuration space
a-nisotropic behavior The proofs rely on Rieffel's strict deformation quantization of
C.-algebras acted by a vector group and on a quasiorbit analysis of some connected
locally compact dynamical systems.



Introduction

The main purpose of this thesis is to prove some phase-space localization resuits for the
functional calculus and for the evolution group of certain WeyI pseudodifferential oper-

ators 11 = Dp(f) acting in the Hilbef space'¡l := Z2@') with symbots presenting full
phase-space anisotropy. Very roughly, a symbol

Wx(M).)(x,€)á/(x,4)eR

has full phase-space anisotropy if it has non-trivial behavior both for lrl ---> oo and lál i
oo; of course more assumptions wiil be needed to make our theory work. For us, the

trivial behavior would be convergence to eithe¡ zero or infinity.

To describe the localization issues let us consider a (maybe unbounded) self-adjoint
operator 11 in the Hilbert space fl := I2(R') . We think it to be the quantum Hamiltonian
of a physical system moving in lM , so its evolution group {ei'H l¡ e R} describes the time
evolution of the quantum system. Thus, if at the initial moment the system is in a state
modellized by the normalized vector v e '11 , at time , it will be in t}le state associated to
v, := eúHv .

By general principles of Quantum Mechanics, the probability at time , for the system
to be localized within üe Borel subset U of R'is given by the number

) y¡ei'H 't¡¡2 =

Very often one is interested in the behavio¡ of this quantity when the initial state y has a
certain localization in energy. If E is a Borel subset of lR , an interval for instance, we say
that the state has energy belonging to E if v = Xr(H)v, where the characteristic function
of E is appüed to the self-adjoint operator H via the usual Borel functional calculus.
For technical reasons we also consider as interesting vectors satisfying the condition y =
p(H)t,where p : lR. ---r 1R* is a continuous (or a smooth) function; it can be, for example,
a continuous approximation of the characteristic function¡E. Anyho% we a¡e motivated
to consider the dependence of the Etanttty llyuei'H p(IIJu ll2 on the parameters U, p and l.
The normalization of y is not essential, so we shall replace it by an arbitrary vector u -

The type of result we are looking for would say that, under certain assumptions on fl
and p ald for a given family ü of non-void Borel subsets of R', for every e > 0 there is
an element U of the funrly U such that

llyueitH p(H)ull2 < e211u112 forallt€F.andué']1 . (1 1)

Admitting that in some sense the family l/ converges to some region F (eventually situ-
ated "at infinity"), this means roughly that states with energies contained in the support
of the function p cannot propagate towards ¡' .

fuaxú'{x)l''



All these being said, iet us notice however that ( 1.1), although dynamically significant,
does not really have a dyumical nature. It is perfectly equivalent to the estimate

llxur(}l)lÉr¡ < e, ( 1.2)

written in terms of the operator no¡m of lB(fl), the C--algebra of all linear bounded
operators in the Hilbert space fl. It is obvious üat such an estimate needs some tuning
between the energyJocalization function p and the family ü ', without it one can only
write

llx u p(A lblal < ll xu llsorrll pGD llsot) = rffi r{z),

and clearly we are interested in the case in which the support ofp has a non-hivial inter-
section with the spectrum sp(¡, of the Hamiltonian Il .

A simple-minded relevant situation is as follows: If the support of the function p is
disjoint from the essential spectrum spcss(I, of 11, it is known that the operator p(ll) is
compact (finite-rank actually). If, in addition, tlx§ suppof contains points of the discrete
spectrum spdis(¡, := sp(11) \ sp".,(d), ttÉIi p(1, + O. Lef A be the filter formed by the
complements of all üe relatively compact subsets of W . Then the family of operators of
multiplication by¡u converges strongly to zero. Multiplication with a compact operator
improves this to norm convergence, so for each e > 0 there is a sufficiently large (rela-
lively) compact set K e ]M such that llX x"p(H)llaot < e. In dynamical terms, üis would
mean that states localized in the discrete spectrum cannot propagate to infinity.

For less trivial situations we consider üe case of generalized Schródinger operators
¡/ = Dp(/) in Z2@) defined by the Weyl quanrization of the symbol

where

f O,11 = h(É) + v(x),

V : lM '+ lR, lz : (1R')- --+ fr
a¡e convenient functions. Then

¡/=Dp(/)=h(D)+v(O,
where Q is the position operator, D := -iV is the momentum and lr(D), y(0) can also be
constructed by the usual functional calculus associated to (families of commuting) self-
adjoint operators. Of course ñ(D) is a convolution operator and even a constant coefficient
diferential operator if ft is a polynomial , while V(p) is the operator of multiplication with
the function Y .

Assume now üat n = 1, that y is continuous a¡d

'!* 
V«'l = Ya € lR with V- < V*

and take for simplicity h{{) ¡= {2 , so

H =_L+V(Q)
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is a one-dimensional Schródinger Hamiltonian with configuration space aoisotropy. Be-
low V- the spectrum of If is discrete, so one can apply the discussion above. But it is more
interesting to take p supported in the hterval (V-,I/*). If the convergence of V towards
the limits y+ iE fast enough, propagation towards infinity is possible in this region. But
for physical reasons one expects this to happen only "to the 1eft". This is not difficult to
prove rigorously: for every e > 0 the¡e exists a real numbel a such that

llx a.**¡(Q)P(E¡ llsw < s .

Thus "propagation to üe right is forbidden" at energies smaller than V* . In this example
we make use of the filter base'l,l := {(a,a)la e R} fomred of neighborhoods of the point
+oo in the fwo-point compactification [-oo, +oo] of the real axis.

A more complicated version is less easy to guess just by physical grounds. We con-
sider the same Hamiltonian ¡1 = -L + V(Q) for n = 1 but now

,]1gtv(r)-Yl-r)l=0,
where y+ are two periodic functions, with periods 7* > 0. In this case

sp",,(II) = sp(H-) u sp(H*) ,

where the asymptotic Hamiltonians

H* := -L + V"(Q) ,

being periodic, have a band structure for the specfum. We don't know if this intuitive
enough, but it can be shown however, that if the support ofp does not meet sp(lJ*), then
propagaüon to the ¡ight is impossible in the same precise meaning as above. It is not
difficult to construct a two-tori compactif,caüon of lR of the form

o := @/r_z) u tR. u @,lr"z)

such that V satisfies the stated conditions if and only if if extends to a continuous function
on this compactification. Then the two asymptotic Hamiltonians a¡e fabricated from the
restrictions of this extension to the two to¡i and the regions of non-propagation can be
once again described in terms of neighborhoods of these tori in t¡e compactification.

To illustrate üe üfferent spes of anisotropy on the simple example of generalized
Schródinger operators, assume again that ¿ = 1 and

f{x,€)=h(€)+v(x)

(the case /(x, f) = h(€)v(x) can also be discussed along tle same lines), where Y : R" --+

lR and ft : (lR'). -, lR are continuous functions. Let us assume for simplicity that

,!g nG) = h, and ,ll* v(,) = v= 
'
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the limits a¡e elements of the extended real axis. Il h, = x (or if h* = 0) and yr € R, xhe

operator is said to possess configuration space anisofropy (especially if V- + y+) . But if
¿r € lR and yr € lR, we a¡e in the presence of aTi.rll phase-space anisotropic problem, Let
us keep this classification incomplete. For larger dimension z and with more complicated
types of behavior at infinity it might not be so easy to say exactly what kind of anisotropy
we are dsaling with, so the reader should take the present discussion at a heuristic leve1.

For a given self-adjoint opemtot ¿ we denote by sp(/,) the specÍum and by sp*"(Z) *re
essential spectrum. In the example above, if hr = oo (anisotropy in configuration space),
denoting min{g§)} by g,, and max{g(y)} by g¡¿ , one has

spess(¡I) = lh. + rnn(V-,V+), -) = splft(r) + y-] u sp[¿(D) + %]. (1.3)

It is easy to generalize a result above to this case and show that if supp(p) does not meet

sp[¿(D) + V,) = [h^ + V*, a) ,

then for every e > 0 there exists a > 0 such that

llx a.**¡(Q)PG{¡ lbw s e .

A similar result leading to "non-propagation to the left" is availabte by replacing + by -
and (a, +oo) with (-oo, -¿) .

On the other hand, for full phase-space anisotropy (l¿* e R and Vr e R) , the essential
spectrum is given by four conhibutions

spess(F/) = splft(D) + V-] u sp[ft(D) + y+] u sply(Q) + h_l u spÍV(Q) + h*l

= Íhn + V-,hM + V-)U lh^ + V+,hM + V+)

Ulh-+V-,h-+V U [h+ + V-,h+ + VM) .

