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Resumen

En esta tesis introducimos el concepto de estructuras covariantes {( | k), (a, @), (&, &)}
formadas por una C*-algebra &/ separable, una accién torcida medible (a, «r) de un grupo
localmente compacto segundo-contable G, otra accién torcida medible (&, &) de otro
grupo localmente compacto segundo-contable G y una funcién estrictamente continua
% : G x G — UM(eF) que conecta (a, ) y (&,@). Nociones naturales de morfismos
covariantes y representaciones son consideradas en general y conducen a la construccién
de una especie de producto cruzado torcido. Varias C*-algebras emergen de un proceso
de construccién de estructuras covariantes. Estas construcciones pueden ser iteradas in-
definidamente. Mostramos que algunas de las C*-algebras que aparecen en las iteraciones
son isomorfas. Las construcciones son no conmutativas, pero vienen motivadas del caso
Abeliano de la dualidad de Takai que es eventualmente generalizada.



Abstract

We introduce covariant structures {(#7, ), (a, @), (&, @)} formed of a separable C*-
algebra 27, a measurable twisted action (a, ) of the second-countable locally compact
group G, a measurable twisted action (4, &) of another second-countable locally compact
group G and a strictly continuous function  : G x G — UM (=) suitably connected with
(a,a) and (&, &) . Natural notions of covariant morphisms and representations are con-
sidered, leading to a sort of twisted crossed product construction. Various C*-algebras
emerge by a procedure that can be iterated indefinitely and that also yields new pair of
twisted actions. Some of these C*-algebras are shown to be isomorphic. The construc-
tions are non-commutative, but are motivated by Abelian Takai duality that they eventu-
ally generalize.
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IntrOduction

Pontryagin duality establishes an isomorphism between each locally compact abelian
group and its bidual group, and studies the properties of this connection. This duality
result has many consequences and applications to representation theory of locally com-
pact abelian groups and Harmonic Analysis.

A natural idea is try to generalize this duality result for non-abelian groups. In non-
abelian setting the C*-algebras play an essential role in the theory of representation of
locally compact groups. There is an important development of the links between C™-
algebras and the theory of strongly unitary representations of groups [5]. Moreover, the
C*-algebras form a basic tool in the study of the representations of very extensive classes
of involutive Banach algebras.

In operator algebras Pontryagin duality can be used for characterization of ceratin
algebras associated to “dual actions™ of abelian groups based in the construction of C*-
crossed products; this result is called Takai duality [25, 19]. On the other hand, C*-
algebras and the crossed products construction have been important tools in many fields
with applications including spectral theory, pseudo-differential calculus and quantization.

Crossed products are important not only for applications, but are also the source of in-
teresting examples of operators algebras. For example, Takesaki studied the classification
of von Neumann algebras of type I77 [26] based in duality results involving W *-crossed
products.

This thesis can be summarized as a research about the Takai duality theorem [4].
We will be interested principally to extend this result of duality in the setting of twisted
crossed products associated to twisted actions of a pair of locally compact groups weakly
_connected to each other. Possible future applications have motivated us to develop the
duality without the theory of coactions (but since coactions are not involved, we do not
obtain non-commutative versions of Takai duality [11, 17, 207). Hopefully we are going
to develop and apply this elsewhere.

In this thesis we are using the following framework:

Let .o/ be a separable C*-algebra with automorphism group Aut(«), multiplier al-
gebra M (&) and unitary group UM (/) and Jet G, G be two second contable locally
compact groups, with units e and ¢ and left Haar measures dz and d¢ respectively. Let
also (a, @) be a measurable twisted action of G on & and (&, &) a measurable twisted

action of G on . Motivated by duality issues, we are going to investigate this pair of
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twisted actions in the presence of a “coupling function” & : G x G — UM (.«), supposed
strictly continuous.

The simple motivating example is given by the setting invelved in the well-known
(abelian) Takai duality result [25, 26, 19, 28]. In this case G is supposed to be commu-
tative, G = G is its Pontryagin dual and #(z,&) := &(z) is obtained by applying the
character £ to the element x . The theory starts with a single action a of the group G (let us
assume it untwisted), used to construct [6, 7, 16, 28] the crossed product % := &7 x,G.
On this new C™-algebra there is a canonical action b0 of the dual group given on elements
f of the dense *-subalgebra L* (G; 27) by

b2(N)](z) = f(2)€(x) = f(z)n(z,€), VYzeG,LeG.

Takai’s duality result states that the second crossed product (& %, G) ¥ Gis isomorphic
to the tensor product & ® K[L?(G)] between the initial C*-algebra & and the C*-algebra
of compact operators on the Hilbert space L?(G) ; this isomorphism is equivariant with
respect to the canonial bi-dual action on (& 1, G) X, G and a natural diagonal action on
2 @ K[L*(G)].

On the other hand, this dual action is not enough if one wants to fully connect the C*-
algebra % with the initial C*-dynamical system (.27, a, G) . There is also a natural strictly
continuous group morphism A : G — UM () (basically A, = d; @ 1 in a suitable
picture of the multiplier algebra of %) and the covariance relation

32()\%) = i5(z, ) Mg

holds for each z € Gand £ € G. The couple (760, A) plays an important role [13, 16] in
Landstad’s characterizations of the C*-algebras that are isomorphic to a crossed product
with group G. But A can also be seen as defining an action

b:=ady: G — Aut(B), be(f) =ady(f) = Ao foArl,

where ¢ denotes the composition law and © the involution in the (multiplier algebra of the)
crossed product. Finally % comes equipped with the two actions b of the group G and b0
of the group G. If the initial action a is twisted by a 2-cocycle &, then A will no longer
be a group morphism and b will also aquire a 2-cocycle

B:GxG—UMB), Blz,y)=Ic0Myorsy.

In addition, if initially there is also a twisted action (&, &) of the dual group G on &, this
can be converted in a modification of b? into

e (H))(x) = B[ f(z)]k(z, )

and this formula also requires a 2-cocycle B(-, J:=1®a(,-)on 6

The conclusion is that, for the Pontryagin couple (G, @) a pair of twisted actions
((a, a, G), (8,4, G)) on & generates a pair of twisted actions ((b, 8,G), (b, 5,G)) onthe



twisted crossed product [3, 14, 15] # = &/ %7 G . A different but similar pair of twisted
actions ((c,~,G), (¢, 7, G)) arises in the same way on the other twisted crossed product

€ = A'x O‘G Thus two new C*-algebras are available: (27 % $G)x x5G G and (o7 o‘G)NTG
A very parucular case of the results of our section 2.6 says that they are isomorphic in a
canonical very explicit way, and this implies easily an extension of Takai’s result that is
recovered fora=id,a=1land a = 1.

Actually the two iterated twisted crossed products indicated above are isomorphic
realizations of a new kind of object, the crossed product associated to a so-called “C*-
covariant systems”. Its representations are generated by suitably defined covariant rep-
resentations of this C™-covariant system. Other realizations of this new type of crossed
product are given by defining suitable twisted actions of the product group G x G. The
entire formalism can be seen as a far-reaching extension of the theory of Canonical Com-
mutation Relations in Quantum Mechanics.







Chapter 1

Preliminaries

1.1 (*-algebras and dynamical systems

We are going to recall some facts about C*-algebras and covariant systems. Throughout,
o will denote a C*-algebra, B(7{) will denote the C*-algebra of all bounded operators
on the Hilbert space H and K(#{) denotes the closed ideal of compact operators on #.

We denote by M (=) the multiplier algebra of <. This algebra consists in the set of
all double centralizers, i.e. pairs (M, M") of maps from & into &/ such that zM (y) =
M'(z)y. We denote a couple (M, M") just by m and set M (z) = mz. It is known that
this algebra is unital, containing 7 as an essential ideal, and when 27 is unital one has
M () = o [16).

A homomorphism ¢ : & — M(2") is non-degenerate if the set (/)" is dense
in &/’. A morphism  between two C*-algebras & and &/’ is a non-degenerate homo-
morphism from 7 into M(&7’). All morphisms between C*-algebras have an extension
to corresponding multiplier algebras [27].

Definition 1.1.1. A non-degenerate representation of & is a non-degenerate morphism
7 — M(K(Hy)) = B(H,). Wedenote it (m,Hy) (or just by 7). Two representations
m and ©' are unitarily equivalent (or just equivalent) if there exists a unitary isomorphism
U : Hy = Hepo such that w(a) = Un'(a)U foralla € &.

Remark 1.1.2. A homomorphism 7 : & — B(#,) is called representation. Note that
if there exists a vector ¢ € H, such that (/)9 = {0}, a projection in the one dimen-
sional space generated by ¢ (who is compact operator in H,) is orthogonal to the set
(& )K(H,). One can show that a representation (7, H,) is non-degenerated if and only
if for every 1 € H there exists an a € & such that w(a)y # 0 [27].

It is known that any C*-algebra can be represented faithfully in some Hilbert space
H [16,1,9, 5]. Let ¢ be a linear continuous functional; we say ¢ is a stafe if has norm 1
and ¢(a) > O for all a positive (i.e. ¢ is positive). We denote by S, the set of all states
of /. The GNS construction shows that for every positive functional ¢, there exists a
representation (7, Hﬁé) and a vector ¢ € Hy, such that

#(a) = (mg(0) ¥},
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Definition 1.1.3. The universal representation of & is the representation €p) ;. s, Mo On
the Hilbert s e 5
e Hilbert space (D, S, He

Definition 1.1.4. A representation (7, M) of a C*-algebra & is called irreducible if a
closed subspace of Hr which is stable under w(2 ) is either H or {0}.

The functionals in S, for which the GNS construction gives an irreducible representa-
tion are just the extreme points of the set S, . These functionals are called pure states [18].

Suppose that @ is non-degenerately represented in B(?); then the multiplier algebra
coincides with the set {b € B(#)| ba, ab € o7 ,Va € A} [16, 5].

The strict topology on B(#) is the weakest topology making the maps b — ba and
b~ ab norm continuous (b € B(H), a € &); i.e. the locally convex topology generated
by the semi norms b + [|bal|, b + ||ab||. The multiplier algebra of a C*-subalgebra of
B(#) coincides with the strict completion of & [16, 27].

Definition 1.1.5. Let X be a second countably locally compact set with a Borel measure
w. We say that a function f : X — & is strictly Borel measurable (or just strictly
measurable) if the maps x v+ f(z)a and z v af(x) are measurable for all a € 4.

Since the multipliers can be considered bounded linear maps defined on &, we can to
perform manipulations like

m (]f(:c) dp,(a;)) = fmf(x) du(z); fe LNX, &), meM().

Definition 1.1.6. We denote by L' (X, M()) the set of stricily measurable maps [ :
X — M(&) such that there is a constant Cy such that

[ 1@aldu@) < ¢jlal [ laf ()] du(z) < Cflall-
X X

We define for f € L*(X, M(?)) the multiplier

([1an)e= [ r@aduta). o[ rau)= [ aste)dute)

We have || [ fdul| < Cf.

In [28, Sect. 1.5] is defined the previous integral when X is a locally compact group
whereas [14] is defined general. Here we shall use this, for example, foramap A : X —
UM o ); we can extend to a linear map from L (X, M (7)) to M(«) via the formula

A = [ F@AE) dute).

Note that [[A(F)] < || fdl
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Now we can refer to the unitary group of .27 as
UM() :== {m € M(&/)|m*m =mm* = 1}.

‘We will consider the restriction of strict topology on UM (&). We denote by Aut(</) the
group of automorphisms of &/. We consider Aut(f) with the topology of the pointwise
norm convergence. When & is separable it is known that these sets are Polish groups (see
[21] page 4).

Definition 1.1.7. Let G be a locally compact group. we say that amap a: G — Aut(./)
is strongly Borel (respectively strongly continuous) if for each a € o/ themap G 2 = —
ac(a) is Borel measurable (respectively continuous).

