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UNA NUEVA VISIÓN PARA EL LAPLACIANO FRACCIONARIO VIA
REDES NEURONALES PROFUNDAS

Este trabajo de tesis está basado en el estudio, via redes neuronales profundas, del
problema de Dirichlet fraccionario con condiciones de borde sobre un dominio acotado d-
dimensional. El problema de estudio se introduce en el Capítulo 1, presentando motivaciones,
además del resultado principal de esta tesis. Este consiste en demostrar que la solución del
problema de Dirichlet fraccionario puede ser aproximado con redes neuronales profundas a
precisión arbitraria, superando la maldición de la dimensionalidad.

Para demostrar el teorema principal es necesario ciertas herramientas estocásticas y de
aprendizaje profundo: en el Capítulo 2 se definen los procesos de Lévy, y los procesos iso-
trópicos α-estables que estarán relacionados con el Laplaciano fraccionario. En el Capítulo
3 se definen las redes neuronales profundas y las operaciones clásicas entre estos objetos. El
Capítulo 4 define los procesos llamados Walk-on-Spheres, que se relacionan con los procesos
α-estables de manera natural.

El Capítulo 5 muestra que la solución del Problema de Dirichlet fraccionario se puede re-
presentar de manera estocástica, a partir de los procesos α-estables y a partir de los procesos
Walk-on-Spheres.

En los Capítulos 6, 7 y 8 se demuestra que la solución del Problema de Dirichlet fraccio-
nario se puede aproximar mediante redes neuronales profundas que superan la maldición de
la dimensionalidad a una precisión arbitraria. El Capítulo 6 involucra el caso con término de
fuente nula, y el Capítulo 7 utiliza la parte asociada al término de fuente en la solución del
Problema de Dirichlet fraccionario. En Capítulo 8 se unen los resultados de los Capítulos 6
y 7 para concluir el Teorema principal de esta Tesis.

Finalmente, en el Capítulo 9 se discute sobre los resultados obtenidos, en las diferencias
entre este trabajo y los resultados para el Problema de Dirichlet clásico. Se discute además
sobre el trabajo a futuro.
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UNA NUEVA VISIÓN PARA EL LAPLACIANO FRACCIONARIO VIA
REDES NEURONALES PROFUNDAS

This work is devoted on the study, via deep neural networks, of the fractional Dirichlet
boundary value Problem in d dimensions over a bounded domain. The setting of the Problem
is introduced in Chapter 1, with some motivation and the principal result of this Thesis: we
prove that the solution of the fractional Dirichlet Problem can be approximated with deep
neural networks overcoming the curse of dimensionality and having arbitrary precision.

In order to prove the main theorem, we need certain stochastic and deep learning tools:
in Chapter 2 we define the Lévy processes, and the isotropic α-stable processes, which are
related with the fractional Laplacian. In Chapter 3 we define deep neural networks and their
classical operations. In Chapter 4 we define the Walk-on-Spheres processes, which are related
with the α-stable processes in a natural fashion.

In Chapter 5 we show that the solution of the fractional Dirichlet Problem can be repre-
sented in a stochastic form, using the α-stable and the Walk-on-Spheres processes.

In Chapters 6, 7 and 8 we prove that the solution of the fractional Dirichlet Problem
can be approximated by deep neural networks overcoming the curse of dimensionality with
arbitrary accuracy. Chapter 6 involves the case without source term, and Chapter 7 deal with
the associated source term. In Chapter 8 we join the results of Chapters 6 and 7 to conclude
the main theorem of this thesis.

Finally, in Chapter 9 we discuss the results of this thesis and the differences between this
work and recent results for the classical Dirichlet Problem. We also discuss some future work.
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Lo más terrible se aprende enseguida,
y lo hermoso nos cuesta la vida.

Silvio Rodríguez
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Chapter 1

Introduction

1.1. Motivation: using DNN to describe PDEs
Some studies of partial differential equations (PDEs) are interested in the approximation

of their solutions using numerical methods, such as finite differences and finite elements [2].
In low dimensions, these methods are efficient aproximations of the solution of PDEs with
arbitrary precision, but they fail when we increase the dimension. This is because the compu-
tational cost of these methods depends exponentially on the dimension of the domain with
the reciprocal of the accuracy as base.

In order to avoid this problem, deep neural networks (DNNs) have become key actors
in the approximation of solutions of PDEs [23, 32, 33]. Among them, deep learning based
algorithms have provided numerical simulations that approximates efficiently certain PDEs
in high dimensions, see, e.g. [5, 6, 18, 32, 33]. The corresponding simulations suggest that the
approximation by DNNs overcome the so-called curse of dimensionality, in the sense that
the number of real parameters that describe the DNN is bounded by a polynomial on the
dimension d, and on the reciprocal of the accuracy of the approximation.

Even better, recent works have theoretically proved that certain PDEs can be approxi-
mated by DNNs, overcoming the curse of dimensionality, see e.g. [7, 16, 17, 19, 23, 24]. The
work of Hutzenthaler et al. [23] proved that Parabolic PDEs in the whole space Rd can be
approximated by DNNs overcoming the curse of dimensionality. Similar results have been
proved with other PDEs, such as nonlinear PDEs [24], partial integrodifferential equations
[16] and elliptic PDEs with boundary conditions [17].