(1.4)

In this case one can show once again lüat ll Xa.**¡(Q)p@) lls«¡ ca¡ be made a¡binary
small for big a É lR.* if

supp(p).l splh(D) +V; = A

and that ll71-*.-a(Q)p@)llsw ca¡ be made arbitrary small for big a e JR.* if

supp(p) n sp[ft(D) + Y-] = 0.

But a new phenomenon appears, connected to the presence of the two other components
in the essential spectrum of 11 : Suppose that the suppof ofp does not meet sp[V(e)+fr*] .

Then it can be shown that for every a > 0 there exists á e JR* such that

llX¡a'**¡(D)P(H)ll¡ 3 ¿

(and a similar result for + replaced by -). This can be converted in an estimate of the
form

llXp.**¡(D)eitH p1l¡ull < e llull
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which is uniform in f € lR and ,¿ € ¿2@) . It is no longer a statement about the probability

of spatial localisation, but one about the probabili§ of the system to have momentum

larger than the number D .

In both cases the essential spectrum of the Hauriltonian n = Dp(f) can be written

as union of spectra of "asymptotic Hamiltonians" that can be in some way obtained by

extending the symbol f(x,0 = h(0 + V(x) to a compactifrcation of the phase space

E := lR xlR. having the form of a square and then restricting it to üe four edges situated "at
infinity" (some simple reinterpretations are needed). Notice that the partial (configuration

space) anisotropy is simpler: the restrictions to two of üe edges do not contribute. In some

sense the two corresponding asymptotic Hamiltonians are infinite and üeir spectrum is

void. The reader is asked to imagine what would happen both at the leveI of the essential

spectrum and at the level of localization estimates in the case of a pure momentwn space

anisotJopy, vr'hen

,Bg 
¿tgl = á* e lR and ,lim V('x) = oo '

In z dimensions and for more general types of anisotropy (recall the periodic limits)
one expscts more sophisticated things to happen. Suppose that our Hamiltonian ,F1 is

obtained via Weyl quantization from a eonvenient real function / defiDed in phase-space

E:= lR x @). . If its behaviour at infinity in both variables (.x, f) is sophisticaded enough
(corssponding to what could be called "phase-space anisotopy") then one could expect

the following picture:

1 . The essential spectrum is the (closure of the) union of spectra of a family of "asymp-
totic Hamiltonians" .ÉI(F) associated to remote regions .F ofphase-space. There are

several ways to express this. One would be to say that the behavior of/ at infin-
ity in E can be described by a compactification E = E U á: of E and that F is a
conveniently defined subset of "tle bouridary at infinity" á!.

2. If a bounded continuos function p is supported away from one of the components
spt¡/(f)l , then "propagation towa¡ds F is forbidden" at energies belonging to the
support ofp . This would be deduced from an estimate of the form

llDp(xñ)p(¡4 llrr«r < ¿

written in terms of the Weyl quantization

Dp(aff) = yff(Q,D)

of a smooth regularization of the cha¡acteristic function 7y of a subset 14¡ of E .

For small e, the set Iry should be very close to the set F ; for example it can be the
intersection with E of a small neighborhood '1,l/ of F in the compactification X .

Until recentl¡ there have been few general results fo¡ the essential spectrum ofphase-
space anisotropic pseudodifferential operators and this was the main obstacle to getting
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localization estimates. Techniques involving crossed products, very efficient for config-

urational anisotropy t12, L3, 14, 24, 2), are not available in such a case. In [26' 27] this
problem was solved in a rather general seuing, by using the good functorial properties

of Riefel's pseudodifferential calculus [38, 39], developed in the context of saict defor-

mation quantization [40]. Roughly, if the syrnbol presenis full phase-space anisotropy,

the essential spectrum of the corresponding pseudodiferential operator can be written as

the closed union of spectra of a family of "asymptotic" pseudodifferential operators. To

obtain the symbols of these asymptotic operators one constructs a compactification of üe
phase space, which is naturally a dynamical system, and then detemines the quasi-orbits
of this d),namical system which are disjoint from the phase space itself. The extensions
of the initial symbol to these quasi-orbits define the required asymptotic operators that
contribute to the essentia.l spectrum.

In the present thesis we a¡e going to show that Riefel's calculus can also be used to
get the localization estimates, leading in their tum to non-propagation results for the evo-
lution group; this extends the treatment irr [2,30,21) of purely configurational anisotropic
systems.

Let us describe brieffy the content of this work.

First, in the next section, we give a brief description of some preüous results. This
will hopeñr1ly motivate our approach to cover the full anisotropy.

Section 3 will review some propefies of the Rietrel qua:rtization, one of our main
tools. It has as basic data the action @ of the vector space E on a C*-algebra .fl (for
our purposes it is enough to take it commutative). The canonic symplectic form on E is
used to twist the product on ,fl. This twisting is done first on the set of smooth elements
of ,fl under the action. Then a C.-no¡m is found on the resulting non-commutative *-

algebra. The outcome will be a new C*-algebra ü (the quantization of .fl, composed of
pseudodifferential symbols) also endowed with an action ofthe vector space E.

In Section 4 we prove our first abstract result; it refers to the algebra of symbols. The
proof has three steps: the first is basically topological, involving Abelian C.-algebras; the
second replaces the pointwise commutative composition with the rclevant pseudodifferential-
theoreücal one and the third cor¡ects the C*-algebraic norm.

To get famüar statements, refering to pseudodifferenüa1 operatom, one applies Hilbert
space representations to this abstract resulu this is done in Sections 5,6 a¡td 7 at various
Ievels of generality.

The final section 8 is dedicated to some examples.

Finally, let us mention that in [5] localization estimates and the structure of the essen-
tial specfrum have been obtarned for finite-dife¡ence operatorc on certain graphs, con-
nected to the l-dimensional Heisenberg model of ferromagnetism. Besides a ce¡tain C*-
algebraic background, the connections with the present work a¡e rather limited. Results
on the essentiai spectrum of natural famiües of discrete operators on rooted trses can be
found in [15, 1 1].



2 A short reüew of previous results

As we said in the Inkoduction, we are interested in estimates of the form ( 1.2). After some

preliminary previous results contaioed in pl, such estimates have been obtained in [2] for
Schródinger operators fl := -A+ V , where A is the Laplace operator and y is the potential
(the operator of multiplication by a real continuous function on lM) . Thus in suitable units
Il is the Hamiltonian of a non-¡elativistic particle moving in R' in the presence of the
potential V and "localization" or 'hon-propagation" refers to this physical system. In [30]
and [21] the results were signif,cantly extended to certain pseudodifferential operators
with variable magnetic fields, using üe magnetic version of the Weyl calcüu s 128,29, 17).

l,eaving the magnetic fields apart, for simpüciry, the Hamiltonians have now the form

a = DpCD,

being defined as the Weyl quanüzation of some real symbol / defined in phase-space

E := lR' x (]R'). .

The order of the elliptic symbol / (in Hórmander sense) is strictly positive, so one has

S,r(;r.0=-
and the behavior in ¡ e W is modelled by a C.-algebra of bounded, uniforÍ y continuous
functions on lM . So the symbols defining the operators are still confined to the restricted
confi guration space anisotropy.

To be more precise, to suitable functions lr defined on the phase space E , one assigns
operators acting on functions u: *l := W -+ C by

t¡p(h)rt(¡) ,= (rñ- 
Í* Ír!, aq 

",r*,tt 
n('iv ,t)*ol . (2.1)

This is basically the Weyl quantization and, under convenient assumptions on h, (2.1)
makes sense and has nice properties in the Hilbe¡t space '11 := Lz(g) or il the Schwa¡tz
space S(3ü ).

Let h : E --+ lR. be an elliptic symbol of strictly positive order m. This means that fu is
smoofh and satisfies estimates of the form

)(a',fin)a,ol< C,¡(.1 + tt \^-ts, va,B e N', v("r,{) e E (2.2)

(2.3)lh(x,€)l> C(l + ltD', V(;r,f) e E, lfl largeenough.

