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SANTIAGO DE CHILE
2022



Midiendo la influencia de los candidatos a la Convención

Constitucional en Twitter

Las redes sociales almacenan trazas digitales de los humanos y tienen el potencial de explicar
fenómenos sociales e inferir cantidades de interés. Un uso recurrente de la red social Twitter
es para la predicción de resultados electorales, dado la extensión de su uso para comunicación
poĺıtica. Esta memoria de t́ıtulo busca comprobar que existe una relación entre la influencia
de un candidato en Twitter y su resultado electoral. Las preguntas de investigación fueron
¿En qué medida la influencia en Twitter se correlaciona con los votos obtenidos? ¿De qué
variables depende esta relación? (RQ1) y ¿La afiliación poĺıtica de un candidato (pertenecer
a un partido poĺıtico, coalición poĺıtica o lista electoral) es relevante para la influencia en
Twitter? ¿Cómo interactúa la afiliación con Twitter? (RQ2).

Para responder estas preguntas, se construyó una bases de datos de Twitter usando las
cuentas de 771 candidatos a la Convención Constitucional elegida en 2021 en Chile. A partir
de estos datos, se construyó una red de retweets y diversas variables de influencia a ser
evaluadas.

Para responder la pregunta RQ1 se evaluó cada variable usando coeficientes de correlación
y modelos de regresión y clasificación respecto al porcentaje de votos obtenido. Los mejores
modelos de regresión fueron los que incluyeron las variables cantidad de favoritos (likes) por
tweet (R2 = 0.582) y cantidad de retweets por tweet (R2 = 0.573). Tanto para regresión
como clasificación, los modelos con variables de Twitter superaron el baseline de variables
poĺıtico demográficas. Para responder la pregunta RQ2 se modificó el algoritmo del PageRank
para incluir información de afiliación (lista, partido o coalición) y se evaluaron esas variables
modificadas respecto al desempeño del PageRank original.

Concluimos que (i) las caracteŕısticas calculadas desde Twitter añaden información rel-
evante para inferir el resultado de esta elección multipartido, aunque de forma acotada (ii)
Existe una brecha entre mujeres y hombres y entre capital/regiones en el efecto que tienen,
detectada a través de variables de interacción en la regresión lineal. La relación entre las
variables de influencia en Twitter y los votos es más fuerte en el caso de hombres que de
mujeres, y en la Región Metropolitana que en otras regiones (iii) El PageRank modificado no
mejoró el desempeño de las tareas de clasificación, lo que podŕıa indicar que la información
inyectada ya está contenida en el grafo de retweets (iv) Varias limitaciones deben superarse
para obtener modelos más robustos y estables. Se proponen caminos a seguir y problemas a
resolver para construir modelos que puedan explicar y predecir resultados electorales.

i



Measuring the influence of candidates to the Constitu-

tional Convention in Twitter

Social networks store digital traces of humans and have the potential to explain social phe-
nomena and infer quantities of interest. A recurring use of the social network Twitter is to
predict election results, given the extent of its use for political communication. This thesis
seeks to verify that there is a relationship between the influence of a candidate on Twitter
and her electoral result. The research questions were: To what extent is influence on Twitter
correlated with votes obtained? What variables does this relationship depend on? (RQ1) y
Is the political affiliation of a candidate (belonging to a political party, political coalition or
electoral list) relevant to influence on Twitter? How does affiliation interact with Twitter?
(RQ2).

To answer these questions, a Twitter database was built using the accounts of 771 candi-
dates for the Constitutional Convention elected in 2021 in Chile. From these data, a network
of retweets and various influence variables to be evaluated were built.

To answer question RQ1, each variable was evaluated using correlation coefficients and
regression and classification models with respect to the percentage of votes obtained. The
best regression models were those that included the variables number of favorites (likes) per
tweet (R2 = 0.582) and number of retweets per tweet (R2 = 0.573). For both regression
and classification, the models with Twitter variables exceeded the baseline of political demo-
graphic variables. To answer question RQ2, the PageRank algorithm was modified to include
affiliation information (list, party, or coalition) and these modified variables were evaluated
against the performance of the original PageRank.

We conclude that (i) the features computed from Twitter add relevant information to infer
the result of this multiparty election, although in a limited way (ii) There is a gap between
women and men and between capital/regions in the effect they have, detected through of
interaction variables in linear regression. The relationship between the variables of influence
on Twitter and votes is stronger in the case of men than women, and in the Metropolitan
Region than in other regions (iii) The modified PageRank did not improve the performance of
the classification tasks, which could indicate that the injected information is already contained
in the retweets network (iv) Several limitations must be overcome to obtain more robust and
stable models. Paths to follow and problems to solve are proposed to build models that can
explain and predict electoral results.
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“Power does not reside in institutions, not even the state or large corporations.
It is located in the networks that structure society.”

Manuel Castells
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Chapter 1

Introduction

1.1 Motivation

On May 15th and 16th of 2021, the election of the members of the Constitutional Convention
was held in Chile, a body whose function is to draft a new constitution. The Constitutional
Convention creation was approved with more than 78 % of the votes in a national referendum
held on October 25, 2020, as a way out of a political and social crisis experienced in Chile
since 2019. In the May election, it was defined who would draft the constitution. The
results showed the traditional political blocs greatly diminished, and an emerging force of
independents with progressive ideas occupied a large part of the Constitutional Convention
seats.

The growing digital literacy in Chile, accelerated partly by the COVID-19 pandemic,
suggests that social networks played a crucial role in the last elections. The microblogging
platform Twitter, the network for political discussion par excellence, is particularly notewor-
thy. The use of Twitter as a political communication tool is not new in our country: since
the Chilean presidential election of 2009-2010, this social network has been used by parlia-
mentarians, ministers and candidates. However, Twitter is known as an unrepresentative
network, dominated by “a young adult population from well-off sectors” [6], but with great
capacity to install a media agenda.

Analyzing an election on Twitter from the voter’s point of view can be complex: it requires
a significant and representative amount of conversation to identify positions for candidates
or pacts. However, Twitter can also be studied from the point of view of the candidates.
Twitter reflects how different political campaign operate. Candidates express positions; those
positions are disseminated (retweeted) and validated by others,

An electoral campaign’s objective is to influence the behavior of voters. Therefore, the
influence on Twitter is, for a candidate, an indicator of a successful campaign. A successful
campaign mobilizes more votes. Thus, the hypothesis that a relationship exists between
influence on social networks and the number of votes obtained is reasonable. This thesis
aims to measure the relationship between the influence on Twitter and the electoral result.
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The historical importance of the Constitutional Convention and its electoral result, lead
us to search social networks (in this case Twitter) for the reasons for this result. Analyzing
the performance on Twitter of the candidates for the convention allows us to understand the
communication strategies of the actors present in the current political scene. Twitter offers
a continuous record of what was said, when it was said, and it is also possible to reconstruct
the dissemination of these messages.

1.2 Research questions

This research aims to answer the following questions:

• RQ1: To what extent does the influence on Twitter correlates with the votes obtained?
What variables does this relationship depend on?

• RQ2: Is a candidate’s political affiliation (belonging to a political party, political coali-
tion, or electoral list) relevant for the Twitter influence? How does affiliation interact
with Twitter?

1.3 Objectives

1.3.1 General objective

Choose and compute measures of the influence of the candidates for Constitutional Conven-
tion on Twitter and contrast them with the electoral results obtained.

1.3.2 Specific objectives

1. Build a social network with information downloaded from Twitter where the candidates
are included. This network construction must try to be as representative as possible of
the existing network.

2. Calculate measures of influence of users on the network with information available
according to the limitations of the Twitter API.

3. Evaluate the correspondence between votes and influence using several metrics.

2



Chapter 2

Background and Related work

2.1 Twitter and elections

Twitter is widely used as a data source to study political phenomena. Problems such as
polarization, the detection of misinformation, or even the prediction of elections are frequently
looked at with data from Twitter. Next, we will review the main methodological difficulties
when carrying out these analyzes, compare the different sampling strategies and close with
the state of the art of these methods in Chilean elections.

It is possible to identify three main difficulties in quantifying the effect of social networks
on elections. The first one refers to the representativeness of the data. For example, the
survey “The future of the media” carried out by Cadem in September 2020 shows that only
18% of the Chilean population uses Twitter daily [5]. This leads to looking for ways to
complement the basic information on social networks with demographic information that
allows weighing each message according to the weight it would have in reality [15, 43].

The second difficulty is to measure the effect of Twitter correctly. The literature indicates
that the effects of social media when they exist tend to be small. For example, a study on the
2010 Netherlands elections showed that the variables associated with Twitter explain less than
2% of the variance in the number of votes [23]. Another study in the context of the United
States congressional elections in 2010 quantified that the propaganda on Facebook calling for
participation in the elections achieved an increase in electoral participation of between 0.14%
and 0.60% [4]. The problem is that measuring a small effect on noisy data requires enormous
data to achieve meaningful results (the second study mentioned conducted a randomized
trial with 61 million users). However, a small effect can make a decisive difference between
candidates in highly contested elections.

The third difficulty lies in the external validity of the results obtained. The elections
and social networks depend on a historical context, so they are not generalizable a priori.
Therefore, it is necessary to be rigorous in stating which variables explain that context (for
example, the electoral system) and delimiting scenarios the results obtained are valid [37].
This also reinforces the need for robust and replicable methodologies.
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Sampling a social network

The network construction methodology is critical for the subsequent task of measuring influ-
ence. Some sampling algorithms skew the samples towards the nodes with a higher degree
(the degree of a node is the number of connections to other nodes). This changes the total
node degree distribution, which is directly related to the centrality of a node [18]. There-
fore, to obtain reasonable measures of centrality, it is necessary that the graph where these
measures are calculated is to some extent representative of the complete network.

