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A todos los que me ayudaron a salir adelante



Es muy dificil escribir tu biografia sin caer en el egocentrismo, por que si
bien es una forma de auto-evaluarse, también es muy importante destacar y
comunicar de cierta forma las derrotas y logros vividos. No es facil quedar
al desnudo de lo que muchas veces guardas para ti mismo. Pero en esta
oportunidad el orgullo de lo que soy llevan a reflejar facilmente mi vida en
corto bajo estas letras.

Mi vida comienza un 20 de Marzo de 1978, en Santiago. Criandome bajo
el refugio de 2 grandes mujeres, mi madre Ana Maria y mi Yeya (mi abuela)
Yolanda. Rodeado de mucho amor tuve una infancia entretenida, con muchos
amigos de mi edad con quienes comparti y exploré lo que este mundo nos
estaba entregando, haciendo muchas travesuras como todo nifio. A pesar de
la ausencia de figura paterna, siento que mi vida transcurre y se desarrolla a
ojos de la sociedad de forma normal.

Mi adolescencia fue un poco mas desordenada, amante del equipo de
fiatbol “Colo Colo”, me sentia todo un garrero y me rodee de amistades poco
aceptables de los que puedo asegurar que si seguia su camino, hoy no estaria
escribiendo estas lineas. “Malas Juntas” esa es una forma de interpretar
lo que vivi en mi adolescencia. Pero la verdad, no todo fue malo porque
pude rescatar de esa etapa o vivencia que no queria eso para mi, sentia que
yo podia ser mas que eso si me lo proponia, fue el click en mi vida para
descubrir que el futuro tal vez me tenia preparado algo mejor.

Buenc el destino efectivamente me juega una mala pasada y mi vida
cambia bruscamente con la muerte de mi Yeya. Siempre dijo que yo era
su razén de ser y de una u otra forma ella también lo fue para mi... “Sélo
ti sabes como marcaste mi vida”. Luego de ese quiebre y como todo en la
vida debi continuar. Terminé mi ensefianza media en 1995 y sentia que mis
aptitudes estaban en el drea matematica.



Por eso decidi estudiar licenciatura en matemaéticas en la Universidad de
Santiago de Chile, destacdndome desde los inicios como uno de los mejores
alumnos de la facultad de ciencias de dicha escuela. Entre los afios 1998 y
2001 participe en diversos proyectos de investigacién y docencia, destacando
mi participacién en la elaboracién del libro de cédlculo de la Universidad de
Santiago. '

En el ano 2002 dicté mi primera catedra en la Universidad de Santiago y
en ese mismo periodo fui aceptado en el programa de doctorado en ciencias
con mencién en matematicas de la Universidad de Chile. Para entonces
ya sentia que mi vida iba abriéndose paso velozmente y empecé a valorar
enormemente mis logros y la compaiia de mi familia y amigos que han sido
pilar fundamental del cumplimiento de mis metas.

El 2003, obtuve la beca CONICYT, la que me permltlo dedicarme com-
pletamente a mis estudios de doctorado.

Tal vez se pueda pensar que las oportunidades son solo para algunos,
pero yo me atrevo a decir que son para quien las sepa valorar y aprovechar.
Tengo un futuro y estoy dispuesto a aprovecharlo, tener una familia y darles
lo mejor de mi.

Leo.
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Resumen

En este trabajo se estudiardn ecuaciones cuasilineales asociadas al p-Lapla-
ciano con pesos singulares en el origen. Este estudio generard resultados de
existencia y multiplicidad de soluciones. Para esto consideraremos no lineal-
idades continuas con crecimiento subcritico. Las técnicas principales usadas
son el Teorema del Paso de la Montafia, el principio variacional de Ekeland
y la inclusién compacta en espacios de Sobolev con pesos, donde la desigual-
dad de Caffarelli-Kohn-Nirenberg es fundamental. Ademds, imponiendo una
dependencia de cierto pardmetro en la no linealidad, se estudiara el compor-
tamiento asintético de las soluciones, tanto cuando el pardmetro tiende a cero,
como cuando tiende al infinito. Por dltimo usando técnicas de truncacién,
regularidad e iteracién mondtona, se probard la existencia de un problema
no variacional, donde la no linealidad depende del gradiente.

il



Abstract

We study quasilinear equations with singular weights at the origin associated
to the p—Laplacian. The study generates results about existence and multi-
plicity of solutions. We consider continuous nonlinearitites with subcritical
growth. The principal techniques used are the Mountain Pass Theorem, Eke-
land’s variational principle, and compact embeddings in Sobolev spaces with
weights for which the Caffarelli-Kohn-Nirenberg inequality plays a funda-
mental role. Moreover, under some parameter dependence of the nonlinear-
ity, we study the asymptotic behavior of the solutions when the parameter
tends to zero or infinity. Finally, using truncation and regularity techniques
as well as the method of monotone iteration, we show the existence of so-
lutions of a non-variational problem where the nonlinearity depends on the
gradient.
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Introduction

We consider weak solutions of the quasilinear elliptic problem with singular
weights
~div(|z|"PA(|Vu|)Vu) = |z|~EHPrf(z,4)  in Q,
(0.1)
u=0 _ on Of)

where Q C RY is a bounded domain with C! boundary, 1 <p < N, 0 € {,
—x<a< —NF_E , ¢> 0, and the functions A and f satisfy certain conditions.

In the case A(t) = 1, observe that equations such as (0.1) are stu-
died as models for several physical phenomena related to an equilibrium
of anisotropic media which may somewhere be perfect insulators or perfect
conductors (see [14, p.79]), and they may, in particular, describe standing
waves of an anisotropic Schrodinger equation (see [6],[35],[36],[42]). Also,
if A(t) = 1, the Problem (0.1) is of certain interest in the framework of
optimization and G—convergence. (See for example [20] and the references
therein.)

Degenerate elliptic problems with weights have been intensively studied
starting with the pioneering work of M. K. V. Murthy and G. Stampac-
chia [29]. (See for example [11],[18],[30],[37].) In the special case where
A(t) = P72 for some p > 1, the differential operator becomes a weighted
p—Laplacian.

In the radial case, that is, when u = u(|z|), ordinary differential equa-
tions methods apply, and many results about existence, non—-existence and
asymptotic behavior of solutions are available (see for example [12],[13]). For
problems with weights other than powers of |z|, see [3],[21],[22].

In the non-radial case, some progress has also been made in the case
A(t) = t*7% with 1 < p < N, in recent years. In 2001, the equation (0.1)
for p = 2, that is, the weighted Laplacian case, where the nonlinearity is
a power of u on R¥, is studied by F. Catrina and Z. Wang in [9]. They
obtain existence of solutions within a prescribed symmetry group. In 2003,



also in the weighted Laplacian case, the fact that the solutions of Problem
(0.1) are Holder continuous in bounded domains Q with smooth boundary,
provided that the nonlinearity has subcritical growth is proved by V. Felli
and M. Schneider in [19]. That same year, existence of solutions, in the sense
of entropy, of Problem (0.1) with 1 < p < N, where the nonlinearity satisfies
various structural assumptions, is studied by A. Abdellaoui and I. Peral in
[1]. Blow—up fenomena of the solutions are also discussed.

Problem (0.1) is also studied under various aspects in the weighted
p—Laplacian case by B. Xuan. In 2003, using the Mountain Pass Theo-
rem and linking arguments, the existence of a solution of Problem (0.1) for a
special type of nonlinearity f is proved in [44]. Subsequently, existence and
multiplicity of solutions for an asymptotically linear f is shown in [45]. In
2004, the eigenvalue problem associated to Problem (0.1), with 1 <p < N
and a > 0, is studied in [44]. In particular, he shows that the first eigenvalue
is simple and that the first eigenfunctions do not change sign.

Finally, we mention that existence results for equations associated to a
weighted p—Laplacian operator with general singular weights have been re-
cently studied by M.~F. Bidaut-Veron and M. Garcia—Huidobro in [3].

In this work we study Problem (0.1) in various situations. We will assume
that the functions A and f satisfy the following conditions:

H1l) A€ C(R",R) and A(t)t is locally integrable on R7.
| 0

(H2) There exist constants by, by > 0 satisfying

by < liminf 2P A(t) < limsup 2 PA(2) < bs.

=200 t—+4o00
(H3) The mapping t — tA(t) is strictly increasing and h%l A()t = 0.
t—

(f1) f € C(Q x R,R).

(f2) There exist non—negative constants a1 and as, and ¢ € (1,7), where
r =min {Np/(N —p),p(N — (a+ 1)p+¢)/(N — p(a+ 1))}, such that

|f (2, 8)] < a1 + aaft]*".

Typical exampleé of the function A of the differential operator in equation
(0.1) are the following: :

(i) A(t) = b1tP~2 + 1t + dt?2, where 1 <g<p, b >0 and ¢;,d > 0.



i) A(f) = (1+12 ‘;'_ltq_z, where 1 < g<p.
q

(iii) A(t) = (1 + [t)~Y2%/In(1 + |t]*~9), where 1 < g<p—1/2.

i
iv) A(t) = |1+ ————— | tP72, where p> 2.
) 40 = (1+ 5 5) P2
Our aim is to obtain solutions of Problem (0.1) as critical points of the
energy functional

u—~1— z|7% ul?) — z|~@tDptepiay o
)—pfnll S(vup) /QII Dp+e Pz, )

t(1/p)

where S(t) = p |, s)sds and F(z,t) = [; f(

Note first that well known techniques, like the Mountain Pass Theorem,
ensure both existence and multiplicity of positive nodal solutions of problems
of type (0.1) in the unweighted case, that is, when a = 0. (See for example
2],[33], [24],[23], [16], [25], [40], [41].) If a # O, then we cannot apply classi-
cal methods directly. In this case, the analysis of existence, multiplicity and
regularity of the solutions becomes a delicate matter due to the degenerate
character of the differential equation.

The following integral inequality due to Caffarelli, Kohn and Nirenberg
plays a central role in our variational approach to equation (0.1).

(/ 2| 7% |u)? dm)p/q < C'a,;,/ ||| VulP dz (0.2)
RN RN ;
where N—p
—xo<a< , for a<b<a+1,
. pr S
q=p(a,b)=N_dp, for d=1+a—b.
(See [8].)

Let us now introduce some weighted function spaces we will work with.
We let WiP(€, ||~%) denote the completion of C§°(Q) with respect to the
norm || - || defined by ,

full = ( [ lelr1vupaz)”



It follows from the boundedness of §2 and a standard approximation argu-
ment that, for any u € WyP(Q, |z|~%), inequality (0.2) holds, in the sense

that, for 1 <r < and o < (1+a)r+N(1- %), we have

=P
([lel=tur o) < [ jaf=rvurr as 04

or in other words, the embedding Wy?(Q, |z|~%) — L7(Q, |z|~®) is contin-
uous, where L"(£, |z|™®) is the weighted L"—space endowed with the norm

_ . 1/r
Il = i = ([ fol~efur ) ™"

The Thesis is organized as follows:

In Chapter 1, we study the differentiability of our functional 7. Further-
more, imposing an Ambrosetti-Rabinowitz type condition on the nonlinearity
f, we show that our functional has the Palais-Smale property.