1.1.1. The case of the Laplacian
In order to describe the previous results in more detail, we start by considering the classical

Dirichlet boundary value Problem in d-dimensions over a bounded, convex domain D ⊂ Rd:{
−∆u(x) = f(x) x ∈ D,

u(x) = g(x) x ∈ ∂D,

where f, g are suitable continuous functions. In a recent work, Grohs and Herrmann [17]
proved that DNNs overcome the curse of dimensionality in the approximation of solution of
the above problem. More precisely, they used stochastic techniques such as the Feynman-Kac
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formula, the so-called Walk-on-Spheres (WoS) processes (defined in Chapter 4) and Monte
Carlo simulations in order to show that DNNs approximate the exact solution, with arbitrary
precision.

The Feynam-Kac representation and Monte Carlo simulations are usual tools in similar
literature. Indeed, after Feynman and Kac proved that the solution of a Parabolic PDE
is related with a stochastic process over a probability space, which involves the boundary
conditions of the Problem and Brownian motions, several PDEs have been treated of this
way. Moreover, if the stochastic process has finite expectation, then the expected value of
that process can be approximated by the mean of M independent copies of the stochastic
process. The corresponding mean is called a Monte Carlo simulation, and satisfy by strong
law of large numbers that his limit, when M → ∞, is equal to the expected value of the
process.

1.2. Main Objective
The main purpose of this work is to extend the nice results obtained by Grohs and

Herrmann in the case of the fractional Laplacian (−∆)α/2, with α ∈ (0, 2), formally defi-
ned in Rd as

− (−∆)α/2u(x) = cd,α lim
ε↓0

∫
Rd\B(0,ε)

u(y) − u(x)
|y − x|d+α

dy, x ∈ Rd, (1.1)

where
cd,α = −2αΓ((d + α)/2)

πd/2Γ(−α/2) ,

and Γ(·) is the classical Gamma function.

We prove that in this general case, there exist DNNs that approximate the solution of
the problem with arbitrary precision. We also prove that the DNNs overcome the curse of
dimensionality, a hard problem, specially because of the nonlocal character of the problem.
However, some recent findings are key to fully describe the problem here. Indeed, Kyprianou
et al. [25] showed that the Feynman-Kac formula and the WoS processes (to be described
below) are also valid in the nonlocal case. We will deeply rely on these results to reproduce
the Grohs and Herrmann program.

1.3. Setting: the Fractional Laplacian
Let α ∈ (0, 2), d ∈ N and D ⊂ Rd a bounded domain. Consider the following Dirichlet

boundary value problem {
(−∆)α/2u(x) = f(x) x ∈ D,

u(x) = g(x) x ∈ Dc.
(1.2)

Here, (−∆)α/2 is the fractional Laplacian defined in (1.1), and f, g are functions that sa-
tisfy suitable assumptions. Problem (1.2) has attracted considerable interest in past decades.
Starting from the foundational work by Caffarelli and Silvestre [11], the study of fractional
problems has always required a great amount of detail and very technical mathematics. The
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reader can consult the monographs by [4, 10, 20, 25, 28]. In addition, Machine Learning
techniques proved numerically that there are efficient approximations for the solution of the
fractional Problem, see, e.g. [21].

1.3.1. First hypotheses
In order to work with Problem (1.2), we will use the results of Kyprianou et al.. More

precisely, we ask for the following conditions for the functions f, g:
• g : Dc → R is a Lg-Lipschitz continuous function in L1

α(Dc), Lg > 0, that is to say
∫

Dc

|g(x)|
1 + |x|d+α

dx < ∞. (Hg-0)

• f : D → R is a Lf -Lipschitz continuous function, Lf > 0, such that

f ∈ Cα+ε0(D) for some fixed ε0 > 0. (Hf-0)

1.4. Stochastic representation and Montecarlo appro-
ximation

The previous assumptions are required to give a rigorous sense to the continuous solu-
tion in L1

α(Rd) of (1.2) in terms of the stochastic representation

u(x) = Ex [g(XσD
)] + Ex

[∫ σD

0
f(Xs)ds

]
, (1.3)

where (Xt)t≥0 is an α-stable isotropic Lévy process and σD is the exit time of D for this
process. See Theorem 5.1 in Chapter 5 below for full details. Representation (1.3) provides
an approximation via Monte Carlo simulations. In fact, let (X i

t)t≥0 i.i.d. copies of (Xt)t≥0
with their respective exit times σi

D. By strong law of large numbers one has

u(x) = lim
M→∞

1
M

M∑
i=1

g(X i
σi

D
) +

∫ σi
D

0
f(X i

s)ds,

almost surely. In practice we will choose a M large enough to have an approximation of
u(x) with an error depending on the reciprocal of M . Although Monte Carlo simulations
are effective approximations of the solution u(x), these simulations can be numerically inef-
ficient, because the approximation of u(x) depends of each x ∈ Rd. In addition, D is an
arbitrary bounded domain, therefore it is not possible to determinate the cost of trajectories
of the process Xt in the exit time σD, nor the quantity of trajectories M needed to have a
approximation with small error.

1.5. Use of WoS processes in the fractional case
For the simulation of trajectories, Kyprianou et al. [25] propose the WoS processes. These

discrete processes allow us to obtain the expected value of Xt in the exit time σD, without the
necessity of simulate the entire trajectory. From ρ0 = x, the WoS process (ρn)n∈N is defined
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using specific points of the process Xt, for some t. The number of points that define the WoS
process is described as a random variable N , which is finite almost surely. Even better, the
distributions of ρN and XσD

are the same. For more detail, see Chapter 4.