Getting a representative sample of a graph is an open problem in computing, particularly
in the case of online social networks (OSN). In OSN we do not have access to the com-
plete graph, so performing a random sampling of nodes or edges is impossible, two forms of
conventional sampling.

To obtain a sampling of an OSN, the most suitable methods are those of the Traversal
Based Sampling (TBS) [18] category, also known as exploration sampling, which is based
on starting at initial nodes from which to explore and rebuild the network. This is ideal for
social networks like Twitter where from one node we can only explore its neighbors. This way
of sampling comes from a type of sampling called Snowball Sampling, popular in sociology,
where you start at specific seed nodes.

The primary sampling methods applicable to OSN are presented below. As part of this
thesis, choosing and implementing one of these algorithms is required to rebuild a network
as close to the network of interest.

• Breadth First Sampling (BFS) consists of taking a random node, exploring all its
neighbors, and then recursively repeating the exploration for each neighbor until the
required number of nodes is found. It is a biased method towards nodes with higher
degree [24].

• Random Walk (RW) consists of taking a seed node and advancing randomly along
with one of its edges and thus advancing until all the required nodes are found. Some
versions assign probability c = 15% of returning to the initial node. RW, like BFS, is
biased to high degree nodes, but there are two unbiased variations of RW:

– Re-Weighted Random Walk (RWRW) consists of sampling using the Random
Walk and then correcting the bias using the Hansen-Hurwitz estimator [18].

– Metropolis-Hastings Random Walk (MHRW) consists of correcting the bias at
the sampling time and deciding whether to accept or reject a certain candidate
node. The Metropolis-Hastings algorithm is used, which is based on modeling the
sampling problem as a Markov Chain Monte Carlo (MCMC), where the probability
of sampling a node depends exclusively on the previous sample [18].

• Frontier Sampling (FS) is based on having m random walkers moving forward simul-
taneously [34]. It has shown good accuracy, despite being biased. It is important to
consider that, due to the trade-off between bias and variance, relaxing unbiasedness
can lead to methods with less variance and error [40].
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• Forest Fire Sampling (FFS): The number of nodes through which to advance is de-
termined according to a geometric distribution in each step. As As the visited nodes
are explored, they “burn” to avoid exploring them again. This method has shown
promising results in real and synthetic networks. [25].

• Coupling From The Past (CFTP) is a MCMC method developed by James Propp and
David Wilson in 1996. The idea is to make a Markov chain converge to the desired
stationary distribution (e.g. uniform) and thus obtain “exact” samples [31]. This
method is used in conjunction with a conditional independence condition (Conditional
Independence Coupler, [26]) to implement an algorithm that generates these random
samples. This method is interesting because of its theoretical potential to generate
unbiased samples and because it has been used in the context of Twitter and elections
[12].

2.1.1 Chile

The use of Twitter in Chilean electoral contexts has been studied at least since the 2013
presidential elections. Below is a non-exhaustive review of the literature corresponding to
the latest electoral processes.

1. Presidential 2013: Sola-Morales & Flores (2015) [39] identified that the number of
tweets and retweets of a candidate does not correlate with the votes.

2. Municipal 2016: Jara et al. (2017) [19], through a clustering of candidates, conclude
that the use of Twitter increases the gap between more and less well-known candidates.

3. Primaries 2017: Santander et al (2017) [38] constructed a way to predict electoral
results using sentiment analysis of tweets.

4. Presidential / parliamentary 2017: Both Rodŕıguez et al. (2018) [36] and Alegre &
Keith (2020) [2] report good results using sentiment analysis of tweets and machine
learning.

The growing interest in the relationship between social networks and political discussion
has also meant the opening in recent years of multiple research spaces in Chilean universities.
Among the most prominent are the Political and Social Networks Observatory of the Central
University [42], the Public Space Electronic Demoscopy group (DEEP) of the Catholic Uni-
versity of Valparáıso and more recently the Social Listening Lab from the Catholic University
of Chile (SoL-UC).

2.2 Measuring influence

There are many ways to measure the influence of a user on Twitter. Each of these measures is
a different conception of what it means to be influential on Twitter, and the information avail-
able is limited. Riquelme & González-Cantergiani (2016) [35] collected and classified more
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than 70 influence measures used on Twitter. Proper categorization of measures of influence
is presented below. Each category is a way of understanding the meaning of influence.

2.2.1 Volumetry

Influence on Twitter can be understood as a problem of volume: a user may be considered
influential with more activity (i.e., tweets made) or with higher mentions and retweets. In this
category are those features denominated by Riquelme & González-Cantergiani as a Twitter
metric, for example:

• Number of tweets made by a user

• Number of retweets of user tweets

• Number of replies

2.2.2 Centrality in Social Network Analysis

Tabassum et al. (2018) defines centrality or prestige as “a general measure of the position of
an actor with respect to the entire structure of a social network” [41] . The classic centrality
measures consider the existence of multiple actors interacting with each other, but whose
importance is given by the wiring or topology of the social network. The main measures of
centrality of a node ui are mentioned below:

• Degree: is the size of a node’s neighborhood, or equivalently, the number of nodes it
is connected to. In the case of directed graphs, it is possible to separate the in-degree
(edges that reach ui) and the out-degree (edges that leave ui).

• Betweenness: expresses the percentage of paths that pass through ui, concerning the
full paths of the graph. A node with high betweenness is a node that has a strategic
position in the information flow.

• Closeness: returns a measure of how close ui is to the rest of the nodes in the graph.

• Eigenvector centrality: it takes the principle of “important nodes connect to important
nodes, not necessarily more nodes”. It is calculated using the eigenvectors of the
adjacency matrix of the network.

• PageRank: originally developed by Page et al. from Google [29], can be considered a
variation of Eigenvector centrality for the case of directed graphs.
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Chapter 3

Methods

To answer the first research question (RQ1) we propose (i) downloading the Twitter data
of each candidate, (ii) build influence features from Twitter data and (iii) Evaluating those
features using models. The evaluation of the features is detailed in validation section of this
chapter.

To answer the second research question (RQ2), we proposed a modified version of the
PageRank algorithm, then evaluated the modified feature to the original PageRank feature
built for RQ1. The idea is to inject the political affiliation information into the algorithm,
then assess if this new information leads to a better influence metric to estimate the electoral
outcome of each candidate.

3.1 Data collection

Data collection was performed in two steps: first, we downloaded data of candidates for the
Constitutional Convention, including electoral data and social media usernames. Secondly,
we downloaded tweets related to them using the acquired Twitter accounts and used those
tweets to build influence features.

3.1.1 Candidates data

The electoral data was obtained from the Electoral Service of Chile (SERVEL). It was released
the day after the election and contained information about the candidate and the election
outcome as raw votes and electoral district percentage for each of the 1278 candidates for
the Constitutional Convention.

The social media usernames of candidates were obtained from three open websites that
gathered information about the candidates and made it public:

• ¿Quiénes son? [Who they are? ] (quienesson.cl)

7
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• Interactivo La Tercera (interactivo.latercera.com/candidatos-constituyentes)

• Conoce Tu Candidato - 24 Horas [Know your candidate] (conocetucandidato.24horas.
cl)

Through this web scraping, we extracted the Twitter username of 832 candidates. All
variables collected in this step are shown in Table 3.1.

Table 3.1: List of 14 features obtained from web sources of candidates for the Constitutional
Convention

Source Feature Type
SERVEL Electoral district Categorical

Electoral list Categorical
Party Categorical
Order in ballot Integer
Order in party list Integer
Name String
Gender Categorical
Votes Integer
District votes percentage Float
Elected Categorical

Web scraping Age Integer
Occupation String
Twitter username String

3.1.2 Twitter data

From 832 Twitter users, only 771 users were valid existing non-private accounts at the mo-
ment of the extraction. Those 771 were considered as this thesis’s universe of study.

As stated in the specific objectives, the data downloaded from Twitter should allow us
to obtain influence measures and rebuild the social network. Therefore, the chosen sampling
schema is a modified Breadth-first search (BFS) algorithm with the following steps:

1. Download the timeline (i.e. the tweets posted) of all 771 accounts between 01/01/2021
and 14/05/2021.

2. For each tweet made by a candidate account, download all the retweets. This is similar
to the first level of BFS, capturing part of the indegree of the candidates.

3. For each user who is the author of a retweet (users that made a retweet of a candidate),
download their timeline between 01/01/2021 and 14/05/2021.

The described algorithm is shown as pseudocode in Algorithm 1.

8

interactivo.latercera.com/candidatos-constituyentes
conocetucandidato.24horas.cl
conocetucandidato.24horas.cl


Algorithm 1 Modified Breadth-first search for tweet scrapping

Require: TWEETS(ui, start, end): retrieve tweets from Twitter user ui created between
time range start and end

Require: RETWEETS(tj): retrieve retweets from tweet tj
Require: USER(ti): get user of tweet tj
Ensure: Ucandidates ← Twitter users of candidates

for ui ∈ Ucandidates do . ui is a candidate Twitter user
Ti ← TWEETS(ui, 01/01/2021, 14/05/2021)
for tj ∈ Ti do . tj is a tweet

RTj ← RETWEETS(tj)
for tk ∈ RTj do . tk is a tweet

urt ← USER(tk)
RTTjk ← TWEETS(urt, 01/01/2021, 14/05/2021)

end for
end for

end for

Twitter API limitations

In Algorithm 1, we defined functions TWEETS, RETWEETS and USER to collect data
from the Twitter world. To implement this download, access to Twitter API was needed.
Twitter offers a REST API to obtain its data through HTTP requests. Not every Twitter
data is reachable, and defined policies exist to access it.