Chapter 2 consists of four sections. In Section 2.1, we show the regularity
of solutions. In Section 2.2, we assume that the parameters a, ¢, r and ¢
satisfy one of the following three conditions:

(i) a>0,c>p(N—-pla+1))/(N—p) and

pla+1)—c
a

Lfq<p'=nr
(i) <0, c2p(N = (a+1)p)/(N —p) and

1L g<Lp =7
(iii) e <0,0<c<p(N—(a+1)p)/(N—p) and

p(N=(a+1)p+c)
N—-(a+Lp

l<g<

These conditions, together with some restrictions on the nonlinearity f, en-
sure the existence of an unbounded sequence of solutions of Problem (0.1).
Section 2.3 is devoted to the parameter dependent problem

—diw(|z|" P A(|Vu|)Vu) = Az|~etVrtef(z 4) in Q,
u=0 on 2.



We show the existence of positive solutions under certain conditions on the
functions A and f, and we study their multiplicity and behavior as A tends
to 0. Section 2.4 treats the non—variational problem

—div(|z|~%Vu) = |g|"HetD+e f(z,u, Vu) in Q,

u=0 on 082
where 0 < a < (N —2)/2 and ¢ > 1. In other words, when A =1 and p=2
in Problem (0.1). Since the nonlinearity f depends on Vu, we cannot deal
Problem (0.1) directly with variational methods. Our approach is based on
an idea of De Figueiredo-Girardi-Matzeu (see [16], and compare [25]) for an
equation involving the Laplacian. The idea consists in analyzing a family
of associated elliptic equations without dependence on the gradient. More
precisely, given w € WOI’Q(Q, |z|~2), we consider the problem

—div (|z|~2Vu) = |z|~2e+D+e f(z, u, Vw) in Q,

u=10 on 0N
where w is a given Lipschitz continuous function. We then show that the
problem above has a solution u which is again Lipschitz continuous. Com-
bining truncation techniques, the Mountain Pass Theorem and monotone

iteration, we obtain the existence of a non-trivial solution of the original
problem. '

In Chapter 3, we study non—existence of solutions using a variant of Po-
hozaev’s identity due to P. Pucci and J. Serrin. (See [32].)

The Thesis concludes with an Appendix that contains the proofs of some
technical results used in Chapter 1.



Chapter 1

Preliminaries

1.1 Sobolev space with weights

We first establish some notation.
Let @ c RY be a bounded domain with C! boundary. If « € Rand [ > 1,
we let L'(€2, |z|~®) denote the weighted L'—space endowed with the norm

11
el N g = ( /ﬂ I:vl‘“[ul'dx) .

In particular, in the space L?(f, |z|~2*) we will also work with the weighted
scalar product

(f,9) 2@ ja)-22) = /ﬂ |z| % f(z)g(z) dz.

If 1<p<N and —0 < a < (N —p)/p, then WyP(Q,|z|~%") will
denote the completion of C§°(Q2) with respect to the norm | - ||, defined by

1/p
lull = ( / Jml‘““’lvulf’dz) ,
0

Next, we next point out a Caffarelli-Kohn-Nirenberg type inequality
without proof. (See [8] for a proof.)

Assume that 1 <! < p* := Np/(N —p) and that o < (1 +a)l + N(1 —
(1/p)). Then, for any u € WyP(Q, |z|~%), the following inequality holds:

(/ﬂ |$|‘a|u|ldx)p/l . C](; 2|~ | VulPdz (1.1)

In other words, the embedding Wy?(f, |z|~%) «— L}(Q, |z|~) is continuous.
The following compactness theorem is due to B. Xuan (compare [44],
[45]). For the sake of completeness, we will give its proof in the Appendix.

1



CHAPTER 1. PRELIMINARIES 2

Theorem 1.1 (Compact embedding theorem). Suppose that Q2 C RY
is an open bounded domain with C* boundary and that 0 € Q, where 1 <p <
N, —o<a<(N-p)/p, 1<I<Np/(N—-p) and e < (1+a)l+ N(1-
(1/p)). Then the embedding Wy P(Q, |z|~%P) — LY, |z|~*) is compact.

Finally, we study the eigenvalue problem

Lu := —div(|z|~22Vu) = A|z|"%u in Q,
u=10 on 0f)

together with the (its) associated bilinear form
B Wa(Q, |z|72%) x W, *(Q, |z|~2*) — R given by

Ba] = f 2V u V.
Q

Theorem 1.2. (i) The operator L has a real discrete spectrum. Repeat-
ing each eigenvalue according to its (finite) multiplicity, we have

O<M <A< <L..,

and A\ — o0 as k — oo.
(ii) For k € N, there exists an orthonormal basis {1 of L*(, |z]|7%%)
so that
wr =0 on OS) '

where @ € WA (Q, |z|72¢) is an eigenfunction corresponding to the
eigenvalue Ag.

The proofs of Theorems 1.1 and 1.2 will be given in the Appendix.

1.2 Differentiable functionals

In this section we recall definitions and notation from differentiability, and
we prove two preliminary results.

Let X be a Banach space, and let X’ denote its dual. If f € X' and
u € X, we let (f,u) denote the value of f in u.



CHAPTER 1. PRELIMINARIES 3

Definition 1.1. Let ¢ : U — R be a functional where U s an open subset
of a Banach space X. We will say that the functional ¢ has a Gateaux
derivative f € X' at u € U if, for every h € X, we have

li - [o(u + th) — o(u) — {, th)] = O

The Gateauzr derivative at v is denoted by ©'(u).
We will say that the functional ¢ has a Fréchet derivative f € X' at
velUif

1
lim T [p(u+h) —p(u) — (f,h)] =

The functional ¢ belongs to CY(U,R) if the Fréchet derivative of @ exists
and is continuous on U.

Remark 1.1. o The Gateaus derivative is given by

(/). ) o= lmm S+ th) = o(u)].

t—

e Any Fréchet derivative is a Gateour derivative.

It follows easily from the mean value theorem that:
Proposition 1.1. If ¢ has a continuous Gateaur derivative on U, then
@ € CYU,R).

We next consider the functional v : Wy (€, ||~%?) — R given by

wlw) = [ Jal"ee P (e, ) do
Q

where F'(z,t) fo z,s)ds, the domain ) is bounded in R, for N > 3,

—oo<a<( )/p,1<p<Nandc>O.

Proposition 1.2. Suppose that f satzsﬁes assumptions (f1) and (f2). Then
the functional ¥ is of class CH(WyP(Q, |z|~%),R), and its derivative in u €
WoP(Q, |z| =) is given by

cwmmngﬁmwv@mmx

for any h € WyP(Q, |z|~%P).



CHAPTER 1. PRELIMINARIES 4

Proof. Existence of the Gateaux derivative. Let u, h € W, (Q, |z|~%).

Given z € Q and 0 < |t| < 1, according to the mean value theorem, there
exists X € (0, 1) so that

\F(z, u(z) + th(z)) — F(z, u(z))|
2]

il

|f (2, u(z) + Ath(z))h(z)]

< C(1+ (lu(@)| + [h(=)])* Y |A(2)|
<O+ 27 (Ju(@)|*" + [A(z) ) |h(z)]-
Holder’s inequality then implies

(1+ 27 (@) + (@] ))Ih()] € LHQ, o]~ +0P+),

It follows from Lebesgue’s dominated convergence theorem that 1) is Gateaux
differentiable and that

(' (u), by = fﬂ (|~ @HIPe (g Wb da.

Continuity of the Gateaux derivative. Assume that u, — u in

Wy P(Q, |z|~?). According to the compact embedding theorem, u, — u in
L9(Q, |z|~(at1P+e) Then, for a subsequence again denoted by u,, we have
that u, — u a.e. and, for some g € LI(f, |z|~@*+VP+¢), we have

|u(@)], lun(z)| < g().
Therefore,
|f($,un) - f(x, u)]q' < 2‘?’6‘9'(1 N ngq/q’)q’ = Ll(Q’ Ix|—(a+1)p+c).

According to Lebesgue’s dominated convergence theorem, f(z,u,) — f(z,u)
in L9 (Q, |z|~@+DP+e) where ¢ = q/(g — 1). By Hélder’s inequality, we have

(' (un) — ¥'(u), B)| < cllf (@, un) — f(maU)HLG'(Q,I:J;I—(“+1)P+°) ' Hh|lm(n,|x1—<u+1>p+c)
< C| f(z,un) — f(x?U)HLQ'(Q,|J~,]"(“+1)P+C) -|IAdl,

and hence

”@")’(Un) — ' (W £ Cllf(z,un) — f(z, u)l|Lq’(Q,|,—.;1—(a+1)p+c) — 0.

n—oo



CHAPTER 1. PRELIMINARIES _ 3

1.3 The (S); Condition

Let J : WP (2, |z|~*") — R be the functional defined by

ORE / 2] #25(|Vul) (14)

where S(t) = pf;mp) A(v)vdv. Under the conditions (H2) and (H3) it

follows that there exist positive constants «;, aa, F1 and 5> such that for
every ¢t > 0 we have that

A(t)t € @3 + apt?™! and (1.5)
S(t) = Bit — . (16)

Note that if conditions (H1) through (H3) are satisfied, then J is a C'—func-
tional.

Now we slightly generalize a result of F. Browder [4],[5] in the theory of
mappings of class (9), of elliptic operators in generalized divergence form.

Lemma 1.1. Let h : R — R be defined by h(t) = S(|t|’). Suppose that h
is strictly conver and that S satisfies inequalities (1.5) and (1.6). Then
J' belongs to the class (S)4. In other words, for all seguences {u,} C
Wyt (Q, |z|~%) such that '

{“’” - (1.7)

limsup,,_, oo (J' (Un), tn —u) <0

we have U, — .

Proof. Our proof follows [40]. Using (H3), it is not difficult to verify that
Vu,(z) — Vu a.e.. We then observe that

(T (), i — ) = /ﬂ 2P A(Vun]) Vit - (Vitn ~ V).
Setting vn(z) := |z|"®Vu.(z) - (Vun(z) — Vu(z)), we have

)yt =) = [

AVl ()00 (&) + / AVt ()05 (),
Q 0

where @, = {z € Q||Vun(z)| < M} and M is a positive constant. Qur aim
is to show that

]ﬂ A(|Vual(@)xan () == 0. (18)

n—+00
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Defining
M (2) = A(|Vun| )1 ()X (2),

we have

Nn(z) — 0 in 2, and
()| < AM)M(M +[Vu(z))).

