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Resumen

En esta tesis introducimos el concepto de estructlltr's covariantes {(d, "), (a, n), (a, d)}
formadas por una C*-algebra "cy' separable, una acción torcida medible (a, a) de un gnrpo

localmente compacto segundo-contable G, otra acción torcida medible (á, d) de otro
grupo localmente compacto segundo-contable G y una función estrictamente continua
,s : G x G -+ UM(d) que conecta (a, a) y (á, a) . Nociones naturales de morfismos
covariantes y representaciones son consideradas cn general y conducen a la constrlcción
de una especie de producto cruzado torcido. Varias C*-algebras emergen de un proceso

de construcción de estructuras covariantes. Estas construcciones pueden ser iteradas in-
definidamente. Mostramos que algunas de las C*-algebras que aparecen en las iteraciones
son isomorfas. Las construcciones son no conmutativas, pero vienen motivadas del caso

Abeliano de la dualidad de Takai que es eventualmente generalizada.



Abstract

We introduce covariant strucÍures {(d , n), (a, a), (á, á)} formed of a separable C*-
algebra d , a measurable twisted action (a, a) of the second-countable locally compact
group G , a measurable twisted action (á, ó) of another second-countable locally compact
groupGandastrictlycontinuousfirnctionr:GxG-+UM(d)suitablyconnectedwith
(a, a) and (á, á) . Natural notions of covariant morphisms and representations are con-
sidered, leading to a sort of twisted crossed product construction. Various C*-algebras
emerge by a procedure that can be itelated indefinitely and that also yields new pair of
twisted actions. Some of these C*-algebras are shown to be isomorphic. The construc-
tions are non-commutative, but are motivated by Abelian Takai duality that they eventu-
ally generdize.
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Introduction

Pontryagin dual§ establishes an isomorphism between each locally compact abelian
group and its bidual group, and studies the properties of this connecfon. This duality
resuit has many consequences and applications to representation theory of locally com-
pact abelian groups and Harmonic Analysis.

A natural idea is try to generalize this duality result for non-abelian groups. In non-
abelian setting the C*-algebras play an essential role in the theory of representation of
locally compact groups. There is an important development of the links between C*-
algebras and the theory of strongly unitary representations of groups [5]. Moreove¡ the
C*-algebras form a basic tool in the study of the representations of very extensive classes

of involutive Banach algebras.

In operator algebras Pontryagín duality can be used for characterization of ceratin
algebras associated to "dual actions" of abelian groups based in the construction of C*-
crossed products; this result is called Takai duality I25. l9l. On the other hand, C*-
algebras and the crossed products construction have been important tools in ma:ry fie1ds

with applications including spectral theory pseudo-differentia.l calculus and quantization.

Crossed products are important not only for apptcations, but are also the source of in-
ferssting examples of operators algebras. For example, Takesaki shrdied the classif,cation
of von Neumann algebras of type 11.I [26] based in duaüty results involving W*-crossed
products.

This thesis can be summarized as a research about the Takai duality theorem [4].
We will be interested piincipally to extend this result of duality in the setting of twisted
crossed products associated to twisted actions of a pair of locally compact groups weakly
connected to each other. Possible future applications have motivated us to develop the
duality without the theory of coactions Out silce coactions are not involved, we do not
obtain non-commutative versions of Takai duality Ul, 17 , 2Ol). Hopefully we are goilg
to develop and apply fhis elsewhere.

In this üesis we are using the following framework:

Let d be a separable C*-algebra with automorphism group Aut(.c/), multiplier a1-

gebra M(d) and unitary grorp UM(d) and let G, é be two second contable locally
compact groups, with units e and e a¡d left Haar measures dr and df respectively. Let
also (a, a) be a measurable twisted action of G on d and (á, á) a measurable twisted
action of G on ú. Motlvated by duality issues, we are going to investigate this pair of
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twisted actions in úre presence of a "coupling function" ¡í : G x G -+ UM(d), stpposed
stricdy continuous.

The simple motivating example is given by the setting involved in the well-known
(abelian) Takai duality result 125,26, 19,281. In this case G is supposed to be commu-

tative, G = G is its Pontryagin dual and rc(e, {) := {(r) is obtained by applying the

character { to the element r . The theory staÍs with a single action a ofthe group G (let us

assume if nntwisted), used to construct 16,7, 16,28) the crossed product I := .ú x aG .

On ülis new C*-algebra there is a canonical action iio of the dual group given on elements

/ of the dense *-sub ilgebra. Ll (G; d) by

[63rfl]r,l :: /(,)«d:ik);GO, vr e G, ( e G.

Takai's duality result states that the second crossed product (.«/ x uG) x;o G is isomorphic

to rhe tensor prod¡rct ,/ SK[¿2 (G)] between the initial C* -algebra d and the C*-algebra
of compact operators on the Hilbert space -L2(G) ; this isomorphism is equivariant with
respect to the canonial bi-dual action on (a/ x .G) x6o G and a natural diagonal action on

d sKlL,(G)l.
On the other hand, this dual action is not enough if one wants to fully connect the C*-

gebra fi with the initial C*-dynamical system ("a/, a, G) . There is also a natural strictly
continuous group morphism ,\ : G -+ U^4(g) (basically )" - ó, E 1 in a suitable
picture of the mulfíplier algebra of 9) and the covariance relation

63(),) : ,r(r,()),
holds for each ,r € G and ( e G. The couple 160, )¡ ptays an important role t13, i6l in
Landstad's characterizations of the C*-algebras that are isomorphic to a crossed product
with group G . But ,\ can also be seen as defining an action

b:: ad¡ : G + Aut($), b,(/) : adi"(/) =,\,o/o)],

where o denotes the composition 1aw and o the involution in the (multiplier algebra of the)
crossed product. Firally I comes equipped with the two actions b of the group G and b0

of the group G. If the initial action a is twisted by a 2-cocycle a, then ) will no longer
be a group morphism ard b will also aquire a 2-cocycle

B : G r G -+ uM(9), 0(",y) :: ), o )v o )is.

In addition, if initially there is also a twisted action (á, á) of the dual group G on .c/, ttris
can be converted in a modification of 60 into

t6e tf¡lrl :: e€t/k)l@D

and this formula also requires a2-cocycle §(. ,.) :: 1 I d(., .) on C .

The conclusion is that, for the Pontryagin couple (G. G; . a pair of twisted actions

((a, a, G). (e, 6, G)) on.@" generates a patu of twisted actions ((b, B, G), (1, B, C)) on ttre



twisted crossed product [3, 14, 15) I := ./ x ff G . A different but similar pai¡ of twisted
actions ((c, t, G), (e, l, G)) arises in the same way on the other twis¡ed crossed product

€ := dxQG. Thus two new C*-algebras are avaitable: (.c/x$G)xfG and (-e/xre)xlc.
A very particular case of the results of our section 2.6 says that the"y are isomorphic in a
canonical very explicit way, and this implies easily an extension of Takai's result that is
recoveredforá= id, a : 1 and á : 1.

Actually the two iterated twisted crossed products indicated above are isomorphic
realizations of a new kind of object, tle crossed product associated to a so-called "C*-
covariant systems". Its representations are generated by suitably defined covariant rep-
resentations of this C*-covariant system. Other realizations of this new type of c-rossed

product are given by defining suitable twisted actions of the product group G x G. The
entire formalism cari be seen as a far-reachhg extension of the theory of Canonical Com-
mutation Relations in Quantum Mechanics.





Chapter 1

Preliminaries

1.1 C*-algebras and dynamical systems

We are going to recall some facts about C*-algebras and covariant systems. Throughout,
a/ will denote a C*-algebra, B(71) will denote the C*-algebra of all bounded operators

on the Hilbert space ?l and K(?l) denotes the closed ideal of compact operators on 71.

We denote by ,M (.c/) the multipüer algebra of d . This algebra consists in the set of
a1l double centralizers, i.e. pars (M, M') of maps from .c/ itto .d stch that rM (A) :
M'(r)y. We denote a couple (M,AtIt) justby r¿ a¡d set M(r) : ¡n¡. It is known that
this algebra is unital, containing .c/ as an essential ideal, and when.e/ is unital one has

M(d) = ¿ ¡161.
A homomorphism g : .ú -+ M(d') is non-drgencrate n the set p(d)d' is dense

i¡ d'. A morphism g between two C*-algebras d ar.d d' is a non-degenerate homo-
morphism from.cy' into M(dt). All morphisms between ú*-algebras have an extension

to correspondirg multiplier algebras [27].

Deflnition l.l,l. A non-degenerate representation of d is a non-degenerate morphism

¡r : d -+ 
^,1(K(?f")) 

:B(11").Wedenoreit(r,Hn)@r justb,r). Two representations

r and ¡¡' are unitarily eqaivalent (ot'just eqaivalent) if thzre exists a unitary isomorphism

U :'11* -+'17^' such th,1t Í (a) : U* ¡r' (a)U for all a € .ú.

Remark 1.1.2. A homomorphism r : .d -+ B(71") is ca11ed reprcsentation. Note that

if there exists a vector ú e ?1,. such thxr(.d)tlt: {0}, a projection in the one dimen-
sional space generated by rl (who is compact operator in 71") is orthogonal to the set

r (,ú)\<(?1"). One can show that a representation (n,?{") is non-degenerated if and only
iffor everyTy' € fl there exists an a € d strch rhar r(a)t! * 0 t27i.

It is known that any C*-algebra can be rcpresented faithfully in some Hilbed space

11 [16, |,9, 51. I*t ó be aLinear continuous functional we say / is a sl¿Je if has norm 1

and $(a) > 0 for all a positive (1.e. @ is positive). We denote by 5,,. the set of all states

of .d. The GNS construction shows that for every positive functional {, there exists a

representation @6,74"r) and a vector tf; € ?l,rd such that

q(a) -- (r6@)t!,t!)qr.
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Definition 1.1.3. The univenal representatinn of ,ú is the representation @ae s, TO on

the Hilbert ípace @óesd?[ó.

Definition L.L.4. A representation (tr,'11") of a C* -aLgebra d is called irreilucible if a
clos.ed subspace of '11n wldch is stable under r(d) is either ll or {0},

The functionals in S- for which the GNS construction gives an irreducible representa-

tion arejust tle extreme points ofthe set Sr. These functionals are calledpure sfales [18].

Suppose that ay' is non-degenerately represented in IE(?l); then the multiplier algebra

coincides wilh the set {b e B(}l), ba. ab e .d ,va e "4} Il6. 51.

The strict topoln$t on ts(?l) is the weakest topology makhg the maps b ,+ ba and

b *l ¿b norm continuous (b € 1E(71), a e d); i.e. thelocally convex topolory generated

by the semi norms b r+ lláal], b *i ]iaúll. The multiplier algebra of a C*-subalgebra of
]E(?l) coincides with the strict completior of d U6,271.

Definition 1.L.5- kt X be a second countably localb compact set with a Borel measure

p,. We say that a function f : X -+ d is stricily Borel measurable (or iust stictly
measurable) if themapst+ f (r)aandr,+ aJ@) are measurable for alla€,c/.

Since the multipüers can be considered bounded ünea¡ maps defined on ./, we cán to

perform manipulations like

*(.1 rdloril): |*,n orn,, f eLltx,d),rnervt(d).

Definition 1.1.6. We denoie by Lt (X, M(d)) the set of strictly measurable maps f :

X -+ M(d) such that there is a constant Cf such th.at

l,lttala d"p(r) 3 c¡llal ,

we define for f e LL (X , M(ú)) the multiplier

/ f \ r /f \ /( I ¡¿plo: I Íu),ap?). ol I f dp ): / a/(r) d¡,1:r
\./x / J¡ \Jx / Jx

We have ll l-. f dull < C,.

kr [28, Sect. 1.5] is defined the previous integral when X is a locally compact group

whereas [14] is defined general. Here we shall use this, for example, for a map ,\ : X -+
uM(d): we can extcnd to a lincar map from LL(X, M(d)) to M(d) via the formula

^(D 
= [ /1r¡ \(r) rlpf z)

Jx

Note tlrat ll^(/)ll < 1.1" f aull.

lrW.f f"lt 
d.t"(,) 3 cr)V,1J.



1.1. C* -algebras and dynamical systerns

Now we can refer to the unita¡y group of -cy' as

U"h,l(d) : {- e M(.d)lm*m: mm* - r}'

We will consider the restriction of stri ctfopology otl,l M(./) We denote by Aut('cl) the

group of automorphisms of .c/. we consider Aut("c/) with the topology of the pointwise

,* 
"onu".g"n"". 

when ./ is separable it is known that these sets are Polish groups (see

l2L) page 4).

Definition L,t,7' LetGbe atocatty compact 1roup. we say that a map a: G -+ Aut(d)

is strongly Borel (respectively strongly continuous) if for each a e 'd the map G > r -+

u(a) is Borel measurable (respectively contirruous).