Using a Python library wrapper of Twitter API called tweepy, we implemented the
download and found the following limitations:

• For implementation of TWEETS we used the GET statuses/user timeline Twitter
API endpoint, wrapped in the user timeline method of tweepy. This endpoint is
limited only to 3.200 most recent tweets per account.

• For implementation of RETWEETS we used the GET statuses/retweets/:id Twitter
endpoint, wrapped in the retweets method of tweepy. This endpoint is limited to the
100 most recent retweets for each tweet.

3.2 Feature engineering

The tweets downloaded in the previous step were processed in order to create features that
represented the influence of the candidates’ users in the platform. These features were di-
vided into three major categories: Twitter metrics, sentiment analysis and network analysis
features.
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3.2.1 Twitter metrics

Tweets contain metadata related to creator user, location, datetime and other features cap-
tured by Twitter. Appendix has an example of a complete tweet object. We built several
features aggregating these metadata for each candidate. The goal is to obtain features that
capture the activity of the candidates on the platform, e.g., how many tweets they posted,
how popular those tweets were, how many videos they posted.

A full list of these created features can be found in Table 3.2. The tweets made feature
was computed as a per-week average, i.e., count of tweets made by a candidate divided by
number of weeks. All other features were computed as a per-tweet average, i.e., a ratio of
a total value related to the total number of tweets made. For example, a per-tweet video
average of 0.1 means that, for that candidate, 10% of tweets contains videos.
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Table 3.2: Twitter metrics for a candidate ui

Feature name Description Formula
tweets made Activity of user in Twitter, mea-

sured as the average of tweets made
per week.

# Tweets of user ui
18

retweet count Average retweets received per tweet

# Retweets received by user ui
# Tweets of user ui

favorite count Average favorites (likes) received
per tweet

# Favorites received by user ui
# Tweets of user ui

user mentions Average number of mentions in
tweets per tweet. A mention is
naming a username (like example)
in a tweet, a tweet may have from
zero to multiple mentions.

# Users menctioned by user ui
# Tweets of user ui

photos Average photos uploaded per tweet

# Retweets received by user ui
# Tweets of user ui

retweets made Average retweets made per tweet.
Is equivalent to the percentage of
retweets related to total tweets
made (retweets counts as regular
tweets)

# Retweets received by user ui
# Tweets of user ui

replies made Average replies made per tweet.
# Replies of user ui
# Tweets of user ui

quotes made Average quotes made per tweet. A
quote is similar to a retweet, but it
allows the user to add a comment
to the referenced tweet.

# Quotes of user ui
# Tweets of user ui

videos Average videos uploaded per tweet

# Videos uploaded by user ui
# Tweets of user ui

hashtags Average hashtags used per tweet

# Hashtags used by user ui
# Tweets of user ui
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3.2.2 Sentiment analysis

The sentiment of the tweets related to candidates has been used as a predictor in several
works on electoral forecasting [38] [2] [36]. Therefore, it was interesting to understand the
relationship between sentiments and their electoral outcome.

The mentioned studies select a sample of tweets that are user opinions in the social
network. This sample may be representative enough of the population, and with text classi-
fication techniques, the average sentiment of the sample can be inferred and the number of
votes can be predicted.

Our sampling strategy does not work with that kind of method, because BFS sampling
is biased to the seed nodes, so cannot be used as a representative sample of the voting
population. So, rather than inferring some public opinion trends with social media sentiment
analysis as a proxy, we are assessing the political communication strategy of each candidate
in terms of the positive or negative (or other sentiments) tweets they chose to post.

To build these candidate sentiment features we defined (i) a way to attach each tweet in
our database to one or multiple sentiments, at least considering the categories positive and
negative, and (ii) an aggregation transformation that maps from the labeled tweets to a real
number for each candidate.

To accomplish task (i), sentiment analysis is an advanced field in Natural Language
Processing. We researched the state of the art in terms of text sentiment classification and
selected a neural network model named BERT (Bidirectional Encoder Representations from
Transformers) [13]. We used a Python library called pysentimiento [32].

The output of the BERT classifier is the outcome of a softmax function and represents
the probability of the observation belong to each class. This library has two different types
of classifiers: first, a sentiment classifier with classes positive, negative and neutral. Second
is an emotion classifier with classes anger, surprise, fear, disgust, joy, sadness and others.
Both classifiers contain pre-trained weights from a model called BETO [7], which is trained
in a massive Spanish corpus.

We applied both classifiers and obtained a probability for each candidate tweet, exclud-
ing retweets, for all the classes mentioned above. We chose a threshold of 90%, so if the
probability for some class was higher than 90%, we labeled the tweet with that class.

For task (ii), we defined the proposed sentiment features of a candidate as the percentage
of tweet labeled as a sentiment. The proposed sentiment features can be found at Table 3.3.
Classes neutral and others were not included because they were not interpretable. Fear and
surprise classes were not included because they were absent in some districts. The selected
classes are present in every electoral district for at least a single candidate.
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Table 3.3: Sentiment Analysis features for a candidate ui

Feature name Description Formula
pos Percentage of tweets classified as

positive, according to BERT senti-
ment classifier

# Positive tweets made by ui
# Tweets of user ui

neg Percentage of tweets classified as
negative, according to BERT senti-
ment classifier

# Negative tweets made by ui
# Tweets of user ui

sadness Percentage of tweets classified as
sad, according to BERT emotion
classifier

# Sad tweets made by ui
# Tweets of user ui

anger Percentage of tweets classified as
angry, according to BERT emotion
classifier

# Angry tweets made by ui
# Tweets of user ui

joy Percentage of tweets classified as
joy, according to BERT emotion
classifier

# Joy tweets made by ui
# Tweets of user ui

3.2.3 Network analysis

The Twitter metrics and the Sentiment analysis features are computed for each candidate
independently. This is, the feature engineering required to compute it can be done with
the data of a single candidate ui. However, network centrality metrics, as introduced in
Section 2.2.2, cannot be computed for a single candidate. Instead, they must be computed
for multiple candidates linked in a graph.

Using social network analysis algorithms, we can take advantage of the Twitter users’
links in terms of retweets. This information is not contained in the Twitter metrics or the
Sentiment analysis features.

To compute the network features, we need to build a network. The network was con-
structed in the following way:

1. We selected a time window of seven days between dates a and b.

2. Using the collected tweets created between dates a, b, we built a directed graph in which
each Twitter user in the database becomes a node. a points to b ⇐⇒ a retweeted b.
We called this graph as Ga,b.
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3. Several network centrality metrics were computed from graph Ga,b

The result of this process is a time series of each centrality measure. To aggregate this
vector and obtain a single value for each candidate, we computed the average of the candidate
time series for each measure. The chosen network centrality metrics algorithms to compute
are contained in Table 3.4.

For example, for a candidate ui the value of degree feature d(ui) is the mean of the degrees
dt(ui) for t going from day 07/01/2021 to day 14/05/2021, the last day. Likewise, the degree
value for a day t is the degree of the graph of retweets between days t− 6 and t.

Table 3.4: Network Analysis features for a candidate ui

Feature name Description
degree Number of edges linked to node ui
out degree Number of nodes pointed by ui
in degree Number of nodes that points to ui
eigenvector centrality p = A′p, with A′ the trasposed adjacency matrix of the graph and

p the eigenvector
harmonic centrality Sum of the reciprocal of the shortest path distances from all other

nodes to ui
pagerank eigenvector centrality with random jump between nodes

3.2.4 Custom political PageRank

To answer RQ2, we proposed the hypothesis that retweeting a candidate of a party helps the
electoral result for that candidate and all party candidates. The logic behind this hypothesis
is that there is a relationship between the ideas of candidates of the same party, so if one of
them has many retweets, all may get benefit of that exposure. The same hypothesis can be
raised with electoral list or political coalitions instead of parties.

To test this hypothesis, we proposed a modified version of PageRank centrality measure to
inject the political information needed to complete the missing links and consider the spillover
that is not contained in the Twitter data. Then, we tested if the modification increased the
performance metrics for classification, relative to the base, not modified PageRank. If the
modified PageRank achieves better performance metrics than original PageRank, this would
mean that the party information added to the graph (or the electoral list, or the political
coalition) is meaningful information to infer electoral outcomes.

How do we inject the affiliation (party/list/political coalition) links into the graph? First,
let’s look deeper into the PageRank calculation.
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PageRank as Markov chain

PageRank algorithm’s goals is to rank the web pages in terms of the links between them.
It assumes there is a random surfer that jump from page to page with some probability.
Modelling the problem as a stochastic process, the importance of each webpage is measured
as the probability of being in that page. The modelling is based on Markov chains, where
each node represents a state, and the directed edges represent state transition. In the case
of our graph, those retweet edges represent the information flow.

Definition 3.1 ([20]) Markov Matrix

A Markov matrix (or stochastic matrix) is a square matrix M whose columns are
probability vectors (i.e., non-negative and sum to 1)

Definition 3.2 ([20]) Markov Chain

A Markov chain is a sequence of probability vectors ~x0, ~x1, ~x2, ... such that ~xk+1 = M ~xk
for some Markov matrix M

As defined in Definition 3.2, a Markov Chain has two components: a stochastic matrix
and probability vectors ~xk. The question is whether this sequence of vectors converges to
a constant probability vector x that satisfies ~x = M~x. This is known as the stationary
distribution of the Markov chain, and it is also an eigenvector of matrix M with eigenvalue
λ = 1.