Hence, using Lebesgue’s dominated convergence theorem, we obtain (1.8).
Thus, for any M > 0, we have

lim sup(J'(un), un — u) = lim sup/r;A(|Vun|)'yn(:r:)xQ§(:z:). (1.9)

n—+o0 n—+0o0

Setting

It ={z € Q|m(z) =0} and
I ={z € Q|m(z) <0},

we have by (H3) and (1.6),

SW) by _ B

A2 >
p P p

Hence, for M sufficiently large, it follows that
[ ATwalyixas = [ AGTunlrrexeses + [ AQTanlimxenss
;61 p—2
2z | == 51 |Vun| 'YnXQQXI‘I"'
p y)
+ (ag + d2) /ﬂ |Vun|P " YnX s Xr=

where 0 < §; < 1/p and 3 > 0. Thus
[ AGTuxes 2 (2 -8 [ 1902 xes
2 F < P (1.10)
" (0‘2 +6— ?1 ” 51) f |Vtn P Y x Qs Xrs -
Q

Next we claim
im [ VP xoses = 0. (1.11)
0

n—++o0
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Defining
T = |Vun" 70 - Xag - Xr5
it is not difficult to verify that |Vu,(z)| € [Vu(z)|if z € I';,. Hence

|Th(z)| < 2z|7"|Vu(z)?, for any z € Q.

However, Th(x) —— 0 a. e. in Q. Thus (1.11) follows by Lebesgue

—+00
dominated convergence theorem. Using (1.9) and (1.10), we obtain

(% - 51) lim sup/ [Vt [P Yaxqs, < limsup(J'(un), un — u) <0,
Q

n—4-0co n— 400

Consequently, since

lim /]Vun|p_2fynan =1
Q

n—-+o0o

we have
limsupf 2| TP | Vun [P 2V, - (Vu, — Vu) < 0.
0

n—-+oo

This means that
lim sup(J, (un), 4 —u} <0
n—+-+00
where Jp(u) = [, |2|7*|Vu[P. Using the monotonicity property of the p-
Laplacian, it is then not difficult to verify that J, belongs to the class (5)..
(]

1.4 The (PS) Condition

This section discusses the issue of variational integrals of the type
I{(u) :== J(u) —f |~ etrte Pl ).
o

Definition 1.2. Let E be a Banach space. Given C € R, we will say that
I € CYE,R) satisfies the (PS)c condition if any sequence {u,} C E
such that I(u,) — C and I'(u,) — 0 as n — +00 possesses a convergent
subsequence. If I € C(E,R) satisfies the (PS)¢c condition for every C € R,
we will say that I satisfies the (PS) condition.
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Proposition 1.3. Suppose that f satisfies assumptions (f1) and (f2), and
that F(z,t) fo x, 8)ds. Suppose furthermore that J satisfies the hypothe-
ses of Lemma 1.1. Then I satisfies the (PS) condition if every sequence {u,}
in Wy P(Q, |z|~%) such that

()| <C  and  I'(un) — 0, (1.12)

where C' is a constant, is bounded.

Proof. Let C € R, and let {u,} C WyP(, |z|~°") be a sequence such that

(1.13)

I(up,) = C  and
I'(u,) — 0.

It suffices to prove that {u,} contains a subsequence which converges in
the norm of Wy*(Q, ||~97). Since {u,} is bounded, there is a subsequence
{un,} converging weakly in Wy *(Q, |z| %) to some w.

On the other hand, the second assertion of (1.13) means that, for all
v € WyP(Q, |z|~), we have

’/ﬂ|x|_“”A([Vuan)Vunva—/nla:l_("“)”"'“f(:v,unj)v
S Enjuvnwglp(g,m—ap}:

where €,; — 0. Choosing v = u,; — u and taking limits over subsequences,
we obtain

/ﬂ 2] A(| Vit |) Vit (Vi — Vt) = 0,

or in other words
hrll (' (U )y i, = 18) = 0.
j—4oo

This means, according to Lemma 1.1, that u,, — u strongly in WaP(Q, |z|~9P).
O

In order to guarantee that the functional [ satisfy the (PS) condition, we
assume on the nonlinearity f the following further Ambrosetti-Rabinowitz
type condition:

(f3) There exist 8 € (%, %) and tp > 0 so that, for || > to, we have
6tf(z,t) > F(z,t) >0

where F(z,t) = [; f(z,s)ds.
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Proposition 1.4. Suppose that the functions A and f satisfy, respectively,
conditions (H1), (H2), (H3) and assumptions (f1), (f2), (f3). Suppose also
that the numbers by and by of condition (H2) satisfy baf < b1 /p.

Then the functional I satisfies the (PS) condition.

Proof. Let {u,} be a sequence satisfying (1.12). According to Proposition
1.3 it suffices to verify that {u,} is bounded.
It follows from (1.12) that

> [ 7SV unp) =6 [ Jal 2 AV Ve
-+ f |2|~CFIPE(G (2, ) un, — Fz,un)) < C + 5n8|]un||W01,pm‘im‘_ap),
0

where &, — 0.
Using (H2) and the hypothesis that b8 < b, /p , we find constants &1, & >
0, ¢g > 0 and tg > 0 such that

S(t) = &1bit — co, for all t € R,
tz_;EA(tlfp) < &by, forallt > tg, and

b
Hence, it follows from relation (f3) that there exists a constant ¢; such that

1ty - '
(T — fgbg o [.?;‘J P!VunP’ <c+ Eng”“ﬂ”W&'P(Q,M—“P)

which means that {u,} is bounded. ' O



Chapter 2

Existence Results

2.1 A regularity result

In this section we henceforth assume the slightly stronger condition (H2')
below instead of condition (H2).

(H2") There exist positive constants b; and by satisfying b; < A(£)t>7P < by,
forall ¢ > 0.

Thus we propose to prove both boundedness and Hélder regularity of the
solutions of our Problem (0.1). We will make use of the following two lem-
mata. The first, Lemma 2.1, is proved in the special case of the p—Laplacian
operator with right hand side f +m(1 + [v|P~%v) where f,m € L"/?(D) (see
26]), although the proof carries over without difficulties to the general case.
The second lemma, Lemma 2.2 in the case of the p—Laplacian operator.

Lemma 2.1. Let D be a bounded domain in RN, with 1 < p < N. Let
[:D xR — R be a Carathéodory function so that, for some function ¢ €
LNP(D) | we have

Uy, )] < o)A+ [P, forall (y,t) € D xR, (2.1)

let a; : D x RN — R be such that a; = a;(y,&) is measurable in y and
continuous in €, withi = 1,..., N and such that, for all (y,£) € D xR" and
some positive numbers ki and ko, the following two inequalities hold.

Gai(y, &) = kiléfP  and (2.2)

< koléfP7t,  forall (y,&) € D xRY. (2.3)

10
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Furthermore, let v € W, (D) satisfy

) o
—E_)-aai(y, Vv) =1l(y,v) in D. (2.4)

Then v € L™(D), for everyr > 1.
Lemma 2.2. Let D and a;, for i = 1,...,N, be as in Lemma 2.1. Let
v € WyP(D) satisfy

~3%ai(y, Vo)=f(y) in D (25)

where f € LP(D) for some p>N/p. Thenv e L=(D)n C?(’J“C(D), for some

a € (0,1]. Moreover, if 8D e C%, then u C%*(D),

The main result of this section is the following.

Theorem 2.1. Let ¢ > 0, Bi=pla+1)—c, and

. Np c
— —1:p— —_— 2.
D 1<q<m1n{N_p 1;p 1+N—p(a+1)} (2.6)

Let g: QX R - R pe g Carathéodory function so that, for all (z,t) €
QxR and some ¢t >0, we have

l9(z, )] < ex(1+ 1)), (2.7)
Let u € WyP(Q, [z|~%P) satisfy weakly
—div(]m]"“pA(IVu[)Vu) = |z|g(z, u) in Q. (2.8)

Then u € L®(Q) N C’Z’)‘;(Q), Jfor some a € (0, 1). Moreover, if 50 Eigh.
then u € CO((Y).
Proof. We introduce new coordinates given by
N—p
N —pla+1)

Weset D= {y: z ¢ 0}, v(y) = u(z), h(y,t) == g(z,t), (z € Q,t € R).
Then it is not difficult to see that v € WP (D) and that v satisfies weakly

z=y* Yy, for z €RY, where k=

Haiyai(y,vy)=kply|—'fh(y,v) in D (2.9)
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where v =p—c(N —p)/(N —p(a+1)), and where, fory € D and ¢ € RV,
we have

ai(y,§) = A (M;_—k)B(y,ﬁ)) : ('—g’fﬁiB(y,f))z_P X

]. 1{ ] T
Bl (K (- ) ML)

and

5,
B(y,¢) = {k2|§|2+ (1 —kﬁ)ﬁ_} :

Note that £ > 0 and that, for ¢ = 1,..., N, the functions a;, satisfy the
conditions (2.2) and (2.3), with k; = b; -min{1,k} and k; = by - max{1, k}.

We will write W~Th(y, v(3)
ylm 'y, vy
d =
W) = P

Now it follows from the Sobolev embedding theorem that v € LN?/(N-P)(Q3)
Since

, for ye D.

215 4 g
=P N—p(a—l—l)’

Holder’s inequality yields

Nig—
J1d¥ < e [ (1 ps)
D D
p2—(N=p)(g—p+1

» N—p)(g—p+1)
o ol furmmmim) SF =)
D D

< +o0

where ¢, is some positive constant. That is, v satisfies the conditions of
Lemma 2.1. Hence v € L(D), for every r > 1, that is, |y|™7¢(y,v(y)) €
LP(D), for some p > N/p. The theorem now follows from Lemma 2.2. [J

Let us mention that it seems rather difficult to prove C*—regularity of
solutions under the weaker condition (H2). On the other hand, if our dif-
ferential operator satisfies assumption (H2'), Theorem 2.1 shows that the
solutions of Problem (0.1) which we obtain in subsequent sections are locally
Holder continuous.
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2.2 Problem 1

In this section we study the elliptic problem with singular weights

(2.10)

—div(|z|~*? A(|Vu|)Vu) = |z|~@+Ptef(u) in Q,
u=0 on 92

where  C RY is a bounded domain with C*! boundary, 2<p< N, 0€Q,
—o<a< N—;E ,

_ . J Np p(N—(a+1)p+c)

and ¢ > 0. Note that results similar to ours, but without weights, have been
obtained in [41].

Main Theorem

Let k € N. Denote by H; the finite dimensional space spanned by the
first k eigenfunctions, which correspond to the eigenvalues A, ..., Az, of the
singular elliptic equation

—div(|z|~2*Vu) = Mz|™%u in 0,
u=0 on Of2.

Note that since p > 2, we conclude that Wp?(f, |z|=%?) is a subset of
W,?(Q, |z|72%). Let Wi be a subspace of WyP(Q,|x|~%") such that

WoP(Q, |2|™°) = Hi & W
It follows from the definitions of H; and W, that

|]u|]§vg,z(n’izl_h) > /\k+1”u”%2(9‘|1|—2u) y forall uwe Wk

and
Ak“””%ﬁ(ﬂ,lxl“z“) > Huugvom(ﬂ’lzl_h) j forall uwe Hy.

In what follows, we will assume that the parameters a, ¢, r and ¢ satisfy
one of the following three conditions:

(i) a>0, ¢>p(N-pla+1))/(N—p) and
p(a,—i—l)—c< .
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(ii) a <0, ¢=2p(N—(a+1)p)/(N—p) and
l<g<p'=r.

(i) a< 0, 0<c<p(N-(a+1)p)/(N—p) and

p(N—(a+1)p+c)
N—-(a+1)p

i 8 8

The proof of our main result will depend on the following three lemmata.

