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Resumen:

El propósito de esta tesis es e¡ estudio y dcsorrollo de dos nuevos tipos de teoúas pseudodifer-

cnciales basadas en cl c¡ilc¡.rlo de Weyl, y también el estudio de cienas técnicas C* -algebraicas

¡elacionadas con estás. Estos ciílculos consisten en asmiar a cada elemento de una cieÍa clase

de funciones (a quienes llamamos símbolos) una familia de operadores en ¿2(R') indcxacla por

los puntos de un espacio en el que iRn o IR2'' acnia. de modo que estas deñnen familias equivari-
antes de operadores. Pol' equivarianles me reliero a que los operadores indexados por puntos en la

misma órbita, correspondientes a un sÍrnbolo fijo, son unitariamente equivalentes (la equivalellcia
unitaria será implementada ¡ror un operador unitario independiente del símbolo). Los símbolos

son elementos de un álgebra de Poisson de funciones sobre un espacio que puede ser visto como

un encolado continuo de varios espacios de fase usuales.

Desde el punto de vista C.-algebraico, para cada uno de estos cálculos obtendremos una C*-
álgebra que tiene alálgebra de símbolos como una *-subálgebra densa. Las familias de operadores
provienen de restringir una ciena famiiia de representaciones de la C*-álgebra al iílgebra de Pois-

son -

El primer crálculo fue introducido por M. Lein, M. Mántoiu y yo. Este cálculo fue consfruido

dc modo que los operadores que emergen a través de este puedan ser interpretados como Hamil-
tonianos magnéticos. También logramos hacer ¿il formalismo dependiente de un parámetro real

f¿ (interpretado como la constante de Planck) y obtuvimos varios resuhados de tipo semiclásico.

Ademrís apartir de cierta subálgebra dc Poisson de símbolos logramos construir lo que se conoce

como ura cuantización por deformación estricta.
El segundo cálcuio es¿á basado en un proceso de deformación de C"-álgebras. Prob¿remos

que si el álgebra no defor¡nada es el álgebra de secciones de un campo contifluo de C*-álgebras
entonces el álgebra deformada también lo es y, de hecho. las correspondientes fibras son el resul-
tado de defonnar las fibras del álgebra de secciones inicial. Esto será usado para probar resultados

especEales para los operadores determinados por el segundo ciílculo.



Abstract:

The aim of this thesis is the study and development of two recent types of pseudodifferential
theories rooted in the usual Weyl calcuius, arrd also the study of certain C*-algebraic techniques
related to them. These calculi consist in to associate to each elemert of certain class of fi¡nctions
(calted the symbols of the calculi) a famiiy of operators ot L2(tr), indexed by the points of a

space on which R'i or R2¿ acis, such that these define equivariant families of operators. By a

equiváfiart family we meá¡l that the opemtors indexed by points on the same orbit, corresponding
to a fixed s).rnbol, are unitary equivalenl (the unifary €quivalence wilt be implemented by an
unitary operator independent of the symbol). The symbols are elements of a Poisson algebr¿ of
functíons on a space that can be seen as a continuous gluhrg of seveml standard phase spaces.

From the C*-algebraic point of view, for each of these calculi we wíll obtáin a C*-a,lget:,ra
which has the Poisson algebra of symbols as a dense "-subalgebra. The famües of operators will
be the ¡esult of restricting a certain family of rcprcsentations of the C+-algebra to f¡e Poisson
algebra.

The fust calculus was inúoduced by M. Lein, M. Mántoiu and I. This cálculüs was meant to
generate opemto$ which can be considered as magneüc Hamiltoniar. We made the formalism
dependent of a rcal parameter ñ (which must be interpreted as Planck's constant) and we obtained
several semiclassical results, We also consúL¡cüed, &om certain Poisson subalgebra of symbols,
what is known as a strict deformation quantization.

The second calculus is based on a deformation procedure of C*-algebras. We will prove
that if the undeformed algebra is üe section algebra of a continuous field of C*-algebras üen
the deformed algebra will also be a section algebra, in fact, the coresponding fibers will be the
deformatio¡r of the fibers of the initiai section algebra. This will be applied to obtain specrrai
results about the operators given by the second calculus.
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Chapter I

Overview

I.l Quantization: basic examples

By general principles, in Classical Mechanics the observables of a physical system are real valued
Cñ-fr¡nctions on its phase space (which is assumed fo be a Poisson manifold or just a symplec-
tic mádfold). On the other hand, in QBanfum Mechanics the observables of the physical system
should be self-adjoint opeÉtors on some llilbert space. We undemtand by quantization of a pbys-
ical system, a systematic §.¡ay to convert suitable classical obse¡vables of the system into quantum
obse ables. An admissible classical observable for such pmcedu¡e is usually called a symbol for
the quantization.

The Weyl pseudodifferential calculus is the best understood of such procedures; it can be
regarded as a quanüzation of the physical system consisting of a non-relativisüc spinless particle
moving in the configuration space .f :: lR?, in the absence of any magnetic field. The phase
spáce of this system is the cotangentbundle T* 9) = # x tr* :: E of the consguration space,
where .r * is the du al of 9) . Expltcitly, it is given by

tDp(/)r,l(r) ,: t ")* l* /*..t@-u)E¡ (ry,r)u(y)d6ds,

where ü € -L2(.f). This expression makes sense for suitable class of funciions / Gymbols) and
defnes a (not necessarily bounded) operator.

Recall that üe canonical (const¿nt) slmplectic fo¡m

d(3 A dr;

expressed in canonical coordinsies {r¡, €¡}7:t transfomrs 7*.# into a symplectic manifold. The
bracket associated with f is given by

tt.!)j ::i@.rf ó*,s - o,,f o¿,s)

f
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wherc /,9 € Coo(=). It endows F with the structrnr of a Poisson Manifold, in othcr words,
the triple (C-(E) , { , }, ) where . denote the pointwise product forms a Poisson Algebra.
The explicit definition can be found in [24] together wlth a treatment of Poisson and symplectic
manifolds frum the classical mechanics point of view.

Now we briefly expose what happens when a (non-necessarily constant) continuous magnetic
field B (a continuous closed 2-form of .iü') is turned on. Recall that the vector bundle structure of
the space T' I > Y x .2-. = E is given just by the projection on the first component. Let ñ1.B
be the pullback of B by this projection, and let us consider the closed 2-form given by the sum of
the canonical symplectic form and ñ18. This gives a new symplectic strucrurc on T" 9,' and the
bracket associated to it is given by

{Í,gls,:l(01,f 0,,s - t),,f \a,o) +\aih 0q,f 0tñ.
j:f i.k

In the literature it has been considered another change in the Poisson structure of E, based on
an application of the minimal coupling principle: Choose a vector potential "4 for the magnetic
field (E : dá) and deñne

lf,{rlA,: {i¡,s¡},
where /,9 € C-(3) and /¿(e;,f) :: /(r.{ - A(r)). These Poisson brackets are related by the
following formula:

{i,g}A: (ll,g}a)¡.
By physical consider¿tions, for each vector potential A one should have a quantization pmce-

dure .Op/ of this (magnetic) physical system. They strould have the gauge covariance property,
meaning that if At : A + Vp (i.e. A y At are porenúals for üe s¿Lrne magnetic field) then

"ioopA(i)"-io 
: DpA'$). I¡ [22] nd [30] a solution for this problem was given; it is ca[ed

the magnetic Weyl calculus and is formally given by:

[op/(/)r] (r):(:,'¡-'" [ [ ei@-a).€ rlgjg.r) 
"-iro.''r,u(s)d€dy,JrJ.s'-' '\ z '\)

where fA < z, g > is the circulation of the potential ,4 through the segment l*rding from er to ..r7.

Each continuous magnetic ñeld B has a potential called the rransversal gauge potential. It is
given by

A¡(") B¡*(sz)sc¡ds.

This potential satisfies that l/ I r,!/ )= lB < 0,r,g >, where lB < O,r,y > is rhe flux of
B through the fiangle with verlices ar 0, r and gr. The calculus associated to this porcntial will be
denoted by OpR.

It appears fiom time to time in the literature the proposition Op,1("f ) : Op(l¿). ln gcncral
this fails to be a physically admrssible quantization because it does nr:t satisfies the covariance
propeny; however if '{ is linear then !l pA : Dp t.

(r.r.l)

,:L_l"',
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1.2 Pseudodifferential calculi and gluing basic physical systems

The aim of this thesis is the sfudy and development of two recent types of pseudodifferential

theories rooted in the usual Weyl calculus, and also the study of certain C"-algebraic techniques

relaúed to them. These calculi are also meant to be interPreted as a qua¡tizaüon procedure. The

purpose is associating to each symbol a family of operatox on L2(9i), indexed by the points

of a space on which 3-i o¡ 3 acts, such that üese define eqüvariant families of operators. By a

equivariant family we mear that the operators indexed by points on the same orüit, corresponding

to a fixed s)"rnbol, are unitary equivalent (the unitary equivalence will be implemented by an

unitar.v operator independent of the symbot). The symbols are elements of a Poisson algebra of
functions on a space that can be seen as a continuous giuil'tg of several standard phase spaces.

From the C.-algebraic point of view, for each of üese calcuü we will obtai¡ a C--algebra

which has the Poisson algebra of symbols as a dense t-subalgebra. The famiües of operators will
be the result of restricting a certain family of representations of the C*'algebra to the Poisson

algebra.

The nrst calcul[s is meant to be a generalization ofthe magnedc Weyl calculus. Let us describe

its setting and interpretation briefly.

Let 9 be a jointly continuous action of 9l on a Hausdorff locally compact space O. We staf
by showing that O can be regarded as a continuous gluing of üsual configuraüon spacesl üen 0

will allow us to deñne a notion of differendabiliry for functions on l). So I ) can be considered as

a new kind of (global) configuration space. This will lead us to define natura§ a phase space fot'

our setúng and t¡e symbols for our fust calculus.

Recall that the orbit Ou generated by a point c! € Q is homeomorphic to the quotient of ..*- by

the closed stability subgroup k. :: {r e 9: le,@): r.l}. It is well known that every closed

subgroup of 9J is basically of the form [tk x tr x {0}- , where I is a lattice of dimension ¿, ard

¡r + I + rn: ?z. Then each orbit is homeomorphic lo a simple configuration space (a product of
an euclidean space, some tori and points),

Althoug¡ fl is just a loca.lly compact space, the given action allows us to deflne a notion of
differentiabiliiy. To motiv¿te this deñnition we appeal to an essendal idea of our construction, For

afunctiong: O -+ Sandapointo € f¿, we define p- :9J -+ Sby 9.@) := rp(É"(c,')). Note

that if r.,r and o' are in t}le same orbit then q- and. 9-, differ iust by a translaúon and rp. is well
defined over tr I 2.. Moreovel if g is conúnuous, then each p. is continuous.

We could declare that t, € C-(f)) if *o- e C-(9.") for each c" € l¡. However, this ñrst

attempt does not consider the global topology of ft. The following definition can be interpreted as

a way to verify uniformly that each p- is C* . We defire the space of bounded smooth vectors by

6c*(fl) :: lp e BC(e))fl > t'+ á.(<p) e BC(Q) is C-),

where BC(A) is the C*-algebra of complex bounded continuous functions over Q, d"(,p) is de-

nned by d"(g)(cr) :: 9(0,(a)) and C- is meant in norm-sense. For example, if we consider

Q :: 9) a¡d á the action by tralslation, the resulting space is üe usual space BC-(.9i) of in-
f,niteiy differenüable functions which together with all 'its pañial derivatives are bounded. Clearly.

n9 e BC*(ll) then p- € BC*(g),fo¡eachu e tl.
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Since l¿ is meant to be a global configuraticln space, the atural phasc spacc fr.rr our setting is
ll x !) * , The action ¿l t* r* of .12' x .2;* = 3 on O x .i?,'- given by

(0 q r*) ((:r.\),(,.r.{)) :: (0"(u),r¡ + t) ( 1.2.1)

(t.2.2)

allows us to define analogously a new space of bounded smooth vectors BC* (9 x 9:-).
The last ingredient is the appropriate definiüon of a magnetic ñeld for our setting. We call a

magnetic field on f ) a continuous function B : l) -+ fi2 .?i such that B., is a usual magnetic field
for any r..,. Inspted by the usual magnetic case, we define

{f ,9}e,-\(a:,f an -
j:1

where f ,g € AC*(f¿ v S:.) ard

6,f o, o\ +f -Bjr a. f 4.. r.¿-2
j,k

d¡: BC*(a) -+ BC-(Í)), , )a,G'¡
oi,1 :: arr r:u. (1.2.3)

Clea y BC-(A r .fl*) together the pointwise product and {., .}6 forms a Poisson algebra. This
will be the Poisson algebra of symbols for the general magnetic calculus.

For comparison, let us leave for a while the lirst calculus and starf to describe the second one-

The second calculus is based on M. Rieffel's article [43]. In this article a quantization in the
sense of strict deformation was defined (see [24], [43] or Í441for details and morivation of this
notion). On üe other hand, in [29] it was showcd how to obtain Schrtidinger type representations
for Rieffel's quantization; we call all the formalism Rieffel's pseudodifferential calculus.

The initial data for Rieffel's calculus is a quaüxplct (», O, 
=, 

J), where X is a Hausdorff
locally compact topological space, O is ajointly continuous action ofE on I and J isa2n. x 2n
skew-symmetric matrix. As before, each orbit is homeomorphic to a product of an euclidean
space, some tori and points; we interpret eacl't Oo as a standard phase space. Moreover, using the
action e) ss before. we defins the space of bounded smooth vectors BC-(X); this is the space of
symbols for Rieffel's calculus. So again we can interpret ! as a gluing of standard phase spaces

and also as a global phase space. This point of view is very fruitñrl; ir allows us to consider global
phase spaces which are not the cotangent bundlc of a global configuration space. This could seem
to be just heuristical, but there are some very interesring examples ( chapter 12 at [43]) where the
global phase spacc I is actually a Poisson manifold which is not symplectic (in particular, it isn't
a cotangent bundle of a manifold) and the standard phase space compone¡ts O, afe its symplectic
leafs.

As before fo¡ a function g : X -+ ,5 and a point o e X, we define go :2 -+ ,§ by 9"(X) ::
p(Ox(o)). Wealsodefinethederivations{á¡}r2-,replacingin(1.2.3)ObyX,0byOandxe 9l
byX e E.

Note that although the phase space considered before f) x 91" ts a partscul:ar case, we didn't
consider in the presenf general case magnetic ñelds.

We can also define a Poisson br"cket on Bd*'(X):

{f , r¡} ¡ t: \ J¡r.6¡ J 6¡¡¡.
j,k

(r.2.4)
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We will usually consider thc stxndard skew-symmcrric mar 
" 

( o , l, ) : in üis case üe brackct- \-J U,i
is given by

il.sl =Lb"+j! o,o - 6,J 6,.¡s)

Note also that the skew-symmetric bilinear form

llx,v)lt:rY.x (.1.2.5)

transform 3 into a symplectic vector space (so into a symplectic manifold with a constant sym-
plectic form), which are the most standard objets used to describe classical mechanics. Choosing

the standard s).mplectic matrix t : ( 0, j ) , w" oOain ttr. standard symplectic tbrm which\-l u./
we simple denote by [[ .] ].

{ . , . 
} "¡ 

can be obtained formally by

{f, sl¡ ': [[v/, ve]lr

where V/ ,: (úf ,62i,....62nf).
Finally, the calculi are respectively given by

a?ff),: opB"(.fr.,o;) y H"(f):= DF(Í"), (1.2.6)

where / belongs to BCF(Q x 9-*) in the ñrst case , and to BC-(X) i¡ the second case.

Note that, since each lp,o¡ and f" belong to BC-(3), tlte above expressions have sense and

they define families of bounded standard pseudodifferential operators, thanks to the Calderon-
Vaillancouxt Theorem ([15]) and his magnetic version ([20]), Note also that each symbol fl,,01 or

/. could be considered ss a symbol on the corresponding standard phase spece. For example, if
the orbit Oo of o is homeomorphic to {0} x T' x R2¿-2 (recall that each orbit is homeomorphic
to the product of points, tori an euclidean spaces) then J" will be a symbol on E independent of
rhe first variable and 2a-periodic in the second one, or it could just be considered as a s).¡nbol on

{0}xTxm2'-2.
In [29] it was proved that if o and otbelong to the same orbit ttrer H"(i) and H",(f) are

unitary equivalent for each / e BC'"(»). y 6t : {-l s(o) then the unitary equivalence is im-
plemented by the unitary operator.Op(r2), where e2(X) : e-itx,z\. The corresponding result
for üe general magnetic calculus will be proved in the second chapter (2.3.9). This properties
motivate us to think that fhese calculi could give a convenient setting to use pseudodiffercntial
techniques in some continuous models of random operators; obviousl¡ for this, we need to endow
f, (respectively X) with a measu¡e invariant by 0 (respectively O).

In all the forma.lism above we can introduce dependence of a rea] parameter ñ > 0 intelpreted
as Planck's constant. For the Weyl calculus this dependence is given by

[DpáU),] (¿),: (z*hy^ L Ís' (?,,) !/n@-i eug¡ ¿1¡r.

and it is transmitted to Rieffel's pseudodifferential operators through (1.2.6). The dependence for
the general magnetic Weyl calculus wi1l be given explicitly in chapter 2 (see (2.3.7)).
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1.3 C--algebraictechniques

The development and study of the calculi described above have in common the use of C* -algebraic
techniques. This is motivated principally by the relation already prcsent for the Weyt theory with
certain C*-algebras. The core of this relationship comes from the following well known fact:
Given fwo suit¿ble symbols / and g (for exarryle {,9 € BC*(S)), fhere is a symbol á such
that Dp(á) : op(,f)op(g). The corresponding /¿ is denoted hy J# g, and # is called the Moyal
product. It is given by

U # il@, {),: u^ I Í= "ztv,A f 
((r, {)+ y) g((o, () + z) dy d,z,

where the above integral is usually defined by oscillatory integral fechniques.
There are certain sets of symbols which together with the poinrwise sum, the Moyal product,

and pointwise complex conjugation form a *-algebra, so one can ask for a natural C*-norm. For
example, since l)p is faitbful and Op(/) : Dp("f)-, over those *-algebra whose image by .Op

consists of bounded operators, we can define | /ll ,: llOp(/)llB@2(s:)). The Schwartz class

§(E) and EC-(E) are important examples of such *-algebras; notÉ that, with the usual Poisson
bracket each of these spaces becomes also a Poisson subalgebra of C- (E).

If we consider the ñ-dependent Weyl calculus Op¡, we can define f ¿ by imposing Op¡ (/f ¿9)
: Dph$)Dphb).For f e BC* (z), we can also define ll.fll¿:: llDpñ(/)llB(¿,(jO).

It is well known t¡at if / and g belong to BC@(E), then

and

J:¡:' J:t -*lt','-h2Rt'J :t

a R¡1(!,li ¡i ! C'unifbrmi¡ in li. ln particular

lirn lrDp¡ (/.q1 (
h*n \

!)p¡, (/).op¿¡(e) + Dp¡,(g)rp¡ (l')

)lu¡",1.r-¡;:o

ji,r¿ llorn({1, r}) - *1ltro,,{/), 
oo¡(.q)l l¿,r¡,,i,rlr : 0,

where f.,.] is the usual commuraror of B (L,(g)).
For the magnetic Weyl calculus the situation is similar. First a ñ-dependent magnetic Moyal

product was defined by imposing Op{(¡+P!» : Dp*(f)DF*b); remarkably the ñ-dependent
magneúc Moyal product does not depend of the vector potential A. From rheorem 2.11. at [27]
it is easy to obtain the analogue of (1.3.1) for the magnetic Moyal product, with the usual bracket

{.,.} replaced by the magnetic bracket {.,.}6 given in (1.1,1).
One of the purposes of this thesis is to deflne, for the general magnetic calculus, a correspond-

ing Moyal product, a suitable ñ-dependent norm and to prove the an:ilogue of ( 1.3.1). For Rieffel's
pseudodifferential calcul¡s lhis was already sertled in [43]. From these results we will also obtain
ar analogue of ( 1 .3 .3 ) and ( i .3.2) for both c¿rlculi.

(i.3.1)

( l .3.2)

(1.3.3)
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13.1 l$isted crossed products and the general magnetic calculus

For simplicity, we initially def,ne a general magnetic Moyal product on a space which cal be
rtgarded as a kind of Schwafiz class. Later, this product will be extended to ¿ much more general

class of symbols. Let .S(.9.".;Cfr(f))) denote the space of elements of BC-(f ) x .7') such

ttrat üeir partial derivatives of any order evaluated on any poir,t of g ' belongs to C0(f¿) and its
product with any polynomial on .4f * is uniformly bounded on O (see (2.2.8) for the ful1 definiüon).
For f ,s € §(-?:.;cf (o)) denne

t/!Bs)(¡.() -,'"It t t e2;n('?, ¿,()l e-ira¿¿a z's+'.z'!>.
J{ J{" Jg: J)"

. f (0ul@1, C + q) s (e.1,!), e + e) d( dz dq dy.

Note that (/f Bg)1 .,0) : f @¡)#8. S(,,0¡, where in the right hand side we consider the stan-

dard magnetic Moyal product and in the left hand side the new one. Therefore

HIU#Bd: H:0rr3@.
The above defi¡iúon of the general magneúc Moyal product is motivated by üe C"-algebraic
techuiques that were used in üe study and development ofüe magnetic Weyl calculus. To explain
this point, let us consider the Banach space Ll(,9{ , Co(A)) of Bochner integrable functions on ,9"
with values i¡ C6(Q). Let us also define

1 a f I Lt (9.c0@)) -+ c¿(r", cn$t)), 1 E Fr : L1 (g-,c0@)) -+ c¡(9:, cs(a))

by
L_ t

In i.F),1,1((i: / t{r),-i€'dr. ltt r-r)f)tr¡ - I /f()e't*d(.Je Jr-
It is easy to check. as in the standard case, that§(.? ; Cf (9)) c LL(tr,C¡@)) and tbat I 8 -F
¡eshicts to an isomorphism berween S ( f ; Cff @)) aA S (9;'; Cfl (O)), wittr the corresponding
restriction of 1E -F I asits inverse.

For o, v € s("?-;Cf (o)) we define

![ oa rú :: (1 B -F-1) l(1 s r)o #B (1 s r)ú] .

