UC |- Fc
Doc - H
& 95!
s

EQUIVARIANT FAMILIES OF

PSEUDQDIFFERENTIAL OPERATORS COMING
FROM DEFORMATION QUANTIZATION AND

COVARIANT FIELDS OF RIEFFEL C*-ALGEBRAS

Tesis
Entregada A La
Universidad De Chile
En Cumplimiento Parcial De Los Requisitos
Para Optar Al Grado De

Doctor en Ciencias con mencion en Matemadticas

Facultad de Ciencias
Por
Fabidn Eduardo Belmonte Aguilar

Mayo, 2011

Director de Tesis: Dr. Marius Mintoiu



FACULTAD DE CIENCIAS
UNIVERSIDAD DE CHILE

INFORME DE APROBACION
TESIS DE DOCTORADO

Se informa a la escuela de Postgrado de la Facultad de Ciencias que la Tesis de Doctorado
presentada por el candidato

Fabidn Eduardo Belmonte Aguilar

ha sido aprobada por la Comisién de Evaluacion de la tesis como requisito parcial para optar
al grado de Doctor en Ciencias con mencién en Matematica en el exdmen de Defensa de Tesis
rendido el dia Viernes 13 de Mayo.

Director de Tesis:

'Q,' {, Wk

74

A

----------------------------------- =%
/

4

Dr. Marius Mintoiu

Comisidn de Evaluacion de Tesis:

Dr. Eduardo Friedman
Presidente

Dr. Olivier Bourget

Dr. Rafacl Tiedra



Agradecimientos:

Quisiera agradecer especialmente a mi mamd, sin su apoyo nada de esto habria pasado, ella ha
sido el pilar fundamental de mi vida. También agradezco a mi papd quien desde pequefio me
motivé a siempre buscar las respuestas a mis preguntas y me traspasé su gusto por las ciencias.
Ademads agradezco también el incondicional carifio que siempre he recibido de mis abuelos. Estaré
eternamente agradecido de Mariela, quien me ha querido con todos mis defectos y virtudes durante
gran parte de este proceso, ademds su apoyo durante todo este tiempo y en especial durante los
tiltimos meses de mi doctorado fue fundamental para llegar a donde ahora estoy; gracias, te amo.
También quiero agradecer a mis amigos Alvaro A., César, Alejandra, Tomds, Pablo, Alvaro V.,
Lesly, Marioli... entre otros, por haber estado conmigo tanto en los momentos buenos como en los
malos.

En especial, quisiera agradecer a mi amigo y tutor Marius Mintoiu, quien ha sido un exce-
lente tutor, siempre guiandome, apoyandome y soportandome mds de lo debido; ademds €l ha sido
capaz de traspasarme parte de su manera de ver y disfrutar las matemdticas, lo gue incrementd
mi curiosidad, vocacién y ganas de aprender como nunca antes; gracias por su dedicacién profe.
También quisiera agradecer a los profesores Alicia Labra, Manuel Pinto y Jorge Soto quienes me
apoyaron y aconsejaron durante mis primeros afios en el doctorado y al profesor Eduardo Fried-
man quien ha sido un apoyo tremendo para mi, especialmente durante los dificiles dltimos meses.
También agradezco a los profesores Georgi Raikov y Rafael Benguria quienes, junto a los profe-
sores Marius y Eduardo, creyeron en mi y me aceptaron en el niicleo cientifico que conforman, lo
que ha sido fundamental en mi desarrollo como investigador.

Este trabajo a sido parcialmente financiado por la Comisién Nacional de Investigacién Cien-
tifica y Tecnol6gica (CONICYT) a través de 1a beca Apoyo a la Realizacién de Tesis Doctoral, la
que recibi solo durante mi cuarto afio en el programa. También ha sido parcialmente financiado
por Niicleo Cientifico ICM P07-027-F "Mathematical Theory of Quantum and Classical Magnetic
Systems". Ademds quisiera agradecer al Centre Interfacultaire Bemoulli por haber financiado mi
estadia en Lausanne; también estoy muy agradecido de su personal por haber hecho de dicha es-
tadia una muy grata experiencia (tanto en lo académico como en lo personal) y por su desinteresada
ayuda, especialmente en los momentos dificiles.



iv

Resumen:

El propésito de esta tesis es el estudio y desarrollo de dos nuevos tipos de teorfas pseudodifer-
enciales basadas en el cdlculo de Weyl, y también el estudio de ciertas técnicas C”-algebraicas
relacionadas con estas. Estos cdlculos consisten en asociar a cada elemento de una cierta clase
de funciones (a quienes llamamos simbolos) una familia de operadores en L?(R™) indexada por
los puntos de un espacio en el que R™ o R?" actia, de modo que estas definen familias equivari-
antes de operadores. Por equivariantes me refiero a que los operadores indexados por puntos en la
misma Orbita, correspondientes a un simbolo fijo, son unitariamente equivalentes (la equivalencia
unitaria serd implementada por un operador unitario independiente del simbolo). Los simbolos
son elementos de un dlgebra de Poisson de funciones sobre un espacio que puede ser visto como
un encolado continuo de varios espacios de fase usuales.

Desde el punto de vista C"*-algebraico, para cada uno de estos cdlculos obtendremos una C™-
dlgebra que tiene al dlgebra de simbolos como una *-subdlgebra densa. Las familias de operadores
provienen de restringir una cierta familia de representaciones de la C*-dlgebra al dlgebra de Pois-
SOM.

El primer célculo fue introducido por M. Lein, M. Mintoiu y yo. Este cdlculo fue construido
de modo que los operadores que emergen a través de este puedan ser interpretados como Hamil-
tonianos magnéticos. También logramos hacer al formalismo dependiente de un pardmetro real
h (interpretado como la constante de Planck) y obtuvimos varios resultados de tipo semicldsico.
Ademas apartir de cierta subdlgebra de Poisson de simbolos logramos construir lo que se conoce
como una cuantizacién por deformacidn estricta.

El segundo cdlculo estd basado en un proceso de deformacion de C*-dlgebras. Probaremos
que si el dlgebra no deformada es el dlgebra de secciones de un campo continuo de C*-dlgebras
entonces el dlgebra deformada también lo es y. de hecho, las correspondientes fibras son el resul-
tado de deformar las fibras del dlgebra de secciones inicial. Esto serd usado para probar resultados
espectrales para los operadores determinados por el segundo célculo.
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Abstract:

The aim of this thesis is the study and development of two recent types of pseudodifferential
theories rooted in the usual Weyl caleulus, and also the study of certain C*-algebraic techniques
related to them. These calculi consist in to associate to each element of certain class of functions
(called the symbols of the calculi) a family of operators on L?(.2"), indexed by the points of a
space on which R™ or R?" acts, such that these define equivariant families of operators. By a
equivariant family we mean that the operators indexed by points on the same orbit, corresponding
to a fixed symbol, are unitary equivalent (the unitary eqguivalence will be implemented by an
unitary operator independent of the symbol). The symbols are elements of a Poisson algebra of
functions on a space that can be seen as a continuous gluing of several standard phase spaces.

From the C*-algebraic point of view, for each of these calculi we will obtain a C*-algebra
which has the Poisson algebra of symbols as a dense *-subalgebra. The families of operators will
be the result of restricting a certain family of representations of the C*-algebra to the Poisson
algebra.

The first calculus was introduced by M. Lein, M. Miintoiu and 1. This calculus was meant to
generate operators which can be considered as magnetic Hamiltonian, We made the formalism
dependent of a real parameter /i (which must be interpreted as Planck’s constant) and we obtained
several semiclassical results. We also constructed, from certain Poisson subalgebra of symbols,
what is known as a strict deformation quantization.

The second calculus is based on a deformation procedure of C*-algebras. We will prove
that if the undeformed algebra is the section algebra of a comtinuous field of (’*-algebras then
the deformed algebra will also be a section algebra, in fact, the corresponding fibers will be the
deformation of the fibers of the initial section algebra. This will be applied to obtain spectral
results about the operators given by the second calculus,
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Chapter 1

Overview

1.1 Quantization: basic examples

By general principles, in Classical Mechanics the observables of a physical system are real valued
C*°-functions on its phase space (which is assumed to be a Poisson manifold or just a symplec-
tic manifold). On the other hand, in Quantum Mechanics the observables of the physical system
should be self-adjoint operators on some Hilbert space. We understand by quantization of a phys-
ical system, a systematic way to convert suitable classical observables of the system into quantum
observables. An admissible classical observable for such procedure is nsually called a symbol for
the quantization.

The Weyl pseudodifferential calculus is the best understood of such procedures; it can be
regarded as a quantization of the physical system consisting of a non-relativistic spinless particle
moving in the configuration space 2~ := R™, in the absence of any magnetic field. The phase
space of this system is the cotangent bundle T*.2" = 2" x £ ™* =: = of the configuration space,
where 2 * is the dual of 2. Explicitly, it is given by

(sl (a) = 2y [ [ ety (TEL 6 i) dgay,

where ©w € L%(2"). This expression makes sense for suitable class of functions f {symbols) and
defines a (not necessarily bounded) operator.
Recall that the canonical (constant) symplectic form

n
dfj Adz 5
=1
expressed in canonical coordinates {z;, {;}7..; transforms T* %2  into a symplectic manifold. The
bracket associated with it is given by

T

{fg} = Z(afgfaz‘,g = a.z‘jfafjg):

i=1



(9]
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where f,g € C™(Z). It endows Z with the structure of a Poisson Manifold, in other words,
the triple (C*°(Z), {-,-}, -) where - denote the pointwise product forms a Poisson Algebra.
The explicit definition can be found in [24] together with a treatment of Poisson and symplectic
manifolds from the classical mechanics point of view.

Now we briefly expose what happens when a (non-necessarily constant) continuous magnetic
field B (a continuous closed 2-form of .2") is turned on. Recall that the vector bundle structure of
the space T* 2" = 2" x 2™ = Z is given just by the projection on the first component. Let 7; B
be the pullback of B by this projection, and let us consider the closed 2-form given by the sum of
the canonical symplectic form and 7; B. This gives a new symplectic structure on 7.2 and the
bracket associated to it is given by

T

{f,9}B =) (85, f Ou,9 — On,f O,9) + Y B* 0, f Og, 9. (1.L1)

Ji=1 1.k

In the literature it has been considered another change in the Poisson structure of =, based on
an application of the minimal coupling principle: Choose a vector potential A for the magnetic
field (B = dA) and define

{f,9}" == {fa. 94},

where f,g € C*°(Z) and fa(x,€) := f(x,& — A(x)). These Poisson brackets are related by the
tfollowing formula:

{f,9}* = ({£.9}B)a.

By physical considerations, for each vector potential A one should have a quantization proce-
dure Op# of this (magnetic) physical system. They should have the gauge covariance property,
meaning that if A" = A + Vp (i.e. Ay A’ are potentials for the same magnetic field) then
ei*’DpA(f)e'iP = .DpA’(f). In [22] and [30] a solution for this problem was given; it is called
the magnetic Weyl calculus and is formally given by:

vyl (x) = am [ [ et p (ZEE ) omittcen g agay,

where I'! <z, > is the circulation of the potential A through the segment leading from « to .
Each continuous magnetic field B has a potential called the transversal gauge potential. It is
given by

noa
Aj(x) = Z/(; Bjir(sz)szrds.
k=1

This potential satisfies that ' < z,y >= I'? < 0,2,y >, where I'B < 0,2,y > is the flux of
B through the triangle with vertices at 0, z and y. The calculus associated to this potential will be
denoted by Op”.

It appears from time to time in the literature the proposition Op4(f) = Op(f4). In general
this fails to be a physically admissible quantization because it does not satisfies the covariance
property; however if A is linear then Op? = Op ,.
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1.2 Pseudodifferential calculi and gluing basic physical systems

The aim of this thesis is the study and development of two recent types of psendodifferential
theories rooted in the usual Weyl calculus, and also the study of certain C"*-algebraic techniques
related to them. These calculi are also meant to be interpreted as a quantization procedure. The
purpose is associating to each symbol a family of operators on L?(2”), indexed by the points
of a space on which 2™ or = acts, such that these define equivariant families of operators. By a
equivariant family we mean that the operators indexed by points on the same orbit, corresponding
to a fixed symbol, are unitary equivalent (the unitary equivalence will be implemented by an
unitary operator independent of the symbol). The symbols are elements of a Poisson algebra of
functions on a space that can be seen as a continuous gluing of several standard phase spaces.

From the C'*-algebraic point of view, for each of these calculi we will obtain a C*-algebra
which has the Poisson algebra of symbols as a dense *-subalgebra. The families of operators will
be the result of restricting a certain family of representations of the C*-algebra to the Poisson
algebra.

The first calculus is meant to be a generalization of the magnetic Weyl calculus. Let us describe
its setting and interpretation briefly.

Let @ be a jointly continuous action of 2~ on a Hausdorff locally compact space {1. We start
by showing that 2 can be regarded as a continuous ghiing of usual configuration spaces; then #
will allow us to define a notion of differentiability for functions on {2. So £} can be considered as
a new kind of (global) configuration space. This will lead us to define naturally a phase space for
our setting and the symbols for our first calculus.

Recall that the orbit O, generated by a point w € € is homeomorphic to the quotient of 2™ by
the closed stability subgroup 2., := {z € 2 |0-{w) = w}. It is well known that every closed
subgroup of 2 is basically of the form R¥ x L x {0}™ , where L is a lattice of dimension /, and
k + 1+ m = n. Then each orbit is homeomorphic to a simple configuration space (a product of
an euclidean space, some tori and points).

Although 2 is just a locally compact space, the given action allows us to define a notion of
differentiability. To motivate this definition we appeal to an essential idea of our construction. For
a function ¢ : © — S and a point w € (2, we define ¢, : 2" — S by gu(z) = p(f(w)). Note
that if w and ' are in the same orbit then ., and . differ just by a translation and ,, is well
defined over 2"/ Z,,. Moreover, if ¢ is continuous, then each y,, is continuous.

We could declare that ¢ £ C®(S2) if ¢, € C*°(Z") for each w € §}. However, this first
attempt does not consider the global topology of §2. The following definition can be interpreted as
a way to verify uniformly that each ¢, is C°°. We define the space of bounded smooth vectors by

BC®(Q) := {p € BC(Q)| Z 3z — b:(p) € BC(Q) is C™},

where BC'((2) is the C'*-algebra of complex bounded continuous functions over §2, () is de-
fined by 6;(v)(w) = p(fz(w)) and C*° is meant in norm-sense. For example, if we consider
Q := 2 and @ the action by translation, the resulting space is the usual space BC™(Z") of in-
finitely differentiable functions which together with all its partial derivatives are bounded. Clearly,
if o € BO®™(51) then ¢, € BC®(2), foreach w € {1
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Since (2 is meant to be a global configuration space, the natural phase space for our setting is
Qx 27" Theaction # 77 of 2" x 2* = Zon ) x 2™ given by

(& 7)((x.7), (w,€)) i= (Oz(w).n+ &) (1.2.1)

allows us to define analogously a new space of bounded smooth vectors BC™ () x 27).

The last ingredient is the appropriate definition of a magnetic field for our setting. We call a
magnetic field on {2 a continuous function B : {1 — /\2 Z such that B, is a usual magnetic field
for any w. Inspired by the usual magnetic case, we define

n

{£,9}B = (0c,fdi9— 6;f0c,9) + > B* 8, f .9, (1.2.2)

J=1 gk
where f,g € BC®(Q2 x 27*) and

§; : BC®(Q) = BC™® (), dip:= dga"’”—("o)h::o. {1.2.3)
T
Clearly BC™(£2 x 2" ) together the pointwise product and {-, -} g forms a Poisson algebra. This
will be the Poisson algebra of symbols for the general magnetic calculus.

For comparison, let us leave for a while the first calculus and start to describe the second one.

The second calculus is based on M. Rieffel’s article [43]. In this article a quantization in the
sense of strict deformation was defined (see [24], [43] or [44] for details and motivation of this
notion). On the other hand, in [29] it was showed how to obtain Schridinger type representations
for Rieffel’s quantization; we call all the formalism Rieffel’s pseudodifferential calculus.

The initial data for Rieffel’s calculus is a quadruplet (¥, 0,=,.J), where ¥ is a Hausdorff
locally compact topological space, © is a jointly continuous action of = on ¥ and J is a 2n x 2n
skew-symmetric matrix. As before, each orbit is homeomorphic to a product of an euclidean
space, some tori and points; we interpret each O, as a standard phase space. Moreover, using the
action © as before, we define the space of bounded smooth vectors BC®(X); this is the space of
symbols for Rieffel’s calculus. So again we can interpret ¥ as a gluing of standard phase spaces
and also as a global phase space. This point of view is very fruitful; it allows us to consider global
phase spaces which are not the cotangent bundle of a global configuration space. This could seem
to be just heuristical, but there are some very interesting cxamples ( chapter 12 at [43]) where the
global phase space ¥ is actually a Poisson manifold which is not symplectic (in particular, it isn’t
a cotangent bundle of a manifold) and the standard phase space components O, are its symplectic
leafs.

As before for a function ¢ : ¥ — S and a point 0 € 3, we define @, : = — S by @, (X) :=
@(Ox(r)). We also define the derivations {4; }?21 replacingin (1.2.3) Q by X, A by @ andz € £~
by X € E.

Note that although the phase space considered before 2 x 27 is a particular case, we didn’t
consider in the present general case magnetic fields.

We can also define a Poisson bracket on BC'*°(X);

{f,9}s =) Jjxb; f brg. (1.2.4)

ik
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We will usually consider the standard skew-symmetric matrix ( _?I é ) ; in this case the bracket
is given by
n
{£.9} =Y (6ntif 359 — 0;f bnssg)-
i=1
Note also that the skew-symmetric bilinear form
[ X, ¥y = J¥ + X (1.2.5)

transform = into a symplectic vector space (so into a symplectic manifold with a constant sym-
plectic form), which are the most standard objets used to describe classical mechanics. Choosing

the standard symplectic matrix J = _OI é ) , we obtain the standard symplectic form which
we simple denote by [[--]].

{, -} can be obtained formaily by
{f.9}s:=[[v],v4g]ls

where Vf := (01f,02f, ..., 62nf).
Finally, the calculi are respectively given by

HE(f) == Op™{feug) v Balf) =Dplf,), (1.2.6)

where f belongs to BC°(2 x .27*) in the first case, and to BC*°(X) in the second case.

Note that, since each f,, o) and f, belong to BC*(Z), the above expressions have sense and
they define families of bounded standard pseudodifferential operators, thanks to the Calderon-
Vaillancourt Theorem ([15]) and his magnetic version ([20]). Note also that each symbol f,, o) or
f could be considered as a symbaol on the corresponding standard phase space. For example, if
the orbit O, of o is homeomorphic to {0} x T x E?"~2 (recall that each orbit is homeomorphic
to the product of points, tori an euclidean spaces) then f, will be a symbol on = independent of
the first variable and 27-periodic in the second one, or it could just be considered as a symbol on
{0} x T x R?"2,

In [29] it was proved that if & and ¢’ belong to the same orbit then H,(f) and H,/(f) are
unitary equivalent for each f € BC™(X). If ¢/ = ©z(c) then the unitary equivalence is im-
plemented by the unitary operator Op(ez), where ez(X) = e~X:Z], The corresponding result
for the general magnetic calculus will be proved in the second chapter (2.3.9). This properties
motivate us to think that these calculi could give a convenient setting to use pseudodifferential
techniques in some continuous models of random operators; obviously, for this, we need to endow
2 (respectively ¥) with a measure invariant by 6 (respectively ©).