Lemma 2.3. For each finite dimensional subspace E C WyP(Q, |z|~%P),
there exists a number R = R(E) so that I <0 on E\ Br, where
Bp = {v € Wp™(Q,|z|=*) | |lv]| < R}.

Proof. According to assumption (f3), there exist k; > 0 and k3 € R so that,
for all t € R, we have :
F(t) > ky|t|*® + ko.

By condition (H2), there exist constants 71,72 > 0 and C > 0 such that
—C+mt<S(t)<mt+C, forallt>0. (2.11)

Consequently, for some C > 0, for every u € W, ?(Q, |z|~%?) we have

P
I(’U,) = f {|_gg|_apm)_ = |$[-(a+1)P+CF(u)}
o) p
< @/lwl—aplvulp+é__K'1fl$|—(a+1}p+c|u|1/9.
P Ja Q

Since p < 1/0 and || - lyre(q,iz-erys || - lL0/0) (@ z|-(a+1)p+e) aT€ equivalent
norms in F, we conclude that there exists an R > 0 so that

I<0on E\ Bg.

Lemma 2.4. For every u € WyP(Q, |z|™), we have
“u“L?(Q,!xJ*(*‘JrUP‘rC) < C||“H%?(n,jz[—2a)||ul %ﬁfpm’lz!_np)

where a € (0,1).
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Proof. Without loss of generality we may assume that 2 < ¢ < < p*. Since
g < r < p*, we conclude that
|l Lo, joj-tatvptey < ||U||cf,2(n,|z|—2a)||U||,lg;f¥(g,;z|—a) (2.12)

by Hélder’s inequality, where

_p(la+l)p—c—gaa
o= ()

q

and
_2(Np—(N-p)g)

o = .
q(Np—2(N —p))
The result now follows from conditions (i) through (iii) and inequalities (2.12)

and (1.1). O
Lemma 2.5. There exist constants p,(8 > 0 and k € N such that I|63m‘,}c >
8.
Proof. According to assumption (f2) and (2.11), we have
1) 2 2 [ a9 - G, [ ol julr - .
P Ja Q

Let k € N. It follows from Lemma 2.4 and the definition of W}, that, for all
u € Wi, N W, P(Q, |z|~%) , we have
Cy

[l aga,jo)=tetvipte) < W“““W&""(Q,Izl—“)
k+1

where C} is some positive constant. If u € 9B, it follows that

I(u) = pP (é—&pq_p) —Cs

PR
where Cs and Cg are positive constants. Without loss of generality, we may
suppose ¢ > p. :

Choosing p = pr so that
fl _ & q-p __ 61

T Tag2Pk T
P A q

3

we find ¢
I{u) > -Elp’,; — i .
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Observe that prp — 400 as k — +o0. Hence, there is a 8 > 0 so that, for &
sufficiently large, we have

%pi_cs > B, foralluedB,NW,;.

We are now in a position to prove our main result.

Theorem 2.2. Suppose that functions A and [ satisfy, respectively, condi-
tions (H1), (H2), (H8) and assumptions (f1), (f2), (f3). Assume that one
further condition is satisfied:

(f4) The function F is even.

Suppose also that p > 2 and that the numbers by and by of condition (H2)
satisfy bol < by/p. Finally, suppose that the parameters a, c, v and q satisfy
one of the conditions (i) through ().

Then Problem (2.10) possesses an unbounded sequence of weak solutions.

Remark. Conditions (H1) through (H3) are satisfied for the p—Laplacian,
that is, A(t) = [¢/"~? and a = 0. A model case for assumptions (f1) through
(f3) is given by f(t) = a;(1 + [¢[771).

Proof of Theorem 2.2. According to Proposition 1.4, the functional I satis-
fies the (PS) condition. By Lemmata 2.3 and 2.5, we can apply Theorem
9.12 of [34]. Therefore, I possesses an unbounded sequence of critical values
cx = I(ux), where uy is a weak solution of (2.10).

We claim that {u,} is an unbounded sequence of Wy™(Q, |z|~%). In fact,
since I’(ug)ur = 0, we have

/ 2P A(| Ve ) V|2 = /ﬂ "R f . (2.13)
Q
Now ¢ = I(uy) implies
1
5/ |2|~*S(|Vuel?) _/ || =P+ P () = ¢ — +o00. (2.14)
Q Q

Multiplying by 1/p in (2.13) and subtracting from (2.14) yields
e = [ o172 Vuel) - A(Vaxh V)
Q

+ [l (L _ pgy,p).

(2.15)



CHAPTER 2. EXISTENCE RESULTS 17
According to condition (H3), we have

forall ¢>0. (2.16)

— }

Combining (2.15) with (2.16), we obtain

(1-3) [l aqvu v+ [ [oi-eem- (Fed _ puy) 2 e

(2.17)
which implies that {u;} is unbounded. ‘ O

2.3 Problem 2

In this section, we consider the elliptic problem with singular weights

—div(|z|~PA(|Vu|)Vu) = A|z|PE+D+ef(z 4) in Q,
(P)a
= on 0f2

where Q € RY, with N > 3, is an open bounded domain with C* boundary,

p’ and ¢> 0.

0efl, 1<p< N, —x<a<

We consider the functional associated with the Problem (P),

D) = / S(Vul?) - A f la| @ 0P+ Pz, )

where

Sit) = p/otp A(s)sds and  F(z,t)= /th(x, s)ds.

Observe that if conditions (H1), (H2), (H3), (f1) and (f2) are satisfied,
then I, is a C'—functional on the space Wy"*(f, |z|=%). Furthermore, the
same conditions imply the following three properties:

(I) The function ¢ — S(|t|?) is strictly convex.

(II) There are positive constants ¢;, and ¢y satisfying

S(t)<cat+ec, fort>0.
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(I1I) There are positive constants by and b; such that

|F(z,t)] < bolt|' + by, forall z€Q

Np p(N—(a+1)p+c)
N—-p* N-—p(atl)

where [ < r = min
We will further assume the following condition
(H4) There is a positive constant ¢y such that

cot < S(t), fort > 0.

We mention that (H4) is, for instance, satisfied if
Alyhy ~ y|*®y  near 0

for some 1 < g < p.

In addition, in the superlinear case, we will assume one further Ambrosetti-
Rabinowitz type condition:
There exist 6 € (1/r,1/p) and tp; > 0 so that, for all z € 2, we have

(AR), 6f(z,t)t > F(z,t) >0, for 0 <ty <|t.

Under conditions (H1), (H2), (H3), (f1) and (f2), and (AR),, the functional
I, satisfies the Palais-Smale condition. (See Section 1.4.)

We mention that equations similar to Problem (P),, though without
weights, have been studied by H. Prado and P. Ubilla. (See [31].)

The proofs of our main results depend essentially on the Mountain Pass
Theorem due to Rabinowitz [34] and Ekeland’s variational principle [15],
which have often been used to obtain existence results. Note that we will
proceed similarly to [31].

Main Theorems

Theorem 2.3 (The superlinear case). Assume conditions (H1) through
(H4), (f1), (f2) and (AR),. Then there exists a positive constant A* such
that, for any 0 < A < A\*, there is a non—trivial solution uy of Problem (P)x
in Wy P(Q, |z|~%). Moreover,

lin Ju[| = oo
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The proof of the above theorem is obtained by an application of the
following two lemmata.

Lemma 2.6. There are numbers ay, py > 0 satisfying limy_o+ @y = +00
and In(u) > ay, for ||ul| = pa.

Proof. It follows from property (III) and condition (H4) that, for each u €
Wy P(Q, |z|7%"), we have
B 2 2 [ fal1Vulr = Mo [ fal= e\
P Ja Q

el
p

(2.18)

> Z|ullP — Abo|lul* — Aby

where 5:) and 5; are positive constants. Let
-5 1
llu|| = A WhereO<ﬁ<—p-

Define py = A™?. Then

L) > %/\—ﬁp — b A 2Dy

Note that p < I by condition (AR),. Defining ay = 2X728 — B\ — \j;
and py = A~?, the Lemma now follows. O

Lemma 2.7. Let v # 0 in WyP(Q, |z|~%). Then -

lim I(tv) = —.

t—+4o0

Proof. According to property (II) and condition (AR),, we have

Il = % /ﬂ | S (2| Vul?) [Q @t p (g 1)

P ~ : :
Ci f|$|_“p|vvip+c2—kgt1/9/ !ml-—(a+1)p+cyvl1/a_’_k1
P Ja .

P L e
N
p

<

where ¢, é3, ko and k; are positive constants. The required limit now fol-
lows from the fact that p < 3 - O
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Proof of Theorem 2.3 . The conditions (H1) through (H4), (f1), (f2) and
(AR), imply that I satisfies the (PS) condition. Hence the preceding lem-
mata allow us to apply the Mountain Pass Theorem. Thus there exists a non
trivial critical point uy for I such that

I(uy) = cx 2 aa. (2.19)
Moreover, from properties (II) and (III) we conclude that

c -~
I(u),) S EIHUAHP+ Cy. |

In view of (2.19) and Lemma 2.6 we then deduce that
m, sl = +o0,

O

Lemma 2.8. Let X be a Banach space, and let I : X — R be a lower
semicontinuous functional which is Gateuz differentiable. Suppose that I is
bounded below on the set B(0,8) and inf{I(u)|u € B(0,0)} < 0. Suppose
further that I(uw) > 0 when ||u| = §. Then, for each 0 < e < —inf{I(u)|u €
B(0,6)}, there exists a ue such that ||us|| < § and

(i) I(u;) < inf{I(u)|u€ B(0,8)} +e¢
(ii) [|I'(ue)|| < e.

Proof. We apply Ekeland’s variational principle to the function I restricted

to B(0,4). Hence, for each € > 0, there exists a point u. € B(0,d) so that

I(ug) — I(w) < elju — | . (2.20)
for every u € B(0,6) such that u # u.. Now if ||uc|| = §, then I(u.) > 0 and
assertion (i) is satisfied. Thus

0 < I(ue) <inf{I(u)|u€ B(0,8)} +e.
Concerning (ii), since ¢ = inf{I(u) |u € B(0,d)} so whenever 0 < ¢ < —c we
arrive at a contradiction. Thus ||u.|| < §. Moreover from inequality (2.20)

we obtain assertion (ii). O

Theorem 2.4. Suppose that f(z,t) >0, forall x € Q and t > 0. Suppose
further that, for some rg > 0, the following two conditions hold:
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. F(z,to)

(a)%grém—a, for every0 <o <1 andallz €0,
. Flz,t)

(b) %%W)_——Foo, fOT‘&” CCEQ.

Then, under conditions (H1) through (H4), (f1) and (f2), there exists a
positive constant A* so that, for every 0 < A < A*, there is a solution uy of
Problem (P)y in Wy P(Q, |z|~%7). Moreover,

Jim [lus]| =0

Proof. Let px = A* for @ > 0. By inequality of (2.18), for every u € B(0, p»),

we have ~
In(u) > CoA® = kAT — \by.