Then

(é oE ú)((,, rc)

whe¡e

x.B(u;r,y): e itB-\o'''r+Y\, Vn,ye 9l,ueQ.
'We can recoyer the above integral by evaluating in ü./ the function given by the following

Bochner integral:

,: f *l*ru*r,r,ul]lwt,,;t l,* - u))l^(e-s@)tu,, - v)) dv,

., l
{óo# v)(r) ,: l.t 0,_.lal!t)l |ulv(r - y)l 0 "lnBly.t -,il1 da.
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The above product belongs to the theory of twisted crossed product C*-algebras. In general,

the definition of such C"-algebras has as ingredients an initial C'-algebra ,4, a locally compact
group C, a strongly continuous '¿ctlon 0 of C on,4 and a so called normalized 2-cocycle for the

triple (,4, G, d).
When,4 - C0(f¡), a normalized 2-cocycle of (C6(fl),G,9) is a continuous map ri : G x G +

C(Q,11) satisfying forall;.,y,z e G:

n(r * y, z) n(x, y) : O,lt<'(y, z)l r"(:t, y + z)

and rc(2.0) : n(0, r) - 1, where Ü(fl,1l) is the algebra of continuous functions on O with
values i¡ the circle endowed with the open-compact topology. This is the definition of a 2-cocycle

of G with coeff,cients in C(f), 1l) given in group cohomology thcory. (C6(fl), G. l), n) is called

a twisted C*-dynamical system (if the 2-cocycle is trivial, (C0(f¿). G, d) is just a C*-dynamical
system).

Since the setting for the general magnetic calculus requires an action of the vector group 9",
we wiii give the definition of a twisted crossed product just for G : .4,- (although the definition
below also work for G abelian)-

Ifa twisted Cr--dynamical system (C6(()), ,Q| .0, n) is given, then we can endow

L1(9;Cs({l)) with a product oÁ, given by (1.3. ! ), and with the involution * given by

od (r) : o(-r).

Then (Ll(9^; C6(r))), o^', "^, ll.l r) is a *-Banach algebra but it is not a C*-algebra. However
therrc is a C'-norm l.ll on L1(9;;A) (see [39] and [40j for the pioneering works and [34] for
a treatment related to magnetics fields). The completion with respect to this norm is called the
twisted crossed product C'-algebra associated to lA,9 ,0, n), and is denoted by "A x§ 9.'.lf x
is trivial, then the resulting C*-algebra is just called a crossed product C. -algebra.

We will prove later that riB define a z-cocycle for (C6(f)), .fl, d): for this Stokes' theorem will
be the main tool. For simplicity, we will denote the emerging C"-algebra C6(f )) x)'B 9.' by CB.

we will also denore by SB the completion of (1 a 7)lL1@;,Co@)\ with respect to the norm

ll1 s -r(O)llEB : liól ¿,s. Since ¿1("fl, C'0(f))) is dense in CB, the patial Fourier ri'ansform

can be extended to an isomorphism between Ca and EB. By deñnition, Sa has as product an

extension of the general magnetic Moyal product.
The whole description given above was already settled for the usual magnetic Moyal product

and this is the main motivatic)n for our present heatment; the principal reference is [34]. Let us

explarn briefly which is the corresponding seting in this case. Initrally. it was considered the
action r of 9.,- on itself by translation; this gives an actiotof * \n C¡(21), as in our general case.

However, this action makes sense in any C*-algebra of bounded, uniformly conúnuous functions
on 9l a¡d stable by translationsi we c¿illed such C*-algebra a standard Z'-oJgcbra. It follows
from Gelfand's theory that for any standard 9'-algebra "4 there is a locally compact space S¡
such that ,,4. = Co(,S¡ ) and ¡ also comes from an action of .?i on S¡. If B is an usual continuous
magnetic fieid, then riB def,ned by

lxB(r.g)l(z): e-átB (z,a+2,r+a+zl , Yr,y,z € 9,',
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is a 2-cocycle tor (C¡(,9-). tr,r). It was proved in [34] t]rat if we suppose that Co(9:) e A,
then % c Sa and if in addition üe components ot B : lB¡¡) are extendible from 9- to a
continuous function on ,9¡ then [xB ( t,y)l ca¡ a]so he defined on S¡ and rcB becomes a 2 cocycle
ot (,4, tr ,r).

From the cohomological point of view, what we have been showing in the last paragraph is
a way to associate to each closed 2-formof 9i a 2-cocycle of gl wiü coefncients ít C(9',T).
Moreover, in [34] itwas shown that ehis is also true for 1-forms and 1-cocycles, and this association
¡espect the rcspective coboundary maps, i.e. if á is a vector potential and we denote by / the
coresponding 1-cocycle arrd by p the coboundary map at the level of group cohomology, then
ndA : p()A).

We also must recall tiat the standá-rd magnetic Moyal product was obtained by imposing the
q]u¡ality opB(f #89) : DpB(,f)tp8(9) (as in the nonmagnetic case). In the other haDd, the
deñnition of our general magnetic Moyal product is modvated by the standard magnetic Moyal
product and the C*-algetrraic techniques described above, but we did not flgure it ou! from some

faithful rcprcsentation of our space of symbols as operators i¡ some Hilbert space (as in t}le stan-
dard case); mainly because there isn't a Hilbef space naturally associated to the setting. However,
if (l is endowed with a á-invariant measure p, then we will give a faithful representaüon .OPB
of Ea on BIL'(gJlt)), where'11t := L2(lt, p)t moreover we will also show that for each

"f €E8,Df8(/) - Íi H3 $)dp(u) (see the last paragraphs of the subsecrion (2.3.3)).
Let us come back to the description of twisted crossed product C*-algebras. One of the most

important Foperty of these C*-algebras is that there is a one to one correspondence between
their non-degenerate representations and certa\Ít úiples (ff , r. 7) called covariant representations.
More precisely, if (C6 (A). 9: , e. n) is a twisted +-dynamical system. we call covariant rcpresenta-
tion (11, r,7) a Hilbert space ?l together with two maps r : C6(fl) -+ B(17) and.T : ,?l -+ U(17)
@Qa) and U(11) denote the C*-algebra of bounded operator on ?l and the group of unitary oper-
ators on ?1, respectively) satisfying

(i) r'is a non-degenerate representation,

(ii) ?.is strongly continuous a¡d f @)f @) : r[ñ(u,a)1?:(n + y), Ya,u e 2' ,

(iii) T(x)r(p)T(x)- :,1a"(e)1, Vr e 9', e e A..

It (17, r,7:) is a co!,ariant representrition of (Co(Q), 9: ,0), then nep! denned on
Ll(g;cop))by

nepf lo; :: lu, [eon{o{u))] rtu) au

extends to a rcpresentation of C¡(O) xf .9f .

In our setting an impoÍant example is the following: let ¿¿ € Q, 11 : L2(9") and r!) be the
rep¡esentation of C0(O) i¡ B(11) given forany g e C6(A),u €?lalld,r €,9'by

V-(e)ú@): le.@)l(w) u(r) = e(0"l(,l) u(x;).

Ler also !, be the map from 9.' into the set of unita¡y operators on ?l given by

lT: (úul(4 ,- oB (r¡ x,a) u(r + y) : e-itB- \0,¡,8+d u(n + y).
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The gcneral magnetic calculus can bc lifted tiom thc family of representations |{cpl;" tkough
the partial Fourier transform defined at the beginning of this section. In other words we havs that

H:(11 e ?l(o)) - nepff1o¡ -, ,tcp:({,), vru e o, @ € €8.

Now we want to introduce ñ-dependencc in our formalism. It is easy to check that
(Co(q,3f , oh , xB,r' ), where

0! :: 0¡¿, ar,d xB'ñ (c , y) : 
^* 6" , ny1

also form a twisted C'-dynamical svstem. So we can consider the twisted crossed product C*-
algebras C6(fl) x ).f 

'" 
"?,' *hi"tt *ltt te denoted simply by Cf . The algebra of symbols isomorphic

to Cf via the partial Fourier transform will be denoted by Afl; its pro<iuct is the ñ-dependent
magnetic Moyal product for our calculus.

Again, the ñ-dependent general magnetic calculus is lifted from a family of representafions

of Cf through the partial Fourier transform; the required covariant representations is obtained by

replacing fÍ W f,Íth, wnch is given by

r!)6¡ :: rf (ny¡.

I¡t us come back to our space of symboh .S (.7 ' ; Cf (O)). It is easy to check ürat

S(*";Cf;(Q) is a Poisson subalgebra of BC*(f) x .9,"^). We will prove that it is a dense
x-subalgebra of Sf for each ñ e lR and get an ¿malogue of (1.3.1) for it. Indeed we will prove
that, foreach f ,s e S(9;";Cff(f ))) wc have

f #f s : Í s +'! u, nl, + h2 Rhff ,s),

l0

( r.3.4)

u,here {.,.}s is our general magnetic Poisson bracker given by (1-2-2), each tcrm belongs to
S(r":Cñ(t¡)) and tR¡(f .g). a,s is uniformly boundcd in I¿.

To prove this results we will nansport both the Poisson bracket and the poin¡wise product
from
.S(.2 -;Cf (C¿)) to .S(.2";C,-(t))) through the inverse partial Fourier aansform; then we will
obtain the correspondent result for S(.2i:ó'f (l})) by using some properties of rwisted crossed
products C*-algebras. and finally we will come to back to S (9'.; C,f (O)) now th¡ough the partial
Fourie¡ ffansform.

Since for each r,' € f) Há¡. is a representation of Ef; we have that

w,p,¡ffs) _ H7¡ff)HÍ,hb)+zH:,h?)HB,hff)ti 
< ¡/s _ (!ffu+@) ¡es ¿o

( 1.3.5)

(1.3.6)l)n7,n«r,sj) - |¡a7,,ttl,n:,¡L(s)llr r |1r,sj - fiff,ct*ptt*g ¡oo,
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where [., .1jsa is the commuutor in lsf .

We will also prove that, for each f e S(.f-;Cf;(a)), üre map

10. 1l r ñ -+ il/ 1u¡ e 10. cc) is conünuous. (1.3.7)

This result will be a direct consequence of some sffong propefy of twisted crossed product c*-
a-lgebrás. We wilt discuss this point in the next section.

Putting together the right side of (1.3.6), the right side of (f.3.5), (1.3.7) and the fact that

S(i¿--; Cfr(f¡)) is a dense *-subalgebra of ,Bf for each ñ € lR, we get that the family of inclu-

sions

{s1"2'.c¡,n,)o - *fl"}n.0.,.

(S("U ', Cf (f)))R and !8fln are the rea.l valued elements of S(Y..Cf (o,)) and the self sdjoint

part of ,Bf;, respectively) is what Marc Rieffel called a st¡ict deformaüon quantization (see [24],

t43l or l44l for details and motivation or 2.5.1 for the explicit definition inside this üesis). For

us, this is the appropriate way to condense the basic propeñies üat a quantization procedure must

satisfy.

1.3.2 Rieffel's deformation quantization and covariant fields of d--algebras.

Recail that for Rieffel's calculus we have as initial data a quadruplet (I, O, E, "I), where X is a

Hausdodf locally compact topological space. e) is a jointty continuous action of E on X and ..I

is z2n x 2n skew-symmetric mat¡ix. Recali also that we defined BO-(!) using O and we en-

dowed it wilh the Poisson bracket { , .}"r given by (1.2.4), which is related to the skew-symmetric

bilinear form [.,.]7 given by (1.2.5). As we explained before, it is meant to cover Slobal phase

spaces which are not necessarily of the fofm Q x .4.i* So, we cannot use the same C*-algebraic

techniques as before. However, if we look more closely the deñnition of the usual Moyal pfoduct,

we can note that (fffg)(a. {) can be recovered from evaluating at (c, €) the following Bochner

integr¿l
ff,-'" I I e2íF.Ztr ¡ 8r*\.(f)(r ar*)2(s)dYd.z.

where f(r e r-)1r.,,i (/)](2, i) = f(r + y,e +d. Motivated by this expression, for each /,9 e
AC-(l) we can deñne

f +a : .-," f_ l_."tr,z\ 
ov(f)ozk)dYd.z,

1l

(i.3.8)

where üe above integral is deñned by oscillatory integral techniques. This is the starÚng point of
[43] (up to a change of variable). More precisely, in [43] it was show how from a C*-dynamical
system of the form ("4, O, ¡) and a 2z x 2n skew-symmetric makix J a nerr C"-algebra 21J can

be constructed, which can be regarded as a defomaüon of the initial C.-algebm We will call this

procedure Rieffel defornration quantization and the emerging C.-algebra tr.¡ the Rieffel deformed

C * -algebra..
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For the construction of this C.-algebra. lot us consider flrst the space of stnooth vectors

/* : il € "4lE > x -+ ox("f) € "4 is C-].

It is well known that.4- is a dense *-subalgebra of "4. We endow;4* with the same involution
of .4 and with the product

{t... _ _ ,,, f' [ ,z,n.a. o\ \f )oz(o)dydz.J r'lY - tt 
J= J=

sütably defined by oscillatory integral techniques- We can recover (1.3.8) as a panicular case if./
is the standard symplectic matrix.

In f 43l it was ploved that the *-algebra (A* ,#.¡ ] ) admits a C*-completion 2l in a C--norm

ll llq.
We will give a more detailed discussion about the whole construction and some ofits propenies

in chapter 3.

Many interesting examples of Rieffel's defomred C"-algebras were given in [43], among
them we highüght the noncommutative tori, the quantum closed disk, the quantum quadrant,
the Podles' quantunr spheres, and the Woronowicz's quantum group ,S{,(2), It is remarkable
that if (Co(O), 9.-,0) ís a C*-dynamical system then lhe crossed product C*-algebra C0(l)) x6
Jf is isomorphic to the Rieffel deformed C*-algebra associatsd to the C*-dynamical system
(C¡({l x 9i-).0I r., E) together üth the standard symplectic matrix, where d E r. is given
by ( 1.2.1).

In [43] li-dependence was introduced by replacing üe skew-symmetric matrix J by hJ,lead-
ing to Rieffel's defomed algcbras ?f¿,¡. We will denote b! | . ¿ the cor:responding C"-norm.

Recall that ,4- was equipped with the Poisson bracket {., , }7 given by (1.2.4). Fortunately, it
was already proved in [43] an analogue of ( 1.3. I ); explicitly it was p,roved th at, for each f , g € ,Ae
we have

f #n¡s : ra +!U,s\, + ilRhU,s)

and I R¡i(t, g))l,sa is uniformly bounded in l¿. So, as for the ir-dependent geneml magnetic Moyal
product, we also'!et the analogue of (1.3.6) and (1.3.5)- In t43l it was also proved that for each

,r € .4- üe function

{0, 1l ) ñ -+ ll"fll¡ e [0. co) is continuous. (1.3.9)

Thus the family of inclusions

{A* -. A,n.,\¡ I he[0,11

is a strict deforrnation quantization.
Our next purpose can be considered as a step in the study of Rieffel's deformed C*-algebras,

but it will also lead us to some spectral results concerning the opcratoñi given by Rieffel's calculus.
Recall that a (upper semi-)continuous field of C*-algebras is a family of cpimorphisms of( u,, ,)

C'-algekas ¿, B 'J B\t) t . f I indexed by the lo"ally compact ropological space f and-t)
satisfying:

l2
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For every ü € B one has ll ó il6= sup¿67 ll P(t)b l1e) .

For every ó e Bthemap T )té )P(.t)b i)Be\ is (upper semi-)continuous and decays at

inñniry.

3. There is a multiplication C(?) xB> (,p.lt)--sg*be B such that

P(t)le-bl: e@P(t)b. Yte T,ee c(T). be B.

If in addition I is endowed with a srongly "fd::l* action a of a locally compact group G

ánd each ferP(r) is invariant under o, then 
16 

\ B(tJ I f € fi is called a covariant (upper

semi-)continuous neld of C'-algebras. 6 is usually called the algebra of sertions of tlre field.
( D¡', ]

Let I613 B(t) )t ( ? ) be a covariant (upper semi) conúnuous ñeld of C*-algebras. Lett)
us denote KerP(f) by Z(t). Since each ideal .u(¿) is invadant, the restrictior of o to I(t) a¿(g) ::
c(g)l7p¡, deñne a strongly continuous acúon on 7(t). For each f € ? we can also define a

strongly continuous action a¿ on 6(f) by

a1, (p (t) b) = p (t) fa, (b)).

So, if G : R2", we can consider üe Rieffel defomred algebras of each member of the short exact

sequence

0 + f(t) -, B + B(t) '+ 0,

which we denote by 3(f), A and A(f), respectively.
FoÍunately, the resulting C'-algebras also form a shof exact sequence (theorem 7.7 in [43]).

In other wo¡ds
8l7A\ = a$).

So. one can ask if the resulúng faDdty of epimoryhism is a (upper semi-)continuous field of C.-
algebras. One of the principal purposes of this thesis is to prove this, i.e. we will prove that the
Rieffel deformation ofa covariant condnuous ñeld of d*-algebras is a continuous field of Rieffel's
deformed algebras (theorem (3.0.1))-

For twisted crossed product C--algebras a similar program was already settled. More pre-

cisely. if 16. G. o. A I is a twisted C--dynamical sysrem and {U'-\sttll te T} i" a covari-L)
ant (upper semi-)continuous fleld of C--algebras, t¡en we can transfer r¡ and ( to the ideals
Z(ú) and the algebras E(¿), so it also follows t¡at the twisted crossed product of a covaria¡t shof
exact sequence is a short exact sequence of twisted crossed products. Moreove¡ the resulting
family of epimorphisms also fonn a (upper semi-)conünuous f,eld of C*-algebras; i¡ other words,
¡wisted crossed products of a covariafi (upper semi-)continuous ñeld of C--algebras is a (upper
semi)contin[ous neld of twisted crossed products C'-algeb¡as: see theorem 5.1 and corollary 5.3
in [37] for details afld the proof of this fact. We can apply this rcsult to prove (1.3.7). Iudeed,
take B :: C(fo,tl;C6(o)) .: Co(10, 1l x Q), ror each /i É R deñne P(ñ) . B + Co(a) by
pft)@) :.p(ñ), and also deñne üe action rv on B and a 2-cocycle I( for (8,9; . c) by

L

2.

k "(p)l(n) 
F ll[a(ñ)] ana fIr(c,s)l(ñ) ,: on(,,y).

i3
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( 1.3.7) follows after considering each element of 5("2"; óf (fl) ) as an ¡¿-independent elemcnr of
Lt ( 9' ;6)
c B x{ 9: and noticing that B ¡ti¡ xfi fl : Co(o) ";i, ,*: 

:, ef .

Although our theorem (3.0.1) wasn't available until now in [43] (1.3.9) was obtained following
the same above strategy. More precisely, in [43] (3.0.1) was checked for a specific covariant
continuous ñeld of C*-algebras (similar to the one used above, at the beginning of chapter 8 in

[43]), and as before, this implied (1.3.9).

We must mention that (1.3.9) is just one example of an application of our theorem (3.0.1).

In fact, we will give many other examples. Most of these examples have as initial undeformed
section algebra an abelian algebra "4. I¡ this case, it is easy to characterize the notion of covariant
conünuous field of C.-algebras. Recall that, by Gelfand's üeory, every abelian C*-algebra is
of the form Co(X), and every strongly continuous actio¡ O of 3 on "4 :: Oo(l) comes from a
jointly continuous action of! on I, which we also denote by O, and which is given by dre equation

lox (l)](o ) : "f 
(ox (o)). So we are in the setting of Rieffel's pseudodifferential calculus. Let 7

be a locally compact Hausdorff space, and let q : X -+ I be an open and conünuous surjection
such that s(O¡(o)) : q(o), VX € 3. Consider !¿ : s-I({¿}), "4(f) :: C0(t¿), and

R(.t): Co(») + Ce(E¿), R(.t);f :'- fly,,, Yt+T.

rn"n {c1s; 39 c(rr) I ¿ e r} i. u 
"or-iant 

conrinuous field of commutaúve C*-algebras, andr.)
this is the only possible way to regard C6(t) as a section algebra. So, given such q : X --+ ?, we
will apply (3.0.1) to show that the family of epimorphism

{of»¡ 
19 c(Ii) I ¿ € 7} isacontinuous fieldof C--algebras, ( 1.3.10)

where C(X) and C(X¿) are the Rieffel quantization of C6(I) and C6(I¿), respectively, and fr(¿)
denote the epimorphism induced from ?(ú) by the Rieffel's quantization.

To explain how this results will be applied to the spectral analysis of the families of operators
given by Rieffel calculus, first we need to introduce some notions. \tre say that a real set valued
function .9 is imer continuous at t6 if each real open set which meets S(f6) also meets 5(t) if /,

is close enough to ¿0; so, intuitively, S is inner continuous at ¿o if ^9(¿) doesn't suddenly shrink
close to tg. The notion of outer continuity follows by replacing above "open" by ''compact" and
"meets'' by "doesn't meet"; so, S is inner continuous at ¿0 if ,S(ú) doesn't suddenJy expand close
to ¿0. Let us also assume that I is compact (iust for simplicity) and that each X¿ is a quasi-olbit
(the closure of a single orbit). It was proved in [29] that if o,ot € !¿, then the specra of -[J"(/)
and H",(f) coincide for every real function Í € BC*(»). So one can define, choosing a € X¡.
S(t) :: sp[]1"(/)1. We will show that (1.3.10) will imply both outer and inner conünuity of
S. Note that § " q is also (outer and inner) continuous, so although a and o/ leave in different
quasi-orbits, the spectra of 

"É1¿ 
( f) and H", (f) can be "compared" using the definition of outer and

inner continuity. For example, a gap in the spectrum of H"(,f) will still be a gap in the spectrum
of H",(f ),íf o and o' are close enough. If we apply this rcsult ro üe example used by Rieffel to
prove (I.3.9) (at the beginning of chapter 8 in l43l), we will get that for each o € I and each real

t4

f € .BC6(E), splíl(f)) 
ñlo sptflj(/)l : ffi in the sense described above.
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Finally we will also obtain that, fixing ¿¡ € !¿, the set valued function ,9e§"(f) :: sp*" f1"(,/)]
(the essential specü:m of the operator If"(l)) is outer condnuous, for every real f € BC*(X).
So, gaps of sp*"[fI"(/)] rernains as gaps if we replace o by a/ close enough.

The second chapter of this thesis consist of the article "Magneüic twisted aciions on general
abelian C*-algebras" which is .ioint wo¡k with Max I¡in and Marius Mántoiu. This article is
mainly devoted to the study of the general magnetic calculus, the proof of ( I .3 .4) and to ob{aining
the strict deformation quar¡tization described above. It will appear in Joumal of Operator Theory

The ihird chapter consists of t¡e article "Covariant Fields of C*-Algebras and Continuiry of
Spectra in Rieffel's Pseudoüfferentia.l Calculus" which is joint work with Madus Mántoiu. This
article is devoted to the proof of the üeorem conceming covariant continuous field of C"-algebras
described above (3.0.1), to some examples ard to apptying the mair theorcm to spectral analysis.
It has been submitted for publication.