The work of Kyprianou et al. proved that the solution of Problem (1.2) can be represented
with the WoS processes, namely

u(x) = Ex [g(ρN)] + Ex

[
N∑

n=1
rα

nV1(0, f(ρn−1 + rn·))
]

, (1.4)

where (ρn)N
n=0 is the WoS process starting at ρ0 = x ∈ D, N = min{n ∈ N : ρn /∈ D} and

for any n = 1, ..., N , rn = dist(ρn−1, ∂D). V1(0, f(·)) represents the integral of f(y) over the
expected occupation measure of the stable process exiting the unitary ball centered at the
origin V1(0, dy), for |y| < 1. For more details, see Chapter 5 and Lemma 5.1. For convenience
we normalize the measure V1(0, dy) to obtain a probability measure over the ball B(0, 1). This
allow us to write equation 1.4 in function of expectations, and to approximate the solution
using Monte Carlo simulations.

1.6. Main tools: Deep Neural Networks (DNN)
As said before, is a hard problem the approximation, via Monte Carlo simulations, of the

solution over a domain D, because we need to do an independent simulation for each x ∈ D.
This problem will be solved by the use of deep neural networks for the approximation. DNNs
are sets of parameters:

Φ = ((Wi, Bi)) ∈
H+1∏
i=1

(Rki×ki−1 × Rki),

where H ∈ N, k0, ..., kH+1 ∈ N. These parameters define a continuous function, called the
realization of the DNN R(Φ) : Rk0 → RkH+1 , that satisfies

(R(Φ)) (x0) = WH+1xH + BH+1,

where xi ∈ Rki , i = 1, ..., H are defined as

xi = Aki
(Wixi−1 + Bi).

Here the function Aki
: Rki → Rki is the activation function of the DNN. Along this Thesis

we will work with ReLu activation functions:

Aki
(z) = (max{z1, 0}, ..., max{zki

, 0}).

For the DNN Φ we define H as the number of hidden layers, Rk0 is the input layer, and
RkH+1 is the output layer. Figure 1.1 shows a scheme of the realization of Φ.
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x0 W1x0 + B1 Ak1

x1

WH+1xH + BH+1... WHxH−1 + BH AkH

xH

Figure 1.1: Scheme of the realization of a deep neural network Φ for x0 ∈
Rk0 . Each xi lives in Rki , and (R(Φ))(x0) lives in RkH+1 . The boxes that
define xi, i = 1, ..., H are called hidden layers.

1.6.1. The curse of dimensionality
The number of parameters required to describe Φ is the sum of the entries of the matrices

Wi and the vectors Bi. Now, if the realization of Φ approximates a function f with accuracy
ε > 0, we say that the approximation overcomes the curse of dimensionality if the number of
parameters that describe Φ are bounded by a polinomyal on the input dimension k0 and on
the reciprocal of the accuracy ε.

1.7. Results of this thesis
The results of this thesis are focused in the approximation via deep neural networks of

the fractional Dirichlet Problem (1.2) with boundary conditions.

These results are part of the following work:

• N. V. A new approach for the fractional Laplacian via deep neural networks, preprint
submitted 2022, available at https://arxiv.org/abs/2205.05229.

In order to enunciate the main theorem, we need to assume some hypothesis on the invol-
ved functions in equation (1.4). In particular, we assume that for all δg, δdist, δα, δf ∈ (0, 1)
there exists ReLu DNNs Φg, Φdist, Φα, Φf such that the functions g, dist(·, ∂D), (·)α and f are
approximated properly with their respective accuracy, overcoming the curse of dimensionality.

The full details of these DNNs are in Assumptions 1, 2 in Chapter 6 and Assumption 3
in Chapter 7.

With Assumptions 1, 2 and 3 we enunciate the main theorem of this thesis.

Theorem 1.7.1 Let α ∈ (1, 2), p ∈ (1, α) as in Assumption 1, s ∈ (1, α) such that
s < α

p
and q ∈

[
s, α

p

)
. Assume that (Hg-0) and (Hf-0) are satisfied. Suppose that for every

δg, δdist, δα, δf ∈ (0, 1) there exist ReLu DNNs Φg, Φdist, Φα and Φf satisfying Assumptions 1,
2 and 3, respectively.

Then for every ϵ ∈ (0, 1), there exists a ReLu DNN Ψϵ with continuous realization R(Ψϵ) :
D → R such that:

1. Proximity in Lq(D): If u is the solution of (1.2)
(∫

D
|u(x) − (R(Ψϵ)) (x)|q dx

) 1
q

≤ ϵ. (1.5)

5
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2. Bounds: There exists B̂, η > 0 such that

P(Ψϵ) ≤ B̂|D|ηdηϵ−η. (1.6)

The constant B̂ depends on ∥f∥L∞(D), the Lipschitz constants of g, R(Φf ) and R(Φα),
and on diam(D).

1.7.1. Idea of proof

Theorem 1.7.1 is consequence of Propositions 6.1 and 7.1, in Chapters 6 and 7, respecti-
vely, and his proof is available in Chapter 8. In this Section we sketch the proof of Proposition
6.1. The proof of Proposition 7.1 is pretty similar, with a few changes on the Monte Carlo
simulations. Additionally, the function f is defined over a bounded domain, and then Assum-
ption 3 is simpler than Assumption 1.