Delinition 1.1.8, A twisted action of the locally compact group G on the C" -algebra d
isapair (a,a) composed offlnppings a: G -+ Aut(d) and a: GxG -+UM(d) such

that

U=id¿, a,,É o aa = adc¿6,o¡ o eey t Yt''ge G,

a(z,e) = 1=a(e'r)' VreG'

a(r, y) a(cy, z) : afa(y, z)) a(r, v z), V n', v, z e G'

If a is strongly measurable and a is slrictly measurable we speak of a measurable twisted

action. f a is strongly continuous and a is strictly continuous we speak of contirtttotts

twisted actions.

To a measurable twisted action (a, a) of the group G on the Ct -algebra d one asso-

ciares [3, 14] the Banach *-algebra LL*$, d) : Lr(Gi.d) (cf. [28' App' B]) and its

enveloping C*-algebra, the twisted croised ptodrct d xfG The norm on Lt(G;d) is

ll / ll1 := /"az ll/(c) ll¿ . The composition laws are

(l o e)(r) :: 1 r)) a(y,y-1r) ,I oo ¡to¡rlnt,
JG

/"(r) :- A6(r)-la(.. r r)-a,U(¿ ')'l '

HerethemapA6denotesthemodularfunctionofthegroup,Werecallthatthenon-
degenerate reprcsentations of ir' xf;G are in one-to one coffespondence with covariant

representations of the twisted C*-dynamical system (-cy', a, a) [14, 3]' These ¿re triples

(11,r,U) where ?l is a Hilbert space, ¡.d -+ IE(?l) a non-degenerate representation

of ,/ by bounded operators in ?l and U : G -+ {J(71) a strongly measurable map whose

values are unitary operators in fl , satisfying

U,tlo: r¡a1*,0¡19"0, V r,g e C,

U,r(A)U|:"lu@\, Vc e G' Ae d '
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The representation ;r x t/ coresponding to (?1, r, L') (its integrated form) acts on / €
Ll(Gt .er') as

<t'¡J := [ n , =¡¡ ,,, ,1u"
Jc

'We 
also ¡eca]l lhat o coyariant ntorphism of (,e/.e",a) [15,Sect. 1] is composedof a

C*-algebra.9á, a non-degenerate n:rorphism r : .ú + ,M(fr) and a strictly measurable

map tr, ; G -+ UM(,B,\ satisfying for z. y e G and ,-l € ,/ the reiations

u"r(A'1tt'|: r[a,(-a)] . u.rua - r la(.r, y))u"o .

Rcmark 1,1.9. Defining the twisted crossed product as the enveloping C*-algebra of the

trl Banach algebra rvill be conlenient in t¡e setting of this thesis. Occa-sionally we are

going to use the fact that this enveloping algebra has universal properties (ci [1,+, Sect.

2l and fi 5. Sect. ll). which can be used as alternative delinitions.

There exisLs a canonical covariant representation for each twisted C"-dynamical s.vs-

tem (/. G, a, c.,). Given a representatto* r : .qy' -+ B(fl), we dehne Irt1, as the rnte-
grated form of the covariant representation (r. Li) on ,2 (G) E ?¿ = ¿2 (G, ?l) where

(r(a)[)(z) : r(o, r (o))b(") , (a,b)(") - ¡¡(a(r"l. z))ht,z-tr) ,

where b € L2 (.G. .tl). Then

i(rn¿i(l))hl(r) : lrx Ii(/)!l(z)
I

- | ,r',r-. f. '.--.,¿'¡ 
l.:.h .'rl'

rC, r- ,. ),,* " tl.l.lr

: I o¡u,", ¡¡ t,rz-r) )] ,r (r,.,(r'-1. r ,-1,1¡¡11 a, ,Jc '

tot f e L:t(c,.t!).

Definition l.l.l0, The (ntísterl) rcdaced crossed product, denoted. by .r/ xf.rC, í.s the

C* -algebrahtdi(d xlc') C13(L2(G,sl))lor a non-dege erate faitldul representotiotl
il,

The defnitjon above does not depend of the initial representation r ll 6]. It is krown
that the reduced algebra is isornorphic to the (fu11) crossed product if ;nd only if the group
C is amenable [16]. Therc are imporlant examples of an¡enable groups like abelian and

compact, and thele exist many others.

L.2 l'ensor products

The theory of tensol'products of operator algebras is ftaught with a surprising number ol
technical compJications. Hcre u,c will make a brjef recall of a few facts about this theory

[18, App. B].



1.2. TensoÍ prodücts

The algebraic tensor product shall be denoted by O, while the tensor product com-
pleted in a norm B shall be denoted by 88. Let us to rema¡k that the bili¡ear maps on the
Cartesian product of vector spaces (algebras,...etc.) are canonically identified with linear
maps on the corresponding tensor product: If O : X xY -+ Z, the corresponding (unique)
ünearmap/: XOY + Z is given on a elementary tensors by (t(* e U) : O(*,a).

Fhst at all, we need to construct the tensor product of Hilbert spaces. Let')11and112
be two complex Hilbert spaces. There is a unique pre-Hilbert structure on'l/"t a 712 s\ch
that

(r1@ 12,uL I az)u,sw, : (q,u)rr(rz,yz)r,

forallzl, yl €1l1and12, W €'llz. This leads to a metnc on'lltOHz. The completion
of this metric space is a Hilbert space and we denote itby 7118']12 (with a slight abuse

of notation).

Consider .11 e ts'(11) nd L2 e B(?1». The algebraic tensor product of L1 arrd L2
is continuous in (1L gllz; \.,.)rror, ); then trr O ¿2 extends to a linear continuous map
on'llt & '772 and shall be denoted by .Lr I tr2. One can show that

(¿1 8¿2)(S1 E Sz): Lr]r6 
"rt,

and

(Lt e Lz). = t'ia t'i'
for -L1, 51 < B(111) and L2, 52 e ts(112).

Example 1.2.1.

. Let (Xr LL) and (Y,iu) be two o-6.nite measure spaces. Itcanbeshownthat¿2(Jl,p)A
L2(Y, u) = L2(x xY, p x z) [10, Th. 7.15].

. L.et ?l be a Hilbef space and Í the complex conjugated space. The tensorial prod-
:uct ?t @ '11can be identified with the Hilbert-Smith class of operators on ?l I I 0].

Tensor products of C*-algebras will play a basic role in the theory of crossed products
and duality theorems.

Let d1, d2 be C*-algebras. A C*-cross norm for dt O .úz is a norm ll . llp which
satisfies ll¿r A a2llp : llarllrrll"2llr, for all elementary tensors ¿1 I o,2 € dt A .dz and

the complerion draB d2 =Aod2l'lP is a C*-algebra. 4 ap */z is called the p-

tensor product of .ú1and sy'z. We denoteby LP^ : d¡ - M(g, &p dz) and i,P* : d2 --+

M(ú q p .dz th. canonical maps rip* (at & az) = ¿r B 1 and l.E*(at I az) - 1B as.
There exist many C*-cross norm on.cy'1O.er'2, But there is a maximal one and minimal

one.

Definition 1.2-2. We define thz mtximal C*-cross norm on dt O dz by

llÉ,,.,ll,* 
:.,0 

{ir 
f rro,) * ¿,,,rr 

}
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wh¿re the suprenxum is lak¿n over all non-degenerate commurtng hnmomorphism g,!;
of .d1 and. s/2, i.e. 9 : .d1 -+ M(D) and r! : d2 -+ 

^1(D) 
where p@1)gb(a2) =

rl,(a2)9@1) for all a1 e .d1and o,2 € .d2.

The tensor product dt @^r* dz satisfies the following universal property [18]: If (p :

d1 -+ M(D) and r! : d2 -+ M\D) are nor-degenerate commuting homomorphisms,

there exists a non-degenerated homomorphism rp g $ : ú18^*,.ú2 - + M(D) satisfying

¡pOr!)otbf : 9 and(p@{)oiff = rlt [18]. In particular if ll.llB is another C.-cross
norm, then r,pf & iff : d7 &¡^u, dz -+ d1&p d2 is a surjection (since it is the identity
on .út a .de), and hence ]l 

. 
llB is doÍrinated by ll . li'n*.

On the other hand,let r : .ú1 + ts(?11) arrd p : d2 -+ B(112) be two representations

on the Hilbert spaces ?11 and 712 respectively; then there exists a representation ,T I p :

út a d2 -+ ts(?lr I712) satisfying (r 8, p)(q a a:) :,.1r,¡ 8p(a2),andrSpis
faithful on a( O,éz1f r and p arefaitffill.

Definition 1.2.3. We define the minimal C*-cross norm on dt A ,pÍz b!

where the supremum is taken over all representation Í and p of A1 and A2 respecffuely.

We have seen that | .l]*¡n I | .]l*,*; a nontrivial fact is that if ll llÉ is a C*-norm
then ll ll-¡" < ll .llr < ll L,"* IlSl Note that it follows from the minimality of ll . 1,"1n

that, whenever zr : $ -+ ts(177) and p : d2 -, B(172) are faithful representations of .{
and A2 respectively, then ?r 8p : "ú1@^in "ú2 ) B(?h 8'172) is a faithful representation

of dt sm¡, s/2. Note also that T E p is non-degenerate on dt A dz if only if Í and p ale
non-degenerated. This tensor product satisfles the following property:

Proposition 1.2.4. If 9 : d1 -+ M(D¡) and t! : d2 -+ M(D2) are homomorphisms

then there ís a homomorphism I A t! : .d1 @m¡n ,py'z -+ M(Dt &^¡, D2) satisfyíng
(p 8 ú)(ar a a2) : p@1) e t!@2). If I and tl, are non-degenerated (respective\,

farthful), then so is g & tlt.

Proof Representing Dt and 22 faithfully on a Hjlbert spaces tums p and ú into two
representations, and the rcsults follows from the properties of fte minima.l tensor product

mentioned above. tr

Remark 1.2.5. Recall that a ó*-algebra .{ is calJed nuclear if l] ll-* : il ll*rn on
s{ta ds for ary C* -algebra ,ú2, i.e. all C* -cross norms coittcide ot dtAú2. Examples of
nuclear C*-algebras are the commutative C*-algebras and the algebra K(?l) of compact
operators on a Hilbert space ?1, but there are many other examples.

Remark 1.2.6. In this thesis we shall simply derñteby dt8 dz (with a slight abuse of
noradon) the minimal tensor product of d*-algebras.

llá^ 
. -ll*,, :,.e 

{il á,.,, se(.,)tt},



1.j. Duality

1.3 Duality

There is an impoftant characterization of crossed products due to Landstad 113). Let g
be a C*-algebra and C an abelian locally compact group.

Definilion 1.3.1. A tripte (@,á". )t is said to be a G-product if
(i) therc is an (continuous) action á of G ¡the Pontryagin dual) on B;

(t1) there is an mr,itary representation ), of G into U M(9 );
(ii1) tlte equnliry 

á6(),) = ((,r)), (r.3.i)

hoLds for all r e G and ( € G.

This structure is studied for example in [3, 16].

Definition 1.3.2. Let (fi,á,X) be a G-product with G abelian. We say tlxaf an elenlent
A e l4(9) satisÍus the Innd.stad's conditions if

t. á€Qq) : Afor att I e G;

2. AIcf @)^, dr e I for att J € ¿1(G)i

j- tlrc map r + 
^rA^l 

is norm-continuous.

The important result is the following:

Proposition 1.3.3. Innds¡adTheorent [16] [Th. 7.8.8] T'he n"iple (fi,a,),) is aG-product
if and only if there exists a C* -dynamical system (d,G,a) (non-twisted) such that I a
.dx"C. The C" -dynamical system is unique (up to a covariant isomorphism.) and the

aLgebra d coincídes with the elements wlticlt satisfy Ia nd.stad's conditions, whereas a* :
ad.r,.

Let us to check that for any (.d . G, a) untwisted C*-dynamical system with G abelian,
the crossed product carries a natural structure of G-product. Take € € G, corisider üe map

defined in the dense *-subalgebra 
-L1 (G, ú) by

Lt(c,d) 
= / r-r a¡(/) = t' f € Lt(c, d),

where (./(z) - (€,") f(r). This map has an extension to an automorphism of the algebra

.ey' xuG, and one can show that the map { + á6 deflnes a continuous action of G overthe
crossed product.

One defines the representation of G in d x uG by

LtG,d) 
= / r+.r,(/)(s) := J@-1y).

A straightforward comput¿tions shows that

. ar(.\,) : ({, r).\,, á($, = a,

for A e d C M(d x"G). 
^This 

proves that the triple (a/ xuG,e,\) is a G-product.
Moreover the triple (s/ xuG, G, á) is an untwisted C*-dynamical system.

11
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Definition 1.3.4. The action á" of G on d x^G constructed above is called "the dual
qction" of a-

It is interesting to see what happens if we take the crossed product by the dual action.
ln the formul¿tion of the next theorem we shall use the right regular representation p

of G on tr2(G). Ir is given by

G,rl') @),: L c(y)' /' rl' (y 
")

forall r, 9 € G and ry' € Lz(G). Note that for G abelian we have A = r.