It is well-known that under üese assumptions Dp(lu) makes sense as an unbounded seif-
adjoint operator in f{, defined on the ¡z'th order Sobolev space. The problem is to evaluate
the essential spectrum of this operator and to derive estimates for its functional calculus.

and
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It comes out that the relevant information is contained in the behavior at infinity of ft in
the .x variable. This one is conveniently taken into account though an Abelian algebra ./
composed of uniformly continuous functions un .ff , which is invariant under translations
(if g e d and y e fl úer 9y(p) := q( +y) e.ú). Ia rs also assume (for simplicity)
thaf d is ldJoital a¡d contains the i deal Cs(,%:) of all complex continuous functions on .f
which converge to zero at infinity. We ask that the elliptic symbol á of strictly positive
order m also satisfu

(aid,n)<,9ca, vo,Be N', Y€e s.. (2.4)

Then the function ft extends continuously ondlx *., where Q is the Gelfand spectrum
of the C--algebra.d; this space Q is a compactification of the locally compact space fl .

By translational invanance of d , i¡is a compact dynamical sysiem under an action of the
grotp 9. After removing the orbif 9i, one gets a fl -d5ma:rical system O* := A\ 9l;
its quasi-orbits (closue of orbits) contain the relevant information about the essential
spectrum of the operator ¡1 := Dp(ñ). For each quasi-orbit 8, one constructs a self adjoint
operator -É16. It is actually the Weyl quantization of the restrictiotr of ft to 8x g- , slr:itably

reinterpreted. Using the notations sp(Z) and spess(7), respecüveIy, for üe spectrum and

the essential specbum of an operator 7, one gers finally

Many related results erist i¡ the literature, some of them for special type of functions
fr, but with less regularity required, others including anisotropic magnetic fields, others
formulated in a more geometrical framework or referring to Fredholm propefties. We
only cite [1, 4, 6,10, L2,13,14, 16, 19,18,20,21,22,23,24,30,32,33,34,35,36,37);
see also references therein. As V Geotgescu remarked [12, 13], when the function ¿ does
not diverge for { ---r oo, the approach is more difficult and should also take into account
the asymptotic values taken by ft in "directions cottained.t¡ !t'*".

Now, in the framework above, we indicate the localization ¡esults. Let I/ = Dp(fo) be
a Wef pseudodiferenüal operator with elliptic symbol of order z > 0 . For some unital
translation-invariant Abeliaa C--algebra "e/ composed of uniformly continuous functions
on *l a]¡ld containing Co(g) , asstme thar h(x,€) is .c/-isotropic in the variable ¡, i.e.
(2.4) holds. Choose a quasi-orbit I in the boundary O- := O\..f of the Gelfand spectrum
of .d . As said above, one associates to I a self-adjoint operator H(8); its spectrum is
contained (very often strictly) in the essential spectÍum of .I/. We also fix a bounded
continuous funcüon p : )R ---r [0, oo) whose support is disjoint from spl,F/(Q)]. Then for
every É > 0 there exists a neighborhood 3/of @in O such that, setting U :=,1,1 ¡,% ,

spess(É/) = [J rp(/¡d.
a

l)xu(.Q)pGrlho! s €

))¡¡(Q)et'H p(H)ullx < ellulln, Vr e R, a e ?f .

(2.s)

(2.6)

(2.1)
and
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We recall thatxu(Q) is, by definition, the operator of multipücation by the function¡y in
the Hilbert space fl = Ü@) . Concrete examples has been indicated in [2, 30].

As remarked by V Georgescu, a very eficient tool for obtaining some of tle results
cited above was the crossed product, associated to C--d¡mamical systems. In the setting
presented before, one uses the action 0 of 3ü: by translations on the C. -algebra .ú to
construct a larger, non-com-mutative C. -aJgebra dxsfl . After a partial Fourier transform,
this one can be seen to be generated by pseudodifferential operators of strictly negative
order, with coefficients in d . So it will contain tesolvent famiiies of elliptic strictly
positive order Weyl operators satisrying (2.4) and the structure of the crossed product will
rather easily imply specfal ¡esults. A basic fact is that the crossed product is a functor,
also acting on equivariant morphisms, and that it behaves nicely with respect to quotients
and dírect sums. One drawback is, however, that (-anisotropy cannot be treated easily.
The symbols of order 0 are not efficiently connected to the crossed products (treating them
as multiplier would not be enough for our purposes).

As a substitute for crossed products, il [26, 27] Rieffel's version of the Weyl pseudod-
ifferential calculus has been used to investigate the essential spectrum of full phase-space
anisotropic Hamiitonians. Since it wilt also be needed for out study of localization results,
we dedicate the next section to a recall.
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3 Rieffel's pseudodifferential calculus

Wc shall rccail briefly Rieflel's deti¡rr¡ation ¡rrocedure. sending to f38l fbr proofs and

more details. Sonc convcntion will be differenr. Rieffel's main purpose was to provide
a unilied fiamework lbr a largc class of cxamples in deformation quantization (cf. also

f40l) and to study their convergence to solre corresponding Poisson algebras. but this will
not be impoftant here.

I-ct us denote by ,.- the Yector space,L" on which. when necessary, the canonical base

(et,...,e,) r.vill bc use.f. Its dual is denoted by .?'. with the dual base (e,,*t,...,e:,).
Then "the phase space" E = )' x Z-' with points generically denoted by

x = (.r,§). r = ¡'. ti, z - (;, i\
is canonically a syrrplectic space with the s),ilrple!-lic forin

llx, Ill :- r . ,t - r' {. (3. t)

'I'he duality betu,een -r e ;/,' r,nd t e 2 ' has been denoted by a dot; by abusc wc could
think of it as a scalar product on -.".," . identilied with its cwn dual.

We start wjth l clctssicctl clcrttt, which is by delirition a t¡uadruplet

(-4,o,E,[..n),

whcrc J4 is a C*-algcbra and a continuous acliorl O o{ 3 by aulomorphisrns cf lll is also

given. For (.1,.Y) € .U x E we are going to use the notations

€)úx)-Oi'(.f)€rz

for the X-transformed rl1 the elcnrcnt f . The functior 6) is assumed lo be continuous attd

the automoiphisms G)¡, @¡ satist_v

@¡ o O,, - t9r_r., ''/ X,Y €Á .

Let us denote by Jfl'- the vcctor spacc of all smooth elemcnts .f under O, those for
\\'hich the mapping E - X r+ Or(l) e -4 is C'-' jn normlit is ¡ dense --algebra of J4. It is
¿lso a Fréchet '-ligebrl lbr the family of scmi-uorms

In tlrc -!.qllcl r¡,c arc going to usc thc abbreviatiors t)'l := *(ta)x|))|, ,, fbr ail the

nruiti-ii1d1ces lr L' l'.ir". AII the operatol's f)' r¡c rvcll-dcfincd. lincar and co¡liirluolrs o11

the Fréchrt ' algebÍa .7{'''.
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Then one introduces on .fl@ the product

l1 
'\

rigorously defined as an oscillatory integral. There are three equivalent ways to give a
meaning to this kind of expression; we review üem briefly, sending to [38] for details.

1. Integration by parts. For /, g e .fl- we set

F(Y,z) := @y(f)@zG) e A* ,

but the arguments below are valid for many other functions F. We can define a

scalar valued function by

, ^'-]K(y,A = lt + l(y.z)|, )

art.d MK 
^s 

üe operator of pointwise muitiplication by l(. Using integration by
parts it can be shown for every positive integer m that

I l avaz ",,tztpt.zt = | l dydz 
"z¡tv.ztl¡t 

-llur)^ rlty,zt.t- t- t^ t- r\'

where f denotes a constant coeffcient operator of second order in all 4¿ dimen-
sions. Since the firct-order derivaúves of r( a¡e of üe form 1(,B, where B is a
bounded rational function, using a induction argument we can express the product
AS

f*s = I I dydze2iÍvznK.(y.z\, B,ty.atyF)d,z) (3.J)J=Jz v?r=n'
for a family (Bu), of bounded funcüons. Ttris, the fact that /,g are smooth vectors
of the action @ and the decay of r(ñ show that (3.3) makes sense for z large enough.

2. Partition of unity. One can use a represenration of rhe composition /#g given by
[38, Lemma 1.6, Cor. 1.7], inte¡ms of a regular partition of unity of E. Let! be a
lattice in E ; for example one could take

t,={i,,",t,,,2} .

Pick then a non-trivial positive, smooth, compactly supported function ry' on E such
that

y(&:= Iú(x-p) > o, vx € E
p€!

and set ty'6 :- (¡lY and

f # s t= 
^-, [ Í dy dz e2irY.4 @,7y:¡ @,¡g1 ,

¡yr(.):= rlts(.- P), VP € !.
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Then {ry'¡ lP € !} will be a locally finite partihon of unity on E. It can be shown

that the infinite sum

f#s = n'" l. | | av¿z 
""n''^ 

úrrnvn(r) rv(fl oz(8) (3.4)

converges absolutely .