In all the formalism above we can introduce dependence of a real parameter £ > () interpreted
as Planck’s constant. For the Weyl calculus this dependence is given by

Ol (@) = oty [ 7 (T emeitugy) aa,

and it is transmitted to Rieffel’s pseudodifferential operators through (1.2.6). The dependence for
the general magnetic Weyl calculus will be given explicitly in chapter 2 (see (2.3.7)).
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1.3 ("-algebraic techniques

The development and study of the calculi described above have in common the use of (*-algebraic
techniques. This is motivated principally by the relation already present for the Weyl theory with
certain C™*-algebras. The core of this relationship comes from the following well known fact:
Given two suitable symbols f and g (for example f,g € BC®(Z)), there is a symbol A such
that Op(h) = Op(f)Op(g). The corresponding h is denoted by f+#g, and # is called the Moyal
product. It is given by

)@= [ [ A (0. +¥)g((w.) + 2)dVdZ,

where the above integral is usually defined by oscillatory integral technigues.

There are certain sets of symbols which together with the pointwise sum, the Moyal product,
and pointwise complex conjugation form a *-algebra, so one can ask for a natural C*-norm. For
example, since Op is faithful and Op(f) = Op(f)*, over those *-algebra whose image by Op
consists of bounded operators, we can define | f|| = [[Op(f)|lm(z2(2)). The Schwartz class
S&(Z) and BC*°(Z) are important examples of such *-algebras; note that, with the usual Poisson
bracket each of these spaces becomes also a Poisson subalgebra of C°(Z).

If we consider the fi-dependent Weyl calcutus Op,, we can define #; by imposing Opg( f#nrg)
= Opx(f)Op;(g). For f € BC*°(E), we can also define || f||; := 190 (OB L2c2y)-

It is well known that if f and ¢ belong to BC®°(Z), then

i
f#9 = fg+ 5 {f.9} + B Ra(f.9) (13.1)

and || Ry(f,9)|ix < C uniformly in /. In particular

. Opp(F)0ps(g) + Op:{g)Op; ‘
%ncn 1Opn(Fg) — ( pu(f)Ops(g) pulg) Ph(f)) llegzagay =0 (13.2)
—30) 2
and i
Lim [[Ops({f, 9}) ~ = [OPa(F), OPr(9)]l 5122y = O, (1.3.3)

where [, -] is the usual commutator of B {L?(27)).

For the magnetic Weyl calculus the situation is similar. First a fi-dependent magnetic Moyal
product was defined by imposing Opil(f#8¢) = Opi(f)Opf (g); remarkably the h-dependent
magnetic Moyal product does not depend of the vector potential A. From theorem 2.11. at [27]
it is easy to obtain the analogue of (1.3.1) for the magnetic Moyal product, with the usual bracket
{+,-} replaced by the magnetic bracket {-, -} g given in (1.1.1).

One of the purposes of this thesis is to define, for the general magnetic calculus, a correspond-
ing Moyal product, a suitable fi-dependent norm and to prove the analogue of (1.3.1). For Rieffel’s
pseudodifferential calculus this was already settled in [43). From these results we will also obtain
an analogue of {1.3.3) and (1.3.2) for both calculi.
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1.3.1 Twisted crossed products and the general magnetic calculus

For simplicity, we initially define a general magnetic Moyal product on a space which can be
regarded as a kind of Schwartz class. Later, this product will be extended to a much more general
class of symbols. Let S(.2™; C§°(§2)) denote the space of elements of BC°(§2 x 2™*) such
that their partial derivatives of any order evaluated on any point of 2™ belongs to C(£2) and its
product with any polynomial on 2" is uniformly bounded on €2 (see (2.2.8) for the full definition).
For f,g € S(Z*;C§°(Q)) define

(FiPg)(w, &) =2~ / f / / 2l (2.0)] p=iTBw <y-zy+2,2-y>.
w o~ Ja Jas
) f(%[w],& + U) Q(B:[W]«§+ C) d{dzdndy.

Note that ( f#7 D (w0) = f(w,o)#Bw 9(w,0)» Where in the right hand side we consider the stan-
dard magnetic Moyal product and in the left hand side the new one. Therefore

HE(H4%g) = H2(NE ).

The above definition of the general magnetic Moyal product is motivated by the C™*-algebraic
techniques that were used in the study and development of the magnetic Weyl calculus. To explain
this point, let us consider the Banach space L*(.2", C(Q)) of Bochner integrable functions on 2~
with values in Cip(€2). Let us also define

12 F: LYZ,Co(R)) = ColZ*,Co(R), 1€ F1:LHZ*, Co(R)) = Co(Z,Co(R))

by
(1w F)2)(C) =/» b(z)e™®?dz, [(1wFh)fl(z) = FQe = de.
2 a

Jr

It is easy to check, as in the standard case, that S(27;C§°(Q)) € L}(2',Co(R)) and that 1 @ F
restricts to an isomorphism between S (27 C5°(Q)) and §(27*; C°(€2)), with the corresponding
restriction of 1 ® F ! as its inverse.

For &, € S(27; C§°(€2)) we define

PPV =(1aF ) [1aF)o#?(1eF)0].
Then

(@2 )e2) = [ [8(0n2)0)] [605).2 = )] [x0-5 @iv 2~ )] @,

where -
KB(wyz,y) = e T 02Tt Yrue X, we

We can recover the above integral by evaluating in w the function given by the following
Bochner integral:

(® o8 T)(z) := f

Z

0u=2[B(y)] 03[V (= - v)] -5 [ (3,2 - )] dy.



CHAPTER 1. OVERVIEW 8

The above product belongs to the theory of twisted crossed product C*-algebras. In general,
the definition of such C~-algebras has as ingredients an initial C*-algebra A, a locally compact
group (7, a strongly continuous action & of (i on A and a so called normalized 2-cocycle for the
triple (A, G, 6).

When A = Cy(£2), a normalized 2-cocycle of (Cy(£2), G, #) is a continuous map . : G X G —
C(Q,T) satisfying forall z, y, z € G:

s(z + Y, 2) 5{z, y) = O0:[x(y, 2)| sz, y + 2)

and x(z,0) = k(0,z2) = 1, where C({2,T) is the algebra of continuous functions on ) with
values in the circle endowed with the open-compact topology. This is the definition of a 2-cocycle
of G with coefficients in C'(2,T) given in group cohomology theory. (Co(€2), G. 0, k) is called
a twisted C*-dynamical system (if the 2-cocycle is trivial, (Cp(£2). G,#) is just a C*-dynamical
system).

Since the setting for the general magnetic calculus requires an action of the vector group 2,
we will give the definition of a twisted crossed product just for G = Z~ (although the definition
below also work for (& abelian).

If a twisted C*-dynamical system (Co((1), .Z". #, &) is given, then we can endow
LY &; Cy(52)) with a product o*, given by (1.3.1), and with the involution * given by

°" (z) = B(~1).

Then (L'(.27; Co(02)), o, °", ||]|1) is a *-Banach algebra but it is not a C*-algebra. However
there is a C*-norm ||-|| on L'(.2"; A) (see [39] and [40] for the pioneering works and [34] for
a treatment related to magnetics fields). The completion with respect to this norm is called the
twisted crossed product C*-algebra associated to (A, 2, 8, k), and is denoted by A x5 2. If &
is trivial, then the resulting C*-algebra is just called a crossed product C™-algebra.

We will prove later that £ define a 2-cocycle for (Cp(£2), 2, #); for this Stokes’ theorem will
be the main tool. For simplicity, we will denote the emerging C*-algebra Cp((2) mB"B & by €8,
We will also denote by B the completion of (1 @ F)[L1(2", Cp(52))] with respect to the norm
11 @ F(®)l|gs = ||®|ge. Since L1(2, Cp(2)) is dense in ¢, the partial Fourier transform
can be extended to an isomorphism between €& and B, By definition, B5 has as product an
extension of the general magnetic Moyal product.

The whole description given above was already settled for the usual magnetic Moyal product
and this is the main motivation for our present treatment; the principal reference is [34]. Let us
explain briefly which is the corresponding setting in this case. Initially, it was considered the
action 7 of 2" on itself by ranslation; this gives an action of 2™ in Cy(.Z"), as in our general case.
However, this action makes sense in any C*-algebra of bounded, uniformly continuous functions
on 2" and stable by translations; we called such C'*-algebra a standard 2 -algebra. It follows
from Gelfand’s theory that for any standard .2 -algebra A there is a locally compact space S4
such that A 22 C5(S.4) and 7 also comes from an action of 2~ on S4. If B is an usual continuous
magnetic field, then x” defined by

[RB(I, y)](z) _ e—iFB(:,:r+z:z+y+z,\. vz, y,z € V%-,
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is a 2-cacycle for (Co(27), 27, 7). 1t was proved in [34] that if we suppose that Cp(.27) C A,
then 2 C S4 and if in addition the components of B = (Bij) are extendible from 2 to a
continuous function on S 4 then [x%(z, )] can also be defined on S 4 and ¥ becomes a 2 cocycle
of (A, 2, 7).

From the cohomological point of view, what we have been showing in the last paragraph is
a way to associate to each closed 2-form of 2™ a 2-cocycle of £ with coefficients in C(2°, T).
Moreover, in [34] it was shown that this is also true for 1-forms and 1-cocycles, and this association
respect the respective coboundary maps, i.e. if A is a vector potential and we denote by )\ the
corresponding 1-cocycle and by p the coboundary map at the level of group cohomology., then
dA = P( )‘A)_

We also must recall that the standard magnetic Moyal product was obtained by imposing the
equality Op®(f#Pg) = OpP(£)Op®(g) (as in the nonmagnetic case). In the other hand, the
definition of our general magnetic Moyal product is motivated by the standard magnetic Moyal
product and the C*-algebraic techniques described above, but we did not figure it out from some
faithful representation of our space of symbols as operators in some Hilbert space (as in the stan-
dard case); mainly because there isn’t a Hilbert space naturally associated to the setting. However,
if () is endowed with a ¢-invariant measure y, then we will give a faithful representation OY%
of B5 on B[L?(2°;H")], where H' := L*(9, 11); moreover we will also show that for each
fe®BE OPB(f) = fns HE(f)du(w) (see the last paragraphs of the subsection (2.3.3)).

Let us come back to the description of twisted crossed product C'*-algebras. One of the most
important property of these C*-algebras is that there is a one to one correspondence between
their non-degenerate representations and certain triples (##°, r, T') called covariant representations.
More precisely, if (Co(£2), 27, 6. k) is a twisted *-dynamical system, we call covariant representa-
tion (#, r, T') a Hilbert space H together with twomaps 7 : Co(Q) = B(H) and T : 2~ — U(H)
(B(#) and 24(#) denote the C*-algebra of bounded operator on H and the group of unitary oper-
ators on H, respectively) satisfying

(1) r is a non-degenerate representation,
(ii) 7' is strongly continuous and T'(z)T(y) = r(s(z,y)]T{(z +y), Vz,ye 2,
(iii) T(z)r(@)T(z)” = rlba(p)], Ve L, pe A

If (H,r,T) is a covariant representation of (C(2), 2", 8), then Rep? defined on
LN&';Co(Q)) by

Rep? (B) := /ﬁ r[0,2(8())] T() dy

extends to a representation of Cp(§)) xj 2.
In our setting an important example is the following: letw € Q, H = L%(2") and r,, be the
representation of Cp((2) in B(#) given forany ¢ € Cy(2),w € Hand z € 2" by

[ru(@)ul(@) = [f=(0))() ule) = (6] u(z).

Let also T;, be the map from 2 into the set of unitary operators on A given by

[TE (y)u](z) = £B(w;z,y) ulz + y) = e T Ozatily(z 4 y).
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B
The general magnetic calculus can be lifted from the family of representations iﬂep:{i‘j through
the partial Fourier transform defined at the beginning of this section. In other words we have that

HE([1 & F|(D)) = Rep¥ (@) =: RepB (@), Vw £ 0, @ € €P.

Now we want to introduce fi-dependence in our formalism. It is easy to check that
(Co(R), 2, 0%, kBH), where

0% := by, and £BP(z,y) = r:”r?(ha:, hy)

also form a twisted C*-dynamical system. So we can consider the twisted crossed product C*-
algebras Cy(2) » g}g " % which will be denoted simply by Cf . The algebra of symbols isomorphic
to Cf via the partial Fourier transform will be denoted by iBf ; its product is the i-dependent
magnetic Moyal product for our calculus,

Again, the fi-dependent general magnetic calculus is lifted from a family of representations
of (Sf through the partial Fourier transform; the required covariant representations is obtained by

replacing 7.2 by TE" which is given by
T3 My) = T, (hy).

Let us come back to our space of symbols & (52‘ C§° (Q)). It is easy to check that
S(2™;C§°(0)) is a Poisson subalgebra of BC™(Q x 27). We will prove that it is a dense
*-subalgebra of ‘BE for each i € R and get an analogue of (1.3.1) for it. Indeed we will prove
that, for each f, g € S(27; C§°(§2)) we have

f#Pg=fg+ g{f,g}g + W Ri(f,9), (1.3.4)

where {-,-} 5 is our general magnetic Poisson bracket given by (1.2.2), each term belongs to
S{2*;C5°(Q)) and ”Rfk(f»gm%f is uniformly bounded in £i.

To prove this results we will transport both the Poisson bracket and the pointwise product
from
S(277:C5°(2)) to §(27;C§°(Q2)) through the inverse partial Fourier transform; then we will
obtain the correspondent result for S{2"; C§°(£2)) by using some properties of twisted crossed
products C*-algebras, and finally we will come to back to $(.27*; C5°(£2) ) now through the partial
Fourier transform.

Since for each w & €2 HE), is a representation of Bf we have that

; Hfh Hfi-( +HB Hu.B ;
|HE,(fg) - LE "'(”,, el '”(f)n<ufg—(

“~

2 187 i—0
(1.3.5)

-

and

HEA{F, 1) = D, HEA@ < 1149} - 51 dlapllng 2,00 (138
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where [+, |5 is the commutator in B
We will also prove that, for each f € S(2™*; C§°(€ 2)], the map

[0,1] 3 h = [|f[lz € [0,00) is continuous. (1.3.7)

This result will be a direct consequence of some strong property of twisted crossed product C*-
algebras. We will discuss this point in the next section.

Putting together the right side of (1.3.6), the right side of (1.3.5), (1.3.7) and the fact that
S(&*;C§°(R2)) is a dense “-subalgebra of B for each i € R, we get that the family of inclu-
sions

% o0 B
{s(@*.c@)g = %h,ﬁ}ﬁe[&l}
(S(27,C8°(2)) 5 and B, are the real valued elements of S(27, C§°(12)) and the self adjoint
part of ‘IBE , respectively) is what Marc Rieffel called a strict deformation quantization (see [24],
[43] or [44] for details and motivation or 2.5.1 for the explicit definition inside this thesis). For
us, this is the appropriate way to condense the basic properties that a quantization procedure must
satisfy.

1.3.2 Rieffel’s deformation quantization and covariant fields of C*-algebras.

Recall that for Rieffel’s calculus we have as initial data a quadruplet (£, 0, =, J), where T is a
Hausdorff locally compact topological space. © is a jointly continuous action of = on ¥ and J
is a 2n x 2n skew-symmetric matrix. Recall also that we defined BC™(X) using © and we en-
dowed it with the Poisson bracket {-, -} ; given by (1.2.4), which is related to the skew-symmetric
bilinear form [, -] given by (1.2.5). As we explained before, it is meant to cover global phase
spaces which are not necessarily of the form  x 2. So, we cannot use the same C*-algebraic
techniques as before. However, if we look more closely the definition of the usual Moyal product,
we can note that (f#g)(z, &) can be recovered from evaluating at (z, &) the following Bochner

integral
mzn/ / AL (@ )y (f) (T © 7%)2(g) dYdZ,

where [(7 @ 7*)(y. (F)](2, &) := f(z + y, & + 7). Motivated by this expression, for each f, g €
BC*(X) we can define

rhg=n [ [ 7oy (f)0slg)avaz. (138)

where the above integral is defined by oscillatory integral techniques. This is the starting point of
[43] (up to a change of variable). More precisely, in [43] it was show how from a C”-dynamical
system of the form (A, ©,Z) and a 2n x 2n skew-symmetric matrix J a new C*-algebra 2 can
be constructed, which can be regarded as a deformation of the initial C*-algebra. We will call this
procedure Rieffel deformation quantization and the emerging C”-algebra 2 ; the Rieffel deformed
(" -algebra.
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For the construction of this C”-algebra. let us consider first the space of smooth vectors
A® = {fc A|E3 X - Ox(f) € A is C™}.

It is well known that A is a dense “-subalgebra of A. We endow .4°° with the same involution
of A and with the product

fhig =2 /_ [_ A7l @y (£)0(g) dYdZ,

suitably defined by oscillatory integral techniques. We can recover (1.3.8) as a particular case if J
is the standard symplectic matrix.

In {43] it was proved that the *-algebra (LA, #;,* ) admits a C*-completion 2 in a C*-norm
Il

We will give a more detailed discussion about the whole construction and some of its properties
in chapter 3.

Many interesting examples of Rieffel’s deformed C*-algebras were given in [43], among
them we highlight the noncommutative tori, the quantum closed disk, the quantum quadrant,
the Podles’ quantum spheres, and the Woronowicz’s quantum group SU,(2). It is remarkable
that if (Co(02), 27, 6) is a C*-dynamical system then the crossed product C*-algebra Cy({2) x4
2 is isomorphic to the Rieffel deformed C*-algebra associated to the C*-dynamical system
(Co(2 x 277),8 ® 7, Z) together with the standard symplectic matrix, where § @ 7* is given
by (1.2.1).

In [43] h-dependence was introduced by replacing the skew-symmetric matrix J by iJ, lead-
ing to Rieffel’s deformed algebras 213 ;. We will denote by || - || the corresponding C™-norm.