Definition 1.1.8. A twisted action of the locally compact group G on the C™-algebra of
is a pair (a, @) composed of mappings a: G — Aut(#/) and o : G X G — UM(gf) such
that

ge =idy, agoay=ady(zy) 8y, VYLYEG,

o(z,e) =1=ale,z), VzeEG,

a(xay) Q(myuz) :ax[a(yaz)] a(m,yz) ) Vm;y:z €G.

If a is strongly measurable and o is strictly measurable we speak of a measurable twisted
action. If a is strongly continuous and  is strictly continuous we speak of continuous
twisted actions.

To a measurable twisted action (a, ) of the group G on the C*-algebra & one asso-
ciates [3, 14] the Banach *-algebra L} ,(G; &) = L'(G; &) (cf. [28, App. B]) and its
enveloping C*-algebra, the twisted crossed product ./ x%G. The norm on LYG; &) is
| £l = fcdz| f(z) |l . The composition laws are

(fog)(z) = /Gdy F@) ay[o(y™2)] aly, v =),

fo(z) = Ao(z) alz, 27 2 f (a7

Here the map Ag denotes the modular function of the group. We recall that the non-
degenerate representations of &/ g3 G are in one-to one correspondence with covariant
representations of the twisted C*-dynamical system (o ,a,c)[14, 3]. These are triples
(H,7,U) where H is a Hilbert space, m : &/ — B(H) a non-degenerate representation
of o/ by bounded operators in 7 and U : G — U(H) a strongly measurable map whose
values are unitary operators in H , satisfying

U Uy = mla(z, y)VUsy, Vz,yE€G,

Upm(AU; = wlag(4)], VzeG,Aed.
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The representation 7 x U correspondiﬁg to (#,,U) (its integrated form) acts on f €
LY(G; o) as '

(mxU)f = fd:cw{f(:c)] U,

G

‘We also recall that a covariant morphism of (&, a, «) [15, Sect. 1] is composed' of a
C*-algebra %, a non-degenerate morphism r : & — M(%) and a strictly measurable
map u : G — UM (9B) satisfying for z,y € G and A € & the relations

upr(A)u; = rlag(4)], uéuy = rlofz, y)|tay -

Remark 1.1.9. Defining the twisted crossed product as the enveloping C*-algebra of the
L' Banach algebra will be convenient in the setting of this thesis. Occasionally we are
going to use the fact that this enveloping algebra has universal properties (cf. [14, Sect.
2] and [15, Sect. 1]), which can be used as alternative definitions.

There exists a canonical covariant representation for each twisted C*-dynamical sys-
tem (7, G, @, w). Given a representation 7 : &/ — B(H), we define Ind7, as the inte-
grated form of the covariant representation (r, U7) on L*(G) ® H = L?(G, H) where

(r(@))(2) = 7o (@)h(e),  (Uah)(E) = nlw(z™, 2))(="1x),
where h € L?(G, &). Then

(s () = b U ()
= [ mlo (P o™ )hla'a) dz AL

= [ wloan(f@=] mlole™, 22 h(a) s,

for f € LY(G, o).

Definition 1.1.10. The (twisted) reduced crossed product, denoted by & X . G, is the
C*-algebra Ind™, (& x¥G) C B(L?(G, &) for a non-degenerate faithful representation

i

The definition above does not depend of the initial representation # [16]. It is known
that the reduced algebra is isomorphic to the (full) crossed product if and only if the group
G is amenable [16]. There are important examples of amenable groups like abelian and

compact, and there exist many others.

1.2 Tensor products

The theory of tensor products of operator algebras is fraught with a surprising number of
technical complications. Here we will make a brief recall of a few facts about this theory
[18, App. B].
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The algebraic tensor product shall be denoted by ®, while the tensor product com-
pleted in a norm 3 shall be denoted by ®4. Let us to remark that the bilinear maps on the
Cartesian product of vector spaces (algebras,...etc.) are canonically identified with linear
maps on the corresponding tensor product: If ¢ : X xY — Z, the corresponding (unique)
linear map ¢ : X © Y — Z is given on a elementary tensors by ¢(z ® y) = ®(z,y).

First at all, we need to construct the tensor product of Hilbert spaces. Let H; and H,
be two complex Hilbert spaces. There is a unique pre-Hilbert structure on H; ® H2 such

* that

(ml @xyy & y2>?{1@';¢2 = <$1y yl)?{,] (552,?_-/2);{2

for all z1, y1 € Hj and z3, y2 € Ho. This leads to a metric on H1 @ H2. The completion
of this metric space is a Hilbert space and we denote it by H; ® Hy (with a slight abuse
of notation).

Consider Ly € B(H;) and Lo € B(#Hsz). The algebraic tensor product of L and Lo
is continuous in (’Hl O Ha; '>H1 . ); then L; @ L4 extends to a linear continuous map
on H; ® Hy and shall be denoted by L1 ® L. One can show that

(L1 ® L2)(S1 ® §2) = L1571 ® LyS>

and
(L1 ®Lg)* = L7 ® L.

for L1, S1 € B(#H;) and Lo, Sp € B(#Ha).

Example 1.2.1.

o Let (X, 1) and (Y, v) be two o-finite measure spaces. It can be shown that L2( X, u)®
LAY, v) = L3(X x Y, u x v) [10, Th. 7.15].

e Let #H be a Hilbert space and # the complex conjugated space. The tensorial prod-
uct H @ H can be identified with the Hilbert-Smith class of operators on # [10].

Tensor products of C*-algebras will play a basic role in the theory of crossed products
and duality theorems.

Let &, 27> be C*-algebras. A C*-cross norm for @ © &% is a norm || - ||z which
satisfies [la; @ azlls = [|a1|,,, [|a2||, for all elementary tensors a1 ® as € &4 © % and

the completion & &g &4 = & © ‘czf’g,‘i'”ﬁ is a C"-algebra. @ ®g o is called the S-
tensor product of <71 and &%. We denote by igﬁ @y — M(ah ®p af2) and iffz s oy —

M (e ®p o the canonical maps 13_‘2,1 (¢1®a2) =a; ®1and z‘i,g (a1 ® az) =1 @ as.
There exist many C*-cross norm on 2] @ &%, But there is a maximal one and minimal
one.

Definition 1.2.2. We define the maximal C*-cross norm on &, ® s by

s {3t st}

i=1

| »

'Zal®az

=}
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where the supremum is taken over all non-degenerate commuting homomorphism .1
of @ and g, ie. ¢ @ A — M(D) and ¢ : oo — M(D) where p(a;)(az) =
Ylag)p(ay) forall ay € @ and as € 9.

The tensor product 2/ @ax 24 satisfies the following universal property [18]: If ¢ :
o — M(D) and ¢ : o — MID) are non-degenerate commuting homomorphisms,
there exists a non-degenerated homomorphism ¢ ® 1) : & Qmax T2 — M (D) satisfying
(p@y)oiy™ = pand (p@1)0iZ2* = 1 [18]. In particular if || - ||5 is another C*-cross
norm, then ¢ @ 177" : &) Qmax & — & ®p 5 is a surjection (since it is the identity
on @ © &), and hence | - || g is dominated by || - ||max-

On the other hand, let 7 : @ — B(H,) and p : &% — B(#Hs3) be two representations
on the Hilbert spaces H; and Hq respectively; then there exists a representation m & p :
2 © oy — B(Hy @ Hy) satisfying (7 ® p)(a1 @ a2) = w(a1) ® p(az), and 7 ® p is
faithful on &7 © @ if = and p are faithful.

Definition 1.2.3. We define the minimal C*-cross norm on &) © o5 by

Zm ® ag :sup{”Zﬁ(al)@p(ag)”} ,
i=1 =i

where the supremum is taken over all representation 7 and p of A1 and As respectively.

min

We have seen that || - |min < || - | max; @ nontrivial fact is that if || - ||5 is a C*-norm
then || - |lmin < |- 1lg £ || * [lmax [18]. Note that it follows from the minimality of || - ||min
that, whenever 7 : & — B(#;) and p : @/ — B(#2) are faithful representations of &7
and A, respectively, then 7 ® p : &7 Qmin & — B(H1 ® Hs) is a faithful representation
of & ®min o%. Note also that ™ ® p is non-degenerate on &/ ® 4 if only if 7 and p are

non-degenerated. This tensor product satisfies the following property:

Proposition 1.2.4. If ¢ : & — M(D1) and ) : @y — M(Ds) are homomorphisms
then there is a homomorphism @ @ 1)+ &) @uin Ay — M(Dy @min D2) satisfving
(p @ Y)(a1 ® az) = @la1) @ ¥(az). If ¢ and v are non-degenerated (respectively
faithful), then so is © @ . '

Proof. Representing Dy and D faithfully on a Hilbert spaces turns ¢ and 9 into two
representations, and the results follows from the properties of the minimal tensor product
mentioned above. 0

Remark 1.2.5. Recall that a C*-algebra & is called nuclear if || - ||max = || * |[min on
o/ e for any C*-algebra &, i.e. all C*-cross norms coincide on & &7, Examples of
nuclear C*-algebras are the commutative C*-algebras and the algebra K(#) of compact
operators on a Hilbert space H, but there are many other examples. :

Remark 1.2.6. In this thesis we shall simply denote by 24 ® &% (with a slight abuse of
notation) the minimal tensor product of C*-algebras.
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1.3 Duality

- There is an important characterization of crossed products due to Landstad [13]. Let &
be a C*-algebra and G an abelian locally compact group.

Definition 1.3.1. A triple (%, 4, M) is said to be a G-product zf
(1) there is an (continuous) action a of G (the Pontryagin dual) on %;
(ii) there is an unitary representation A of G into UM (B);
(iii) the equality
be(Az) = (§2) e (1.3.1)
holds for all z € G and £ € G.
This structure is studied for example in [13, 16].

Definition 1.3.2. Let (%,4, ) be a G-product with G abelian. We say that an element
A € M(Z) satisfies the Landstad’s conditions if

1. 8¢(A)=Aforall € G;
2. A [ f(z)Aodz € Bforall f € LY(G);
3. the map x — Ay AN} is norm-continuous.

The important result is the following:

Proposition 1.3.3. Landstad Theorem [16][Th. 7.8.8] The triple (4, o, \) is a G-product
if and only if there exists a C*-dynamical system (&7, G, a) (non-twisted) such that B =
& 1, G, The C*-dynamical system is unique (up to a covariant isomorphism) and the
algebra 2f coincides with the elements which satisfy Landstad’s conditions, whereas a, =
ad Az

Let us to check that for any (&, G, a) untwisted C*-dynamical system with G abelian,
the crossed product carries a natural structure of G-product. Take £ € G, consider the map
defined in the dense *-subalgebra L(G, &) by

LYG, &) 2 f = &(f)=&Ff e L}G, &),

where £* f(z) = (£, z) f(z). This map has an extension to an automorphism of the algebra
& 1, G, and one can'show that the map £ — & defines a continuous action of G over the
crossed product.

One defines the representation of G in 2 %, G by

A straightforward computations shows that

for A € & C M(% %,G). This proves that the triple (& %, G, 4, ) is a G-product.
Moreover the triple (2 1, G, G, ) is an untwisted C*-dynamical system.
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Definition 1.3.4. The action & of G on & %, G constructed above is called “the dual
action” of a.

It is interesting to see what happens if we take the crossed product by the dual action.
In the formulation of the next theorem we shall use the right regular representation p
of G on L?(G). It is given by

(0%) () = Do (y) ()
forall z, y € G and ¢ € L?(G). Note that for G abelian we have A = 1.