Chapter 2

Magnetic twisted actions on general
abelian Cx-algebras

2.1 Introduction

The usual pseudodifferential calculus in phase space E :: T*Rr¡ is connected to crossed product
C. -algebras A xe 9:- associated to the áction by translaüons 0 of the group .*.- :: R" on an
abelian C"-algebra,4 composed of functions defined on 9-. Such a formalism has been used

in the quantization of a physical system composed of a spinJess particle moving in lf, where
the operators acting on L2(tr¡ can be decomposed into the building block observables position
and momentum which are associated to 9j and its dual .2-*. When dealing with Hamittonian
operators, the algebra ,4 encapsulates properties of electric potentials, fbr instance.

During the last decade. it was shown how to incorporate correctly a variable nragnetic field in
the picture, cf. 136.22,23,30,32,34,33,20,211(see also [7, 8, 9] fo¡ extensions involving nilpo-
tent groups). This relies on ¿wisting boü the pseudodifferential calculus and the crossed product
algebras by a 2-cocycle def,ned on the group á, and taking values in the (Polish, non-locally
compact group) /./(,,{) of unitary elements of the algebra "4. This Z-cocycle is given by imaginary
exponentials of the magneúc flux through triangles. The resuldng gauge-covariant formalism has

position and tin¿¡rc momentum as its basic observables. The latter no longer commute amongst
each other due to the presence of the magnetic field. It was shown il [31] üat the {amily of twisted
crossed products irdexed by ñ 

= 
(0, 1] can be understood as a strict defr.¡rmation quantization (in

the sense of Marc Rieffel) of a natural Poisson algebra defined by a symplectic form which is the
suur of the canonical symplectic form in 3 and a magncric contribution.

A nátual qucstion is what happens when the algebra 
"4 

(composed of functions defined on
4,-) is replaced by a general abelian C.-algebra. By Gelfand theory this one is isomorphic to
C0(i)), the C*-algebra of all the complex continuous íunctions vanishing at infinity defined on
üe locally compact space f)- To deñne crossed products and pseudodifferential operators w6 a.lso

need a continuous acion 0 of L on O by homeomorphisms. Cs(l)) can be seen as a C*-algetra
of functions on 9' exactly when f) happens to have a distinguished dense orbit. In the general
case. the twisting ingredient ¡¡,ill be "a general magnetic field". i.e. a continuous family B of
magnetic fields indexed by the points of O and satisfying an equivariance condition with respect

16
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to the action 0.

The purpose ofthis article is to investigate the emerging formalism, both classical and quantal.

To the quadr:uplet &,0, B, .2: ) descrihed above we first assign in Section 1.2 a Poisson al-
gebra that is the setting for classical mechanics. The Poisson bracket is written with derivatives

defined by the absüact action 0 and it also contains the magnetic field B. Since l) does not have

thc structure of a manifold, this Poisson algebra does not live on a Poisson manifold, let alone a

symplectic manifold (as it is the case when a dense orbit exists). But it admits symplectic repre-

sent¿tions and, at least in the free acti on case, \l x 9l' is a Poisson space [24] in which symplectic

manifolds (the orbits of the action raised to the phase-space E) are only glued together continu-
ously.

Twisted crossed product C'-algebras are available in a great generality [39, 40]. We use them

in Section 2.3 to deñne algebras of quantum observables with magnetic fields. By a panial Fourier

transformation they can be rewriÍen as algebras of generalized magnetic pseudodifferential sym-

bols. The outcome has some comnlon points wit¡ Rieffel's pseudodifferential calculus [43], which

starts fiom an action of RN on a C'-algebra. In our case this algebra is abelian and the action has

a somehow restricted form; on the other hand the magnetic twisting cannot bs covered by Rieffel's
formalism. We also study Hilbert-space representaüons of the algebras of symbols. Their inter-
pretation as equivariant families of usual magnetic pseudodifferential operatos with anisotropic
cocfficients [27] is available. Tlris will be developed in a forfhcoming article and ap¡lied to spec-

tral analysis of deterministic and random magnetic quantum Hamiltonians.
Section 4 is dedicated to a development of the magnetic composition law irwolving Plrurck's

constant. The first and second terms are wdtten using the classical Poisson algebra conterpart. We

insist on reminder estimates valid in the relevant C*-norms.
All these are used in Section 5 to show that the quantum fo¡malism converges to the classical

one when Planck's constant ñ converges to zero, in the sense of strict deformation quantizaüon

|,43, 44,24,2,51. The semiclassical limit ofdynamics [24, 45] generated by generalizcd magnetic

Hamiltonians will be studied elscwhere.
An appendix is devoted to some technical results about the behavior of the magnetic flux

through triangles. These results are used in the main body of the text.

2.2 Classical

2.2.1 Actions

L€t "4 denote an abelian C--algebra. By Gelfand theory, this algebra is isomorphic to the al-

gebra C¡(f)) of continuous flinctions vanishing at inflnity on some iocally compact (Flausdorf

topological space f), and we shall treat this isomorphism as an identification. Furthcrmore- we
shall always assume tlat ,4 is endowed with a continuous action d of the group ,91 :- R" by

automorphisms: For ary r, y € 9"" and,p e A,

oold: p. e"teoldl : e"+ylcj

and the map 9' ) r ,-+ Í),19) e Ais continuous for any g € ",4. 
The tripie (A,fi,9') is usually

called an (abelian) 9-'-algebra.
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Equivalently, we can assume that tlre specü'um l) of,4 is endowed with a continuous action of

"?I by homeomorphisms, which with abuse of notation will also be denoted by l/. In other words,
(O,0.9') is a locally compact dynamical system. We shall use all of the notations á(r..r, z) :
0,1.t):9.1"1¡-(w,r) e fl,x.?i and choose the convention (á,[e])(r) -,p(e"lul) to connecr
the two actions.

An important, but very particular farnily of examples of gi-algebras is constructed using

functions on .2 . We denote by BC(L') the C--algebra of all bounded, continuous funcúons
ó : ,?," -+ C. Let r denote the action of the locally compact group 9i : Rn on itself, i.e. for
arry r, g e 9 we set r(x, y) : r"Í:y} :: A + ,r. This notation is also used for the action of 9.'
on BC(L') gven by r"ig](g) ,: p(y * r). The action is continuous only on BC"(,*i), the

C*-subalgebra composed of bounded and unifomrly continuous functions. Any C. -subalgebra of
tsC,,(.,!Z" ) which is invariant under ffanslations is an .?i-algebra. Motivatcd by the above exam-
ples, we deñne BC(f¡) ,=' {p :9 - C. f is bouuded aud continuous} and

6 - BC"(Q) :- {c e BC(Q | 9l > r ,+ o,lel . BC(fi) is continuous}.

By a 9,'-morphism we denote either a continuous map between the underlying spaces of two
dynamical systems which intertwines the respective actions, or a morphism between two .4i-
algebras which also inlenwines their respective actions.

Ler us recall some definitions related to the dynamical system (A,e, g)- For any a, e fl we

set O- :: l|,l¡¡] | r € 9) j for tlrc orbit of u and Qa¿ '.: Oj for the quasi-oráir o/ r,;, which is
the closure of O., in Q. We shall denote by O(O) : O(0, d, 9,-) the set of orbits of (9,0,9.-)
and by Q(O) - A(f), r, .?i) the set of quasi-orbits of (9.e,9:). For ñxed c., 6 O, p € C6(fl)
and n e 9', we set rp,(r) ;: g@"lul) - V(0.(.r)) It is easily scen that <¿o : 9," + C belongs
to BC,,(9,^). Furthermore, the C*-algebra

4.,: {eo I e e c6(r¿)} : á.,[co(r))]

is isomorphic to the C*-algebra Co(Q-) obtained by restricting the elements of C¡(f)) to the

closed invariant subset Q". Then, one clcarly obtains that

0. : Co(ll') ) p.+ p. : I a 0- € BC"(9;) (2.2.1)

is a 9i-morphism between (C6(f)), d . ,21) and (BC"{9:) r.9--) which induces a

.ff -i somorphism b ew een (C 6(Q. ), 0. 9' ) and (e., t. l:' ¡.
We recall that the dynamical system is topologically trunsinve if an orbit is dense, or equiva-

lently if l) € !)(f)). This happens exactly when the morphism (2.2.1) is injective for some u¡. The

dynamical system(0.á,.?'") is ruínimnl if all the orbits are dense, i.e. O(fl) : {f)}. This property
is also equivalent to the fact that the only closed invariant subsets are 0 and Q.

Definition 2.2.1. l¿t(A,0,9')bean.9--algebra.Wedefina tha spaces ol smooth vectors

A* := {f € A 9" > t,+ 0"(p) € "4isC*}.
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For üe "?,--algebras Cs(()) and -BCr,(O) we will often use the notations Cfr(Q), respectively.
Despite these notátions, we sfress that in general O is not a manifold; the notion of differentiability
is defined only a.long orbits- By seftin-s for any a € IVa

d' : Cff(O) -+ Cff(o), [*e:- 0i (e c 0s)lr=o,

one deflnes a FÉcher sructure on ú,f (f )) by the semi-norms

s" (p) :: lld"p] 
".inl 

: supl(d'p)(u,) .

Each of the two spaces, C6-(fl) and "4f, is a dense FÉchet '-subalgebra of thc corresponding
C"-algebra.

I-enlrla 2.2.2. ( i ) For each us € Sl one lns

Ai : {ó € c*(9') | apó € A., v/J € Ar,,}.

In particular A: c BC*(g) ,: {ó e C*1f ¡ | áí¿ is bounded V/, € N"}.

(ii) Let 9 € C¡(fi). Then

l¿ € Cfio(l)) * pc0.e Af;, Vw e A.

Prool The proof consists in some routine manipulations of the definitions. The only slightly non-
trivial fact is to show that point-wise derivations are equir,alent to the uniform ones, required by
the uniform norms. This follows from the Fundamental Theo¡em of Calculus, using the higher
order dErivafives, which are assumed to be bounded. A model for such a standard zfgument is the
proof of Lemma 2 .7 in [271. tr

Remark 2.2.3, In the following, we will use repeatedly and without further comment the identi-
f,cation of point-wise and uniform derivatives under the assumption that higher-order point-wise
derivatives exist and a¡e bounded.

Although in our setting the classical observables are functions defined on l) x "f*, we are

going to relate them to funct ons on phase space 2 ::. 9- x 9'' whose points are denoted
by capital letters X: (",€), y: (a,rt), Z: (2.(). The dual space.9i* also acts on itselfby
translations: ri ({) := {+a, and this action is raised to va¡ious function spaces as above. Similarly,
phase space E can also be regalded as a $oup ¿rcting on itselfby translations, (r,ítr" ) ¡r.,,¡(r, {) ::
(" + U,{ + 4). Phase space 3 acts orr {l x ,9;'* as well, via the action d E r", ¿urd this defines
naturally function spaces on f2 x 9i* as above: they will be used \ryithout further comment.

22.2 Cocycles and magnetic ñelds

We fint recall thc deñnirion of a 2-cocycle r. on thc abelian algebra A: Co(f¡) endowed with
an action d of .?,-. We mention that the group U(A) of unitarl elements of the unital C*-algebra
BC(i1) coincides with C(f);11) :: {g e C@) le(r)l : 1, Vcu e l)}, on which we consider
the topology of uniform convergence on compact sets.
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Delirrition 2.2,4. A normalizcri 2-cocycle on ,4 i¡ ¿i «)nrinuolts map t; : ,2.' x .?,' -+ t/(A¡
satísfihg.for ull r. y, z i,2-:

x.(r'¡1.2)r(t,y):0,Ú¡.(y.;))n.(!,11-.2) (2.2.2)

and xi:,0): r(0, r) : 1.

Proposition 2.2.5. If x:.?.- x.2'- Ú] (Q: T) is a 2-cocycle,oJ C6$)'¡ fhen.f¡)r art\, * a \'!,
,r,,(, ):: r,(....). t1.is a 2-coct,cle of A. wifh respecÍ Íothe ttct¡on r.

Prcrif Everything is straighttbmard. To check thc z-cocvcle proper-ty, one needs thc identity

0, ol). - §.a7", t e ,2,, a i Q

It is easy to show rhar r : /?-' x .],' -+ (l(f). '1i) is cofl.tinuoLrs itf the function

tt x .*,' x ,,?.; : (a,:r. ¡i1 --s r(u:r.u) :: (.r,(r..u))(u) : T

is conrinuous. Recalling the isomorphism;1-" = C(Q.) olc easily f,nishes the proof. !
We shall be intercsfcd in magneti<: 2-cocy<.les.

Deflnition 2.2,6. We call magnetic field on O a ctttttinuoLtt Jimctiul R .. !,1 - A' 9,' .yuch that
B. :: 1) a Ao ís a nngnetic Jield (contiru«tus clo.sed 2-.fonn ou .21 1 .fbr ant, a.

Lising coordinares, B can be seen as an anti-symmetric matrix (Bj7') ,0 ,.....,, where thc cn-

trie. rrc continu,ru. funcli,)n\ lj't. tl . Rrarisf¡rngrinthcdisn-ihurionul .cnrcr

1tBf;¿ +ít¡Rf; r}tBr:: u. v*-. O. Vj,ft,l :\....,n.
Proposition 2.2.7. let B a fl?agn?ti(: fLeld on 9. Set

(1;B(r,y))(u) = r.B(,^s:x.y'¡:: exp(-li'rr- (0, x:.1+ y\t),

wlrcre lfJ- la.b, <:) t- Íi*.0,., B, i.r rhe in¡qrdl (flux) ol rht 2-fonn )3, through the triangla
i.a.b. t:l) with c:onters a.b.c e 9'. Then nB is a'2-coc.tcle on the .9-'-algebr« Cn(Q).

ProoJ. The algebraic prope¡1ies follow fiom tlre properties of thc integration of Z-fonns. For
example. 12.2.2) is a consequencc of the identi§,

fÉ-(0,2,r, L-g) I I-a-(0,r + y.x: +'!J + z') - ltto,,i-l 19. y. y + z) 1fB-(0.e,.¿ +lr -l z).

This onc lbllows fiom Srokes' Theorem. after noticing that

lR',',.l(|.,u.'ga ¿)-I-a-(r:-r+ !).x¡.!*;\. (2.:.3)

One still has to check that rtJ e C(Q x g' r .!)l 1. This reduces tr¡ üe obvious continuitv of

' ¡l ,.1

'-..t u' r" 0.¡ , .,r - I ,.y, I at / ,r..a.,-. , ¡,,:,-
,_t. , J)

where we have used a parametrization of the flux involviag the components ofthe magneúc field
in the canonical basis of I : R!. n
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By (2.2.3\ one easily sees that (KB)., : rB", where the l.h.s. was defined in Proposiúon
2.2.5, while

t;B'lz; r, g) ': e*p(-iI.B- (r, z + r,z +:L + y)).

2.2.3 Poisson algebras

We intend now to deñne a Poisson sructure (cf. [24. 35]) on spaces of funccions that are smoottr
under the action , x r' of E on Q x 9"-. This Poisson al_eebras can be represented by families
of subalgebras of AC-(=), indexed essentially by the orbits of 0, each one endowed with the
Poisson structure induced by a magnetic symplectic form [31]. For simplicity, we shall concentrate
on a Poisson subalgebra consisting of functions which have Schwanz-type behavior in the variable
{ € 9''. For this smzrller algebra of funcdons, we will prove strict deformation quanrization in
section 2.5. One can also define CÉ(Cl x 9--*) in terms of the action , E r'; this one is also a
Poisson algebra, but we will not need it here.

When necessary, we shall use /(€) as short-hand notarion for /(., {), i. e, /(,¡, () : (/({)) (r)
for (r",, {) € 9,x 9;., and we will think of ./(,O as an elemenr ol some algebra of functions on
l¿. Note that

BC6 ({t x ,9:-) :
{f e ac6t" 9't)l f(.,€) € BC'o(o) and/(a.,,.) €BC*(,*--),vu ea,{< 9''}.

Definition 2.2.8. We sal,tlut f € BC-(f¿ x 9-'\ belongs to S("2-.;Cf (f¿)) if andonty if
(» o{f G) € co'"(Q), Yl e .%' and

0¡) 1l,f l""B:= sup¿€e." ll{"¿-" at:i(.€)llc,.,(a) < cx:Jbratta,a,p e rtn.

Proposition 2.2.9. We assume Jrum now on tlu¿t Bit € tsC* (lt) for any j,k = l, . . . ,n.

(i) BC@(flx,*'.) i,s a Poisson algebra ttnde r point-wise multiplication and the Poisson bracket

lf ,sla,:f,@r,¡ ¡¡g - 6¡f La,e) . LBik a€,Í o¡ns. (2.2.4)

(ii) .s(q.^"tCf ({l)) is a Poisson subatgcbra of BC*(.dt x .T.).

Pruof The two vector spaces are stablc undcr point-wise multiplication and derivations wíth re-
spect to { and alrrng orbits in 0 via á¡ and d, respectively. They are also stable undcr multiplication
with clements of EC*(O). The axioms of a Poisson algebra are verified by direct computa-
tion.

To analyze the quantum calculus which is to be deñned below. a change of realization is useñrl.
Defining .S (.9f ; Cff(fl)) as in Defniúon 2.2.8, but v¡iü 9J* rcplaced witb 9' , we rransport by
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the partial Fourier trairsfomarion the Poisson srructure from S(9'-;Cfl(f))) ro.S(9,'; óf ([)))
setting

({:o6ú)(a;z) ::(1ar)-l ((1 sf)ó (1 r-F)\p) (r;4: I dy§(u;y)V(u;r.-y) (2.2.s)
J.r.

and

{o,rv}B :: (1 s .F)-1{(1 s jF)e, (1 s a{/}B
: -t!(Q;oooájtt/ -d-rloooQjü) + | ri*(cjoooSkú), (2.2.6)

where (Q¡é)(r) : r,¡ó(r) defines the multiplication operator by r:i. obviously this also m¿kes
sense on larger spaces,

To get a better idea of the Poisson structure of -BC*(f) x ,T"), we will exploit the orbit
structure of rhe dynamical sysrem (57 x g'',e8,r",,*." x 9).) and relate this big Poisson algebra
to a family of smaller, symplectic-f)?e ones. For each i", € 0, we can endow 3 : ,2" x 9,'" wtth
a symplectic form

{o3l 26,Y) :- a . t - r tt + B.(z)(a,y) : L@, t, r¡ q) + | aik (e"lul) r ¡ sy,

which makes the pair (=. oj) into a symplectic space. This canonically d.efines a Poisson bracker

lf ,slB.,=L(0.,.f a,1s - 0",f D¡,t) - | atj 0t,f 1eou. ())1\
j=1

Propocition 2.2,10. (i) For each, w € {1, the map

r. ::0- 81 : (llcoc(o x ,y'),., {",.}a) -+ (BC*(=), , { , }s_)

i,s a Petisson map, i. e.;for all f , g e BC* (A x ,9-'.)

r.(f . s) : r.(f) . r"(s), ¡.({f , s} e) : {""(f),".Q)} e. .

(ii) If a,wt € Q belong to the same orbit, the corresponding Poisson maps are connected by a
»nnplectomorphism (they may be called equivalent representations of the Poisson algebra).

Proof. To simpliry noation, we use the shorthand i. ,- r.(f) for / e BC6(O x g)") and
r¡ € ().

(i) For any ca e Q, J, g e BC@ (Q x 9'*), we have

(f g).(x, q : (U s) . (d" s 1)) (r, {) : f (0"("), €) g (e.@), () : ("f,.q",) (a;, {).

Similarly, ({ /, s} r),, : { f ., s"} ,. follows from di¡ect computarion, using

0,, f. : 0", (f " (0. s 1)) : (.6¡ f) " (0. '* t) : (6¡ f)..
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('ii) If there cxists : a J?- such that ti, iL.rj = i.,', tlen

á-,'t t : (á" ¡ 1) ., (r. r it,
whcrc .- . L /=. -l'l E "'. ) i. a syn rllccr, rmorph i.m.

I
Remark 2.2.11. Ir is casv to sce tl.tat the mapping

tru :: 0o r. I : §(.7". Qi(o)) - + -s(.,1.--,",1f )

is a surjcctive morphism of Poisson algebras. for any ., 
= 

Q. on thc seconcl space we consider the
Poisson sffucrure def,ned bv the má¿netic field -¿i-. as in f3l l.

For any -. € f) we define tlre stabilizer ]-.. :-. {t e 9. 1 A"l...t = !r}. This is a ciosetl
subgroup of .?-:-. the same fr¡r all o belonging to a -eiven orbit. We define the subspace of O on
which the action 0 is h.cc:

f)¡ :: {; { úl I -'?; : l0} }.
obviously o6 is invariant under É antl Q0 x ].^' is invar-iant u..ier the free ac¡ion á u ¡". so \,r'c
can conside¡ the Poisson algebra B(-'*(Q¡ x .?--'-) witn point-wise multiplication aÍd poisson
bracket (2.2.4).

Forany(?: O(f)o) (tbe famil_v o1'all the orbits of the spacel)¡) rve choosc apoint*,((?) É O.
Thcn

0.,otX1:J x 9.'" ---+ Q¡ x 9.-'

is a continuous injcction with ranse (? >r 9'- {whtch is one of the orbits of e6 x ,;', under thc
action ¿l x ¡")_ Of course, one ha-,, idisioirt union)

Q, / I o. t
o€o(f )o)

In addition, d,,1p¡ l. 1 is a Poisson mapping On 3 : :2.' x ...).'' if one co¡sidcrs the poisson sr¡ucture
induccd by the symplectic form oj,r, .

Ref-erring to DefniLion I.2.6.2 rn 1141. uc nuLiLe thitr ¿crualtv {)¡1 x ;g-,' is o poisson spuce.

2.3 Quantum

2.3.1 Magnetic tv.isted crossed producls

Definition 2.3.1 . We call rwistcd ll'-dynamJcal system a quatlnrplet ( A.0, r . g) ), u.,here 0 is an
action o{ .:?.- - Tl,"' on the (abelian) ('*-algebra A end ¡¡ is o. ¡u¡nn.aliaed 2-t:t¡c:t,cía on A *-ith
resL,(ct to 0.