Recall that 4> was equipped with the Poisson bracket {-, -} s given by (1.2.4). Fortunately, it
was already proved in [43] an analogue of (1.3.1); explicitly it was proved that, for each f, g € A
we have

P09 = 9+ S Uf. 9k + RBa(f,9)

and || Ry(f, 9)| lgf is uniformly bounded in /. So, as for the fi-dependent general magnetic Moyal
product, we also get the analogue of (1.3.6) and (1.3.5). In [43] it was also proved that for each
f € A the function

[0,1] 3 & = ||f||n € [0,00) is continuous. (1.3.9)

Thus the family of inclusions
(A= = A}

hel,1]
is a strict deformation quantization.
Our next purpose can be considered as a step in the study of Rieffel’s deformed C*-algebras,
but it will also lead us to some spectral results concerning the operators given by Rieffel’s calculus.
Recall that a (upper semi-)continuous field of C*-algebras is a family of epimorphisms of
C*-algebras {B £ B(t)|te T} indexed by the locally compact topological space T  and

satisfying:
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1. Forevery b € Bone has || b [ 5= supser | P(t)b || -

2. Forevery b € Bthemap T 3t~ || P(t)b |5 is (upper semi-)continuous and decays at
infinity.

3. There is a multiplication C(T} x B> (p,b) — ¢ = b € B such that
P(t)e*b)=p(t)P(E), VieT,peC(T),beB.

If in addition B is endowed with a strongly continuous action o of a locally compact group &
and each KerP(t) is invariant under o, then | B Ll Bt)|te T} is called a covariant (upper

semi-)continuous field of C*-algebras. B is usually called the algebra of sections of the field.

Let {8 7Y B(t) |t € T ; be acovariant (upper semi-) continuous field of C*-algebras. Let
us denote KerP(t) by Z(t). Since each ideal Z(¢) is invariant, the restriction of & to Z(t) ay(g) :=
a(g)|z(t), define a strongly continucus action on Z(¢). For each ¢ € T we can also define a
strongly continuous action of on B(t) by

ay(P(t)b) := P(t)[ag(b)].

So, if G = R?", we can consider the Rieffel deformed algebras of each member of the short exact

sequence
0= Z(t) — B—= B(t) =0,

which we denote by J(¢), B and B(), respectively.
Fortunately, the resulting C'™*-algebras also form a short exact sequence (theorem 7.7 in [43]).

In other words
B/I(t) = B(t).

So, one can ask if the resulting family of epimorphism is a (upper semi-)continuous field of C*-
algebras. One of the principal purposes of this thesis is to prove this, i.e. we will prove that the
Rieffel deformation of a covariant continuous field of C*-algebras is a continuous field of Rieffel’s
deformed algebras (theorem (3.0.1)).

For twisted crossed product C*-algebras a similar program was already settled. More pre-

cisely, if (B, G, @, K) is a twisted C~-dynamical system and {B E(—tg B(t)|te T} is a covari-

ant (upper semi-)continuous field of C*-algebras, then we can transfer o and K to the ideals
Z(t) and the algebras B(t), so it also follows that the twisted crossed product of a covariant short
exact sequence is a short exact sequence of twisted crossed products. Moreover, the resulting
family of epimorphisms also form a (upper semi-)continuous field of C*-algebras; in other words,
twisted crossed products of a covariant (upper semi-)continuous field of C*-algebras is a (upper
semi-)continuous field of twisted crossed products C'*-algebras: see theorem 5.1 and corollary 5.3
in [37] for details and the proof of this fact. We can apply this result to prove (1.3.7). Indeed,
take B := C([0,1]; Co(©2)) & Cop([0,1] x ), for each h € R define P(h) : B — Cy(2) by
P(R)(¢) = ¢{h), and also define the action cv on B3 and a 2-cocycle K for (B, 27, a) by

la(@)](8) = O2o(R)]  and (K (z,4)](h) = k{2, y).
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(1.3.7) follows after considering each element of S (i?, ’6° (Q}) as an fi-independent element of
LM A B)
¢ B X 2 and noticing that B(k) xK!' 2" = Co(2) x5 2 =: €.

Although our theorem (3.0.1) wasn’t available until now, in [43] (1.3.9) was obtained following
the same above strategy. More precisely, in [43] (3.0.1) was checked for a specific covariant
continuous field of C*-algebras (similar to the one used above, at the beginning of chapter § in
[43]), and as before, this implied (1.3.9).

We must mention that (1.3.9) is just one example of an application of our theorem (3.0.1).
In fact, we will give many other examples. Most of these examples have as initial undeformed
section algebra an abelian algebra A. In this case, it is easy to characterize the notion of covariant
continuous field of C*-algebras. Recall that, by Gelfand’s theory, every abelian C*-algebra is
of the form Cy(X). and every strongly continuous action © of = on 4 := Cy(EX) comes from a
jointly continuous action of = on ¥, which we also denote by ©, and which is given by the equation
©x(f)](c) = f(©x(a)). So we are in the setting of Rieffel’s pseudodifferential calculus. Let 77
be a locally compact Hausdorft space, and let ¢ : ¥ — T be an open and continuous surjection
such that ¢(©x(0)) = g(c) , VX € =. Consider T; = g~ ({t}), A(t) := Cy(%;), and

R(t) : Co(E) » Co(%y), R(O)f:=fln,, Yt T,

Then {C () "3@ C(%i)|te T} is a covariant continuous field of commutative C*-algebras, and

this is the only possible way to regard C(X) as a section algebra. So, givensuch g : ¥ — T, we
will apply (3.0.1) to show that the family of epimorphism

{E(E) m_(r_; (%) |te T} is a continuous field of C™-algebras, (L.3.10)

where €(X) and €(X;) are the Rieffel quantization of Cy(X) and Cy(X;), respectively, and R (t)
denote the epimorphism induced from R.(t) by the Rieffel’s quantization.

To explain how this results will be applied to the spectral analysis of the families of operators
given by Rieffel calculus, first we need to introduce some notions. We say that a real set valued
function S is inner continuous at ¢y if each real open set which meets S(t;) also meets S(t) if ¢
is close enough to ty; so, intuitively, S is inner continuous at tg if S(¢) doesn’t suddenly shrink
close to tp. The notion of outer continuity follows by replacing above "open" by "compact” and
"meets" by "doesn’t meet"; so, S is inner continuous at %y if S(¢) doesn’t suddenly expand close
to tp. Let us also assume that ¥ is compact (just for simplicity) and that each ¥, is a quasi-orbit
(the closure of a single orbit). It was proved in [29] that if o, ¢’ € ¥;, then the spectra of H,(f)
and H,/(f) coincide for every real function f € BC>(Z). So one can define, choosing ¢ £ ¥;.
S(t) := sp[H,(f)]. We will show that (1.3.10) will imply both outer and inner continuity of
S. Note that S o g is also (outer and inner) continuous, so although ¢ and ¢’ leave in different
quasi-orbits, the spectra of H,(f) and H,/( f) can be "compared” using the definition of outer and
inner continuity. For example, a gap in the spectrum of H,(f) will still be a gap in the spectrum
of H,(f),if o and o’ are close enough. If we apply this result to the example used by Rieffel to
prove (1.3.9) (at the beginning of chapter & in [43]), we will get that for each ¢ € ¥ and each real
f € BC®(X), sp[HE(f)] . sp[HY(f)] = F(T) in the sense described above.
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Finally we will also obtain that, fixing o € ¥, the set valued function §%5(t) := sp,[Ho (f)]
(the essential spectrum of the operator H,( f)) is onter continuous, for every real f € BC™(I),
So, gaps of sp,,[H,(f)] remains as gaps if we replace o by ¢’ close enough.

The second chapter of this thesis consist of the article "Magnetic twisted actions on general
abelian C*-algebras" which is joint work with Max Lein and Marins Mintoiu. This article is
mainly devoted to the study of the general magnetic calculus, the proof of (1.3.4) and to obtaining
the strict deformation quantization described above. It will appear in Journal of Operator Theory.

The third chapter consists of the article "Covariant Fields of C*-Algebras and Continuity of
Spectra in Rieffel’s Psendodifferential Calculus” which is joint work with Marius Mintoiu. This
article is devoted to the proof of the theorem concerning covariant continuous field of C**-algebras
described above (3.0.1), to some examples and to applying the main theorem to spectral analysis.
It has been submitted for publication.



Chapter 2

Magnetic twisted actions on general
abelian C'*-algebras

2.1 Introduction

The usual pseudodifferential calculus in phase space = := T™*R™ is connected to crossed product
C~-algebras A xp 2 associated to the action by translations # of the group 2" := R" on an
abelian C*-algebra A composed of functions defined on 2". Such a formalism has been used
in the quantization of a physical system composed of a spin-less particle moving in 2°, where
the operators acting on L%(.2") can be decomposed into the building block observables position
and momentum which are associated to 2~ and its dual £™*. When dealing with Hamiltonian
operators, the algebra A encapsulates properties of electric potentials, for instance.

During the last decade, it was shown how to incorporate correctly a variable magnetic field in
the picture, cf. [36, 22, 23, 30, 32, 34, 33, 20, 21] (see also [7, 8, 9] for extensions involving nilpo-
tent groups). This relies on twisting both the pseudodifferential calculus and the crossed product
algebras by a 2-cocycle defined on the group 2 and taking values in the (Polish, non-locally
compact group) U(A) of unitary elements of the algebra A. This 2-cocycle is given by imaginary
exponentials of the magnetic flux through triangles. The resulting gauge-covariant formalism has
position and kinetic momentum as its basic observables. The latter no longer commute amongst
each other due to the presence of the magnetic field. It was shown in [31] that the family of twisted
crossed products indexed by A £ (0, 1] can be understood as a strict deformation quantization (in
the sense of Marc Rieffel) of a natural Poisson algebra defined by a symplectic form which is the
sum of the canonical symplectic form in = and a magnetic contribution.

A natural question is what happens when the algebra A (composed of functions defined on
27} is replaced by a general abelian C'"-algebra. By Gelfand theory this one is isomorphic to
Cp(€2), the C*-algebra of all the complex continuous functions vanishing at infinity defined on
the locally compact space 2. To define crossed products and pseudodifferential operators we also
need a continuous action # of 2~ on {) by homeomorphisms. Cy(2) can be seen as a C*-algebra
of functions on 2" exactly when () happens to have a distinguished dense orbit. In the general
case, the twisting ingredient will be “a general magnetic field”, i.e. a continuous family B of
magnetic fields indexed by the points of (2 and satisfying an equivariance condition with respect

16
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to the action .

The purpose of this article is to investigate the emerging formalism, both classical and quantal.

To the quadruplet (), #, B, 2") described above we first assign in Section 2.2 a Poisson al-
gebra that is the setting for classical mechanics. The Poisson bracket is written with derivatives
defined by the abstract action # and it also contains the magnetic field B. Since {1 does not have
the structure of a manifold, this Poisson algebra does not live on a Poisson manifold, let alone a
symplectic manifold (as it is the case when a dense orbit exists). But it admits symplectic repre-
sentations and, at least in the free action case, {) x 2 * is a Poisson space [24] in which symplectic
manifolds (the orbits of the action raised to the phase-space Z) are only glued together continu-
ously.

Twisted crossed product C*-algebras are available in a great generality [39, 40]. We use them
in Section 2.3 to define algebras of quantum observables with magnetic fields. By a partial Fourier
transformation they can be rewritten as algebras of generalized magnetic pseudodifferential sym-
bols. The outcome has some common points with Rieffel’s pseudodifferential calculus [43], which
starts from an action of R™ on a C*-algebra. In our case this algebra is abelian and the action has
a somehow restricted form; on the other hand the magnetic twisting cannot be covered by Rieffel’s
formalism. We also study Hilbert-space representations of the algebras of symbols. Their inter-
pretation as equivariant families of usual magnetic pseudodifferential operators with anisotropic
coefficients {27] is available. This will be developed in a forthcoming article and applied to spec-
tral analysis of deterministic and random magnetic quantumn Hamiltonians.

Section 4 is dedicated to a development of the magnetic composition law involving Planck’s
constant. The first and second terms are written using the classical Poisson algebra conterpart. We
insist on reminder estimates valid in the relevant C*-norms.

All these are used in Section 5 to show that the quantum formalism converges to the classical
one when Planck’s constant /i converges to zero, in the sense of strict deformation quantization
[43, 44, 24, 25]. The semiclassical limit of dynamics [24, 45] generated by generalized magnetic
Hamiltonians will be studied elsewhere.

An appendix is devoted to some technical results about the behavior of the magnetic flux
through triangles. These results are used in the main body of the text.

2.2 Classical

2.2.1 Actions

Let A denote an abelian C*-algebra. By Gelfand theory, this algebra is isomorphic to the al-
gebra Cp{€)) of continuous functions vanishing at infinity on some locally compact (Hausdorff)
topological space (2, and we shall treat this isomorphism as an identfication. Furthermore, we
shall always assume that .4 is endowed with a continuous action ¢ of the group 2" := R" by
automorphisms: Forany o,y € 2 and ¢ € A,

bole] = . O [Hy[*i’]] = Oz4y[]

and the map 2" 3 = — #,[p] € A is continuous for any ¢ € A. The triple (4.8, 27) is usually
called an (abelian) 2 -algebra.
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Equivalently, we can assume that the spectrum  of A is endowed with a continuous action of
Z by homeomorphisms, which with abuse of notation will also be denoted by 6. In other words,
(Q,6, 2°) is a locally compact dynamical system. We shall use all of the notations #(w,z) =
b [w] = 8.(z) for (w,z) € 2 x 2 and choose the convention (8[¢])(w) = ¢ (6. [w]) to connect
the two actions.

An important, but very particular family of examples of 2 -algebras is constructed using
functions on 2°. We denote by BC'(.2") the C*-algebra of all bounded, continuous functions
& Z -~ C. Let 7 denote the action of the locally compact group 2~ = R" on itself, i.e. for
any z,y € 2 we set 7(z,y) = 7:|y] := y + z. This notation is also used for the action of .2
on BC(.Z") given by 7:[¢|(y) := ¢(y + z). The action is continuous only on BC,(2"), the
C*-subalgebra composed of bounded and uniformly continuous functions. Any C*-subalgebra of
BC,(2") which is invariant under translations is an .2 -algebra. Motivated by the above exam-
ples, we define BC'()) := {¢: @ — C| f is bounded and continuous} and

B = BCy(Q) = {p e BC(Q) | £ 3z — ;[p] € BC(Q) is continuous } .

By a 2 -morphism we denote either a continuous map between the underlying spaces of two
dynamical systems which intertwines the respective actions, or a morphism between two 2'-
algebras which also intertwines their respective actions.

Let us recall some definitions related to the dynamical system (2, 8, 27). For any w € ) we
set O, = {f,w] |z € ‘%A} for the orbit of w and Q,, := O, for the quasi-orbit of w, which is
the closure of O, in £2. We shall denote by O(Q2) = O(,6. Z") the set of orbits of (2,6, 27)
and by Q(Q) = Q(€,6, 27) the set of quasi-orbits of (2,60, 27). For fixedw € Q, ¢ € Cp(Q)
and ¢ € 2, we set ¢, (x) 1= (f[w]) = p(0,(z)). Itis easily seen that ¢, : 2" — C belongs
to BC,(2"). Furthermore, the C*-algebra

Ay = {(pw lpe CO(Q)} = 0,[Co ()]

is isomorphic to the C*-algebra Cy(Q,,) obtained by restricting the elements of Cy(£2) to the
closed invariant subset @,,. Then, one clearly obtains that

B Col) 3 ¢ = o = po by, € BCL(Z) 2.2.1)

is a 2 -morphism between (Cg(!),) .0, 2") and (BC(Z), T, 2") which induces a
& -isomorphism between (Co(Qu), 6, 27) and (A, 7. Z7).

We recall that the dynamical system is topologically transitive if an orbit is dense, or equiva-
lently if 2 € Q(€). This happens exactly when the morphism (2.2.1) is injective for some w. The
dynamical system (2, 8, 2") is minimal if all the orbits are dense, i.e. Q(€2) = {Q}. This property
is also equivalent to the fact that the only closed invariant subsets are {) and (2.

Definition 2.2.1. Let (A, 0, 27) be an 2 -algebra. We define the spaces of smooth vectors

A® ={pec A| Z 2z~ 8,(p) € AisC™}.
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For the 2 -algebras Cp(£2) and BC',(§2) we will often use the notations C§°((2), respectively.
Despite these notations, we stress that in general {2 is not a manifold; the notion of differentiability
is defined only along orbits. By setting for any a € N™

5 CP(Q) — CF(Q). 6% = 02 (¢ © ba) |e=o,
one defines a Fréchet structure on C3°(£2) by the semi-norms

§%(p) 1= [16% = sup|{d“p)(w)|.
(@) = || ‘!DHCU(Q) wen'( ) (w))|
Each of the two spaces, C§°(Q2) and A2°, is a dense Fréchet *-subalgebra of the corresponding
P 0 L84 £
C~-algebra.

Lemma 2.2.2. (i) For eachw € () one has
AT =1 e C™(Z) | 0°¢ € Au, V8 € N},
In particular AX C BC®(Z') = {¢ € C®(Z") | 8¢ is bounded V5 € N"}.
(ii) Let p € Cy(2). Then
v e C§P(N)) < pob,c AT, Ywe Q.

Proof. The proof consists in some routine manipulations of the definitions. The only slightly non-
trivial fact is to show that point-wise derivations are equivalent to the uniform ones, required by
the uniform norms. This follows from the Fundamental Theorem of Calculus, using the higher
order derivatives, which are assumed to be bounded. A model for such a standard argument is the
proof of Lemma 2.7 in [27]. O

Remark 2.2.3. In the following, we will use repeatedly and without further comment the identi-
fication of point-wise and uniform derivatives under the assumption that higher-order point-wise
derivatives exist and are bounded.

Although in our setting the classical observables are functions defined on 2 x 2™, we are
going to relate them to functions on phase space = = 2 x 2™ whose points are denoted
by capital letters X = (2.£), Y = (y,71), Z = (2,(). The dual space 2"* also acts on itself by
translations: 7, (£) := £~+7), and this action is raised to various function spaces as above. Similarly,
phase space = can also be regarded as a group acting on itself by translations, (777)(, (2, ) =
(x + y,£ + n). Phase space = acts on (2 x 27" as well, via the action # ® 7", and this defines
naturally function spaces on £ x 2™ as above: they will be used without further comment.

.2.2 Cocycles and magnetic fields

We first recall the definition of a 2-cocycle k on the abelian algebra A = C((2) endowed with
an action # of 2°. We mention that the group L/ (A) of unitary elements of the unital C*-algebra
BC(Q) coincides with C((; T) == {p € C() | lp(w)| = 1, Yw € O}, on which we consider
the topology of uniform convergence on compact sets,
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Definition 2.2.4. A normalized 2-cocycle on A is a continuous map v : X x 2 — U(A)
satisfying forall v, y,z ¢ &

&z +y,2)k(z,y) = 0[5y, 2)] s{z,y + 2) (22.2)
and k{z,0) = k(0,z) = 1.

Proposition 2.2.5. If & : 27 x 2 — C{;T) is a 2-cocycle of Cy(S)) then for any w € §),
Kuwly+) = k(-,-) o 8, is @ 2-cocycle of A,, with respect to the action .

Proof. BEverything is straightforward. To check the 2-cocycle property, one needs the identity
lro0b,=80,0Ty, z€X, wei

It is easy to show that x : 27 x 2~ — C(§2,T) is continuous iff the function

Ax X xZ 3 (w,z,y) = s&lwz,y) = {k(z,y)){w) €T

is continuous. Recalling the isomorphism A, = C(Q,,) one casily finishes the proof. O

We shall be interested in magnetic 2-cocycles.