Theorem 1.3.5. Takai [28][Th. 7.1] Suppose that (o7, G, a) is a C*-dynamical system
where G is abelian. There exists an isomorphism from the iterated crossed product (;zif Xy,
G) 315G onto of @K[L?(G)]. The dual action & to 4.in o @K[L*(G)] correspond to a®ad,
where p is the right regular representation of G, i.e. forany A € o and T € K[L*(G)]
we have R

8z (A®T) = az(A) ® pTpy
forallz € G.

In the following chapter we are going to give a proof of a much more general result.



Chapter 2

*
e

N P

(C*-algebraic covariant structures

This chapter contains the important results and a generalization of Takai duality theorem
in a new framework.

The first section recalls some basic facts about twisted crossed products and their
unitary multipliers.

In the second section we introduce covariant structures { (<7, s), (a, @), (&, &) } formed
of a separable C*-algebra o7, a measurable twisted action (a, «) of the second-countable
locally compact group G, a measurable twisted action (&, &) of the second-countable lo-
cally compact group G and a strictly continuous function & : G x G — UM (=/). We
insist on the fact that 7, G, G can be non-commutative and the two groups G and G are
very weakly connected. At the begining we worked under rather strong assumptions: s
was supposed to be a bi-character, the two “actions™ a and & were supposed to commute
and each cocycle was taken to have values in the fixed-point algebra associated to the
other action. Then we succeeded to isolate a much more general compatibility assump-
tion connecting the five objects &, a, @, &, &, that is quite meaningful and allows all the
subsequent developments.

In section 2.3, this compatibility assumption is used to associate to the given covariant
structure {(«/, k), (a, ), (i, &)} two (exterior equivalent) twisted actions (&, d) and
(&, %) of the product group G x G on 27 .

In section 2.4 we define the (twisted crossed) bi-product of a covariant structure
{(#, k), (a,a),(d,&)} by an universal property involving covariant morphisms; these
are triples (7, u,v) such that (r, ) is a covariant morphism of the twisted C*-dynamical
system (&, a, o, G), (r,v) is a covariant morphism of the twisted C*-dynamical system
(.4, &, C) and the commutation between u; and v¢ is ruled by the coupling function & .
Since such covariant morphisms are rigidly related to usual covariant morphisms of the
twisted action (@, Ti?) , existence of bi-products follows easily from the theory of twisted

=2 2 . . o
crossed products; one can see &7 x5 (G x G) as one of its possible realizations.

The remaining part of the chapter is dedicated to other realizations, involving iterated
twisted crossed products; this will make the connection with the first half of the Introduc-
tion.

13
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In section 2.5, associated to a covariant structure {(«, ), (a, @), (&, &)}, we intro-
duce the first generation covariant structures

{(@?’N:G, k),(b,ﬁ),(g,ﬁ)} and {(mxgérﬁ)a(cs'ﬂ:(aa’?)}

and then the second generation twisted crossed products (& % $G) mgé and (27 x3G)xJG.
Checking the axioms relies heavily on the compatibility assumption between &, a, @, &, & .

" The main result is contained in section 2.6. It is shown that the following isomor-
phisms hold

I 2B (G x )= /T (G xG) 2 (%G G2 (/#EE)x1G.  (20.1)

This is obtained both by studying the covariant representations of all the structures in-
volved and (for explicitness) by comparing the concrete form of the composition laws.
All the four algebras above can be regarded as realizations of the bi-product attached to
the covariant structure { (27, ), (a, @), (&, @)} . The isomorphisms in (2.0.1) even hold in
the category of covariant structures.

Some examples are presented in section 2.8. In particular, it is shown how a twisted
version of the Abelian duality result can be deduced from the last isomorphism in (2.0.1).

2.1 Multipliers on crossed products

Some considerations about unitary multipliers of twisted crossed products will be needed.
It is true [2, Prop. 4.19] that all the unitary multipliers of L} ,(G; %) have the form
62 ® m, where §, is the Dirac measure in z € G and m € UM(27). One can find in
[2] many other results about the interpretation of multiplier-valued regular measures on
G with bounded variation as (left or bi-sided) multipliers on L; ,(G; %) . Since we only
need simple facts, and since the connection between the multipliers of a Banach *-algebra
and the multipliers of its enveloping C*-algebra can be murky even in simple situations
[12], we are going to give an independent treatment.

If z € G and m is a multiplier of &/ the meaning of 6, ® m as a measure with values
in M (&) is obvious. To it we associate the operators (6, @m);, (0.®@m), : L' (G; &) —
LY(G; o) given by
[(6; @ m)g)(z) = [(6; @ m) ¢ g](z) := ma, [g(zglm)] oz, 27 x), @.1.1)

[(6: @ m), f)(z) = [f 0 (6: @ m)](z) = f(zz ™) ager(m)e(az ™, 2) . (21.2)
One checks easily that {(6, ® m);, (6, ® m),} is a double centralizer of the Banach *-
algebra L} (G; &), ie.

fol(6:@mhg] =[(6:@m)cflog, Vfgel!Go). (2.1.3)

The particular case z = e is worth mentioning:

[(6e ®m) 0 f o (be @ n)](2) = mf(z)az(n) . (2.1.4)
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From now on we assume that m is a unitary multiplier of & . To show that ¢, ® m
extends to a multiplier of the full twisted crossed product, one has to examine its behavior
under the integrated form IT := 7 x U of an arbitrary covariant representations (7, U, H).
One has

IL[(s, ® m)ig] = /de m{ma[g(z " z)]a(z, z_las)} Uy

m(m) IJzLdm nlg(z"2)| U; n[a(z, 27 )] Us
= a(m) U, /G dywlg(®)) U2 7la(z,v)] Uiy
= n(m) U | dywlo@)] Uy = w(m) s (o).

Then, since U, and 7(m) are unitary operators, one gets

IT1[(6= ® m)ig] Bz = [ TL(9) llm(20)

s0 (8, @ m); extends to an isometry of the enveloping C*-algebra & x§ G. A similar
statement holds for (6, ® m),, based on the identity 11 [(8, & m), f] = II(f) 7(m)U .
Then, by continuity and density, the two extensions form a double centralizer of &7 3G .

A shorter way to express the two computations above is to write (7% U)(d, @ m) =
m(m)U, . One can deduce from this (or from many other arguments) the algebra of these
unitary multipliers:

(6y ®@n) o (6, ® m) = by, ® [nay(m)a(y, 2)], (2:1:5)

(0:®@m)° =6,-1 @ [a(zfl, z)*a,-1(m*)] . (2.1.6)

Later on we are going to need the particular case
(e @ m)® = de @ Mm*. (2.1.7)
We close this section with two remarks that will be useful later.

Remark 2.1.1. Let G, G be two Tocally compact groups and (¢, v) a twisted action of G x G

on the C*-algebra &7 . Define cf and ' respectively by the formulas c& 2) "= C(8) and

(& 2), (0,9)) = v((x, &), (%,m)) - Then (c!,y1)isa twisted action of the group G x G

on 7 . The twisted crossed products &/» (G x G) and &/ 5 (Gx G) are isomorphic and at
the level of L!-elements the isomorphism is just composing with the flip (z,£) — (£, ).

Remark 2.1.2. We say that the two twisted actions (b, 3) and (b', ) are exterior equiv-
alent [14] if there exists a strictly measurable map (a normalized 1-cochain) ¢ : G —
UM(f) such that g(e) = 1 and

b, =ad,, ob,, Vze€G,
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B'(2,y) = @zba(gy) B2, Y) a5y, Yo,y €G.

In such a situation we are going to write (b, 3) L (v, 8. 1tis easy to see that ~ is an
equivalence relation. :

Let us suppose that (b, 3) < (b, 5’). Then [14, Lemma 3.3] the twisted crossed
products & xg G and &f xg,’ G are canonically isomorphic. At the level of L!(G; &) the
isomorphism acts as [14(f)](z) = flz)g;.

2.2  Covariant structures

Two second countable locally compact group are given: G with elements z,y, z, unit e
and Haar measure dz and G which has elements &, 17, ¢, unit £ and Haar measure d¢ . The
next definition is provisory; the really useful concept is that of Definition 2.2.4.

Definition 2.2.1. A semi-covariant structure {(&/, ), (a, @), (& &)} is given by a sepa-
rable C*-algebra sf endowed with two measurable twisted actions (a, ) of G and (&, &)
of G respectively, and with a strictly continuous map

GxG3(x,8) — rlx, &) eUM()
satisfying the normalization conditions
k(e, &) = 1= r(z,€), ‘v’xEG,&EE.

When extra regularity properties (as continuity) of the twisted actions will be present,
this will usuaily be specified. One could call « the coupling function.

Definition 2.2.2. Given a semi-covariant structure {(<, k), (a, ), (&, &)}, a covariant
morphism is a quadruplet (%, T, u, v) where

1. (B, r,u) is a covariant morphism of the twisted C*-dynamical system (&, a, «)
with group G,

2. (B,r,v) is a covariant morphism of the twisted C*-dynamical system (&, &)
with group G,

3. the commutation relation uzve = r(k(x, £)|veus holds for every (z,£) € G x G.

If % = K(H) for some Hilbert space H. (thus M(%) = B(#)) we speak of a covariant
representation and we use notations as (H, =, U, V).

Let us investigate under which assumptions convenient covariant morphisms exists.
For a hypothetical one (4, r, u, v) with faithful r and for A € o,z € G, £ € G one has

(vt )r(A) (vgte)* = verloa (Ao} = r{aelar(A)])
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but also
vetip (A) (Veuz)" = rk(z, )" upve r(A) viug rls(z, )]

= rls(z, £)* uer(as (A)]uj rlx(z, €)]
= r{x(z, €)*ag (8 (A)]x(z,£) } -

it follows that for all z, £ one must have
ag 0 ag = ady(y () 0 8¢ 0 8y, (2.2.1)

s0 ady(..) measures the non-commutativity of the actions. If « is center-valued the actions
do commute.
Now, for arbitrary z,y € G, £,7 € G let us compute veu, v,y in two ways. First

VglgUptly = VT [£(2, ) ugtisty
= r{ag[k(z, )]} vevnuzuy
= r{aglk(z,n)]} r[a€, n)]ven ez, y)|uey
= r{&¢[r(z,n)] &(€, 1) eplalz, v)] Jrenttay -
But on the other hand

VeUgUnly = 7[K(2, &) |ugve [y, n)*] uyvy
= r[s(z, )" Juer {8 (y, ) TJveuyvy
= rlk(z, £)"Ir{(as © 8¢)[k(y, ) | huar[s(y, ) Juyvevy
= r[x(z, §)"r{(ac o &) [y, m) ] r{az[r(y, £)"] Jusuyvevy
= r{r(z,£)" (az 0 &) [K(y, 1)) 2 [(y, €)°]} rle(z, ¥))uayr (@& m)lven
= r{r(z,£)*(az 0 8¢) [(y, ) "] 2 [6(y, €)@, ) } r{Bey [G(E, M)] Frayvey
= r{x(z, £)*(az 0 &¢)[k(y, 7)*) az[k(y, €) Yo, y) 2wy [a(€, M)k (2y, &) pventiay

The conclusion, valid for every x,y, &, 1718
aﬁ [H’(w: 77)] &(5 77) 5‘-’3’7 [Of(.’l:, y)] (2 ) 2)
= r(z, £)" (ag 0 &) [w(y, m)"] ax[k(y, €) "2, y) Bay [B(E, M)y, €m) .