The idea of Proposition 6.1 is to approximate via deep neural networks the solution of
Problem (1.2), with source term f ≡ 0, namely, when the solution takes the form.

u(x) = Ex[g(ρN)].

The proof will be divided in several steps:

1.7.2. Step 1

First of all we define the following operator

EM(x) = 1
M

M∑
i=1

(R(Φg))
(
ρi

Ni

)
,

where (ρi
Ni

, Ni) are i.i.d. copies of (ρN , N). We prove that the norm of the difference between
u(x) and EM(x), in the space Lq(Ω,Px), is bounded. From Fubini we can integrate over the
domain D, in order to prove that the quantity

Ex

[∫
D

|u(x) − EM(x)|qdx
]

,

is bounded.

1.7.3. Step 2

Note that the WoS process ρi
Ni

depends on the random variable Ni and on the sum of the
absolute value of Ni copies of the isotropic α-stable process exiting the ball B(0, 1), denoted
as ∑Ni

n=1 |Yi,n|. Then we bound the norm of differences of Ni,
∑Ni

n=1 |Yi,n| and its respective
Monte Carlo simulations, in the space Lq(Ω,Px). We then find a bound for the following
quantities

Ex

∣∣∣∣∣N − 1
M

M∑
i=1

Ni

∣∣∣∣∣
q
 , and Ex

∣∣∣∣∣∣
N∑

n=1
|Yn| − 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q .
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Using these bounds, we prove that the sum of the three expectations are bounded by a
positive constant, denoted by errorq

g. This implies that there exists independent copies of the
random variable and the processes involved, such that the bound is also valid without the
expectation. Notice that the copies found satisfy that their means:

1
M

M∑
i=1

N i,
1

M

M∑
i=1

N i∑
n=1

|Yi,n|,

are bounded in function of errorg.

1.7.4. Step 3

Next Step is to prove that EM(x) can be approximated by a deep neural network. For this
we prove that each copy ρi

N i
has an approach by DNN, namely Φi,N i

, such that the difference

|ρi
N i

− (R(Φi,N i
))(x)|,

is bounded properly in function of N i,
∑N i

n=1 and δdist. This implies that EM(x) has an
approach by DNN, namely Ψ1,ε, that satisfies

(R(Ψ1,ε)) (x) = 1
M

M∑
i=1

(
R(Φg) ◦ R(Φi,N)

)
(x),

and the difference
|EM(x) − (R(Ψ1,ε)) (x)|,

is bounded if function of δg and the means of N i and ∑N i
n=1 |Yi,n|. This bound implies that

the norm of the difference between u and R(Ψ1,ε) in the space Lq(D), is bounded depending
on δg, errorg and on δdist. We prove additionally that errorg is bounded in function of M and
δg.

1.7.5. Step 4

Finally, from the bounds obtained and the correct choice of δg, δdist and M , we prove that
(∫

D
|u(x) − (R(Ψ1,ε)) (x)|q dx

) 1
q

≤ ε.

For the second point of Proposition 6.1, we study the DNN Ψ1,ε. We show that de number of
parameters that describe the DNN are given by operations between DNNs, such as composi-
tions, sums and the fact that the identity function can be expressed as a DNN with arbitrary
number of hidden layers. The choice of δg, δdist and M allow us to prove that the number of
parameters that describes Ψ1,ε is at most a polynomial on the dimension d, on the measure
of the space |D| and on the reciprocal of the accuracy ε.
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Chapter 2

Preliminaries

2.1. Notation
Along this paper, we shall use the following conventions:

• N = {1, 2, 3, ...} will be the set of Natural numbers.

• For any q ≥ 1, (Ω, F , µ) measure space, Lq(Ω, µ) denotes the Lebesgue space of order
q with the measure µ. If µ is the Lebesgue measure, then the Lebesgue space will be
denoted as Lq(Ω).

2.2. A quick review on Lévy processes
Let us introduce a brief review on the Lévy processes needed for the proof of the main

results. For a detailed account on these processes, see e.g. [3, 8, 26, 29].

Definition 2.1 L := (Lt)t≥0 is a Lévy process in Rd if it satisfies L0 = 0 and

i) L has independent increments, namely, for all n ∈ N and for each 0 ≤ t1 < ... < tn < ∞,
the random variables (Lt2 − Lt1 , ..., Ltn − Ltn−1) are independent.

ii) L has stationary increments, namely, for all s ≥ 0, Lt+s −Ls and Lt have the same law.

iii) Lt is continuous on the right and has limit on the left for all t > 0 (i.e., (Lt)t≥0 is
càdlàg).

Examples of Lévy processes are the Brownian motion, but also processes with jumps such
as the Poisson process and the compound Poisson process [3].

Definition 2.2 The Poisson process of intensity λ > 0 is a Lévy process N taking values in
N ∪ {0} wherein each N(t) ∼ Poisson(λt), then we have

P(N(t) = n) = (λt)n

n! e−λt.

Definition 2.3 Let (Z(n))n∈N be a sequence of i.i.d. random variables taking values in Rd

with law µ and let N be a Poisson process with intensity λ that is independent of all the
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Z(n). The compound Poisson process Y is defined as follows:

Y (t) = Z(1) + ... + Z(N(t)),

for each t ≥ 0.
Another important element is the so-called Lévy’s characteristic exponent.