Definition 2.2.6. We call magnetic field on 2 a continuous function B : () — /\2 Z such that
By, = B ot is a magnetic field (continuous closed 2-form on %) for any w.

Using coordinates, B can be seen as an anti-symmetric matrix (Bjk)j' k=1...n where the en-
tries are continuous functions B7% : ) — R satisfying (in the distributional sense)
8;BM 4+ 0,BY 4+ 8,B* =0, vVweQ, Vjki=1,...,n.
Proposition 2.2.7. Ler B a magnetic field on €. Set
(H,B(a:, Y)Hw) = FLB(DJ; T,Y) = exp(gil“Bw 0,2,z +y)),

where TBv (0 b ¢) = i) _ By, is the integral (flux) of the 2-form B, through the triangle

(a, b, c) with comers a,b,c € Z". Then x” is a 2-cocycle on the 2 -algebra Co(£2).

Proof. The algebraic properties follow from the properties of the integration of 2-forms. For
example, (2.2.2) is a consequence of the identity

B0, z,z + W+ TP 0,z +y o+y+ z) = DBl (0, y,y + 2) + ['B« (0, 2,2 +y + 2).
This one follows from Stokes” Theorem, after noticing that
TPt (0,y,y + 2) = DP(z,z + y,z + y + 2). (2.23)
One still has to check that k% € C(Q x 2" x 27). This reduces to the obvious continuity of
n 1 1 ,
(wyz,y) = T (0, z,z + y) = Z LYk / dt/ d.s-59,3m+,3ty[BJA’}(w),
dk=1 LA

where we have used a parametrization of the flux involving the components of the magnetic field
in the canonical basis of 2~ = R"™. O
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By (2.2.3) one easily sees that (H.B )w = kBe where the Lh.s. was defined in Proposition
2.2.5, while
&P (21 y) == exp(q'iI“B*‘ (z,z+z,24+z+7y)).

2.2.3 Poisson algebras

We intend now to define a Poisson structure (cf. [24. 35]) on spaces of functions that are smooth
under the action # x 7% of Z on ) x 27*. This Poisson algebras can be represented by families
of subalgebras of BC*°(Z), indexed essentially by the orbits of ), each one endowed with the
Poisson structure induced by a magnetic symplectic form [31]. For simplicity, we shall concentrate
on a Poisson subalgebra consisting of functions which have Schwartz-type behavior in the variable
& € 2. For this smaller algebra of functions, we will prove strict deformation quantization in
section 2.5. One can also define C*°({) x 27*) in terms of the action # & 7*; this one is also a
Poisson algebra, but we will not need it here.

When necessary, we shall use f(£) as short-hand notation for f(-,£),i.e. f(w, &) = (f(£))(w)
for (w,¢) € Q0 x 2™, and we will think of f(-,¢) as an element of some algebra of functions on
2. Note that

BC®(2 x 2*) =
{f e BC(Qx 27)| f(-.£) € BC®(Q) and f(w,") € BC®(X™), Wwe Q£ € 27}

Definition 2.2.8. We say that f € BC™(Q x 27) belongs to S(2°"; C§°(?)) if and only if

(i) 8 f(¢) € CP(Q), V¢ € 2= and

(i) || flaap := Supge 2+ ||£°5°0] FOllgyq) < o foralla.a,8 € N,

Proposition 2.2.9. We assume from now on that Bi* ¢ BC®(Q) forany j. k= 1,...,n.

(i) BC®(2x.2°") is a Poisson algebra under point-wise mulitiplication and the Poisson bracket

T

{£,9}8:=" (0, f 059 — 6;f e, 9) — > B™* 8, f 8,9. (2.2.4)

7=1 7k

(ii) S(Z7*; C§(Q)) is a Poisson subalgebra of BC™(Q x 2°*).

Proof. The two vector spaces are stable under point-wise multiplication and derivations with re-
spect to £ and along orbits in (2 via J; and 4, respectively. They are also stable under multiplication
with elements of BC*(€1). The axioms of a Poisson algebra are verified by direct computa-
tion. O

To analyze the quantum calculus which is to be defined below, a change of realization is useful.
Defining S(.27; C§°(9)) as in Definition 2.2.8, but with 2™* replaced with 2°, we transport by
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the partial Fourier transformation the Poisson structure from S (.27 C5°(€2)) to § (273 C5°(92))
setting

(Po¥)(w;z) = (18F) (1 F)®- 1 F)¥)(w;z) = / dy ®(w;y) V(w;z—y) (2.2.5)

and

{2,9}% := 1e Fy {12 F)®, (1 & F)¥},

= =iy (Qi®opd; ¥ —5;P00 Q)+ Y BF(QidooQul),  (226)
J=1 Jk=1

where (Q;®)(x) = 2;®(z) defines the multiplication operator by ;. Obviously this also makes
sense on larger spaces.

To get a better idea of the Poisson structure of BC*(2 x 27), we will exploit the orbit
structure of the dynamical system (€2 x .2™*, 0@ 7, 2" x 2™*) and relate this big Poisson algebra
to a family of smaller, symplectic-type ones. For each w € (), we can endow = = 2" x .27 with
a symplectic form

.

[00],(X.Y) =y £~z -y + Bu(2)(m,y) = (v & — xjm) + Z B*(0.[w]) z; yx,

Jj=1 Jk=1

which makes the pair (=, o) into a symplectic space. This canonically defines a Poisson bracket

n

{£,9}p. =) (0, 82,9 — 8o, f Be,9) = > BiF 0, f Og,g. (2.2.7)

j=1 k=1
Proposition 2.2.10. (i) For each w € , the map
Ty =0, ®1: (BC®(Q x 27),-, {-}B) = (BC™(Z),{,}5.)
is a Poisson map, i. e. forall f,g € BO™(§) x 2™*)
Tu(f - 9) = mu(f)  mlg),  mu({fi9}B) = {mulf)mu(9)} 5,

(ii) If w,w' €  belong to the same orbit, the corresponding Poisson maps are connected by a
symplectomorphism (they may be called equivalent representations of the Poisson algebra).

Proof. To simplify notation, we use the shorthand f,, := 7,,(f) for f € BC®(f) x 27*) and
w € .

(i) Forany w € Q, f,g € BC™(l x 27*), we have
(f 9o(@.§) =((f9) 0 (6, ® 1)) (2. &) = f(bu(2),€) 9{8u(2),£) = (fu g)(z.&).

Similarly, ({f,9} 5), = {fuw: 9w} 5, follows from direct computation, using

Ory fur = Oz, (f 0 (o ® 1)) = (0;f) 0 (B 21) = (6 )
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(ii) If there exists z € 2 such that 4, [w] = o/, then

b @1=(0, @0 (r®1),

P

—

where 7. ® 1: (Z,08) — (2,08) is a symplectomorphism.

Remark 2.2.11. It is casy to see that the mapping
To =0, 1: 8(2°,C°(Q)) — S{2™,AZ)

1s a surjective morphism of Poisson algebras, for any w € (2. On the second space we consider the
Poisson structure defined by the magnetic field B,,, as in {31].

For any w € () we define the stabilizer 2, := {x € 2" | tw] = w}. This is a closed
subgroup of 2’, the same for all w belonging to a given orbit, We define the subspace of §) on
which the action 8 is free:

N :={we Q| Z, ={0}}.
Obviously {2 is invariant under 6 and {3 x 27" is invariant under the free action # & 7%, so we
can consider the Poisson algebra BC*({)y x .27*) with point-wise multiplication and Poisson
bracket (2.2.4).

Forany O € O((g) (the family of all the orbits of the space () we choose a point w(Q) € O,

Then

Gw(@) 21 2 Qe x
is a continuous injection with range O x 2™ (which is one of the orbits of (}y x 2™ under the
action ¢ x 7). Of course, one has (disjoint union)

Qx2 = || oxa-
Oe0(0)

In addition, ¢,y @1 is a Poisson mapping on = = 2" x 2"* if one considers the Poisson structure
induced by the symplectic form J_fw). 0
Referring to Definition 1.2.6.2 in [24], we notice that actwally Qg x 27 is a Poisson space.

2.3 Quantum

2.3.1 Magnetic twisted crossed products

Definition 2.3.1. We call twisted C*-dynamical system a quadruplet (A, 6, k., 27), where 8 is an
action of 2" = R" on the (abelian) C*-algebra A and r is a normalized 2-cocycle on A with
respect to 6.
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Starting from a twisted C"*-dynamical system, one can construct twisted crossed product -
algebras [39, 40, 34] (see also references therein). Let L'(.27; 4) be the complex vector space of
A-valued Bochner integrable functions on 2~ and L!-norm

1)), = /} dz @)l
Forany ®, W € L'(2; A) and » € 2", we define the product
@ 0)(&) = [ dy busl®(w)] 65[¥(z — 9)] 0_s vz ~v)]

and the involution " (z) := ®(—z). With these two operations, (L'(.27;.A), <", ") forms a
Banach-x-algebra.

Definition 2.3.2. The enveloping C*-algebra of L' (2 ; A) is called the twisted crossed product
AxEZ.

We are going to indicate now the relevant twisted crossed products, also introducing Planck’s
constant /. in the formalism. We define

92 = fy, and H,B-'h(a:,y) = ﬁ%(ﬁz,ﬁy),

which means i

mB’h'(w.;x,y) e g iT uJ(D,h..:n,?.i;r;-i-hy)’ Vﬂf,y = 5‘{-': w € (1,
and check easily that (CO(Q),B';' &5k Z7) is a twisted C*-dynamical system for any h € (0, 1].
It will be useful to introduce AE (z,y) via

0 1 [KBMwiz,y)] = e il P (- Fah—fu3a) . o-iid (zy)

Ll

)

as short-hand notation for the phase factor. This scaled magnetic flux can be parametrized explic-
itly as

T 1 t
AB(zp) = Y w5 (on — ) /0 at /O ds o ymeine—splB®. 23D
F:k=1 ‘

Plugging this particular choice of 2-cocycle and 2" action into the general form of the product,
one gets

B . It ' — i & )
(®of U)(@) = /9‘ dy 8y, [B(Y)] 6, [¥(z — y)] ™A (=),
The twisted crossed product C*-algebra A xg‘f " 2" will be denoted simply by €7 with self-
adjoint part CER and norm [H{f . We also call € the enveloping C'*-algebra of L'(2"; A) with
the commutative product og; it is isomorphic with Co(2™*; A) 2 C(277) @ A.
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A quick computation shows that fr,f, = 92 & 1 intertwines the involutions associated to the
C*-algebras €F and A, x5" 2 i e. 7l(®F) = 7l (@)er” is satisfied for every ® € cP. A
slightly more cumbersome task is the verification of 7(® of T) = Wiﬁ(@) of‘“’ 7l'(¥). For any
O, e LY (Z;A)and z,2 € 27, we have

[Wf,((b & )| (2 z)

h

1,—iTB(. L b p, B i
N [,a-dy (P14 y @@ 0, [0 = y)] BT Femd+mE)) o (1 % 1)(2:0)

- )
EpPipg(w] (g%mf%:ﬂ-ﬁ-ﬁ.y,%m)

= [? dy ® (Ehz+%(gj—:n') [w]’ y) v (Hh,z-i-%y[w]’ & y} ek
j ; N = iTBw (2B g Bz Doty hot B
- /y dy (73— [T @) W)]) (2) (7, [nls (@) ( = )]} (2) €™ FT > (e Foha= fathybot )
= [xl(®) oF- 7 (0)] (25 2).
It follows easily that {wfj }wen defines by extension a family of epimorphisms
A ER 3 Ay W

that map a twisted crossed product defined in terms of Cy(€2) onto more concrete C'*-algebras
defined in terms of subalgebras A, of BC,(.27).

As we have seen, S(.27*; C§°((2)) is a Poisson subalgebra of BC*®(Q) x 2°*). For strict
deformation quantization we also need that it is a *-subalgebra of each of the (*-algebras EhB.
Since & (5’?’ ®, C‘{)"’(Q)) is obviously stable under involution, this will follow from

Proposition 2.3.3. If B'* € BC™(Q), then S (2°; C5°(Y)) is a subalgebra of
(LM(&; Co(£)),0B), ie.

S(Z;C°(D) of S(&; CP()) € 8(X;CR(R)).

Proof. Let®, ¥ & S(EE'; C5(£2)). As 8(27; C§°(£2)) is a subspace of L? (3’, 'g(ﬂ)), iy of I
exists in L'(27; Cp(82)). To prove the product ® of ¥ is also in S(27; C5°(2)), we need to
estimate all semi-norms: let a,ar, 3 € N"™. First, we show that we can exchange differentiation
with respect to = and along orbits with integration with respect to y via Dominated Convergence,
i. e. that for all z and w
(m“'@}f’d‘a(ﬁ? of U))(w;x) = / dy 9267 (f'i) (Gg(ymm) ], y) \IJ(Hf_,u[w], z—y) AR (“’y)\)
& : e

2 2
= /} dy Ina(w; x, y)

holds. Hence, we need to estimate the absolute value of /¢ 5 uniformly in z and w by an integrable
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function. To do that, we write out the derivatives involved in I of

lap(@,y) = 2*056° (6“(1; z) [@(y) !9:( U(r—y)e —ihAY kmy))

fi Inl,l ¥ / al . . I 1 7
= ( cor' 4+ 3 g’ =8 o —ihAE
= 0 Z (“5) f)g(y_m) [5 (p(y)] H%y[dg 67 W - )] A 58" o —ihAR (z,)
o +a'’+a'"=a
S’+-ﬂ”+3ﬂ']_1,f)l
Taking the Cp(2) norm of the above expression and using the triangle inequality, /i < 1, the
fact that 6. is an isometry as well as the estimates on the exponential of the magnetic flux from

Lemma 2.5.4 (ii), we get

FP, |r:"| - n ,
I2s(e )] < 1o > (3) 19200 2w
o'+ +o=af + 848" =5
5 HH [drw r”\f[l (@ —'l}) |A Haaméqme_ihAf(m,y)HA
T
< [ TT(wsl + Iz — 50)* Yoo [l )|, 1106 Wz - y)|| -
J=1 a'+a' +o!=a
f’—?"l".ﬁn'{'ﬂ”,:ﬁﬁ
> Epe [y z — v)°]
Ibl-+lel=2( | |+ 8]}
= )y Koe (@87 @) )] [(Q°0 6" ) (@ — )] 4
o ol oo il a2l +2”]

The polynomial with coefficients K. comes from multiplying the other two polynomials in the
lyj| and |z; — y;|. Taking the supremum in x only yields a function in y (independent of z and
w) which is integrable and dominates |2 fg(w; &, '(;)| since the right-hand side is a finite sum of
Schwartz functions in ¥,

S?E.”fﬁﬁ (@, 9)|l o) < > Ko Q6"+ %) (y))|
& A

a'+o' 4o =a
BJ+B’I i Dn'h’ B
1bl+lel < laj+2Ja" | +28""|

- Z e Q%%+ ) )| gyeqy 1] srgr

w
rv—-rrr +n =

ﬁf+13u+ 3" =P
|bl+]ei<|al+2]a™]|+2|3""|

Qca:”o’ﬁ"‘l,“‘]m

) ”

Hence, by Dominated Convergence, it is permissible to interchange differentiation and integration.
To estimate the semi-norm of the product, we write for an integer N such that 2N > n + 1

d N a |
< /} 7_ <y>§,\, ()2 ﬁggluaﬁ(m, Mloa

ot ¥y = s | [ oy stz

< Ci(N) sup ( >2NHIu:s (.9l

Tye2
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The right-hand side involves semi-norms associated to S(2" x 27; C™(0)) which we will esti-
mate in terms of the semi-norms of ® and W, by arguments similar to those leading to the domi-
nation of |[I%,(x, y)”c ()

Thus, we have estimated ||@ of || from above by a finite number of semi-norms of & and
T and & of T € S(2;C%(1)). 0

2.3.2 Twisted symbolic calculus
It is useful to transport the composition law o by partial Fourier transform
1@ F: S(Z; CR(2)) — S(Z7;CF (K1),

setting

fiRg=Q08F)[1eF)fef 1aF)y]. (2.3.3)

In this way one gets a multiplication on S(.27; C5°(Q2)) which generalizes the magnetic Weyl
composition of symbols of [30, 31, 20} (and to which it reduces, actually, if €} is just a com-
pactification of the configuration space 27). Together with complex conjugation, they endow
S(&*; C§°(€2)) with the structure of a *-algebra. After a short computation one gets

(ftR9)(ws) = (wh) 2"] dy/ dn‘j / d¢ iR En=YC) o= T (hy—hz fy-+heha—hy)
' £ (ByL], &+ n) 9(0:[w] €+ C)

= (wh)~2" ]?-dy [ dﬂ_/;_ dz g ¢ ethollumy (0] o= T8 (y—ha hy+hiz hz—hy)

T s Gl @39

where a[(y.n), (2,{)] := 2 - 5 — y - { is the canonical symplectic form on = := 2" x 2™ and

(e(y.n)ifn(wf = ((ay ® 7;)”” (w,8) = f(gy[w}:{ gn "I)-

This formula should be compared with the product giving Rieffel’s quantization [43].

We note that 1 ® F can be extended to L'(27; Cp(€2)) and then to QZ;?. So we get a C*-
algebra Bf, isomorphic to €F, on which the product is an extension of the twisted composition
law (2.3.4). From the bijectivity of the partial Fourier transform and Proposition 2.3.3 we get the
following

Corollary 2.3.4. If the components of the magnetic field B are of class BC®({1), then
§(27*;C5°(S2)) is a Fréchet *-subalgebra of %ff , I e. it is stable under complex conjugation and

S(Z™ CRMMPS(Z*;CR(2) C S(Z27;C8°(8Y)

holds.
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2.3.3 Representations

We first recall the definition of covariant representations of a magnetic C*-dynamical system and
the way they are used to construct representations of the corresponding C*-algebras. We denote
by U(?) the group of unitary operators in the Hilbert space H and by B(#) the C'*-algebra of all
the linear bounded operators on .

Definition 2.3.5. Given a magnetic C*-dynamical system (A,0" kP 2°), we call covariant
representation (#, v, T') a Hilbert space H together with two mapsr : A — B(H) and T : 2~ —
U(H) satisfying

(i) 7 is a non-degenerate representation,
(ii) T is strongly continuous and T(z)T(y) = r[kP*z,y)|T(x +v), Vz,ye 2,
(iii) T(z)r(p)T(x)* = r[bi(e)], Ve X, pe A

Lemma 2.3.6. If (H,r,T) is a covariant representation of (A, 0", xB" 2°), then Rep! defined
on LY 27 A) by

Rerl () = [ dyr [0},(20)] Tw)
extends to a representation of €5.