3. Cut-off. For every k e N let v¡ e Ci(ExE) , with uniform bounds on üe derivaúves
and such that vk(Y Z) is equal to I in ball B(0, r¡) of radius rr that diverges to óo .

Then we have

ff
f#8 = limtb I I dYdz r''t'''l vkü.Z)oyaozG) . (3.s)

Since the three expressions (3.3), (3.4) and (3.5) coincide, they are also independent
of the various choices ry', !, v- .

To complete the algebraical structue, we keep the same involution .; one gets a *-

algebra (.fl-,#,. ). This --algebra admits a C*-completion ?I in a C.-norm ll . lls which
is defined by Hilbert module techniques. Since the construction is rather involved and
it will not piay an explicit role for us, we only refer to [38, Ch. 4] for the detaiis and
justifications.

The deformation can be extended to E-morphisms, giving rise to a cova¡iant functor.
Let

("r,,o,.=,¡. .n), i = t.z
be two classical data and let

R : .A1 -> ,A2

be a E-morphism, i.e. a (C--)morphism intertwining the two actions:

Ro@r¡= @¿yoR, VX€8.

Then R sends ,fli into .fli and extends to a morphism

fr : QI1 --+ 2I2

that also intertwines the corresponding actions.

For us, the main property of this functor is üat it preserves shof exact sequences
of E-morphisms. Let J be a (closed, self-adjoint, two-sided) invariant ideal in .ff and
denote by J its deformation, using the procedure indicated above. Then 3 is isomorphic
(and will be identified) with an inva¡iant ideal in !i. In addition, on the quotient.fl/.f
there is a natural quotient action of E, so we can perfom its fueffel deformation. This
one is canonically isomorphic to the quotient !I/J .

Ifh e ?I, the spectrum of its canonical image in the quotient C--aigebra ?I/J will be
denoted by spa(ft) . Later we are going to need



./.Y /1\\
L!<r '1r./;-\\ q
+ '.-C L, 

' .'':il á+ ..{. ! ./:L'l á
,e l}r-{ .¡-,

.Q.n,J
Lemma 3.1. I . Let p i N ---» R* a bounded continuous function.

1. If h eü and suppp¡ n sp.(/r) =0,thenp(h)e3.

2. If he ?l* and s,tpp¡p¡ n sp.(á) =0,thenp(h) e3*,

Proof. 1. This is a minor variation of 12, Lemma 11. It holds for every closed bi-sided

self-adjoint ideal of a C. -algebra.

2. The second assertion follows from the first one; § is invariant under the action @

and clearly 3- =q-n5. tr

Actually we are interested in deforming Abelian C--aigebras. Let (X, @, E) be a topo-

logical d5,namical system witb group E = R.h. This means that I is a locally compact

space, @ : X x E -+ X is a continuous map ard, using notations as

@(4, ]O =: @¡(a) = 6"1¡¡ ' VX € E, a € »,

each Ox : E --+ X is a homeomorphism and one has

@xo@Y =@x+Y' YX'Y€Z'

One denotes by AG) the C.-algebra of all bounded complex functions on X with point-
wise multiplication, complex conjugation and the obvious no¡m

ll"f ll-:= suP l"f(o-)l .

The action O of E on X induces an action of E on E(X) (also denoted by @) given by

@¡(fl:=/o@r. (3.6)

In general this action fails to have good conünuity or smoothness properties. so we inüo-
duce

ts6(2):-- lf e ts(») lE = 
X r--r @x(/) e AG) isnorm- continuous) (3.7)

and
ts|Q) := {f e ts(Z) | E 

= 
X r+ @xA e ts(») is C- in norm}. (3.8)

We also denote by CoG) the C--algebra of aIl complex continuous functions / on I
such that for any á > 0 the¡e is a compact subset .K of X such üat

lf(c)l<e if céK.

Notice that C0€) is a C.-subalgebra of Ee(!), but not an ideal in general. When X is
compact, C@) is unital. The action @ of E on ! induces an action on C¡(X) ; we denote
by Cff(») the set of smooth elements. The Rieffel deformations of tso@) and CoG) will
be denoted, respectively, by Ao(r) and Co(E) . Cleariy, the deformation procedwe can be

applied to any C--subalgebra of 66(X) that is inva¡iant under the action O .
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Later on we shall need the following smoothing procedure. For 9 e Ci(E) and g e
E(!) one sets

i1 qr

If the action O consists in translations: IOyA) (D := f(X + I-), then *, coincides with
üe usual convolution. In this case 8¡p e BC-(r) = BC,G)* and suppGe) c supp(g) +

supp(g) , We are going to need the next more general statement.

Lemma 3.2. I. One has ge e 9§(l) .

2. For every multi-in-dex a eÑb one has ügv = grc .

3. One has stpp(ge) c @",0¡*; [supp(g)] .

Proof, By a change of variables one easily gets

@/¡,\ = g:rxv , wtpre {TxdQ) ;= g(Y + X) .

This and a standa¡d application of the Dominated Convergence Theorem lead easily to
the statements 1- and 2.

Now we show 3. Since @ is continuous, supp(g) is compact in A and supp(g) is closed
in !, it follows easily that @supp(e)[supp(g)] is closed in X .Letc e O""pe(p) [supp(8)] ; then
there exists ¿ neighborhood V of o such that

V n @"".1r¡[supp(g)] = @.

For each ¿.' € Y one has

¡e *. g1..'¡ = [ dy,pu)sl@-v@,)]
Jsupp(9)

and if I e supp(g) then @-v@') é supp(g). This shows üat Iz is disjoint from supp(ge).
tr

An important example to which Riefel deformation apply is given by E-algebras,
i.e. C' -algebras E composed of bounded, uniformly continuous function on E , under the
additional assumption that the action f of E on itself by translations, raised to functions
as in (3.6), leaves E inva¡iant. Let us denote by X the Gelfand spectrum ofB. By Gelfand
theory there exists a continuous function : E F, X with dense image, which is equivariant
with respect to the actions f on E, respectively @ on X. The function is injective if and
only if C¡(E) c E.

The largest such C'-algebra A is BC,(E), consisting of all the bounded uniformly
continuous functions : E ¡, C. It coincides with the family of functions g € BC(E) (iusr
bounded and continuous) such that

se =e*os,= f or*1¡r-¡r¡.

E )X F-' goTx= g(. +X) e BC(E)
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is continuous. Then the Fréchet '-algebra of C--vectors is

BC,(E)- = BC-(E) := {/ e C-(E) ll@"fl(x)l < C,, Y a,X}.

Another important particular case is E = Co(E) (iust put » = E in the general construc-
üon). It is shown in [38] that at the quantized level one gets the usual Weyl calculus and
the emerging non-commutative C'-algebra Ga(E) is isomorphic to the ideal of all compact
operators on an infinite-dimensional separable Hilbef space.



16

4 Localization in the symbolic calculus

We are given a topological dynamical system (!, @, E) to which we associate, as in sec-

tion 3, the Abelian C--algebras "E6@) and CoG) as well as thei¡ Rieffel deformations
Eo(X) and §¡(X) . Recall that, with respect to tJte canonical basis (er, .., ¿zo) of E, one

defines the higher-order partial derivatives

üf := t*f@xTk=0,

where p is a multi-iodex and / e E§(l) . Recall also the form of the seminorms of the
Fréchet space E§(l)

'..-t - 
1

ll f H_,,.,= ) -lryr ra^,: = ) -lLyf *.
ú--r' lPl.J'

(4.1)

and of the Fréchet space Af G,)

lt"rl$]1,,,= Z)lo t|o.o, .
(a )\

We fix a closed invariant set F c ! ; invariance means that @x(F) c F for every X € E.
Then

C¡(X)F := {"f e Co€) I "fl¡ = 0}

is an inva¡iant ideal of CoG) ; its Riefel quantization 00(»)F is identified to an ideal of
§e(!) . As explained above, the quotient §o€)/§op)¡ can be regarded as the defomration
of üe Abeüan quotient C6(I)/C¡(X)r , which in its tum can be identified with C(F), the
C.-algebra of all continuous functions on the compact space F. Along these lines, we
identify CoCt)/%Q,)F with the Rieffel quantization 6(r') of C(F).

Let us denote by rp e CI(E)I the family of a1l positive functions g e Ci(E) which
satifu the normalization condition Irg = l. If W c X is an open (or closed) set, the
function

x\y = v *o xw = f ¿Ygo)xr,r-
JE

belongs to 6§(X) by Lemma 3.2 and one has

spp(x-*) c @""rr1*¡[supp(¡1a,)] = @*r¡,,¡('1,[ . |4.3)

Notice that in general the characteristic function ¡.¡y is not an element of EoG).