CHAPTER 2. MAGNETIC TWIS?ED ACTIONS ON ABEIJAN C- -ALGEBRAS 24

Stafling from a twisted C"-dynamical system, one can construct twisted crossed product C*-
algebras [39, 40, 34] (see also references therein). Let Lt (9' ; A) be the complex yector spáce of
.A-valued Bochncr integrable functions on 9,' ard Ll-nomt

ild,l ¡, := / a, 1¡o1,; ¡, .

.t .")-

For any @, !trr e Lt (,*,'; A) and n € ,*l . we define the product

t
(ó o- ilr)(r) ,: l^.dy 0,="Ío(a)l 0glv(r - s)l o_ift (u,x - u))

.19

and the involution óo^(:r) ;: OF.l. Wit¡ rhese two operarions, (t1(f ;n),o'",''" ) forms a

Banach- "-algebra.

Definition 2.3.2. The enveloping C* -algebra of L1(,9i:A) is called the twisted crossed product

Axfi 9.".

We are going to indicate now the relevant twisted crossed products, also introducing Planck's

constant ñ in úe formalism. We deñne

a! :: g¡" and xB'h(r,g) = ^ 
,8 fi*,hli,

which means

nB,h(a;r,y): ¿- irts- \a,tu:,ht'+rt:u) , Vr,A * g', a e !t,

and check easily th at (Co(9), eh, 
'rB,ñ, 

9-) is a twisted C"-dynamical system for any ñ e (0, 1].

It will be useful to introduce ltf (r,,y) via

0 _7,[nB'h(u; t,s)] : ¿-,'fE- (-i",hr-i",i,) -. e-'.h'\|'k,u).

as short-hand notation for the phase facror This scaled magnetic flux can be parametrized explic-
idy as

"11 tIt|@,y): I ,, ("0 uil | at I ds0¡,¡"_,121,*n«_"¡rlBik). (2.3.t)

J'h- . Jtt Jc)

Plugging üis particular choice of 2-cocycle arltd 9) action into the general form of the product,
one gets

io ooB,tr,)1r.¡ - | aago,,,--,1ó(s)l d¡,,'iI,rf, y)lc 't'\f tr'ü.
' 

.1 q 2Y

The rwisred crosse<! product C.-algeara,4 xif '" "2- will be denoted simply by Cf with self-

adjoint part t!,o and nomr li.llf . We also call C6 the enveloping f)*-algebra of ¿1(9.-:.4) with
the commutative product o0; it is isomorpfrc with C6(9i- 1A) = C(9:-) ¿-, 

"A,.
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A quick computation shows that rj := 9| E 1 intertwines the involutjons associared ro rhe

C'-algebras cf andA., x^:,''" g:,i.e. il¿1o.?¡: 
"|1o¡.,i' 

is satisfied for eve ry ó e cf. L
slightly mnre curnbersome task is the verification of r!¡A of V): 

"|1O; 
of. zrj(rl) for any

ú,ú e L1(fr;A) artd z1x: e .*", wehave

lr!¡a "p 
rrr)l(z;c)

: 
/.. o, (e irn-.¡o ¡y¡7 o iu[{/( - v)] e- ;r' ( - 4,- * +hu', )) 

" @ri x t) (zi a)

:.lr;or*(tr,.*otu-"¡ld,ulv(0r".rrirla),x-g)r-ir'onJ't1-l'' l''+da1'!t:)

= .l*oo {,+tu-,)lnlre)@))le) (¡l,ulrrlp)@ - y)l)(z) e-ira- la'-!',nz-!e+nv'n"+r;')

: [":tol af- r¿(ú)](z:t).

It follows easily th at {rt)}.E¡2 defnes by extension a fanily of epimorphisms

"tj: tf -+ 4 ><;Í-'" l,
that map a twisted crossed product defined in terms of Ce(l¿) onto more condere C*-algebras
defned in terms of subalgebras 1., ot BC"(,%-\.

As we have seen. .S(,*.--: Cfr(0)) is a Poisson subalgebra of BC-(O x 9,-.). For strict
deformation quantization we also need that it is a *-subalgebra of each of thc CJ--algebras €f;.
Since S (,?J "; (io." (0)) is obviously sr¿ble und.er involurion, this will fotlow from

Proposition 2.3.3 . lf Bik € BC* (9), then S (9 ; Cf; (t))) is a ,subalsebra of
(L1 (s i co(q), óBh), i.e.

s(.L';cf (Q) "f s(*'; cf (r-¿)) c s("2';crf (r¡)).

Proof. Let0,{r e 5("2;Cfl(0)). As §(9-; ói*(fl)) isasubspaceof Lt(,9i:Co(t))), Oof ,I,l

exists in -L1(.7;Cs(O)). fo prove the product ó of ú is atso in .s("f ; Cf (O)), we reed ro
estimate all semi-norms: let a,a,B € N¿. First, we show that we can exchange differentiation
with respect to ir and along orbits \¡/ith integration with respect to y via Dominated Convergence,
i. e. that for all r and or

dy 
"" 

ü 6 
P (§ Q r t -,¡[r], y) tr (0 1,lul, r - a) e- th 

^f 
' k'il)(n"}idl(ú ef v))(u;r): 

le.
:, 

l*aur1"Á,;,,u)
holds. Hence, we need to estimate the absolute value ofIf, uniformly in z and r,.r by an integrable
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function. To do that. we write out the derivatives involved in lfo,

I|e@,ú : x"ag| (0g1r-,¡ lo(s)l re¿rLú(c - u)le 'ilfl{',u))

0 ¡., tu-,)lii"' 
+ !1' o (y)l 0 *,)ai" 6'r" .! (x -,s\l 0i"' t É"' c- i.h f G,a) .

Taking the C0(0) nolm of the above expression and using the triangle inequality, l¿ < 1, the
fact that á, is an isomeLry as well as the esdmates on the exponenlial of the magnetic flux f¡om
Lemma 2.5.4 (ii), we get

lllxp@,u)llA < tr"t I (l) '"'' lir,,,-", t 
¡''+s q(y))ll.q

ú'+a', +"','-..,t jB,tr,("=¡1 \-/

' lle golo;" t P" v ¡" - úi Jl A | ü"' 6 t"' 
t 

e- ih^í (r'ú 
l) A

/- \
' I ff (trt 1 t', - ail)" 1 »\;=r I ^'" ^"*.," -*tr +F" -l'" =F

:» T
o'- orr+u"':.\ lbl I tc < o,-2,\tt l- 2 b,r
9'+3"+3''-l

The polynomial with coefficients .É6. cornes from multiplying the other two polynomials in the

ly¡l and lr¡ - g7l. Taking the supremum in r only yields a function in g (independent of r and
r,;) which is integrable and dominates ltffU@ir,y)l since the righr-hand side is a finite sum of
Schwartz functions in y,

su¿llráB(", u)lls(o) < 16. ll14óar+r"o¡ (illl"rn,lla'a;" da" vyo*

: » k6.111qar'+0'61(u)llr,n,11,i,11.,,r,,.
tu'+o"+n"'=,,

lbl+lcl<lol+21.¡¡l'l+210i i,l

Hence, by Dominated Convergencc, it is pernjssible to interchange differentiation and integration.
To estimate the semi-norm of the product, we write for an integer 

^- 
such that 2¡r' > r¿ + 1

ll,r o,? {,1i,"É : 
,ry^ll, *0,:,r{,.,,,yr1 t l, ,# (y)2Nsupllr!,{r.yrri.,n,
(,ÉQ

ll6.'+p'o(s)ll/ lat" 68" v(r -,il]1A.

» Ku.labll@ -ü'l
It l+Icl=2 (I -* I+ I Ít- l)

Kó" II(Có,r"'+r'o)(illluJ.@.at" ¡p" v)(, - üllt

o.¡+at+d =a

lbl+ lc Slal+2la'' t 
+21 B'' t 

)

< c,(N) 
,?i& (rf* llt!o(,,il1",n,) < 

"i1r; rrt5,,".:p*livo4 Á*,u)ll",n. {z.t.z)
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The right-hand side invoives semi-norms associated to 3(9 x i;';C*(O)) which we will esti-

mate in terms of the semi-norms of ó and ú/, by arguments similar to those leading to the domi-
naüon of ll1ir(r, s)llr,n,.

Thus, we have estimated llO of {r 11...,3 from above by a finite nurnber of semi-nonns of iD and

ü, and ,l, of {r r- §(-f ¡fx ¡u)).

2.3.2 Twisted symbolic calculus

It is useful to tr¿mspof úe composition láw ofl by partial Fourier tmnsform

1e.F: s(il;Cff(f ))) ---+ s(-*-.;Cf (r»),

setting

fllh s :: O 8 r) [1r o+ r¡-1l "! 6 a r1-t s]. (2.3.3)

In this way one gets a mulüplication on §(,?.'t: Cii(A)) which gcncralizes the magnetic Weyl
composition of symbols of I30, 31, 201 (and to which it rcduces. actually. if {i is just a com-
pactif,cation of the conflguration space .2-). Togcther wi.th somplex conjugation. thcy endow
S{ .?.--; C¡f (O)) with the shucture of a --algebra. After a shofi compr¡t¿rt¡on onc se ts

(f üf; sxr,{ ) : ¡r n¡- 2" 

l * au 
l.r. 

o,, l r, o" I u _ 
d< ci\@'t- v o e- it B d (hs- 1i2 rw +hz't'Iz - tu) .

/(0rl,l, € + q) e(0"i"]. ( + ()

- (¡lt)-2, I O, [ 0.,, I a, I AC.,t"tre,/).(,.:]l ¡-¡rB- \na'h-.:ts 1Éh.¿-hu

J.r ' .1.,, - ' .J.+ J.q .

(or",,l [./]) (",,¿) (o k.oktl) (e' r), (2.3.4)

where a[(y. ry), (;. O)t: "-q-A.Cis the canonical slmplectic lbrm o n 3 :: 9) x 9'* and

(or,,rl.fl) (,, €) = 11a, x,,i) [/l) ( a. 0 : Í @rIu], I + rt).

This formula should be compared with the product giving Rieffel's quantization [43].
We note that 1 I -F can be extended to Zt("Z-lC6(f))) and then to Cf . So we ger a C.-

algebra !Sf, isomorphic rc Cl, on which the product is an extension of the t\¡/isted cornposition
law (2.3.4). From the bijcctivity of the pafiial Fourier transform and Proposition 2.3.3 we get the
foliowing

Comllary 23.4, IJ the comltonenrs of the magnetic.field B are of class BC* (A1, rcn

.s(9.;Ctr$t)) is u Fréchet n -subalgebra of8§, i. e. it is stable under cotnplex conjugation and

h.r¡l¡1.¡.

.§("u ";úf (f )))ü!ñs(s.,cf (f») c s(.*;-;cf («r))
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2.3.3 Representations

We fust lecall the definition of covanant representations of a magnetic C)" -dynamical system and
the way they are used to construct representations of the corresponding C*-algebras. We denote
by U (77) the group of unitary operators in the Hilberr space ?l and by B(?l) the C--algebra of all
the linear bounded operators on ?l-

Definition 2.3.5. Given a magnetic C" -dynamical system ("A,.|h.r81,,tr\, *" call covanant
representation ('ll,r,T) a Hilben space'11 together witlt ttro maps r : A + B(')7) andT : ,2' .->

U(.11) satisfyürg

(i) r is a non-degenerate representütion,

(ii) T is strang\, r:ontinuous and T(r)1:(g) = rlxB,h(.r, g1)]T (r +,y), yx,g e g',

fiii) :r@)r(,p)T(r). -- rlll{d), yr e 9i , e e A
Lemma 2.3.6. Lf (77,r,7:) is a cwariant representurton of (A,,0t . K.B¡,,911, then Tiep'{ de¡necl
on L1(.9,' ; A) 4,

,repJ(o),- 
.1 * ur, 

foi,,qa tu\) r<ul

extends to a representation of €f; -

By composing with tbe partial Fourier transformation, onc gets rep¡esentations of the pseu-
dodiffe¡ential C"-algebra Sf, denoted by

op'í , *f + B(]1), opl(/) ,: xepl [(r x r)-1(/)l . (2.3.5)

Given any a, € O, we shall now construct a concrete representation of ef in,lt = L2(g-).
L,et r.., be the representation of ,,{ in B(?l) given for any g € A, u e ?l and r e f by

lr.(flul(r) : [0,(e\@) u(x) - rp(o,L"JD u@).

Let alscr f be the map from ff into the set of unitary operators on ?{ given by

lrl@)'u)(r) :: xBJ'(.a;rlf,,ú u(r + hy) : ¿- itB'lo,',a'+t"v) u(r +hy).

Proposition 23.7. (H, r.,T!) is a covar¡ant representation of tlu magnetic m,isted c. -dynamical
sYstem.

Prdof Just use the definitions, Stokes Theorem for the magnedc field. B.J and the identities

lB- \x,r + ftl¡1, r * hy Í hz) fBu,t-t (O,h.y,h,y + fLz)

afld

tB' \0,r + fvg,x) : -TB- \O,r,x t hU) .,

valid for all r,y, z e 2'andw €A. !
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The integrated forn ntptl :: mgpll has the following a ction on L|(.gl; A):
-f

fncpf 1 o;"] r "; = J, o, o (e,* yl,);,) nB t, (a; a l h, z),u(r * kz)

= r,-" l*dv* (r=-rl, *r - r) e-;rB'(,'¡,u) uo), e:.6)

and the corresponding rcprcsentation Dp| of the c*-algebra Efl has thc following form on suit-
abte J eBf :

opll¡r,; td . enh)",, I oo I d4 t.i,r, utt¡ (0.,,1,1,t) e.ir'.\o.,vt,,,r,.. r .t.q J.c. - \ _'.. 
(2.3.7)

It is clear that opl is ¿¿rr a faitMul rcpresentation, stnce (2.3.7') only involves the values taken
by J on O, x .7-*, where (?- is the orbit passing through r,,. lt is rather easy to show üat the
kemel of !)p| can be identified with the rwisred crossed producr Coe.) x;: J,"U-, 

consrrucred
as explained above, wiü () replaced by Q".,:ó., üe quasi-orbit generated by the point c,.r.

Remark 2.3.8. The expert ir the theory of quantunr magnetic fields might recognize in (2:-1.7)
the expression of a magnetic pseudodiffercntial operator with symbol / " (0. 5., 1), written in
the transverse gauge for the magneric field 8.,. Then it will be a simple exercise to write down
analogous representations associated to continuous (fields of) vector potentials A : O" -+ ¡1 g'
geaerating the magnetic ficld (i-c. B,, : tlA-, Y u € Q) and ro check an obvious principle of
gauge-covariance.

we show now that the family ofrepresentations {opl I " e f )} actually has as a natu¡alirulex
set thc orbit space of the dynamical system, up to unitary equivalence.

Proposition 2.3.9. Let u,ut be fivo elements oJ e, belonging to the same orbit under the action
0. Then, for arq, ñ € (0, 1], one has l\cpr) = ,tcpX, and Dpt) = Dpl,, funítary equivalence of
rep re se ntations ).

Proo-f. By assumption, there exists an clement 16 of gi such that 0,ola/): ¿r. For u € ,t1 a¡d
r € g we defrr¡e *rc unitary operator

(u|.,' 
"\ (z) :: ¿- i r 

E-' (o' 'o''n+') 'u(x + ro)\ ",* .i

To show unitary equivalence of the two representations, it is cnough to show that for all p € ,4
and y r. 9.-

u1,.,,.,(p) : r.(p)u1,., and uX.,rl,@ : rX@)u1,.,.

The first one is obvious. The second one reduces to

¡4.' (6, 16, 16 +:r) +lB; (0, r¡ -F z, er¡ + r + hu\ :
= ¡8;(r0.e6 +x:,ro+r+ñ,g) +fa-,(0, jrg,o0 +r+hy),

which is true by Stokes Theorem. !
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Remark 23.10, The Proposition reveals what we consider to be the main practical interest of the

formalism we develop in tle present anicle. To a fixed real symbol / and to a fixed value á of
Planck's constant one associates a family

{,Yj :- Dpl(/) ", € r)} (2.3.8)

of self-a<ljoint magnetic pseudodifferential operators on the Hilbert space ?t :: L2 (§), indexel
by the points ofa dynamical system (f), á, .? ) and satisfying the equivariance condition

uÍ¡q : (.r':,or,)-' ulu!;,e,^, Y (w,r) e e x §. (2.3.9)

In conclete situatjons, such equivariancc conditions usually catry somc pirysical meaning. In a

future publication we iirc going to cxtcnd üc formalism to unborinded s-vmbols ,f, gening rcalistic
magnetic Quanhrm Hamiltonians organized in cquivariant families. which will bc studied in thc
i'ramework of spccrral theory.

To deline other fypes of represenutions, we consider now f) cnciowcd with a É-invariant mca-
sure 7i. Such me¿sures always exist. since 3-.- is abelian hence amenable, Wc set 1ll f'or the

Hilbelt space L2l,tt. ¡L\ and consitler lirst the Iaithlul representation: i : A - B(fl') witli

[i(r.)r](u) ;: ,p(a) r(a) fbr all I .. 'llt and a a. f). Thcn, (by a standard construction in
the theory of twistcd crosscd producfs ) fhe regular representotion of the nragneric: C" -dynantit:ctl

$,srem (A.0¡'.ÁP'1i,.'2') inducetl b 7' is the covariant represenrarion (L2(.9.',H'),r.1't'),

r: A + BiL2 ¡.1.':11'¡) with ir(p)url1*;r) :- (i (.a.,( p) )iu,(.r)J) (r): 
".(0,.1.",;).ur(i.,:;r,1 

.

Tt':.2) -+ uiL2 (.?';11')) wirh rTr'(u1«'l(o; rl ':,,R,i'(r:rllr,,,!)u'(.".t:L:+hu).
We identify freely Lz(,,?'\?L') wirh ¿2(f) x 9--) r¡,ith the obvious pr0ducr ncasure, so r(,,.) is

thc opcrator of multiplication by 9 o d in L2 (.tl x ,lt'). Due to Stokcs' Theorem, rhis is again a
covariant representation.

Thc intecrafed fbm frúp¡,: I¡i,pf'' associáLod o (r, I¡)is given on Lt\,q.':l lly

inep¡¡o1u,1 i,.',r):, " 
.1, 

ay + (.oo=1,'1,5:') ,, itr'i-tatai .Lt,(.e.ul

ánd it admits the dírect integral decomposition

. f,ACS'1,t, / d¡,r- ficp' 1,1' .

'/r '

(2.3.10)

The ¡Jloup l-', being abelian. is amcnablc, an<1 üus thc regular reprcscntation l')i€Xlr is iairhful.
'l'he con'esponding rcprcsentation ng;' : !S fl - B i¿:{ z ; H' tl is given for ,f with partial
Fourier transfor-m tn l.1l 2' : A) b,t,

ir-)g¡ (/).iL,l(u:r) : ('Jtrh) ".lro, l, ",Jr¡ 
eia'-ut 'i / (d"1, lul.r/) ,- rl,r''"' i.rt ,,ui ,¡,.r¡
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2,4 Asymptotic expansion of the product

The proof ol strict deformation quantization hinges on the fbllowing Tlrcorcm:

Theorem 2.4,1 (Asymptoric expansion of thc pnxluct). Assttntr thc (:otnporLcnfs ol' B qr<! itl
BC\(A). Let ú,ú ¿ S i.?-:óil(f))) an¿l h e. (0.11. Tht:n tlrc pnttluct 4 of; ü c:att be et-
partded in ¡wwers of lt.

óof ü -,Io¡V Iri{O.üf n r- r:ñ;r(!I,, \I/). 0.4.1)

wlrcre \4',\rlB i.r de.fned.as ín cquatíon (2.2.6). All ternts a¡z ln 5 (.?l-:Ci(Q)) a,?/¡¿;''?(O.,Ir)
is boundetl u¡tifortntl in it- ¡ 4':(.f," E/) 'li< al.

ProoJ. We arc going to use Einstein s summarion cc'nvention, i. e. rcpcatcd indices in a product
are summed over. Two types of terms in the product formula need to be expanded in l¿. the group
action of ,t' ()n I ¡,

r1
(áiyfo(,')l)(u) -,l(ri¡,,1.1;r) :{, .,,,; r' -n f o 

ar jr¡ d_r,, ¡r,r.i é1(.-,: e.)]

-: ú(-; r) + ñ (fif.i(o))(",;r)

. ó(o:r) -+ !11i 
(,áiót(a:r:'1 ' ,r' f 'a,!0 

--r.\.ui.ut,o-¡.,,[(a-,ri¡o)(,,,rr)]" .tt.

:: ú(*:;r) + |il; i,i1{r)(*:2,) + t,.2 (A'i,|,tA:)t,r: r),

and the exponenti¿l oi the magnetic flux.

, .jr:':, -t- t, l'o ),, rs,u,1 -- t- t,Ri.,r.e,I, d, ,_:r

: t - ñr^f (.r. y) - h. lt dr (r - rJ d: 
1e-;.,rli,,r)1

.lt dr' ,.t

-: -[ l,!B;t ,t, .r, !t^. - ti' R';,2 ".,] ,.
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We wil! successjve l,v plug these exparrsions into fhc producr formula. keeping onil' tcrms of (?(lt2):

(,i, of lr) (r,j

- f ,a'¡, 
(.atul * ltr, r¡) id;o)(ir) + tt'?(t¿lli-,i.§)){ut) ,,u,¡*¡, u¡le iñtl('"u)

I: 
/.. 

d,+t,,,(o',r ur*¡s¡(ojv)(r - at-rt,2¡tt:ll,.l¡v¡ ¡," v)) .-;t'-t,?t"''l-'

ht'
+ i f raltr,, r,ttÁ,4')(u) (*tr - ,l + l¿(liÍi(úr)(r u)J r,-'ñÁ'f (''rru

.. r. t;¿ 
f .,,Ju 

{/ii'. ,r{,rt11 9,,, rlr..r 4r , r'\'"''"'

t.,- 
.f ,.,.1,,'l',u'tl'¡- r¡ (r l,,,l,i'.,.v' t,'lli2.,.,t')-

hl /*; l,oo ( ,a,ortvr rl),rli¡ir y) + (Qj,I,)(.,{) (a-;rlr)(r - vl) (r + hR';tir,E¡')-

+ t,2 f au l.lIf,i, .t¡,llt.y) 07,1ü(s - y)) - o(y) (tsÍ:({,))(, y)
/1

-f(or,I'r{rrt rQ,Rl lt'T'r)r., ,11 . 'rriri''irr

- I du+,tut,I,r., u, ! |./., .r 
7.., 

Jt'[Q 4'¡¡'r 'irl'' r ! t4' u'rQ,']'tr I

il¡rt..e t.l,.t ú1,e, r1,,r.,, 
)

*n'.l r,t, ((R;,,,-,tt')l(úa1,,ü¡i,-.q)l *ó(e) (rÍ?({,))(r -ui)r,:it¡rl)t''at-

-+(diol(iq) lQ.,R!,'lt,v'¡)¡t' - a¡ e ;nsP('tt)¡

*¿((Qjo)(e) (.óii! 1¡r - y1 (dro)(.a) (Q,rr)(r u¡) t?:,;t (.t:,y)+

+Ó(Y)tlrl;r: - gl Ai2]7.' U'l)

-: (rl oo v)(¿) - ]tir!.a.\]B1r) - i?':(',?;''? (ó. ü))(r).