Choosing 0 < « < % and taking A* sufficiently small, for 0 < A < A* we
find

whenever ||ul| = py = A%

Moreover, it follows from inequality (2.18) that I, is bounded below on
the set B[0, pa] = {u € WoP(Q, |z|=%) | [|ul| < px}.

Let ¢y = tv, for ¢t > 0, where v € C§°(£2) is such that 0 < v < 1 and
0 < |Vy| £ 1. Then

=1 -a _ ~(a+1)p+e
1) = 2 [ 1el™S@E1voP) = A [ fel P )

o L [ oSEVI) A [ esipreny. o Fl@t)
=5 |5 [ TG - g [ e e T

Since S(tp|V |p)
v
W <1 3 fort>0 §
and since
F(z,tv)

<1 fort >0,z € Q,

F(z,t)’

and in view of conditions (a) and (b), the dominated convergence theorem
yields the existence of § > 0 such that

I(tv) <0  whenever 0 <t <.

Thus ¢y = inf{l\(u)|u € B(0,0)} is negative, and the assumptions of the
preceding lemma are verified. Since I, satisfies the (PS) condition, there
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exists a non-trivial minimizer u, in the interior of B(0, py), or in other
words a non-trivial weak solution of Problem (P)x. Moreover |lua|| < A%,
for 0 < A < A*. Hence if @ > 0, then uy tends to zero as A tends to 07,
which completes the proof. O

Corollary 2.1. Under the hypotheses of Theorems 2.8 and 2.4, there exist
at least two solutions uy and vy of Problem (P)y so that

}\% llual| = +o0 and ,\]i%1+ luall = 0.

Theorem 2.5 (The sublinear case). Assume conditions (H1) through
(H4), (f1) and (f2). Suppose that a > 0 and that | < p. Suppose further
that, for all z € Q and all 0 < ¢ < 1, the following three conditions hold:

oy Flzto)
(1) %1_1}1& ) =07, where o <p.
Flat
(@.t) _

(ii) hIEL 1011f

S(tr)
(1i1) There exist positive constants ¢, ¢y and vy > 0 satisfying
F(:c,t) 2 Clﬁrl - Cy.

Then there is a A* > 0 such that, for every A > X*, there exists a solution uy
of the Problem (P)y in WyP(Q, |z|~). Moreover, Alim [uall = +oo.
—co

Lemma 2.9. Under the hypotheses of Theorem 2.5, for all A > 0, the func-
tional Iy satisfies the (PS) condition.

Proof. Let {u,} be a (PS)-sequence. According to Proposition 1.3, it suffices
to verify that {u,} is bounded. Let A; be the first eigenvalue of the singular
quasilinear elliptic equation

{—div(]a:PPWu]P‘zVu) = Az|~(a+Dp+ely P2y in Q,

u=0 on 0.
(See [43].)
Since r < p, we have
F(z,t
lim m_(:c,_) =,
Lt|—»00 |t|j"J
CoM .
Then, for 0 <e < p_/\’ there exists ¢ > 0 so that

|\F(z,t)] <eltfP+c., forall t€R.
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Hence if
[Iz(un)] £C and Ij(un) — 0

it follows that

€2 I(un) 2 2l - 3¢ /Q 2]~y P - A

where ¢; is a positive constant. Therefore,

AE -
Ii(un) 2 Ellunll” Fes A—Ilunll” ACe

CoA1 — p/\s) 5 ~
= | ———— | [|ua]]P — Ace,
( . | uall

which means that {u,} is bounded. O

Proof of Theorem 2.5. Since the inequality

Iy(u) > fgnunp — Nbollull* — My

holds for some positive constants l;;, 5-1 and [ < p, we conclude that c) =
inf{I(u) |u € WyP(Q,|z|~%)} > —oo, for every A, and that there is a
minimizer uy. According to (ii), there exist x,d > 0 so that

F(z,1)
S(tp)

Choosing ¢; = tv, for t sufficiently small, we find

p —a tPinUPJ (a+1)p+e :E t’l)))
Bl < 5 (f"p S(t) f”' T

Thus there exists A* > 0 so that, for A > A*, there is a ¢, for which

> p whenever 0 <t < 4.

I,\(t,\v) < 0.

Hence —oo < ¢y < 0. Hence uy is a non—trivial minimizer.
According to condition (iii), we have

hw) < @ / 2P| Val? — Ac; f PRGREE LY
P Ja Q

Fix some v € Wy?(Q, |z|~P), and let u = tv. Then

; ; P _ T
ey < %gg{Bt ACt™}
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where

B:E'if |z| =P | Vu|Pdz and C:—m/ P v
P Ja Q

1 D T p_fﬁ' 5'91‘7
ey < BT Crn {(—i> — (E> } AP -
P P '

Since p > r1 and A > 0, it follows that the right hand side of the inequality
is less than zero. Thus

Hence

o < —kxi, for k> 0.

On the other hand, according to the properties (IT), (I I) and (H4), we
have

ey = I)\(‘U,)\)
1

= — —ap P\ _ T —(etl)pre B (g u
pﬁtlwl S(IVual?) Afgll Fz,u)

> % [ ITnP - (‘6; [l + 51) .
P Ja Q

o 2 2 Ll - Ol + by)

Therefore,

where C is a positive constant. Now, if ||ual| is bounded for all A > 0, then
there is a subsequence {A\n} such that A\, — oo and the sequence |2l
converges as An — 00 Then, by the preceding inequality, dividing by A, in
it yields '
e Co 1, i
kA 2 ;X—Huxn\lp* (Cllur.ll" + b1),

passing to the limit as Ap, — 0 W€ arrive at a contraction. £l

Our next result gives necessary conditions which ensure the existence of
non—negative solutions of Problem (P)a.

Theorem 2.6. Let the function f satisfy (f4). Suppose also that f(z,t) =0
fort<0and allz € Q, and that f(z,t) > 0 fort>0andallz € Q. Then
if u is a weak solution of Problem (P)a, u 18 non-negative.
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Proof. Let u be a weak solution of Problem (P)y. Then, for every ¢ €
WoP(Q, |z|~°F), we have

[ et Avu) Vo= A [1alerres .
Q Q
Let uw = ut + v~ and take ¢ = u~. Then
_ fn Lz~ A(| V)|V~ |2 = A fﬂ (|~ f(g, —uYu = 0.

Hence |Vu~| = 0. Therefore u > 0 a.e. in €. | O

Corollary 2.2. Assume that f is non-negative and that it satisfies the hy-
potheses of Theorems 2.8 and 2.4. Then there exist at least two nonnegative
solutions uy and vy of (P)x such that

kl_‘[}’(l) lluall = +o0 and Al_l_.l’(l)l_’_ |luall = 0.

Corollary 2.3. Let f be such that f(z,t) =0, for allt >0 and all z. Then
under the hypotheses of Theorem 2.5, there is a \* > 0 such that, for A > X%,
there exists a non-negative solution uy and

il = o

2.4 Problem 3

We consider the problem

. 2.21
u=20 on 99 ( )

{—div (|z|~22Vu) = || 20+t +e f(z,u,Vu) in €,
where Q is a bounded domain in RY with smooth boundary such that 0 € £,
0<a< 52'—2 and ¢ > 1. Since the nonlinearity f depends on Vu, we can-
not deal Problem (2.21) directly with variational methods. Our approach is
based on an idea of De Figueiredo—Girardi-Matzeu for an equation involving
the Laplacian. The idea consists in analyzing a family of associated ellip-
tic equations without dependence on the gradient. Combining truncation
techniques, the Mountain Pass Theorem and monotone iteration, we obtain
the existence of a non—trivial solution. Note that, in applying the preceding
techniques, a proof of Lipschitz and higher regularity of the solutions which
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occur in the iteration is required. (See Subsection 2.4.1.) More precisely,
given w € W, 2(Q, |z|72%), we consider the problem

{—div (|z|~2Vu) = |z|~2@+D+ef(z,u, Vw) in O, (2.22)

u=0 on 0f2.

We assign the following hypotheses on the nonlinearity f:
(fo) f:Q xR xRY — R is measurable, and f(z,-,-) is locally bounded

and Lipschitz continuous on R x R¥, uniformly in z.

f(=,t,€)
t

(f1) lim = 0 uniformly for z € Q, £ € RV,

t—0
(f2) [f(@t, ) <a(1+[tF)(1+]E), foral (z,4,€) € AxRxRY, for
N+2 N———2(a+1)+26} d

constant >0,1<p<mi
some constants a; > 0, p<mmniq 50, N —2(a+1)

€ (0,1).

(fs) 0<8F(z,t€) <tf(z,t,€) forall x €, |t|> tg, ¢ € RV, for some
constants 6 > 2 and ¢y > 0, where F(z,t,£) = fo z, s, £)ds.

We note that (f3) implies that there exist constants as, az > 0 such that

F(z,t,6) > ag|t|® —as, forall z€Q,teR, & e RY. (2.23)

The hypotheses above allow us to apply Ambrosetti and Rabinowitz’s Moun-
tain Pass Theorem to equation (2.22). (Compare [2].) The solvability of
Problem (2.21) is then ensured if the function f satisfies two local Lipschitz
conditions given in hypothesis (f;) below.

(fa) o |f(z,t,6) = fz,t",6)| < Lyt —t"], for all z€Q
and all ¢',t" € [0, 1], and [€| < po,
and
o |f(z,t,€) — f(z,t,€")| < Lyl¢’ —¢"], for all z € Q and all t €
[03191]: and lfrl’ |§”l < p2

where p; and p, depend on p, N, 8, a1, as, a3 of hypotheses (f2) and (f3).

The case | = 2 of inequality (1.1) will require special attention in our
analysis: Consider the weighted Rayleigh quotient

I |z| 22| Vu|? dz

— 1.2/ —2a 3
Qa,c(v) T j‘Q !xi_g(a+1)+cv2 dxi fOI v E WU (Q) le )! Wlth v '_Ié 0)
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where a € (—o0, (N —2)/2) and ¢ > 0. Set
5(Q,a,c) = inf{Qa.(v) : v € Wy(, |z|~%), v # 0}. (2.24)

Then, if ¢ > 0 it follows that S(,a,¢) is equal to the first eigenvalue of the
problem

{ —div(|z|72*Vu) = Az|~2etD+ey in Q, (2.25)

u=0 on 02

and that it is attained for any first eigenfunction of Problem (2.25). (See
43). |

Now if ¢ = 0 it follows that S(RY,a,0) = ((N —2—2a)/2)?, but the infimum
in (2.24) is not attained (see [9]). Therefore, it is not hard to see that
S(Q,a,0) = ((N —2—2a)/2)? as well and that S(Q, a,0) is not attained.

We are now in a position to formulate our main result, which will be
proved in Subsection 2.4.2.