Theorem L.3.5. Tal<ti t28ltfh. 7.11 Suppose that (.d,G,a) is a C* -dytnnzical systetn

where G is abelian. There exists an isomorphism from the ¡terated crossed product (d x d

G) x ¿G onto d aKlL2 (G)]. The duat actionán á in d aKl¿' (G)] correspond to aSado
where p is the right regulnr representation of G, i.e. Jor any A e d and T € K[¿'z(G)]
we have

á" (,4 s 
") 

: u(,4) a p.T p:,, ,

forallreG.

In the followilg chapter we are going to give a proof of a much more general result.

t2
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Chapter 2

C* -algebraic covariant structures

This chapter contains the important results and a generalization of Takai duality theorem

in a new framework.
The first section recalls some basic facts about twisted crossed products and thei¡

unitary multipliers.

In the second section we introduce covaríant structures {(.d , n'), (a., a), (á, á)} formed

of a separable C* -algebra d, a measurable twisted action (a, a) ofthe second-countable

locally cornpact group_ G , a measurable twisted aclion (á, á) of the second-countable lo-

cally compact group G and a strictly continuous function K : G x C -+ UM(d). we

insist on the fact that d ,G. G can be non-commutative and the two groups G and G are

very rveakly connected. At the begining we worked under rather strong essumptiotx: x
was supposed to be a bicharacter, the two "actions" a and á were supposed to commute

ald each cocycle was taken to have values in the fixed-point algebra associated to fhe

other action. Then we succeeded to isolate a much more general compatibility assump-

tion connecting the five objects x, a, or, á, á, that is quite meaningful and allows all the

subsequent developments.

In section 2.3, this compaLibility assurnption is used to associate to the given covariant

stmcture {(./. rc), (a, n), (a, a)} two (exterior equivalent) twisted actions (?, ?) ana

1b, 6¡ or tne product group G x C on .d .

ln section 2.4 we define the (twisted crossed) bi-producl of a covariant structure

{(d, n),(a,a),(ir, á)} by an universal property involvjng covariant nnrphísms; these

are triples (r, z, u) such that (r,u) is a covariant morphism of the twisted C*-dynamical
system (./, a, a, G) , (r, t.r) is a covariant morphism of the twisted C*-dynamical system

(d ,á, (t,G) and the commutation between rr and u6 is ruled by the coupling function rc.

Since such. covariant morphrsms are rigidly related to usual covariant morphisms of the

twisted action (7,7) , existence of bi-products follows easily from the theory of twisted

crossed products; onecan see dx$(G x G) as oneofits possible realizations.

The remaining part of the chapter is dedicated to other realizations, involving irerated

twisted crossed products; this will make the connection with the first half of the Introduc-

tion.

13
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In section 2.5, associated to a covariant structure {(-/, rc), (a,,a),@,Q} , we inho-
duce the first generation covariant structures

and then the second generation twisted crossed products (cf x $G)x fG and (/ < 3¿ )x lG .

Checking the axioms relies heavily on úre compatibilj.ty assumption be¡ween /r, a. a, á, á .

The main result is contained in section 2.6. It is shown that the following isomor-
phisms hold

G¡ = 1a ngc¡ ,f G = ¡a xgc¡x7c . (2.0.1)

This is obtained both by studying the covariant representations of all the structures in-
volved and (for explicitress) by comparing the concrete form of the composition laws.

All the four algebras above can be regarded as realizations of the bi-product attached to
the covariant struc ure {(d ., n), (a, a) , (á, á) i . The isomorphisms in (2.0.1) even hold in
the category of covariant structures.

Some examples are presented in section 2.8. In particular, it is shown how a twisted
version of the Abelian duality result can be deduced from the last isomorphism in (2.0.1).

2.1 Multipliers on crossed products

Some considerations about unitary multipliers of twisted crossed products will be needed.

It is rrue [2, Prop. 4.19] that all the unitary multipliers of LL,*(G; d) have the form
á, 8 m, where d, is the Dirac measrue in z e G and m e U,tt4(d). One can find in
[2] many other results about the interpretation of multiplier-valued regular measures on
G with bounded variation as (left or bi-sided) multipljers on LL'(G; §r'). Since we only
need simple facts, and since the connection between t[']e multipliers of a Banach *-algebra

and the multipliers of its enveloping C*-algebra can be murky even in simple situations

[12], we are going fo give an independent treatment.
Ifz e G and rn is a multiplier of ,/ the meaning of 6,Em as a measure with values

in M(d) is obvious. To it we associate the operators (6"&m)¡,(6"Ern),: L:t (C; s/) -+
L|(c;d) ñenby

{(d, o-)¿sl(r) = l@" a m) o s)(x) :: ma',lg(z-rr)] a(2, z-1r), (2.1.1)

lG"em),Íl(r)-lf o(6"em)l(r) ;: f (rz-1)a,, ,(m,)a(rz t,:). \2.1.2)

one checks easily that {(6, e m)1, (6,8 m),} is a double centralizer of the Banach *-

algebra Llo.o(G; d) , i.e.

f ol(6,a m)sl : l(5, @ m),flo s, v f ,s e L|(G;d).

The particular case z - e is wonh mendoning:

{to ":-c,0, 
(b,p), (r,r)} -a {{.4"3e,i), k,r), (¿,i)}

ax$¡c * é¡ = rrr§1c '

(2.1.3)

(2.1.4)[(d. o m¡ olo (de a7¿)](u) :mf (r)u(n).



2.1. Multipliers on crossed products

From now on we assume that m is a unitary multiplier of ./. To show that áz I ?7¿

extends to a multiplier of the fu11 twisted qossed product, one has to examine its behavior

under the integrated form II :- r x Ü of an arbitrary covariant representations (tt, U,'11) .

One has

n [(ó, I -)¿g] -r r)la(2, z-r t)\ u,

15

= l"a,n{*uio/
= Í (m) u, [ -d 

r r[g ¡ ;-t x)] u ) rla(2, z-1 a)) u,

: n(,n) U, | 
"d.a 

nls(y))u) rla(2, y)lu,o

= n(rn)U, 
l"au 

nlsí)luo: r(m)U, ¡r(d.

Then, since U, and r(m) are unitary operators, one gets

llil (á, s m)¿slllmrnr: lLnk)llq71l

so (d, 6 m)¿ extends to an isometry of the enveloping C*-algebra.d x! G. A similar
sraremenr holds for (á, I m). , based on tlie identity 11 l(rz s m)rl] : nff) r(rn)U, .

Then, by continuity and density, the two extensions form a double centralizer of .ú xlG .

A shorter way to express the two computations above is to write (rr x ¿¡)(á, A m) :
r(rn)U" . One can deduce from this (or from many other arguments) the algebra of these

unitary multipliers:

(ó, o n) o (ó, s m) : 6r" e lnan(m)a(,, z)),

(d' a m')" : d,-r I la(z 
t'z).a,-'(m-)l 

'

Later on we are going 10 need fie particula¡ case

(de8m)'=0eB)r¿

We close üis section with two remarks tbaf will be useñrl later.

Remark 2.1.1. Let G, ñ be two locally compact groups and (c, '¡) a twisted action of G ^ 
ñ

on the C*-atgebra d . Defrne cÍ and 7t respectively by the formulas cle,r) ,: c(,,e) md

1,1((6,r), (,r,s)) ': t(@,[),@,ri). rnen(cf zt) isatwistedactionof thegroup 6xG

on./ . The twisted crossed products .dx!(GxG) and d x 
1, 

(G r G) are isomorphic and at

the level of -L1-elements the isomorphism is just composing with the flip (c, {) -+ ({, z) .

Remark 2.1.2. We say that the two twisted actions (b, B) and (b/, p') are exterior equiv

alent L1,41if there exists a strictly measurable map (a normalized 1-cochain) g : G +
UM(d) such that q(e) = 1 and

(2.1.5)

(2.1.6)

(2.1.7)

bf :ado" obr, YreG,
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' -.- ^ a.- I.lJ ,'lrD O;t1t:r.ytq-q. .I.g=w.

In such a situation we are going to write (b. i9) L b' , !l''). It is easy to scc that - is an

equivalence relation.

Let us suppose that (b !) L (.ll ., t'). Then [14. I-emma 3.31 the hvisted crossed

ploducrs .e/ <,1,G ard.e/ <l-, G are canoricalJy isomorphic. At the levei of ,l (G;.e1) the

isonrorllrism acts as lro(/)](r) ,- ,f (r)qi, .

2.2 Covariantstructures

Two secor.rd countable loca)ly compact group are given: G with elements r, y. :. uttit e

and Haar mcasu¡e dr and G which has elernents {.4. (, unit s and l{aar measure d{. The

next definitjon is provisorv; the really useful concept is that of Definition 2.2.4.

I)efinition 2.2.1, A seni-cot,aridtlt structlLre {(r/. x), (a, o), (á á)} is given by a sepa'

rabk C* -algebra tl entlov¡ed wíth. two rneasura.ble hl)isf ed actions (,.a, cr') of G and. il. a)
of G respectively, andy)íth. o sfri.ctb' con.tinLrous maP

G x G; (2,5) + x(2,() €UMi.d)

,'a t ; sf, i t t g t I ¡e n o' n ¡ o I i..o t i o t t c o t d ir i o ¡ ¡.'

s e.t,l 
".,'rr. vJ€c.{ ¿

When extra regularib, properties (as continuity) of the twisted actions \l ill be present,

tlris will usuaily be specified. One could call n th.e coupl.i.n6.fun.ction.

Deflnition 2.2.2. Given a sent.i-r:ovarianr strucfure {(,.1.r\,(a.a). (á,á)}, a co\)arianl
m.orph.ism is a quadrtLplet (8, r. u. u) v:lrcre

1. (.9.r,ri) is a covorianf m.orplrí.snr ol tlrc tuisted C''dltrunical ,tste rn (r/,a,o)
with gtoup C ,

2. (,.9.r. r) ¡.\ a cavar¡a .f morphtsm of the 
^4)i.tted 

C* -d-urunical svsren (ty' . á. d)
wíth group C ,

3. tlrc cotlltnlllaf[an relaÍít¡n z, u, : r[t(2. {)]l)€u,¿ lr.)l!:l.t.for e\,¿rl t...( e G c.

If iE - R(11'¡ for .;ome Hilbert space 11. (tlrus .M@) - B(,H") ) v,e speak oj a covariant

representation and \r,e Ltse nototiofls as (.11.r,U.,\l).

Let us invcstigate under wliich assumptions convenient covariant moryhisms exists.

For a hypothetical one (!8.r'.u..u) with faithful r and forl e .ey',): € G.{ e G one has

(tr6u,)r(A)(u5u" l' - r'1rla.(-4)lr'. -, {i¡t,r-1)]}



2.2. Covuiant structures

but also
uqu,r (A) (uqu,)* : r[n(t, €).) u,ae r(A) uiu[ rln(r, {)]

= ¡.6i¡. {)-l r, r fa6 (,4 rlrl r lo (r. €)J

: r{rc(r, ()-a,lá5(a)1rc(r, () } .

it follows that for all r, { one must have

t7

a, o á. : ad-,- ", 
o ár o a,. (2.2.1)

so ad,"1.,.¡ measures tle non-commutativíty ofthe actions. If K is center-valued the actions

do commule.
Now, for arbitrary :x jA e G , €)q € G let us compute DeuranLt! in two ways. First

u€uoDtlw = agfn(x, q)luru,un
: r {á¿ln(r,q)l} u¿uru*un

: r{á6[ic(z, a)]] rld({, r¡))u¡ rla(r, y))u,u

= r{a6[n(r, a)] ó({, q) á6r[a(r, s)]]ua,tr,,, .

But on the other hand

u tuel)nuy = rln(r, t)-lu"u e r ln(y, q)- I uru,
: rln(r, €)*\u*r {F"qln(y, \)*)}u¿utu,
: r lrc(r, 6).lr{(a, o áq)fn(s ,q).)}u.rln(y, {).lunuqu,

- rln(r, {)")r {(a o áa)[r(y, a).]]r{uln(E, {)-l}u"ura¿u,
: r{rc(z, ()-(a" o á¿ln(y,d.laln(E, {)-l} rla(z, e)lu.or[a({,q)]aa,
: r {,r(r, €) 

- (a, . ei ln(y, ?i.l uln(y, ().la(r,s)l r {uyla({, q))} u,o» r,
- r {rc(r, ()-(a, o á6)[rc(y, ry)-] a" lrc(y, {)-la(r',s) arlo,({,\)ln(.rs, {,i))rqrr,o .