Let us also fix a basis of open neighborhoods 
^/ro 

of }, in the space t .

Iheorem 4.L. l,et h € §; (>) and p : JR --» [0, oo) a continuous fii:nction wíth support
disjoint from the spectram of hF := hlF computed in the non-commutartve C*-algebra
E(F). For any 9 e Ci@)|, ¿ > 0 azd I e N, there exists +y e NF such fhat

llr:**doll[],,, = "
(4.4)
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Remark 4.2. The Theorem is our main abstract localization result, expressed in terms

of the symbolic calculus defined by Riefel's deformation.. Note that it contains a rich
amount of information, involving all the seminorms ll ' llfilo, I for k = 0 one gets the

norm of the C*-algebra E6p) . It will be tumed ínto an assertion about pseudodifferential

operators in the next sections.

Remark 4.3. It is clear that t - X'* = f*, whose support is included in @".*1*1(4V') '

T\ercforc ye* = 1 on the complement of @,uno¡r¡('1"/") . Taktng *l open, 'l,lc will be

closed and included in X \ F, which is @-invariant. Then @"uor1*;('1'l") will also be closed

and disjoint from F , so ye* = 1 on an open neighborhood of F .

Remark 4.4. As an example of closed invaria¡t subset one can consider a quasi-orbit, i.e.

the closure of an orbit. Any closed invariant set F c ! is the union of all the quasi-orbits it
contains. Note that the spect¡um of frF := hlF computed in §(F) is an increasing function

of F. So for small closed inva¡iant subsets F (as quasi-orbits, for instance), the support

of the localization p will probably ailowed to be large. The interesting case is, of course,

that in which supp(p) has a large intersection with the spectrum in §f,(X) of the initial
symbol ft (which is obtained fomally setting F = 0) .

We are going to prove Theo¡em 4.1 in several steps.

Proposiüon 45- For every / € CfG)¡, á > 0, i € N a¿dg e Ci(E)] there exists

A é NF such that

llx-,f ll?"r, = "
(4.s)

Proof. One has

ll xL r l?",, = p )ll o'rt,) 1,",, = t,i D 
rrll *'"xL D" r llu*,¡'

so one must estim x. 
ll O'y*, O ¡ lleno, for a finite number of multi-indices a, B .

We know f¡om Lemma3.2that üyP, = ff .fAen

1 D' xL ü f ll u"a, = 
| [_ar 

<a' ryy) @ -, {x u) rf f \n"n,

< ll á"e llzr¡a¡ rffi ,rllo-rfxd 
df llu,o,

= llá"e ll¿,(E) 
r.:§f,(e) lls-'[x, s¡Ü¡>)ll-

= la"p ll¿,ro 
,.i,llfr,) ':, I [o, (eÉr](') 

L

-- ll0o qllL,e¡ sup sup 
I rzf¡¡ Loy(a)l 

I

l¡esupp(ra) olll
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Therefore one can write

Il xL f ll*.,,, = t,i Zr, 
ll áÉ-'e | ¿,61 sup { | 

(D'f)(¡) lr e o..op1e1(r0 } 
(4.6)

< C(7, e) max sup{ 
| fOfX.ll I r e o,,rr1,y(f,/) ) ,

where C(7,9) is a finite constant depending on j and g .

Given ¿ > 0 we now find l./. Since the action @ is strongly continuous, for every

Z e s;opp(g) there exists a ball B(Z ó2) centered in Z such that if y e B(2, ó7) one has for
all lvl < j

llo ¡tt' ¡ t - oTrD' f t s"r, 3 ¡¿i¡; (4.7)

The balls B(2,5) form a covering of the compact set supp(g) , from which we extract a

finite subcovering indexed by {Z¡ | i e 1} . Since

@z@' f) e C¡(!)F , Y i,v ,

there edsts l/i e Á/¡ such that

Itoz<o"n)<oll= ñ,r), Y c e'|t,. (4.s)

Setting

a ,= )lwili. r.t t< j) e r/r
one gets Íiom (4.7) and (4.8)

l¡o,<o'¡11¡o1l= dA, Yo e't), YY e supp(e), vlvl s i.

Insefing üis into (4.6) finishes the proof. tr

Now we prove an estimation as (4.5), but with the pointwise product . replaced by the
deformed product # .

Proposition 4.6. For any f e §f,(>)F = C6"G)F, geCi@)\, e> 0 and j e N, ráere

exists 9 e NF such that

llx*,*f ll?"<»< ".
Proof For the composition ¡[#/ we are going to use the representation (3.4).

For G e BC-(E x E; A§(»)) and j rn e N we set

1

Ctlj : :=..",* I * tyn^ rg0'rO,rt.t, 
().r,

-' lL' ') <d r " r'zez

(4.e)

= TE I * xq-I \11o"¡<u,u5ovr.alll^o,
"'' lll)lgn F '' r.ze¡a¡<i *'

(4.10)
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By [38, Prop. 1.6], for every ft > 2z we have estimates given by

ll {^ [ oro, "'*^ú 
p{Dúo(DG(yDll!' 

o, = 
c"rttl tt c ttg-;fl,, (4.1 1)

where )¡B C¡p(k) < oo . Applying this to

GPeg, z), - g rlx'n g 
r -, G ))

and relying on the representation (3.4), one gets

11 [^[ oro, "'*'a,t,"(n{,oas,lx*,s,-o] lll]o, = 
."rrnlll oi llÍ3,

A direct computation shows that the quantity ll Cl, ll*?, is bounded uniformly in '12,
because it is dominated by a flnite linear combination ofierms of the form

l1*r'll*llrv ¡ll*= llle ll,,,",llo"r ll-.
Thus, for any a > 0, there exists rn; e N such that for every'y € 

^/. 
one has

I ll -[-.f 
o' o' 

"'*''4'l' 16'l' a(4@ rIx*,s r-, (f))lll"o, 
= " 

l''
lPl+)Ol>nl "'"2

We still have to bound by e l2 theremaining ñnjte family of terms, this time for some

special neighborhood 'V of F . Using the continuity of the action @ and the compacity of
the support of úp,úa, there exists a finite family of balls {B(Ii,ó) x B(2, óí)}¡.¡ which
covers the suport of {re a ry'¿ , such that for (X Z) € B(y,, ó) x B(Z¡, ói) one has

l)x'r(fr,- -fr)11,6¡!elZM, Yi<k, (4.12)

where

f, := @-¡¡(fl e Cff(:)F
and M is some positive number. In addition, by Proposition 4.5, for every i e l there is
some'7; e Á/r such that

lx'r,fz-ll.,r, <elzM, Y i <k. (4.13)

One takes üe finite intersecfion I = ),uj¡ and then, by (a.D), (4.13) and the fact
that the action @ is isometric with respect to all the semi-norms, we can estimate the
compactJy suppofted inte$al

ll f- { o r or "'*,lt p (r )v a(4@ vlx;vr,-,o] 
l l l,,,

< ,lz"p sup{ xrrfr-rlll",rrlY e suppt,r¡p),Ze supp(,¿e)}

< uzn'y?l)x*rf, , l?"a,

+,naq sup sup 
{ lxrr(fr-, - fr-ilf.,)v es¡y,,0,1,2 eB(z¡,6',)}

<M*(*.h)=ry"
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trZ CnaMp,A , one gets the estimation.
lPl+lQ<ñ)

Now we chalge the semj-norms.

Pmposition 4.7. For any¡ e §fr(»)F, 9 e Ci@)], e > 0 and k e N, there exists

W e Nr such that
(4.t4)

Prool This follows from our Proposion 4.6 and the equjvalence [38, Ch. 7] of the families
of serninorms (4.1) aú (4.2), which is a rather deep result. tr

End of the proof of Theorem 4.1.

To finish the proof of Theorem 4.1, one uses Lemma 3.1 with 2I := §o(X) and 3 :=
Uo(¿)' . Notrce the rdenuttcatron

spooo,r(h) = sp(lFlc1r)) .

This allows us to take f = p(h) e §fr(X)F in Proposition 4.7 and to get

llx.**o@)ll!!.o, < "
(4.1s)

under the státed conditions. The case ft = 0 is enough for our purposes.

llx'**tll|.r=".
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5 The simplest main represented result

We stañ with the simplest situation. We take : to be a locally compact space containing

E = R.2' densely. IfX is even compact, it v/ill be a compactification of E . One denotes by

,.7{:(E) the C.-algebra composed of restrictions to E of all the elements of CoG) . Then

,71¡(E) is a C--subalgebra of BC(E) which is canonically isomorphic to C¡(I) by the ex-

tensiory'restriction isomorphism. Thus the Gelfand spectrum of ,flr(E) is homeomorphic
tot.