Inthe abovc, rvc have uscd (.qr' ri¡ú(t.-,¡t) - (Qrú)(:':, U),,y¡AQ): iQró)(y) and the
cxplicit expression ibr ,,\f (r,:u).

.Cleurl1,. thc leld ing-ordcr and sub-leadins-order rerms are again in S {.?'; C.f (f ) f). Thu-s also
ñ,-t{'.rT. -lr'(,I, rD,T, {,c0 ú I fz}[O,r1l]E) is an element of s (.?-'l(,'¡(A)i trx all
lt 'it. I

The rnosr drfnculr pan of rhe proof is to sho\¡, rhat the /r-dependcnt Cl--nonn of thc rsmainder
fi; 'rO. q' I can he unilbrrrlr bounded in l¿. The lirst ingredient is the lacr that the ñ.-dependent
C"-norm r¡f the twistcd cr;ssed product is dominated by the Il (.t:,4)-norm for all vaiues of
li . (0. il,

llót ll < llóili.,, vo e s (.7-"; c¡"(ol) c ¿r(.,¿-,cof o)) c cf .
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Hence, if we can ñnd ñ-indrpendent trl bounds on each term of the remainde¡ we have also

estimated the ñ.dependent C*-noon uniformly in ñ.

There are four distinct types of temls in the remainder. Let us start with the flrst: we def,ne

(n;'?(o ü j ) (r),: .l _ 
n, (.R!;1 -,,,i.q ) (y ) t),.,iú e ull e- 

j¡'tfl (,.',rr

Then we have

linilro,u,1 f < ll,q;?(,i,.{,)I r (.1 r_ra))

a .[,o. !^,o, ii (¡rí,í,- tol)tel [,,oinr rdl,lú(,,- ry)]llc,"rnr 11r,-¿ñ.\Í'(",r)11..,,,,,

: 
{^o, l,uoi (ní 1, (ó))(e) I ,,¡in¡ I w(,) i.,,,n,.

we inspect li(ní1-({,))(y) l].,1¡¿r mor€ closelv;

l (ní'1,(ó))(v) ),r,,n,, i.l' ch i( q)(-rr) d., 
"¡" [(o¡oró)(e)]l .,,,n,

1

- ;,,.,u 1,,ri.4')(u,'., .,¡¿.

If wc plug that back into the estimate of the Ll norm, wcgct

/i f r4, {,r i' ! [ ,,, f .u, .,n r,,],r u' , ,a. ,e c¿,rr.r,r' .,,,,q./.v Jt
1: i ,i,o*olir, iie¡etv) ¡.,

Thc righGhard side is finrre by the definition of .s(.?-:Cli-(f))). Similarly, tlre second term can

be estimat¿d. .just the roles of ú and itr are reverscd.
Nou' to the second rype of rerm: we deline

.. | /
t/ri;r{,'I,t1r.rr :: i 1..a1 t¿¡r.ltal @jtl:tñt)(t o¡,-;t't!li'"a)

and estimate

1,ry;:({, ü)l;f : ln;3(o, t,t , <',l_a" l*ay t.a,tt¡e¡i.,,,n,11(e;nll,(v))(,,)i¿,,,1,,,

The last factor needs lo be estimated by hand:

l fqrníu(,r,i)k 1i.,,,n, : ] f 
' a,,"i yu¡liÉ.i,f(d;v)(7llii.,ir))

: i,, rrtjl 1ar,v) (,,) ll¡r"1nr



CHAP?ER 2, MAGNETTC TWTSTED AC?IOATS ON ABELIAN 
'! 

-ALGEBi?AS 34

Tiiis leads to fhe bound

llñ;?to.ü,)ltf -.i lro, .l,,uo e¡a)A)i t:,,t{¿\i.rryt, l(ri**r1r.)1..,,,,.

I,"n','e,'r¡rtr.
The right-hand side is again linite since é. il, e .§ (.9.":Cl'(0)) and does not depend on l¡.

Estimating the two ma:¡netic terms is indeed a bit more involved: we rlelinc

(E;,1(,r¡, ú)) (r),: I f , a,,, q, t,,r r ) ( ¡, ü ) 1 x y\ lti, t (t:. 
-u).

'lhe usual arguments show the (..'*-norn',.rn t. 
"r,irnur"O 

O,

t:,2,.{,.,!, : I u f lu' e,4,.,,t¡' nn ,.rn,[,]rr r/, ,". t?it,t.g, ,,,,,'-.1¡ .l 1 '

which warrants a closer inspecti(m of the last tenn: first of all, we note that

Rí''(,, re) - .lo' 
o,*("-"',,',,) 

l,:,,,
¡t . \ .,,t -,.J-.l ,u, (-,\"¡,,.y1- i-s, r',r.rr')

If we use Lemma 2.5.4 and ñ 1! 1, then this leads to the follou,ing úi¡(Q) norm estimatc of
Rit (!" !,t¡:

I Rf 'r(r, e; il¡"¡n¡

a 
.1,,' 

u" (11-ti,t,.uli c\,(,r+t1, iiá|.n:i..rr ,:,,i1.r,,,,,) lir,-'\i',r,'r,r11..,,n,

I ]iB"'i..",n¡ iu¡ )t,u - yti+ +ll6¡Bih)lc"r.n¡ia¡ 1au - yxt, (ltt - yt),+ ut.,).

Put togcther. this allows us lo estimate tlte norm of fii ] Uy

i i?;'?(ó. {'ll I < l¡n""'11r,",u, tQ.¡Q-ai¡' llQ¡'orü i-,+-

+ | jlarr"'h11.,,,,, (llQr8,,,,C,*11", llrJr.¿'?úliL, + llQrQ-o 1., llQlQ¡¿-iü,i¡-,).

Now r¡n to thc last tcrm.

(H.;f (o,,I,r)(r,) ': / ,i,, o1e¡ v,¡ 1: - ,s) R'i'2(r,u).
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Using thc cxplJcit form of tl.i';2lr:.u).

/ L -l2
Hl" :.¡t'-- I ¿-,1 - ; a (,-' t' ''

- [ n' ' ;"] tn ' ' - ']tl ' tt

, (,tf r , et , , ;f ,rf r,. a t)t-1 , ,nc-"h\1,,i.'"ut 
.

in conjunction with fhc cstimatcs dcrivcd in Lemma 2.5.4 (which ¿re uniform in 7). we get

,,]

)ni.¿tr.u,,",n, ..,/ rlr(i - r) ill1*.i.tf ¡,.e;1, .rtr,,,¡n, -' 1$.tfi,.y¡1, r¡. ..¡is¡+

*(ll^r1(r v) i.,n(nr *, i *13(,,rq)1,:,, ')'l i' '"^9"' '' ,,,,,,,

r1

f,a l - 2 'L.\t(r.u',.-.-¡ r.n,:r - *r', tt..-.t..,,,\¿,

+ )Lpn k, y)i l, u,.n, + 2, 
] i 

rrrr, tr, yl i .,"rr,, ] i o! Al (,, q),:,n 
] i.,,, (nr+

+r':l $Af 1r, q) ,:., i á,,",]

Herce, we can bound the lr-depenrient f.l--nonn of ,rti'f hy

]i4,; lí r i rir.tsri',,.,,,,,, ( Orol r-, Qt,Qt§/i r... + ) Qic)t8, ., tQu{,1.,)*

+! o¡t,,B1^ i.,,n, (ilQroi¿, ]iQr.aJrrJ",{/i ¡,+ )Q.¡Q,,6 r, l]Q,,Q,ui].,+

-1lQj0rQ,,oil¿, 1Qrvll.,)+
+ I Eil' c:,g1¡ Bi'k' ic¡,tn¡ Q.¡c).¡,úi ¡. ()t,QrLn',jr,-

+ {r6;t' {:,¡ia') ¡t'B':¡'k' ,,,,r,r,(. ,!rQ,'u' ¡,, Q,QlQrú1i,,,+

'.. Q,Q.'.()' {' , rQ''Q¡ rl' ,,)
+ fr | a,a.r* .;(rrr i di,c.i'A'l ,,",r, (,.1)p,e,,*: ¡, exerLeú)r,ú ,,,r

-r rilQ;Q7,Qróljr-, jjQrQi,Q¿,,i,1 ,. + \,Q¡a-.¡,QtQt,ojl¿, llQaQk,,.r,li¡,).

Putting:r11 thcsc individual cstimatcs togcthcr yiclds abound on iff;':f{,{r) | which is unifbnlr
in /i and the prr-rol'ol the Theorem is finished. ¡
Corollary 2.4.2. Assumc tha t:omporLents o;f B ara in RC'-{Q). Lct .f .g 

= 
S(.? '; C;f;({l)1 and

ñ a (C, 11. Tlrcn thc prctluct .f lf; 9 can ba ax¡tantled in power.t tl ir.

f lPe: .f e - r,ii.f ,lcle + tr)tt!i2t.¡.s¡ (2..4.7)
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wlxere ig is the poinovise product and {Í,(J}B it the magnetic Poi.rson hracket daJinetl as in

e(tuation (2,2.4), Al.l tenns are in.9(fl'.1Cf;(0)) antt ttu rcnmindtr satisfics l) lll:')ff,g) )lgp
! C unifonnlv in li.

Proof The proof follows from equations (2.3,3), (2.2.5), (2.2.6'l and Theorem 2.4.1, keeping in
mintl that the partial Fourier transforms are isomorphisms .S(-?:.;C-(O)) < l "S(-2-;CÉ(f )))
that extend to automorphisms betwcen the Cl'-algebras tsl and Al,.

2.5 Strict deformation quantization

To make this precise. we repeát an akeady standard concept. For more details and motivation, the
rcadcr could see [43, 44.24] and references therein.

Definition 2.5.1. lÉt (S,., { ,.}) be a real Pois,son algebra which is densel¡, contained olt the
selfadjoint part t¡,v of an abelian C" -algebra C6. A strict deformation quantization of the Pois-
son algebra S isá famil.t, of R-lhear injections (ü¡¡ :5 -+ C¡i,I'') 

¡¡.e t,v,here I a'l?.contains 0 a¡
ün accunu atiott point, {.¡_1¿ is the se$odjoittt pan oJ tlrc C* -algebra etL, wirh products and norms
derroted b1, oh and .l)¡, D¡ is just the inclusion map and Q;(S) is a srdralgebru oJ C¡¡.v.

The fol.lowing conditions are rcquired.fbr each O, {/ € S

lü Rieffel axiom.' the mapping I > n -r llDa(O) ll¡ is continuous.

(ir) Von Neumann axiom.'

jlillá tootol o¡ Q¡(!ú) + Q¡(¡Y) 
"¿ 

Q¡.(o), - Qn(iD o v)ilo : 0.

(iii) Dirac axiom.

;gX]l; t,:rlot, o¡,(rI,) - Q¡¡(ú) on QnÍDl- o¡,({o,q,})li¡ :0

Putting this into the present context, we have

Theorem 25.2. Assume that Bjk € Bar-(fl) and I : l}.f]. Ttrcn the fatnil¡, of injections

(s@.",cf (q)Rn c|a)ou¡

deJines a su'icr de[ormaüon quanri:atíon.

Proof. By Proposition 2.2-9 and hoposition 2.3.3, .9(9',Cf (fl)),u can be scen a Poisson alge-
bra with respect to o0 and { ,.}B o. well as a subatgebra of the real part of each of the twisted
crossed procluct Cf.

Von Neumann a¡d Dirac axioms are direct consequences of Theorern 2.4.1 .

The Rieffel axiom can be checked exactly as in [31], which builds on results f¡om 137,421.
The fact that the algebra 

",4. 
in [31] consisred of continuous functions deñned on the group ,2- itself

does not play any role here.
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A partial Foudcr transfbrm transfers these rcsults dircctly m s- f .?.-.. (-fr (l))) and !5f , obje c*
which are more natural in the contcxt of W'eyl calculus. ln this way wc extend the main resulr of

f 3llto nragnctic twistcd ac¡ions on ¿lencntl. abelian C*-algcbras.

Corollary 2.5.3. Asswnc that I:liL € ('r{\¿). Ler l : t.A. I). Thcn thc Jamíly oJ injectiott.s

(s1r--. c¡rot¡r, * !Bf,r) r.,
defines a strict defotmation quantization, where the Poisson dlgebra srnlcture ln S ("fl-, Cf (0))É
is given by point-wise multiplication and the Poisson bracket {.,.} p.

Prool The proof is sEaightforward from the Corollary 2.4.2 and the above theorem, after noticing
that the partial Fourier transform is an isomorphism between the Poisson algebras S( 9'-; Cfl (0))
andS(9:; Cff(ff)), and it extends to an isomorphisms between the C*-algebras $f and Cf . tr

Appendix: Estimates on the magretic flux

In the next lemma we gaüer some useful estimates on the scalecl magnetic flux and its exponential,
that me used in the proofs of Propositions 2.3.3 and 2.4.1.

f¿mma 2.5.4, Assume the components of B are in BC*@) andh.e (0,1,1.

(i) For all muhiindices a,a € N" ráer¿ exist consmnts Cr > 0,Cik > 0, j,Á € 11,...,"1,
depending on Bik and its |-dertvatives up to (lal * lal)th ordea such that

laia"tt!{r:.y¡ 1,,,1n, lfci sjl + I clk¡y¡1 r¡-;!t7,.

(ii) For all a . rt € )!" there axists a pol¡ru»nial pnu in 2n yarial¡les, u,ith coe.fficients Ii¡,,, ¿ 0,

such. that

| 46"t' inni rrtt 
lir.," rn., I p,. (yr1,.. . ,1.¿1,1, ;tt -'!tt ,....):r* - 'r,,17

: I r;¡.)yb )(1: a)"
lü - 1., <2fl¿l+ ^il

(iii) 7he jbllowirtg e.stinrures which are unifonn in h ancl r hold ilr lhe magnerit.flut and its

de rivqt ive s :

l,\f.(r,, s) l¡,or*r

i *lli,,, v) l.:,0 i ..,,n

]#rit,, ut .:,,, ]¿,,,in,

r f ]iE,o ,t¡;,,,,lI'yi i*r, !r¡, ,

.ik

<f ]i;,a;i¡ r:nu,:i'u.i irx-u*i (r,¡ -ytl+.ut),

< I i ,i,¿"',¡¡u ,c,,,@., 
,g.¡l ,t, yr (ir? ut '1r,. ,!t,, +

+:a¡ 1r"., - ynt + l:ltt ynt).
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Proof' (1) and (ii) fo'ow directry from the explicit parametrization 0Í thc magnerio flux.
(iii) Throughout the proof we are going ro use Einstein's surnmation convention, i. e. repealed

ili:i 
,n a product ¿¡e summed Ju".J.o, 1 * ili.ái. ;; the expricit parametriátion

L!@,il: a¡(r.¡ - oo) 
1,,' 

a, 
fo' 

a"o.r"-y,r,+.(¿_,)r[Bj]1,

we compute ñrst and second de¡ivative of Af (r, y) with respect to €, using dominated convergenceto interchange difÍ'erenfiation with respect to the p*u."t"i. and integration with respect to ¿ and

d." i tl
¿ Airr" v) : lt j t,.t, - ,n 

Jo 
n, 

.lo 
ds (,s(z¡ - ar) + tltL - L{L) 0,\s-1/ztr1 ,u- 4o[6tBjk).

d'." rt rt
Dilk, g) : e¡ l,¡" - oo) lo o, l" ds (s(r¿ - a¿) -r tat - )r¡) (s(4, . s,,1+

ta.,. - i" *) . 0, ¡." -, 1,¡,¡.¡t- "lyldt 
6,,8j k)

The estimate on the flux irself fo,ows fiom the fact that all the automorphisms d, are isometric inC¡(l)):

l!L1,k,üll"*r¡ t la¡llrx - uot l' at f' as l!0,¡,_t1z¡t+e(t_s¡olBiulll",@¡

< llBi*11""«,r lv¡llq" - at"l.

Using the triangle inequaliry to esrimate lr¿ | from abov e by lc¡ _ yt,l + .l¿l" we get
ll .l - I l

lj#n.'t',rr1,_,,J¡ci,rn1 s rsi;1 1,,--sxt I a, 
f'a,¡,¡,,-utt-ttsLt+ riJ?,).
. 

ll o 
"t,t ", t ¿,,+rr_.r,[árBje] 11.o,,,,

= llaBiullr,«¡ la.¡ll,¡ - rrl f' a, 
.ln' 

a" G,rt - a +tly¡l + |lr¡l)
< llüB'ikll",slla:l@* s*l (lr¡ - atl + lutt).



CHAPTER 2. MAGNETIC TWSTED ACTIONS ON ABELIAN C- -ALGEBRAS 39

In a similar fashion, we obtain the estimate for the second-order deriv:tdve,

ll $^:t,,,r l.-.,1],",n, 
.

t la¡l lq - ra l"' 
u f' a, 

l {,{,, - u) + tv1 - lr¿) (s(r,, - a,i + tv*- á,-) 
l

' ll0,¡1" - r¡e¡,+,r,tt-,lr[á,0*Bjn] ll,¿o,l

5 lló¿d-B'*116"1o ¡luill,x-v*1 l' o, l' o"("'lr, -r,ll,**a^l+zstls¡llq.-v,.1+

+ sl x ¡ - y ¡l ir * + tlut) @,^l + t2 ll1tl la.,l + ilr tl I h, )
< l]d¿d",aiklic,(r.)¡lu,illu-u* (lr¿-llti u,,"-v",)+ al)r,"-v,, +lvillv-i.

This finishes the proof. ü



Chapter 3

Covariant Fields of C*-Algebras
and Continuity of Spectra
in Rieffel's Pseudodifferential Calculus

Introduction

Lef T be a locally compact topological space, always assumed fo be Hausdorff. We denote by
C(7) the Abelian C*-algebra of all complex continuous functions on ? that are arbitrarily small
outside large compact suttsets. A C(?)-aigebra L10,37,491is a C- -algebra I together with a
non-degenerated injective morphism from C(T) to the center of .6 (multipliers are used if B is not
unital). The main role ofthe concept of C(T)-algebra consists in codifying in a simple and efficient
way the idea that B is fibered in the sense of C*-algebras over the base T [14,471. Ac ally
C(7)-algebras can be seen as upper semi-continuous fields of C*-algebras over the base 7 ; lower
semi-continuity can also be put in this setting if one also uses the space of all primitive ideals

126,37, 42, 46, 491. We intefld to put these concepts in the perspective of Rieffel quantizarion.
Rieffel's c¿rlculus [43,44] ls amaclnne that üansforms funcrorially "simpler" C*-algebras and

morphisms into more complicated ones. The ingredients to do this are an aclion of the vector
group E :: IRd by automorphisms of the "simple" algebra as well as a skew sytrmetric linear
operátor of E . When morphisms are involved, they are always assumed to interhvine the existing
acfions.

Rieffei's machine is acsffilly meant to be a quaatization. The initial data are naturally defining
a Poisson structure, regarded as a mathematical modelization of the observables of a classical
physical system. After applying the machine to this classical data one gets a C*-algebra seen as

the family of obse¡vables of the same system, but written in the language of Quantum Mechanics.
By varying a convenient parameter (Planck's constánt ¿t) one can recover the Poisson structurt
(at li : 0) from the C.-algebras deñned at h I 0 in a way that satisfies certain natural axioms
t1l 42, L l

The spirit of this quantization procedure is that of a pseudodiffereotial theory [l5]. At least

in sinple situations the multiplication in the initial C*-algebra is just point-wise multiplication

40
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of functions defined on some locally compact topological space, on which 
= 

acts by homeomor-
phisms. The non-cornmutative product in the quaatized algebra can be interpreted as a symbol
composition of a pseudodifferential type. Actually the concrcte formulae generalize and are moti-
vated by the usual Weyl calculus.

In a setting where all the rclevant concepts make sense, we prove in Theorem 3.3-3 and Propo-

sition 3.3.4 their compatibility: By Rieffel quantization an upper semi-continuous fields of C*-
ailgebras is nrmed into an upper semi-continuous fields of C*-aigebras with fibers which are easy
to identify: the proof uses C(7)-algebras. Finally, using primitive ideals techniques, we show
the analog of this result for lower semi-continuity; the key technical result is hoposition 3.4.1.
Putting everything together one gets

Theorem 3,0,1, Riefi\l quan!i?.atí{)n tansfurms covariant continuous .fields ol C* -algebras into
cottaiant continuous fields of C* -algebras.

Maybe d:e most interesting cases, anyhow those which are closer to the spirit of Weyl quan-

tization, involve Abelian initial aigebras A. In this situation the information is encoded in a

topological dynamical system with locally compact space I and the upper semi-conúnuous fleld
property can be read in the existence of a continuous covariant surjection q : L --+ T ; if this o¡re

is open, then lower semi-continuity also holds. If the orbit space of the dynamical system is Haus-
dorff, it serves as a good space 7 over which the Rieffel defomred algebra can be decomposed,
with easily identified fibe$. We treat tte Abelia¡ case in secúon 3.5.

We illustrate the results by some examples in section 3.6. Among others, the techniques we
develop can be used to show that the C*-algebras of some compact quantum groups constucted
in [45] can be written as conttruous fie1ds, some of the flbers being isomorphic to certain non-
commutátive tori.

One naturally expects that topics or lools coming from the standard pseudodifferential theory
could make sense and even work in the more general setting of Rieffel's calculus. In [29], some

C*-algebraic techniques of spectral analysis ([4, 5, L6,28,331and references tlerein) were tuned
with Rieffel qmntizaúon, getting results on spectra and essential spectra of certain self-adjoint
operators that seemed to be out of reach by other melhods. In the present article we continue the
projecl by stldying spectral continuity. Pioneering work on applying C*-algebraic techniques to
spectral conti¡uity problems and applications to discre¡e physic¿l systems may be found in [4, 6,

i3l. Results on continuity of spectrá for unbounded Scküdinger-like Hamiltonians (especially
with magnetic fields) appea¡ in [2, 3, 18, 38] and references therei¡.