The conclusion, valid for every 2,9, §,4 is

áaln(r,rl)) a((,q) á¿rla(x,,y)) ,r r.r,
= rc(r, {)-(a, o áa)1rc(s, a)-l a"[rc(y, ()-]a(e, e) a"r[á({, a)]rc(ry, {ry)

The cohomological-ilterpretation ol (2.2.2) will be seen in Remark 2.3.2. This relation
is sometimes hard to use, so we will reduce to it to a pair of simpler ones (also having a

cohomological meaning). By taking gr : e one gets

a, [a((, t)] - n(x, {)áylrc@, q)l a(í r¡) n(r, {\)

and by taking ? : ¿ one gets

á6la(r, 1¡)l = n(r, {). aln(y, {-l a(r,s) x(r s, O .

t) , '\\

t))t\

Lemma 2.2.3. Assunxe fhat (a, a) is a twisted dctiort of G and @, A) is a fwisled actiotl
of G, satisfying (2.2.1) for every r, [. Then (2.2.2)holds for every- x, y, (,r¡ if and only if
(2.2.j) and (2.2.4) hold for every r,U, t,n.
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Proof. We onJy need,to deduce (2.2.2) from (2.2.3) and(2.2.4). One ransforms the rh.s.

n(c, 0. (u o áa) [rc(37, a) 
-] 

a, I n(y, {)-l a@, y) a,rla ([, r¡)l n(ry, üt)

'' 1"' rc (r, {) 
- (a* " e6 ) [rc(s, r¡) 

-] 
a* [ 

n(s, {)"] a(x, v) n(ry, 0 áqln(rs, n)l a G, q)

t'É'' (ác o a.)[rc(s/, n)-] n(2,()* a,ln(g, ().) r@,a) x(rs, {) áqln(ry,rt)l a(€, q)

(2.2.4) , --:'' (4o a,)lr(y.q)':áelo(2. 9)l á1[nrrv.4)]of{ 1)

: áe{a.\rc(s, ¡i.la(x, y) n(ry, r¡)} aG, q)

'-'J ae{o(r. r/) a,,fo(r, s)l} a({.7)
: á6[rc(r, a)] @€ o fu)la@, a)l d(E,q)

= áeln(n, n)l áG, q) áarfa@,s)l

and we are done. tr

Now we have at least one motivation for our main notion; see also Remarks 2.3.3 and

2.6.3 and the constructions of the next sections.

Definition 2.2.4. A covariant structure is a semi-covariant struclure {(d , rc) , (a, a), (a, $}
for whích relations (2.2.1), (2.2.3) and (2.2.4) are satisfiedfor all elements r )y € G ) t,n e
G.

Example 2.2.5, Suppose that for every r, ( the multiplier rc(2, {) is central and a f,xed
point for both a and á (this happens if rc(r, () e 1l for instance). Also assume that it is
"bilinear" (multiplicative in the second variable and anti-multiplicative in the first). Then
(2.2.1), (2.2.3) and (2.2.4) simplify a 1ot: the two actions commute ald the cocycles of
each twisted action a¡e fixed points of the other action. á sub-panicular case is one of
the moÍ¡vatíons of all our constructio¿s: G is an Abelian locally compact group, G :: G

is its Pontryagin dual and ,r(2, () ;: {(r) is obtained by applying the character ( to the

element u .

Example 2.2.6. Obviously a twisted action of G (or of ñ) can be completed by trivial
objects to get a covariant strucüre. One might call { (/, 1), (id, !, (á. d)} a G-trtvtal co-
yariatxt srructure and {(d ,1), (a, a), (id, 1) } might be c alled a Glrívial covariant struc-

rare. Similar examples with some non-trivial rc are also available.

Example 2.2.7. We outline now au exa4ple that will play an important role below. Let
(á, á) be a measurable twisted action of G on the C* -algebra d and let pbe a 1-cochain

on G with values in UM(d), i.e. a map p : G -+ UIt(d) satis¡/ing p. : 1. The
tanily {Q4 , n).(p), (á, ó)} win be c alled a G-particulnr covariant srructure tf for r e G

and ( e G onehas the covariance condítion

áeb') : o(r,€). p,. (2.2-5)

ffG is commutative, G is its dual, rc(r,{) ;: {(r) , á : 1 (so á ís a true action) and p is

a group morphism , (d , p,ü is traditionally called G-prod.uct; then the condition (2.2.5)

plays an important role in Landstad duality theory u 3, 161.
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Lemma 2.2,8. A measurable (resp. continuous) G-particular covariant sttucture can be

turned into a measurable (resp. continuous) covariont structure.

Proof. lf {d , (p), (á, á)} is a particular covariant structure, let us scr

ac..= adp. and a(r,a) := p,pafc,u.

Clearly (a, o) is ¿ twisted action of G or d . It is easy to check that it is measurable if p
is strictly measurable and continuous if p is stricdy continuous.

To check (2.2.1), for r e G t€ € G one computes

á6 o adr, = adae&") o á.4 = ad^q.,q¡-r, o ág = adrc(¡,€). o adp. o á{ .

We now veriff (2.2.4):

n(x, {)- afn(y, {). I a(r,s) n(ry, () : n(r, t) p * n(y, ()- pl o, oy oi, n(xy, q)

= K(r, {). px ñ(a, il- ou oi, n(ry,1¡
: á{p,) á€G; áeb"a). = á6la(r, e)l

The relation (2.2.3) reads now

p,a(€, d pl : K(r, t)átll(r, q)l a({, q) n(r, (q)- .

Rewriting (2.2.5) in the form rc(r, {)* : áE(p,)pi , the rh.s of (2.2.6) can be transformed

rc(r, () á6 [rc(r, a)] á G,,t) "@, €n)- = p,áe(pi) átlp, o, (pil) a G,,t) á<, (p ) pi

= p a á€l%Q)) á(€, rt) áen k,) pi

= P, a(t, n) áenkil áuG*) PI

= p,a(t,lipi.

tr

Example 2,2.9. By analogy, one defines é-particular (measurable) covariant sÍructures

{@, n),(a,a),(á, á)} where, by definition, the twisted action (a, a) is arbitrary but one

has á6 :: ad¿. and á((,4) :: pqfirpirfor some measurable 1-cochair p : G + UM(d)
satisfying a,(p1) : rc(¿, ()le for all c, { .

Example 2.2.10. We close this section giving an example of covariant representatjon of
a given covariant structure {("c/,,r), (a, o), (;, a)}. Let w : .ú + B(71) be a faithful
representation in a separable Hilbert space 17. We can inflate a in a natural way to a
representation of .s/ in the Hilbert space

.# :: L2(G xé;.y) = L2g xé) @11

[zr(,a)o](2,0 ,: -l@eo a,)(,a)]ft(r,() .

19

(2.2.6)

by setting
(2,2.1)
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One also def,nes

(U,Q@,Q,:tc(")1/2-{uc[a(r,z)]]a@2,$, (2.2.8)

(vaer)(r,f),: ae(Ot/2co{áE1i{'(r,0la((,()}o(r,{0. (2.2.e)

It is quite straightforward to show that (tr, r,U,V) is indeed a cova¡iant representation;

we say that it is induced by ot . Let us only indicate the most difflcuh of the relevant

computations:

(.u,vao) (r, {) : L c Q)l / 2 @ {á €la (r, z))} gqQ @ z, e)

: Lc(,)11 2 - {áe¡a@, z)l}.L¿(z)L /2 o {e¡[n(xz, Q)a(€, 0 ]o(uz, €0
: Ac (,)u2Ae(()1 /2 o {aala(r, z) n(rz, )l}alaG, C)lfi(rz, i()
(' !n) L.1,¡' t' ¡- ()1 t'z u {ealu (n(z, O) n(r, () aa@@, 2)))} alag,0lnr(zz, {0
= tc(.)1/2 LeG)'/'-{6e o a,)lts(2,()l}o {áE[rc(r, ()](á6 o a6)[a(2, z)]á((, ()]
x 0(zz, (()
: - {@eo a,)[rc(2, ()]]46 (z)1/2 6-¡q1t/z-{a61rc12, 6¡a14, 6)á66[a(2, z)]i
x A@2,(o
: a{(áe o a)[n(2, ()]]a6 (Q1/2a{a6ln(r.,q)la((, ()}16(z)i/2o{áEqla(x, z)l}

x {1(rz,{()
: rln(2,()l(vEu"r¡)(c, {) .

2.3 The twisted action attached to a covariant structure

Letus set lor r, g € G and{.4 e G

{",q¡ ,: á6 o ¿o , Q.3.1)

Proposition 2.3.L (?, d) is a measurable twisted. action of G x ó on d . tf the two

Íwisted acrions (a, cu) and (á, d) are continuous, then (l ,d) is continuous.

Praol Using the assumptions and relations as !Ú o ads : adv(¡) o i[ and ada o ad6 :
adAB one computes

J
dtc,O o d(v,,r) : a€aaraAnoa!

- áq o adolr,r¡ o a, o a. o an

= adaclo(r."r)l o á¿ o á, o a, o a,

: adaq¡r¡c,a¡¡ o adá({,,?) o á44 o ado1,,r; o a¡g

: ¿dae[^@d) o adá((,,?) o ada1,{o1c,s)] o áen " u,a

:ad -j
d (t,.er,lu.'rt) 

o d (rY'1'¡) '
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One computes wirh a huge pacience

d((,.e ), ly,,i) d((*a.€nt,Q,4)
= áeln(r,q)l aG, d áqrla(t, y)l áqrfn(xs, 0l a\q, O áqrqfa(rs, z)]

: áa{x(n,ri%lo'(r,y) n(ry, §)} a(€, l) a((t, () áarqla(ry, z)l

Q.2.41- ,'"4-' ae{n(r,dan[a,(rc(y, ())n(r, ()aq(a(r, y))]] a({,q) d({,1,0 aqrqfa(xs, z)]

= áe{*@,,iunlu(rc(e, ())rc(2, Ol} @a o a,t o á\)la(r,v)l
x a(íq) a\r, () ásrq[a(xy, z)l

= ee{n(x,düLu(,t(e,O)rc(r, ()l} a((, q)a(€r, () á6ra[o(r, e)]áar6[a(rs, z)]

= áe{n(x,,i%lu(r(s, 0)rc(z,0l} ec[a(q, 0]
x á({, a0 á6,ia {a" la(y, z))a(r, y z)l} .

On the other hand

?r,,e, [d((s,,7), (:,6))]a]((r, q), (ez. a<))
: (á6 o a,)iqfrc(s, e)\a(n, e)anelo(y, z)]] áalx(x, q()la({, rt) aerqla(r, yz)l

: aelu {anln (v, C\aQ¡, Q aeqla(v, z) I }K(r, q()] á(6, 4 Q áa, qla(r, s z)l
: ae {(a, o a)[x(v,§)ala('q, ()] (r, o ár)la(v,z)l

x rc(x, q Q\ a$, r¡ O á6, qfa(r, y z)]

12.2.1\ _ ,
'-=-'áe t "(r. ry)(a¡ o a")1"(s,, c)lo(t, r¡). a"lr(ry. ()l

x n(n,r¡()(anq o a,)la(s, z\)a({,r¡O á6rqla(r,Ez)l

= 5\{K(r,ti7',t o a)fn(E,()ln(r,q)- r"[a(1, ()]
x rc(r, a() ) (á5 o 4d {a[a (s, z)]) aG, n 0 áarq[a (r., y z)]

: á¿{n(r.q)(a"t o a)ln(y,()lr<(r,ry)- ""[a(t, O]
x R(r, \0\ aG, \e) E <{ul"@., r)l} áarala(r, y z))

('l') 
ur{o(r,r)(u, o a)ln(s,())arln(", ()la(ry, C)}
x a((, n()á¿rq{ala(1¡, z))) á¿rqla(r., yz)l

= ar{n(n,q)(a o a)ln(71,()lu,[n(c, ()]]46[a(a, O]
x a(*rt0áqrq{ala(y, z)l) áqrqla(r,yz)l ,

the two expressions coincide and thus the 2-cocycle condition is verified. The normaiiza-
tion of d is obvious.

The continuity and the measurability are easy. !

Remark 2.3.2. Relation (2.2.2) can be rephrased, also using (2.2.1)

'<(''€) @' u)[4'^:#r[i\:l';!';'f]l;;,X!""],rr,

2t
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The right hand side of (2.3.3) defines a 2-cocycle 6 on the group G ' C u,ith respect to
t(r,€) :: r.t, o á¿ and (2,2.2) can be rewritten

n(r, )'*@,q¡la(a,,7)ld (", €), @, d) "@y, €,i. = fr (@, 0, @, d) . e3.4)

Relations (2.2.1) and (23.9tel1thar tie rwisted actions (?, d; and (6- , b) are exterior
equivalent @emark 2.1.2 and [14]) ttrrough t]re l-cochain ¡; . Rephmsings in terms of the
group H' :: G x G, based on Remark 2.1.1, are left to the reader

Remark 2.3.3. Now that we have htroduced all the notations, it may be useful for the
reader to recall the definition of a cova riant structure {(.d , x), (a, a), (á, á)}: It is gefined
by a twisted action (a, o) of the group G , e twisted action (á, á) of the group G and 3
normalized strictly continuous maprc: GxG -+UM(d) *chthat for all ).,y € G x G

+ax: ad(x) o?¡ and /r(x) ?xlrc(v)ld(x,v)/r(xv)- = b;(x,v) .

Using a notation of Remark 2. 1.2, this can be wdtten (? d) § (t.b) .