The cohomological interpretation of (2.2.2) will be seen in Remark 2.3.2. This relation
is sometimes hard to use, so we will reduce to it to a pair of simpler ones (also having a
cohomological meaning). By taking y = e one gets

20l (€, )] = (2, )ael(z, ) G(€,n)w(z, €n)” (2.23)
and by taking = € one gets
delalz, y)] = K(z,€) a[r(y, £)7] ez, y)s(zy, ) - (2.2.4)

Lemma 2.2.3. Assume that (a, ) is a twisted action of G and (&, &) is a twisted action
of G, satisfying (2.2.1) for every z,&. Then (2.2.2) holds for every x,y, £, if and only if
(2.2.3) and (2.2.4) hold for every z,y, £, 1.
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Proof. We only need to deduce (2.2.2) from (2.2.3) and (2.2.4). One transforms the rh.s.
#(2, )" (ar © 8¢) [y, n)"] aclk(y, £)7] alz, y) agyl@(é, )] wlzy, £n)

P29 (2, €)* (ag 0 3 [5(y, 1)*) 2y, £)*] oz, y) w(zy, ) elk(zy, m] &(€, )
P2 (sg 02 ()] (2, )" aalis(v, )" ) (e, €) bl m)] (6, )
2 (8¢ 0 a0) [5(y, 1)) Eele(z, v) Aeli(zy, n)] (€, )
= ae{ag(c(y, n) |alz, y)s(zy,n)} &(&,n)
C29 se{n(z, n) dnlelz, )]} &€, n)
= ag[r(z,n)] (B¢ 5*;)[05(55 y)a(€,n)
= de[w(z,n)] &€ n) dgnlo(z, )]
and we are done. =

Now we have at least one motivation for our main notion; see also Remarks 2.3.3 and
2.6.3 and the constructions of the next sections.

Definition 2.2.4. A covariant structure is a semi-covariant structure {(< , k), (a, @), (8, &) }
forwhich relations (2.2.1), (2.2.3) and (2.2.4) are satisfied for all elements z,y € G,éne
G

Example 2.2.5. Suppose that for every z, £ the multiplier x(z, £) is central and a fixed
point for both a and a (this happens if x(z, &) € T for instance). Also assume that it is
“bilinear” (multiplicative in the second variable and anti-multiplicative in the first). Then
(2.2.1), (2.2.3) and (2.2.4) simplify a lot: the two actions commute and the cocycles of
each twisted action are fixed points of the other action. A sub-particular case is one of
the motivations of all our constructions: G is an Abelian locally compact group, G := G
is its Pontryagin dual and x(z, &) := &(z) is obtained by applying the character £ to the
element x .

Example 2.2.6. Obviously a twisted action of G (or of 6) can be completed by trivial
objects to get a covariant structure. One might call {(#7, 1), (id, 1), (&, @)} a G-trivial co-
variant structure and {(7,1), (a, ), (id, 1)} might be called a G-trivial covariant stric-
ture. Similar examples with some non-trivial x are also available.

Example 2.2.7. We outline now an example that will play an important role below. Let
(8, &) be a measurable twisted action of G on the C*-algebra 27 and let p be a 1-cochain
on G with values in UM(@7), ie. amap p : G = UM() satisfying p. = 1. The
family {(#, k), (p), (&, &)} will be called a G-particular covariant structure if for z € G
and £ € G one has the covariance condition

8e(pe) = K(z,6)"pz - 2.2.5)

If G is commutative, G is its dual, k(z, &) = &(z), @ = 1(so ais a true action) and p is
a group morphism, (&, p, &) is traditionally called G-product; then the condition (2.2.5)
plays an important role in Landstad duality theory [13, 16].
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Lemma 2.2.8. A measurable (resp. continuous) G-particular covariant structure can be
turned into a measurable (resp. continuous) covariant structure.

Proof. 1f {szf (p), (&, @)} is a particular covariant structure, let us set

ag :=ad, and o(z,y):= Pﬂ:pyp:?'y'

Clearly (a, c) is a twisted action of G on & . It is easy to check that it is measurable if p
is strictly measurable and continuous if p is strictly continuous.
To check (2.2.1), for z € G, £ € G one computes

5.5 o adPI = adg_g(pz}o 5,5 = adn(m‘_g)*px o] 55 = adn(m,ﬁ)* o adpwo 55 5
We now verify (2.2.4):

n(w,&)*aw[ﬁ(y,f)*]a(m, y)&(zy, &) = K(z, ) ps;rc(y,ﬁ)*p; prchP;y "7(33?]:5)
K2, £)* po 15(y, §) py Py (Y, §)
8¢ (pz) Be(py) Be(pay)” = defa(z, y)] .

ll

The relation (2.2.3) reads now

pz@(§,m)py = K(z,E)ae[k(z,m)] &(§, n)k(z, &n)* . (2.2.6)

Rewriting (2.2.5) in the form &(z, £)* = &¢(pz)py - the th.s of (2.2.6) can be transformed

K(x, &)ag[k(z, )] &(€, Kz, &n)" = poic(py) Be[padn(py)] &(€,m) e (pz) Py
= pa B¢[An(p3)] &(4,7) dgn(p2) 07
= pe &(§, 1) den(pz) dgn(02) 03
= de‘({fa 'f'?)P:: -

O

Example 2.2.9. By analogy, one defines E-parficuiar (measurable) covariant structures
{(#, k), (a, ), (&, &)} where, by definition, the twisted action (a, o) is arbitrary, but one
has & := adj, and &(&,m) = f¢ iy, for some measurable 1-cochain § : G — UM ()
satisfying a,(p¢) = x(z, £)pe forall z, €.

Example 2.2.10. We close this section giving an example of covariant representation of
a given covariant structure {(&, s), (a,a), (8,&)}. Let w : & — B(#) be a faithful
representation in a separable Hilbert space H . We can inflate = in a patural way to a
representation of .2/ in the Hilbert space

Ho=LAGCxGH) XL’ (GxG)®H

by setting ;
[r(A)(z,€) = w[(8e 0 a2)(A4) |z, ) - (22.7)
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One also defines
(U0)(,8) := Ac(2) *w{a¢la(z, 2)) }Uz2,€), (2.2.8)

(VeQ)(,8) = Az Q) *w{agln(z, O)a(, )}z, ). (22.9)

It is quite straightforward to show that (¢, 7, U, V) is indeed a covariant representation,;
we say that if is induced by w. Let us only indicate the most difficult of the relevant
computations:

(U2VeQ) (=€) = Ac(2) 2w {Egla(, 2)] } (Ve Q) (22, c)
= Ag(?) 1/2w{a§ a(z, 2)] } Ag z)l/zw{ag (zz,))&(€, ) }Uzz, £¢)

= Ag(2)2Ax(0)?w{5¢[al, 2)r(z2, ()] }w[a £ C (zz, £C)

(2:24) o Ac(z)?Ax( ”%{a{[ ( (z C)) a¢(a(z, 2))] Jwla(¢, Q) (22, £C)
= Ag(2)*0(0)*o{ (8¢ © a2) s }r@’{a&[N )l(8g 0 a¢) o ( ,2)]&(€,C)}
® flz2.60)

= w{ (B 0 a2 5(z, O] JAc () /2Ax(Q) 2w {ieli(, Clale, ez, 2]}

x Q(zz,£&C) _
= w{ (B¢ 0 2[5z ] YAz () 2w {aglin(a, QNE, ©) }Ag(2) 2w {ge o, 2)])
% D@#,£C) -

= m[k(z, Q) (Ve U=)(x,€) -

2.3 The twisted action attached to a covariant structure
Letussetforz,y € Gand é,n € G

Bia) = Beo sl (2.3.1)

e B, ), = el B gl 23D

Proposition 2.3.1. ( ) is a measurable twisted action of G x Gond . If the two
- =

a,d
twisted actions (a, ) and (&, &) are continuous, then (&, d) is continuous.

Proof. Using the assumptions and relations as ¥ o adg = ady(p) o ¥ and ady o adp =
ad4p one computes
B a0 Ay = B¢ 08z 08y 02y
= ¢ 0 adyg(yp) 0 pOag Oay
= adj[x(zn)) © B¢ © 8n 08z 0 3y
= ad[x(e.n)) © 3a(en) © den © ada(zy) © Bay

= ada,[x(z,n)] © ada(e,n) © A, [a(z,y) © 8¢n © Bay

_“.
ad?f((u:,{),(y,n)) © & (zy,n) -
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One computes with a huge pacience

A ((2,), (w,m) @ (2, €n), (2,0))
= é’f {’{(3)1 77)} 5‘(53 77) 5‘5?? [a(x, y)] 5‘5”? [f‘ﬁ(ﬂ;‘y, C)] 5’(5”71 C) 557](.' [Q(:Ey, Z)]

= &g {k(z, ayle(z, y)r(zy, Q)] }a(E, n) &(€n, ¢) Bencla(zy, 2)]
(2~

=8¢ {k(z, n)ap[ac (k(y, O)) sz, Q)a¢(alz, )]} @&, 1) @(én, ¢) Benclalay, 2)]
= ¢ {K(z,m)a[ac (k(y, {))r(z, O)] } (8¢ 0 8y 0 &¢)[a(z, y)]

x &(&,n) a(én, ) aEnC[Of(fﬂ?/: z)]
= a¢{k(z,n)aylac (k(y; ())s(=, Q)] } @€, ) &(én, ¢) aenc[a(z, y)] Bence(zy, 2)]
= ¢ {K(z,n)an 2z (x(y ))f‘%fEC}} Ea(??C)
x &(€,1¢) amc{am oy, 2))a(z,y2)]} -

On the other hand

B g [@ (0,7, (2,0)] @ ((=,8), (yz,nQ))
= (8¢ 0 ag }{Byls(y, Ola(n, Q)anelaly, 2)]} Aelk(z, nC)a(E, 1C) Aene [z, y2))]
= 8¢ [aq{8y[r(y, ONa@(n, Q) ancla(y, 2)]}x(z, n¢)] &€, 1) enc [z, y2))
= a¢{(az 0 &p)[k(y,¢ )]aa:[a(na Q)] (az © nc)[a(y, )]

x w(z, 1) a(€,1C) denc oz, y2)]

P25 (1) (i © 22 i O, )" 2, )]

x 1z, n¢) (B¢ © ag)[a(y, 2)] }&(é, n¢) dgnc [z, y2))
= a¢{r(z,n)(8y © 8c)[K(y, C)]K(z, 1) ax[@(n, ()]

x K(z,mC) } (B¢ 0 &nc){aca(y, 2)]}&(€,mC) &ene [, y2)]
= &¢{n(z,n)(&y 0 az)[5(y, k(2 n)" asld(n, ()]

x &(z,1¢) }a(€,1¢)aenc {az [0y, 2)]} Agne[alz, y2)]

C2 53¢ (e, m) (B 0 )6y, )Jigle(e, O)a(n, )}
x (¢, nC)denc {8alaly, 2)]} Bencla(z, y2)
= a¢{K(z,7)(8y 0 8c) (Y, {)]an[k(z, ()] }ac[@(n,
X@@n€%mhdaydﬂ%mh(wﬂ]

the two expressions coincide and thus the 2-cocycle condition is verified. The normaliza-
tion of @ is obvious.
The continuity and the measurability are easy. O

Remark 2.3.2. Relation (2.2.2) can be rephrased, also using (2.2.1)

r(z, §) (¢ © az) [(y, n)] {a¢[k(z, m)] &(€, m) dgyla(z, y)]}

= az[k(y, £)*] alx, y) agy[@(é,n)]. (2.3.3)
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The right hand side of (2.3.3) defines a 2-cocycle & on the group G x G with respect to
(E(x ¢) i= g © &g and (2.2.2) can be rewritten
k{2, €) Biag) 6y, M1 ((2,€), (9.m))slay, én)* = T ((2,€), (v, n)) . (234

Relations (2.2.1) and (2.3.4) tell that the twisted actions (_> _>) and ( ) are exterior
equivalent (Remark 2.1.2 and [14]) through the 1-cochain . Reph1asmgs in terms of the
group H' ;= G x G, based on Remark 2.1.1, are left to the reader.