By composing with the partial Fourier transformation, one gets representations of the pseu-
dodifferential C*-algebra %7, denoted by

Op7 1 BY » B(H), Opl(f):=Rep! [(12F)7}(f)]. (2.3.5)

Given any w € (2, we shall now construct a concrete representation of Ei? inH = L3(Z).
Let r,, be the representation of A in B(#) given forany ¢ € A, u € Hand x € 2 by

[ru()ul(z) = [62(¢))(w) u(z) = (82 [w]) u(z).
Let also 7} be the map from 2" into the set of unitary operators on H given by
ToW)ul(z) = rPMwsa/h,y) w( + hy) = e i Ooatlady(z oy

Proposition 2.3.7. (H, 1., T} isa covariant representation of the magnetic twisted C* -dynamical
svstem,

Proof. Just use the definitions, Stokes Theorem for the magnetic field B., and the identities
5o (z, 2+ hy,x + hiy + hz) = TPall (0, by, hy + hz)

and
I‘B.u (0.:]: + fly‘ _’[‘) = —rBW (U,T.I‘ + hy) )

valid forall z,y,z € 2 and w € Q. [
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" F
The integrated form D'izpf;. s E}%epzjjj has the following action on L'(.27; A):

[Repl (2)u] (2)

I

/J dz @ (9T+w+;[u’]: 3) kP w2 /R, 2) u(z + hz)

’rn/ dy @ ("u ) 3y - ﬂ’J) RO y(y), (23.6)
7 z '

and the corresponding representation Op” of the C*-algebra B f? has the following form on suit-
able f € BF:

o] @) = @) [ ay [ dg e (hp i) e 7020 uy),
* . (2.3.7)
It is clear that Dq:rf; is not a faithful representation, since (2.3.7) only involves the values taken
by fon O, x 2, where O, is the orbit passing through w. It is rather easy to show that the
kernel of Dpf:. can be identified with the twisted crossed product Co{Q..) x;f " 2 constructed

as explained above, with () replaced by Q,, := @, the quasi-orbit generated by the point w.

Remark 2.3.8. The expert in the theory of quantum magnetic fields might recognize in (2.3.7)
the expression of a magnetic pseudodifferential operator with symbol f o (6, @ 1), written in
the transverse gauge for the magnetic field B,,. Then it will be a simple exercise to write down
analogous representations associated to continuous (fields of) vector potentials A : Q — Al 2
generating the magnetic field (i.e. B, = dA,, Yw € Q) and to check an obvious principle of
gauge-covariance.,

We show now that the family of representations {Op” | w € {1} actually has as a natural index
set the orbit space of the dynamical system, up to unitary equivalence.

Proposition 2.3.9. Let w,w' be two elements of §), belonging to the same orbit under the action
8. Then, for any i € (0,1], one has Rep!, = Rep?, and Op = Opl, (unitary equivalence of
representations).

Proof. By assumption, there exists an element zp of 2~ such that Bz0[w'] = w. Foru € H and
r € 2 we define the unitary operator

i B
(UL‘::,;,.;’ U) (I) = e"f:r W' {0,x0,z0+T) U(I + ‘TG) *

To show unitary equivalence of the two representations, it is enough to show that for all p e A

andy € 2
Upwr Tt (9) = Tul) UL,y and UL, Th(y) = Thy) UL,
The first one is obvious. The second one reduces to
8w (0,20,20 + ) + TP (0, g + 2, 220 + = + hy) =
=B (20,20 + z, 20 + = + hy) + B’ (0, 20, 20 + = + fiy)

which is true by Stokes Theorem. O
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Remark 2.3.10. The Proposition reveals what we consider to be the main practical interest of the
formalism we develop in the present article. To a fixed real symbol f and to a fixed value & of
Planck’s constant one associates a family

{H! = Op"(f) |we Q) (2.3.8)

of self-adjoint magnetic pseudodifferential operators on the Hilbert space H := L*(2"), indexed
by the points of a dynamical system (2,6, 2") and satisfying the equivariance condition

~1
ﬁ. b ' G 10 € @
B = (lﬁ%ex[w]) HLUL, p Yz eQx &, (2.3.9)

In concrete situations, such equivariance conditions usually carry some physical meaning. In a
future publication we are going to extend the formalism to unbounded symbols f, getting realistic
magnetic Quantum Hamiltonians organized in equivariant families, which will be studied in the
framework of spectral theory.

To define other types of representations, we consider now ) endowed with a #-invariant mea-
sure 4. Such measures always exist, since .2~ is abelian hence amenable, We set 74’ for the
Hilbert space L2(£2, 1) and consider first the [aithful representation: # : A — B(H') with
[Fle)v](w) = ¢(w) v(w) for all v ¢ H' and w € €. Then, (by a standard construction in
the theory of twisted crossed products) the regular representation of the magnetic C*-dynamical
system (A, 0" kP* 27 induced by 7 is the covariant representation (EALE Yy T

ri Ao BLA(2GH)] with  [r(p)wl(w; z) := (F(8a(0)[w(z)]) (@) = ¢ (falw)) w(w;z) ,

Th: & S ULH2 5 H)])  with  [T(p)w)(w; z) := &P Mw; z/h, y) w(w;z + Ay).
We identify freely L2(.27; H') with L?(Q x 27) with the obvious product measure, so (i) is
the operator of multiplication by ¢ o # in L?(€) x 27). Due to Stokes’ Theorem, this is again a
covariant representation.
The integrated form REP” = Rep! " associated to (r,T") is given on L'(2"; A) by

[m@‘lﬂﬁ(@)u’] {wiia) =B [Q dy © (f)._—g_?ﬁ [w]; 2 ; £) e~ P Oy} w(w; y)
and it admits the direct integral decomposition

REP" (D) = / dp(w) Repl (D). (2.3.10)

The group 2", being abelian, is amenable, and thus the regular representation RER" is faithful.
The corresponding representation OR" : BF — B [L2(27;H/)] is given for f with partial
Fourier transform in L1(.2”; A) by

P (fu)(win) = @any ™ [ dy [ dn et g (0upluln) e HTHOM w(uyy).
e g 2



CHAPTER 2. MAGNETIC TWISTED ACTIONS ON ABELIAN C*-ALGEBRAS 31

2.4 Asymptotic expansion of the product
The proof of strict deformation quantization hinges on the following Theorem:

Theorem 2.4.1 (Asymptotic expansion of the product). Assume the components of B are in
BC™(Q). Let &, ¥ € §(2°;C5°()) and h € (0,1]. Then the product & o U can be ex-
panded in powers of i,

Do W= DogW—hi{d W}F+ KR (D,W), (2.4.1)

where {@, W} is defined as in equation (2.2.6). All terms are in 8 (27 C3°(Q)) and R,f;’?{ o, W)
is bounded uniformly in b, | Ry* (9, %) [[F< C.
Proof. We are going to use Einstein’s summation convention, i. e. repeated indices in a product

are summed over. Two types of terms in the product formula need to be expanded in A, the group
action of X on {2,

1
(Bgy[fb(x)j)(w') == @(H%y[w};:n) = O(w;z) + h‘/g d7 5y;0_n [(6;®)(w; )]

byl
=: ®lw;z)+ h (R;:L(‘I)))(w; x)
= ®(w; ) + Gy (4;@)(w; z) + A? /0-1 dr 3(1 = 7) g0 0,2, [(4;0:9) (w; 7))
=: ®(w;z) + Jy; (6;®)(wi z) + h? (By 3 (®)) (w; z),

and the exponential of the magnetic flux,

(e—z‘eA’?(m,y)) =:1 -+ h R;:l (3:7 y)

e=7h

) o d? ; o ‘
dr €1 = T) @(e—zfz\f}(:}c,yj”

le=7h

1
e IRAT () 1 4 5/ dr 4
Jo dff

1

=1—hiAD(z,y) + ﬁf“’/
0

=i 1 - hg B y; (o — y) + B Ry*(2,y).
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We will successively plug these expansions into the product formula, keeping only terms of O(42):
(@ of ¥)(x)
‘ i 2 ¢ 0 - —ifAB(
— [ du (80) + by — 2) (55} 0) + 1 (B2, () () By, Bz — )] e E)

= / dy®(y) (V(z — )+ by; (650) (@ — y) + R(RIZ (W) (o — y) ) e M) 4
JX

N\ /

h [ . _ T
+5 /y dy (95— 25) (5;2) ) (Ve = 9) + B(RY (1)) (& — ) e AT @D

g —ihAB (z
+ 1 /A dy (Ry - (9))(U) 01, [T (z — g)] em AT Y)

= / dy ®(y) ¥(z —y) (] — WAE (z,y) + RQR;;‘E{:::,y))%—
4%

5 [ 4 (-600) @1z ) + QB G0z - 1) (1+ 4R =)+

“

+E L dy | (B2, (@) () 01, [¥(z — y)] = B(y) (RE2(V)(z — )
~5(8;®)(y) (Q; Ry, (2)) (2 ~ y)} e AR =Y)
= [ av2) ¥ —p)+ 5 [ ay (QD GDE -1 - G0 @V -y
— B (Q0)(4) (Qu¥)(x — y) )+
+ B2 L dy | ((RR2_ (@) () 83, [T (@ = y)] + Bly) (R (1)) (z — y) ) e M G
~3(8;®)(y) (QRyy (1)) (2 — y) e AR 4
+3((Q®) W) (§7) (x ~ v) — (;2) (1) () (= — ) R¥ (&, )+

+0(y) ¥z - y) By (z,)]

4

=: (B oy U) () — hy{D, V1P (z) + K> (R} (B, ¥)) (x).

+

In the above, we have used (y; — ;) ¥(x — ) = —(Q;¥)(z — y). y; ®(y) = (Q;P)(y) and the
explicit expression for A{? {(z,y).

Clearly, the leading-order and sub-leading-order terms are again in § (27; Cg°(€2)). Thus also
R;ﬁ(@,qf‘) = 3@ of W — & oy W+ hi{®, U}P) is an element of S (27; C°(62)) for all
ke {0,1].

The most difficult part of the proof is to show that the fi-dependent C*-norm of the remainder
R;‘z(i), V) can be uniformly bounded in %. The first ingredient is the fact that the A-dependent
C*-norm of the twisted crossed product is dominated by the L' (X; A)-norm for all values of
ke (0,1],

1217 < 1B, Y@ € S(2;CRQ) c L2 6o(0)) ¢ B,
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Hence, if we can find fi-independent L' bounds on each term of the remainder, we have also
estimated the fi-dependent C*-norm uniformly in A.
There are four distinet types of terms in the remainder. Let us start with the first: we define

(B@)(e) = | dy (B (@) oy, (i — y)] e
Then we have
IRy (@) H; [ie(t2 'L')”L (XCo(2))
[df/ dy [| (R (@) )y 102,02 = 0]y ™™ 2
/dl/ dy [| (R (@) (Q)HLD || ¥(z ||C[}Q
We inspect || (RQZQ_I( ) ()|, (o more closely:
; 1
122 () @)l si / dr | (~23) (=) 162, [658:8) )]

‘.'I'J TLI"(() (S;L‘I)) HCD

If we plug that back into the estimate of the L' norm, we get

1 P2, y 1 C .
|R@ 0|7 < 5 [ ar [ avlEaem
x X

1 "
= L as] [ QsQne ]

The right-hand side is finite by the definition of S (27; C§°(€2)). Similarly, the second term can
be estimated, just the roles of © and ¥ are reversed.
Now to the second type of term: we define

(Ry3(®, %)) (z) o= —5 / dy (6;9)(y) (Qs RS (1)) (z — y) e~ P 2]
and estimate
2 i 1 3 ' e f.1 Wy . y
1B @, W) < || &5 (@, )], < 2 de ./Xdy 165 2) W gy ey (@B (T @) oy

The last factor needs to be estimated by hand:

0.1 e 1 o . ; - R
H(QJR}LZLL'I’))(E)H@,(Q) 5 ”/ d7 [z | lif?«gy[(ok‘lf)fsﬂ)}ﬂcu(m

= 315 0el[|69) ()| gy o
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This leads to the bound
[’R::ﬁ b, ‘I’)“I & 4 / d‘l'] dy;i(dj@)(y'}il%m) |5 il ”(‘Skq’){fcmcg(sz)
= 4;[@*0 ||, [|Q0n| 11

The right-hand side is again finite since &, ¥ € & (.2"; C5°(£2)) and does not depend on fi.
Estimating the two magnetic terms is indeed a bit more involved: we define

(R2(®,0)) (x ] dy (Q;2)(y) (5;0)(z — y) Rz, ).

The usual arguments show the C*-norm can be estimated by

res@ Y < [ dr | aul@®)0) e 1) ~ 1)l | BE @) ey

which warrants a closer inspection of the last term: first of all, we note that

e=7h

. ' d — e B T,
Rh’l(l‘,y) = 0 dTE(e A (-»,J))
1

e=1h

_/ dr (wi\B(I y) — e (?AB(I y)) —iehZ (@)
]

If we use Lemma 2.5.4 and i < 1, then this leads to the following Ch(f}) norm estimate of
le?"l (1‘, y):

1B @ 9)||eo oy
=
< /G dr (HATBFI.(\IEy)HCD(Q} At %d AB (z,y)

< ”BMHCB(Q) s ok — yl + 31|68 I‘HCU,:Q) lyil lew =yl (g — wl + lw)).

P

o)

e=T1h

Put together, this allows us to estimate the norm of RL Ja DY

B3 (@, W)F < (1B ||y iy 195 Qm @Il 1| Q165 | 11+
+ %H&Bmkﬂcﬂ(m (HQ;‘QmQﬂ‘I’HLl Qrd; ¥l + 1Q;Qm®| 21 ||QkQI?5j‘1’HL1)-

Now on to the last term,

(Rye(®, 1)) () := /%, dy D(y) Tz — y) By (2, ).
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Using the explicit form of R;l‘g(r y),
1 9 ‘
d - e {
o) = [ dr(-n) gz (e
‘e:Tﬁ.
/ dr (1 — QdAB(z y) — 'L'ea‘%l\?(ﬂ:,y)—
—_ (A{B(T: 2) € EA(_B (1137 y)) | L:Tﬁ G—ifﬁ.f\,—Bh(-’C,y}J

in conjunction with the estimates derived in Lemma 2.5.4 (which are uniform in 1), we get

d% 4 By
dTA‘ (:E’ y}!5='rﬁ.|‘cn(_ﬂ)+

1
HR;’Z(%EJ)HOO(Q) = /o dr(1-7) igH%A?(:}:’y”cz‘rﬁﬁﬂ)(ﬂ]
i = —irhA B (x
+(|FA£(I’y)”CD(ﬂ) +THE:(T}€A§($’9)!{=#:”) } “ Palrd J!Cu{ﬂ)
1
= /U dr (1 -7) [QH%AE(;{:’y)in‘Tﬁ,.i;C'D(Q + 7| &z AB(E 7")‘;=m|[qj(,ﬂ}+

Co (D) HiA?(Tv y”fmh”cg(nﬁ'

+HA§T($: y)Héa(Q) + 27 “Agr(ﬂ:: y)

2
rloa]

+72|| £AB (5, )

Hence, we can bound the fi-dependent C*-norm of R}i:g by

”R;gﬂf = H‘SIBijcU{m (“Qf‘b o |@R@¥ | + || Q2] s HQk‘I’HLi)+
+ 3 66mB™ | (1950010 1@ 11 + Q5 Qm®] 1 Q0@+
+QQ@me| 1. Qs )+
HBJA‘ 1O (2 HBJ y“c](n “Q?Q? ‘DHLl 'Q-I”Qk’qfﬂlﬂ_'—
vy (1Q5Qr 2|l |@xQuQu |+
+QsQr Qu |11 [|Qr Qe )+
+ 21887 | o 16V B7™ [l oy (1Q5Q5 @iy [ QaQu@iQu |+

+ 2| QQr Q|| 1. Qe Qu Qu|, + Q3R Q| [|Q1QW 1 ).

'B? 16, B

1
2
1]

+ 3l

H(Q(ﬂ)

Putting all these individual estimates together vields a bound on “R;z( o, ) ‘Llf which is uniform
in £ and the proof of the Theorem is finished. U

Corollary 2.4.2. Assume the components of B are in BC™®(Q). Let f,g € {27 C§°(1)) and
h & (0,1]. Then the product ftj? g can be expanded in powers of h,

Fia= fa—~Ki{f,9}s +HREA(F.9), (2.4.2)
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where fg is the pointwise product and {f, g} g is the magnetic Poisson bracket defined as in
equation (2.2.4). All terms are in S(27*; C§°(82)) and the remainder satisfies || Rg,z( 5,9) llge
< C uniformly in h.

Proof. The proof follows from equations (2.3.3), (2.2.5), (2.2.6) and Theorem 2.4.1, keeping in
mind that the partial Fourier transforms are isomorphisms §(27*; C®(Q)) ¢— S(27;C>(52))
that extend to automorphisms between the C*-algebras B and €. O

2.5 Strict deformation quantization

To make this precise, we repeat an already standard concept. For more details and motivation, the
reader could see [43, 44, 24] and references therein.

Definition 2.5.1. Ler (S,0,{-,-}) be a real Poisson algebra which is densely contained on the
selfadjoint part €y i of an abelian C”-algebra €. A strict deformation quantization of the Pois-
son algebra S is a family of R-linear injections (Qy, : S = Crr) pep Where I R contains 0 as
an accumulation point, €y,  is the selfadjoint part of the C*-algebra €y, with products and norms
denoted by oy and || - |5, Qg is just the inclusion map and Qx(S) is a subalgebra of €, x.

The following conditions are required for each ® , W € §

(i) Rieffel axiom: the mapping I 3 h — ||Qu(®)||, is continuous.
(ii) Von Neumann axiom.:

lim |3 [D(®) o Qp(T) + Qn(¥) o Qn(®)] ~ (@ 0 V)|, = 0.

(1ii) Dirac axiom.

§ [90(9) o0 20(0) — () o Q1(®)] — 2n({@, T)||, = 0.

(!

lim
h—0

Putting this into the present context, we have

Theorem 2.5.2. Assume that B’* € BC*(Q) and I = [0,1]. Then the family of injections
(S(Z,C5°(0))p = c,{’fn)ﬁg
defines a strict deformation guaniization.

Proof. By Proposition 2.2.9 and Proposition 2.3.3, S( %", C§°(82)) 5, can be scen a Poisson alge-
bra with respect to oy and {-,-}7 as well as a subalgebra of the real part of each of the twisted
crossed product (’ig 5

Von Neumann and Dirac axioms are direct consequences of Theorem 2.4.1.

The Rieffel axiom can be checked exactly as in [31}, which builds on results from [37, 42].
The fact that the algebra A in [31] consisted of continuous functions defined on the group 2 itself
does not play any role here. O
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A partial Fourier transform transfers these results directly to S {27, C5°(€2)) and BB ¥ » objects
which are more natural in the context of Weyl calculus. In this way we extend the main result of
[31] to magnetic twisted actions on general abelian C*-algebras.

Corollary 2.5.3. Assume that BY* ¢ (°(C)). Let I = [0,1]. Then the family of injections

(s(27.c5° (M) = BRR),

defines a strict deformation quantization, where the Poisson algebra structure in & (5&"*, bt Q)j -
is given by point-wise multiplication and the Poisson bracket {-,-} 5.