Proposition 2,3.4, Tlxere are one-to-one concspondences between:

.1.. Covariant morphism.s (9,r,u,u) (cf. Def. 2.2.2) of tlu given covdri.ant stucture

{(d , n), (a, a), @, a)} .

2. Covarinnt morphisms J$,r,u:) of the twisted C* -dynnmical »stem (d,-t,d)
with group H::G x G.

3. Coyariant morphisms J9,r,wt) of the nuisted C* -@nantícal sy*"r, (.ú,al ,6)
with group H:: G x G.

Proof. If (9,r,u, u) is given, one defines
.:

ru : G x G '+ UM(9) , u(r,$ ;: ueua = rln(r,{).)u,uq. Q.3.5)

We show that (.7,r,ar) is a covariant morphism of (./,?,d¡ .lf 1",6¡, @,d e cxl'
one has

w (r, {)w (y,'¡i : a Curuqua

= u¿rlr<.(r , q)laru,uu
: r{á¿ln(r, r¡))} uquru,uo

= r {áaln(r, n)l} rla({,n)lua, rla(r, y)1u,,
: r {fufn(r, q))} r[a({, r¡)] r {á6r[a(r, u)]] ucnu,a

= r {%lK(r, q)l á9, r) áq,la(r, y)l} w (ry, tq)
: rld (1",s1,((, r))1,((,, €Xs, ry)) .

On the othe¡ hand. for r.r, {) e G x G and A € sy' one gerc

w (r, 0r (A)u (r, (). - o *"r (A)uIuí
: aarfa@)lai

- r{;e ia.(a)l }
: r[?r,,9(1)] .



2.4- The bi-product of a covariant strücture

Now assume that (9,r,w) is a covariant representation of the twisted C*-dynamical
system (-cl,?,d) . Defining u:G-+UM(9) and u, ñ -+UM($)by

ur:: w(.x,e), t6 :: to(e, () (2.3.6)

one gets a quadruple (@,r,u,u) satisfj,ing the conditions specified at 1 . We leave the

easy verifications to the readel Among others one uses the relations

d((r, e), (a,4) : 
"@,ú , d((", e), (", ry)) : a((, ry) , e.3.i)

d(12, e;, (e, q)) : n(2, a), d((e,0,(y,6))- 1. (2.3.8)

So we made explicit the correspondence between 1 and 2. The correspondence between
i and 3 is analogousl just put

il'1r,() :: u¡ut for qr.{,; e G , ñ.

tr

Remark 2.3.5. The last identity in (2.3.8) shows tl¡at (?, ?) is not tl're most general

twisted action of the product group G " G in./. Having in.view the developments ofthe
nert section, it is narural to ask if any twised aclion (8,7,; of the product group G x G

is at least exterior equivalent to some twisted action of the iorm (?, d) . The answer is

not known to us.

2.4 The bi-product of a covariant structure

Definition 2.4.1. Let {(d , n), (a, a), @, $} be a given covariant structure. A (twisted

crossed) bi-product is a universal covariant morphism (€., t¿, t6, q) - Unit ersality means

that íf (fr,r,u,u) is another covariant morphism, there exists a unique non-degenerate

morphi.srn s :€ -+ M(A) such th¿t

U:SatC- U So/;. r:SatJ. (2.4.1)

Rather often we will call bi-pmduct only the C--algebra 6, especially when the

mappings (t¿,,,6, t¿) are obvious or not relevant. It could be denoted generically by
- la.d)€ : dtv-;),b\ttt also dcpends on n;its existence and uniqueness (up to isomorphisms)

will be proved now.

Proposition 2.4,2. Every covariant structure possesses a (twisted crossed) bi-product,
tlut is unique up to a canonical isomorphism.

Proof. By an easy abstract argument, if a bi-product exists, it is unique up to a canonical
isomo¡phism. The meaning of this and the proof are the standard ones.

-!.,
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(2.4.2)

(2.4.3)

(2.4.4)

(2.1.5)

To prove existence, we rely on Proposifion 2-3.4 and on the universality of the usual

twisted crossed products. If {(d,n),(a,a), (á,á)} is a covadant strucnre, we con-

struct as above the twisted C*ldynamical system (/,?, d) with group G x C. Let/\
\€,u, t",¿) be a corresponding twisted crosed product. Recalling (2.3.6) we set

r,6: G -+ UM(6), Lc(r) := 4*¿(t,t),

r,¿:é -+ UM(€), ,6({) := ¿G"ñ(e, €) .

From Proposition 2.3.4 we already know that (€,r,s,tc,4) is a covariant morphism;
one must show its universality. So let (fi, r, u, u) be another covariant morphism and let
us define 'u,- as in (2.3.5). Snce (9,r,u;) is a covariant morphsm of (./. ?, d), there

exists a unjque C*-algebraic morphism s : (6 -+ M(9) swh rhat

?r=So¿GxG) r:SoLd.

Then we have

: w(,n,e) : u(n)

and

(s o,.)(() : r[,e(€)] -,f,o^ef".el] : u(e,O : o(()

and we are done.

Relying on the twisted actions (?, ?; ana 1t, h; we get rew C+-algebras

d§ :: d x*G * G¡ -itt ra*s (/.7;

¿E ,-.¿nE$* G; *itt'tn*. 1f;.i ).

rt
(F 7 d) t,.rl = 

J.J-auan? ¡s,rx,,. ",)Ldty-',.r 
-1€)]

x 4ln(y,n-1 $)a(r¡,rt-l Oaqfo,(s, y-| r)1,

(?#l(r,e) : &(r 1)a6(( 1¡o1,,, 1;*ai1,6-1¡.

x a4ln(r, {-t).1(á{ " a,) [7(r-1, 
( 1)J

(.s o 15)(z) : sl,.c(z)l : , [r..e 
(r, t)]

tr

They can be viewed as concrete realizations of the bi-product C.-algebra Arf;f . Ot
course they are isomorpic, being defined by exterior equivalent twisted actions, cf. Re-
marks 2.3.2 and7.1.2. It will be convenient to ¡egard them as dre enveloping C*-aigebras
of the corresponding trl Banach *-algebras (bul üe abstract üniversal approach coLrid also

be adopted ). At the ¿ l-level the isomorphism is given by É -+ F o- . For funher use,

we rccord here the composition laws on d§

(1 4á\



2.5. Fit'st and second generation twisted crossed products

and on .ol9

1f + a; r,, o = | 
" 
l-onarF a, n) ko, u,)lE tu-',, ry-'{)]

x asln(y' 
", 

ri.lo(a, a 1 x)a",ld(r¡, \-1 01,

«F*X", el : aG(u-1)a6((-r;a14, 6-1;.a1r, r-r¡-
x a,lr(r-1,6)l (., . a,) [Fk ', {-')-]

By using Remark 2.1.1, one generates other two twisted actions of the g::oup G x G in
d as well as other two twisted crossed product C*-algebras isomorphic to the previous

ones. They car also be seen as concrete realizations of the bi-product .{f;[) .

The next Corollary is now obvious. Similar statements hold at üe level of (covariant)
morphisms.

Corollary 2.4.3. There (üe otxe-to-one correspondences bety,een:

1. Cotariant representations (11,r,U,V) of the covariant strucfure

{(d,n),(a,a),@,Q}.
2. Covariant.representations Gfr,W1 of tlte twisted C* -dynamical system

, , ---J ---+.(d,a,d)withgroupCxG.

3. Covarianr represenÍatiorls (7!".W'7 of the twisted C* -dynamical s-,-stem

(rf .T ,á) wirh group G < G .

4. Non-degcnerare representat¡ons of the bi-prodrrct o/rf f\ .

5. Norz-dlgenerare representations of the C.-algebra ú,$ .

6. Non-degenerate representations of the C*-algebra d§ .

Example 2,4.4, Ir Example 2.2.10, given a representation a of the C* -algebra d in
üe Hilbert space 1l , we constructed the corresponding induced covariant representation
(zr, t/, V) of the covariant srructure {("/, Á), (a, a), (á. a)} h the Hilbert space VÉ :
L2(G x G;11). Applying to it the construcrion given in rhe proof of Proposition 2.3.4,
one gets exactly the induced covariant representation [14, Def. 3.10] (V?,r,W') ot the
twisted C*-dynamical system (d,A,A with group G x 6 amched ro the iritial @.

2.5 First and second generation twisted crossed products

Let {(d . x), (a, a), (á, á)} be a given covariant structure. To associate to it another (par-

ticular) covariant structure {(/uo,k),(b,B),(b,p)}, we finit set df ::./x$Gwith
algebraic laws (o,o ) . AJso set

25

k : G x G -+UM(d{), L(r,{) :: á" o,r(r,6) .

(2.4.7)

(2.4.8)

(2.5.1)
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From (2.1.1) and (2.1.2) and from ll ll,y"" I fl . l¡¡ it follows easi)y that k is strictly
continuous.

For each ( e ñ we define 66 : L1(G; d) -+ L|(c; d) by

[o.rrl]rrl :: ae f/(s)lo(s,€)., (z'5'2)

while for (, 4 e G , baserl on the preparations made in section 2.1, we set

BG,,i ,:6. o a((,a) euM(d:). (2.s.3)

Proposition 2.5.1. The pair (F,A) ¿"fnu o measurable tu)isted action of (, on d{ . If
(á, (t) is continuous, then (b, B) is also continuous.

Proof. L. We need to prove that ü1 is an automorphism of .cy' x$ G. We only show
that ba : Lt (G; d) -+ L|(G; d) is a *-isomorphism for the twisted crossed product

structure; then the extension to the fulItwisted crossed product is automatic. Clearly b6

is well-defined and invefible and one has b. : id .

For the product, using the definitions , (2.2.1) añ (2.2.4) one gets

I r-
[b€6) o b((e)](r) : I aulurq¡]¡y1",{ [;r1r¡ @*1r)] a@,y-lr)

JG L

: I ara¡¡¡011 
^(s,€)' 

(tu o áa)[e(e-12),EI nt s-1 r. {1')c!tE.y t r)
JG
I

- I (tyáe[j(y))G¿" 4|[s(u-|r)] o(s, ()" tu [ots-'r. O"]o(y, y- ¡)
JG
f

- I ¿y etU Q)l E {U ls (u-',))} u,.[o(a, a 
-12; 

| 
rc(r, { ) 

"

JG

/t \
= *( I aa ru¡uls@-L*))a(a,v tr)) 

^(",¿1" = lr,ri¡"3 e¡]1,¡.'\JG - /
For the involution, by (2.2.1) and (2.2.3):

r- ro I- .l*
lb¿(/)l (,) = ac(,-')o(r. r-'). a."lu6(/)(r-')]

: Lc(*-l) o(r,¡-')- u,,{ee U(r-')] "(, ', e). }.
: ac(s-1) a(¿, c -')* ul"@ 1, 

{)l u,{á€[l(r-1)] ]-
: Lc(r-l) o(r,r-').."["("-', ()] rc@,()áq{a,ff(r-t)] }-"(", €)-
: ac("-1) ee [o(", r-1)l á€ {a" U(r-')-] } "1r,6;.
= ¿e {ac (r-1)a( 

", "-11- 
al¡ ¡n-t)-] } o(r, 4)-

: áe [.f'(,)]r(r. ()' = fu.tff ]trl.

2.For(,q e G we show that Ée o ú, : .dlfe,rl o b6, . One computes for z € G and



2.5. First and second geneÍation twisted crossed products

I e Lt(G;d)

[(;, " ;,)r¡] r,; : a, [;,1¡¡q,1] "1",q¡-
= (á€ o á,,?)[/(u )]áÉ[rc(e, q)-]rc(r, ().

= aG' n) aarlf (a)l a({, a). as [rc(¿, a).]o (,' €) 
-

: eG, \) áarlJ @)l rc(o, (a)-a.ló((, a)-l

: aG, d lo*t¡] t,t a, lá((, r)-l

: (ore ,nl' lotrrl] o a4,'t)")@)'

We used (2.2.3); to justify the last equality use (2.1.4), (2.1J) .

3. Now we show that P is a 2-cocycle with respect to b. The normalization is clear.

To check the 2-cocycle ident§, from the definition of 0 , (2.1.5\ and the fact (following
from (2.'1.1) and (2.1.2)) that b€(óe a r¿) : á" I áe(m) one gets

BG,,i " E(e,hO: [6" a a((, t)]o [6" s á((?, ()]

- d" e [a((,2)a({a, ()]

= d" e [áq(á(ry, ()) a(€, q()]
: {á" s á€[a(4,0]i.ld" o a({,rc)l

- Ée [á" s á(rl. o] o [ó" s or€,4()]

:¡r[Btr,el] oac,,t<)'

4. Assuming now that (á, ó) is continuous, we are going to show üat (ü, B) is con-
tinuous. We indicate the rather straightforward arguments, because changes of norms are

involved-
To show that É is strongly continuous, we estimate for f - p E -4 in the dense

algebraic tensor p toüct Lt (G) O d

lb,(/) - 6e (/rllr." < llbr(/) - úrr/l ll,

< [-arl*(,)lllen@)n(n,r¡)- - ea@)n(r, {)" ll* .