Definition 2.4 Let (Lt)t≥0 be a Lévy process in Rd.

• Its characteristic exponent Ψ : Rd → C is the continuous function that satisfies Ψ(0) = 0
and for all t ≥ 0,

E
[
eiξ·Lt

]
= e−tΨ(ξ), ξ ∈ Rd \ {0}. (2.1)

• A Lévy triple is (b, A, Π), where b ∈ Rd, A ∈ Rd×d is a positive semi-definite matrix,
and Π is a Lévy measure in Rd, i.e.

Π({0}) = 0 and
∫
Rd

(1 ∧ |z|2)Π(dz) < ∞. (2.2)

A Lévy process is uniquely determined via its Lévy triple and its characteristic exponent.

Theorem 2.1 (Lévy-Khintchine, [26]) Let (b, A, Π) be a Lévy triple. Define for each ξ ∈ Rd

Ψ(ξ) = ib · ξ + 1
2ξ · Aξ +

∫
Rd

(
1 − eiξ·z + iξ · z1{|z|<1}

)
Π(dz). (2.3)

If Ψ is the characteristic exponent of a Lévy process with triple (b, A, Π) in the sense of
(2.1), then it necessarily satisfies (2.3). Conversely, given (2.3) there exists a probability
space (Ω, F ,P), on which a Lévy process is defined having characteristic exponent Ψ in the
sense of (2.1).

For the next Theorem we define the Poisson random measure.

Definition 2.5 Let (S, S, η) be an arbitrary σ-finite measure space and (Ω, F ,P) a probability
space. Let N : Ω × S → N ∪ {0, ∞} such that (N(·, A))A∈S is a family of random variables
defined on (Ω, F ,P). For convenience we supress the dependency of N on ω. N is called a
Poisson random measure on S with intensity η if

i) For mutually disjoint A1, ..., An in S, the variables N(A1), ..., N(An) are independent.

ii) For each A ∈ S, N(A) ∼ Poisson(η(A)),

iii) N(·) is a measure P-almost surely.

Remark 2.2.1 In the next theorem we use S ⊂ [0, ∞) × Rd, and the intensity η will be
defined on the product space.

From the Lévy-Khintchine formula, every Lévy process can be decomposed in three com-
ponents: a Brownian part with drift, the large jumps and the compensated small jumps of
the process L.
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Theorem 2.2 (Lévy-Itô Decomposition) Let L be a Lévy process with triple (b, A, Π). Then
there exists process L(1), L(2) y L(3) such that for all t ≥ 0

Lt = L
(1)
t + L

(2)
t + L

(3)
t ,

where

1. L
(1)
t = bt + ABt and Bt is a standard d-dimensional Brownian motion.

2. L
(2)
t satisfies

L
(2)
t =

∫ t

0

∫
|z|≥1

zN(ds, dz),

where N(ds, dz) is a Poisson random measure on [0, ∞) × {z ∈ Rd : |z| ≥ 1} with
intensity

Π({z ∈ Rd : |z| ≥ 1})dt × Π(dz)
Π({z ∈ Rd : |z| ≥ 1}) .

If Π({z ∈ Rd : |z| ≥ 1}) = 0, then L(2) is the process identically equal to 0. In other
words L(2) is a compound Poisson process.

3. The process L
(3)
t satisfies

L
(3)
t =

∫ t

0

∫
|z|<1

zÑ(ds, dz),

where Ñ(ds, dz) is the compensated Poisson random measure, defined by

Ñ(ds, dz) = N(ds, dz) − dsΠ(dz),

with N(ds, dz) the Poisson random measure on [0, ∞)×{z ∈ Rd : |z| < 1} with intensity

ds × Π(dz)|{z∈Rd:|z|<1} .

2.3. Lévy processes and the Fractional Laplacian
A particular set of Lévy processes are the so-called isotropic α-stable processes, for α ∈

(0, 2). The following definitions can be found in [26] in full detail.

Definition 2.6 Let α ∈ (0, 2). X := (Xt)t≥0 is an isotropic α-stable process if X has a Lévy
triple (0, 0, Π), with

Π(dz) = 2−απ−d/2 Γ((d + α)/2)
|Γ(−α/2)|

1
|z|α+d

dz, z ∈ Rd. (2.4)

Recall that Γ here is the Gamma function.

Definition 2.7 (Equivalent definitions of an isotropic α-stable process)

1. X is an isotropic α-stable process iff

for all c > 0, (cXc−αt)t≥0 and X have the same law, (2.5)
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and for all the orthogonal transformations U on Rd,

(UXt)t≥0 and X have the same law.

2. An isotropic α-stable process is an stable process whose characteristic exponent is given
by

Ψ(ξ) = |ξ|α, ξ ∈ Rd. (2.6)

Remark 2.3.1 For the first definition, we say that X satisfies the scaling property and is
rotationally invariant, respectively.