Theorem 2.7. Let Q be a C'—domain, 0 < a < (N —2)/2) and ¢ > 1.
Suppose f satisfies (fo) trough (f1). Then Problem (2.21) has both a positive
and a negative solutions in Wi (S, |z|=22), provided that

Ly H Ly 2
S(Q,a,¢)  1/8(Q,a,2(c—1))

L | (2.26)

2.4.1 A high regularity result

In this subsection, we obtain regularity properties for the solutions of Prob-
lem (2.22). We show boundedness and smoothness for these solutions. We
consider the problem

€ WoX(Q, |=|7), -
—div(|z|"Vu) = |z|"2*"*f(z) in 0, (2.27)

where ¢ > 1 and f € L*=(Q). Note first that if ¢ > 0 then a result of [19],
Theorem 1.1, tells us that u is bounded and that u € C%*(Q') for some
a € (0,1) and every ' CC Q. Our proof is based on a blow-up argument
used by Gidas and Spruck in [23]. Further, it requires the following Liouville
type result.

Theorem 2.8. Let a € (—o0, (N —2)/2) and

= N—-2 \?
m1=—-N—2-+a+\/(——~2-——a) +N-1. (2.28)
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Then, if u € WlléQC(RN, |z|~2%) satisfies _
—div(|z|"*Vu) =0 and - _ (2.29)
lu(z)| < C(1+ |z|™ %) on RV (2.30)
for some C > 0 and € € (0,m4), u 45 constant on RY.

Proof. We let (r,8) denote N—dimensional polar coordinates, (r = |z,
§ € SN1). Let {v.} be the sequence of orthonormal eigenfunctions for the
Laplace-Beltrami operator on S¥~!, or in other words

—Dgug =Mvx  on SN for k=0,1,2,..., (2.31)
f vv;dl = 6;;, ford,j=0,1,2,..., and (2.32)
SN-1 :
doSA<hs.... | (2.33)
Note that Ag = 0, vg = const. # 0, \y = ... = Ay = N — 1, v, = Czi/|z|,

k=1,...N, for some C > 0, and the eigenvalues A(= A,) can be calculated
from the relation

A=n?+n(N-2), forn=0,12,....

Let R >0, and let bx(R), for £ =0,1,..., be (unique!) numbers so that
+o0
> bi(R)ue(), forall 68V (2.34)

Then u has the representation

Zbk r™ye(9), forall r€[0,R], and all § € S¥' (2.35)
where my = -2 4+ o+ \/ 2y A: - (See [1, Theorem 4.4, proof].)
Since R > 0 is arbltrary, for some numbers c. € R, with £ =0,1,2,..., we

conclude that
bk(R) = CkRmk : (2.36)

by (2.34) and (2.35). According to Parseval’s identity on 0Br and assump-
tion (2.30), for some C > 0, we find

o0
C(1+ R¥™~%) > / u¥(R,0)d6 =) GR*™, forall R>0. (2.37)

SN-1 k=0

Taking the limit as B — 400, we obtain ¢ = 0, for k¥ > 1. Hence u is
constant on R¥Y, 0



CHAPTER 2. EXISTENCE RESULTS 29

Lemma 2.10. Let a € (—o0, (N —2)/2), ¢ >0, f € L®(2), and let u be a
solution of (2.27). Then, for every § > 0 satisfying § < ¢ and § < m,, there
exists a number ¢; > 0, which depends only on §, ¢, a, N and 0, so that

lu(z) — w(0)] < e M|z|®,  forall z € Q (2.38)
where M = || f||zoo(e)-

Proof. First assume that M = 1. Suppose that (2.38) is wrong. Then
there is a 6 > 0, with § < ¢ and é < m,, and a sequence {z,} C )\ {0},
with z, — 0, such that

lim |u(z,) — u(0)||za]| ™% = +o0. (2.39)

n—oo

Define rotations p, of the coordinate system about the origin such that
Prtn, = (B0, 5 « <2 0) =t By (&, = 0}, atrd et £, = g, 00 fulz) 1= Flpo),
up(z) == u(pnz), n = 1,2,.... We may assume without loss of generality
that {e,} is decreasing and that

|t () =n (0)]|2] 7% < |tn(yn)—un(0)|e;? for all z € Q, such that |z| > &,.
(2.40)
Set By, 1= {(1/en)z : 2€ D}, gn(z) = frlenz), and

_ Un(&nZ) — ua(0)
) = ) — ()

we would find v, (0) = 0, and v,(e) = 1, where e is the unit vector (1,0, ...,0),

lva(z)| < |2|° in D, \ B, (2.41)
Un € Wo*(Dh, |2|~2%), and

. |$|—2a_2+cgn(m)sfm

—div(|z| ™ = =t in Dy 2.42
din{ | Vi) 258 —4.10) 2(z) in D, (2.42)
According to (2.39), we would have
s
£
li o =0
n-l—rngo Un (Ene) — Un (0)
so that
lim hn(z) =0 uniformly in any compact subset of R". (2.43)

n—oo
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Furthermore, using elliptic estimates separately in By and in D, \ Bj, we
would find that the v,’s are uniformly bounded and that v, € C%*(D’),
for some @ € (0,1) and every D' CC D,. (See [19].) Hence in view of
relations (2.41)—(2.43), there would be a subsequence {v,/} and a function
v € W2 (RY, |z|~2) N C%*(RY) such that

loc
v, — v in WH3(Bpg,|z|™) and in C%*(Bg), forall R >0, (2.44)
div (|z|~*Vv) =0 on RV, (2.45)
lu(z)| < |z|® for |z| > 1, and (2.46)
v(0) =0, v(e) = 1. (2.47)

By the preceding Theorem 2.8, conditions (2.45) and (2.46) would imply that
v must be constant, contrary to (2.47).

In the general case, the result follows from the above analysis replacing u by
M1y, ' O

Remark. Let Ry > 0 be such that Bg, C §, and let u;(z) = |z|° and
ug(z) = z1|z|™ ! in Bg,. Note that, for some k£ € R, we have

—div(|z|™2*Vu;) = k|z|72*7%*° and — div(|z|™**Vyy) =0 in Bg,.

Clearly we may extend u; and u, to functions in C%(Q \ {0}) with compact
support in Q such that u; is a solution of Problem (2.27) with right-hand
side |z|72a7%%¢ f;(z), where f; € L®(Q), with ¢ = 1,2, and ¢; = ¢, ¢ = 2.
These examples show that estimate (2.38) with é > my or with 6 > ¢ does
not in general hold.

We next prove the main results of this section.

Theorem 2.9. Let 0 <a < (N —2)/2,¢>1 and f € L*(Q). Let u be a
solution of Problem (2.27). Then u € CY#(Q), for every ¥ CC 2 and every
B8 € (0,1), with 8 <c—1 and B < my. Moreover, for every such § and €V,
there is a constant ¢y depending only on ¢, 3, a, and &', such that

lullcre@y < oM (2.48)

where M = ||f||L=(). Finally, if Q is a C**—domain, then u € C*(Q)
and (2.48) holds with ' replaced by 2.

Proof. As in the proof of the last lemma, we may assume that M = 1.
First observe that standard regularity theory tells us that

uE CI,Q(QI\E) for every Ql CC (Q\{O}) and. fOI' a.H O € (0, 1) (249)
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(see e.g. [24].) Moreover, if Q2 is a C**—domain, then we have
u€ CYP(Q\ B,), foralle>D0. (2.50)

Let 6 € (1,c], with § < my, €0 > 0 such that By, C Q, and € € (0, &).
Setting ue(z) := e %(u(ex) — u(0)), fe(z) := f(ez), and Q. = {(1/e)z: z €
Q}, we have that u, € Wy *(Q, |z|~2%), and

—div(|z|"?Vu,) = |z|"2"2*f,(2)e*¢ in Q.. (2.51)

According to Lemma 2.10, the u.’s are uniformly bounded. Hence, using
elliptic estimates in By \ By /2 , we obtain from (2.51) that for every a € (0, 1)
there is a constant cs(«), independent of €, such that

[Vue(z) — Vue(y)] < ca(@)lz — y|* in By \ By,
which implies
[Vu(z) — Vu(y)| < es(a)lz — y|%*™ " in B \ B..
Choosing o < § — 1, we find
[Vu(z) — Vu(y)| < es(e)lz — y|* in Bse \ Be. (2.52)

By Lemma 2.10 and (2.49), we have that u € Clloc(m and that Vu(0) = 0.
Together with (2.49) and (2.50) this proves (2.48). 7 O

A slight modification of the above proof in the case ¢ = 1 leads to the
following

Theorem 2.10. Let 0 <a < (N —2)/2, ¢ =1, f € L®(), and let u a
solution of (2.27). Then u € C%Y(Y), for every ¥ CC Q. Moreover, there
is a constant dy depending only on a and Q' such that

|Vl o) < daM (2.53)

where M is as in Theorem 2.9. Finally, if Q is a C'—domain then u €
C%(Q) and inequality (2.53) holds, with ' replaced by Q.

Proof : We proceed similarly as in the preceding proof. Note first that u
satisfies (2.38) with § = 1, and that (2.49). Moreover if  is a C*—domain,
it follows that

u€C"(Q\B,), forale>0. (2.54)
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Choosing &g as before and € € (0, £9), we set u.(z) := (u(exz) —u(0))/e. Then
we have that

—div(jz|2Vu,) = |z f(z) in Q. (2.55)

Using elliptic estimates in By \ Big, it follows from (2.55) that there is a
constant ¢z independent of £ such that

|V (z)] <cz in By\ Br.

This implies L
[Vu(z)| <ecs in By \ B..

Assertion (2.53) results from the continuity of u, (2.54) and inequality (2.38),
with § = 1. a

2.4.2 Truncation Argument

In this subsection we henceforth that Q is a C'—domain. In order to obtain
a solution of (2.22), we first consider a truncated problem. Fix some number
R > 0, and let

fr(z,t,§) = fl=,t,Epr(£)) and
Fr(z,t,£) = / fr(z,7,&)dr, for all (,t,€) € X x R x RY
0 "

where @wp € CY(R") and satisfies the following conditions

lor(€)] <1, forall £ € RY,
wr(é) =1, for all |£| < R, (2.56)
or(€)=0, forall [¢{|>R+1

Furthermore, for any fixed w € Wy*(Q, |z|~%*) we define a functional
17 WA, |2]=%) - R by

1 —zla C -
IE(v) = 5/Qlcc]_25“|V'u|2 —/ﬂla:| AatDrepo(z, v, Vw).

The critical points uf? of I are weak solutions of the semilinear elliptic
problem

—div(|z[72*Vuf) = |z| 2D fp(z, ufl, Vw) in O,
== on OS2

Our aim is to show that the functional IZ has a Mountain Pass type structure
for any w € W2 (£, |z|72). Indeed, one can state the following two lemmata.
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Lemma 2.11. For every R > 0 there ezist positive numbers p < 1 and a,
such that

IR (v) > a for all w e Wy*(Q, |z|~2*) and

2.57
for all v € W(Q, |z|™2) satisfying ||[v]| = p. (2:57)

Lemma 2.12. There ezists some T € Wy2(Q, |z|72), withT > 0, ||7]| > 1,
such that '
IZ@) <0, forall R>0 and all we WH(Q,|z|7%).  (2.58)

Proof of Lemma 2.3. It follows from (f1) and (f2) that there is a positive
constant k., independent of R, such that

t2
|Fr(z,t, )| < 52— + k(R + 2)7|tPH.