Jc

By the Dominated Convergence Theorem, the integrability of g and the bound

llq@) K(r, ñ" - á6@) n@, O. ll, < 2 ll tll¿,
it is enough to prove that for ¿ € C the integrant converges to zero when q -+ ( , which is

trivial since á is strongly continuous and rc(r, .) is strictly continuous.

Then. using (2.l. l;

llBG',n') o f - EG,ñ " fll*: <ll [o"a a({',n')1o/ - á" s á(i,a)] o/ ll,

s Ia,1*¡,¡lló(€'.n')r -a\t t)aW
Jc
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Once again it follows that this converg es to zero if ({t ,r¡t ) + ({,4), using the Dominated

Convergence Theorem, the integrability of g and the fact that á is strictly conünuous.

Multiplying with I to the left is treated similarly.

5. By using the delinition of strong or strict measurability, one is lead to show that

a map h defined from a Hausdorff, second countable locally compact space X endowed

with a Radon measue ¡-i to a separableBanach space I is measurable. The next criterion

[28. App. B I reduces ris to an easier conrinuity issue:

A function h:X -+ A is measura]¡Ie tJ and only if for any contpact seÍ K c X and
anye> O, Íhere exists a subseÍ K' c K suclt thtt p(K \K') <. arxd the restriction
hly, is continuous.

Now our measurable case follows rather easily from this and from the previous poirt
4. To illustrate the case of the action b, we stal1 once again with vectors of the form

f : p8 A,wherc p € ¿1(G) and Ae d. Pick a compact set K c C and a strictly
positive number e ; for some subset 1í of K for which the Haar measure of K \ K/
is smaller than 6, the restrictions fo K' of fhe maps { -+ áa(,4) and ( -+ rc(r, () are

continuous for all r e G. By the argument above, the restriction to K/ of the map
( *+ bt(p 8,4) is continuous. This a¡d linearity show that the map ( *+ ba(/) is

measurable for any vector / belonging to the dense subset ¿1(G) a.ú of d{. Passing
to an aÍbitrary vector is easy by density, applying a 613 trick and tlie criterion again. The
strict r¡reasurability of B is treated similarly.

We define now the twisted action of C on the twisted crossed product. First, for r € C ,

let us set

)¡ :: á, St e UM(d:).

Deducing strict continuity or measurability from similar properties of the twisted action
(a, a) is straightforward, if one takes (2.1.1) and (2.1.2) into consideration.

A computation rellng on (2.1.1) leads to the covariance condition

Ée(¡,) : lá" s K(r,().1 o.\, = k1¿,6;oo¡,, vr e G. ( e ñ.

Along the lines of Example 2.2.7 , define b : G -+ Aut(-cf ) by

b, (/) :: aai. (l) : ), o / o )!

andfi GxG-+UM(df;)by

B@. y) ::,\, o ), o.\1, : 6" a a(r,y).

All the calculations above conclude by

Theorem 2.5.2. tf {(d, n),(a, a), (á, d)} is a given measurable (resp. continuous) co-
yariant structure, then {(d xXG, k), (b. B ). (É. 14) } rr a measurable (rcsp. continuous)
G-particular covaríatxt strlLcture.

n



2.5. First and second generation twisred c¡ossed pr?ducls

b" (d" s m) = á" I ar (rn) ,

U*1a. e -¡ : 6" o áe (rn) ,

c,(6, 8 m) = t. g u@) ,

ée (á. a m) = á, a áq(rn) .

29

Starting with the same covariant strucnre {(d,, n), (a,a), (á,,&)}, one can also con-

struct a G-particular covariant srmctu * {@*,i), k, t), (6, f ) } We set d{,= ¿ xtó,
with generic elements f, g and aigebraic laws (ó,ó ) . The new coupling function is

[ , G x ñ -+ uM(d{), t(r, q) :: ó. a rc(¡, (). .

The two twisted actions are defined similarly as above, by changing suitably the roles of
the groups G and G. Explicitly one has (here 1is the unit of M(.ú) añf e Lt(G;.ú)):

[.,(r)](O = a[r(()] rc(o, 0,
e6(f) - (da I J)ófo(d6 a 1;ó.

t@,u) = 5, a a(x'Y) ,

i(€. l) , rde 8I)o1dr61)oró,r81.1ó á"4á{{.¡7).

Similarly as above one ptoves

Theorem 2.5.3. If {(d, x.),(a,a),(á,d)} is a given measurable (rcsp. contínuous) co-

t)ariant structure, tlrcn {(d xg G, [), (c, 7), (¿, ?)] ,, a measurabLe (resp. continuoLts)

C-parlicular covariant sttltcture.

All the 2-cocycles of tle fi¡st generation are just tensor ampüfications of those of the

zero generation, At the level of actions, this is no longer true. But it does hold on certain
*-subalgebras, as shown by the next result.

Lemma 2.5.4. For every r € G, { € í, andm e M(d) we have

(2.s.4)

(2.s.5)

(2.5.6)

(2.s.7)

(2.5.8)

(2.s.e)

Proof One has by (2.1.5) and (2.1.6)

b,(d.Bm)=(6"s1) o(ó"e-¡ o [ó,-' o a(z-1, z)-]
: ld, A a,(m)] o lá, r @ cv(r-1, z)-]

= 6" o { a" (r¿)a." [a(r-1, z)-] a(x, r't)]
: á" o a,(m) ,

where the 2-cocycle property of a has been used for the last equality. To prove (2.5.7)

one must show for g e Lt(Gj d)
6r[(6. o ,) oe] : ló" 6 á6(m)'o Ü¡(r)

and

ba[eo(ó"sm)] = [r1r¡ o [ó. s á€(m)]

This follows straightforrvardly from (2.1.1), (2.1.2) and the definition of ñ6. Proving
(2.5.8) and (2.5.9) is simila¡. tr
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Starthg from ttre covadant structure {(d , n), (a, a), (á, á) } and applying the twisted
crossed product construction, we obtai¡ed new (particular) measurable covariant struc-

tures {(/"", k), (b, B), O, p)i *a 
{{rza', 

r), (.,r), (¿, i)} . wir}r au these objects one

can consfruct (at least) two "second generation ' C*-algebras (they will be compared in
t¡e next section). First, one has

a;,f - qa¡¡{:= td xlc)xf G,

with eiements ir, G and algebraic structure (n,o ) . The second one is

a{;a = (a{)! ;= (d x! ñ;,3 c ,

with composition taws (-,É ) and elements F, G . We recalJ that they also depend on the
coupling function r,
Remark 2.5.5. There are other two (less interesting) second generation C*-algebras

d:,{ = (d:)Pb:: (d xi c) xf G ana d:ii = (d$7 = (d x4^ñ¡13 G.

2.6 They are isomorphic

The purpose now is to show that the second generation fwisted crossed products ./Y
and d-"'1 are isomorphic and constitute realizations of the blproduct associated to a
given covariant strucmre {(d ,,r), (a, a), (á, á)} .

Theorem 2.6.1. There are one-to-one correspondences between:

l. Covaríant morphísms of tlrc corari.ant structure {(,"/,r;),(a,o),(á,á)}.

2. Non-rlegenerate morphisms of the C* -atgabra .d"ró .

3. Non-degc erate rnorphisns of tle C"-algebra d:.' -

Proof. 7f (9,,r,u,u) is given as in Definition 2.2.2, we are going to construct covariant
morphisms

^ár,.u:.d"1 -+ M(,9) and r,,,, : d{;a -+ M(g).
Using (9Zl,r,u) we lirst construct the integrated foÍn ru'.= rxu: sr'{ -+ M(@). Let
us checkJhat (9,r,,u) is a covariant norphism of @:,ú,8). Firsr, for / € LL(G;d)
and{eGonehas

,,._ / r\,.* _ [ tu u¿,¡,f (r)lof a¿u,u*utt u\r )ut - 17"" 
,, r,/ \4/ ({ u(u,.rs

- J"rlr 
rláalÍkt)lr[rrrr. ()-] z,

I t-

J.a,,ltütu,)j" ., iu,rrr] .
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Then, since (9,r,u) ts a covariant representation oÍ (d,á,d),for{,r7 e ñwehave
u€unuit - ,la§,dl.Therefore it is enough to prove thaÍ r"lp|, ri) = r[á(6, r¡)] . For

g € Ll(G;d) one computes using (2.1.1)

= f 
"ar, 

1a1¿, r,¡ s Q)| u, : rla§, r¡), r *(s) .

,,lp G,:,,1) o s) = f 
"ar 

r {Kt "o 
a((, r) ) o s)(r)} u,

Similarly or"g.B r,[9 oBi(,r)] =",(9) r[a({,4)] ancl this is exacrly what we needed

to show. Thus the (double) integrated form rr,, t=rú\u= (rxu)xuis a non-degenerate

morphism of d":P. Analogously, rt¡,r.'.:ruxu: (r><u)xu will be a nondegenerate

morph.ism ot d! 1 
.

Now we show that every non-degenerate morphism ? of d"{ in some C*-algebra
t has ¡he form R = (r xu)xa with (9,r,u,u) as required. The reasoning for non-
degenerate morphisms S of *r'f,¿a would be simila¡.

The generattheor¡. applied to rhe C.-dynamical sysrem (.er'uo. b. f) .relJr us LhatR:
-R x r.¡ for some covariant morphism (B , R, o) . I¡ its tum, rB must have the form r x u
for a covariant morphism (@ , r , t,) of (d,a,a). Let us show that (9.r,a) is a covaiant
morphism of (d,á,,Q. We ah'eady know thata€un: AIEC, nllrU. So, ro prove rhar

u€un: rla!,ñ)u¡q one needs ro check úat fi 
[B(6, 

r1)] :"ta((,ry1] . Burrhishas been

done above.

Onthe other hand, by Lemma2.5.4, one has 66(á.O,4) : d"Báe (-A) for every { e é
and A e d . flius one has

uqr(A)oi: ze R(d" e A)u; = nfurla" a et] = ;ild. e ¿e (1)l : r[as(A)] .

Finally we show the right commutation relations between the unitary multipliers uc
and u{. Tbe game is to deduce this only from the facr that (@,R,u) atd (9.r.u) arc
covariant rnorphisrns.

Note first that elements of the form g8ú@,4, with A a d,p E ¿1(G) and

ú € LI(e) (thus belonging ro rhe algebraic rensor producr ¿1(G) O ¿1(G) O .d ) are

totalin da{. Since 7? : Rxu: (rxu)xu, it is easy to check thar R(9Slt e
A) : r(A)ufQuful , where we used the norations ulQ := ["rtr p@.)u, and. ultl.t) ::
Í¿¿€ rlr()re. Thus, R being nondegenerate, it is enough to shów fo¡ all the in$edients

the identity

uau,r (A)ulQu[t!) : r!rc(n, €)*)u,tte r (A)ul@ufult) .

Below, we are going to use the notation 9"(.) :: Lp(r,-t.)a(A)a(x., lr-|.) € L|(Gitl).
Using properties of the two covariant representations and axioms of the covariant struc-
ture, and recalling that R : r x u, we compute
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uqu, r(A)ul,plubbl = ugla,(A)lu, 
f"d.z 

vQ)u,alt,l
t: u¿lu@\ 

J"av 
p¡r-1v)rlo@,x- 'a)luurbt l

t.
= ua 

J.au,{a¿tv)a,(Ata(x. 
r. rv)}urulrrl

= uaa(s,)u@l - n 
[6r1e"¡] 

usu¡,1,1

I
= 

J .au 
r {,,0 (x- t 

u) á6 [a, (,4) a(r, r- 1 

u)) n(y, (). ] uru Eulr¡l

f: 
J ra 

y e 1x- 
t y1 r { a6 [a, (,a)] áa [o(r, r- 

\ y)) x(y, ()' \ uru Ealtl.,]

t¡ ,> ,,1¡ f
' " 
t'' 

J 
"Or 

rr* r y¡ r {at¡a" @¡1 n(x, €). wln(r- L y, ()*la(r, r- 1 y)} uou qub!)

12.2.1) , ,- .. I'-= rlr(r, ()- I ria" [eq(,a t] ] / d:,p( z t r {a,lr< 
( z. {) la( r. z)} u,,aqulú)

r [rc(r, {).] ria* [á6 @)]] | cd 
z eQ) r {a,ln( z, ().1} u, u,u qulll

: rlrc(r, ()"] r{a, laq@)l} u, 
l"dz elz) r[nlz,{)r]u"a6ulrll

: r[n(r, €)*) u, rla6t'ell f 
"az 

eQ) rfrc(2, {)-]u,uqu[g]

t
= rln(x, {)-l u 

" J.d' 
z r { I ( z) áa( A ) n( z, f). } u 

"u aolbl

f: 4"@, €)" ) ", J.dz 
r{ lÉr(,p o r)l lz1}u,urul{tl

: rln(c , €)"1 u,RlÉq@ a .q)u¿ubtl
: rln(r,t).)u,utR(e a A)ultll
: rfrc(a, [)*)u,uqr(A)ule]ul!l ,

so we are done. !