RougNy, our problem can be stated as follows: For each point ¿ of the locally compact space

T we are gíven a self-adjoint element (a classical observable) l(t) of a C.-aigebra .4(l), which
is Abelian for most of the applicarions, and we assume some simple-minded continuity prope§
in ¡he variable t for this family. By qu¿ntizaúon, /(f) is tumed into a quantum observable f(f)
beionging to a new, non-commutative C'-algebra 2l(f). We inquire if the famity S(t) :: sp [f(t)]
of specaa computed in these new algebras vary contiñuously with ¿. lntuitiveiy, outer continxity
says that the family cannot suddenly expand: if for some t6 there is a gap in the spectrum of
f(ú6) around a point )0 € lR, then for f close to f6 all the spectra ,9(f) will have gaps around
.tr6. On the other hand, inner continuity insures that if i(ú¡) has some specfum in a non-trivial
inte¡val of lR., this interval will contain spectral points of all the elements f(f) for f close to f6 .
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Although aaditionally 2t(f) is thought to be a C*-algebra of bounded operarors in some Hilberr
space, the abstract situation is bo¡h na8¡Ial and fruiful. One can work with abstract C* -algebras
?l(f) and then, if necessarily, th€y are represented faithfllly in Hilbert spaces; the spectrum will
be preserved under representat ion.

It comes out that spectral continuity can be obtained from corresponding continuity proper-
ties of resolvent families of the elements f(t) and üis involves both inversion and norm in each
complicated C--algebra ü(t). Things are smoothed out if the family {{(t) I ú e 7} has a pri-
ori continuity properties, that may be connected to concepts as C(7)-algebras or (upper or lower
semi)-continuous C*-bundles-

In a fnal section, using the results of the article, we are going to ínvestigate what happens
when the quanúzation mapping "a(t) 

*r lt(t) is Rieffel's quaÍtization. For our siruation, which
has a rather small overlap with tIe references above, we also include an outer continuity result for
essential spectra of Rieffel pseudodifferential operators- Continuity in Pianck's constant ñ, treated
in [43] and in [29], is a very special case. The full súeogrh of these spectral techniques would
require an extension of Rieffel's calculus to suitable families of unbounded elements. Hopefully
this will be achieved in the future, and this would be the right opportunity to present detailed
examples.

3.1 Rieffel's pseudodifferential calculus; a short review

We start by describing briefly Rieffel quánúzation [$, a4. The initial object, conta¡ring ,¿e
cl¿ssical data, is a quadruplet ("4, O, E, [.,.,n). The pair (E,[.,.]) will usually be taken ro be
a 2n-dimensional symplectic vector space, blrt the skew-symmetric trilinear form [.,.] may be
degenerate in most situations. On the otherhand (A,@,E) is a C. -dynamical system, meaning that
the vector group acts strongly continuously by automorphisms of the (maybe non-commutative)
C* -algebra 

"4 . Let us denote by .4- the family of elements / such that the mapping E 
= 

X n+

Ox(l) e .4 is Ce. It is a dense * -algeka of -A, and also a Frecher algebra with rhe family of
semi-nonns

ll /l[',- )-- *¡l a"x[ax(fJ]x:orlz= )- 4 ró'(,r)l¡, l.;ÉN. {3.t.1)
1o-¡.t ''' l;i* lo I

To quantize the above structure, one keeps the invoiuüon unchanged but introduce on .4* ¡he
product

{3.1.2)

sútably defined by oscillatory integfal techniques. One gets a +-algebra ("4*, f ,- ), which admits
a C*-completion 2l in a C*-norm l] . lq deflned by Hilbert module aechniques [43]. The action
O leaves ,4- invariant and extends to a strongly continuous action of the C*-algebra rt, that will
also be denoted by O. The space 216 of CÉ-vectors coincide wiü ,4,- and it is a Fréchet space
with the family of semi-norns

I # s F r-2" 
f- l-un 

o, .'u'''4 or, l.{ ) <¡ rls¡) .

\-1L ,t l.

,\at.

\-iL ,t)!
ru r,(l).
li J l0 -' ll ai. fti¡(.f)]."=u l1¡1 = ll ¿"(,/) q, ft€l\. (3.1.3)
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By Proposition 4.10 in [43], there exisr & € §tr and Ce > 0 such that

ll / lls < c,+ ll I l$), v/ € ,4- : s*.
Replacing here / by d'f for every multi-index a, it follows that on ,4e rhe topotogy given by
the semi-norms (3.1.1) is finer than the one given by the semi-noms (3.1.3) - As a consequence
of Theorem 7.5 in [43], the role of the C"-algebras "4 and ?f can be reversed: one obtaíns .,4 as

the quantization of ?1 by replacing the skew-symmetric fo.- [-, .n by -[., .] . Thus ,A* and :*
coincide as Fréchet spaces.

The quantization transfers to E-morphisms. kr (A¡,O¡,i, [., ]), j : 1,2, be two classical
data and let ,? : At -+ Az be a 5-morphism, i. e.a (C--)morphism intertwining the ¡wo actions
O i , ()2 . Then 7l sends -4f into ,4f and extends to a morphism gt : \1 -+ 2f2 that also interlwines
the corresponding actions. In this way, one obtains a covariant functor. The functor is exact: it
prcserves short exact sequences of E-morphisms. Namely, if .7 is a (closed, self-adjoint, two-
sided) ideal in ,{ that is invariant under O, then its quantization J can be identifled with an irwariant
ideal in { and the quotient 2[/J is canonically isomorphic to the quanrizafon of the quotient ,4/.7
under the [afural quotient action.

We will refer to the Abelian ca¡e under the following circumstances: A continuous action O
of E by homeomorphisms of the locally compact Hausdodf space X is given. For (o, X) e X x E
we are going to use all the not¿tions

Ola X) : É).a(o) - o"(x) € ! (3.1.4)

for the X-transformed of the point c¡. The function 0 is continuous and the homeomorphisms
o¡, Oy satisfy t)7¡ o Oy : Ox+y for every X,Y €A.

We denote by C(X) the Abetian C*-algebra of all complex continuous functions on X that
are arbitrarily small outside large compact sutrsers of X. When X is compact, C(X) is unital. The
action O of E on X induces an acrion of c on C(X) (also denoted by O) given by O¡(/) ::
/ o O¡. This action is strongly confinuous, i. e.for any i € C(») the mapping

ErxF+€)x(/) € C(x) (3.r.s)

is continuous; thus we are placed in the setting presen¡ed above. We dsnote by C(X)- : Coo(X)
the set ofelements Í € C(») such that the mapping (3. i.5) is C*; it is a dense *-algetra of C(X) .

The general theory supplies a non-commutative C*-algebra 2[ = A(l), acted continuously by
the group E, with smooth vectors C-(X) : C'"(X) .

3.2 Families of C*-algebras

Now we give a short ¡eview of C(7)-algebras and semi-continuous fieids of C*-algebras (see

l1O,'U,76,37, 42,491and references therein), outlining the connection between the two notions-
If 6 is a C*-a1gebra, we denote by M(B) its multipiier algebra and by Z M(B) irs cenrer.

lf Bt , 82 are two vector subspaces of A4(B), we set 81 . Bz for the vector subspace generated
by {fub2 | h € Br,bz € B2}. We are going to denote by C(T) the C*-algebra of al1 complex
continuous functions on the (Hausdorf) locally compact space 7 that decay at infinity.



CHAPTER J. FIELDS OF C. -ALGEBR,AS AND CONTIA7UITY OF SPECTRA

Definition 3.2.1. We say that B is a C(T)-algebra d a non-degenerate monomorphism Q : C(T) +
ZM(B) is given.

We recall that non-degeneracy means that the ideal Q[C(T)] .B is dense in.6.

Definition 3.2.2. By upper semi-continuous ñeld of C.-algebras we mean a.farnily of epimor-

pltitms t{ C'-alget ro, {s''3 E\l ) ) t € T\ ina"r"d ay the Locally compat:t tt4)(tlo\¡cal spa«"t)
T and satisJying:

l. For even, b € B one lus ll b 116: sup¿67 ll P(t)b lBft\.

2. For eyery b e B E ntnp T ) t,-+llP(t\b lls¡¡ is upp", t"*i-continuous and decays at
inlinüy.

3. Tlrcre is a muhiplication C(T) x B > (9,b) -+ 9*b € B such that

P(t)le*bl: eft)P(t)b, Yt e r, e € c(r), b € B.

lf, i.n addítion, the map t "+ll P(t)ó | is continuous;for every b€ B,we saltlut

{n\s1l re f} ¡, a conci¡uous field of C'-algebras.t)
The requirement 2 is clearly equivalcnt with the condition that for every ü É 6 and every e > 0

the subset {t € 7lll P(t)b llB(i> e} is compact. One can rephrase l as rt¿ ker[2(f)] : {0i,so
one can identify 6 with a C"-algebra of sections of the fieldl this make the connecüon with oüer
approaches, as that of [37] for example. It will always be assumed that 6(t) I {0} for all t e 7.

We are going to describe briefly in which way the two definjúons above are actually equivalent.
Firsl let us assume that B is a C(?)-algebra and denote by C¿(7) the ideal of all the functions

in C(I) vanishing al the point t € T. We get ideals L(t) :: QlCt(T)).8 in B, quotients
B(t) = BIZ(t) as well as canonical epimorphisms P(t) | B ) 6(t). One also scts

e*b:: Q(e)b, Ye e C(r), beB. (3.2.1)

m.n {f ?9 nt llt e ?} is an upper semi-conünuous field of C*-algebras with multiplicationt'j
Conversely, if an upper semi-continuous nefa 

{r 
19 BQ,) ) t, a f} is Siven, also involving

the multiplicatio! *, wc set

.): C(Tt . ZM\B) . Q¡s1|,:.- ¡ .. l.'. /1r 1r

In this way one gets a C(?)-algebra and each of the quotients B/L(t) is isomorphic ro the fiber
Blt).

To discuss lower semi-continuiry we need Prim(A) . the space of all the primitive ideals
(kernels of i¡reducible represent¿tions) of 6. The hull-kernel topology tums Prim(B) into a

locally compact (non necessarily Hausdorff) topological space. We recall that the hull application



CHAPTER3, FIELDSOFC"-ALGEBRASANDCOATI\II'ITT'OFSPECTRA 45

J ,-+ hlÍ) :: {rc € Prim(6) 1 J C L} realizes a decreasing biiection berween thc family
of ideals of B and the family of closed subsets of Prirn(6) . Its inverse js the kentel nnp [! ,+
f lQ) :: ^ ¡ qf¡A . whieh is also decrcasing.

The Dauns-Hoffman Theorem establisires the existence of a unique isomorphism
I : ACfl'>rirn(6)] -+ Z.M(8). where TJClPrim(B)] is the C--algebra of bounciert and conrin-
uous functions over Prim(6), such that for each K e Prirn(6), ilr € BCIPrim(6)) and b e B
we have l(ü)b + l( : ü(rc)¿r * tr. For a detailed srudy of the space l,rim(B) and a proof of
the Dauns-Hoffrnan Theorem, cf. sections A.2 and A.3 in [46]. Let us suppose thar there is a
continr¡ous surjective function q : Prim(6) -+ f . Then we can define Q : C(T) ..-t ZM(B) by
Q(d = l(p o q) and one can check that Q endows 6 wiü rhe strucrure of a ú(Z)-algebra.

O¡ the other hand, if we have a non-degenerare monomorphism Q : C(T) --+ ZM(B), we
ca¡ def,ne canonically a continuous map g : Prinr(B) ; T. One has q(rt) : f if and only if
:L(t) C rc, and wc can recover Q from the above construction. Moreover the map T ) t ) i

¿r(¿) l]¿rl¿l€ R¡ is continuaus Jbr every b € B («¡ we ha,,,'e a cuúitttttuts Jield oJ'C- -aLgebrut ) if
and only if tl is open. For the proof of this facts see proposirions C.5 and C- 10 in [491.

3.3 Covariant C(7)-algebras and upper semi-continuity under Rief-
fel quantization

LEtT be a locally compacr Hausdorff space and (.4, O,3, [., -]) a classical data. The canonical
C.-dynamical system def.tred by Rieffel quanrization is (fl, O, ¡) .

Deñnition 1,3.1. We say that A is a covariant C(I)-algebra with respect to the action 0 f a
non-degenerate monomorphism Q : C(T) -+ ZM(A) is giten (so it is a C(T)-algebra) and in
addition one has

ox[a@)Í):a(dloxff)], Yl €A,x e z,ee cQ). (3.3.I )

We intend to prove that the Rieffel quantization transforms covariant C(?)-atgebras into co-
variant C(7)-algebras. For üis and for a fulther result identifying the emerging quotient algebras.
we are going to need

f¿mma 3.3.2. L¿t I be an ideat of CIT) and denote by dO .Á the closure of e(I) . .A in the

C* -atsebru A. rhen Q(I) . .A- is dense in (aO;; - 
= (d]fi) ñ "4e for the Fréchet

topology inherited from A* .

Proof. By the covariance condition Q(I)...,{ is an inv¿riant ideal of.¡{.
The pr<rof uses regularization. Consider ¡l¿¿ integrated fonn o/O, i.e. fbr each O € C.*(=)

(compactly suppr:rted srnooth function) and g € .4 deline

o*ttil : I d).ü,r r)ol./e, .

.t=

Note thal for every X r 3 one has

f
ox loó(e)l = / d.Yo(Y - x)oy(s).
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Then (-),¡(r7) € ltñ and fbr each multi-index ¡r we have

áP [o,¡(e)] : (-t¡Fl6r,,11r; on¿ ll ¿,'Iook)l lr I ll ópo ll¿,1=1 ll u llx .

One of the deepest theorems about smooth algebras, the Dixmier-Malliavin Theorem [ 1], say that

.4- is generated (algebraically) by the set of all the elements of the form Oa (g) with é € C.T (E)

andg e ,4.Replacingáwith@[fl7,for/ € (O(f ).,a)*trrereexistór,...,ó,, € óf(3)
añ h,..., f," e @f,a such that J = I3rOo,(f). kt¿ > 0 and fix a multlindex ¿t.

Choose 91 , . . . , s," e Q(I). ,4. such that for each i

ll i¡ - g¡ ll"o,1

Then

ll'" ('- á ".,'r,'') li, 
: 

i] á ","- 
(/' - r') 

ll, '¡ rt '''' rr¿'1a¡ rr r': 'tri tt'a<'

Thus we only need to prove that for each O ( Cf (E) nd g e Q(I) -.4 the element 0.¡(9)
belongs to aQ) . A*.1*r gt,...,pj e I and á1,...,hj € A such that s: Dri=tQ(p¡)l¿¡.
Then

j
ÉJo(g) : » oó [o(,/')¿J ,

and by covariance, for each index i one has

t
od. [O(,p,)hi] - | dvag)e(n)ox(,h,) : a(p¡.)lo+{h¡)) € e(r).A* .

,l=

n

Theorem 3,3.3. Rieffel quantization transforms coyaiant CIT)-algebras into covariant C.(T)-
algebras: there exists a non-degenerate monomorphism D : C(T) --+ Z M(»J) satisfying for all
e€C(T), i e AandX €? the covariaru:e relation e¡x[D(e)"f] :A(,p)[Ox(/)].

ProoJ. Ttre action O of 3 on "4 extends canonically to an action by automorphisms of the mul-
tiplier algebra M(,A) , úso denoted by O , which is not strongly continuous in general. But,
tautologically, it restricts to a strongly continuous action O : 3 -+ Aut[,t\4s(.4)] on the C'-
subalgebra

.Mo(A),- {m, e M{"4) lE)X+O¡(nr) e ,,V ("4) is norur continuous}. (3.3.2)

ln these terms, the covariance condition on Q says simply that for any ,p € C(T) the multiplier
Q(p) is a fixed point fbr all the automorphisms f-)x (take f : 7 in (3.3.1)). As a very weak
consequence one has Q[CQ)I C Mo(A)* , with an obüous notation for the smooth vectors.

Proposition 5.10 from [43] applied to the unital C''-algebra Ma(A) says that t]re Rie{l'el quan-

tization of ,M6(",{) is a C|*-subalgcbra of M(21.). Consequently one has QIC(?)] c M6(A)* c

46
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.44 (21) and this supplies a candidate O : C(7) '- M(91) . This is obviousiy an injective map and

the range is only cornposed of fixed poin6, which insues covariance"

Irt us set for a moment M ,: Mo(A), with multiplication , and denote by 9ll c M(»)
its Rieffel quantizaiion, with multiplication legitimately denoied by #. For smooth elements

rn,n, € M* : Dt-, one of them being a fixed point central in M, one has mfin : m. n :
n .m : n#m (Corollary 2.13 in [43]). This implies easily t]rat O is again a morphism and its

range is contáined tn ZrlL - A density argument with respect to the strict topology implies that

every Q(,p) commutes with all the elements of ,Al(!I) , ttrus OIC(I)I C Z.M(\) as req:oit.erl.

Now we only need to show non-degeneracy, i.e. the fact that )llC(T)] !l is dense in 2[ . We

show the even stronger asserion that alc(:f)l ' A* : §lC(T)1. 2[- ís dense in 21. This would

lbllow if we knew that glc(f)] . .4* is de¡se in 2t6 with respect to its Fréchet topology given by
the semi-norms (3.1.3); then we use denseness of?l* in the weaker Cn-norm topology oft.

We recall from section 3.1 that -{- and 216 coincide even as Fréchet spaces. Therefore one is

reduced to showing that QIC(")] . .46 is dense in ,4- for its Fl€chet topology. Taking 7 : C(7)

in Lemma 3.3.2, we flnd out th ar QL1(I:)). -\- is dense in @@f:A) o ,4-, which equals

"4* since O has been assumed non-degenerate. This ñnishes the proof. n

If ,{ is a covariant C(T)-algebra, tben I(t) :: Q[C¡Q)]. .4 is an invariant ideal of 
"4 

. We

can apply Rieffel quantization to Z(t), to "4(t) :: AII(I) (w\tt the obvious acrions of E) and

to the projection P(t) : A -+ A(t). One gets C*-zilgebras Xt, flt as well as the morphism

$¿ : 1. -+ % , By 143,Th.7 .71 the kernel of Tr is X¡ , so Al can be identifed to the quotient 2[/3¿ .

On the other hand, by using the C(?)-structure of the C*-algebra ll given by Theorem 3.3'3,

we have ideals 3(¿) :: DE@I. tt in 2l as well as quotients X(t) ,: LlX(t) to which we

associates projections ?l !9 q(¿l . However. one gcts

Proposition 3.3,4. \Yith totaitn as abot,e. Jbr eat:h t. € 7' we hat c 3(.t\ : Jt .

ln particular. the fibtrs ?l(t\ :1lJ(t) of the C(T ¡-algebra A are isornolhit; to t]Le Rieffel

qtrunfizaion 911 ol the fihers Ait\i : "AlIlt) of "4 antl fiir each f e * rhc mappittg t ,+

ts(l)./ lrri¡: ts¿.1 ¡t, ir uppcr sen i-continuous.

Proo.f. We recal| that Z(f )- and l(t)* coincide as F¡échct spaccs. By Lemma 3.3.2, A I4(f)]
?{'- is dense in:i(r)-', thus in jil), and QiCtQ)).,,1- is densc in 7(f )r : f(l)rc. tlius also

dcnse in 3¿ .

Ry construction onehas 0 fi(f1; t-: a.tCt.(T)) á*; consequently fll) :J1 for evcry

t € f and the proof i... finished. !

Remark 3,3.5. For obvious reasons, we are going to *r *,ut 
{a 

?9 a@ I t e r} ana

{u !1 gtr, I - T} ,r. corarianÍ tqtper senti-contit'tuoLrs Jields oj (;' -algebras.l'he intri¡sictl
definition. in the ñrsr c:rse for irstance. would be the fbllowrng: {-a f3,f1t1 ] t ; r} i" ,c-t)
qnircd to bc an uppcr somr-continuous lieid of C--algebras and we also ask the action 6) to leave

inv¿r¡iant all tire ideais Z(t) : kcrlP(t)l . It is easiiy seen that this is equivalent to requjrc thc
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covariance of the associated C(I)-strucnue. This makes the connection wiü Definition 3.1 in

1421.

For section C'-algebras of an upper semi-conti¡uous field it is known [49] that each ire-
ducible representation factorizes through one of the fitlers. Therefore we get

Corollary 33.6. k, ("4, O. S, [ , -n ) be a classical data and assume tlnt A is a O-covariant C(.7)-
algebra with rcspect to a Hausdarff lctcally compact spuceT. with libers {A(t) 1t € T} . Denote,
respective\,, by 2l and 2l(t) the correspond.ing quantized C* -algebras- Then any irredtcible
reprcsentation of 21. factorizes through one of the algebras »(t) .

The C(7)-structure Q of 21, given by Theorem 3.3.3, deñnes canonically the map
q : Prirr(2l) -+ 7, as explained at the cnd of section 3.2. lf r : U -+ B(17) is the irreduciblc
Hilbert space representation of 21, then the point t in Corollary 3.3.6 is qlker(n)] .

3.4 Lower semi-continuity under Rieffel quantization

We keep the previous setting and inquire now if lower semi-continuily of the mappings f -+ j

P(t)f ll*¡ for all / € ,,{ implies lower semi-continuity of the mapphgs ¿ *} ll T(¿)l llalr¡ for all

J e ü . We start by noticing that Prim("4) and Prim(Í) are canonically endowed with continuous
actions of the group 3; once again tlese actions will be denoted by O . By the discussion at the

end of section 3.2 we are lefl wilh ¡noving

Proposition 3.4.1. Suppose that Q : C(T) -+ Z M(A) is a covariant C(T)-algebra structure o,t

Aand that the associatedfunction q : Prim(,4) -+T isopen. Tlrcn the function q : Prim(Z) -+I
associated to tJ : C(T) -+ Z( .) is also open.