In view of (1.1) we have that
/|$| 2(a+1)+cFR iL' v, V’w /| |—2(a+1)+c 2
+kE(R+2)T/ |$|—2(a+1)+c|,ulp+1 (259)
y)
= C‘( +ke(R+2)"[lv[P~ ) lv]l%,

for some constant C' > 0. Now choosing

1

< (wmesr)

in the above inequality, one gets
/ |z| 2@+ Fp(z, v, V) < Cellv|?,
Q

so that (2.57) easily follows by takmg < (20)?
p < min {1; (4k:(R + 2)7C)~Y*-V} and a = (5 —- C’a) O

Proof of Lemma 2.5. We fix some function vg € W32(Q, |z|~2), with v > 0,
vo # 0. By (2.23) one gets for any ¢ > 0

14 ~
I,f(t'l)o) < Ef |$|_2alvvﬂl2 _ 02/ |$I—2(a+1)+ct9|,ula i,
Q Q

where a3 = a3 [, |z|~2(@+1)+e | Then we choose T = tvg with  sufficiently
large such that ||7]| > 1 and I%(v) < 0 for all R > 0. O
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Proposition 2.1. Let (fo) — (fs) be satisfied and let w € Wy (Q, |z|~2%) and
U given by Lemma 2.5. Then for every R > 0 there ezists some v = v(w, R)
such that .

DIR(w)=0 and

I%(v) = inf max I%, (2.60)
~v€T te[0,1]
where
I ={y € C(0,1;Wo™( @ [2]7)) : 7(0) =0,%(1) =7}.  (261)

Proof. We have that I2(0) = 0. Furthermore, the functional I? satisfies the
(PS) condition in view of (fy) —(f3). Then the existence of an element v such
that (2.60) and (2.61) hold is an immediate consequence of the Lemmata 2.3,
2.5 and of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz
(see [2]). O

Next we will obtain a positive and a negative solution of (2.21). To this
end we fix an arbitrary element uy € Wg*(Q,]z|™2*) and R > 0, and we
consider the following iterative scheme:

Given n € N, fix an element v = ul satisfying (2.60) and (2.61) with

i =t

(2.62)

Note that the elements uZ above are not unique in general. Now we obtain
a uniform estimate from above for the Wy3(%, |z|~2%)-norms of u2. This
will finally allow us to get rid of the dependence on R, and to pass to the
following iteration scheme:

(P) {—div(|x|‘2“Vun) = |g|~HetDre f(g w4, Viun—1) in £,

U, =0 on Of).
Lemma 2.13. There exists a positive constant c¢; such that

luall < &1 - (2.63)
for everyn € N and R > 0.

Proof. Using the definition of u? and choosing the path in T' given by the
line segment joining 0 and ¥, one gets from (2.23)

{2 - g . ez
Itﬁ},l(uf) < su {§L|$I—2a|vv|2_a2t0/§;l$l (a+1)P+C|U|9+a3}’
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where a3 is defined in the proof of Lemma 2.5. Since 8 > 2, the function
2
R, St & ] |2 | Vo2 — agt? f ||~ e 4 5
2 Jo Q

attains a positive maximum. Hence

Iff_l(uf) < const for all n € Nand for all R> 0. (2.64)
Now (2.64), (f3), the fact that |@gr| < 1, and the criticality of uf for I ff_l
imply
SIRIE < const + 5 [ [al= eI fo(a,ult, Vul
= const + %Huf“{
and (2.63) follows in view of § > 2. O

Using the results of section 2 we now obtain uniform estimates for the
C%norms of {uf'} and {Vul}, by assuming additionally that

ul € C%H(Q) for every R > 0. (2.65)

Lemma 2.14. Assume (2.65). Then, for everyn € N and R > 0, uf! €
CoL(LY).

Proof. We have that uf® is the weak solution of

—div (jol V) = fale, o, Vi) in 9,
uft= 0 on A,

Since

| fr(z,uff, Vug)| < M(1+ [ufP)(2 + R)",
that is, HfR(ﬂ;,uiquug)“Lm(Q) < .7‘7.?(2 + R)", we may apply Theorem 2.1.
Hence uft € C%*(Q). In view of Theorem 2.4 this means that uft is Lipschitz
continuous on €2, for any R > 0. Our result now follows by induction. O

Lemma 2.15. Assume (2.65). Then there exist o > 0 and pq > 0, such
that

[uB|| ooy < Ko = po(R+2)", (2.66)

VUl oy < k1 = p(R+2) for all R>0 and for all n € (N. :
2.67
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Proof. Recall that any Lipschitz function is a.e. differentiable with bounded
gradient. Then, arguing as in Lemma 2.14, the condition (f;) and the defi-

nition of fp yield the estimates (2.66)—(2.67). O
Lemma 2.16. Assume (2.65). Then there exists some R > 0, such that

[ufll o) < ko= (B +27 <R (2.68)

IVul|| ooy S k1 = m(R+2)" <R (2.69)

Proof. (2.68) and (2.69) are an obvious consequence of (2.66.)—(2.67) and the
fact that r € (0, 1). | O

Lemma 2.17. Assume (2.65). Then u, := uZ is a solution of (P), and the
following estimates hold, for any n € N,

l[un|l < e, (2.70)
unllzeo(ey < ko = po(R+2)" (2.71)
IVtn| 2oy < b1 = pa (R + 2)". (2.72)

Proof. The fact that u, solves (P),, is a consequence of the definition of
fr and the assumptions (2.56) and (2.68) with R = R. Moreover, (2.63),
(2.68)—(2.69), respectively, imply (2.70)-(2.72) with R = R. O

The function u, given in Lemma 2.17 is a nontrivial solution of (P),.
More precisely, there holds

Lemma 2.18. For any n € N, there ezists a positive constant cy such that
lun] = c2. (2.73)
Proof. For any v € W,*(R, |z|=2*) we have that

[lz]_Q“Vuan = f |lz| =P+ f (g up, Vig_y).
Q Q
Setting v = u, in the relation above we obtain that
[ 1al™19unf? = [ Jal 42, 1Y
Q Q

Hence (f1) and (f;) imply that for any § > 0 there exists a number c(d) > 0
such that ;

[ lal 1V < 6 [ (ol @ elunff 4 c(6) [ fof eI
9] Q Q
< C(Bl1unl + (0 unll*),

for any n € N and for some constant C > 0. Now (2.73) follows, by choosing
0oC < 1. O
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Lemma 2.19. Let
ko :=min{ko > 0: (2.71) holds}

ki :=min{k; > 0: (2.72) holds},

and choose py = ko and py = k; in (f1). Then the sequence {u,} converges
/ 1,2 —2a
strongly in Wy (Q, |z|~*%).

Proof. By the criticality of u,41 and u, one has for every n € N,

/ |22Vt 41 (V (Un1 — un)) = / || 2D F (1, Vion) (ngs — Un),
! ’ (2.74)
/ 22Vt (V (gt — ) = / 2] 2% £ 2, Vit )ttt — ).

! - ’ (2.75)

Subtracting (2.75) from (2.74), we obtain that

“un—i—l - unHQ = /Q |x|_2(a+1)+c{[f(m>un+la vun) - f(wp Un, vun)](“n-{—l - un)

+ [f(xa Un, vun) - f(33, Un,y V'un_l)](unﬂ = Un)}

Using hypothesis (fs), this leads to the following estimate,

— TN / 2] XDy — 2

@ (2.76)

I / 2] 2T (i, — ) [t — -
Q

Using Cauchy-Schwarz and singular Poincaré inequalities, and since ¢ > 1,
we have from (2.76),

bt = ’Um”2 < LiS(Q,q, C)_l”unﬂ — “n“2
+ L2S(9, a,2(c — 1)) |lting1 — Unl| |un — tn—1-
This means that

LyS(9,a,2(c —1))"1/2
1—1;5(Q,a,c)!

[tnt1 = un|| < [tn = Un-1]| =t Kflun — tn-1]-

By our assumptions, we have k& < 1. Hence the sequence {u,} converges
in W2(Q, |z|~2%) to some function u € W, 2(Q), |z|~2%). Furthermore, since
|lug]| > ¢z by Lemma 2.18, it follows that u # 0. In this way we obtain a
nontrivial solution of (2.21). O
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Lemma 2.20. Problem (P), has a positive solution u} and a negative so-
lution u,. Moreover, the sequences {u}'} and {u,} converge strongly in
Wo (€, |2]72).

Proof. We consider only the case of the positive solution. The argument
leading to a negative solution is analogous. We replace the function f(z,¢,¢)
in (2.21) by the function

0 i F(z,t,6) <0

Of course, f* satisfies (f3) only for £ > 0. But this is of no importance if we
choose vg > 0 in the proof of Lemma 2.12. Indeed, proceeding analogously
as before, we obtain a solution of the problem

—div (2] Vi) = fHEu, Vul ) inf,
ir =0 - on 98.
Multiplying the differential equation by the negative part of u, and integrat-

ing by parts, we conclude that u, is positive, that is u} = u,. O

Proof of Theorem 2.7. The proof is a direct consequence of the Lemmata
2.19 and 2.20. O



Chapter 3

Pohozaev’s Identity and a
Non—existence Result

In this chapter we study non-existence of solutions of the Problem (0.1). We
first recall a Pohozaev type identity due to P. Pucci and J. Serrin. (See [32].)

Lemma 3.1. Let u € C*HQ) N CYQ) be a solution of the Euler-Lagrange
equation

dz"u{fﬁ(x,u, Vu)} = Fu(z,u, Vu) in Q,
u=0 on Of)
where = (p,...,pn) = Vu = (0u/0z:,...,0u/0z,) and F, = OF [Ou. Let

A be a scalar and h a vector-valued functzon of class CI(Q) NC(Q). Then
the following equality holds :

jf [.7:(:5, 0,vu) — 2L £ (2,0, Vu)} (h-)dS
a0 Ox; ™ ,

=/ {f(:c,u, Vu)div(h) + hFy, (2, u, Vu)
Q

_ @_6’1_7 Y 8A
63‘3‘j 83:1 6

LAPYSRS

_A [a Foi (@, 0, Vu) + uFy(z,u VU)} }

where repeated indices 1 and j are understood to be summed from 1 to n.
We consider the problem

{—div(|z|‘“pA(]Vu])Vu) = g(z,u) inQ,

3.2
u=0 on ) (32

39
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where g satisfies g(z,0) = 0. Suppose }'(:r u, Vu) = 1[3:|““1’S(1Vu[1’) -
G(z,u), where G(z,u) = ;' g(z,t) dt and S(¢ f v) dv. Choosing
h(z) = z, A = constant, equahty (3 1) then becomes
1
jg L—jlml‘”s(lvulp) = 2|~ PA(|Vu)|Vul?| 2 - v(z)do =
a0

[{(Z =) stz - w0(e.) -G - spte
"(33)

Observe that, according to conditions (H1) and (H2), and the strong
maximum principle, the left hand side of the equality (3.3) is negative. Hence
we have the following.

Theorem 3.1. Let 2 be a smooth domain which is star-shaped with respect
to the origin. Suppose

/{; {(% - a,) |z|~ S (|Vul) — NG(z,u) — z - Go(z,u) ‘—'ug(a:, u)} dm;j)

Then there is no solution u € C2(Q) N CY(Q) of Problem (3.2).