Markov matrix may be built directly from a graph. It is similar to a adjacency matrix,
where the position i, j is 1 if i =⇒ j in the graph. The difference is that in Markov matrix
columns should be normalized to sum 1, and each row contains the probabilities to arrive at
that node.

PageRank is just the stationary distribution of a specific Markov matrix called Google
Matrix, defined in Definition 3.3. This matrix contains two terms: a matrix A that contains
the information of the links between the pages, and a matrix B with links between all pages.
The matrix B represents the random jump from a webpage to any existing webpage. The
probability of a random jump is given by (1− α), with α = 0.85 as standard.

Definition 3.3 ([20]) Google Matrix

A Google Matrix is a Markov matrix built from the Web graph of hyperlinks,

GM = αA+ (1− α)B

Ai,j =

{
1
nj

if webpage j has a link to i

0 otherwise.

Bij =
1

n
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Definition 3.4 ([20]) PageRank

The PageRank xpr of a graph is the steady state of the Markov chain defined by its
Google Matrix.

xpr = GMxpr

Modified PageRank

The proposed way to modify PageRank is to add the party, electoral list or political coalition
information in the Markov matrix and then find the eigenvector as the traditional PageRank.

We introduced the political information through a political matrix P as defined in Def-
inition 3.5. The idea is to enforce a clique into the Google Matrix. A clique is a subgraph
where every node point to all nodes of the subgraph. Pelectoral list and Ppolitical coalition were
defined in a similar way.

Definition 3.5 Political Google Matrix

PGM = (α− γ)A+ (1− α)B + γP

With A, B the same that in Definition 3.3. P is the political matrix with can be computed

Pparty =

{
1
nl

if i and j have the same party

0 otherwise.

Pcoalition =

{
1
nl

if i and j have the same political coalition

0 otherwise.

Pelectoral list =

{
1
nl

if i and j have the same electoral list (same district)

0 otherwise.

Definition 3.6 Political PageRank

xpr = PGMxpr

We computed Custom political PageRank using Pparty, Pcoalition and Pelectoral list. Several γ
in the range [0, .85] were used, and α was kept constant as 0.85. Notice that original Google
Matrix in Definition 3.3 is an special case of our Political Google Matrix in Definition 3.5
when γ = 0.
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3.3 Validation

Both research questions RQ1 and RQ2 were answered evaluating each Twitter influence
feature association with votes using several tools:

• Correlation: we computed the Spearman correlation coefficient between each influence
feature and the votes obtained

• Regression: we model the problem as a regression task, in which each observation is a
candidate, the target variable is votes obtained, and the predictor variables were base
features and Twitter influence features. This evaluation was performed in-sample

• Classification: we model the problem as a classification task. Instead of a continuous
target variable like votes, we defined positive class as the top p% candidates with more
votes. This is equivalent to defining class 1 as those candidates with more votes than
percentile p. We used several p values from 50% to 90%.

The univariate correlation will help us ask which features are closer to the election result.
In the other hand, regression analysis allows us to check the gain of information that the
Twitter influence metrics make comparing to no-Twitter features, and measure this gain/loss
in terms of variation of R2.

As target feature for this validation, we used the district votes percentage of candidates.
We prefer the percentage against the raw vote count, because the vote count hides more
information related to turnout and number of districts votes. More votes can mean a better
performance or just competing in a bigger district.

3.3.1 Preprocessing

Several preprocessing for Twitter features were performed. Three reasons motivate prepro-
cessing: (i) Target variable and features should be in the same scale, (ii) We wanted features
as comparable as possible (iii) Specifically for linear regression, we needed transformations
to achieve more interpretable results.

Normalization

We selected vote percentage of electoral district of each candidate as target variable for
analysis below. This is a local measure of relevance by district. Predictors should also
be measured as local (by district) measures of influence instead a raw global number to
be consistent with that choice. This would address reasons (i) and (ii), because influence
features and electoral result would be measured the same way: per district.

Definition 3.7 District normalization for candidate i

district norm(yi) =
yi∑

j∈district(i) yj
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We decided to implement a district normalization, defined in Definition 3.7. It represents
the mass percentage of a candidate feature relative to their electoral district. We applied
this normalization to all influence features (Twitter metrics, Sentiment analysis features and
Network features).

This decision has advantages and disadvantages. It advantage is that features can be
compared between them and with target variable in a common scale (district based). On
the other hand, a disadvantage is that we need data from all the candidates on a district,
because the input is a relative metric (percentage). Another disadvantage is that all features
keep in the range of [0, 1]. This is a disadvantage for our regression validation because this
constrain is not assumed in the model.

Improving normality

We decided to transform all features to a normal distribution: This is useful to achieve
better results in linear regression and to accomplishing the assumption of the normality of
the residuals (the difference between estimated by the regression and the observed values) and
homoscedasticity (residuals with constant variance). To achieve normality, we used the Yeo-
Johnson transformation [44]. The λ parameter is obtained via Max Likelihood Estimator,
implemented in sklearn.

Definition 3.8 ([44]) Yeo-Johnson transformation

y-j(yi, λ) =


((yi + 1)λ − 1)/λ if λ 6= 0, y ≥ 0

log(yi + 1) if λ = 0, y ≥ 0

−((−yi + 1)(2−λ) − 1)/(2− λ) if λ 6= 2, y < 0

− log(−yi + 1) if λ = 2, y < 0

Standardization

For linear regression, we performed a standardization: scaling to mean 0 and standard devi-
ation 1. This was accomplished computing the Z-score for all our features.

Definition 3.9 Z-score for variable X

Z =
X − X̄
sX

Chaining transformations

The transformations previously listed were applied in a specific order. Log transform was also
applied because influence features like PageRank and degree follow exponential distributions
[27]. Table 3.5 contains the preprocessing used.
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Table 3.5: Preprocessing of Twitter influence features

Preprocessing name Formula Used in
District normalization (dn) district norm(yi) Correlation
Log district normalization
(logdn)

district norm(log(yi)) Correlation

District normalization and
Yeo-Johnson power trans-
form (dnpt)

y-j(district norm(yi)) Used only to compare distri-
butions

Log district normalization
and Yeo-Johnson power
transform (logdnpt)

y-j(district norm(log(yi))) Regression, Classification

3.3.2 Base features

For classification and regression tasks, we defined a set of features related to personal, elec-
toral and political characteristics of a candidate. These features can be understanded as
control variables for our experiments. Table 3.6 contains all the base features used.

Note that, in total, we have 30 base features. As none of these features are related to
Twitter, we use the base features as a baseline for the estimation made with the base features
and the Twitter influence features.

19



Table 3.6: Base features for a candidate ui

Feature name(s) Description
gender Gender of candidate: 1 for woman, 0 for

man
rm Indicates if candidate competes in a district

in Metropolitan Region (Región Metropoli-
tana, RM), the capital region of Chile. 1 if
candidate belong to RM, 0 if belong to other
region

n candidates Number of candidates competing in the dis-
trict of the candidate ui (included). With
more candidates the votes keep more sparse,
so adding this control variable was neccesary

1, 2, 3, 4 Place of the candidate in their list in ballot
as a One Hot Encoding (4 features). Each
electoral list in a ballot has an specific order
of candidates. If candidate ui is the first
candidate of the list (list head) it will have
a value of 1 for feature 1 and 0 for 2, 3 and
4.

CIUDADANOS, COMUNES, CONVER.,
EVOPOLI, FREVS, IGUALDAD, PCC,
PCCH, PDC, PEV, PH, PL, PNC, PPD,
PR, PRO, PS, PTR RD, REPUBL. RN,
UDI, UPA

Party of the candidate as a One Hot Encod-
ing (23 features)

3.3.3 Correlation

Correlation is a measure of statistical dependency of two variables (i.e., changes in one vari-
able implies changes in the other). For example, assessing the correlation strength between
the electoral outcome of candidates and each Twitter influence features gives an idea of which
Twitter features hold more information related to votes.

A standard measure of the correlation between two random variables is Pearson correla-
tion coefficient r, defined in Definition 3.10. Pearson’s r is a measure of a linear correlation,
and it is sensitive to nonlinear transformation, like log. This was a problem, because we
preferred not to make assumptions about the data distribution.

Definition 3.10 ([8]) Pearson correlation

r(X, Y ) =
cov(X, Y )

σXσY
=̂

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
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Spearman correlation

Instead, we seek a correlation metric invariant to monotonic transformations that measure a
monotonic (not necessarily linear) correlation. We chose the Spearman correlation coefficient
ρ, in Definition 3.11, as the correlation metric, and computed the Spearman ρ between the
influence features and the votes percentage of each candidate.

Definition 3.11 ([8]) Spearman correlation

ρ(X, Y ) = r(Rank(X),Rank(Y ))

Where function Rank(Z) : 2R =⇒ 2N maps any set of numbers to its ranking, mean that
the max value will turn to 1 and the lower value to len(Z). Tied values (repeated values in Z)
are mapped to the same index.

3.3.4 Regression

Correlation is a good first approximation to understand the dependency between Twitter
influence and electoral results, but its main pitfall is that does not consider other control
variables.

To include more information, we modeled the problem as linear regression. Each candidate
is an observation; the target variable is the district votes percentage of each candidate. As
predictors, we used the base features defined in Section 3.3.2.