Let us also assume that .ñr( ) is contained in BCu(E) and it is inva¡iant under transla-

tions. It follows easily that the action of E on itself by tanslations extends to a contiluous
action @ of E by homeomorphisms of X. This action is topologically transitive: E is an

open dense orbit. Let us set »- := X \ E for the boundary.

Since (.ñ:(E), @, E) is a (commutative) C--dynamical system, one can perform Rief-
fel's procedure to turn it in the (non-commutative) C--dlnamical system (QI¡(E), @, E) .

The common set of smooth vectors 2If (E) = fl§(E) is contained in BC-(E) .

It is known that BC-(E) is the family of smootlt vectors of the E-algebra BC,(E),
whose Rieffel quantization rvill be denoted by E§,(E) . But on BC*(E) , by the Calderón-
Vaillancourt Theorem [8], one can apply the Schródinger representation in 7l := P(tr)

Dp : BC-(E) -, ts(f0

given in the sense of oscillatory integrals by

(5 1)

(5.2)

In particular, this works for / € llf G) .

We also fix a closed @-invariant subset F of t- ; it can be a quasiorbit for instance.

As in Section 4, we also consider a neighborhood basis ,A/¡ of the set F in !. For every

W e NF we set W '.= W ñA. Then the function¡f, is the restricti on of ye* to E and it
belongs to BC-(E) , hence Dn(xf) makes sense as a bounded op erator in Lz(ff) .

Finally let /, e Cfr(:) = 6fr(X) be a real tunction and set Il := Dp(ft) = Il', a bounded
operator tn'll := Lz(g) (we use the same notation ft for üe restriction of l¿ : ! -+ R to
E) . Relying on [26], we give an operator interp¡etation for t]re set sp(ftF) , the spectrum
of hF := hlr computed in the non-commutative C--algebra g(F) . Let us wdte Q(F) for
the set of all quasi-orbits of the closed invariant set F and denote by Da(F) a subset of
Q(F) such that F = Uo.ooro Q. In each quasi-orbit Q pick a point o-o such that the orbit
of this point is dense in Q . Thea

71ao : E --_r R, húaQg := hl@y(trs)) (5.3)

is an element of BC-(q) , to which one can apply Dp : let us sel H"a := Dp (lr'0) . It can

be shown 126l that:

[Dp(f)u](r) = <za- [ at f at 
"t<'-»e 

¡ ('!rv ,E)"ttt .
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. The specuur Sa of the bounded self-adjoint opetator HCa depends only of the

quasi-orbit Q and not of the generating point o-o .

. One has

sF=sp(l¿¡)= U rr= U ,n (s.4)

Aelr4.n O€&(¡)

Of course, if F is itself a quasi-orbit one san take Do(F) = {F} and the statements

simplify a lot.

. The set sp(hF) is contained in the essential spectrum sp*"(ll) of the initial operator

H.

(s.s)

]l on(xí")r,tat 1*, <,.
In particular, one has uniformly in t e R" and u e 'Jl

l»p(x*;) r" ptn¡, lJ s 
" 

ll ,ll .

Praof It is known (cf. [3, Lemma 3.1] or [26, Prop.2.6]) that the mapping Dp extends to

a faithful (therefore isometric) representation of AC"(E) in fl. We can use its restriction
to our algebra ?I¡(E) and apply it to the element p(lr) . Note however that X$ , elemett of
BC-(E) c E§,(E) , has a priori no reason to belong to !I;(E) .

For the first estimate we use the fact that, being a representation, Dp is multiplicative
and commutes with the functionai calculus:

»p(xk) p<n¡ = »c(x'Pw) ot»ctnn = lpkfi) Dp tp @l = Dplx'qwfip(D) -

We denoted by $ the W'eyl composition law of symbols [8], corresponding isomorphically
to the composition # . Then we use Theorem 4. 1 , the isomorphisms

Ure) = Co€) and AG,(E) = Ao@)

and the fact that Dp is an isometry to wdte

]lor(x;)xalln, ,,= | rol¿r,l,prtu)] ]u,r, = lx,*+otDllo",r, < ". (s.8)

o Actually, if we cover !- by closed O-inva.riant sets F , one has

sp...(H) = l-lsr =-Ulo
¡ 0€§G-)

Now we can state and prove

Theorem 5.1. Let h e !If(E) = .flí(9 be a real function and set H := Dp(h). I¿t
p : JR --+ Rn be a boundeá continuous function such that supp(p) n SF = A. For every

e > O and for every positive function 9 e Ci(E) with fv -- | th"re exists W e NF such

that
(5.6)

(5.7)

As it has been said repeatedly, the second estimate (5.7) follows from (5.6). tr
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6 Other represented result

Here we treat a more general case. The action @ will no longer be composed of transla-
üons.

Our framework sta¡ts with a continuous action @ of E by homeomorphims of the
locally compact space t. O is continuous and the homeomorphims @¡,Oy satisfy O¡ o

@y = @x*yforeveryXf € E. The action O of E onlinduces a continuous action
of E on C6@) given by @¡(/) = f " @x . We want to realize the algebra (CoP), O, E)
as a subalgebra of (BC,(Q,f,E) by a E-monomorphim (we denoted by f- the usual
translations in E) . For this purpose, it is convenient to have a closer look at the quasi-orbit
structure of the dynamical system (8, O, E) in connection with C--algebras and Hilbert
space representations.

Let us use the convenient notation @r().) := @x(a). For each o- e X, we denote by
E, := @,(E) the quasi-orbit generated by a utd set

P, : Co(Z) -+ BC.(E), ?"(f) := f o @" .

The range of the E-morphism P. is called Er and it is a E-algebra. Defining analogously
P'" : Co@) --; BC,(E) one gets a E-monomorphism with the same range 80, which
shows that the Gelfand spectrum of Eo can be identified with the quasi-orbit Eo.

For each quasi-orbit E, one has the natural restriction map

R.¿ : C6(2) --+ Co(E), R.¿r,fl := flr,
which is a E-epimorphism. Actually one has Po = P'o "Rr,.

Being respectively invariant under the actions @ ürd'l-, ¡he C'-algebras Co@) ar,d
Bo ate also subject to Rieffel deformation. By quantization, one gets C--algebras and
morphisms

n¡ : §a(E) --+ §6(E), p" : €6@) --+ 9., S| : Oq(E ) -' E. ,

satisfying $. = B! o fr¿.. While Br and $o are epimorphisms, p! is an isomorphism.

We also need Hilbert space representations. Fo¡ each E-algebra E, we restrict !p
from BC-(E) to ts- = E6 (the dense '-algebra of smooth vectors of .E) and then lve
extend it to a faithful representation in ,H = L2(g) of the C-algebra E . We can apply
the construction to the C*-algebras Eo. By composing, we get a family

{Dp":= Dpop"lo-eX}

of representations of §6@) in fl, indexed by rhe points of X. For / e C["(X) one has

$.("f) € E; = EI, and üe action on fl is given by

[Dp.(fl z] (.r) = <ur' I r* [ *§,n 
-,, t ffs (+.,¡@)]ug¡ (6.1)
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in the sense of oscillatory integrals- If the function / is real, all the operators Dp"(/) will
be self-adjoint. To conclude, a single element "f € §-0(x,) leads to a family

{¡1.:= Dp.(/)la e t}
of bounded operatorc in Lz(ff). Note that, seen as a quantization of the symbol /, (6.1)
can be quite different from a Weyl operator.

Remark 6.1. The point a will be called of the first kind when C(E) c Eo . It has been

shown in l27,Prop.3.1l that in such a case Dp(E") cont¿ins all the compact operators in
fl, thus Dpo is irreducible.

Remark 6.2. Notice üat Dp" is faithful exactly when Bo is injective, i.e. when Fo
is injective, which is obviously equivalent to Eo. = ». Consequently, if üe dynamical
system is not ,opologically transitiy¿ (i.e. no orbit is dense in X), none of the Schródinger-
type representations Dpo will be faithful. In such a case, we are not able to transform üe
abstract algebraic Theorem 4,1 into an assertion involving operators. There is always
an injective representation, the so-calle.d regular representation,bvf spectral analysis and
localization results in such a setting seem to have a limited interest.

So we restrict now to the case of a topologically transitive dynamical system and

study the operators !p"(/r) associated to a suitable symbol h and a generic poínt c € Z,
i.e. a point generating a dense orbit. The non-generic points 

" 
will deñne subsets ,§, of

the essential spectrum of Dp"(á) as well as regions of non-propagation for its evolution
gfoup.