Proof. The proof is straightforward from the Corollary 2.4.2 and the above theorem, after noticing
that the partial Fourier transform is an isomorphism between the Poisson algebras & (27*; C5°(§2))
and S(27; C§°(Q2)). and it extends to an isomorphisms between the C*-algebras %f and (‘:f Lo

Appendix: Estimates on the magnetic flux

In the next lemma we gather some useful estimates on the scaled magnetic flux and its exponential,
that are used in the proofs of Propositions 2.3.3 and 2.4.1.

Lemma 2.5.4. Assume the components of B are in BC™(Q) and ki € {0, 1].

(i) For all multiindices a, € N™ there exist constants C7 > 0, C7% > 0, j k € {1,...,n},
depending on B'¥ and its 5-derivatives up to (|a. + |a|)th order, such that

T n
058 AR @ )| goqery < D C lsl + D C3F Iyl Ik — wil-
g=1 k=1

(ii) For all a,a &€ N" there exists a polynomial p,. in 2n variables, with coefficients Ky, > 0,
such that

()ada —vﬁA (Ji ‘U)“ <pa,cx(,)‘l! ..... !Jn |L'1 gl[,...zﬁmﬂuyﬂg)

= Z K [y°|1(z — )7

[bl+ici<2(lal+]af)

(iti) The following estimates which are uniform in h and T hold jor the magnetic flux and its
derivatives:

AL e, () = Z, 187 kliCr](Q) il Iz — wel,

< T “olBﬂ ||( Ia"j fmk - 'l.”i[ (|,L.7 - yi’l &R |y]‘}u

e

%’]iAc {mnyﬂ —rh] Co(€2)

.r--r;;’]c () Z [ 0 d'n'*Bj “C{;(Q) lyjl |Ik - yk‘ (Eml - ?Jz| izm - ym.|+

| g AB
hd—z (z,y)
jhklre

”H.Uﬂ iiEm = ym‘ =+ MJH |UmD
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Proof. (i) and (ii) follow directly from the explicit parametrization of the magnetic flux.

(iii) Throughout the proof we are going to use Einstein’s summation convention, i. e. repeated
indices in a product are summed over from 1 to dim(2"). From the explicit parametrization
(2.3.1)

1 t
ArB(:La y) =Y (-I’ir - yk) A dtj; ds Hc(s—l/z)a:-f-c(t-s)y[B]k}:

we compute first and second derivative of AB(z,y) with respect to €, using dominated convergence
to interchange differentiation with respect to the parameter € and integration with respect to t and
5,

d L % L
a‘;AF(CBs ) =y; (zr — yp) / dt/ﬂ ds (s(x; — 1) + tyy — 1ay) Oc(s—1/2)z+¢(t—8)y[51B7¥),
0 F

%Af(ﬂ?: ) =5 (2 — yi) -/0.1 df‘/ol ds (s(z1 - y) + ty — Lay) (s(z — Ym)+
tm = 3Zm) * Oefamsayete(t—s)y [G10mB*).
The estimate on the flux itself follows from the fact that all the automorphisms 6, are isometric in
Cp(Q):
[ AZ:(z, Yle o) < (95l [Tk — il / dﬁ/ A || Oc(sm1/ayoe(i—syy (B meg(n)
< 1Bl ey 951 [ — i
Using the triangle inequality to estimate ;| from above by |z; — il + (|, we get

K

By
A2,

| 1 ¢
. lC’o(Q) < lyjl lox - Y| 4 dt/ ds (3].1-1 =yl + tly| + %illl)

Hﬁrﬁ(s 2)atrht—s)y 53'8 “C ()

= ||, B7* ”c{)(m l%lm—%l/ dt/ ds (sl ~ yi| + t]m| + + 3z

< (|&B7* Yillzk — yi| (|1 — | + ).




CHAPTER 2. MAGNETIC TWISTED ACTIONS ON ABELIAN C*-ALGEBRAS 39

In a similar fashion, we obtain the estimate for the second-order derivative,

|

e=7h f lCa()

A

d’l

< lyjl 1z — Yl /: dt /: dSl(S(l‘z —y1) + tyr — 321) (5(Tm — Ym) + tYm — 3%m) ‘
B rgs—1/2)z+rh(t—s)y [10m B Co(Q)
< [1016mB™ |y ey 10! 2 = wid /9 L /0 d (%121 = il [£m — Y| + 25tlytl |2m — i+
iz = il lom| + ol [2m] + Pl lym| + §la1] l2m] )
< |60m B |, e il 12 = ] (121 = 91l |2m = Yol + |3a] [Zm ~ W] + [10 [ym])

This finishes the proof. O



Chapter 3

Covariant Fields of C*-Algebras
and Continuity of Spectra
in Rieffel’s Pseudodifferential Calculus

Introduction

Let T be a locally compact topological space, always assumed to be Hausdorff. We denote by
C(T) the Abelian C*-algebra of all complex continuous functions on 7' that are arbitrarily small
outside large compact subsets. A C(T')-algebra [10, 37, 49] is a C"*-algebra B together with a
non-degenerated injective morphism from C(7") to the center of B (multipliers are used if B is not
unital). The main role of the concept of C(T}-algebra consists in codifying in a simple and efficient
way the idea that 5 is fibered in the sense of C-algebras over the base T [14, 47]. Actually
C(T')-algebras can be seen as upper semi-continuous fields of C*-algebras over the base T'; lower
semi-continuity can also be put in this setting if one also uses the space of all primitive ideals
{26, 37, 42, 46, 49]. We intend to put these concepts in the perspective of Rieffel quantization.

Rieffel’s calculus {43, 44] is a machine that transforms functorially "simpler" C”-algebras and
morphisms into more complicated ones. The ingredients to do this are an action of the vector
group = := R by automorphisms of the "simple" algebra as well as a skew symmetric linear
operator of =. When morphisms are involved, they are always assumed to intertwine the existing
actions.

Rieffel’s machine 1s actually meant to be a quantization. The initial data are naturally defining
a Poisson structure, regarded as a mathematical modelization of the observables of a classical
physical system, After applying the machine to this classical data one gets a (*-algebra seen as
the family of observables of the same system, but written in the language of Quantum Mechanics.
By varying a convenient parameter (Planck’s constant &) one can recover the Poisson structure
(at i = 0) from the C”-algebras defined at /i 5 0 in a way that satisfies certain natural axioms
[24, 43, 44},

The spirit of this quantization procedure is that of a pseudodifferential theory [15]. At least
in simple situations the multiplication in the initial C”-algebra is just point-wise multiplication
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of functions defined on some locally compact topological space, on which = acts by homeomor-
phisms. The non-commutative product in the quantized algebra can be interpreted as a symbol
composition of a pseudoadifferential type. Actally the concrete formulae generalize and are moti-
vated by the usual Weyl calculus.

In a setting where all the relevant concepts make sense, we prove in Theorem 3.3.3 and Propo-
sition 3.3.4 their compatibility: By Rieffel quantization an upper semi-contimious fields of C”-
algebras is tumed into an upper semi-continuous fields of C*-algebras with fibers which are easy
to identify; the proof uses C(T')-algebras. Finally, using primitive ideals techniques, we show
the analog of this result for lower semi-continuity; the key technical result is Proposition 3.4.1.
Putting everything together one gets

Theorem 3.0.1. Ri¢ffel quantization transforms covariani continuous fields of C*-algebras into
covariant continuous fields of C*-algebras.

Maybe the most interesting cases, anyhow those which are closer to the spirit of Weyl quan-
tization, involve Abelian initial algebras A. In this situation the information is encoded in a
topological dynamical system with locally compact space ¥ and the upper semi-continuous field
property can be read in the existence of a continuous covariant surjection ¢ : £ — 17, if this one
1s open, then lower semi-continuity also holds. If the orbit space of the dynamical system is Haus-
dorff, it serves as a good space T over which the Rieffel deformed algebra can be decomposed,
with easily identified fibers. We treat the Abelian case in section 3.5.

We illustrate the results by some examples in section 3.6. Among others, the techniques we
develop can be used to show that the (*-algebras of some compact quantum groups constructed
in [45] can be written as continuous fields, some of the fibers being isomorphic 10 certain non-
commutative tori.

One naturally expects that topics or tools coming from the standard pseudodifferential theory
could make sense and even work in the more general setting of Rieffel’s calculus. In [29], some
C*-algebraic techniques of spectral analysis ([4, 5, 16, 28, 33] and references therein) were tuned
with Rieffel quantization, getting results on spectra and essential spectra of certain self-adjoint
operators that seemed to be out of reach by other methods. In the present article we continue the
project by studying specrral continuity. Pioneering work on applying C*-algebraic techniques to
spectral continuity problems and applications to discrete physical systems may be found in [4, 6,
13]. Results on continuity of spectra for unbounded Schriidinger-like Hamiltonians (especially
with magnetic fields) appear in [2, 3, 18, 38] and references therein.

Roughly, our problem can be stated as follows: For each point ¢ of the locally compact space
T we are given a self-adjoint element (a classical observable) f(¢) of a C™-algebra .A(t), which
is Abelian for most of the applications, and we assume some simple-minded continuity property
in the variable ¢ for this family. By quantization, f(¢) is turned into a quantum observable f(t)
belonging to a new, non-commutative C*-algebra 2U(t). We inquire if the family S(t) := sp [f(f)]
of spectra computed in these new algebras vary continuously with ¢. Intuitively, outer continuity
says that the family cannot suddenly expand: if for some tg there is a gap in the spectrum of
f{to) around a point Ay € R, then for t close to ?p all the spectra S(t) will have gaps around
Ap. On the other hand, inner continuity insures that if f(fp) has some spectrum in a non-trivial
interval of R, this interval will contain spectral points of all the elements () for ¢ close to .
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Although traditionally 2{¢) is thought to be a C~-algebra of bounded operators in some Hilbert
space, the abstract situation is both natural and fruitful. One can work with abstract C*-algebras
2(t) and then, if necessarily, they are represented faithfully in Hilbert spaces; the spectrum will
be preserved under representation.

It comes out that spectral continuity can be obtained from corresponding continuity proper-
ties of resolvent families of the elements f(¢) and this involves both inversion and norm in each
complicated C™-algebra 21(¢). Things are smoothed out if the family {(¢} | ¢ € T} has a pri-
ori continuity properties, that may be connected to concepts as C{T")-algebras or (upper or lower
semi y-continuous C*-bundles.

In a final section, using the results of the article, we are going to investigate what happens
when the quantization mapping A(t) — 2(t) is Rieffel’s quantization. For our situation, which
has a rather small overlap with the references above, we also include an outer continuity result for
essential spectra of Ricffel pscudodifferential operators. Continuity in Planck’s constant A, treated
in [43] and in {29], is a very special case. The full strength of these spectral techniques would
require an extension of Rieffel’s calculus to suitable families of unbounded elements. Hopefully
this will be achieved in the future, and this would be the right opportunity to present detailed
examples.

3.1 Rieffel’s pseudodifferential calculus; a short review

We start by describing briefly Rieffel quantization [43, 44]. The initial object, containing the
classical data, is a quadruplet (4, ©,=,[-,-,]). The pair (Z, [, ]) will usually be taken to be
a 2n-dimensional symplectic vector space, but the skew-symmetric bilinear form [-, ] may be
degenerate in most situations. On the other hand (A, ©, =) is a C*-dynamical system, meaning that
the vector group acts strongly continuously by automorphisms of the (maybe non-commutative)
C*-algebra A. Let us denote by A the family of elements f such that the mapping = > X —
Ox(f) € A is C*. It is a dense *-algebra of A and also a Fréchet algebra with the family of
semi-norms

RS Z—m [Ox(F)x=p lla= Z: “(f) lu, keN. @G.LD

{al<k lel<k

To quantize the above structure, one keeps the involution unchanged but introduce on A the
product

f#g=r2 L L dy dz W2 oy (f) 62(9) (3.1.2)

suitably defined by oscillatory integral techniques. One gets a *-algebra (A, # ,* ), which admits
a C*-completion ¥ in a C"-norm | - |jg defined by Hilbert module techniques [43]. The action
® leaves [A™ invariant and extends to a strongly continuous action of the C*-algebra %, that will
also be denoted by ©. The space 2> of C'™°-vectors coincide with A and it is a Fréchet space
with the family of semi-norms

H7Id=3 - !, I 3% [©x(f)lx=0 Iz = Z — %) fa, keN. (313

o <k ' jod<hs ! jor]
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By Proposition 4.10 in {43], there exist &k € N and C}, > 0 such that
IFla<Cel FIR), viea~=a~.

Replacing here f by 6% f for every multi-index a, it follows that on 4™ the topology given by
the semi-norms (3.1.1) is finer than the one given by the semi-norms (3.1.3). As a consequence
of Theorem 7.5 in [43], the role of the C*-algebras A and 2/ can be reversed: one obtains A4 as
the quantization of 2 by replacing the skew-symmetric form [-, -] by —[-,-]. Thus A* and 2A*
coincide as Fréchet spaces.

The quantization transfers to Z-morphisms. Let (4;,0;,Z, [-,]), 7 = 1,2, be two classical
data and let R : Ay — .Ap be a Z-morphism, i. e.a (C*-)morphism intertwining the two actions
©1, . Then R sends 47° into AS° and extends to a morphism R : 21; — s that also intertwines
the corresponding actions. In this way, one obtains a covariant functor. The functor is exact: it
preserves short exact sequences of Z-morphisms. Namely, if 7 is a (closed, self-adjoint, two-
sided) ideal in A4 that is invariant under &, then its quantization J can be identified with an invariant
ideal in 2l and the quotient 21/ is canonically isomorphic to the quantization of the quotient .4/ .7
under the natural quotient action.

We will refer to the Abelian case under the following circumstances: A continuous action 6
of = by homeomorphisms of the locally compact Hausdorff space ¥ is given. For (o, X) € £ x =
we are going to use all the notations

B0, X) =0x(0)=0,(X)eXT (3.1.4)

for the X-transformed of the point ¢. The function © is continuous and the homeomorphisms
Sy, Oy satisfy Oy 0 Oy = Ox vy forevery X,V € =,

We denote by C(X) the Abelian C'"-algebra of all complex continuous functions on ¥ that
are arbitrarily small outside large compact subsets of 3. When ¥ is compact, C(X) is unital. The
action © of = on ¥ induces an action of = on C(X) (also denoted by ©) given by 8x(f) :=
J o ©x . This action is strongly continuous, i. e.for any f € C(X) the mapping

=3 X = Ox(f) € C(5) (3.1.5)

is continuous; thus we are placed in the setting presented above. We denote by C(X)* = (X))
the set of elements f € C(X) such that the mapping (3.1.5) is C°°: it is a dense *-algebra of C(X).
The general theory supplies a non-commutative C*-algebra 2 = €(¥), acted continuously by
the group =, with smooth vectors € (X) = C=(X).

3.2 Families of C*-algebras

Now we give a short review of C(7")-algebras and semi-continuous fields of (C'*-algebras (see
[10, 24, 26, 37, 42, 49] and references therein), outlining the connection between the two notions.
If B is a C”-algebra, we denote by AM{f3) its multiplier algebra and by ZAM(B) its center.
If By, By are two vector subspaces of M (B8), we set B; - By for the vector subspace generated
by {b1bo | b1 € Bi,by € By} . We are going to denote by C(T') the C*-algebra of all complex
continuous functions on the (Hausdorff) locally compact space 7' that decay at infinity.
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Definition 3.2.1. We say that BB is a C(T')-algebra if a non-degenerate monomorphism Q : C(T) —
ZM(B) is given.

We recall that non-degeneracy means that the ideal Q[C(T')]- B is dense in 5.

Definition 3.2.2. By upper semi-continuous field of C™-algebras we mean a family of epimor-
phisms of C*-algebras {B @ B{t) | te T} indexed by the locally compact topological space
T and satisfving:

1. Forevery b € Bone has || b ||5= supier || P(t)b |51 -

8% ]

. Forevery b € Bthemap T 3t — | P(t)b ||gy) is upper semi-continuous and decays at
infinity.

3. There is a multiplication C(T) x B 3 (p,b) — ¢ = b € B such that

P(t)e + b] = p(t) P(t)b, VteT, peC(T), beB.

If, in addition, the map t —|| P(t)b || is continuous for every b € B, we say that
Pt . .
{B it B(t)|te T} is a continuous field of C*-algebras.

The requirement 2 is clearly equivalent with the condition that for every b £ B and every e > 0
the subset {t € T' | || P(¢)b [ig)> €} is compact. One can rephrase 1 as M ker[P(t)] = {0}, so
one can identify B with a C*-algebra of sections of the field; this make the connection with other
approaches, as that of [37] for example. It will always be assumed that B(t) # {0} forallt € T'.

We are going to describe briefly in which way the two definitions above are actually equivalent.

First let us assume that 55 is a C(T")-algebra and denote by C;(T') the ideal of all the functions
in C(T') vanishing at the point ¢ £ T. We get ideals Z{t) := Q[C,(T)]-B in B, quotients
B(t) := B/Z(t) as well as canonical epimorphisms P(t) : B — B(t). One also sets

pxb:=0(p)b, Veel(T),behB. (3.2.1)

2
Then { B lfl B(t) |t T} is an upper semi-continuous field of C'*-algebras with multiplication
*.
. . . 'P(t‘g . .
Conversely, if an upper semi-continuous field { B B(t) |t € T ; is given, also involving

the multiplication = , we set
Q:C(T)— ZM(B), Qp)b:=pxb. (3:2.2)

In this way one gets a C(T')-algebra and each of the quotients B/Z(t) is isomorphic to the fiber
B(t).

To discuss lower semi-continuity we need Prim(B), the space of all the primitive ideals
(kernels of irreducible representations) of 3. The hull-kernel topology turns Prim(B) into a
locally compact (non necessarily Hausdorff) topological space. We recall that the hull application
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J = h(T) = {K € Prim(B) | J C K} realizes a decreasing bijection between the family
of ideals of B and the family of closed subsets of Prim(B). lts inverse is the kernel map §)
E(€2) := Nxenk, which is also decreasing.

The Dauns-Hoffman Theorem establishes the existence of a unique isomorphism
I' : BC[Prim(B)] — ZM(B), where BC[Prim(B)] is the C*-algebra of bounded and contin-
uous functions over Prim(5), such that for each K € Prim(B), ¥ € BC[Prim(B)] and b € B
we have I'(W)b + K = W(K)b+ K. For a detailed study of the space Prim(B) and a proof of
the Dauns-Hoffman Theorem, cf. sections A.2 and A.3 in [46]. Let us suppose that there is a
continuous surjective function ¢ : Prim(88) — T'. Then we can define Q : C(T) — ZM(B) by
Q() = I'(¢ o ¢) and one can check that Q endows B with the structure of a C(T")-algebra.