Proof. We remark flrst that g is O-covariant (Lemma 8.1 in [49]), i.e. one has g o Ox : g for
every X € E. Consequently, if (? c Prim(A) is an open set, then Os(O) :: i0x(rc) | X r
E, lC € 0j will also be an open set and q(O) : q It)É(O))] . So q witl be open iffit sends open

inyariant subsets of Prirn(,4) into open subsets of 7 . The same is true for q : Prim(21) -l 7.
But the most gereral open subset of Prim(,4) has the fbrm

Oj:: \K e Prim("A) Í C E):h(J)'

for some ideal 3 of .4,, being the complcment of the hull l¿(.7) of this ideal. In addition, Oy
is €linvari¿mt iff .7 is an invari¿urt ideal. We also recall that Rieffel quantization establishes a

one-tG.one correspondence berween invariant ideals of 
"4 

and invariant ideals of u'.
So let .7 be an invariant ideal in "4 and J its quantization (an invariant ideal in !f). We would

like to show that q (OX) : q (O¡) : by üe discussion above this would imply that q and q are

simultaneously open. Using the fact that q(rc) : , if and only if 7(t) ! f and similarly for q ,

one gets

q(o¡): {¿€ rl:rce Prim("4), J eK.,z(t).rc}
and

q(0¡) : {¿ € 7 I :.R € Prim(?l), 3 I R, 3(t) c §.}.
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Usinc the hull appiication and the fact that both thc hull and tlrc kelncl arc decrcasing, onc can
write

t 4 q (O¡') <:=,+ h,V(t))i"th!J)' : $ +=+ hill.t)l c h,lJ) .*,=;. Il.t.) ) J

tlq(O¡) <+'hll(i)l ¡ñiJl": [4 <=-+ ñl](t)l : h[J). <=:; :t(t) )3.
To finish the proof one only neecls to rlotice thal the Rieffel quantizaüon of invariant ideals pre-
serves inclusions. tr

Remark 3.4.2. The defiuition ofa covarianr continuous field of C. -algeáras is naturally obtained
by adding the lower semi-continuity condition to the def,nition of an uppe¡ semi-continuous field
of C*-algebras contained in Remark 3.3.5. Using this noion, Theorem 3.0.1 is now fully justified.

The C*-dynamical system (,4,O,§) being given, one could try one of the choices ? :
Orb[Prim("4)] (the orbit space) or 7 : QuorbfPrim (A)l ghe qunsi-orblr space), both associated
to the natural action of 3 on the space Prim(.4). We recall that, by deflnition, a quasi-orbit is
the closure of an orbit and we refer to [49] for all the fairly standard assertions we are going
to make about these spaces. The two spaces are quotients of Prim(,4) with respect to obvious
equivalence relations. Endowed with the quotient topology they are locally comprct, but they may
fall to possess the Hausdorff property, On the positive side, both the orbit map p : Prim(,A) -+
Orb[Prim("4)] ar,d the quasi-orbit map q i Prim(. ) -+ Quorb[Prim(,4)] are continuous open
surjections. So one can state:

Corollary 3.4.3. If tlrc quasi-orbit space of the dyrutmical system (Prim(A), O,q) is Hausdorff,
then the deJbrmed C* -algebra , can be expressed as a a¡n¡irutt¡us .lield ol C* -alsebras over the
áase QuorbfPrim("4)] .

A similar statement holds with "quasi-orbit" replaced. by "orbit" anl. with Quorb[Prim("4)]
replaced by OrblPrim(.,4)l .

Notice that, when Orb[Prim(J4)] happens to be Hausdorff, the orbi* will be automatically
closed (as inverse images byp of points); so one would actually have OrbfPri-(l)] :
Quorb[Prim("4)] .

3.5 The Abelian case

The most important is the Abelian case, that has been described af the end of section 3.1.
We assume given a continuous surjection q : E -+ T . Then we have the disjoilt decomposi-

¡ion of I in closed subsets

I : Lt¿:r Ii . I¿ :- s-l(itI) (3.5.1)

Associa¡ed to the caronical injrctions j¿ : X¿ --+ », we have associated restriction epimorphisms

7?,(t) : C(I) -+ Clx/). R(.t).f :- f\y.,: f c j¡. Yte T. (3.5.2)

W'e give conditions on the topological d.tta (\.,q,7) in order ro ger a continuous lield of
Abclian C' -aleebras.
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Proposition 3,5,1. IÍ s is co¡ttinuous, {C,: I '' C(Irl I . f) i,, ou upper senti-contittttttus!. 1

.f¡eld of conlnutalive (" -ul¡1ebras. If q i,s al.so opett, the ficld i,¡ ctttuittuou.r.

Prorl Obviouslv n1.7 keriTt(f)J - {0}. since.f ir:, :0, íf e 7 implies l:0, On the other
hand, setting

p"f ::(.ioq)f , Yr =C(.7), l€C(I) . (1.5.3)

we get immcdiatel.v R(f)(g * :f ) : ;l.t)R(.t)f , lt . T' .

We necd to stndy continuíty propcrtics of the mapping

T 
= 

t -+ rL.¡(t),- liR(¿)./ co:,, : supl.f(rr)l- irlf { l/ + ñllclrt ñ e C(!). ñ.1¡, - ¡} .;g*.

The lasl expression fbr the noml car be justiñed dilectly easily. but rt also foilows from the canon-
ical isomorphism C(X¿) := C(X)/ó-, (I), where rl¡, f X) is the ideal of ftrnuions ir. r, (,'(Il such
thrt ñ Lx, : 0.

We first assume that .7 is only continuoLrs. For every ,9 a ? we sct I"q :- q- 1(,9) . lt is easy
to see by Stone-W-cicrstrass Theorem that

C¡1(X) :: {l¿ a C(I) 1 an open neighborhood [,r of I such t]rat /il¡" : 91

is a self-adjoint 2-sided idcal dense in C-.t, (X) . Let f0 ! I and s > 0: by densitv and the definition
of i¡rf

_:á e C11n¡(I] srch i,hat n¡(zo) + r > ll -- n c(rt.
Let t,' be the opcn neighborhood of t¡ fbr which l¿ r : 0, For anv t a L,' one also has /r a
C¡1(x) . so

n"¡(t):l¡f {1"f +air,1r-1 17 - C1r¡(I)} < lil+l,l c1»i I n¿(to) -s
and this is upner semi-continuity.

Let us also suppose q open, let Í¡ ,. I and s > 0. By thc definition of su]r. there exists
os € I1,, such that ./(r0)l > nl(í,)) - s,/2. Since / is continuous. thcre is a neighborhoi¡d l, of
do in ! such thát

1t@) >_ lf (oa)'t s/2 > ii ¡(t¡) - s, Y o c l,'.

Sincc q is open, U :: q(1;') is a ncighborhood off¡1 . For eveiy ¿ € f-i wc have l.TtI., I i¿. so for
such t

n¡(l) ¿ sup{ ./(r') o € ,t . 1,.} ;1 rt ¡(t¡) - e

and this is lowcr semi-continuitv. !
Remark 3.5.2. The result also folkrws from the Iact thal C(l-t is a CIl)-algebra for the injecdve
morpirisn

Q:C(T¡ + IJC(I)::,,\4[C(I)l , e(p] t- i..¡,t.
W'e have identified the mulriplir algebra of C(T 1 with rhe unital C--algebra of all bounded con-
iinuous complex functions defined on I . The direct topological proof of Proposition 3.-5.I scc¡.red
to us more suitablc.
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We recall now tha¡ an action É) of E on I by homcomorphisms i' sivcn.

Definition 3.5.3. We sa),tltttf thc conrínuctLrs Sur jacf irn. q is o-covariant lirsorisliestht: equival(nt
tt¡ndii¿»ts:

l. Eaclt \¡ is F)-intariant.

2. For each X € Z ut.e has t1c É)¡¡ : ¿7.

3. l:or qll X € E arul ; i C(T\ one /ras O-¡ f Q(,:)] : Q(9).

Thc cquivalence of the three conditions is súaightfoñnan1. We conclude that C(X) is a covzri-
ant Cl(?)-algebra (cf. Definition ,3.3.1). If onc wants to avoid thc language of C(?)-algebras, b-v

Rcmark 3.3.5, it should be noticcd that all the ideais Z(7') :-kerfR(f)t)- {f <Clfj />:,-0i
arc lcft invrriant h¡ rhe acrion ,-, 

.

The RiefÍel-quantized C"-algebr¿rs C(Il and C(X1 ) as well as the epimorphisms 9t(l) :

C(:) -+ C(Ir) were introduced in Section 3.1, Applying now Proposition 3.5.1 and tl.le results
obtained in sections 3.3 and 3.,1, one gefs

Corollary 3,5.4. Assunte tlnt tlrc núppíng r7 : ! -+ T i.s a O-covuriqnt conrinuoutt surjection.
\

Theu ¡lte ¡itnilt {C.¡ ll CrLI /. Tl tnrnl (¡ tn'¡oriotu tr¡pat tcni.cntuinuttt, ltcltl ,ttl)
txotl - comtnu'¡ctíyc C' -al geb ra,s.

lf q is also open. then the lield ís conlit1uous.

L-et us assumc now that ¡he orbit space ()lb(I.l is Hausdorff. Any orbit, being ihe inverse
image ofa point in Orb(X). will be closed in I and invariant: it will also be homeomorphic to thc
quolient of 3 by the corrcsponding stabiliry group. As a precise particular: case of Corollar_-v 3.4.3
()ne can Statc:

Corollar-v 3.5.5, lf the orbit space ol the d,,namical slrler? (I.el.=) is Hausdoffi then the de-

;formecl C--aLgebra ú(!) carr be exltrcssed ds t1 continltou.t field ol C!'-algebra¡ <»,er the base

space Orb(1.'1 . Thc Jiber ot'ar O é C»'biI) is tlu: deJbmtatiut oJ the Abelian algebra C(O) =

Remark 3.5.6. It is known that the orbit space is Hausdorff if the action O is propcr, meaning
thatthcmap 3 x I,r (-Y.rr) .+ (O¡(a).o) É I x t is proper in tl.re usual topological sense

f491. This happens fbr instance il'! is a Hausdorf locally compact gloup on which thc closed
subgroup : acts b)'left translations. More generally, assumc that thc action (l factorizes through
a compact group 

=, 
i.e. the kernel of O contains a closed .r-compact subgroup Z of = (with

-' : 2iZ ) . Then the otbit spacc undcr thc inifial action is the same as the orbit space of thc acrion
of the compact quoticnt. But the action of a compact group is propcr and Corollary 3.5.5 applies"

3.6 Some examples

Example 3.6.1. Let "d be a Co-algebra and 7 a locally compact space. On

A- C(T:d¡:: \f :7' - .c/ \ f is <:oni.iuuous aud srnall a.t iiifirritl'| (3.6.1)
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we consider the natural structue of ó'.-algebra. It clearly defines a continuüus field of C*-algebras

Í¡c1r,'l 1\ .,t , ,rj. ¿(t)f :- Íft).

Thc associated C(I)-strucrure is given b,v ia(,A).fl(t) ::;:(¿)l(f) for,: e C(I) , .f € A.1 .
I. For each t i I an action ár of 3 on ./ is givcn: wc requirc fi»'cnch .f a "4 the condition

'uP rt, /¡r.1 /,1 . -- rr.
, -t ¡- r

Then obviously
tt ; e -+ Aut(l), LF)x(.f)i(/) :- elxif (t'ij

deñnes r continuous action of the vecror group ! on ,4 . Each of thc kemcls

7(r) :: kerld(r)l : {f e c(r;.d) /(r) : 0}

is f-invariant, so one actually has a covariant continuous f,eld of C*-algebras (see Remarks 3.3.5
añ 3.4.2). It makes sense to apply Rieffel quantization, getting C"-algebras (respectively) 2[ =
€(T;d) from the dynamical system ("4 = C(T;.d),O) and 2t(f) from the dynamical system

(d,0t)forall¿€f.Fromtheresultsaboveoneconcludesttrat{Z321(¿) 1¿€T}isalso
a covariant field of C* -algebras. For each f we denoted by A(t) the Rieffei quantization of the
morphism d-(f ) .

Example 3.6.2. A particular case, considered in [43, Ch.S], consists in taking 7 ;= Enrt(E)
the space of all linear maps f : E -+ E ; it is a locally compact (finitcdimensional vector) space
with the obvious operator norm. If an initial action á of E on a/ is fixed, the choice At* :: 0¡y
verify all the requiremenm above. Therefore one gets a covaria¡t conúnuous field of C*-algebras
indexed by End(E) . This is basically [43, Th.8.3]; we think that our treatment gives a simpler
and more unifled proof of this result, especially concerning the lower semi-contimrous pan. In
particular, for any / e ClBná{s); ú1, one has }41 ll /(¿) llut,l:l f l0 ll¿. An interesting

particular case is obtained restricting the arguments to the compact subspace 70 :: {¿ : v4 idE f

ñ e [0, 1]] C 7. The number l¿ corresponds to üe Plank constant and, even for constant

I : 10, 1] -+ r/, the relaúon !i-^ ll / llqt¡¡:ll I ll," is non-rivial and has an imporranr physical
h-+0

interprctation concerning the semiclassical behavior of the Quantum Mechanical formalism. We
refer to 124,43,441 for much more on this topic.

Remark 3.63. A way to conveft Example 3.6.1 in a more sophisticated one is as follows:
For every t € T pick 6(t) to be a C"-subalgebra of .d which is invariant utder fhe acrion

6r. Construct the C"-subalgebra 6 of ,4 deñ¡ed as É ': {"f e C(f;d) | /(r) € 6(¿), V¿ €
7], which is obviously invaria under the action O. One gets a covaliant continuous field of

C'-algebras {nol'l npt ¡ r r r}. where 2(/r is a res¡'icüon of the epimorphism á(t). The-r.)
general üeory developed in sections 3.3 and 3.4 supplies another covaria¡t continuous field of C*-

atgeums {!8 !9 *tl ¡t e f}, where E(f) is the quantization of 6(f) and can be idenüf,edt)
with an invariant C*-subalgebra of ?l(t) .

(3.6.2)

(3.6.3)
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Example 3.6.4. Crossed products associated Io actions of ,"), :: R" on úi*-algcbras can be

obtained fiom Rieffel's quantization p¡ocedu¡e, as it is explaincd in [43. Ex.l0.5j. From tlre

results of the present afliclc onc could inf¡r raücr crsily. as a particular case, that (informally)
the cro,sscd product bt, a ¿ ontinw¡us .iield of C- -algebras is a c.)ntinltoLt,g lieltl of t'rosscd. producfs.

Such results exist in a much greater generality, incluriing (twistcd) actjons of amenable localiy
compact groups 131 . 40. 42, 19]1. so we aie not going to givc dctails.

Example 3.6.5. Ler 7 C 10..(r) wirh thc rclativc topobg),, set ()7. :- {: € C :: a Tl aíd
I :- f)r, x R. We consiiler thc a.rion Fl of - :- Tl on ! gircn h1

tr1...ry(:, c) 
'-.: 

(,.r'2'n'r,r, * Y) .

It is easily checked that 17 I I + 7'given by ql:. a) : ; js continuous, open and O-covariant.
So. applf in-g thc theory to ;t :: C(I) , we can construct the covariant continuous field of non-
comrlrLrtative C.-algcbras {C(Il] ----} C(Ir) I a I}. No¡e that for any t É T onc has I¿ ::
S i(iti) :,§1 x R, where S¿ is thc circlc of radius i.ltfbllows easii), that, up to isomorphisms,
if t ; t) thc quantized C'-:rlgcbra C(Xi) is the quantum cylinder 143, Ex.l0.6l, while lbr I : U it
is thc Abelian C" -algebra C(R) .

For a relatcd version pick fi,7i C l0,cc), scr I - Or-r r {17.., and q: I +?:-Ix
I given by q(.z,ui1 : (.1,1,"). Introduce the acrion fi¡..r1(:,u) :: (e.2"¡'' z. c2n'trrL:) and
replace the usual svmplectic form [ , .]] by ! /Z[ ,.], there ¡3 is some real number. ln this case

I{r..r..,t : S¡., x S¿.,: thns if t1t2 f 0 thcn C(IrlL,i?)) is the quanru torus.4.' [43, Ex.l0.2]. if
t,l.z:A,ttltzi 0 it is C(T). and if fr : f: :0 it is C2.

Example 3.6.ó. ln I45l one consfucts Cl*-algebras which can be considered quantum versions
of a cerrain class of crompact conncctcd I-ic groups. \l'e wili havc nothing to sa], aboul tltc extra
sructurc making them quantum groups; we are only goini: to apply the results above to present
thesc C"-algebras as condnuous ñelds.

lrt I bc a compact connectcd Lie rroup, containing a to ral subgroup, i.c, a cc¡nnected closed
Abclian subgloup 11 . Such a toral group is isomorphic to a¡ ¡r-dimcnsional tr¡rus lfrr. Assume
given a continuoirs group cpimorphism 4 : R" -+ 11 (for cxample the exponential map delined on
the Lie algebra f1 - R"). \lt use ? to define an actton of : r- lR" ! R"' on X by 91,.r1(o) ::
r1(-r)or¡l,y). Thel, by applying Riefftil defi¡unation to,4 :: C(I) usjnc rhc action ÉJ (and

a certain type of skew-symmetric opelator on 
=), 

one eers tl.re a.'"-algcbra !i :: C(X) which,
endowed with suitable extra strrlcturc. is regarded as a quantum group corrcsponding to I.

It is obvious that thc action factorizes through tlre compact group ,ry x 11 . Thus thc orbit spacc
Orb(I1 is liausdodl ¿md Rem¿rk 3.5.6 and Corollary 3.5.5 serve to express C(I) as a continuous
lield of C --algebras. For the stabilitl grolrp of any orbit (J one can wr-itc Eo ) kcr'(Ol j
kcr(r¡) x ker(4). tlrus 0 i ErlE6 is a conlinuous image of IJ r l/.
Example 3.6.7. A¡ interestins particular casc, taken from 1451, involvcs rhe constructior of a

quantum vcrsion of the compact Lie group I :.- T ¡ "9['(2) . Here T is üe 1-torus, thc group
SIi(2) contains diagonall¡, a sccond copy of lf and carl bc parameüised by the ii-sphcre Sll ::
{(:,u';: C2 i '1':12 -r iu j2 : 1}, and so ! contains a ?-to¡r¡s. lnitially E = Ra acts on I in
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the given way. but it is shown in 145 | (using results tr-om l;131) that thc same defbrmed algebra is
obtained hy the action

6l/ : I/ :: R.? -,n Horrieo (l x 5'31 , (l'¡,..,,ri ;: 2..u,1 := (t-2,,,r: z.,r,a"itr u,) .

The orbit space is homeomorphic witlr the closcdunitdisk f:= {; { C ] ; < l}. The orbits
corresponding to 1: < l arc 2-«rri, whilc thc orbits corrcsponding to i: = 1. (implying ur : 0) arc

1-tori. If we scr,4 7 (([ x §t.t(.2)), then the quantized ü'-algebra ?l = C(T x ¡i['r(2)J deserves

to be called a quentLrm T x 5t/ (2) . The deformation of the continuous ñrnctions on any of the 2-

tori leads to a quanmm tori. By nultiplying thc initial skew-symmetric form [.. .] with an irrational
number;J one can make this non-commutativc torus CJ(T2) irational. u,irich scrvcs «) show that
the concsponding quantum T x ,SU(2) (obtained for such a li) is not of rype I . But applying the
results obtained hcre onc also gcts thc dctailcd information: Tlrc algebra CIT x SU(.2)¡ can ba

w't'itten over the clc¡sed unit disk T as a tt»ttinttous fteld oJ nottct.ttnmutatil'e 2-tor¡ antl Abeliun
L:" -elgebras (coresponding to the otrc-d¡tnensiutal r¡rbits).

Many other parlicular cases can be worked out in detail. Wc proposc to thc rcadcr thc cxamplc
!_._ lrIilo, Ltil.t,

3.7 Spectralcontinuity

Let us introduccd tbc concept of continuity for families of se¡s that will be useful belou,.

Definition 3.7.1. Ler T be o Hausdotfl locctlly c:ctnpact tr4tological space and iS(t) ) t e Tl a

J'a»tib oJ com¡;oct subscrs aJ' ts!.

l. Tlrc.fantily, is called ouls continuous if .fbr ary t¡ t T and anl compact subset It ol Nl

sucll Laf K a, S(ta) - 0 . there exists a neighborhoor.ll.' of t¡ wíth K e: S' (t) : ú , lt € \: .

2- The fatnilv {S'(¿l t € "ll is c:alled inner continuous i.ffor an_t te € T and drLl open subsef
A of P- such that A a S (.tr) ¡ ú. therc cxists a nei gltl,, t rho, td llt qf te --ith Ae, S(t) + r/:,

V¿ € I,I'.

-1. lf tlte fartily is both inner cLnd outer co¡ltinuoLts, we sa), sirup¡-t tlút l¡ ¡¡ continuous.

ln applications the sets ,9(f) are spectra of some self-adjoinr elements I (¿) of (ron-commutativc)

C-'algebras ?l(l). The next resuit statcs technical conditions under which onc gcts continuity of
such families of spcctm. lt is taken from f2l ¿nd it has bccn inspircd by üle treátment in [4.J. We
include the proof lbl the convenience of the reader

Proposition 3.7.2. For ant t e T let f lt) be a salf-adjoinr element in a C*-algebru ü(f) witá
nornr ]i js¡,¡ arul inversio¡tg -) -qr-l)*' Wc tlenc¡rc 1,r' ,s'ltl C k rlrc spectrtLm oJ .f Q.\ üt.

2r(¿).

1 . Asstnrtt, thar .fot «tL\: ^ ' c \ T:- the mappirtg

1 t - .l | -:t' : . t-
Qlr/ I

is upper serui-cont{nut¡tts. Tlrct tlrc farnil)- f S(t) t a T} ís outer t:,truittttttLts.

(3.7.1)
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2. Assume flrut.for uns, ; i C \ R tlrc mappíng (3.7.1) ¡s lotter .yemi-continuous. Then the

famih, 1 5(t .\ I f ,: ? | ls inner contínuous.

Proof. \Yc usc thc functional calculus fbr self-adjoint elements in thc úl'-algcbr¡ ?1(t) to define

¡l/(f)l for every continuous function ¡ : R + C dccayirrg ar infinity. Notice that

\.f (,t) ;;( 1)ti'r : t.l/(l)l ' q'ith x,('\,r r- ('\ 't) '

By a standard alsumcn[ rclying on Stone-Weierstrass Theorem. one deduces that t1.re map t -r
t,ti./(¿)] si,l has the same continuity ploperties (upper or lower semi-conrinuity. respectiveiy) as

(3.7 .1) .