Theorem 6.3. Let (2,@,8) a topologically transitive dynamical syslez, (C¡(I), @, E) irs
associated C+-dynamical system and o eZ a generic point-

For a fixed real {unction h e Ci'@) = Af,(!) set H,:= Dp"(h). Choose a non-generic
point r e E, denote by E, its quasi-orbit (strictly contained int) and set H. := Dp.(á).
Let p:R --+ R.* De a continuous function such fhat stpp(p) n sp(¡I,) = 0.

For every a > O and for every positive function q e Ci@) with t"V = | there exísts a
neighborhood W of E, in 2 such that

ll », 
"(r'*) 

p<n 
"> 11,,. <,. (6.2)

In particulat; one has unifurmly in t eW and u e I](,%)

llao"(x-*)e'H"p<n"\ull < ellull . (6.3)

Proof. Sínce (:, @, E) is topologically transitive and a is generic, the mapping Dpo is a

faithful representation of our algebra §¡(!) .

Then the present result follows easily from Theorem 4.1, along üe lines ofthe proofof
Theorem 5. 1. The role of the closed inva¡iant subset I' is played here by the non-generic
quasi-orbit E, .
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Remark 6.4. Recall that we set Dp"(¡'*) ,= »o (Xr* o @") . The functi on t'* o @o is 6
mollified version of Xry,, o @o, which in its tum is the cha¡acteristic function of the subset
@;t (4y) of the phase-space E. By our choice of the points a,z, one hasOtñO. = A and

E,cW cE,=2,

whe¡e the inclusions are strict.

Remark 6.5. For a better understanding of üe dependence on the points o and z , we
recall some results from 126). If at,oz belong to üe same orbit (O", = óo,), the two
operators H", and H,, arc unitarily equivalent. If the two points only generate the same
quasi-orbit

Eo, :-' Oo, = Oo, --" Eo,

they may not be unitarily equivalent, but üey sti11 have the same spectrum and the same
essential spectrum. In applications, very often, the¡e is a privileged generic point crp

defining an interesting Hamiltonian .É1oo as in (6.1) and the remaining objects are auxil-
iary const¡uctions. Their usefulness comes from the fact that the behavior of the symbol
requires a topological dynamical system encoding spectral information.
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7 Ln extension

The Weyl systemr: E ---r U(fl) defined for allX e E and ¿ €'11 := L2(tr)b!

ltr(X)u)(y) := si(r-ttz) t r(J - ,¡ . (7.1)

It is a projective unitary representation wiü multiplier given by üe imaginary exponential
of the symplectic form:

ti \
n(X\tt(Y) = exP I ;[X. Ynlr(X - Y\. V X.Y € 

=.\I J

(1.2)

We denote by
II : E --+ 2lut@(fl)l , I(XII := ¡(X)TnGr¡ (7.3)

the automorphism group associated to fl'. The Co-vectors of thls automo¡phism group
form a C*-subalgebra

B0('11):-- {S € B(fl) I E > X r-+ [(x)^S € B(fl) ll'll -conrinuousJ, Q.4)

while the C--vectors

B*(H):-- {S E ts(fl) | E rXr-l I(X).§ € ts(fl) isC-innorm} ('7.5)

form a dense '-subalgebra.

We also denote by ó(E) üe family of all ultrafilters on E that a¡e finer than the Fréchet
filter. Recall from [27] that the essential spectrum of any self-adjoint operator I/ belong-
lng to lB"(¡) rs glven by

where the limits

sp"",(H) =u¡.Á.p(a¡),

tlx := lim II(X)E
X+X

(1.6)

(7.7)

are shown to exist in the strong sense.

The next rcsult is a va¡iant of Theorem 5.1.

Theorem 7.1. l,et H be a self-adjoint operator in'Jl = L2(.%') belonging to E*(1-{). Let
us fx an ultraf.lter X oni,finer than the Fréchef rther and choose a bounded continuous
function p: )R --+ JR* such that supp(p) n sp(Ilx) = 0.

Foreverye>0andg € Cf(E)i there existsW €X such thaÍ

ll»ptxl,>p<Eill,,m< ,. (1.8)
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Proof. lnl27,Prop.3.1l it has been shown tlat tso(fl) = Dp tA§"G)1 , where E§,(E)
is üe Rieffel quantization of the C.-algebra BC,(E) of all bounded uniformly continuous
functions on E . As we said above, this one is the largest one on which E acts continuously
by translations (that were denoted by f). It is well-known that

r$)Dp(J]lnGD = DplT-x(fl1, vx€ E.

Then, clearly, one also has

B*('11) =.op [E§*(E)] = ¡p [Bc-(E)] .

Then the methods of üe preüous sections became available and the proof is very similar
to üe proof of Theorem 5.1. tr
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8 Some examples

Example 8.1. Let us first sxploit the fact that the phase space E is the Cartesian product

of the conñguration space ,9[' and the momentum space ff* and that the translations in E

admit the decomposition fi,¿1 = t,84 in terms of hanslations in § al;'din *'* , respec'

tively. We consider unital C--algebras"fl(9[:) c BC"(.f) and .A(ff-) c BC"(.ff.). We

assume that.fl(./) is z-invariant and contains Co(*) and similarly abotrtA(trr). Tbe
relevant algebra will be .ñ(E) := g(g) @ g(tr.) , which is a f-invariant C.-subalgebra

of BC"(E) containing the ideal Cge) . Its Gelfand spectrum can be naturally regarded as

a compactification X = Q x O- of E, which is the product between a compactif,cation
el := *: u dl* of ff and a compactification O* = 

g- ú A\ of g. -

Very simple elements of ,fl-(E) (smooth symbols with .q(:)-anisotropy) are finite
sums

h(x,O = LQ j\x)ú j\€)

with {; e fl*(9Ü) andr¡¡ e g-(9t'*).

We denote by @ the action of E on X which extends the translations. Then

> = (g rA.) x ("9:- Lr O;) = E Lr »-,

where we have the invaria¡t decomposition

(8. 1)

(8.2)

»* = (g x o|) u (o- x 9-)u (o- x l¿L). (8.3)

Letus fix an ff -qtasiorbit E c l¿- and a basis ofneighborhoods ,A/¿ ofE in Q. Similarly,
fix an .f --quasiorbit E. c O- and a basis of neighborhoods .A/¡. of E in O- . We wi-ll be
interested in the quasiorbits O x E , E x O' and E x E- of !- .

Assume that'll c dl ís a neighborhood of E and set U := U ñ g. T-ben nV :=
Z/ x O- is a neighborhood of F := E x Oi in X and one has W := W o E = U x 9l:. .

Therefore ¡¡y = y y & I . It is convenient to choose the regularizing function g of the form
a @ B, wherc a e C7 (ff )\ añ P e C7 é[.)] ; then obviously Xíl = tru I 1 and thus
»p¡X'vil = X"u@)e 1 , where we recall that Q denotes the position operator it'tl = Lz(g)
and¡fr(Q) is constructed via the usual functional calculus.

Coming now to the Hamiltonian, for simpücity, let us consider only the case

h := ó @ 1 + 1 @ l', h(x,il = Q@) + {/(€), (8 4)

with 4 € fr* (31:) and {t e g*(9[-) real functions. By Weyl quantization one gets the
bounded seif-adj oint operator

H := Dp(h) = tl,e) + Q(O,

where P := -ñ is the momentum operator.

(8.s)
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To construct the asymptotic Hamiltonian I1r corresponding to the quasiorbit F =
E x l¡' one has to choose a generic point a e E; then (a,r, 0¿-.) will generate F . with the
function

Q' : ff --lR. Q'@):= Q[r,(u))
one constructs the multiplication op$ator Q'(8) and the Hamiltonian

fI":= Dp(I e{r+0a @D ={/(p)+ 0,@). (8.6)

As said before, the spectrum S E of this Hamiltonian only depends on the quasiorbit E .

All these being said, we can now make a statement, deduced from Theorem 5.1. Fix
a positive bounded continuous function p defined on lR having a support disjoint of SE.
For every e > 0 and every o e Ci(g)\ there exist a neighborhood l/ ofE in O such that

llxi(00@tll,*, s ".
(8.7)

The corresponding estimate on the evolution group is also available. Note that, although
the symbol of the Hamiltonian does have full phase-space anisotropy, due to the particular
form of the quasiorbit E x O" , one gets a configuration-space locaüzation result.