Remark 2.3.3. Now that we have introduced all the notations, it may be useful for the
reader to recall the definition of a covariant structure {(&/, x), (a, ), (&, &) }: Itis defined
by a twisted action (a, «) of the group G, a twisted action (&, &) of the group G and a
normalized strictly continuous map « : G x G — UM (&) such that forall X,Y € G x G

Bx =adyxyoax and k(X) ’??X[K(Y)]a’(x. Y)k(XY) =& (X,Y).
Using a notation of Remark 2.1.2, this can be written (&, @) ~ (&, &).

Proposition 2.3.4. There are one-to-one correspondences between:

1. Covariant morphisms (%,r,u,v) (¢f. Def. 2.2.2) of the given covariant structure
{(#,5), (a,2), (8, &)}

2. Covariant morphisms (%, r,w) of the twisted C*-dynamical system (&7, E}, Ef)
with group H :=G x G.

3. Covariant morphisms (%, r,w') of the twisted C*-dynamical system (&, @, H}

with groupH := G x G.
Proof. If (98, r,u,v) is given, one defines
w:GxXG—=UMB), wzE): = Vet = sz, §) Jugve . (23.5)
We show that (%, r, w) is a covariant morphism of (&, &, @) . If (z, &), (y,7) € G x G
one has :
w(z, &)w(y,n) = veugvyuy

= ver[k(z, n)jonuany
= r{&[x(z, n)} vevquauy
= r{dg[s(z, M} rla(E, mlveq rla(z, y)luzy
= T{af[ ( )]} T[&(‘S= Tf)] T{é'fﬂla(‘xa y)]} Uﬁnuxy
= r{ag[k(z, n)] &(¢, n) egloz, )]} wlzy, én)
= r[@((.9), (€:n)] w((@E1,m).

On the other hand, for (,£) € G x G and A € & one gets
w(z, r(Ad)w(z, &)* = vgumr(A)u;vg
= verlag (A)]vg
= r{ac[a:(4)]}
=2 g(4)]-
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Now assume that (%, r, w) is a covariant representation of the twisted C"*-dynamical
system (&, @, @) . Defining u : G — UM(%) and v : G — UM(B) by

Uy = w(x, &), ve=wleé) (2.3.6)

one gets a quadruple (%, r,u,v) satisfying the conditions specified at 1. We leave the
easy verifications to the reader. Among others one uses the relations

d((x,e), (v,2)) = alzy),  A((e.8)(e,m) = (& m), (2.3.7)

_a}((x, 5)> (e> 7?)) = K(SU, T:’} ) _&}((eﬁg)7 (y,s)) =1. (2.3.8)

So we made explicit the correspondence between 1 and 2. The correspondence between
1 and 3 is analogous; just put

w'(z,€) = ugve for (,6) €Gx G,
O

Remark 2.3.5. The last identity in (2.3.8) shows that (&, @) is not the most general
twisted action of the product group G x G in &/. Having in view the developments of the
next section, it is natural to ask if any twisted action (b, ?) of the product group G x G
is at least exterior equivalent to some twisted action of the form (E}, '(,_f) . The answer is
not known to us.

2.4 The bi-product of a covariant structure

Definition 2.4.1. Let {(e7, k), (a, ), (&,&)} be a given covariant structure. A (twisted

crossed) bi-product is a universal covariant morphism (%”, Loty LGy LE) . Universality means
that if (98, r,u,v) is another covariant morphism, there exists a unique non-degenerate

morphism s : € — M(%) such that

U=SO0LG, V=80Llg, T=80Ly. (2.4.1)

Rather often we will call bi-product only the C*-algebra %, especially when the
mappings (.LM;, LG, .',5) are obvious or not relevant. It could be denoted generically by

¢ = m?‘(iag) , but it also depends on & ; its existence and uniqueness (up to isomorphisms)

will be proved now.

Proposition 2.4.2. Every covariant structure possesses a (twisted crossed) bi-product,
that is unique up to a canonical isomorphism.

Proof. By an easy abstract argument, if a bi-product exists, it is unique up to a canonical
isomorphism. The meaning of this and the proof are the standard ones.
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To prove existence, we rely on Proposition 2.3.4 and on the universality of the usual
twisted crossed products. If {(«7, k), (a, ), (&, &)} is a covariant structure, we con-
struct as above the twisted C’*—dynarmcal system (o, 3, ) with group G x G. Let

(5 B M',.LGXE) be a corresponding twisted crosed product. Recalling (2.3.6) we set
16:G > UM(E), 16(z) =15 z(x,€), (2.4.2)

i G UM(E),  1z(8) =1 z(e,6). (2.4.3)

From PfOposition 2.3.4 we already know that (%” s bty UGy La) is a covariant morphism;
one must show its universality. So let (%, r, u,v) be another covariant morph1sm and let
us define w as in (2.3.5). Since (%, r, w) is a covariant morphism of (o, 3, ), there
exists a unique C*-algebraic morphism s : ¥ — M (%) such that

W=80le &, T=80Lly. (2.4.4)

Then we have

(50 16)(2) = sli(@)] = 5 [1g,5(2:€)| = w(a,e) = u(z)

and
(s01)(6) = [1(6)] = st (e,6)] = wle,8) = v(©)
and we are done. |
Relying on the twisted actions (&, @) and (‘a, &) we get new C*-algebras
Jzif: = ﬂx%(G >< G) with laws ;; 2
and

~ . T
Mg‘ = ﬁxg(G x G) with laws (;;,# Yo

They can be viewed as concrete realizations of the bi-product C*-algebra w’(gaa‘;) . Of
course they are isomorpic, being defined by exterior equivalent twisted actions, cf. Re-
marks 2.3.2 and 2.1.2. Tt will be convenient to regard them as the enveloping C*-algebras
of the corresponding L' Banach *-algebras (but the abstract universal approach could also
be adopted). At the L'-level the isomorphism is given by F' — Fx*. For further use,
we record here the composition laws on Jz?'_g

(?Qa) (z,€) ]fdyan Y, n)(anoa»y){a(y"lwm“li)}

=1

(2.4.5)

X 8nlk(y,n~tE))&(n, 1" €)ae[aly, y '2)],

FH)(2.6) = Ac(z™))bgE Dalz, 27 (6, €7

ol (2.4.6)
x Bele(e, §71)"] (B 0 20) [F (27, 67')']
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and on J?{g
— ) = [y -
(FEE) @0 = [ [avinFlumiay o) [E 2,70 B
x ay[k(y "z, n) )ely, y z)as(d@ln, nE)), |
(F#)(@,6) = Acla™)Ag(e a6 € ) elz,a7)" 248)

x aaln(a™, 6)] (2 0 &) [F (27,6717

By using Remark 2.1.1, one generates other two twisted actions of the group GxGin
o as well as other two twisted crossed product C*-algebras isomorphic to the previous

ones. They can also be seen as concrete realizations of the bi-product 27, (a ;)
The next Corollary is now obvious. Similar statements hold at the level of (covariant)
morphisms.

Corollary 2.4.3. There are one-to-one correspondences between:

1. Covariant representations (H,, U, V') of the covariant structure
{(#,r),(a,0), (§,8)}.

2. Covariant representations (H,m, W) of the twisted C*-dynamical system
(o, d Fy _>) with group G x G.

3. Covananr :epresentatzorw (H, w, W') of the twisted C*-dynamical system
(o, &, &) with group G x G.

4. Non-degenerate representations of the bi-product &f(gl ()l)

5. Non-degenerate representations of the C*-algebra &Z/_g ;

6. Non-degenerate representations of the C*-algebra ,53?2;5 .

Example 2.4.4. In Example 2.2.10, given a representation = of the C*-algebra & in
the Hilbert space # , we constructed the corresponding induced covariant representation
(m,U, V) of the covariant structure {(«, k), (a, @), (4,&)} in the Hilbert space 5% =
L?(G x G;H). Applying to it the construction given in the proof of Proposition 2.3.4,
one gets exactly the induced covariant representation [14, Def. 3.10] (5, 7, W) of the
twisted C*-dynamica) system (7, @, &) with group G x G attached to the initial z

2.5 First and second generation twisted crossed products

Let {(#, &), (a, ), (& &)} be a given covariant structure. To associate to it another (par-
ticular) covariant structure {(.ﬁ/a, k), (b, B), (B, 5’)} , we first set @ := o x5 G with
algebraic laws (¢,°) . Also set

k:GxG=UMPE), kz,&)=05®r(z,E). (2.5.1)
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From (2.1.1) and (2.1.2) and from || - [|e <] - [1 it follows easily that k is strictly

continuous. _ )
For each ¢ € G we define be : L(G; &) — L1(G; &) by

[be(£)] ) += el FWIC, ©)* 252)
while for §,n € G, based on the preparations made in section 2.1, we set

A&, n) = e ® &(€,n) € UM(2). (2.5.3)

Proposition 2.5.1. The pair (b 3) defines a measurable twisted acuon of Gon A If
(8, &) is continuous, then (b, B) is also continuous.

Proof. 1. We need to prove that BE is an automorphism of &/ x5 G. We only show
that be : L'(G; &) — LY(G; /) is a *-isomorphism for the twisted crossed product
structure; then the extension to the full twisted crossed product is automatic. Clearly bg
is well-defined and invertible and one has b, = id.

For the product, using the definitions, (2.2.1) and (2.2.4) one gets

[be(£) © be(9)](2) =/Gdy {bﬁ } a:u{[ ] }Q(J:y tz)
dy&e[f (1)) k(y, €)" (ay 0 ¢)g(y™ )] ey [w(y ™', €) "]y, y ')
dy &e[f(y)] (8¢ © ay)g(y ™ 2)] w(y. €)" ayla(y ', €)"a(y, y ')
dy 8¢[f (y)] B¢ {ay l9(y "))} Eelaly, v~ o)l (z, €)*

= e [ a0 7)ot 0) alon7'9) ) ) = [Be7 2 0)] o).

[l ! I
O & &

For the involution, by (2.2.1) and (2.2.3):

[5(1)] (@) = Acla™) ale, 27" 2 e )]
= Ag(z™) oz, e )" ac{Ee [f(a™)] K, 6}
= Ap(a™ l)a(m z l} ax[r(x ,f a£{55[f(m”l)]}
-AG( ) oz, 27) aalr(z L, E)lw E)ég{&z[f(ml]} (2,6)"
) &fa(z, 7! ae{ax[ftz "]}
:aE{AG 1)oz(m.:z: Ly [f(:c“l) ]}m(m )
= &[/°(2)] n(z, )" = { ()] @)

2. For £, € G we show that 13,5 o ’Bn = ad‘ﬁi(m)o 1")5,7 . One computes for z € G and
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f € LY(G; )

[(Be o B) ()] (2) = 8¢ o (1) @) (2 6"

(5 0 30) (@)l 1) Dol )
= (£, 1) el (2)] (&, ) gls(z, ) Ne(z, €)°
= G(€,7) 8ol (@) w2, €n)* axfa(é, )"
&(&,1) [ben($)] (=) 2al(6,m)")

(Bte,my o [Ben(n)] o Ble, m)°) ).

We used (2.2.3); to justify the last equality use (2.1.4), (2.1.7).

3. Now we show that § is a 2-cocycle with respect to b. The normalization is clear.
To check the 2-cocycle identity, from the definition of B , (2.1.5) and the fact (following
from (2.1.1) and (2.1.2)) that be (6 ® m) = de ® &¢(m) one gets

B(&,m) o B(€n,C) = [6e ® &€, )] © [6e ® &(én, )]
= 8. ® [&(&,m)a(én, ¢)]
= 0 ® [Ag(@(n,()) &(&, n¢)]

Il

| |

Il

= {be ® &¢[a(n, ()]} © [6e ® &€, ()]
= b [6e ® G0, Q)] © [Fe ® &(€,1C)]
= be[A(n, )] o A&, nC)

4. Assuming now that (&, &) is continuous, we are going to show that (b, 3) is con-
tinuous. We indicate the rather straightforward arguments, because changes of norms are
involved.