We did not use all the influence features at the same regression, but instead, we computed
a single regression for each feature because we wanted to compare features with features in
terms of how they determine the electoral outcome.

Definition 3.12 Linear regression model to evaluate a feature F

y(Log District Vote Percentage) = β0 + βFxF +
∑

i∈Base Features

βixi

∀F ∈ Twitter metrics ∪ Sentiment analysis features

∪ Network analysis features ∪ Custom PageRank features

For each feature F named in Section 3.2, we performed a Log District Normalization Yeo-
Johnson and then a Standardization, as explained in Section 3.3.1. After that, the regression
model defined in Definition 3.12 was used and two evaluation metrics were obtained.

The first metric is coefficient βF . The idea behind the normalization and standardization
is to be able to compare the different beta coefficients in terms of their standard deviation
[1]. There are some criticisms to this approach because standardized coefficients are not
numerically interpretable [21], but we use their value relative to standardized coefficients of
other features and keep the same base predictors.
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Definition 3.13 ([16]) R2

R2 = 1− SSres
SStot

=
SSreg
SStot

Where SSres is the residual sum of squares, SSreg is the regression sum of squares, and
SStot = SSreg + SSres.

Definition 3.14 ∆R2 of a feature F

∆R2
F = R2

base features ∪{F} −R2
base features

The second metric is the R2 score, as defined in Definition 3.13. The interpretation of
this score is the percentage of variance of dependent variable explained by the independent
variables. This is the same that 1− the percentage of variance captured by the residuals,
which by definition is not captured by the regression. R2 is a metric of goodness of fit related
to linear regression.

We compared the difference between the R2 of the regression with the F feature and a
base regression without the F features (only Base features and intercept). For each F , we
measured that difference as ∆R2, defined in Definition 3.14. The interpretation for this delta
is the percentage of the electoral result variance explained by feature F .

Interaction term

The linear regression model assumes that the effect of each predictor in the target variable
is independent. Does the relation between the retweet count and percentage of votes of a
candidate depend on gender? Does it depend on the location of the candidate? We need to
model the relationship between these categorical features and the influence features to answer
questions like this. We included an interaction term in each feature’s regression to achieve
this, as shown in Definition 3.15.

Definition 3.15 Linear regression model with interaction term βI(F,c) between F and c

y(Log District Vote Percentage) = β0 + βFxF + βI(F,c)xFxc +
∑

i∈Base Features

βixi

∀F ∈ Twitter metrics ∪ Sentiment analysis features

∪ Network analysis features ∪ Custom Pagerank features

c ∈ {gender, rm}

Variable c must be binary (0 or 1). When c = 1, we can refactor the coefficient of xF
in the regression as βF ′ using βF ′xF = (βF + βI(F,c))xf . When βI(F,c) is significant, we can
conclude that variable c is a moderator [9] in the relationship between variables F and y.
A moderator is a variable “that affects the direction and/or strength of the relation” of a
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predictor and the dependent variable [3]. The value of βI(F,c) shows the difference in the
strength of this relationship when c = 0 vs c = 1.

For each Twitter influence feature F , we computed the moderation effect with the binary
variables gender (1=woman, 0=man) and rm (1=Metropolitan Region, 0=Another region)
presented in Table 3.6.

3.3.5 Classification

Linear regression allowed us to assess the strength of the linear relationship between Twitter
influence features and electoral outcome of each candidate, using base features as control
variables. That relationship is measured for all the candidates in all the range of vote
percentage for range [0, 1].

The OLS considers all observation equally. Although in electoral processes, the number of
candidates may be considerably higher than the number of seats. For example, in the election
we are studying (2021 Constitutional Convention election) there were 1279 candidates for
138 seats, so only ∼ 10% of the candidates were elected. This means the relevant candidates
(those we want to infer from data) are a small fraction of the sample. Therefore, we used a
model to capture the performance of the Twitter influence features in estimating the top-n%
candidates with more votes. Instead of a regression task, this transforms the problem into a
classification task of top-n% candidates.

Labelling strategies

The target variable must be discretized in two or more classes to transform the regression
problem into a classification problem. We defined two classes: a candidate belonging to
positive class (1) when it is part of the top-n% candidates with more votes in their district.
Else, they belong to the negative class (0). To separate the positive and negative classes,
we defined a vote percentage threshold, where values lower (or equal) are set to class 0 and
values higher are set to class 1. To define the threshold, district quantiles were used. For
each district, we computed the q quantile of the district percentage of the candidates.

The following are examples of what happens with different values of q. A quantile q = .5
split the district in two sets of ∼ 50% (both set is a different class). A quantile q = .9 splits
the district in a negative class set with ∼ 90% of candidates and a positive class set with
the other ∼ 10%. Values are approximate because the exact cut depends on the number of
candidates of each district.

For example, in a district with an odd number of candidates (e.g. 7), taking the quantile
q = .5 (median) would not lend to an exact 50%-50% balanced positive and negative classes
distribution. Because positive class is defined as the candidates with vote percentage higher
than median, only 3 of 7 (42.85%) would be positive class and 4 of 7 negative class.

Instead of this district quantiles approach, we could have used if the candidates got a seat
as the target class (1 if winner, 0 if loser). The seats are a function of the election outcome
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and the electoral system in place. For this election case, D’Hondt method [14] was applied to
assign seats to electoral lists and parties, but also gender correction took place. As the seat
winning depends of other factor rather than the candidate itself, we keep the votes-based
class.

In summary, we set the class of each candidate based on the q quantile of votes in their
districts. We experimented with several q values from 0.5 (∼ 50% True class) to 0.9 (∼ 10%
True class). The input for the classifiers was built with the same methodology of Linear
regression: a model was fitted for each feature and base features were added.

Cross validation

The performance of the classifiers was evaluated out-of-sample (i.e., the data used in train-
ing the classifier is different from the data used for the evaluation). We defined a specific
way of evaluating named Leave-one-district-out Cross Validation. It is based on a common
evaluation scheme called leave-one-out cross validation, when for n observations, n models
are trained using n− 1 samples and evaluated using the remaining sample.

…

Test set 
(district)

Leave-one-district-out Cross Validation

Training set

Predicted 
vector ŷ

Figure 3.1: Leave-one-district-out Cross Validation. Each fold (chunk of candidates) is a dis-
trict. Folds have different sizes to illustrate that districts have different number of candidates.
Predicted vector ŷ is used to compute all evaluation metrics

We defined the folds (packages of observations) of the cross validation as the electoral
districts. This divided our data in 28 districts with a variable number of candidates in each
one. We used each district as test (predicted) set and the remaining 27 districts to train
a classifier. Rather than computing the average of the district metrics, we concatenated

24



these predictions to have a single vector ŷ that contains out-of-sample predictions for each
candidate. Comparing the estimation with the real values y, we obtained several performance
metrics (defined below) for the classifiers. The full process is shown in Figure 3.1.

Performance metrics

As the classes may be highly imbalanced (e.g. in the case of using quantile q = 0.9 for classes),
the performance metrics should capture both if the classifier is sensitive to the positive class
(recall) and if it raises precise predictions (precision). Both concepts are defined in Figure
3.2.

Figure 3.2: Definition of Precision and Recall in a confusion matrix of a binary classification
(Figure from [28])

There is a tradeoff between precision and recall. A classifier may be conservative to assign
a True class, that would lead to a high precision but low recall situation. On the other hand,
a generous classifier assigning lots of True classes may achieve a higher recall but with a cost
in the precision of their predictions. Good validation metric for classifiers need to consider
both components of the classification.

We decided to use a metric that combines precision and recall. We selected Precision
Recall Curves (PR). Precision Recall Curves are a way to summarize the tradeoff between
precision and recall within a single classifier, so it’s more robust that a raw F1 score. To do
that, we need the probability of class that the model assigns to each observation and compute
precision and recall for each probability threshold. This means that precision recall curves
capture the notion of a conservative classifier (a higher probability threshold, assigns fewer
positive class, but more accurate) and a generous classifier (a lower probability threshold,
has higher recall, bus less accurate) that we mention earlier. Figure 3.3 contains an example
of PR curves.
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Figure 3.3: Example of Precision Recall Curves. Red line represents the perfect classifier,
with 100% precision for all recalls. Black dashed line represents a random classifier, with
average precision equivalent to the percentage of positive class observation (in this case, as
classes are balanced, baseline is 50% precision). Blue curve represents a classifier better than
random. Precision-recall trade off appears when Precision is lower for higher recalls.

A way to summarize a Precision Recall curve is the Area Under the Curve (AUC), also
known as Average Precision, as defined in Definition 3.16. This metric is more robust that
a raw F1 score, because it accounts for multiple possible thresholds chosen by an specific
classifier, rather that choosing a single one, that is the case of F1.

Definition 3.16 ([30]) Average Precision (AP), equivalent to Precision Recall Area Under
the Curve (PR-AUC)

AP =
∑
n

(Recalln − Recalln−1)Precisionn

Definition 3.17 ∆AP of a feature F

∆APF = APbase features ∪{F} − APbase features
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To evaluate the performance of each Twitter feature, we compared the performance of
the classifier using only the base features with the classifier adding a Twitter feature F , as
defined in Definition 3.17. This is similar to what we did for regression in Definition 3.14.
This metric can be interpreted as the amount of precision that is due to each feature F . A
graphic interpretation can be found in Figure 3.4. If adding a feature F worsens the average
precision, ∆AP will be negative.
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Precision-Recall curve with balanced classes

Best classifier (AP = 1.00)
Base features + Twitter feature (AP = 0.77)
Base features (AP = 0.70)
Random baseline (AP = 0.50)

Figure 3.4: Example of ∆AP . Orange curve represents the classifier performance using only
base features. In that case, Area Under the Curve is AP = 0.70. Blue curve represents the
classifier performance using base features and a Twitter feature F . We expect performance
to increase when adding a Twitter feature, like in this example, with an area AP = 0.77. In
this case ∆APF = 0.77 − 0.70 = 0.07, and that value is equivalent to the area between the
two curves (blue and light orange), including possible negative values.