On the other hand, if we have a non-degenerate monomorphism Q : C(T) — ZM(B), we
can define canonically a continuous map ¢ : Prim(B) — 7. One has ¢(K) = ¢ if and only if
Z(t) ¢ K, and we can recover Q from the above construction. Moreover the map T > t — ||
b(t) llw€ Ry is continuous for every b € B (so we have a continuous field of C*-algebras) if
and only if q is open. For the proof of this facts see propositions C.5 and C.10 in [49)].

3.3 Covariant C(7')-algebras and upper semi-continuity under Rief-
fel quantization

Let T be a locally compact Hausdorff space and (A, ©, =, [-,-]) a classical data. The canonical
C~-dynamical system defined by Rieffel quantization is (2, 9, Z).

Definition 3.3.1. We say that A is a covariant C(T')-algebra with respect to the action © if a
non-degenerate monomorphism Q : C(T) — ZM(A) is given (so it is a C(T)-algebra) and in
addition one has

Ox[Q(e)fl = Qp) [Bx(f)], VfeAXeZ pecC(T). (3.3.1)

We intend to prove that the Rieffel quantization transforms covariant C(T')-algebras into co-
variant C(T")-algebras. For this and for a further result identifying the emerging quotient algebras,
we are going to need
Lemma 3.3.2. Let I be an ideal of C(T') and denote by Q(I) - A the closure of Q(I) - A in the

A——— & o FREI N —,
C*-algebra A. Then Q(I)- A® is dense in ( o)- .A) = (Q(I) “A) 1A for the Frécher
topology inherited from A% .
Proof. By the covariance condition Q(J) - .A is an invariant ideal of A.

The proof uses regularization. Consider the integrated form of ©, i.e. for each ® € C°(2)
(compactly supported smooth function) and g € A define

Ouls) = [ dYB(Y)Or(g).
Note that for every X € = one has

Oy IF)@(Q)} = /._ dY oY — X}@}‘(g) :
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Then &4 (g) € A% and for each multi-index ;. we have
3* [0a(9)] = (-1)"Oaup(g) and | 8 [O3(e)] |4<] @ =l g lla -

One of the deepest theorems about smooth algebras, the Dixmier-Malliavin Theorem [11], say that

A is generated (algebraically) by the set of all the elements of the form ©4(g) with ® € CX(E)
L — e, OC

and ¢ € A. Replacing Awith Q(I)- A, for f € (Q(I) . A) there exist ®4,...,Pp, € CX(E)

and f1,...,fm € Q(I)- A suchthat f = 51 Og,(fi). Lete > 0 and fix a multi-index a.

Choose g1,...,9m € @(I) - A such that for each ¢

€

i— i A< '
I £ .4 m || 82®; || 1=

Then

1 5 (f ~Y g, (gi))
i=1

Thus we only need to prove that for cach © € C°(Z) and g € Q(I) - A the clement O3 (g)
belongs to Q(I) - A®. Let ¢1,...,p; € I and hy,... h; € A suchthat g = 57, Q(pi)h;.
Then

! m

Y Opea,(fi-g)|| <D 18l fi-gillage.
i=1

A =k

A

3
Oalg) = _ Oa [Qwi)hd] ,

i=1

and by covariance, for each index 7 one has

Y B(Y)Q(p1)Ox(h) = Q) [Oa(he)] € QI) - A

D=

O [Qpi)hi] =

D

O

Theorem 3.3.3. Rieffel quantization transforms covariant C(T )-algebras into covariant C(T)-
algebras: there exists a non-degenerate monomorphism Q : C(T) — ZM() satisfying for all
e e C(T), f € Aand X € = the covariance relation ©x[Q{p) f] = Q(v) [0Ox(f)].

Proof. The action © of = on A extends canonically to an action by automorphisms of the mul-
tiplier algebra M(.A). also denoted by ©, which is not strongly continuous in general. But,
tautologically, it restricts to a strongly continuous action © : = — Aut[My(.A)] on the C*-
subalgebra

Mo(A) :={m e M(A)| 23 X — Ox(m) € M(A) is norm continuous} . (3.3.2)

In these terms, the covariance condition on Q says simply that for any ¢ € C(T') the multiplier
Q(yp) is a fixed point for all the amomorphisms O x (take f = 11in (3.3.1)). As a very weak
consequence one has Q[C(T')] € Mp(A)™ , with an obvious notation for the smooth vectors.

Proposition 5.10 from [43] applied to the unital C'"*-algebra M(.A) says that the Rieffel quan-
tization of M (A) is a C*-subalgebra of M(2L) . Consequently one has Q[C(T')] € Mp(A)>* C
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AM{2) and this supplies a candidate 9 : C(T') — M{2). This is obviously an injective map and
the range is only composed of fixed points, which insures covariance.

Let us set for a moment M := AMy(.A), with multiplication -, and denote by 9t C M(2)
its Rieffel quantization, with multiplication legitimately denoted by # . For smooth elements
m,n £ M = 9° one of them being a fixed point central in M, one has m#n =m - -n =
n - m = n#m (Corollary 2.13 in {43]). This implies easily that Q is again a morphism and its
range is contained in ZMi. A density argument with respect to the strict topology implies that
every Q(p) commutes with all the elements of M(2), thus Q[C(T")] ¢ ZM{%) as required.

Now we only need to show non-degeneracy, i.e. the fact that Q[C(T")] - U is dense in A. We
show the even stronger assertion that Q[C(T')] - A% = Q[C(T)] - A™ is dense in «A. This would
follow if we knew that Q[C({T")] - A is dense in A with respect to its Fréchet topology given by
the semi-norms (3.1.3); then we use denseness of A in the weaker C*-norm topology of 2.

We recall from section 3.1 that A% and A*° coincide even as Fréchet spaces. Therefore one is
reduced to showing that Q[C(T")] - A is dense in A™ for its Fréchet topology. Taking 7 = C(T')
in Lemma 3.3.2, we find out that Q[C(T")] - A* is dense in (Q[C(T)} : .A) N A, which equals
A since ¢ has been assumed non-degenerate. This finishes the proof. O

If A is a covariant C(T)-algebra, then Z(t) := Q[C{T’)] - A is an invariant ideal of A. We
can apply Rieffel quantization to Z(t), to A{t) := A/Z(t) (with the obvious actions of =) and
to the projection P(t) : A — A(t). One gets C*-algebras J;, 2; as well as the morphism
B, A — A . By [43, Th.7.7] the kernel of P; is Ty, so 2, can be identified to the quotient 20/3; .

On the other hand, by using the C{T')-structure of the C*-algebra *4 given by Theorem 3.3.3,
we have ideals J3(t) = Q[C(T)] - A in A as well as quotients A(t) = A/I(t) to which we

. . (¢
associates projections 21 L 2(t). However, one gets

Proposition 3.3.4. With notation as above, for eacht € T we have 3(t) = J;.

In particular, the fibers A{t) = A/T(t) of the C(T)-algebra A are isomorphic to the Rieffel
quantization Uy of the fibers A(t) = A/I(t) of A and for each f < 2 the mapping t v |
B lay=] Bef e, is upper semi-continuous.

Proof. We recall that Z(t)°° and J(¢) coincide as Fréchet spaces. By Lemma 3.3.2, 9 [C(T")] -
A° is dense in J(¢)°°, thus in J(¢), and Q [C(T")] - A is dense in Z(t)™> = J(t)*°, thus also
dense in J; .

By construction one has £ [C:(T)] - A = Q[C(T)] - A™; consequently J(t) = TJ; for every
t € T and the proof is finished. O

Remark 3.3.5. For obvious reasons, we are going to say that {A f(—t; Alt) |t e T} and

l are covariant upper semi-continuous fields of C*-algebras. The intrinsic

J

)
{21 PUaw) teT
definition, in the first case for instance, would be the following: < .4 — A(t) |t € T } is re-

quired to be an upper semi-continuous field of C'*-algebras and we also ask the action © to leave
invariant all the ideals Z{t) = ker[P(¢)]. It is easily seen that this is equivalent to require the
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covariance of the associated C(T)-structure. This makes the connection with Definition 3.1 in
[42].

For section ("~ -algebras of an upper semi-continuous field it is known [49] that each irre-
ducible representation factorizes through one of the fibers. Therefore we get

Corollary 3.3.6. Ler (A, O, Z, [, -]) be a classical data and assume that A is a ©-covariant C(T)-
algebra with respect to a Hausdorff locally compact space T, with fibers { A(t) | t € T'}. Denote,
respectively, by 2 and 2(t) the corresponding quantized C*-algebras. Then any irreducible
representation of 2 factorizes through one of the algebras (%) .

The C(T')-structure Q of 2, given by Theorem 3.3.3, defines canonically the map
q : Prim(2A) — T, as explained at the end of section 3.2. If 7 : 2 — B(H) is the irreducible
Hilbert space representation of 2, then the point ¢ in Corollary 3.3.6 is g[ker(m)].

3.4 Lower semi-continuity under Rieffel quantization

We keep the previous setting and inquire now if lower semi-continuity of the mappings ¢ + ||
P(t)f || aq) forall f € Aimplies lower semi-continuity of the mappings ¢ + || P(t) f [|o(z) forall
f € 2. We start by noticing that Prim(.A) and Prim(2) are canonically endowed with continuous
actions of the group =; once again these actions will be denoted by © . By the discussion at the
end of section 3.2 we are left with proving

Propeosition 3.4.1. Suppose that Q : C(T) — ZM(.A) is a covariant C(T )-algebra structure on
A and that the associated function q : Prim(.A) — T is open. Then the function q : Prim(2) — T
associated to Q : C(T') — Z(2) is also open.

Proof. We remark first that ¢ is ©-covariant (Lemma 8.1 in [49]), i.e. one has g o @y = ¢ for
every X € Z. Consequently, if @ ¢ Prim(.A) is an open set, then O=(Q) := {Ox(K) | X ¢
=, K € O} will also be an open set and ¢(O) = ¢[0=(0))]. So ¢ will be open iff it sends open
invariant subsets of Prim(.A) into open subsets of 7. The same is true for g : Prim(2) — T'.
But the most general open subset of Prim(.A) has the form

Oz :={K e€Prim(A) | T ¢ K} =h(T)¢

for some ideal .7 of A, being the complement of the hull 2(7) of this ideal. In addition, Q7
is ©-invariant iff 7 is an invariant ideal. We also recall that Rieffel quantization establishes a
one-to-one correspondence between invariant ideals of A and invariant ideals of 2.

So let 7 be an invariant ideal in .4 and J its quantization (an invariant ideal in 21). We would
like to show that ¢ (O7) = q(O5); by the discussion above this would imply that ¢ and q are
simultaneously open. Using the fact that ¢(K) = ¢ if and only if Z(¢) C K and similarly for q,
one gets

g(O7)={teT|3Ke€Prim(A), J ¢ K, Z(t) C K}

and
q(O;)={teT | IR Prim(AU), JZ R, 3(t) C R}.
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Using the hull application and the fact that both the hull and the kernel are decreasing, one can
write
tdg(Og) < RZIM)NAITI =0 < AZIR) ChlT] < I() D T

and

t¢q(O5) < AJWNAJ =0 <= AJW)] ChJ] <= J(t)DJ.
To finish the proof one only needs to notice that the Rieffe! quantization of invariant ideals pre-
serves inclusions. O

Remark 3.4.2. The definition of a covariant continuous field of C*-algebras is natorally obtained
by adding the lower semi-continuity condition to the definition of an upper semi-continuous field
of C"-algebras contained in Remark 3.3.5. Using this notion, Theorem 3.0.1 is now fully justified.

The C*-dynamical system (.4, 0,Z) being given, one could try one of the choices T =
Orb[Prim(.A)| (the orbit space) or T = Quorb[Prim{.A)| (the quasi-orbit space), both associated
to the natural action of = on the space Prim(.A). We recall that, by definition, a quasi-orbit is
the closure of an orbit and we refer to [49] for all the fairly standard assertions we are going
to make about these spaces. The two spaces are quotients of Prim(.A4) with respect to obvious
equivalence relations. Endowed with the quotient topology they are locally compact, but they may
fail to possess the Hausdorff property. On the positive side, both the orbii map p : Prim{A) —
Orb[Prim(.A)] and the quasi-orbit map q : Prim(A) — Quorb[Prim(.A)] are continuous open
surjections. So one can state:

Corollary 3.4.3. If the quasi-orbit space of the dynamical system (Prim(A),©,Z) is Hausdorf,
then the deformed C*-algebra A can be expressed as a continuous field of C*-algebras over the
base Quorb|Prim(.A)].

A similar statement holds with "quasi-orbit" replaced by "orbit" and with Quorb|[Prim(.A)]
replaced by Orb[Prim(.A4)].

Notice that, when Orb/[Prim(.4)| happens to be Hausdorff, the orbits will be automatically
closed (as inverse images by p of points); so one would actually have Orb[Prim(A)] =
Quorb[Prim(A)] .

3.5 The Abelian case

The most important is the Abelian case, that has been described at the end of section 3.1.
We assume given a continuous surjection ¢ : ¥ — T'. Then we have the disjoint decomposi-
tion of ¥ in closed subsets

¥ = L,llg‘_‘[‘g,g 5 Zt = qkl({f}) . (35]}
Associated to the canonical injections 7, : ¥; — X, we have associated restriction epimorphisms
R(t):C(Z)=C(E), ROf:=flg,=fod, VteT. (3.5.2)

We give conditions on the topological data (¥, ¢,7") in order to get a continuous field of
Abelian C*-algebras.
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i & ; § R \ . ; .
Proposition 3.5.1. If g is continuous, { cE) ——(—-2 C{Z) |t e T} is an upper seni-coRtinuous
Sield of commutative C*-algebras. If g is also open, the field is continuous.

Proof. Obviously Mier ker[R(t)] = {0}, since fin, = 0, Vt € T implies f = 0. On the other
hand, setting
p*xfi=(pogq)f, VYeeld), fel(XR), (3.5.3)

we get immediately R(2)(p * f) = () R()f, Yt T.
We need to study continuity properties of the mapping

T3t ng(t) = RE) fllcr,) = iy |f(o)| = mf{||f + Blleey | b€ C(T), hln, =0} € Ry.

The last expression for the norm can be justified directly easily, but it also follows from the canon-
ical isomorphism C(X;) = C(X)/Cy, (X), where Cs;, (X)) is the ideal of functions h € C(Z) such
that h{gt =,

We first assume that ¢ is only continuous. For every S C T we set ¥g := ¢~ (5) . It is easy
to see by Stone-Weierstrass Theorem that

C)(X) := {h € C(Z) | 4 an open neighborhood U of t such that hls = 0}

is a self-adjoint 2-sided ideal dense in Cy;, (X) . Lettp € T and £ > 0; by density and the definition
of inf

She C(tn)(z) such that Jlf(to) g 2 Hf -+ h“C’{E} i
Let U be the open neighborhood of ¢y for which A[s, = 0. For any t £ [/ one also has h €
C(t) [E) , 80

ng(t) =inf {|[f +gllery | 9€Cy(T)} < N+ hllesy < np(te) +¢

and this is upper semi-continuity.
Let us also suppose ¢ open, let tg € T and £ > 0. By the definition of sup, there exists

oo € Y, such that | f(og}| > np(to) — /2. Since f is continuous, there is a neighborhood V' of
g in ¥ such that

[flo)l 2 [floo)l —€/2 2 nglto) —~, VYoeV
Since ¢ is open, U := ¢(V) is a neighborhood of tg. Forevery ¢t € U we have ;N V = {1, so for
such ¢

ng(t) 2 sup{|f(o)| | o € TNV} = nglto) —¢

and this is lower semi-continuity. U

Remark 3.5.2. The result also follows from the fact that C(¥) is a C{T')-algebra for the injective
morphism

Q:C(T) —~ BC(E) = M[C(E)], Qp):=ypoq.
We have identified the multiplier algebra of C(T") with the unital C'*-algebra of all bounded con-
tinuous complex functions defined on ¥ . The direct topological proof of Proposition 3.5.1 seemed
to us more suitable,
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We recall now that an action © of = on X by homeomorphisms is given.

Definition 3.5.3. We say that the continuous surjection q is ©-covariant if it sarisfies the equivalent
conditions:

1. Each X, is O-invariant.

8]

. Foreach X € Z one hasgo ©Ox = g.
3. Forall X € Eand ¢ € C(T) one has O x[Q(p)] = Q(¢).

The equivalence of the three conditions is straightforward. We conclude that C(32) is a covari-
ant C(T')-algebra (cf. Definition 3.3.1). If one wants to avoid the language of C(T')-algebras, by
Remark 3.3.5, it should be noticed that all the ideals Z(T') := ker[R(t)] = {f € C(T) | fly, = 0}
are left invariant by the action © .

The Rieffel-quantized C™-algebras €(3) and €(X;) as well as the epimorphisms R(Z) :
C(X) — €(%;) were introduced in Section 3.1. Applying now Proposition 3.5.1 and the results
obtained in sections 3.3 and 3.4, one gets

Corollary 3.5.4. Assume that the mapping ¢ : L. — T is a O-covariant continuous surjection.
Then the family {E(Z) —(—tl (X, | te T} forms a covariant upper semi-continuous field of

non-commutative C”-algebras.
If g is also open, then the field is continuous.

Let us assume now that the orbit space Orb{X) is Hausdorff. Any orbit, being the inverse
image of a point in Orb(¥), will be closed in ¥ and invariant; it will also be homeomorphic to the
quotient of = by the corresponding stability group. As a precise particular case of Corollary 3.4.3
one can state:

Corollary 3.5.5, If the orbit space of the dynamical system (¥, ©,Z) is Hausdorff, then the de-
Jormed C*-algebra €(T) can be expressed as a continuous field of C*-algebras over the base
space Orb(X). The fiber over O € Orb(X) is the deformation of the Abelian algebra C{Q) =
Gi2i5n].

Remark 3.5.6. It is known that the orbit space is Hausdorff if the action © is proper, meaning
that the map = x ¥ 3 (X, 0) — (Bx(0),0) € £ x ¥ is proper in the usual topological sense
[49]. This happens for instance if 3 is a Hausdorff locally compact group on which the closed
subgroup = acts by left translations. More generally, assume that the action © factorizes through
a compact group I, 1i.e. the kernel of © contains a closed co-compact subgroup Z of = (with
= = Z/Z). Then the orbit space under the initial action is the same as the orbit space of the action
of the compact quotient. But the action of a compact group is proper and Corollary 3.5.5 applies.

3.6 Some examples

Example 3.6.1. Let </ be a C"-algebra and T a locally compact space. On
A=sC(T, &) ={f:T — & | f is continuous and small at infinity} (3.6.1)
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we consider the natural structure of C™-algebra. Tt clearly defines a continuous field of C*-algebras
(i) - . .
{C(T; &) 2 |t € T}, &) o= FL).