To show that b is strongly continuous, we estimate for f = © @ A in the dense
algebraic tensor product L' (G) © &

15a(f) = be() e <11Dn(F) = be(F) I
f dzlola |||a,n ) (A,
By the Dominated Convergence Theorem, the integrability of ¢ and the bound

|an(A)s(z,m)* — e(A)n(z, )" ||, <2 | Allw,

it is enough to prove that for z € G the integrant converges to zero when n — £, which is
trivial since & is strongly continuous and x(z, -) is strictly continuous.
Then, using (2.1.1) '

18" n) o f =B m) o f| g < || Be® (€, )]0 f ~ B ® GLEM)] 0 f ||,
< [aslo) a4 - a6 Al
G
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Once again it follows that this converges to zero if (&', 7)) — (€,7), using the Dominated
Convergence Theorem, the integrability of ¢ and the fact that & is strictly continuous.
Multiplying with f to the left is treated similarly.

5. By using the definition of strong or strict measurability, one is lead to show that
a map h defined from a Hausdorff, second countable locally compact space X endowed
with a Radon measure y (o a separable Banach space & is measurable. The next criterion
[28, App. B] reduces this to an easier continuity issue:

A function h : X — B is measurable if and only if for any compact set K C X and
any € > 0, there exists a subset K' C K such that n{(K \ K') < ¢ and the restriction
h| g is continuous.

Now our measurable case follows rather easily from this and from the previous point
4. To illustrate the case of the action b, we start once again with vectors of the form
f=p®A, where p € L'(G) and A € &/ . Pick a compact set K C G and a strictly
positive number €; for some subset K of K for which the Haar measure of K \ K’
is smaller than e, the restrictions to K’ of the maps £ — &¢(A4) and £ — x(z, §) are
continuous for all z € G. By the argument above, the restriction to K’ of the map
£~ Bg(rp ® A) is continuous. This and linearity show that the map £ Bg( f) is
measurable for any vector f belonging to the dense subset L(G) ® & of 2/ . Passing
to an arbitrary vector is easy by density, applying a §/3 trick and the criterion again. The
strict measurability of 3 is treated similarly. O

We define now the twisted action of G on the twisted crossed product. First, forz € G,
let us set

A =6, ® 1 € UM().

Deducing strict continuity or measurability from similar properties of the twisted action
(a,a) is straightforward, if one takes (2.1.1) and (2.1.2) into consideration.
A computation relying on (2.1.1) leads to the covariance condition

be(Ne) = [0 ® Kz, €)*] 0 Ay = k(z,6)° 0 Xy, VG, E€G.
Along the lines of Example 2.2.7, define b : G — Aut(«/”) by
be(f) = ad3 (f) = Ae0f o]
and 5 : G x G — UM(2) by
B(z,y) = Az 0 Ay 0 A5y = de ® (2, ) -
All the calculations above conclude by
Theorem 2.5.2. If {(«/,k),(a, ), (&, &)} is a given measurable (resp. continuous) co-

variant structure, then {( x$G,k), (b, ), (b, 8)} is a measurable (resp. continuous)
G-particular covariant structure.
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Starting with the same covariant structure {(«, ), (a, @), (&, &)}, one can also con-
struct a G-particular covariant structure {( &, k), (c,7), (&,7) p. Weset 2 := a/xSG,

with generic elements f, g and algebraic laws (&, ) . The new coupling function is
k:GxG—UM(E), Kkz,6) =0 @x(x,€)".

The two twisted actions are defined similarly as above, by changing suitably the roles of
the groups G and G . Explicitly one has (here 1 is the unit of M (&) and f € LY(G;.2)):

ez (F)}(C) = az[f(O)] x(z, ), (2.54)
Ge(f) = (6 ®1)3F5 (5 @ 1)°,
Y(z,y) =6 ® oz, y), - (2.5.5)
V&) = (5 ®1)5 (5 ®1)5 (0 ®1)° = . ® (€, 7).
Similarly as above one proves

Theorem 2.5.3. If {(#, k), (a, ), (8 &)} is a given measurable (resp. continuous) co-
variant structure, then {(.;af 1 &, ) (e, %), (&7 } is a measurable (resp. continuous)

G—parlzcular covariant structure.
All the 2-cocycles of the first generation are just tensor amplifications of those of the

zero generation. At the Jevel of actions, this is no longer true. But it does hold on certain
*-subalgebras, as shown by the next result.

Lemma 2.5.4. Foreveryz € G, £ € Gandm € M(,@f) we have
bz(6e @ m) = ag(m), (2.5.6)
be(fe @ m) = 8 ® &g(m) : (2.5.7)
cz (8 @m) = §; ® ax(m), (2.5.8)
e (0 ®m) = 0. @ 8¢(m) . (2.5.9)

Proof. One has by (2.1.5) and (2.1.6)
b (e ® m) = (6 @ 1) © (§ ® m) 0 [6;-1 ® (2™, 2)"]
= (62 ® 8x(m)] 0 [0, @ a(w ™", 2)"]
= 0e ® {az(m)az[a(z™,2)*] a(z,271)}
= 6& & ay (m) 3
where the 2-cocycle property of o has been used for the last equality. To prove (2.5.7)
one must show for g € L1(G; &)
be[(6e ® m) 0 g] = [0 ® a¢(m)] © be(g)
and
Belg © (8 & m)] = belg) o [5 © ae(m)]

This follows straightforwardly from (2.1.1), (2.1.2) and the definition of Bg. Proving
(2.5.8) and (2.5.9) is similar. O
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Starting from the covariant structure {(%, k), (a, &), (&, &)} and applying the twisted
crossed product construction, we obtained new (particular) measurable covariant struc-

tures {(ﬂ’f‘, k), (b, B), (B,ﬁ)} and { (#2,k), (c,7), (&, ‘?)} . With all these objects one
can construct (at least) two “second generation” C*-algebras (they will be compared in
the next section). First, one has

e \B . b =
A3 = ()] = (@ %2 6) %] G,
with elements F, G and algebraic structure (0,5) . The second one is

7 = ()] o= (of TG,

ac

(]

with composition laws (ffl, ) and elements F, G. We recall that they also depend on the

coupling function s .
Remark 2.5.5. There are other two (less interesting) second generation C*-algebras

A3 = (a2 = (o x3 G)xf G and o = (oF)] = (o nEC)x] G.

2.6 They are isomorphic

The purpose now 1s to show that the second generation twisted crossed products Mﬁ-’)ﬁ

and ,;zifc”f are isomorphic and constitute realizations of the bi-product associated to a
given covariant structure { (&, k), (a, &), (&, @)} .

Theorem 2.6.1. There are one-to-one correspondences between:

1. Covariant morphisms of the covariant structure {(2/ k), (a, @), (&, @)}.
2. Non-degenerate morphisms of the C*-algebra ;zfa a]iaﬁ ;

3. Non-degenerate morphisms of the C*-algebra Jz(ﬁ"' 2

Proof. If (98, r,u,v) is given as in Definition 2.2.2, we are going to construct covariant
morphisms i
P szé'?‘éﬁ — M(%B) and 1y — M(B).

Using (%, r,u) we first construct the integrated form ry := rxu : & — M(%). Let
us check that (%, r,v) is a covariant morphism of (2, b, 5) . First, for f € L}(G; &)
and ¢ € G one has

verul 1) = [ dover{f(ellog vguso;
= [ dorlae(F@)Irina, )"l
= desc ?[(Bgf)(x)] o ==y [Bg(f)} ;
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Then, since (2, r,v) is a covariant representation of (&7, &, @), for £,n € G we have
ﬂfvnv;:n = r|@(&,n)]. Therefore it is enough to prove that 7, [ﬁ(f, n)] = r|a(&,n)] . For
g € L*(G; &) one computes using (2.1.1)

ru{ﬁy(g,n)og] =Admr{[(5 ® &(€,m)) ¢ g)(x }um
- /G dz r{a(E,n)g(z)} e = r{E(E )] rulg) -

Similarly one gets r,, [g o BE, n)] = ru(g) r[@(&, n)] and this is exactly what we needed
to show. Thus the (double) integrated form ry,, := ry,xv = (rxu)»wv is a non-degenerate
morphism of ,;zﬂ’a‘j‘é’g . Analogously, 7, ,, 1= r, ¥ u = (rxv) xu will be a nondegenerate
morphism of ﬂ;‘;”’ :

Now we show that every non-degenerate morphism R of sz*; C,%B in some C*-algebra
% has the form R = (r xu)x v with (%, 7, u,v) as required. The reasoning for non-
degenerate morphisms S of /;;” would be similar.

The general theory, applied to the C*-dynamical system (&2, b, B) ,tells us that R =

R x v for some covariant morphism (%, R, v). In its turn, R must have the form r xu
for a covariant morphism (4, r, u) of (&, a, a) . Let us show that (%, r, v) is a covariant

morphism of (#, a, &) . We already know that vevy, = R [B (€, n)}vsn . So, to prove that

vevy = r[&(€, )] ve, one needs to check that R [B(&, n)} = r[@(£,n)] . But this has been
done above.

On the other hand, by Lemma 2.5.4, one has bg (6. @ A) = 5, @4¢(A) forevery ¢ € G
and A € & . Thus one has

vgr(A)vf = veR(6. ® Ao} = R[Bg(fse ® A)] = R[b. ® ac(A)] = rlae(4)].

Finally we show the right commutation relations between the unitary multipliers u,
and ve . The game is to deduce this only from the fact that (33 R,v) and (%, r,u) are
covariant morphisms.

Note first that elements of the form p ® 1) ® A, with A € &, » € L*(G) and
W e LYG) (thus belonging to the algebraic tensor product L'(G) ® L!(G) ® o ) are
total in M;‘l—’)ﬁ . Since R = Rxv = (rxu)Xuv, it is easy to check that R(p ® ¥ ®
A) = r(A)ufplv[yh], where we used the notations ufy] := [.dzp(z)u, and v[y)] :=
fédf ¥(€)ve . Thus, R being nondegenerate, it is enough to show for all the ingredients
the identity

veuzr(A)ulplv[y] = rls(z, §) |ugve r(A)ulplv[y].
Below, we are going to use the notation g,(-) := p(z™1-)a,(A)a(z,z7*) € L} (G; o).
Using properties of the two covariant representations and axioms of the covariant struc-
ture, and recalling that R = r xu, we compute
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vets r(Ayulglo[9] = verloa(A)lus | dzg(2)us ol
~ verlea(4)] [ dy ol y)rlate, s y)uyol
=v5/dyr{(,o (z™'y)ag(A)e(z, z71y) byl
= veR(gz)o[y] = R [be(gx)] vevlv]
= [ dyr{pte o) e [sa(A)ale, o79)] 0. €)" ool
= fG dy p(z ™ y) r{Egas (A)) &g [a(z, z71y)] k(y, )" } uyvevfy]
20 / dy o(z~y) r{ Be [ (A)] £z, €)*aali(z ™y, €)"]a(z, 7 y) } uyvev[y)

(2.2.1)

="r[k(z, €)] r{og(8e(A }fdmp 'r{a.gC ez, 2 }umvgv[m]

= rlk(z,§)"] r{ac[8e(A)]} /Gdz p(z) r{az[K(z, €)"] puz uzvevfes]
= rlx(z, £)*] r{aw[éig(fl)]}um/dz o(z) rlk(z, ) u vev[]
G
= rln(e, ) v rfie(A)] [ d (=) s, &) Jusveol
= r[x(z, )] u fdz r{p(z)ae(A)r(z, €)* usvev[]