Remark: Let A(t) = ytP~2 + 6t272 where v > 0, § > 0.and 1 < ¢ < p and
g(z,u) = |z|~@+Vr+eyl=1 for some [ and u > 0 in Q. Then inequality (3.4)

reads
.-JY- —aq - .]_V_ — Ejii-_}_).g_] f jxl"‘(ﬂ-*‘l)?ﬁ'cul >0
p l ! Q
that is,
p(N —(a+1)p+c)
[ > .
- N—(a+1)p

On the other hand, the condition (f2) which was needed for our existence
Theorem 2.2 implies that [ < p(N — (a+ L)p+¢)/(N — (a + 1)p). It is not
hard to see that, in this case, equality (3.3) cannot hold. In particular, if
a = 0 and ¢ = p, then we obtain the well known non—-existence result for the
p-Laplacian. (Compare [32].)

Proof of Theorem 3.1. The deduction above is formal. In fact, the solution
of Problem (0.1) may not be of class C*(£2) NC*(2). We need approximation
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arguments as of [26] and [10]. Let {g.} be a sequence of C?(Q2\ {0}) functions
converging to g(-,u) as € tends to 0%, and let u. be a solution of the equation

o —ap ) = 1
{ div(ja| =P A(v/E + [VuP)Vu) =g, in Q, (3.5)

u=1_0 on o).

Then, by standard regularity results of [39], the solution u. belongs to C3(Q\
{0}) and converges to u in CY*(Q2\ {0}), for some a € (0,1). Multiplying
equation (3.5) by (Au, —z-Vu,.), where A is a constant, and integrating over
Qs .= Q\ Bs(0), where 0 < ¢ < dist(0, 09), yields

—f div(|z| P A(ve + |Vue ) Vue) (Aue — 2 - Vu )dz

Q

’ (3.6)

= / g:(Aue — z - Vu)dz.
Qs

Integrating by parts the left hand side of (3.6) over §25, we obtain
LHS = — /a e A/ F V) (A = - V) (Vi - v)do
)
B /ﬂ |~ A(\/E F [VaalP) Ve - V(Atie — 2 - Vi) dz
;
— A [ AT TPy (T o
+ | lelA/EFVwP)Vuela - v)do
+ [ e A/ET TR Tl e
+ A [ (2" PA(VE + [Vuel?) | Vuefdz

Qs

— | |z|7A(Ve + |[Vue|?) Vue - V(Vu, - z)dz .

9%

Since Vu, - V(z - Vue) = |Vue|2 + 3(z - V(|Vue|?)), we conclude

lz| " A(\/€ + |Vue|?) | Ve *dz
e (3.7)

:f ggus—l—/ |z| P A(v/€ + |Vue|?)ue(Vu, - v)do
Qs |z|=5

by (3.5).
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On the other hand,

L[ AT e (Vs

/\/£+|Vu¢|2 7

1 A(t)tdt) dz

== | |=[™2:V (2

2 Ja, 0

= |z|~%z - V (13((6 - ]Vua|2)p/2)) dz
o D

= % [ S((e+ |Vug|2)”/2)(3: -v)do
a0

+ lml:és((s + |Vu512)P/2)(x -'U)dO' (3.8)

-, S((€+|Vus|2)”/2)-V(wlfvl'“”)dfﬂ}

B % [/ag S((e+ [VueY*)(z - v)do

v [ S+ FuPie- o

= (N —aio)fQ |z|~*S((e + IVUEF)‘”/?)dm} :
s
Substituting (3.7) and (3.8) into LHS we obtain
LHS = [ |ol™* A(V/E+TVa) Vucli(e - v)do
+/|1 5]3;\—“PA(W)|VUE|2($-V)dcr—i—(A— 1)/Q Gele
z|= ; s
B /J 1_5|w|4“‘”x4(\/b‘_+—IV_%F)ue(Vue ‘v)do

2 SUe+ Va2 (2 - v)do

P Jaq
2 [ S(e+ |Vl (@ v)do
P J\z|=5
4 (—N——_—Egl |z|~"S((e + |Vusl2)”/2)d$.

D Qs
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Also, the right hand side of (3.6) is
RHS=A] gsus—/ gex + Vu.dz.
Qs 1973
Now, letting ¢ — 01 we have

LHS = ]é;g |m|_“PA(IVu|)[Vu|2($ -v)do

" -/lml=5 lml—apA(Wu!)[Vulz(m V)do + (A —1) f gu d:c

Qs

a0

— / jz| P A(|Vu|)u(Vu - v)do — 2 S(|VulP)(z - v)do
|z|=6 D

1 S(|Vu|p)($-v)da+M/ |z| =P S (|VulP)dz
P Jiz|=s # Qs
and '
BHE = A gud:c—/g(:c-Vu)dm
Qs Q
=Af guda:—/ G(z,u)(m.u)dﬁf (-, )
Qs =197 Qs ‘
+N/ G(z,u)dz.
Qs
Thus

fm ||~ A(|Vul)|Vul*(z - v)do
* fmzd 1x|‘“PA(1v@l)1w12(m -v)do + (A —‘1) /ﬂ o d?

_ f] ATV )

I sqveP)@- vyde
P Jaa :
i (39)
- - S(|VulP)(x - v)do
P J|z|=6
=) g
p Qs

= A/ gudz — G(z,u)(z - v)do
Qs Z197;

+/ (z+ Gz(z,u))dz+ N G(z,u)dz.
Qs Qs
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Next, we need to get rid of the boundary integral along |z| = § of (3.9). Let
u be a solution of (3.2). From the Caffarelli-Kohn-Nirenberg inequality (1.1)
and Theorem 1.1, we conclude that

N
/ (| ~°?|VufPdz, f 2@ Pl tdz, and 5 / 2| ~P A(| Ve )z, udz
Q L i=1 V9

are finite. Therefore, by mean—value theorem there exists a sequence {J,.},
0 — 0%, as m — +o0, such that the following integrals tends to 0,

/ G(z,u)(z - v)do, / |z| P A(|Vu|)u(Vu - v)do
|z}=6m

|z|=6m

il f 2| S(|VulP)(z - v)do,
|z|=8m

as m — +oo. Thus, letting m — +o0, we obtain (3.3). O



Appendix A

Some proofs

Proof of Theorem 1.1. We follow [43]. The continuity of the embedding is a
direct consequence of the Caffarelli-Kohn-Nirenberg inequality [8]. To prove
the compactness, let {u,,} be a bounded sequence in Wy™*(%, |z|~%). For
any p > 0, with B,(0) C €, there hold {un,} C W'P(Q\ B,(0)). Then the
classical Rellich—-Kondrachov compactness theorem guarantees the existence
of a convergent subsequence of {un} in L"(Q2\ B,(0)). Taking a diagonal
sequence we may assume, without loss of generality, that for any p > 0, the
sequence {un,} converges in L™(Q\ B,(0)).

On the other hand, for any 1 < r < Nﬂ% , there exists b € (a,a + 1]
such that r < ¢ = p*(a,b) = —N—AI%;, d=1+4+a—-be[0,1). It follows from the
Caffarelli-Kohn-Nirenberg inequality (see [8]) that {un} is also bounded in
L2(Q, |z|~%). By the Hélder inequality, for any § > 0, we have

[ Jalum —uslds
| <8
1—{"- r/q
£ (f jz]"(““b’)ﬁ?dm) (/ ||~ [, — uﬂ‘"dm)
|z|<é Q
s =2 '
= (f TN_l_(“—br)ﬁ?dr) '
0

= o§N-le-tr) s

where C' > 0 is a constant independent of m. Since a < (1+a)r+N(l— 5t

we have N —(a— br)q—'i; > (0. Therefore, for a given € > 0, we may fix § > 0
so that

|z| ™|ty — uj|"de < =, forall m,j7eN."
|z|<d

b ™

45
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Then we may choose n € N so that

f |2| ™% |um—u;|"dz] < C, [um—u;|"dz < =, forall m,j>n
Q\B;(0)

2\Bs(0)

[N R R

] |z| ™|t — u;|"dz <€, forall m,j>n,
193

or in other words {u,} is a Cauchy sequence in L4(Q, |z|~%). O
Proof of Theorem 1.2.

1. For the bilinear form B, we have that

- |Blu,v]| £ HUHWOI’Z(Q,I:J:]“QG)”v||W01'2(Q,|a:|"‘2°)

and
Blu,u] = Hﬂlﬁygﬁm,ul-%)
for all u,v € Wy (Q, |z|~22).

Thus B satlsﬁes the hypothesis of Lax-Milgram Theorem. (See [17].)

Now let f : Wy2(, |z|~2) — R be a bounded linear funct1ona1 on
i (0 ]x]‘zﬂ) Then there exists a unique element u € Wa?(Q, |z|~22)
such that
Blu,v] = f(v)

for all v € Wy (R, |z|~29).

2. Let g € L*(Q, |z|72*). Then there exists a unique u € Wy2(€Q, |z|72%)
such that

B[u, U] = (g, U>L2(Q,|x|—2a), for all v € W()1'2(Q, ]27]_20').

Thus, we can define T = L™t : L(Q, |z|7%%). — Wy*(, |z|~29), given
by Tf as the unique element of Wy*(%, |z|~2) such that

B[T f,v] = (f,v) 12(,|z|-2%)

3. We claim that T : L*(Q, |3;|‘2“) — L%(Q, |z|7%@) is a bounded, linear
and compact operator. We have that

HUH2 e B[u UJ = <-f’ ’LL) < “f”L2(Q ]z].—ﬂu)|lu”52(g,lm|—2a)
=z C”f”“(ﬂ |~ 2“)”ullwlz |z|~2a)»
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so that
HTf”WOIJ(Q,]zj—%) 5 CHfHD(Q,IxJ"‘Z“)'

Since the embedding W, (%, |z|~2%) — L2(, [z|2%) is compact, we
deduce that T is a compact operator.

4. We claim that T is symmetric. To see this, let f,g € L?(, |z|~2*). The
equation T'f = u means that u € Wy*(Q, |z|~2%) is the weak solution

of
{Lu =]~ f in Q

u=0 on 0Of2.

Analogously, Tlg = v means that v € W3(€, |z|~2%) solves

Ly =|z|™¢ in
v=0 on 0Q.

Thus _
(Tf, 9)2,21-22) = {f, T9) L2(2, x| -29)
for all f,g € L*(Q, |z|72%). Therefore, T is symmetric.

5. Observe that

(T, freael-2e) = (U, f)12(,jz|-20) = Blu,u] > 0

for all f € L*(Q, |z|~2*). The theory of compact, symmetric operators
then implies that all the eigenvalues of T are real, positive, and there
are corresponding eigenfunctions which constitute an orthonormal basis
of L*(Q,|z|74). Observe also that for,  # 0, we have that Tw = nw
if and only if

anL(w)v = Bnw, v =/Q|-$]_2“w'u,

or in other words
Lw = {|z["*w in Q,

w=( on 0N

in the weak sense.
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