Then follows straightforwardly

Corollary 2.6.2. Both C*-algebras ,:,{ ,* .d!;1 orc bi-products of the covariant

structure {(d , n), (a, a), (á, d)} . In particular, one has isomorphic C* -algebras

a$ = a§ = s"Í =.di;,
Even if Corollary 2.6.2 can be proved directly, it is interesting and useful to have

explicit forms of the isomorphisms. Actually one has a commuting diagram of isomor-
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phisms

s^,i 
-.l ól

I

¿# ---
We have already specified I before

.oy'd't

t.
1

d§

t L1 1-

Lr(F)l f", el,: F(,,{) 
"(", 6),

as a consequence of exterior equivalence of the twisted actions (?, d) and 1t, b; . ffre
actions of the other th¡ee on the ,Ll-Ba¡ach algebras are simply

It(rXz)l(O :: [r(0](e) i;(2,0,

lo(r)l(2,€)': [r(6)](o), [ú(F)](u,O :: [r(z)]({),

and the diagram is already seen to commute. To convince the reader, we are going to
exhibit the multiplications and the involutions of the iterated crossed products, at the level

of trl-elements. In .do! onehas
a,b

( r 
Jr,,1,c!G)({)lrr) -- \JrkFlrt¡ob,lc(rt '(r] "B(ry, l-1(l

t r ^ 
l"

= lro, {rtr,o6rlc14-r6)] o [6" s,i(?,4 I{)l}(r)

f I t/-
= 

J-an J,aa 
¡r ¡,r)Jtu) ue (É, ¡c1a-r €)l o [á" I o rr, r-, e)J) ru-,, l] at s, a-' x))

\' !' ) 

J 
_an 

J.au 
[rpr)J ru) u, (b, 1c14 

-, q]\a-',) %-,,tatry, l-, e )l)

x a\y,a 'x:)

rf: 
J ro, J 

"0, 
t, t ) I (y) a" (q [c(t- 1 

{) (y- 1 
r,)) n(y- r r, d\ an,,la 1t¡, rf t q111

t alylA -x)
ff: 

J ro, J.o, lr(ry)l (g) (tu . ár) lc(q-1€) (s- l r)l auln(y-t r, r¡)-l (a., o E- r,)

x la(n, \- 1 

€)l) a(a., y-r r)
rf

= 
J_dq JGdalF(ry)I(s)(as " ü)Lc(rt-'il@-Lr)ln lo(y-'r,d.l
x a(y,y-1r) a,ld(1, ry-'€)l ,

)-)
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which should be compared with (2.4.7) and

[¡o(4)](,) : {a6«-,1lle, a1)" o b€ [r(€-t)']](r)
: a6(€ 1) 

{ta. * 116,6-';.1.66[r((-1)"]](")

: Ac (1-') á(1, 4-1). 6€ [¡'(€-1)'] (,)

- 
^G({-1)á((, 

( 1)- á( [¡'(€-1)"(")]"(", ().

: A5 (€-r ) all, 1-1;- a, 
{16 @ r)a¡r, 11 )- alrtg-'l t"-'l] 

-]

x rc(z, §)-
: a6(1-1) ac(o-') á(€, (-1). á€ [o1r, z*1)-] (áE o a,)

x [F(€-1) (u -1).]"(", {).

''É" 1.i1-1) ac(r-r) á(6,41)- á€ [a(r, z-r)-] rc(c, (). (a, o fu)
x [F'((-1)(r-1).]
(2.2.4\\" ", A- ({-1) Ac 1z-1¡ a1q, g-1). a (r, r-1). a*[n(r-l, ()] (a, o á6)

, [¡(6-')(r-')"]
which should be compared with (2.4.8 r. In .cr'ff one has

- (r , )
[rFnG)(r1]11; : IJ"0, 

F1y)óc,[G(s-rr))ó1(y s tx) 
](€)

r: 
Jcdy {F(y)ócylc(E 'r)] ¿ld. oa(y,y-r¿)]({)

tt: 
J.o, Jr* [F(u)](4) a, (crlG (s-1r))ó16,8 a(s, s-'r)l)(,r '1)l

-, _t _\x o(n.4 -r)

('!4 
| 
"au 

l_A F( g)l (,/) % ("v tc (s-lr)l (4- 16) ar-,. [o (a, a- 
r,)))

'a(n'n-'t)
- J 

"0, 
J ro, te (y)l (,r) 4 (ug tc (E-',) Qt-' €\"fu ,,t-' €))

Y ár-re[o{s, a-t rl))d(q,n-] t)
ff: 

J 
"0, 

J ro, [r 
(s ) ] 

(t) bn o as) lc (y- | r) (,t-' €)) unl"@, n-' €))

x (q o ar_,E)la(u,a-r"\)a1t,n-r€)
lf: 

J.au J_an¡rg)X,?) 
("" 

" 
,r) [c (s-'r)(,r-,()] url"(a, q-,01

> o(r,4 -o aelcv\a.a -r))



2.7. On the stabilization trick 35

which should be compared with (2.4.5), and

[tul,l]Al 
: 

{1"1,-'17¡,,,-'¡6a",[r1,,1'] ]tcl
- ac(¡-1){ld. *o(r.r- ¡ 1a,-, frlr-'1'l}1q;'(" "t' tJ'
: ac(r-r)a(r.¡ I1" 

". frlr-r¡.1 1er

= ac(r-Il o(r:,r-I1' a,frr.,-r.¡"161] r(r.6;
: ac (z-1) o(2, z-1)* a, {a¿ (6-')a(€, €-').á§[r(r-')(€-')-]]
x rc(r, ()

= ac(¡-r )a¿({-r)a(2. r-1)' a. [ar6.1 
r¡-]

x (a, o á€) [F(r-r) (€-')-] 
"(", 

()
(2.2.1\.'': " ac(u -r) a¿(4 I) a1r. r -' l-u, [a(€. {-')-l
x rc(r,{) (á€ o a") [F(u - 

1) ((-r ).]
(2.2.3) ^ , _1\ " /'-=-'ac(z-') aé(€-1)a(",,, ')-a((,i 1)- ;6 frc(r, 1-1).]
x (á6 o a,) [F("-')(€-')-]

which should be compared with (2.4.6).

Remark 2.6.3. If one tries to show directly that T is multiplicative, after a short compu-
tation using (2.2.1), he will realize that this is equivalent to dre identity (2.2.2).

Remark 2.6.4. Naturally, by the same mechanism, the second generation Clalgebras
can also be inflated to new covariant structures

{fa;¡,'^1, b', p' ), (b', p\} *d {(a!;', x'), ("', t\, G', t\} .

Then the isomorphism T can be upgraded fo an isomorphism in ¿ category of covari-
ant strucnrres, that can be easil)¡ defined. Similarll,, the twisted crossed products .4
arñ d$ with product group G x G also have thejr natural covaria¡t structures and the

isomoqphisms l, O and !ú have their interpretation in this category. Since many formulas
should be written down and also having in view a subsequent work, we shall not pursue

all lhcse here.

2.7 On the stabilization trick

Definition 2.7.1. Two coyariant systems {(,ú, n), (a,a), (á,a)} and

{(d,"),(a!,a'),(al,a)} are saíd to be covariant exterior equivalent if therc exists firo

exrerior equivalences (a, a) L @: ,o')and(a,a).1 1a',a') such tlutt

forall(r,q)eGxG.

n'Q.,r¡) : q,a,(siln(x,q)an\qi)di, Q-1.1)
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It is easy to check that this deflnes an equivalence relation on the set of covariant

structures defined with ,ey'.

Remark 2.7.2. Nofe that if l: I : id, as a dynamical systems, the eqLntion 2.7.1 is

simplifed to x'(r,r¡) : qrn@, n)qtr. If a.d.ditionally we assume th'xÍ K ís central, rts in a

G-products, this forcas to x = xt .

We have the next result.

Proposition 2.7.3 . If tno covartant systems {(d , n) , (a, a) , (6"., a)} and

{(d,nt),(a',a'),(.ii,at)} are covariant exteríor equivalent then the bt-product strLLc-

tures associated to each one are isomorphíc.

Proof. Since, the corresponding bi-products have realizations as crossed products of .c/
- t, -J,

wirh the twisted acüons (e,,Z,) and ( a".7') respectivcly. it is suffice to show thal lhere

exists an exterior equivalence Uetween (?, d) ana 1?'. á)'¡. Then we need to find a
strictly measurable map p : G x G -+ U M(.d) that satislles the conditions in Remark

2.1.2. Since we have the equivalences (a,.i) ¿ (a', a') and (á, á) li 1e', a'¡. we define

Then we compute

p(r,()::4eee\).

--+,á (r,€) : a6 o a,

: {oadq.oa,
: ad4a o á6 o adr" o a,

: ad4ra,1q.¡ o áf o a"

: adrq,,41?,

for all (2, () e G x ñ. On other hand, also we need to compute

A' (@, ü, ¡1, ri) : I ¿1rc(r, n¡\a' ( E, ri ei,rla@, ú)
: 4qá6ln(r,, n)t ] d; qE@i aG, r) É,tderáerlq, u(q) *(c, y) qislqtn

= qqQln(a, rit s,ld(€, n) u\nlq,u@c)"@, y)qli1é,
(2 !r) qqar¡q,laqla,(4r) o(r, n) rrki)la|,,t) %rlq,uk )o(r, ú q|o)qé,

: fuqáElq,)áqla, (qr) 
"@, d U Q;) urlq,a, (qt) a (r, y) qirlla(€,,» sin

= Eeads,)ar,[", @,t) "@, drnlu(qo)]^r["(*, v) qlo]la(€,,1),té,

= Qqáqlq,láala, ( Q,táh1@;) n@, rt) anfo(r, a) qirllA\, n) 4i,

= o6á6[q"](á6 " ",)[qn4b)]*1rc(r, a)l(áa o ar)[a ("'a)qiia(€',t)ü,

= lefu [qJ(ac o a,)fQranQ)]áalr"(r, dla([, q)áq,,la(r,s)]ae(fi)Q[,,

= p(2, ()?r,,er lp(y,l)ld ((", y), (( ,rüp(ry,€D-

for ail (2, {), @,ñ e c, ñ. this finish the proof. n



2.8. Takai dLtality and other examples

Note that we proved that there exists an exterior equivalence between the twisted
action attached to the covariant structures. We can get the converse one. Suppose that

,...1,...\,. .

{(d , n'),(a!, at), (1, á')}. We set q, = p(r,e) and {6 : p(e, (); then one can show that

(a,a) 3 (a',o') ancl (á,á) ! ¡X , a'1. The equaliry in 2.7.1 follows from the equarion

37

{(d,"'),(a/,a'),(l,a')} are covariant erterior equivalent if anáonly if tlu atnched
,.J -J, . ,-J, ..J¡.

twtsled acltons la, ci ) ond (a .d ) ore alenor equtvalent.

There is an important result about fwisted crossed products related with exterior equiv-

alences. In [l4] is proved that given a twisted dynamical system (-cl, G, a, a), there is an

untwisted action (a! , t) on d * Kl¿2(G)l which is exterior equivalent to the twisted ac-

tlon la E) rd, a Q9 rJ.
Applying this and Theorem 2.7.4 to the realization as crossed producf of a bi-product

strxcture we obtain:

Corollary^2.7.5. There exists xt :G' é^U,tvl.d €),(l¿2(G \ é\)t and act¡ons at. et

of G and G respectively such that there ocist a covariant erterior equivalence between

{@ @ rcv'Gx G)1, r o r), (a e id, a a r), (á8 ;a,a e r)}

{{a a rc¡r.'¡c, ñ¡;. ,'';, (/, r), (r, r)} .

2.8 Takai duality and other examples

Example 2.8.1, We have seen that one realization of the Ui-poOuct /,(":f) is the twisted
+)

crossed pr:oduct .o-! :: d x* (G x G) . Applying to this well-known results [23], it
follows that the bi-product is commutative if and only if .d ,G,G ue commutative, a and

á are trivial and ? is (essentially) symmetric. But ? is symmetric if and only if a and &
are symmetric and n = 1.

Example 2.8.2. If x, : 1 the 1wo actions a and á commute, the elements A({,q) are
fixed points of a, the eiements a(r,y) are fixed points of á, one has a(t,y)Ac,rl) :
a((, l)a(¡.y) and the twisred acrions i?. á)) ano (? oJ coincide. The isomorphism

between slo;B and df;1 is basically a fljp ol the variahles. The twisred acrions (b. 6.;
a,lr

and (c, 7) are non-trivial only in the d -part of the twisted crossed ploducts.

d' (r, ú, (€, d) = p(", 0-t o,c:b@, dld (", y), (€,,ü p(,y, €,,il-,,

putting g : e and { : e. Therefole we have proved:

Theorem 2.7.4. Two covaríarLt systems {(.d, n), (a, a), @,A)J and

and
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Example 2.8.3. If the initial two actions are not twisted, i.e. o : 1 and á : 1, then it
must verify for all r, 9, {,4

n(t,lrtl : rc(c, (1áa [rc(r, a)]

This means that rc(r. .) : d -+
morphisms. One has

and n(ze, ()- = ,t(¡, €)-a""[rc(y, ().] . (2.8.1)

UM(d) and rc(',{). : G -+ UM(.ú) are crossed

d((",e),(y,r)) =áq[n(u,ti], t(@,q,@,,t)) : r"["(s,O-] . (2.8.2)

The d$ -realization of the bi-product E!§) is stitt twisted and can be very complicated.