Sirnilarl¡ if we consider the quasi-orbit O x E- , one obtains easily momentum-space
estimates describing forbidden momenta for suitable energies.

Finally, let us take into account the quasiorbit F' := E x E. . With choices of generic
points ¿, € E and o¡' € E' we construct the asymptotic Hamiltonian

H'''' := Dp (1 @ {,'' ¡ 4' @ t) = {ttu'(P) + O'@) (8.8)

with spectrum ,SF independent of the pair (ar, r"r.) (and contained in üe previous set.SE,
which in its turn is contained in the essential spectrum of I{) . If the support of p is disjoint
from §r', very much as above, for every ¿ > 0 we get the phase-space localization
estimate

ll » tfx'u -u.l p<n ll",r, = 
ó,

valid for U := üñff and U. := ü- ñ fr., where l,/- is a small neighborhood of
E- c Q..

Of course, if the C*-algebras ,A(%) and g(,% *) are explicit and easy ro understand,
the results of this Example can be made more concrete; sou¡ces of inspiration can be
found in [2], in which however ff or ,% ' is replaced by ? . Some of üe results described
inthelntroducüoncanbeobtainedeasilytaking,%'=F.andfl(91),fl(g-)betheC--
algebras of continuous functions (on * and Z'. , respectively) having (a priori different)
Iim.its at too .

Example 8.2, Assume that (t0, O, E) is a topologically transitive dynamical system. To
have a conclete example in mind not consisting of úanslations, we could take E to be
JR x )R acting on the closed quarter plane [0, oo) x [0, oo) by dilaüons:

(8.e)

@ca\,ñ;= (e'y,éfl. (8. r0)
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For bounded continuous functions / : !0 --+ Candsubsetslof E we definethe oscillation
of f on L aLong the action @ by

osc?(/) : ¡o --+ JR* ,

Note the simple properties

[o."ftl + e)]{o) < [o'"f6¡]{o¡ + [oscf6¡]1o¡,

[oscfl1,¡¡]1.'; = ¡a¡ [oscf1¡](a),

[osci-¿]<a) = [oscfl 6¡] 1o-1,

[oscf«/s¡]1'¡ < ttelt- [oscf¡1]1".)+ tl/tl- [oscf ls¡]1a¡.

The famity VOo(*) of vanishing oscillations functions along the action @ is defined by
requiring that osc?(, e Co€o) for every compact subset K of E . To make it interesting,
we assume that the locally compact space r0 is not compact. Using (8.i2), (8.13) (8.14)
and (8.15) we see that VOo(!o) is a unital '-algebra. The easy to prove inequality

lloscf(fl - osc?G)ll- =2llf - sll*

even shows that it is a C'-algebra. For Y e E and r( c E compact, one has

(8.16)

oscp¡or1¡] < oscfl*"1¡¡ + oscfrl(O, (8.17)

so Voo(ro) is @-inva¡iant. Thus Rieffet defo¡mation apply, yielding a non-commutative
C-algebra ED6(!o) .

We need a certain understanding of üe Gelfand spectrum of VOo(X0) , denoted by ! .

Since @ : E x E0 -+ X0 is continuous, the set Or(T) is compact in r0 if ¡< c E and T c !0
are compact; this leads easily to a proof of the inclusion CoGo) c Voo(ro) . It follows
that t is a compactification oflo a¡d I := X \ X0 is a compact dynamical system under an
extension of üe action @. We are going to show üat its elements 7 are fixed points for
this extension, also denoted by O. The point y is a cha.racter ofVoo(to) which is rrivial
on C0(t0) . Thus for every X e E and every / e VOo1X0) one has

l@x\) - y)(f) = yl@x$ - fl = vlf . @x -.fl = 0,

because / o @¡ -..¡l e Co@o) . The proof aiso shows that voo(!o) is the largest C--algebra
having this property.

Let now hbe a smooth element of the C--algebra üDo(x¡). Recall that X0 has been
supposed topologically transitive; then clearly X is also topologically transitive, because
X0 is dense in X. Choosing a point o- belonging to a dense o¡bit one constructs in the
Hilbef space fl := L2(9 ) the generalized Weyl operator ¡Ia := Dp(á o @o) (see Section
6, especially (6.I), for its definirion).

[or.f 6]f'l,= rop l/tolo.» -.r(o)1. (8.1 1)

(8.12)

(8.13)

(8.14)

(8.1s)
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By general principles [26], the essential spectrum of ¡I" is the closed union of spectra

of generalized Weyl operators defined by asymptotic symbols, which actually are restric-

tions to non-generic quasiorbits ofthe extension of ¿ to ! (also denoted by ft) . kr !0 there

could already exist such quasiorbits that we do not know. So we concentrate on those

that we do knoq the fixed points belonging to f , üat will oniy describe a subset of the

essential spectrum. The asymptotic symbol conesponding to such a point 7 is just given

by a real number h(y) which, after Weyl quantization, will yield the constant operator

á(7)11 with singleton spectrum {lr(7)}. Consequentl¡ one gets á[) c sp""s(I/o) and this

inclusion is an equality if üere are no non-generic quasiorbits in X0.

Since the "bounda¡y at infinity" I is diffcult to understand, it helps to express y'r(f)

only in terms of the values taken by lz on !0. Let us choose r e X0 generic @elonging to

a dense orbit). By mimiking arguments from [25] it can be shown that

/,(D = l-'l {ftto-'\¡.(ói lK c Eis compact} .

Of course this set is r-independent. It could be called the asymptotic range oJ the symbol

h along the actíon @. Another description of the points of /¿(f) a¡e in terms of 6-level

§¿rs. For 2 e R andá > 0 one sets

iC"@; )) := {x € E I lfrtox(r)l - )l < ei.

Then 2 belongs to ¿(f) if and only if M?r (h', )) c E is not relatively compact for any

ó > 0. Note the relation

*o,ox,t (h., )) = nÉ" @i 1) _ y ,

valid for two points r and Oy(") placed on ttre same (dense) orbit, that certifies once again

the independence ofthe condition on the generic point r e X0.

So let us now fix a bounded continuous function p ; p ---r [Q, oo) which is zero in a
neighborhood ofthe point 2 = ft(7) (which is the spectrum of the asymptotic Hamiltonian
h(y)lx) . By Theorem 6.3, for any e > 0 the¡e exists a neighborhood W of y in E such

thar

ll no 
"(xr*) da "l llu,r, <', (8.18)

with the usual consequence for the evoluüon group generaledby Ho.

It is difficult in general to describe properly the neighborhood W . For the case of
t¡anslations acting on X0 = E, one can adapt the analysis from [2] . This also can be

done quite easily for the action by dilations of lR x lR on [0, oo) x [0, oo) . In this situation,
howeve¡ one has the extra tlree non-generic quasiorbits

{0} x {0} , i6. oottlói and 1o} x t0. -l
to be taken into account. It is easier to write the localization and the non-propagaüon
results for these quasiorbits. We indicate the nice simple form of the conesponding three

asymptotic Hamiltonians, following from (6.1):

Hro.o¡ = h(o'o)lq ,
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(¡lrr,orrXr) -- h(d,O)u(x) ,

(lJrorrrXx) = | ¿yT|-»uttl,
J

where?is the Fourier tra¡sform of the function

t : .f- -+ lR, k(t) := h(0,e4).

The contribution to the essential spectrum coming from these quasiorbits consists of the

two real segments fu(tO, oo) x {0}) and l¡({0} x [0, oo)) . To be relevant a¡d interesting, the

localization function p must now be supported away from these two segments but it should

be non-trivial at least on part of the set h[) described above' At energies belonging to the

support ofp propagation towards the two edges [0, oc) x {0} and {0} x [0, oo) is forbidden.

Remark 8.3. As a particular case of Example 8.2 o¡e can take X0 := E on which @ is

the acüon by translations. At the level of the essential spectrum this has been treated in

t261. The localization results can easily be infered from the discussion above; no extra

non-generic quasiorbits are present here.

Remark 8.4. On the othe¡ hand, vanishing oscillation functions can be considered in the

setting of Example 8.1 for the C--algebras ñ(fl') and/or .fl(.f-). Notice that VO(E)
and VO(.qi) s vo(.f-) are quite different, thus leading to diferent tlpes ofphase-space

localization results.

Remark 8.5. In [2] (see also [24, 25]) it was shown how to extend localization and propa-

gation results to C--algebras generated by a mixtue of vanishing oscillation and minimal
(in particular almost periodic) functions on a vector space. This ca¡ be further extended to
actions of vector groups on locally compact spaces, thus generalizing Example 8.2. Since

this is quite straighforward, we are not going to do this here.
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