Like the regression model, for each feature F named in Section 3.2 (Feature Engineering),
we performed a Log District Normalization Yeo-Johnson, as explained in Section 3.3.1 (Pre-
processing). A Random Forest classifier with 100 predictors and undersampling was used.
Standardization was not need because the Decision Trees are invariant to the scale of the
inputs.
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3.3.6 Political PageRank

We evaluated the Political PageRank features using classification the same way we evaluate
the other features. The procedures named above were repeated to these features. Instead
of comparing the Modified PageRank to the base model, it is compared with the regular
PageRank to measure if the modification had any effect in that metric performance.

28



Chapter 4

Results

4.1 RQ1: Twitter influence features assessment

4.1.1 Descriptive analysis

As an exploratory analysis, we checked the distribution of vote percentage depending on
whether the candidate had a Twitter account. We considered as candidates with Twitter
only the candidates whose account was scraped, if no account was found, it was assumed the
candidate did not have an account. The boxplot in Figure 4.1 confirms the first intuition that
candidates with Twitter have more votes that candidates without Twitter. The quartiles of
Twitter candidates’ sample are higher than for No Twitter candidates.

0.05% 0.10% 0.20% 0.50% 1.00% 2.00% 5.00% 10.00% 20.00%

 

Has Twitter?
Yes
No

Distribution of district vote percentages of candidates with and without Twitter account

District Vote % (log scale)

Figure 4.1: Comparison between the vote percentage distribution of candidates depending
on if they have a Twitter accounts, based in the web scraping.
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We confirmed this difference doing a T-test of difference of means. We used the log-district
percentage, as votes percentage is similar to a log-normal distribution. The null hypothesis
is H0 : µTwitter ≤ µNo Twitter and the alternative hypothesis Ha : µTwitter > µNo Twitter, where µ
is the vote percentage mean of each sample. We used a significance level of 5%. Running the
test with our candidate data returned a T-statistic value of −5.311 and a p-value < 10−8.
Null hyphothesis was rejected, socandidates for this election with Twitter had significantly
a higher percentage of votes that candidates without Twitter accounts in average.
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Figure 4.2: Correlation between raw Twitter influence features

Figure 4.2 shows the correlation between all the influence features computed from Twitter.
We used the absolute value of Spearman to visualize the magnitude of the correlation, not it
positive or negative sign. As shown in the figure, all network centrality metrics (out degree,
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degree, in degree, eigenvector centrality, pagerank, harmonic centrality) correlate
with Spearman values > 0.8. Furthermore, those network features also correlate with other
tree features: tweet made, retweet count and favorite count. This make sense: with more
tweets, there are more retweet possibilities, and also more retweets mean more exposition
and more favorites. Finally, all network features were built from the retweet graph, so,
consistently, retweet count correlates with all these metrics.

The correlation between the network centrality features can be observed in more detail
in Figure 4.3. Spearman correlation captured the correlation of harmonic centrality with
other features regardless the non-linearity of that correlation.
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Figure 4.3: Correlation between raw Network analysis features
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4.1.2 Correlation

Figure 4.4 (data in Table 4.1) shows the Spearman correlation between the vote percentage
of each candidate and each feature proposed. Several aspects can be observed from this plot.

First thing we can observe is related to preprocessing: District normalization increased the
correlation with electoral outcome compared to the raw (without preprocessing) feature. This
was an expected behavior of the preprocessing, because, as we said, the district normalization
sets both dependent and independent variable on the same scale.

The best features in terms of correlation with votes are favorite count and degree,
with Spearman > 0.5 and variables pagerank, retweet count, in degree,tweets made,
harmonic centrality, out degree achieve Spearman > 0.4. Those eight variables have
a moderate correlation with electoral result, according to Dancey & Reidy (2007) [11]. The
rest of the variables have a weak correlation with votes.

Another interesting fact is that features related to positive sentiments had better corre-
lation with votes (pos: ρ = 0.334, joy: ρ = 0.345) that negative sentiments (neg: ρ = 0.092,
anger: ρ = 0.047).

Table 4.1: Spearman correlation between Twitter features and votes percentage of candidates.
*** p < .001, ** p < .01, * p < .1

Preprocessing
feature raw district normalize log district normalize
anger -0.074* 0.044 0.047
neg -0.119** 0.082* 0.092*
hashtags -0.013 0.084* 0.118**
sadness 0.092* 0.15*** 0.151***
videos 0.075* 0.162*** 0.165***
photos 0.041 0.153*** 0.167***
quotes made 0.045 0.166*** 0.17***
replies made 0.006 0.187*** 0.197***
user mentions -0.045 0.207*** 0.238***
eigenvector centrality 0.199*** 0.334*** 0.325***
pos 0.167*** 0.327*** 0.334***
retweets made 0.151*** 0.32*** 0.335***
joy 0.219*** 0.338*** 0.341***
out degree 0.183*** 0.335*** 0.422***
harmonic centrality 0.193*** 0.382*** 0.426***
tweets made 0.162*** 0.374*** 0.444***
in degree 0.231*** 0.449*** 0.463***
retweet count 0.251*** 0.485*** 0.478***
pagerank 0.235*** 0.481*** 0.48***
degree 0.242*** 0.477*** 0.517***
favorite count 0.27*** 0.535*** 0.537***
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Figure 4.4: Spearman correlation between Twitter features and votes with different prepro-
cessing
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4.1.3 Regression

Standardized coefficients

We performed regressions and computed standardized coefficients βF and explained variance
∆R2 for each influence feature, as detailed in Section 3.3.4. Figure 4.5 shows the standard-
ized coefficient of influence features using the same base features in each regression. Using
a significance level of 5%, we can notice that positive sentiment features (joy and pos)
have significant coefficients, but negative sentiment features (neg and anger) does not. In
that order, the features more closely related to the vote percentage are favorite count,
retweet count, pagerank, degree, in-degree and eigenvector centrality. These fea-
tures are also correlated between them, as we saw in Figure 4.2.
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Figure 4.5: Standardized regression coefficient for Twitter influence features. Error bars
represent the 95% confidence interval for each estimated value βF

Explained variance

Figure 4.6 shows the percentage of variance explained by each feature. The value of ∆R2

is consistent with βF , as the top-6 features that explain more variance of the votes percentage
(favorite count, retweet count, pagerank, degree, in-degree and eigenvector centrality,
all with ∆R2 > 4%) are the same with higher standardized coefficients. The best result is
obtained by favorite count, which explains 7.7% of variance of votes percentage.
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Figure 4.6: ∆R2 for Twitter influence features

Interaction term

We performed regressions and computed interaction term coefficients βI(F, c) for each influ-
ence feature and for categorical variables gender and rm, as detailed in Section 3.3.4.
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(b) Interaction between rm (Metropolitan Region) and Twitter features

Figure 4.7: Interactions terms

Figure 4.7a shows the interaction coefficients with variable gender. The coefficient is
significant for variables favorite count, pos, retweet count, joy, degree, in degree,
videos. Gender moderates the relationship between the votes percentage of a candidate
and the variables listed. All the values are negative, that means that the relationship with
votes is weaker for gender = 1 (women) and stronger for gender = 0 (man).
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Figure 4.7b shows the interaction coefficients with variable rm. The coefficient is signifi-
cant for variables degree, in degree, out degree, favorite count, tweet made, retweet count,
pagerank, eigenvector centrality, harmonic centrality (all correlated). As the value
is positive, this means that relationship with votes is stronger for rm=1, candidates from
Metropolitan Region, and weaker for candidates from other regions.
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Figure 4.8: Interaction terms interpretation examples

A graphic interpretation of interaction term is shown in Figure 4.8. The value of interac-
tion coefficient βI(F, c) is the angle between the regression lines for each category. In Figure
4.8b the value of βI(F, c) should be positive, because the slope (coefficient) of degree for
rm=1 is greater than for rm=0. On the other hand, in Figure 4.8a, the interaction term
should be negative, as slope for gender=1 (woman) is lower than for gender=0 (man). Both
assertions were confirmed in Figure 4.7.

Best regression model

Figure 4.9 shows the regression results for base features plus feature favorite count, which
achieve the best results in terms of Pearson correlation and R2.

Figure 4.9a shows that the residual of the model has a normal-like distribution. Plot 4.9b
shows a subtle heteroscedasticity in the trend line. Finally, Figure 4.9c show the fitted model
values compared to the real values.
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Figure 4.9: Regression analysis of the best linear model (base features + favorite count
feature)

4.1.4 Classification

We performed classification for each Twitter influence feature using a labeling strategy based
on the quantile of district votes, as detailed in Section 3.3.5.
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Figure 4.10: PR-AUC score for different threshold quantiles and features

Figure 4.10 shows the classification performance results using different class thresholds
(quantiles). Each dot in the figure represents a different classifier. For example, the blue
point in (0.75, 0.5) represents a classifier trained using base features ∪ {degree}, where
positive class is a candidate with more votes than 75% of candidates, in each district. In that
case, 0.5 is the Precision Recall Area Under the Curve (or Average Precision) value from
cross-validation estimation using this classifier.