= r{r{z,£)"] fdzr{ [be(p ® 4)](2) buzvev[)]
vz, £)"] w. R [bg(p@A)]va[ ]
rli(z, )] 1ave Rl ® A)oly]
r[k(z, £)*] ugver (A)ulplv[¥]

so we are done. 0

Il

I

Then follows straightforwardly

Corollary 2.6.2. Both C*-algebras 52? ﬂ and o C” are bi-products of the covariant
structure {(&, k), (a, @), (&, @)} In partzcular one has isomorphic C*-algebras

o o & oY) a:ﬁ o) G,y
oG o A = o oS

Even if Corollary 2.6.2 can be proved directly, it is interesting and useful to have
explicit forms of the isomorphisms. Actually one has a commuting diagram of isomor-
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phisms

‘Q{a:.é T M_&ﬂ'

a,b a,C

|

s o
A — A

We have already specified I before

[r(®)].6) = Fz, &) n(z, ),

as a consequence of exterior equivalence of the twisted actions (2, @ ) and (5, %). The
actions of the other three on the L'-Banach algebras are simply

[X(F)@)(€) = [F(E)(z) K(z,£),
[@(F)](=,€) = [F(E)}(z), [E(F))(,&) := [F()I(€),

and the diagram is already seen to commute. To convince the reader, we are going to
exhibit the multaphcauons and the involutions of the iterated crossed products, at the level

of L'-elements. In xzf 5 one has

(POE)ENE) = { fan o) by G070 o Bn 70 b
= [an {Fer) oo [0 “16)] o e ® a(n, 6]} (@)

f di f dy [F (m))(y) | (BalG )] o [62 @ &, 1726)]) (™ 10)] (')
°20 [an [ ay(Pw)a, ( oGO €)™ 2) ay-12fan, n6)))
x aly,y 'z)
= [dn | dy (P10 3, GGl ) )ty 2,y 0]
x oy, y ™ z)
/ dn / dy [F(m))(y) (s © 5[ G8) (5™ 2)] g (™5, 7)7] (3 0 8y -1)
“16)])aly, v~ 12)

fdn]dyF )1(y) (ay 0 &) (G0~ E) (v 2)] ay [s(y 'z, 7)"]

x a(y, v~ ' x) ag(d(n, n 7€),
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which should be compared with (2.4.7) and

[FO)) () = {G(E Y Ale, ) o be[FE)°] o)
1){[6 @a(u Yo be[F(e™)] }a)
(E Y ae, £ be[FE ](:c)
*A(al)( TR [F(ET) @) e,
A€ &(E €Y ae{ac(x*l)a(wjm"‘) az{F(f'l)(fl}]*}
x (2, €)"

= Az(¢7N) Ag(z ) &(€, 71 * Be[a(z, z71)] (Be 0 ag)
x [FE ) (1)) x(z, £)*

P2 Ax(e7Y) Acle™) (e, 67" e [alz, 2] Kle, €)° (2 0 Be)
x [FE) (=]
(224) Ax (Eﬁl) Ag(z™Y) a6, 67 afz, z71)* ag[k(z ™1, €)] (az o a¢)
x [FE ()]

which should be compared with (2.4.8). In %&J one has 7
[(FOG)()](8) = {/;dy Fy) sy [G(y~ )] 57(?;,9193)}(5)

. fG dy {F(y) & ¢y [Gy~'2)] 5[5 ® a(y, y~2) }(€)
- / dy /ﬂﬂ (F@))(n) 3 [(cy [6(u~2)] 5[5 ® oy, 5~ ) (7€)
G G

X &(n,n ) |

“2D [ ay [ anF @) oo(es 6l o)) pelain o))
x &(n,n 15)
= [[dy [[anFQm i (aa S D) Ol 16

X By-relofy, ¥~ %r)]) (7€)
= L dy fadn F@))() (8 0 a) (6™ 2) (776 B lis(y, 7€)
X (8 0 81 )[a(y, y 1)) ) d(n, nE)

= ]G dy /édn F@() (5 0 2) (6 ™2) (7)) Bl 77 26)]
x &(n,n ) Aglely, y ')
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which should be compared with (2.4.5), and

[FA@)](©) = {Acta™) 7z, s ¢ [F(o™ }}
:/_\Gml){d ® alz,z7t)5¢ [F(
= Ag(e™) a2 e [Fla )] €)

= Ag(z™) afe, 27 2 [Fz™)%() | a(a

= Agle™Y alz, 7)) s {Ag (€ H)ale, € 1) BelF@ (¢}

x k(z,£)

= Ag(z™?) Agle ™) alz,o™)* ag[G(E,€71)"]

x (82 0 &) [F(z ™) (67)*] &(z, €)

P20 Ag(z™) Ag(¢ ) afe, oY) e [6(E €7

X (%, €) (fe 0 ) [F(z 1) (€™1)"]

P2 Acla™) Ag e alm ) a(E, 67 Be[w(z 6]

x (8¢ 0 ag) [ ) (E™)"]

which should be compared with (2.4.6).

/—‘\

Remark 2.6.3. If one tries to show directly that T is multiplicative, after a short compu-
tation using (2.2.1), he will realize that this is equivalent to the identity (2.2.2).

Remark 2.6.4. Naturally, by the same mechanism, the second generation C*-algebras
can also be inflated to new covariant structures

{(720,12), (0%, 8%), (5%, B } and { (o227, %), (%, 4%), (& 79) }.

Then the isomorphism T can be upgraded to an isomorphism in a category of covari-
ant structures, that can be easily defined. Similarly, the twisted crossed products M§

and JZ%:?? with product group G x G also have their natural covariant structures and the
isomorphisms I, @ and W have their interpretation in this category. Since many formulas
should be written down and also having in view a subsequent work, we shall not pursue
all these here.

2.7 On the stabilization trick

Definition 2.7.1. Two covariant systems {(&/, k), (a, @), (&, &)} and
{(«,K),(a,d),(&,&)} are said to be covariant ex[enor equivalent if there exists two

exterior equivalences (a, ) ~ (a/, o) and (&, &) 4 (&', &") such that
¥y n) = Gl sl ) a) 2 @1

forall(z,n) € G x G
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It is easy to check that this defines an equivalence relation on the set of covariant
structures defined with 7.

Remark 2.7.2. Note that if & = a' = id, as a dynamical systems, the equation 2.7.1 is
simplified to k' (z,n) = qu(z,n)qk. If additionally we assume that & is central, as in a
G-products, this forces to k = «/'.

‘We have the next result.

Proposition 2.7.3. If two covariant systems {(# , k), (a, ), (8, @)} and
{(o,x'),(a],a),(&,d&)} are covariant exterior equivalent then the bi-product struc-
tures associated to each one are isomorphic.

Proof. Since, the corresponding bi-products have realizations as crossed products of &7
with the twisted actions (&, @) and (&, @") respectively, it is suffice to show that there
exists an exterior equivalence between (&,d) and (&', @’). Then we need to find a
strictly measurable map p : G x G — UM(&/) that satisfies the conditions in Remark

2.1.2. Since we have the equivalences (s, a) < (2/,a/) and (i, &) 2 (&/, &'), we define

p(2,€) = Gele(gz)-
Then we compute

-/ = !

= #goady 0a,
= adg 0agoadg, cay
= adég;ig(qz) 08g0ay
= adp(x,g)_a?,
forall (z,£) € G x G. On other hand, also we need to compute

@' ((z,y), (&,1)) = d¢ls(a,n) )& (€,m)8g,la(z, y)]
= Geig[r(z,n)' |G Gede (Gn) &€, 1) Ty enden(z0a (gy) (@, ¥) a2y 12y

= Geig[ro(z, ) Gn)a€, m)aey azaz(ay) oz, 1)z, | Gen

CIY e ge)e (o0 (@) 5(z, 1)in(a2)|a(E, n)aenlaeae (), ¥)a3, )8

= Gelelge]ag[os (Gn) sz, n)an (a5) 8 [geaa(gy) (@, y) a2, 1 0(E, m) G2,
‘3 a [Qx]af[‘lw(qn) K(x, 1)an [ac(ay))an [z, y)azy]l&(€, 1),
aggz)agax (Gnn(gy)) ke, )y (a2, y)az, [16(€, 1),
Ae[qz](8g © az)[dnn(gy)]ac s (z, m](Eg 0 &) ez, y) @y ) &€, M) 2y
‘f ¢[92)(a¢ o ax)[flnﬂw(@y)}aa[%(m m)a(§, n)agn|o (-’L:y)]asn(q;y)é’gn
p(z,€) 8 (o) [p(y, )] (=, ), (6:m)) p(zy, €)™

for all (z,&), (y,n) € G x G. This finish the proof. U



2.8. Takai duality and other examples 37

Note that we proved that there exists an exterior equivalence between the twisted
action attached to the covariant structures. We can get the converse one. Suppose that
we have (&, @) ~ (_ﬂ a"), for the covariant structures {(«7, k), (a, @), (&,&)} and
{(«,),(a,a), (@, &)} We set g, = p(z, €) and G¢ = p(e, £); then one can show that

(a,a) 4 (a,¢/) and (5, &) & (&,a'). The equality in 2.7.1 follows from the equation

' ((z,y), (€m) = p(z, ) F w0 [p(y, M ((2,9), (€, 7)) p(zy, €n),
putting y = e and £ = <. Therefore we have proved:

Theorem 2.7.4. Two covariant systems {(, k), (a, ), (&, &)} and
{(«,K), (&, ), (&,&)} are covariant exterior equivalent if and only if the attached
twisted actions (&, &) and (&', @') are exterior equivalent.

There is an important result about twisted crossed products related with exterior equiv-
alences. In [14] is proved that given a twisted dynamical system (7, G, a, «), there is an
untwisted action (a’, 1) on & ® K[L*(G)] which is exterior equivalent to the twisted ac-
tion (a®id,a ® 1).

Applying this and Theorem 2.7.4 to the realization as crossed product of a bi-product
structure we obtain:

Corollary 2.7.5. There exists &' : G x G = UM(o @ K[L*(G x G)]) and actions &', &
of G and G respectively such that there exist a covariant exterior equivalence between

{(,ef ® K[L}(G x G)], #®1),(2®id,a ®1),(A® id,d®1)}

and

{(@ ®KIL2(G x §)], ¥), (&, ), (&,1) }

2.8 Takai duality and other examples

)

Example 2.8.1. We have seen that one realization of the bi-product ﬂ (a, 5 is the twisted

crossed product sa?’-g = >d_,;, (G x G). Applying to this well- known results [23], it
follows that the bi- product is commutative if and only if o7, G, G are commutative, a and
& are trivial and & is (essentially) symmetric. But & is symmetric if and only if o and &
are symmetricand k = 1.

Example 2.8.2. If x = 1 the two actions a and & commute, the elements &(&,n) are
fixed points of a, the elements oz, y) are fixed pomts of &, one has oz, y)a(é,n) =

&(€,m)a(z, y) and the twisted actions (&, @) and (&, &) coincide. The isomorphism
between szf“ao%ﬁ and %"‘C“f is basically a flip of the variables. The twisted actions (b, 5)

and (c,~y) are non-trivial only in the 27 -part of the twisted crossed products.
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Example 2.8.3. If the initial two actions are not twisted, i.e. & = 1 and @ = 1, then
_ must verify forall z, y,£, 7

w(z, &n) = klz, €)aglk(z, )] and  k(zy,€)" = w(z,€) alk(y, £)7].  (2.8.1)

This means that k(z,-) : G — UM(&) and k(- €)* : G = UM(&) are crossed
morphisms. One has

@ ((z,€), (y,m) = dele(x,m)], & ((z,8), W) = aals(y, £)*]. (2.8.2)

The Mg -realization of the bi-product ‘Qf(glé?) is still twisted and can be very complicated.