Note by Definition 2.6 and by Lévy-Itô decomposition (Theorem 2.2),an isotropic α-stable
process can be decomposed as

Xt =
∫ t

0

∫
|z|≥1

zN(ds, dz) +
∫ t

0

∫
|z|<1

zÑ(ds, dz). (2.7)

From this equation, we can conclude that every isotropic α-stable process is a pure jump
process, whose jumps are determined by the Lévy measure defined in (2.4). We enunciate
further properties about these processes:

Theorem 2.3 Let g be a locally bounded, submultiplicative function and let L a Lévy process,
then the following are equivalent:

1. E[g(Lt)] < ∞ for some t > 0.

2. E[g(Lt)] < ∞ for all t > 0.

3.
∫

|z|>1 g(z)Π(dz) < ∞.

An important result from the previous theorem gives necessary and sufficient conditions
for the existence of the p moment of an isotropic α-stable process.

Corollary 2.1 Let X be an α-stable process and p > 0, then the following are equivalent

1. p < α.

2. E[|Xt|p] < ∞ for some t > 0.

3. E[|Xt|p] < ∞ for all t > 0.

4.
∫

|z|>1 |z|pΠ(dz) < ∞.

Remark 2.3.2 If α ∈ (0, 1), by this corollary we have that X has no first moment. Otherwise,
if α ∈ (1, 2) then it has finite first moment, but no second moment.

2.4. Type s spaces and Monte Carlo Methods.
We now introduce some results that controls the difference between the expectation of a

random variable and a Monte Carlo operator associated to his expectation in Lp norm, p > 1.
For more details see [12]. In the following results are simplified the results of [12]. Along this
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Section we work with real valued Banach spaces.

We start with some concepts related to Banach spaces. The reader can consult [12, 27] for
more details in this topic.

Definition 2.8 Let (Ω, F ,P) be a probability space, let J be a set, and let rj : Ω → {−1, 1},
j ∈ J , be a family of independent random variables with for all j ∈ J ,

P(rj = 1) = P(rj = −1) = 1
2 .

Then we say that (rj)j∈J is a P-Rademacher family.

Definition 2.9 Let (rj)j∈N a P-Rademacher family. Let s ∈ (0, ∞). A Banach space (E, ∥·∥E)
is said to be of type s if there is a constant C such that for all finite sequences (xj) in E,

E

∥∥∥∥∥∥
∑

j

rjxj

∥∥∥∥∥∥
s

E


1
s

≤ C

∑
j

∥xj∥s
E

 1
s

.

The supremum of the constants C is called the type s-constant of E and it is denoted as
Ts(E).

Remark 2.4.1 The existence of a finite constant C in Definition 2.9 is valid for s ≤ 2 only
(see, e.g. [27] Section 9 for more details).

Remark 2.4.2 Any Banach space (E, ∥·∥E) is of type 1. Moreover, triangle inequality en-
sures that T1(E) = 1.

Remark 2.4.3 Notice that for all Banach spaces (E, ∥·∥E), the function (0, ∞) ∋ s →
Ts(E) ∈ [0, ∞] is non-decreasing. This implies for all s ∈ (0, 1] and all Banach spaces
(E, ∥·∥E) with E ̸= {0} that Ts(E) = 1.

Remark 2.4.4 For all s ∈ (0, 2] and all Hilbert spaces (H, ⟨·, ·⟩H , ∥·∥H) with H ̸= {0} it
holds that Ts(H) = 1.

Definition 2.10 Let (rj)j∈N a P-Rademacher family. Let q, s ∈ (0, ∞) and (E, ∥·∥E) be a
Banach space. The Kq,s (q, s)-Kahane-Khintchine constant of the space E is the extended
real number given by the supremum of a constant C such that for all finite sequences (xj) in
E,

E

∥∥∥∥∥∥
∑

j

rjxj

∥∥∥∥∥∥
q

E


1
q

≤ C E

∥∥∥∥∥∥
∑

j

rjxj

∥∥∥∥∥∥
s

E


1
s

Remark 2.4.5 For all q, s ∈ (0, ∞) it holds that Kq,s < ∞. Moreover, if q ≤ s by Jensen’s
inequality implies that Kq,s = 1.

Definition 2.11 Let q, s ∈ (0, ∞) and let (E, ∥·∥E) be a Banach space. Then we denote by
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Θq,s(E) ∈ [0, ∞] the extended real number given by

Θq,s(E) = 2Ts(E)Kq,s.

Consider the case (R, | · |). Notice that (R, ⟨·, ·⟩R, | · |) is a Hilbert space with the inner
product ⟨x, y⟩R = xy. Then it holds for all s ∈ (0, 2] that

Ts := Ts(R) = 1,

in other words, (R, | · |) has type s for all s ∈ (0, 2]. Moreover, it holds for all q ∈ (0, ∞),
s ∈ (0, 2] that

Θq,s := Θq,s(R) = 2Kq,s < ∞.

With this in mind, we enunciate a particular version of the Corollary 5.12 found in [12],
replacing the Banach space (E, ∥·∥E) by (R, | · |).

Corollary 2.2 Let M ∈ N, s ∈ [1, 2], (Ω, F ,P) be a probability space, and let ξj ∈ L1(P, | · |),
j ∈ {1, ..., M}, be independent and identically distributed. Then, for all q ∈ [s, ∞],

∥∥∥∥∥∥E[ξ1] − 1
M

M∑
j=1

ξj

∥∥∥∥∥∥
Lq(Ω,P)

= 1
M

E

∣∣∣∣∣∣
M∑

j=1
ξj − E

 M∑
j=1

ξj

∣∣∣∣∣∣
q

1
q

≤ Θq,s

M1− 1
s

E [|ξ1 − E[ξ1]|q]
1
q .