The dashed line is the classifier performance using only base features (no Twitter features).
The expected result when including a Twitter influence feature is to have a better PR-AUC
performance, as more information is available to infer the electoral outcome. This is true
for features like degree, favorite count and pagerank, which consistently achieve higher
values that the baseline. In the best case, the PR-AUC gain is about ∼ 0.1. Notice that
this gain (the difference between the baseline and the model with Twitter feature) is exactly
∆APF (having a ∆ for each quantile and feature). On the other hand, for feature neg, we
do not have a consistent gain of performance. Other issue to notice is that higher values of
quantile q lead to lower values of PR-AUC. This make sense, because is harder to find the
top 10% candidates with more votes than the half with move votes.
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Figure 4.11: Precision Recall curves for different class thresholds quantiles q
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We focused in quantiles 0.5 and 0.9, because they represent the most general case (pre-
dicting the half with more votes in each district) and the most specific case (predicting the
top 10% most voted for each district) respectively. Figure 4.11 shows the Precision Recall
curves for selected features and quantiles 0.5 and 0.9.

All the Twitter features shown in Figure 4.11a improved the classifier’s precision. The
best case is degree (AP = 0.76) followed by pagerank (AP = 0.75) and favorite count

(AP = 0.74). Even the worst case showed in the figure improves (neg,AP = 0.68). The gain
of precision is higher when recall is lower. For high recall values, (close to 1), all curves tend
to converge to the random classifier.

The case of Figure 4.11b is different. As it was shown in Figure 4.10, precision values
for q = 0.9 are lower than for q = 0.5. For example, PR-AUC for baseline using q = 0.5 is
AP = 0.64, and using q = 0.9 that value drops to AP = 0.24. A narrower positive class
makes precision drop. Also, it is interesting that the gain of precision is higher in the range
of recall (0.4, 0.9). Keep in mind that recall in both figures is different. A recall of 1 in figure
A means identifying 50% of the sample, and the same recall in figure B means identifying
10% of the sample. Using the same reasoning, a recall of 0.1 in figure A mean identifying 5%
of the sample, and the same recall in figure B means identifying 1% of the sample. As 1% of
sample is smaller than 10 candidates, it seems that Twitter features do not have the power
to identify so finely the top candidates.
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Figure 4.12: ∆AP score for each Twitter influence feature and threshold quantiles 0.5 and
0.9

Figure 4.12 shows the ∆AP for both thresholds quantiles 0.5 and 0.9. As we said earlier,
∆AP can take negative values in the case that adding the Twitter feature makes the model
worse than the baseline. We see that for quantile 0.5, values for all features are positive,
so all the features add precision to the classifier. The worst case is feature sadness with
∆AP = 0.01, and the best case is feature degree with ∆AP = 0.12. In contrast, for quantile
0.9 the majority of Twitter features decrease the classifier’s precision. The best case is feature
retweet count with ∆AP = 0.04.
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Figure 4.13: Average of ∆AP of all quantiles for each Twitter influence feature

Instead of taking each quantile individually, we average the results of all quantiles to have
a single ∆AP for each feature. This is equivalent to taking the average of each curve in
Figure 4.10 for the nine quantiles values in the Y axis. Figure 4.13 shows the value of
quantile average ∆AP of each Twitter influence feature. The interpretation of this value is
the precision that is explained by a single feature in average. For example, a value of 0.5 (or
50%) would mean that feature is responsible for increasing the precision of the classifier in
0.5 in average, regardless of the specific target class label chosen to make the classification.
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Figure 4.14: Regression performance (∆R2) vs. Classifier performance (Average of ∆AP )
for each Twitter feature. Blue line is the identity function

∆R2 and ∆AP are similar metrics: both represent the percentage explained by a feature
but in different ways. ∆R2 is related to the variance of the votes that is captured by the
feature. It cannot take negative values, because R2 does not decrease with a bad feature (in
the worst case, it remains constant).

∆AP is the precision associated to a feature. It may take negative values for models worse
than baseline. We would expect this metrics to be correlated, because a feature that explains
more variance should lead to more precise predictions. To check this relation, Figure 4.14
shows the ∆R2 and ∆AP for each Twitter feature. The two created metrics are consistent,
correlated and have similar values, as shown by the identity function.
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4.2 RQ2: Modified PageRank

We computed three modifications of PageRank as defined in Section 3.2.4. Several γ values
were used, from 0 to 0.85. Figure 4.15 shows the distribution of the PageRank values for each
modification and selected γ values. As expected, γ = 0 returned the same values for all the
PageRank types, because that specific case is equivalent to the original PageRank formula.

1μ 2 5 10μ 2 5 100μ 2 5 0.001 2 5 0.01 2 5

type
raw pagerank
party
coalicion
list_district

PageRank value (log scale)

Figure 4.15: Distribution of Custom political PageRanks for selected γ values

It can be noticed that with a higher γ the PageRank has fewer outliers (less values to the
right of of the upper fence of the boxplot). Also, when γ > 0 the PageRank median is higher
comparing to γ = 0.
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Both consequences of the PageRank modification (fewer outliers and higher median) were
expected, as the modification was to transfer PageRank mass from the more influential
candidates to candidates less known but politically connected (by party, district electoral list
or political coalition) to relevant candidates.
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Figure 4.16: Correlation between PageRank and Custom political PageRanks

Figure 4.16 shows how correlated are the new modified PageRank features with the orig-
inal PageRank. As can be observed, for all γ values the Spearman ρ is higher than 0.86.
The data shows that the distribution shift (shown in figure 4.15) generated by the PageRank
modification does not affect the order of the candidates, only the value, as the Spearman
coefficient is related to the rank of the observations. Also, we observe that using higher values
of γ generates lower correlation with the original PageRank, and that makes sense because
with higher γ values, the original network connections are less important than the political
connections.
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Figure 4.17: Correlation between electoral outcome and Custom political PageRanks

Figure 4.17 shows the correlation between the modified PageRank features and the vote
district percentage of candidates. The point (0, 0.48) is equivalent to the original PageRank
and match the Spearman value presented in Table 4.1. We observe that the difference with the
original PageRank depend on the type of modification applied. The party-based PageRank
had the best performance in terms of correlation, with a best case of Spearman ρ = 0.546
using γ = 0.313, outperforming the raw PageRank for every γ < 0.85 . The political coalition-
based PageRank also outperforms the original PageRank for every γ < 0.65, and a best case
of Spearman ρ = 0.510 with γ = 0.223. The district list PageRank was the exception because
for γ > 0.10 the correlation with votes decreases comparing to the original PageRank.
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Figure 4.18: ∆R2 for each Custom political PageRank

Using regressions, we computed the ∆R2 for the modified PageRank to assess if this cus-
tomization increases the explained variance of the features. Figure 4.18 shows the results.
For all the γ values, the value of ∆R2 achieved is worse than the original PageRank. The
custom political PageRank explains less variance than the raw PageRank for all the modifi-
cations. The decrease of ∆R2 is smaller for the party PageRank, followed by the list district
PageRank, and finally the coalition PageRank had the most significant drop compared to
the raw PageRank.
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Figure 4.19: Classifier performance of each Custom political PageRank feature

Finally, we used classification to evaluate the custom PageRank features, computing the
∆AP for each one and comparing to the original PageRank. Figure 4.19 shows ∆AP for
several γ values. In Figure 4.19a we observe the case of classification quantile q = 0.5 and in
Figure 4.19b the case of quantile 0.9. Both have in common that there is not a clear pattern
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of an increase or decrease of ∆AP

Figure 4.19c shows the average of ∆AP for all quantiles. We noticed that, on average,
∆AP decreases when γ increases. Only three measurements from the party PageRank out-
performs the raw PageRank, but the gain of performance is low (< 0.01) precision, so we did
not consider it relevant.

Also, notice that for γ = 0 in all subfigures from Figure 4.19, all PageRanks should be
equal (and equal to the raw PageRank), like in the previous figures. That is not the case
because of the stochastic component of the Random Forest classifier

Although it may seem contradictory, modified party and coalition PageRanks have higher
correlation with votes but lower performance on regression and classification. Figure 4.20
contains a possible explanation. In Figure 4.20a, the x-axis is the raw PageRank and the
y-axis is the modified party PageRank. The same effect noticed in Figure 4.15 is present
here: modified PageRank takes mass from the highest values and transfer it to lower ones.
This generates an increase in the sample median and the reduction in the amount of outliers.

Figure 4.20b tells a different history. It contains the same information that Figure 4.20a,
but using the rank of the feature instead of the PageRank value. The lowest and highest values
tend to mantain their positions, and the variation happens with the values in the middle.
This variation in the rank is producing the little increase (< 0.07) in the Spearman coefficient
shown in Figure 4.17, as Spearman is computed with the rank of the features. Nevertheless,
regression and classification use the numeric value, so the correlation improvement does not
translate into regression or classification.
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Chapter 5

Conclusions

Using the result of the previous section, we propose the following conclusions to answer the
research questions.

RQ1: To what extent does the influence on Twitter correlates with the votes obtained?
What variables does this relationship depend on?