The associated C(T")-structure is given by [Q{)f] (1) := @(t)f(t) for ¢ € C(T), f e A, t €
T'. Foreacht € T an action 6" of = on & is given; we require for each f € A the condition

sup || 8% [F{E)] — F(E) [l =—.0. (3.6.2)
teT X0
Then obviously
0:Z— Aut(A), [Ox(NH]@) = 0% [F(2)] (3.6.3)

defines a continuous action of the vector group = on A . Each of the kernels
Z(t) = ker[8(t)] = {f € C(T;.&) | f(t) = 0}

is @-invariant, so one actually has a covariant continuous field of ('*-algebras (see Remarks 3.3.5
and 3.4.2). It makes sense to apply Rieffel quantization, getting C*-algebras (respectively) %A =
¢(T; ) from the dynamical system (A = C(T; &), O) and 2(t) from the dynamical system

(@, 0") forall ¢t € T'. From the results above one concludes that {QL = At) |t e T} is also

a covariant field of C*-algebras. For each ¢ we denoted by A(t) the Rieffel quantization of the
morphism 4(t) .

Example 3.6.2. A particular case, considered in [43, Ch.8], consists in taking 7" := End(Z)
the space of all linear maps ¢ : = — Z: it is a locally compact (finite-dimensional vector) space
with the obvious operator norm. If an initial action 6 of = on £ is fixed. the choice 6’3( =15
verify all the requirements above. Therefore one gets a covariant continuous field of C~-algebras
indexed by End(E). This is basically {43, Th.8.3]; we think that our treatment gives a simpler
and more unified proof of this resuit, especially concerning the lower semi-continuous part. In
particular, for any f € C[End(Z); &], one has Ilg% Il f@&) llaw=I f{0) ||lor. An interesting
particular case is obtained restricting the arguments to the compact subspace Ty = {t = vhidz |
h o€ [0,1]} ¢ T. The number h corresponds to the Plank constant and, even for constant
f 10,1 = o7, the relation %1_% | f llamy=1l f |lo is non-trivial and has an important physical
interpretation concerning the semiclassical behavior of the Quantum Mechanical formalism. We
refer to [24, 43, 44] for much more on this topic.

Remark 3.6.3. A way to convert Example 3.6.1 in a more sophisticated one is as follows:

For every t € T pick B{t) to be a C”-subalgebra of & which is invariant under the action
6" . Construct the C'"-subalgebra /5 of A defined as B = {f € C(T; &) | f(t) € B(t), Vt
T'}, which is obviously invariant under the action © . One gets a covariant continuous field of

C'*-algebras f 8P g (t) | te T} , where P(t) is a restriction of the epimorphism &(t) . The
general theory developed in sections 3.3 and 3.4 supplies another covariant continuous field of C*-
algebras {% il B(t)|te T} . where B(1) is the quantization of B(t) and can be identified

with an invariant C'*-subalgebra of (%) .
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Example 3.6.4. Crossed products associated to actions of 2~ := R™ on (C”-algebras can be
obtained from Rieffel’s quantization procedure, as it is explained in [43, Ex.10.5]. From the
results of the present article one could infer rather easily, as a particular case, that (informally)
the crossed product by a continuous field of C™ -algebras is a continuous field of crossed products.
Such results exist in a much greater generality, including (twisted) actions of amenable locally
compact groups [37, 40, 42, 49], so we are not going to give details.

Example 3.6.5. Let T' C [0, 00) with the relative topology, set 2y 1= {z € C | |z| € T} and
T := Qp x R. We consider the action © of = := R? on ¥ given by

2mix

Oleny(2+) = (75,0 )

It is easily checked that ¢ : ¥ — T given by g{z,a) = |z| is continuous, open and ©-covariant.
So. applying the theory to A := C(X}, we can construct the covariant continuous field of non-
commutative C*-algebras {€(X) — €(X;) | t € T}. Note that for any ¢ € T one has ¥; =
g 1{{t}) = S; x R, where S is the circle of radius # . It follows casily that, up to isomorphismis,
if t # 0 the quantized (C'*-algebra &(3;) is the quantum cylinder {43, Ex.10.6], while for ¢ = 0 it
is the Abelian C*-algebra C(R) .

For a related version pick 77,7y C [0,00),set L = Qp x Qpuandg: £ = T := T} x
T3 given by g(z,w) = (|2[,|w]). Introduce the action O, (2, w) = (e?™z, 2™y and
replace the usual symplectic form ., -] by A/2[, -], where 3 is some real number. In this case
Y1y 1y) = St; X Sy thus if 429 # 0 then €(Z,, 4,)) is the quantum torus A5 [43, Ex.10.2], if
tita = 0, t; +to # 0itis C(T), and if t; = to = 0 itis C2.

Example 3.6.6. In [45] one constructs C™-algebras which can be considered quantum versions
of a certain class of compact connected Lie groups. We will have nothing to say about the extra
structure making them quantum groups; we are only going to apply the results above to present
these C'"-algebras as contnuous fields.

Let ¥ be a compact connected Lie group, containing a foral subgroup, i.e. a connected closed
Abelian subgroup H . Such a toral group is isomorphic to an n-dimensional torus T™. Assume
given a continuous group epimorphism 7 : R™ — H (for example the exponential map defined on
the Lie algebra $§ = R"). We use 7 to define an actionof Z:= R™ x R"on X by Sz lo) =
n(—z)on(y). Then, by applying Rieffel deformation to A := C(S) using the action © (and
a certain type of skew-symmetric operator on Z), one gets the C*-algebra 2 := €(X) which,
endowed with suitable extra structure, is regarded as a quantum group corresponding to ¥ .

It is obvious that the action factorizes through the compact group H x H . Thus the orbit space
Orb(X) is Hausdorff and Remark 3.5.6 and Corollary 3.3.5 serve to express €(X) as a continuous
field of C”-algebras. For the stability group of any orbit (7 one can write Zp O ker(6) O
ker(n) x ker(n), thus O = Z/Z¢ is a continuous image of H x H .

Example 3.6.7. An interesting particular case, taken from [45], involves the construction of a
guanturm version of the compact Lie group % := T x SU(2). Here T is the 1-torus, the group
SU(2) contains diagonally a second copy of T and can be parametrised by the 3-sphere §% =
{(z,w) € C? | [2]? + |w|? = 1}, and so ¥ contains a 2-torus. Initially = = R* acts on © in
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the given way, but it is shown in [45] (using results from [43}) that the same deformed algebra is
obtained by the action

6': = :=R’ — Homeo (T x §%) Oy (T3 2,w) = (672" 2, e ap)

The orbit space is homeomorphic with the closed unit disk 7 := {z € C | |z| < 1}. The orbits
corresponding to |z| < 1 are 2-tori, while the orbits corresponding to |z| = 1 (implying w = 0) are
1-tori. If we set A := C(T x STU(2)), then the quantized C*~algebra 2 = €(T x SU(2)) deserves
to be called a gquantum T x SU(2) . The deformation of the continuous functions on any of the 2-
tori leads to a quantum tori. By multiplying the initial skew-symmetric form [-, -] with an irrational
number S one can make this non-commutative torus €5(T?) irrational, which serves to show that
the corresponding quantum T x SU(2) (obtained for such a 53) is not of type I. But applying the
resulis obtained here one also gets the detailed information: The algebra €(T x SU(2)) can be
written over the closed unit disk T as a continuous field of non-commutative 2-tori and Abelian
C*-algebras (corresponding to the one-dimensional orbits).

Many other particular cases can be worked out in detail. We propese to the reader the example
¥ =802) % 8U2.

3.7 Spectral continuity

Let us introduced the concept of continuity for families of sets that will be useful below.

Definition 3.7.1. Ler T be a Hausdorff locally compact topological space and {S(t) |t € T} a
family of compact subsets of R.

1. The family is called outer continuous if for any tg € T and any compact subset K of R
such that K N S(ty) = 0, there exists a neighborhood V of towith KNSty =0,vte V.

2. The family {S{t) | t € T'} is called inner continuous if for any tg € T and any open subset
A of R such thar AN S(ty) # 0, there exists a neighborhood W of to with AN S(t) # §,
vt e W.

3. If the family is both inner and outer continuous, we say stmply that it is continuous.

In applications the sets S(¢) are spectra of some self-adjoint elements f(t) of (non-commutative)
C*-algebras (). The next result states technical conditions under which one gets continuity of
such families of spectra. It is taken from [2] and it has been inspired by the treatment in [4]. We
include the proof for the convenience of the reader.

Proposition 3.7.2. For any t € T let f(t) be a self-adjoint element in a C*-algebra U(t) with
norm || - |lwy and inversion g — g(_l)?‘“}. We denote by S(t) C R the spectrum of f(t) in
2(t).

1. Assume that for any = € C\ R the mapping

e Ry (3.7.1)

T3t || (f) - 2|

is upper semi-continuous. Then the family {S(t) |t € T} is outer continuous.
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2. Assume that for any z € C\ R the mapping (3.7.1) is lower semi-continuous. Then the
family {S(t) |t € T} is inner continuous.

Proof. We use the functional calculus for self-adjoint elements in the C*-algebra 2({t) (o define
x[f (#)] for every continuous function y : B — C decaying at infinity. Notice that

() — 2)0V10 = 3 [f(8)], with x.(A) = (A —2)7L.

By a standard argument relying on Stone-Weierstrass Theorem, one deduces that the map ¢ —
|x[f(1)]] sy has the same continuity properties (upper or lower semi-continuity, respectively) as
(3.7.1).

Let us suppose now upper semi-continuity in #o and assume that S{tg) N A = ) for some
compact set . By Urysohn’s Lemma, there exists y € Co(R)+ with x|x = 1 and x]|g(,) = 0,
s0 x [f{to)] = 0. Choose a neighborhood V" of ¢ such that for ¢t € V'

rp { 1 1
| x[f(®)] oty < |l x1f(to)] 210 +5 = 3

If for some ¢ € V" there exists A € K N .S(t), then

- i 1
1=x(A) < sup x(u) = x[f()] llag < 5
HES()

which is absuord.

Let us assume now lower semi-continuity in ¢g. Pick an open set A ¢ R such that S{tg) N A #
¢ and let A € 5(¢) N A. By Urysohn’s Lemma there exist a positive function ¥ € Op{R) with
x{A) = land supp(x) € A; thus || x [f{to)] | = 1. Suppose moreover that for any neighborhood
W C I of iy there exists t € W such that S(¢) N A = [ and thus x [f(¢)] = 0. This clearly con-
tradicts the lower semi-continuity of ¢ > || x [f(#)] {lai). We conclude thus the inner continuity
condition for the family S(¢) . 0

Proving these properties of the resolvents is a priory a difficult task, since this involves working
both with norms and composition laws that depend on ¢. But putting together the information
obtained until now, we get our abstract result concerning spectral continuity:

P : . . . . s
Theorem 3.7.3. Let < A —2 A(t) | t € T} be a covariant upper semi-continuous field of C*-

algebras indexed by a Hausdorff locally compact space T and let | be a smooth self-adjoint
element of A. For any t € T we denote by (t) the Rieffel quantization of A(t) and consider
f(t) == P(t)f as an element of A()™ = A{t)*> C UA(t), with spectrum 5(t) computed in Alt) .
Then the family { S(t) | t € T'} is outer continuous.

If the field is continuous, the family of subsets will also be continuous.

Proof. The resuits of the first chapter allow us to conclude that the quantized field

{ A ‘E(—Q Aty |t e T} has the same continuity properties as the original one.
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Forany z € C\Ronehas (f — )% € % and (f(2) — 2)Haw = () [(f — 2)Va].
Therefore the assumptions of Proposition 3.7.2 are fulfilled both in the upper semi-continuous and
in the lower semi-continuous case, so we obtain the desired continuity properties for the family

[8(4) [ teT}. O

Of course, the conclusion also holds for non-smooth self-adjoint elements f ¢ 2. Very
often they are much less "accessible" than the smooth elements, being obtained by an abstract
completion procedure, so we only make the statements for ('°° vectors.

Specializing to the Abelian case and using the notations of section 3.5, one gets

Corollary 3.7.4. Let f € C°°(X) a real function and for each t € T denote by 5(t) the spectrum
of f(t) = fly, € C®(Z;) = €°(,) seen as an element of the non-commutative C*-algebra
C(Xy). Then the family {S(t) | t € T} of compact subsets of R is outer continuous.

If ¢ is also open, the family of subsets is continuous.

Remark 3.7.5. One can use {43, Ex.10.2] to identify quantum tori as Rieffel-type quantizations
of usual tori. One is naturally placed in the setting above and can reproduce some known spectral
continuity results [13, 4] on generalized Harper operators.

The standard approach of Quantum Mechamics asks for Hilbert space operators. This can be
achieved by representing faithfully the C*-algebras 21(t) in a Hilbert space of L’-functions in
a way that generalizes the Schridinger representation. We are going to get continuity results for
both spectra and essential spectra of the emerging self-adjoint operators. We work in the following

Framework.

1. (C(%),0,Z,[,-]) is an Abelian classical data, with ¥ compact.

2. = is symplectic, given in a Lagrangean decomposition Z = 2" x 2* > X = (2.,£),Y =
{y,m), where 2" is a n-dimensional real vector space, 2"~ is its dual and the symplectic
form on = is given in terms of the duality between 2~ and 27" by [(z.£),{y,n)] =
i & 2 T

3. ¢ : ¥ — T is a ©-covariant continuous surjection. We also assume that each ¥; =

g '({t}) is a quasi-orbit, i.c. there is a point ¢ € T such that the orbit O, = Oz=(0) is
dense in X, (we say that o generates the gquasi-orbit T, ) .

4. We fix a real element f € C*(%). For each ¢ € T and for any point ¢ generating the
quasi-orbit ¥; we define f(t) := fly, and fo(t) == f(t) 00, : Z - R.

5. We set H,(t) := Op|[f,(t)] (self-adjoint operator in the Hilbert space H = L*(.2)),
by applying to f,(t) the usual Weyl pseudodifferential calculus. We denote by S(t) the
spectrum of H,(t).

Some explanations are needed. It is easy to see that each f,(t) belongs to BC™(Z), 1.c. itisa
smooth function with bounded derivatives of any order. Therefore, using oscillatory integrals, one
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can define the self-adjoint operator in L%(.2")

[H (t)u] () = [Op(fo(t))u](e) := (2m) 7" /du QeI Lo (2)) ("' 5 y'f) u(y).-
e (3.7.2)
This operator is bounded by the Calderdén-Vaillancourt Theorem [15]. Using the notation (3.1.4),
we see that for every X € = one has [f~(t)] (X) := f[Ox(c)]; this depends on ¢ € T through
o and only involves the values of f on the dense subset O, of &, . The same is true about H,(t),
which can be written

[Hy (t)y] (z) = (2m) ™" L (dy A dgelavty {@(m_;_u,g)(a)} u(y). (3.7.3)

It is shown in [29] that if & and ¢ are both generating the same quasi-orbit ¥; , then the operators
H,(t) and H,(t) are isospectral (but not unitarily equivalent in general). Thus the compact set
S(t) only depend on ¢ and not on the choice of the generating element ¢ .

Theorem 3.7.6. Assume the Framework above. Then the family {S(t) | t € T'} is outer continu-
ous.
If q is also open, than the family is continuous.

Proof. By Corollary 3.7.4, it would be enough to show for every ¢ that S{t) coincides with the
spectrum of f(t) € €(%;). For this we define

Ne i €95 -+ BO®([E), Ni(g):i=ge6;

and then set
Op, =Opo N, : C®(E,) = B(H).

Then one has H,(t) := Op|[f,{t)]] = Op, [f(t)]. It is not quite trivial, but it has been shown
in [29], that Op, extends to a faithful representation of the Rieffel quantized C*-algebra €(%,;)
in H . Faithfulness is implied by the fact that o generates the quasi-orbit £, which results in the
injectivity of A, conveniently extended to €(X;) . It follows then that sp [H,(t)] = sp [f(t)], as
required, so the family {S(t) | ¢ € 7'} has the desired continuity properties. g

We recall that the essential spectrum of an operator is the part of the spectrum composed of
accumulation points or infinitely-degenerated eigenvalues. Let us denote by §%%(t) the essential
spectrum of H,(t) ; once again this only depends on ¢ . To discuss the continuity properties of this
family of sets we are going to need some preparations relying mainly on results from [29].

First we write each Y, as a disjoint O-invariant union ¥; = Xf (U £} . The elements o) of &f
are generic points for ¥,, meaning that each of them is generating ¥, . The points gy € 3 are
non-generic, i.e. the closure of the orbit O, is strictly contained in ¥, .

Let us now fix a point ¢ € T and a generating element ¢ € ¥;. The monomorphism N
extends to an isomorphism between C(X;) and a C*-subalgebra B, (t) of the C*-algebra BC, (=)
of all the bounded uniformly continuous complex functions on = . It is shown in Lemma 2.2 from
[29] that only two possibilities can occur, and this is independent of o : either C(Z) C B,(t) (and
then t is called of the first type), or C(Z) 0 B, (t) = {0} (and then we say that t is of the second
type). Correspondingly, one has the disjoint decomposition 7' = 77 U Tyr.
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Theorem 3.7.7. Assume the Framework above. Then the family {S°°(t) | t € T} is outer
CORBNUOUS.

Proof. One must rephrase the essential spectrum S®5(t) := sp.[H,(t)] in convenient C*-
algebraic terms. Assume first that ¢ is of the second type. By [29, Prop. 3.4], the discrete spectrum
of H,(t) is void, thus one has S®=(t) = S(¢). If t is of the first type, the subset ¥.I' is invariant
under the action © and it is also closed by [29, Prop. 2.5]. Denoting by f"(f) the restriction of
f(t) to TP, one gets an element of C*(X}) ¢ €(X}) with spectrum S™(¢). But [29, Th. 3.7]
states among others that S™(t) coincides with S%(t) .

We need to construct now a suitable restricted dynamical system. Let us consider the decom-
position

T=(]Z)u(||z)=(|=Hu{([U=Hu(]] =)} =uz=.

teTy teTy teT] teTy teTyr

One might set ¥3% := S if t € Tr and 5% = %, if ¢t € Ty. Notice that each £ is not
void. This is clear for t € Ty, since ¢ has been supposed surjective. If t € 77 and ¥} = }, then
¥¢ = ©f is minimal and compact, so t € Tjy by Lemma 2.3 in [29], which is absurd. The disjoint
union % := L;cp £ (with the topology induced from ¥ ) is a compact dynamical system
under the restriction of the action © of = and ¢**° := ¢|ges : £%° — T is a covariant continuous
surjection. Thus we can apply the previous results and conclude that {€(X%%) — €(Z%) |t € T'}
is an upper semi-continuous field of C*-algebras; the arrows are Rieffel quantizations of obvious
restriction maps.

From all these applied to f|pess € €%°(E%) it follows that {Se”“s(t) = 8p [ f () Ecss(tﬂ |te T}
is outer continuous. g

Remark 3.7.8. Even in simple situations, the surjective restriction of a continuous open surjection
may not be open. So ¢**° may fail to be open and in general we don’t obtain inner continuity for
the family of essential spectra. On the other hand, if openness of the restriction ¢ is required
explicitly, one clearly gets the inner continuity. Since only the dynamical system (2°°, 0, =) is
involved in controlling the family of essential spectra, some assumptions weaker than those above
would suffice.
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