Lct us suppose now upper semi-continujty in f0 and assume that S'(f¡J t- Jr : {4 for some

compact set -li. By Unsohn's Lcmma, there exlsts X € C¡(R)* with Xl¡¡ : 1 and f s1¡,1 : tl,
so I l/(10)l : (1 . Cht¡ose a ncighborhood l'' of f0 such that lbr I € l'/

ll ri/ (¿)l q(,t I I ri/ (¿o)l rpr

lf fo¡ some ¿ € l' there exists ,\ € li a S(f), then

1 : t()) I sup .r(p.) : , rl,/(¿)l I qr,l <
i'Es(tl

»,hich is absurd,

Lct us assume norv lower semi-continuiy in i0. Pick an open set ,4 L- j* such that ,9(f0) i- -{ +
{i'1 and let ) € S(1) ¡ .4. By Urysohn's Lcrnma thcrc cxist a positivc function .1 e C¡(R) wiü
r(.\) : landsupp(1) c '4; thus I ti./(¿o)l I :1. Suppose moreovel that tbr any ncighborhood
I,I' C I of ¿0 t¡cre exists t e 11' such t¡at 5(¿) n',{ : ll and thus f ll(¿)j :0. This clearl¡, con-
tradicts the lower seni-continuity of f .+ ]i f l.f(¿)l ]qlri. We conciude thus the inner continuity
condition fo¡ thc family 5(f) . !

Proving these properties of the lesolvents is a prioq' a difficult rask. since this iavolves woriiing
both with norms and composition laws that dcpcnd on ¿. But putting together the information
obtained until now. wc get our abstract resull colcemirg spectral continuiS:

( p,,. )
Theorem 3.1.3, l-ct 1A' I -4 ') t [ | b, a;Ltariatt uft'L] s!üi- ütt1¡tt!L)4, ti(.¡d .)t ( -ti
algebras htdcied lry a HausdotJf locally compact space T and let ;f be a smooth self-utljoint
element ot A. For an1, I e 'I we deru¡te h lt(t) the Rieffel quantization of A(.t) tnd consider

.f (.t) :: P (t).f as an eLenzent oJ "4(t)- : !l (l) - ¡.- ll(t), with spettrum S (l) contputed in \(i l .

Thett rlvfanill .\/f ) i - T J i: otrrcr t,tntiutrorts.
Il tlrc field í,r c:orttituor,ts. tltt lamill ol sub.rets will also be continuotts.

Prurf The results of the f,rst chapter allow rrs to conclude that the quantized field
I qlr, l
I U - !lt¡) I c f ) hJs rhc sitme continuity properties as thr- ffiginal onc.(i

11-t- r'

1

,'



Forany; € C\Ronchas (/ :l( r).r, . !l and (/(¿) -;)i- l)i',,r :$(f) ii -;)i-r)!L] .

Thercfore the assumptions oFProposition 3.7.2 are fulfilted both in the upper se l-conrinuous and
in the [ower semi-continuous case, so wc obtain thc dcsired continuit), propeÍics for the tamily

is(r) ¿Ér} . !
Of course. the conclusion also holds for non-smooth self-adioint clements f { !t. Very

often tirey are much less "accessible" than the smooúr elements. beins obtaincd by an abstract
completion procedure, so we onl_-v make tlre statements fbr úl- vectors.

Speciaiizing to the Abelian case and using the notations of section -?.5 , one gets

Corollary 3.7 .4. l,er ,f É C- (X) a reul Jittction. and ¡for eoch t í T denote b\' S (t) the specrrun
of f (t) ,: .f r-, € Ú-l!r) : C-(l¿j se€n as att elemenr of tlrc non<:ommutatit,e C''algebra
{(Y ¡.} . TlLen tlrc fanil .t'{S(¿) ¿ : T} of contpact subsers rl R ls outer confinuoLts-

lf c1 is also open, the fanilt' of subsefs is ct¡¡ttinttou¡.

Remark 3.7.5. Onc can use [43.8x.10.21 to identify quaútum tori as Rieficl-t,vpe quandzations
of usual tori. Onc is naturallv placed in the setting above and can rcproduce somc lmown spcctral
continuity results I I 3. 4] on generalized Hárper operators.

The standard approach of Quarturi Mechanics asks for Hilbcrt space opemtors. This can be

achicved by representing faithfully thc C*-algebras 2l(t) in a Flilbert space of l.'-functions in
a wav that generalizcs the Schródinger represenaation. \!e are going to get continuitv rcsults tbr
both spcctra and cssential spectra ofthe emerging sell-adioint operators. \[t rvolk in thc folbwing

Framework.

1. (Cfi-) (r, -, [.. .l ) is dn Abeli.ur ciassical data, with ! compact.

2. 3 is symplecric, gíven in a Lagrangean decomposition " -,2'x.2)' --s X - (" {) , }-:
(9. 17) , where 9,' is a ¡r-dimensional real vector space, .?--" is its dual and thc symplectic
form on E is given ir terms of the duality betwcen 9:' and 2'' by [1rr,.¡),l.y,a)] ::
a f,-x r.

3. rJ ; ! -+ I is a É)-covaria¡t condnuous su{ection. We also assume that each !¿ :-
./ 1 ({?.}) is a quasi-orbir. i.c. therc is a point a € I¡ such thai the orbit Oo :- É)¡(o) is
dcnse in 11 (we sa), that o gene rate,\ tJrc [Juat¡i-c¡rbit Yt ) .

4. We fix a real eienent I e C-(I). For eaclr t € T anr) for any point .-' gcnerating the
quasi-orbit !¿ we def,ne .f (f ) :: ./ r. and .f"(tl F f (t),: F)o : - - Fl.

5. We set H.(t) ,- ¡p i#(t)] (self-adjoint opcrator in the Hilbert space il :: L2(.'2')).
by appl¡,ing k)./,{f) thc usual Wbyl pseudodifferentiiil calculus. W-c dcnote by 5(l) fte
spectrum of H"(t.l .

Somc explanatiors are necdcd. It is easy to see that each f (f.1 bekrngs to /3('-(31. i.e. i{ is a

smooth function with bounded dcrivatives of ary order. Thcrefbre. using oscillatory integrals. one
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can define the self-adjoint oper¿tor in ¿2(9-)

in,Q)u)(r): [op1¿1t;¡z]1, ) :: (z1t)-" I o, I at"u'-o) e V"U)] (a#,r) rr,.
't .t J .¡' 

o.i.z)
This opcrator is bounded by the Calderón-Vaillancoul Theorem |151. Using the notation (3.1.4),

we see that for every X 6 E one has l/,(t)](X) :: /[O¡(o)] ;this depends ont € T through
o and only involves the values of / on the dense subset C?o of X¿ . The same is true about 11"(t),
which can be written

lH"(ttullr) = t2¡)-n l" oo 
lr.urpi\.¡-ltt.f 

O,..-,.,,or] urur. r3.7.3)

It is shown in [29] that if a and o/ are both gcnerating the same quasi-orbit Ir , then the operators

H.(¿) and H",(t) arc isospectral (but not unitarily equivalent in general). Thus the compact set

.9(t) only depend on ¿ and not on the choice of the generating element o .

Theorem 3,7.6, Assume the Framework above. Then tlu fami^,{S(r) I , € T} is outer contirur
ous.

IJ q is also open, than the.fami.ly is contirutou.s.

Proof. By Corollary 3.7.4, it would be enough to show for every f that S(¿) coincides with the

spectrum of f(f) e C(I¡). For this we definc

N, I C* (»t) + tsC@ (Z), N;(s) :: lt o O6

and then set

Dp, :- Op o,A,f, : C*(X¿) -+ B(?l) ,

Then one has H"(t) :: Op [/"(¿)] : Op" [/(¿)] . It is not quiE rivial, but it has been show¡
in [29], that Op, ex¡ends to a faithful reprcsentatíon of the Rieffel quantized C"-algebra C(X¿)
in ?l . Faithfulness is implied by üe fact that o generates the quasi-orbit I¿ , which results in tle
iniectivity of ,A/", convenienfly extended to C(I¿) . It follows then that sp lg"(¿)] : sp [/(t)] , as

required, so the famity {S(¿) | t e 7} has the desired continuity properties. n

We recall that tlte essential specfrum of an operator is üe part of the spectrum composed of
accumulalion points or inflnitely-degenerat€d eigenvalues. Let us denote by s's"(t) the essential
spectrum of II"(t) ; once again üis only depends on t . To discuss the continuity propenies of this
family of sets we are going to nced some preparations relying mainly on results from [29].

First we write each t¿ as a disjoint É)-invariant union tr : If Lt !f . The elements o1 of If
are g€neric point§rtr X¿, meaning that each of them is genorating E¿. The points o2 e Dl are

non-generic, i.e. the closure of the orbit O", is strictly contained in Xr.
Let us now fix a point t €TaÍd a generating element a e Xr. The monomorphism ,!.,

extends to an isomorphism berween C(!¿) and a C'-subalgebra Bo(f) of the C"-algebra BC"(=i
of all üe bounded uniformly continuous complex functlons on E. It is shown in Lemma2.2 from
[29] that only t\ro possibilities can occur, and this is independent of a : either C(E) c 6"(t) (and

tlren f is called of the .first rype). or C(.E) n A" (f) : {0} (and then we say that ¿ is of the second

¡ype). Conespondingiy, one has the disjoint decompositionT : Tt lT¡t .
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Theortm 3!7,7. Assu¡ne the Framework above. Then the .family {S*(¿) I t € T} is outer

contirutous.

Proof. One must rephrase the essential specüum .96p) :: sp*"[Hr(¿)] in convenient C'-
algebraic terms. Assume ñrst that it is of the second type. By [29, Prop. 3.4], the discrete spectrum

of 1{"(¿) is void, thus one has S"o(t) : S(r) . If, is of the first type. the subset If is invariant

under the action O and it is also closed by 129, Prop. 2.51 . Denoüng by /"(Í) the restriction of
/(t) to Xi, one gets an elcment of C-(Xl) C A(fi) with spectrum S"(t). But 179,'th. 3.71

states among others that,Sn(f) coincides with S"""(t) .

We need to construct now a suitable restricted dynamical system. Let us consider the decom-

position

r--( E')u( rr=( »l) r {( ri) u ( xt)) :, Ed u »* .

One might set If :: ti if ¿ € 7¡ and Xi'' :- Xt if t € 7¿. Notice that each !f is not

void. This is clear for t € 7¡, since ghasbeen supposed surjectiv e. If t e T¡ andXi: fl , then

Xr : Xf is minimal and compact, so ¿ € f¡r by kmma 2.3 in [29], which is absurd. The disjoint
union ls :: u¿el'Ifl (with the topology induced Aom I) is a compact dynamical system

under the restriction of the action O of E and qess :: q]¡-" : I""" --r 7 is a covariant continuous

surjection. Thus we can apply the previous results and conclude that {C(1"*') + A(ry*) It€7}
is an upper semi-continuous field of C*-algebras; the arrows are Rieffel guantizations of obvious

restriction maps.

From all these applied m .f ¡*, € C* (X""") it follows that { 5* (¿) : sp [/(t)l:"""(¿)] | , € 
"]is outer continuous, D

Remark 3.7.8, Even in simple situations, the surjective restriction of a continuous open surjection

may not be open. So q* may fail to be open and in general we don't obtain inner continuity for
the family of essential specrra. On the other hand, if openness of the restriction 96" is required
explicitly, one clearly gets the inner continuity. Since only the dynamical system (X*",0,3) is

involved in controlling the family of essentia.l specaa, some assumptions wealier than those atrove

would suffice.

Acknowledgements: F. Belmonte is supported by Núc¡eo Cientifico ICM P07-027-F "Math-
ematical Tlrcon, of Qaantum and Classical Magnetic Systems". M. Lein is supported by Chilean

Science Foundation Fondecyt wder thc Grant 1085162. M. Mántoiu is supported by Núcleo Ci-
entifco ICM P07-a27-F "Mathematit:al Theon' of Q¡¡a¡tum and Classical Magn?tic Systems" and

by Chilean Science Foundation Fondecyr under the Grant 1085162. He thanks Serge Richard for
his interest in this project. Pár1 of the first article has been writtcn while the tfues authors were
participating to the program Sp¿ ctral and Dynarnical Properties d Quantum Hamibonianl They
are grateful to the Ce¡tre lnterfacultaire Bemoulli for üc excellent atmosphere and conditions.

U
t€Tr¡

Ll
ta'h

U
t€'1\

LlU
teT¡



Bibliography

tll W. O. Amrein, A. Boutet dc lvionvei and V Geotgescu: C¡-Croqts, C(,trunutotor Metlpds
and Spectru.l Tlrco4' of N-Body Hamihoniar:s, Birlihduser. Bascl, 1996.

[2] N. Athmouni, M. MántoiLi andR. Puricc: Ontlw Contirtui4,of SpectraJbr Familíes o.f Mag-
netic Pseudodifjarettial Aperators. J. Meth. Phys.51 (1). (2010).

[3] J. Avron and B. Simon: .Stabí|i4, rl Gup,t.for Periodíc n)rential.s Luder a Vari.ation of the

Magnetir: FieldJ. Phys. A 18,2199. (1985).

f4l J. Rellrssard: I-ípschit: Continuitt,of Gap Bounda.ries.for Hofstadter-líke Spettra. Commun.
Math, Phys. 160,599-ó13. ( 1994).

[5] J. tscllissard, D.J. Hcnmann and M, Zarrouati: Hull of Aperíodic Stiids and Gap Labellirrg
Theorems. in Directions in Mathematical Quasicrystals, CIRM Monograph Scrics. 13 207

259. (2000).

l6l J. tsellissard. B. lochum and D. Testard: Conthtttí4'Prttpert)e,s oJ the Elecrruttic Spectnon of
1D Quasicristols, Commun. Marh. Ph¡,s. I41.353-380, (1991).

[7] D. Bcttilá and I. Beltilá: Magnetk: Pseudodifiarential \4h,1 CqlcuhLs onNilpotenl Lie Group.t.
Ann. Global Anal. Geom., 36 no. 3 (2009), 293- 322.

[8] D. Beltilá an.l 1. Beltilá: [Jncertaintl Principles for Ma.gnatic Structures on Canain Coad-
joirtt Orbits. J. Geom. Ph¡,s.,60 no. 1 (2010). 81-95.

[9] L Beltitá, D. Beltilá; A §an,a, an Wey,l Calcttlu.s for Reprcsentations o.f Nílpotent Lie Groups.
In: S.T. Ali, P. Kielanowski, A. Odzijcwicz, N1. Schiichcnmcicr, Th. \bronor,(eds.). XXVII
Workshop on Gcomctric Mcthods in Physics. AIP Conf. Proc.. Anrer. Inst. Phys.. Melville.
NY (to appear).

[0] E. Blanchard: Dt;.formotiort de C'-algibre:; de Hop.f. BllJ. Soc. Math. Francc 124, l4l-215,
{ 1996).

[ 1] J. Dixmier and P Malliavin: Fartorilnion de .finctir»t el de vecteurt ittdéfininten.t di.//éren-
¡iabLes. Bul| Soc. Math. Fr¿urce 102. 305-330, (1978).

Jl2l S. Doplichea D. Kastler, D.W. Robinson: Covariancc algebt-as in./ield theo4, and statistical
mecltank:s, Comm. Math. Phvis.3. 1-28. ( 1966).



BIBLIOGRAPHY

[3] G. Elliotr Gaps in the Spectrum of an Almost Periodic Schródinger Operator, C. R. Math.
Rep. Acad. Sci. Canada, 4, 255-259, (1982).

[4] J. M. G.Fell: The Snucrure of Algebras of Operaror Fields, Acta Math. 106,233, (1961).

f l5l G. B. Folland' Harmonic Analysi,s in Plzase Space, Annol,s of Mathematics Studies, 122.

Princeton University Press, Pdnceton, NJ, 1989.

[16] V. Georgescu and A. Iftimovici: Crossed Products of C* -Algebras and Spectral Analysis of
Quantum Hamilton¡ans, Commun. Maü. Phys. 228, 519-560, (2002).

[17] V Georgescu and A. Iftimovici: Localizations at ínfini\, and Essential Spectrunt oJ Quantunt
Hamiltonians. I. Genera.l Theory. Rev. Math. Phys. 18 (4), (2006),417-483.

[18f V Itiimie: Opérateurs differentiels magnétiques: Stabilité des trous dans le spectre, iwari-
ancc du spectre essentiel et applica¡ions, Commun. in P.D.E. 18,651-686, (1993).

[19] R. Estrada, J. M. Gracia-Bondia and l.C. Yat',lly: On a-tynptotic exparusions of tnisted prod-
zr:ts, J. Math. Phys. 30 (1989), 2789-2796.

[20] V lftimie, M. Mántoiu and R. Purice: Magnetic Pseudadffirential Operators, Publ. RIMS.
43 no. 3 (2007), 585-623.

[21| V. Iftimie, M. Mántoiu and R. Purice: A Beals-Type Citerionfor Magnetk Pseudodifferen-

tinl Operators, Commun. in PDE,35 no 6 (2010), 1058-1094..

lz2l M.y. Karasev and T.A. Osbom: Symplectic ctreas, quantizatior4 and dyn.atnics üt electro-

magnetíc field.s,l. Math. Phys. 43 (2OOZ),756 788.

[23] M.V. Karasev and T.A. Osbom, Quantum Mqqnetic Algebra and Magnetic Curvature. l.
Phys.A 37 (20O4), 2145¿363.

[24] N. P Landsman: Matlwnatical Topics Between Clas,sical and Quantum Meclrunics,
Springer-Verlag, New-York, 1 998.

[25] N.P Landsman, Quantum Mechanics on Phase Space, Srudics in History and Philosophy of
Modem Pbysics, 3() (1999),287-305.

t261 R. Y I-se: On the C" -algebras of Operator Fields, Indiar:'a Univ. Math. L 25, 303-316,
(.t976).

[27] M. I-ein, M. Máütoiu and S. Richard, Ntagnetic P seudodillercntial Operators wi t Coelli-
cients in C- -Algebr¿.r, to appear in Publ. of üe RIMS (2010).

[28] M. Mántoiu: Compactificatíons, I»ndmical S)-stem\ a¡ lnfiní1 and the Et¡sential Spectrurn
of Generalized Schiidinger Operators. J. reine angew. Math. 550 (2002), 2ll-229.

[29] M. Mántoiu: Rieffel's PsewdodiJferential Calculu,s and Spectral Analysis lor Quantum
Hamibonians, Preprint A¡XiV and to appear in J. Inst. Fourier.



BIBLIOGRAPHY

J30l M. Mántoiu and R. Pudce, Tlrc MagrLerir: WrTl CalruLus. J. Math. Phys. 45 no. 4 (200;1).

1394-1417.

i31l M. Mirntoiü ancl R. Puúcc, Sfrict De-fonncttion Quonti:ctfion .fot a Particle in a Magneti<
Field, J. Marh. Phys. 46 no 5. (2005).

[32] M. Mántoiu and R. Purice: Tlte MochLatit¡n MappirLg Jbr S-ttxbols and Operators, Proc.

Amer. Math. Soc. DOI: 10.1090/50002-9939- l0- 10345- I (2010),

[33 | M. Míntoiu, R. Purice and S. Richard, Spectral and Propagatiort Resttbs .fbr Megneti{:

Schriidin.ger Operator,s; a C- -Algebrutíc: Fratntyork.!. Funct. Anal. 250 (2007 ),4247.

J34l M. Mántoiu. R. Purice and S- Richard, Iwis¡ed Crossed Produ.cts a (l Mognetic Pseadodill¿r-
etúiol Op(t'ators. in Advances in Opcrator Algebras and Mathcmatical Physics, pp. 137-172,
Thcta Ser. Adv- Math. 5, Thcta, Bucharcst. 2005.

[-i5] J. Marsden and T. Ratiu: ln.trod.uctit»t to Mechanics and S!-mmetry, Texts in Applied Math.
17, Springer-Verlag, Berlin, Neu.Yo¡k, 1994.

[36] M. Múller. Prcduct RuLe .for Gallge lwariqnt We1,l 5,-n rrr,, orO ,ts Application to tlrc Setni-

cla,ssi<:al Desciptlon of Guiditg Cetlter Mot¡on. J. Phys. A. 32 (1999), 1035 1052.

[37] M. Nilscn, C* -Butulles arul C¡(X)-ALgebras. I¡diana University Mathernatics Joumal 45
(2) (1996), 463477.

l38l G- Nenciu: Stabilit..t oJ Energ,Gaps Llnder Voriarions of tlrc Magnetic Field. Letters in Mat.
Phys. 11, 127 132, (1986).

[39] J. Packcr and 1. Raeburn. Twis¡ed Crossed. Produ*,s oJ (l- -Algeára,r, Math. Proc. Camb. Phyl.
Soc. 106 (1989), 293-311.

[40] J. Packer and l. Raebum. '] *aisted Crossed Pr¡duct.s of C* -Algebra,s. II, Math. Ann. 287
, IOAOr \O§-Á I )

[41 I G. K. Pedcrsen C'-Algel:¡ras and fheir Auf omorphisru Gruups, LMS Mono-uraphs. vol. 14,

Academic Press, Sa¡ Diego, 1979.

[42] M. A. Rieffcl: CotLtittuou.¡ Fields o.f C* -Algebras Coming frun Group Ct.¡t:w:les antl Actktns,
Math. An¡.283.631-643, ( 1989).

i43l M. A. Rieffel'. Dqfonnation Quantizatiott .fi.,r Actiotts o/ R.d, Mcmoirs of the AMS, 506,
1993.

[.14] M. A. RreffeT: Quartizctrion anti (.t" -Algel¡¡r¡;. in Doran R. S. (ed.) (1. -Algebras: l91j-
1993. Contem¡t. Matlt. 167, A\4S kovidence, 67-97-

J¿151 M. A. Rieffel. Il¿ Clas,si<:al Linit of Dwruntits for Spat:es Quctntized bt, un Actir»t ol R't.
Can. J. N4ath. 49 (1996), 16T174.

6l



BIBLTAGRAPH\' 6?.

f46l L Raebum and D. Wlili¿rms: Morita Equivalerce arul Continuott¡-Trace C'-Algebrus.Matlr
cmalical Surveys and Monographs. 60, Amcdcan l\4athematical Society I I 998).

f47l J. Tonriyanra: Topokryic:al Repre¡entetio¡t of ('" -Algcárus, Toboku Math. J. 14, 187, ilS62).

{481 J. Tomiyanta: A Clruracterization oJ Cr -Algebru:; whose Cortjugatc Spuces are Sepuruble.

Tohoku Math. l. 15,96, (1963).

[49] D. \lllliams: Crossed ProdLtcts oJ C- -Algebras, Mathematical Surve¡,s and Monographs,
134. Amelican Mathematical Socie¡', 2007.