(2.8)

Remark 2.4.6 The choice of the Banach space as (R, | · |) ensures that Θq,s is finite and the
bound above converges for suitable M large.
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Chapter 3

Deep Neural Networks

In this Chapter we review recent results on the mathematical analysis of neural networks
needed for the proof of the main theorem. For a detailed description, see e.g. [18, 23, 24].

3.1. Setting
For d ∈ N define

Ad : Rd → Rd

the ReLU activation function such that for all z ∈ Rd, z = (z1, ..., zd), with

Ad(z) = (max{z1, 0}, ..., max{zd, 0}).

Let also

(NN1) H ∈ N be the number of hidden layers;

(NN2) (ki)H+1
i=0 be a positive integer sequence;

(NN3) Wi ∈ Rki×ki−1 , Bi ∈ Rki , for any i = 1, ..., H + 1 be the weights and biases, respectively;

(NN4) x0 ∈ Rk0 , and for i = 1, ..., H let

xi = Aki
(Wixi−1 + Bi). (3.1)

We call
Φ := (Wi, Bi)H+1

i=1 ∈
H+1∏
i=1

(
Rki×ki−1 × Rki

)
(3.2)

the DNN associated to the parameters in (NN1)-(NN4). The space of all DNNs in the sense
of (3.2) is going to be denoted by N, namely

N =
⋃

H∈N

⋃
(k0,...,kH+1)∈NH+2

[
H+1∏
i=1

(
Rki×ki−1 × Rki

)]
.

Define the realization of the DNN Φ ∈ N as

R(Φ)(x0) = WH+1xH + BH+1. (3.3)
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Notice that R(Φ) ∈ C(Rk0 ,RkH+1). For any Φ ∈ N define

P(Φ) =
H+1∑
n=1

kn(kn−1 + 1), D(Φ) = (k0, k1, ..., kH+1), (3.4)

and
|||D(Φ)||| = max{k0, k1, ..., kH+1}. (3.5)

The entries of (Wi, Bi)H+1
i=1 will be the weights of the DNN, P(Φ) represents the number of

parameters used to describe the DNN, working always with fully connected DNNs, and D(Φ)
representes the dimension of each layer of the DNN. Notice that Φ ∈ N has H + 2 layers: H
of them hidden, one input and one output layer.

Remark 3.1.1 For Φ ∈ N one has

|||D(Φ)||| ≤ P(Φ) ≤ (H + 1)|||D(Φ)|||(|||D(Φ)||| + 1).

Indeed, from the definition of |||·|||,

|||D(Φ)||| ≤
H+1∑
n=1

kn ≤ P(Φ).

In addition, the definition of P(Φ) implies that

P(Φ) ≤
H+1∑
n=1

|||D(Φ)|||(|||D(Φ)||| + 1) = (H + 1)|||D(Φ)|||(|||D(Φ)||| + 1).

Remark 3.1.2 From the previous remark one has

P(Φ) ≤ 2(H + 1)|||D(Φ)|||.

If |||D(Φ)||| grows at most polynomially in both the dimension of the input layer and the
reciprocal of the accuracy ε of the DNN, then P(Φ) satisfies that bound too. This means
that, with the right bound on |||D(Φ)|||, the DNN Φ do not suffer the curse of dimensionality,
in the sense established in Section 1.

3.2. Operations
In this section we summarize that some operations between DNNs are also DNNs. We

start with the definition of two vector operators

Definition 3.1 Let D = ⋃
H∈N NH+2.

1. Define ⊙ : D × D → D such that for all H1, H2 ∈ N, α = (α0, ..., αH1+1) ∈ NH1+2,
β = (β0, ..., βH2+1) ∈ NH2+2 it satisfied

α ⊙ β = (β0, β1, ..., βH2 , βH2+1 + α0, α1, ..., αH1+1) ∈ NH1+H2+3. (3.6)
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2. Define ⊞ : D × D → D such that for all H ∈ N, α = (α0, ..., αH+1) ∈ NH+2, β =
(β0, ..., βH+1) ∈ NH+2 it satisfied

α ⊞ β = (α0, α1 + β1, ..., αH + βH , βH+1) ∈ NH+2. (3.7)

3. Define nn ∈ D, n ∈ N, n ≥ 3 as

nn = (1, 2, . . . , 2︸ ︷︷ ︸
(n−2)-times

, 1) ∈ Nn. (3.8)

Remark 3.2.1 From these definitions and the norm |||·||| defined in (3.5), we the following
bounds are clear

1. For H1, H2 ∈ N, α ∈ NH1+2 and β ∈ NH2+2,

|||α ⊙ β||| ≤ max{|||α|||, |||β|||, α0 + βH2+1}.

2. For H ∈ N and α, β ∈ NH+2,

|||α ⊞ β||| ≤ |||α||| + |||β|||.

3. For n ∈ N, n ≥ 3, |||nn||| = 2.

Now we state classical operations between DNNs. For a full details of the next Lemmas,
the reader can consult e.g. [23, 24].

Lemma 3.1 Let IdR : R → R be the identity function on R and let H ∈ N. Then IdR ∈
R ({Φ ∈ N : D(Φ) = nH+2}).