The iterated crossed products %ﬂéﬁ = &/ ;; and ‘%&é’y = o . are only constructed with

untwisted actions, but the actions b, ¢, besides the initial &, a also contain the coupling
function & .

Example 2.8.4. Even when both twisted actions are trivial, the bi-product remembers the
C*-algebra & and the "coupling” between the groups G and G.
For {(«, ), (id, 1), (id, 1)} one gets @ = id but

—3(($:§): (y, 77)) = 5(33377) (2.8.3)

is still non-trivial. Relations (2.2.3) and (2.2.4) become in this case (respectively)

w(z,&n) = w(z,&)k(z,n) and  k(zy, &) = &y, )r(z, ) -

For Abelian 27, twisted crossed products .27 XEH with trivial action & (but with general
2-cocycle @) have been studied in depth in [23, 24, 8]. It is worth mentioning that our
d is symmetric only if £ = 1. The second generation iterated twisted crossed products
have the form

(o Xig G)X5u G 2 [ ® C*(G)] 35, G and (& %ig G) % G X [ ® C*(G)] %+ G,
where essentially [bg(f)](z) := f(z)r(z, €)* and [} (F)](€) := f(€)w(z,€) .
If k is T-valued, @ is a bi-character. It is easy to see that we get
) e " =

d§) = o = @ UG G). (2.8.4)
We denoted by C (G x E) the twisted group algebra of H := G x G corresponding to the
2-cocycle H x H — T given by (2.8.3). More generally, we can consider the covariant
structure {(#, k), (id, @), (id, &) } , where o and & are multipliers (they take valuesin T).
If « is also T-valued, then '

Ao 2 o @ CH(Gx G). (2.8.5)
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Example 2.8.5. We shall describe now briefly how a twisted version of Takai’s duality

result for Abelian groups follows from our isomorphism CA C’“l’6 o %"‘07, which is written

with. full notations N =
(MNSG)NEG% (o xEG) )G, (2.8.6)

Let us suppose that the group G is commutative (in additive notations) and dG =
is its Pontryagin dual. As coupling function we choose the natural duality (z, £)
k0(z,€) = &(z). Also assume that the initial twisted action of G is trivial: (8,a)
(id, 1) ; then the 2-cocycle f i 3 is trivial and the action b reduces to the standard dual action
given by [bo( £)](z) == &(z) f(z) . The purpose is to express the double twisted crossed

product (& x5 G) %0 Gina simple familiar form, using the r.h.s. of (2.8.6).
There are well-known canonical isomorphisms .27 x @ 2 dQC *(A) o ®C{}(G)
the second one being given by a partial Fourier nansform idy @ #, where & C*( ) =

Co(G) is the extension of the usual Fourier transform F : L'(G) — Cy(G) . The twisted
action (c, ) given by (2.5.4) and (2.5.5) is carried to (a® t,a ® 1), where [t.(¢)](y) =
w(y + x) is the action of G on Cy(G) by translations. If one finds an isomorphism

Il

[ ® Co(G)] x28! G = o ® [Cp(G)x:G], (2.8.9)

then using the standard isomorphism between Co(G) G and the C*-algebra K[L?(G)]
of all compact operators in the Hilbert space L2(G) one finally gets the desired result

(& xZGY 3G = of @ K[LG)]. (2.8.8)
Using some notational abuse, the isomorphism (2.8.7) is given by
[B{F)] (2y2) = %[F(z?m)}a(z,z).

We refer to [28, Sect. 7.1] for a more careful discussion of thecase o = 1.

The conclusion is that in this case the bi-product associated to the covariant structure
{(«,K%), (a,), (id,1)} is stable equivalent to the initial C*-algebra & . Recalling the
realizations ,;zf_é,s and m:f of this bi-product, we get more isomorphisms that could be of
some interest. In the present given situation, for example, one has

Beo =2, a(8),umn)=n@aely).

For this twisted action one gets 27 > % (G x G) & o @ K[L*(G)].
All the isomorphisms we described above are shadows of isomorphisms of covariant
systems, as indicated in Remark 2.6.4.
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Appendix A

Measure and integration

We need some basic facts about the measurability of functions with values in non-separable
Banach spaces. In this section X will denote a second countable locally compact space
and &/ a complex Banach space. The principal aim is to define the measurability of
f+ X — & (&/-valued function). When the Banach space is separable the theory is
easier. Here we will exhibit the basic definitions and the principal goal is to characterize
the measurability in terms of a certain “local continuity property” of f (Proposition A.9).

The inspiration comes from the Riesz Representation Theorem [22, Th. 2.14]: For
every functional I : Cp(X) — C, where C;(X) denotes the spaces of complex-valued
function with compact support, there exists a unique o-algebra B(X') containing the Borel
sets and a unique measure p, such that

1) = [ fau, foran £ ecu(x),

and this measure satisfies the following additional properties:
(a) for E € B(X), u(E) =inf{u(0)|E C O, open };

(b) the relation p(E) = sup{u(K)|K C E, K compact } holds when F is an open
set and for £ € B(X) with u(F) < oo;

(c) pis complete

A measure defined in the o-algebra B(X) is called Radon measure if it satisfies (a), (b)
and (c).
Such a measure takes finite values in the compacts sets and is saturated. i.e.

E € B(X) <= ENK € B(X) for all K compact.

Remark A.1. It is known that any second countable locally compact set is o-compact.
Since a Radon measure is finite for each compact set, any Radon measure on X is o-finite.

Let dz be a Radon measure on X and f : X — & a function. Our definition of
measurability of f must satisfy certain properties, for example, f will be a limit of a
sequence of simple .2/-valued functions. So we define the following:

41
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Definition A.2. A function ¥ : X — & is called simple if it takes finitely many values
a1,....an € &, and {z € X | f(z) = a;} € B(X) and p({z € X | f(z) = a;}) < 0
fa; #0.

Definition A.3. We say that a function f : X — &/ is a measurable function if it is a
pointwise limit of a sequence of simple & -valued functions.

Remark A.4. Note that if f is the limit of a sequence {g, } of simple functions, then the
range of f is contained in the closure of the union of the images of the functions g,,, and
this space is separable in 4.

In [9, Sec. 5.5] it is shown that this definition is equivalent to the following:
Definition A.5. A function f : X — & is w-measurable if
1. o f is measurable for all p € &*;

2. for each E C B(X) there is a closed separable linear subspace A C & such that
f(z) € A for p-ae.xz € E.

Another definition of measurability is given in [28, App. B.1] and is the following:
Definition A.6. A function f : X — of is weakly measurable if
1. wo f is measurable for all p € &™;

2. for each compact set K C X there is a closed separable linear subspace A C &,
such that f(z) € A for p-ac.z € K.

The previous definition is inspired from the notion of saturated measure mentioned above.
In our case, the measure is o-finite, thus we have:

Lemma A.7. Definitions A.5 and A.6 are equivalent.

Proof. Ttis clear that the w-measurability implies weakly measurability.

On the other hand, let f be a weak measurable &/-valued map. Take a measurable set
E. We need to show that there exists a linear separable subspace A C & and a null-space
N such that, f(z) € Aforz € E\ N. We use the fact that the space X is o-compact
(Remark A.1). We can find a sequence of compact sets { K, } such that

o0
Xe= | | By
n=1

We construct a sequence K7, K5, ... of compact sets and a sequence of linear spaces
Al AL ... as follows: :
There exists K| € E N K; compact set such that x((E N K1) \ K1) < 1. Since f
is weakly measurable, there exists a separable linear space A1 C & such that f(z) € A
p-a.e.z € K}. Since (EN K7 )\ K1 has finite measure, there exists K C (ENK;)\ K
such that
w(((B N K\ KD\ ) <1/2
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and a separable space A} such that f(z) € Al p-ae.z € K,. Continuing, we get
a sequence of disjoint compact sets such that z ((E NKi)\ Ufil K{) < 1/N and a

scg)\!arable space Al (the linear span of [ JI, Al) such that f(z) € A}, p-almost z €
U',‘::l Ki- )

Then there exists a null set M; such that & N K3 = Ufil K} U M,. Thus, we take
the closure of the linear span of the set A} := | J2, A}; this is a separable space, and
f(z) € Al forallz € (ENK]) \ M.

We can continue the argument for each set £ N K, with n = 1,2, ...; therefore we
consider the closure of the linear span A := (J>. ; An and this set is a separable space.
Since E = | JO2,(ENK,), we get f(z) € Aforallz € |32, (ENKy) \UpZ; My, but
Un>, M,, is a null set, and this finishes the proof. O

Our definition of measurability coincides with the definitions in [28, App. B1]. Taking
into account Lemma A.7, the Definition A.5 is equivalent to the following definition [28,
Lem. B7]:

Definition A.8. A function f : X — & is strongly measurable if
1. f~Y(A) is Borel for all A C & open set;

2. for each K compact set there is a closed separable linear subspace A C &, such
that f(z) € A for p-ae.x € K.

Now, our principal propose will be to give a powerful result implying measurability
and this characterization play an essential role in Chapter 2. The important Lemma is the
following:

Lemma A.9. Let f : X — & be a map and assume that for each compact set K C X
and ¢ > 0, there exists a compact subset K' C K such that (K \ K') < ¢ and the
restriction [ of f 1o K' is continuous. Then [ is measurable.

Proof. We are going to use Definition A.8. To prove the first condition, it is sufficient to
show that f~!(A) is measurable for all A C o7 closed. We use the fact that . is saturated;
then we need to prove that f~}(A4) N K is measurable for any compact set K.

First we construct a sequence K7, K7, ... of compact sets as follows: There exists
K compact set such that (K \ K;) < 1 and f|g, is continuous. Since K \ K has
finite measure, using the fact that ;s is regular, there exists K C K \ K such that
p((K\ K1)\ K}) < 1/2. Then there exists K3 C K such that, u((K'\ K1)\ K2) < 1/2.
Continuing, we get a sequence of disjoint compact sets such that u (K \ |JI_; K;) < 1/n.

Therefore, we can write K = N U| J72, K;, where N is a null set and f|x, is contin-
uous. Then

FFHANKE=f14)n (Nu [j AN Ki).
i=1

Since f|k, is continuous f~1(A) N K; is closed and f~(A) N N is null. This prove the
first statement.
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Take K a compact set. Using the above reasoning, we can write K = N U, Kj,
and f(K;) is compact, thus it is separable. Then the space generated by | J;2, f(K;) is
separable, and this is suffices because N is null. O

Remark A.10. The converse to Lemma A.9 is also true [28, Prop. B.20]. With this, all
the definitions of measurability given in this section are equivalent (because we work with
second countable locally compact spaces). We use the Definition A.3 for measurability,
but we will keep in mind the equivalent definitions and Lemma A.9.

Now we can construct the Bochner integral. For a simple function f = )~ a;xs,, we
define the integral of f respect to the measure u as » , u(E;)a;. A measurable map f is
Bochner integrable if the map x — || f(z)|| is integrable in the usual sense [9, Sec, 2.5].
In this case we can define the Bochner integral [ fdu choosing a sequence of simple
functions { fr } with f, — f pointwise and [ || f» — f||/du — 0 and setting

/dep. i nango/)(jndp.

The bounded linear operators pull through Bochner integral, so we can do freely manipu-

lations like
(5 (]“ = @ ° I(i“ N O E *.
‘ (/5{ f ) /;f f g

The space of all Bochner integrable functions from X into 2 is denoted by L (X, &).
This is a Banach space with the norm ||f||1 := [ ||f||du. This space is the completion
with respect to the greatest cross-norm of the algebraic tensor product of the Banach space
&/ with the space of integrable complex-valued functions with respect z [9].
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