1. Twitter’s explanatory power on elections is minimal but exists. Only 6 of the 21 Twitter
influence feature achieved results higher than 5% in either ∆R2 or the average of ∆AP
for all quantiles:

(a) favorite count: ∆R2 = 0.0773, Average ∆AP = 0.0847

(b) retweet count: ∆R2 = 0.0682, Average ∆AP = 0.0849

(c) pagerank: ∆R2 = 0.0668, Average ∆AP = 0.0729

(d) degree: ∆R2 = 0.0479, Average ∆AP = 0.0649

(e) in degree: ∆R2 = 0.0468, Average ∆AP = 0.0588

(f) eigenvector centrality: ∆R2 = 0.0541, Average ∆AP = 0.0502

Based on these results, an optimistic interpretation would be that Twitter’s influ-
ence can explain itself ∼ 8% of the electoral results by itself. That is the case of
favorite count. A more pessimistic interpretation would be that Twitter influence
explains at least ∼ 4% of the electoral results by itself, as is shown by the 6 features
listed above.

As all other features capture less than that, we conclude Twitter influence features
capture a small fraction of the electoral phenomenon. But, again, this is consistent
with other studies on elections [23] [4].

2. Positive tweets have a higher correlation with election results than negative tweets, as
shown consistently by the correlation coefficient, regression and classification. As was
seen in Results:

(a) pos: Spearman ρ = 0.3343 , ∆R2 = 0.0041, Average ∆AP = 0.0287
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(b) joy: Spearman ρ = 0.3414 , ∆R2 = 0.0106, Average ∆AP = 0.0106

(c) sadness: Spearman ρ = 0.1508 , ∆R2 = 0.0028, Average ∆AP = −0.0054

(d) neg: Spearman ρ = 0.0918 , ∆R2 = 0.0017, Average ∆AP = −0.0022

(e) anger: Spearman ρ = 0.0466 , ∆R2 = 0.0011, Average ∆AP = −0.0010

Positive and joy tweets have a stronger relationship with the electoral outcome than sad,
negative or angry tweets for all the metrics proposed. For the classification, negative
features even worsen the precision of the baseline.

3. The location of the candidates affects how much is the influence in Twitter related to
the electoral outcome. Candidates from Metropolitan Region (capital) of Chile had a
stronger relationship between centrality measures and vote percentage than the other
candidates, as showed by the regression interaction term. The interaction term analysis
also showed a gap between women and men in the correlation between the electoral
outcome and Twitter influence, not only in centrality but also in positive tweets. The
relationship between positive/joy tweets and electoral outcome is moderated by gender,
with men having a higher correlation than woman.

RQ2: Is the political affiliation of a candidate (belonging to a political party, political
coalition or electoral list) relevant for the Twitter influence? How does affiliation interact
with Twitter?

1. The data did not show a significant increase on the performance of inference of electoral
outcome (measured as Average Precision score) using the proposed modified PageR-
ank features, even with an increase of correlation with votes in some cases, like party
PageRank. This suggests we cannot reject the hypothesis that the political spillover
effect does not exist. All modified PageRank features had equal or worse performance
than the original PageRank, which led to the hypothesis that the affiliation information
we injected into the network was already contained. Therefore, no new information was
added, and there was no performance gain. This hypothesis is interesting and should
be tested.

5.1 Description, Explanation or Prediction?

Hofman et al [17] proposes an scheme of different levels of empirical modelling with two main
axes. The first axis is the focus, Focus on specific features or effects (to explain) or Focus
on predicting outcomes (to predict). Second axis relates to intervention, No intervention or
distributional changes or Under interventions or distributional changes.

Using that framework, this research belongs to the Descriptive modelling quadrant, this
is Focus on specific features or effects and No intervention or distributional changes. This
means our results are neither causal nor predictive but rather a measure of correlation, valid
only for our sample.
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How can we integrate explanation and prediction in this problem to achieve more robust
results? Predictive and causal approaches need to be included.

To have a predictive model, we need to validate the model results using data from a
similar future election (e.g. the Chilean Parliament elections of 2021, 6 month after the
Constitutional Convention election). Validate the result of a regression or classifier using
data from the same election counts as an inference, but it is not a prediction.

To achieve a causal explanation, a counterfactual (e.g. What happens if Twitter does not
exist?) must be set to assess the causal effect of an intervention, e.g., having Twitter in an
election. This is hard, because it requires imagining a world where Twitter does not exist
and trying to estimate the results of the election in that world.

Correlation does not imply causation. This is a statistical mantra used to remember
that causal effects cannot be inferred from the facts two variables grow together. However,
causation may imply correlation. As stayed in the Reichenbach’s Common Cause Principle: if
two events are correlated, then either there is a causal connection between the correlated events
that is responsible for the correlation or there is a third event, a so called (Reichenbachian)
common cause, which brings about the correlation [33].

We proved that there is a statistical relation between Twitter features (the strength of
the relation depends on the feature) and vote percentage of candidates. We could assume
a latent variable such as the public knowledge (PK) of a candidate, and attribute both the
election outcome and the Twitter metrics as an effect of PK. Structural Causal Models,
Graphical model or other tools to model these causal relationships may be helpful for such
modeling in future research.
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[7] José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-Hui Ho, Hojin Kang, and Jorge
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ANNEXED

Example tweet from Twitter API

1 {

2 "_id": {

3 "$oid": "60ced9df9c7dd09e146307c5"

4 },

5 "created_at": "Thu Apr 08 12:12:58 +0000 2021",

6 "id": {

7 "$numberLong": "1380131552600985603"

8 },

9 "id_str": "1380131552600985603",

10 "full_text": "RT @CNNChile: FMI propone un impuesto temporal a

11 ricos para financiar necesidades derivadas de la pandemia

12 https://t.co/6MkP77Gzxi",

13 "truncated": false,

14 "display_text_range": [

15 {

16 "$numberInt": "0"

17 },

18 {

19 "$numberInt": "130"

20 }

21 ],

22 "entities": {

23 "hashtags": [],

24 "symbols": [],

25 "user_mentions": [

26 {

27 "screen_name": "CNNChile",

28 "name": "CNN Chile",

29 "id": {
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30 "$numberInt": "18248645"

31 },

32 "id_str": "18248645",

33 "indices": [

34 {

35 "$numberInt": "3"

36 },

37 {

38 "$numberInt": "12"

39 }

40 ]

41 }

42 ],

43 "urls": [

44 {

45 "url": "https://t.co/6MkP77Gzxi",

46 "expanded_url": "https://www.cnnchile.com/mundo/fmi-propone-

47 impuesto-temporal-ricos_20210407/",

48 "display_url": "cnnchile.com/mundo/fmi-prop...",

49 "indices": [

50 {

51 "$numberInt": "107"

52 },

53 {

54 "$numberInt": "130"

55 }

56 ]

57 }

58 ]

59 },

60 "source": "<a href=\"http://twitter.com/download/android\"

61 rel=\"nofollow\">Twitter for Android</a>",

62 "in_reply_to_status_id": null,

63 "in_reply_to_status_id_str": null,

64 "in_reply_to_user_id": null,

65 "in_reply_to_user_id_str": null,

66 "in_reply_to_screen_name": null,

67 "user": {

68 "id": {

69 "$numberLong": "1187042015382507520"

70 },

71 "id_str": "1187042015382507520"

72 },

73 "geo": null,

74 "coordinates": null,

75 "place": null,

76 "contributors": null,
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77 "retweeted_status": {

78 "created_at": "Wed Apr 07 20:17:52 +0000 2021",

79 "id": {

80 "$numberLong": "1379891192314351616"

81 },

82 "id_str": "1379891192314351616",

83 "full_text": "FMI propone un impuesto temporal a ricos para

84 financiar necesidades derivadas de la pandemia

85 https://t.co/6MkP77Gzxi",

86 "truncated": false,

87 "display_text_range": [

88 {

89 "$numberInt": "0"

90 },

91 {

92 "$numberInt": "116"

93 }

94 ],

95 "entities": {

96 "hashtags": [],

97 "symbols": [],

98 "user_mentions": [],

99 "urls": [

100 {

101 "url": "https://t.co/6MkP77Gzxi",

102 "expanded_url": "https://www.cnnchile.com/mundo/fmi-propone-

103 impuesto-temporal-ricos_20210407/",

104 "display_url": "cnnchile.com/mundo/fmi-prop...",

105 "indices": [

106 {

107 "$numberInt": "93"

108 },

109 {

110 "$numberInt": "116"

111 }

112 ]

113 }

114 ]

115 },

116 "source": "<a href=\"https://about.twitter.com/products/tweetdeck

117 \" rel=\"nofollow\">TweetDeck</a>",

118 "in_reply_to_status_id": null,

119 "in_reply_to_status_id_str": null,

120 "in_reply_to_user_id": null,

121 "in_reply_to_user_id_str": null,

122 "in_reply_to_screen_name": null,

123 "user": {
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124 "id": {

125 "$numberInt": "18248645"

126 },

127 "id_str": "18248645"

128 },

129 "geo": null,

130 "coordinates": null,

131 "place": null,

132 "contributors": null,

133 "is_quote_status": false,

134 "retweet_count": {

135 "$numberInt": "1640"

136 },

137 "favorite_count": {

138 "$numberInt": "3324"

139 },

140 "favorited": false,

141 "retweeted": false,

142 "possibly_sensitive": false,

143 "lang": "es"

144 },

145 "is_quote_status": false,

146 "retweet_count": {

147 "$numberInt": "1640"

148 },

149 "favorite_count": {

150 "$numberInt": "0"

151 },

152 "favorited": false,

153 "retweeted": false,

154 "possibly_sensitive": false,

155 "lang": "es",

156 "datetime": {

157 "$date": {

158 "$numberLong": "1617883978000"

159 }

160 }

161 }

162

163

Listing 1: Tweet object in BSON (MongoDB) format extracted from Twitter API
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