The iterated crossed products s{t = d^,6 ana d{! = dá,c are only constructed with

untwisted actions, but the actions 6, c, besides the initial á. a also contain the coupling

function K.

Example 2.8.4. Even when bo*r twisted actions are trivial, the bi-product remembers the

C* -algebra d and the "coupling" between the groups G and G .

For {(.ú,n),(id,\), (id, 1)} onegets ?: id but

d ((", e), (y, r¡)) : n(r, q) (2.8.3)

is still non-trivia.l. Relations (2.2.3) and (2.2.4) become in this case (respectively)

n(r,(d = n@,{)n(r,r7) and n(rv,[) = n(v,0n(r,'€).

For Abelian .cy', rwisted crossed produ ct" d x(H with trivial action ? (but with general

2-cocycle d) have been studied in depth in 1.23,24,81. It is worth menúoning that our
.J7 is symmetnc only if rc : 1 - The second generation iterated twiste.d crossed products

have the form

(.c/x¡¿ G) x6. ñ = ld e c" (G)l \b. G and ("er' x¡¿ ñ) x.. G - ld I c- (é)l x,. G,

where essentially [Ui(/)1tr) ;: /(r)rc(r, ()- ana [c!(f](() ,= f({)rc(r,€)
lf ¡< i<'ll'-valued.7 is a bi character. It is easy to see that we pet

a¡\!,! = a.i = st aq(G x ñ). (2.8.4)

We denoted by q(G x G) the twisted group algebra of H :: G x G corresponding to the

2-cocycle H x H -+ 1l given by (2.8.3). More generally, we can consider the cova-riant

structure {(./, ,.;), (id, o), (id, á)} , where a and á are multipliers (they take values in 1f) .

ff rc is also lf-valued, then

d[í'!i= d ecáGxG). (2.8.s)
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Example 2.8.5. We shall describe now briefly hov,¡ a tytisted version oJ Takai's duality

result ,for Abelian grorps follows from our isomorph ism d"{ o ./f,.' . *t';.¡ is written

with full notations

(d <!ctxlc = lnz,gñ¡r;c (2.8.6)

Let us suppose that the group G is commutative (in additive notations) and G :: G

is its Pontryagin dual. As coupling function we choose the natural duality 
"(",€) 

:
rc0(2, () :: {(z) . Also assume that the initial twilied action ot G ls triviat: 1a, a¡ :
(id, 1) ; then the 2-cocycle B is trivial and the acüon b reduces to the standard dual action
gi""n uy fÉ!(/)](r) ,:{@¡(r). The purpose is to express the double twisted crossed

product (.e/xf G) x6oC in a simple familiar form, using the rh.s. of (2.8.6).

There are well-known canonical isomorphisms ./xl.G = ¿ A C-(G) = d I Co(G) .

the second one being given by a partial Fourier transform id¿ I .4, wlterc ,? , C-(e) -+

C6(G) is the extension of the usual Fourier transform f : il(e) + C¡(G) . The twisted
action (c, 'y) given by (2.5.4) and (2.5.5) is canied to (a @ t, a I 1) , where [t"(9)](g) ::
p(A + r) is the action of G on Cs(G) by translations. If one finds an isomorphism

lrl E Co(c)l ,33J G = ¡¿l e lCo(G)xtcl , (2.8.7)

theli using the standald isomorphism between C6(G) xlG and the C*-algebra Kl¿'z(G)]
of all compact operators in the Hilbert space .L2(G) one finally gets the desired result

("axf G)x6"G =-d8K[¿'z(c)] . (2.8.8)

Using some notational abuse, the isomorphism (2.8,.7) is given by

l0(r)l(2, z) 7 af? (2, r)la(x, z) .

We refer to [28, Sect. 7.1] for a more careful discussion ofthe case o : 1 .

The conclusion is that in this case the bi-product associated to the coval'iant structure

{(d , 
"0 

), (a, al, (la, t )}js stable equivalent to the initial C" -algebra d . Recalling the

rcaljzations d-§ and df, of this bi-product, we get more isomorphisms that could be of
some interest. In the prcsent given situation, for example, one has

?1,,6¡ = ,, , d((", €), (y,ri) : q(r)a(r,7) .

For this rwisted action one gets A x$G x G) = "/ s K[¿,(G)] .

All the isomorphisms we described above are shadows of isomorphisms of covariant
systems, as indicated in Remark 2.6.4.
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Appendix A

Measure and integration

We need some basic facts about the measurability offunctions with values jn non-separable
Banach spaces. In this section X will denote a second countable locally compact space

and sy' a compJ.ex Banach space. The principal aim is to define the measurability of
f : X -+ sl (s/ -valued function). Wlen the Banach space is separable the theory is
easier. Here we will exlibit the basic definitions and the principal goal is to characterize
the measurability in tenns of a certain "local continuity property" of / (Proposition A.9).

The inspiration comes from the Riesz Representation Theorem [22, Th. 2.14]: For
every functional I : C"(X) -+ C, where C"(X) denotes the spaces of complex-valued
function with compact suppod, there exists a unique a-algebra B(X) containing the Borel
sets and a unique measure p, such that

t(.f)= J^ldp, ror att .f eC,(x),

and this measure satisfies the following additional properties:

(a) for-E e B(x), p@)=íú{p(O) lEc O, open};

(b) the relation ¡r (E) : sap{¡1.(K) | K c E,1l compact } holds when E is an open

set and for E e B(X) with p(E) < oo;

(c) t-L is complete

A measure deflned in the a-algebra B(X) is called Rado n measure il it satisfies (a), (b)
and (c).

Snch a measure takes finite values in the compacts sets and is saturated. i.e.

E € B(X) e E et K e B(X) for all 1( compact.

Remark A.1, It is known that any second countable locally compact set is o-compact.
Since a Radon measurc is finite for each compact sef. any Radon measure on X is o-finite.

Let drbe a Radon measure onX and f : X + d a funcüon. Our dellnition of
measurabilify of / must satisfy cefain properties, for exarnple, / rvill be a limit of a

sequence of simple "ey'-valued functions. So we deflne the following:

4)
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Definition A.2. A.function y : X -+ .d is called simple ¡f if rakes finitebt many vaLues

a;,...¡ane d,and{x e xlf (x) = a} e B(X) annp,({r e xlJ@): r¿}) < 
"o

ifa¿t'0.

Definition A,3. We say rhat a.function .f : X -+ d is a measurable function if it is a

pointueíse limít of o sequence of simple d -valued functions.

Remark A.4. Note that if / is the limit of asequence {9"} of simple functions, then the

range of / is contained in the closure of the union of the images of the functions gr, and

this space is separable in ./.

In [9, Sec. 5.5] it is shown that this definition is equivalent to the following:

Definition A.5. A function f : X -+ .d is w-measurable d

l.9of is measurable for allp e d.;

2, for each E C B(X) there is a closed separabLe linear subspace A c d such that

f(r)eAforp-a.e.zeE.
Another definition of measurability is given in [28, App. B.1] and is the following:

Definition A.6. A Jtmctíon f : X -+ .d is weakly measurable if

1. p o f is measurable for all I e d. ;

2. for each compacr set K C X there is a closed separable linear subspace A c d,
such that f(x) e A for p-a.e.r e K.

The previous definition is inspired from the notion of saturated measure mentioned above.

In our case, lhe measure is o-6nite. thus we have:

Lemma A.7. Definitions A-5 and A.6 are equivalent.

Proof. ltis clear that the w-measurability implies weakly measurability.

On the other hand, let f be a weak measurable ./-valued map. Take a measurable set

-8. We need tó show that there exists a linear separable subspace A C .c/ and a null-space

N such that, f (r) e Aforr e E \N. We use the fact that the space X is o-compact
(Remark A.1). We can find a sequence of compact sets {¡1"} such that

x:ir.
We construct a sequence I{'r,Ki, of compact sets and a sequence of linear spaces

Al..Ai as follows:
There exists Kl c EaKl compact set such that p.((D n K1) \lf) < r. since I

is wecLkly measurable, there exists a separable linear space,4l c .d such thx J(t) e 'A!
p-a.e. r €,K{. Since (¿ n fL) \ I{i has finite measure, therc exists KL c (E n KL)\.K!
such that

y'(((E ñ I{) \ Kt) \ Kr) < 1 12
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and a separable space.4¿ such that Í(r) e AL lba.e. r e r(2. Continuing, we get

a ¡equence of disjoint compact sets such that p (tEnKtr r ¡[, lrl) < I/iv and a

separable space ,4.],, (the linear span or ![r,4]) such that /(r) e efu p-ahnost u €
U[,7(,

Then therc exists a nu1l set Ml such that E n Kt : lJL, Ki u ,A[. Thus, we take

the closure of the linear span of the set á/1 := UE, A,'; this is a separable space, and

f (r) e A\for all r € (E I K|) \ M¡
'We can continue the argument for each sel E ñ Kn with r¿ : 1,2,. . . ; therefore we

consider tle closure of the linear span A := l)-?:, A" and this set is a separable space.

Since E : UR1 (r n r,), we Eet f (r) e A for ail ¿ € UL1(E n r") \ lJp, lr", Uut

ULr M" i, a nu11 set, and this flnishes the prooi n

Ou¡ definition of measurability coincides with the defrnitions in [28, App. B 1]. Taking

into account Lemma A.7, the Definition A.5 is equivalent to the following deflnition [28,
Lem. B7l:

Definition A.8. A function f : X -+ d is strongly measurable if
1. f-'(A) is Borelfor all A c d open sef;

2. for each K compact sef there is a closed separable linear subspace A C s/, such

tlmt f (r) e A for p-a.e.r e I{.

Now, our principal propose will be to give a powerful result implying measurability

and this characterization play an essential role in Chapter 2. The impofant Lenma is the

following:

Lemma A.9. Let f : X -+ d be a map and assune that for each compact set K c X
ande > 0, there exists a compact subset Kt C K suclt that p,(K \ K') < e andthe
restriction flx, of f to Kt is confinuous. Then J is measurable.

Proof. We are going to use Definition A.8. To prove the first condition, it is sufficient to
show that l-1 (A) is measurable for all A c ,ú closed. We use the fact that p is saturated;

then we need fo prove that /-1(,4) O K is measurable for any compact set K.
First we construct a sequence Kt, K2,... of compact sets as follows: There exists

Il1 compact set such that p(1( \ 7f:.) < 1 and /l¡<, is continuous. Since 1l \ 1( has

finite measure, using the facf that LL is regular, there exists K\ c K \ K1 such that

/-,((1f \lr1)\Irá) < 7f 2. T\ettherc exists K2 c 1(á such that, p( (I{\KI)\K2) < tl2.
Continuing, we get a sequence of disjoint compact sets such that p (K \ UL , K¡) < L ln.

Therefore, wecanwriteK: NU Uf1 Kr, where l/ is anull setand/ r, is contin-
uous. Then

Í t@)ñK:.f-'(,4) n

Since / ¡; is continuous f '(A)l K¿ is closed and /-1(,{) nN js null. This prove the

first statement.
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Take K a compact set. Using the above reasoning, we can wdte K = N U Uf1If,,
and J(K¡) is compact, thus it is separable. Then the space generated Uy UE, /(¡f¿) i,
sepiuable, and this is suffices because N is nu1l. ü

Remark 4.10. The converse to Lemma A.9 is also true [28, Prop. B.20]. With this, atl
the definitions ofmeasurability given in this section afe equivalent (because we work with
second countable locally compact spaces). We use the Definition 4.3 for measurabiliry,
but we will keep in mind the equivalent deflnitions and Lemma A.9.

Now we can construct the Bochner íntegral. For a simple function / : »aixEi. we

deñne the integral of / respect to the measure p. as I p(E¡)a¡. A measurable map I is

Bochner integrabk if the map r-+ il/(r)]l is integrable in the usual sense [9, Sec,2.5].
I¡ this ca-se we can define the Bochner irtegral lrfdU choosing a sequence of simple
tunctions {,f"} witn /n -+ / pointwise and /rll,f" - f ll,lp -+ 0 ard setting

J d'¡t,:: f"dp .

The boundcd linear operators pull through Bochner integral, so we can do freely manipu-
lations like

ó e .d*.

The space of all Bochner integrable functions from X into d is denoted by Lt6,d).
This is a Banach space with the nom ll/llr ,- lAlf ll¿p. This space is the completion
with respect to the $eatest cross-norm of the algebraic tensor product of the Banach space

.ry' with the space of integrable complex-valued functions with respect ¡.¿ [9].

]xl,

o (|.ru-) : f*a. to,,

J,
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