Remark 3.2.2 A similar consequence is valid in Rd. Let IdRd : Rd → Rd be the identity
function on Rd and let H ∈ N. Therefore IdRd ∈ R ({Φ ∈ N : D(Φ) = dnH+2}). The case
with H = 3 is proved on [24].

Remark 3.2.3 Let H ∈ N and Φ ∈ N such that R(Φ) = IdRd . Then by Remark 3.3 we
have that |||D(Φ)||| = 2d.

Lemma 3.2 Let d1, d2, d3 ∈ N, f ∈ C(Rd2 ,Rd3), g ∈ C(Rd1 ,Rd2), α, β ∈ D such that
f ∈ R({Φ ∈ N : D(Φ) = α}) and g ∈ R({Φ ∈ N : D(Φ) = β}). Therefore (f ◦ g) ∈ R({Φ ∈
N : D(Φ) = α ⊙ β}).

Remark 3.2.4 Let Φf , Φg, Φ ∈ N such that R(Φf ) = f , R(Φg) = g and R(Φ) = f ◦ g. Then
by Remark 3.3 it follows that

|||D(Φ)||| ≤ max{|||D(Φf )|||, |||D(Φg)|||, 2d2}.
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Lemma 3.3 Let M, H, p, q ∈ N, hi ∈ R, βi ∈ D, fi ∈ C(Rp,Rq), i = 1, ..., M such that for
all i = 1, ..., M dim(βi) = H + 2 and fi ∈ R({Φ ∈ N : D(Φ) = βi}). Then

M∑
i=1

hifi ∈ R
({

Φ ∈ N : D(Φ) =
M

⊞
i=1

βi

})
. (3.9)

Remark 3.2.5 For i = 1, ..., M let Φi ∈ N such that R(Φi) = fi and let Φ ∈ N such that

R(Φ) =
M∑

i=1
hifi.

It follows from Remark 3.3 that

|||D(Φ)||| ≤
M∑

i=1
|||D(Φi)|||.

The following Lemma comes from [14] and is adapted to our notation.

Lemma 3.4 Let H, d, di ∈ N, βi ∈ D, fi ∈ C(Rd,Rdi), i = 1, 2 such that for i = 1, 2
dim(βi) = H + 2 and fi ∈ R ({Φ ∈ N : D(Φ) = βi}). Then

(f1, f2) ∈ R ({Φ ∈ N : D(Φ) = (d, β1,1 + β2,1, ..., β1,H+1 + β2,H+1)}) . (3.10)

Remark 3.2.6 Let Φ1, Φ2, Φ ∈ N such that R(Φi) = fi, i = 1, 2 and R(Φ) = (f1, f2). Notice
by Lemma 3.4 and definition of the norm |||·||| in (3.5) that

|||D(Φ)||| ≤ |||D(Φ1)||| + |||D(Φ2)|||.

For sake of completeness, we state the following lemma with his proof. We continue with
the notation from [23]:

Lemma 3.5 Let H, p, q, r ∈ N, M ∈ Rr×q, α ∈ D, f ∈ C(Rp,Rq), such that dim(α) = H +2
and f ∈ R({Φ ∈ N : D(Φ) = α}). Then

Mf ∈ R ({Φ ∈ N : D(Φ) = (α0, ..., αH , r)}) . (3.11)

proof. Let H, α0, ..., αH+1 ∈ N, Φf ∈ N satisfying that

α = (α0, ..., αH+1) , R(Φf ) = f, and D(Φf ) = α.

Note that p = α0 and q = αH+1. Let ((W1, B1), ..., (WH+1, BH+1)) ∈ ∏H+1
n=1 (Rαn×αn−1 × Rαn)

satisfty that
Φf = ((W1, B1), ..., (WH+1, BH+1)) .

Let M ∈ Rr×αH+1 and define

Φ = ((W1, B1), ..., (WH , BH), (MWH+1, MBH+1)) .

Notice that (MWH+1, MBH+1) ∈ Rr×αH ×Rr, then Φ ∈ N. For y0 ∈ Rα0 , and yi, i = 1, ..., H
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defined as in (NN4) we have

(R(Φ)) (y0) = MWH+1yH + MBH+1 = M (WH+1yH + BH+1) = M (R(Φf )) (y0).

Therefore
R(Φ) = Mf, and D(Φ) = (α0, ..., αH , r) ,

and the Lemma is proved.

Remark 3.2.7 Let Φf , Φ ∈ N such that R(Φf ) = f and R(Φ) = Mf . From previous
Lemma and the definition of |||·||| it follows that

|||D(Φ)||| ≤ max{|||D(Φf )|||, r}.

The following Lemma is from [17].

Lemma 3.6 There exists constants C1, C2, C3, C4 > 0 such that for all κ > 0 and for all
δ ∈

(
0, 1

2

)
there exists a ReLu DNN Υ ∈ N, with R(Υ) ∈ C(R2,R) such that

sup
a,b∈[−κ,κ]

|ab − (R(Υ)) (a, b)| ≤ δ. (3.12)

Moreover, for all δ ∈
(
0, 1

2

)
,

P(Υ) ≤ C1

(
log2

(
max{κ, 1}

δ

))
+ C2, (3.13)

dim(D(Υ)) ≤ C3

(
log2

(
max{κ, 1}

δ

))
+ C4. (3.14)
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Chapter 4

Walk-on-spheres Processes

We start with some key notation that will be extensively used along this paper.

Let (Ω,P, F) be a filtered probability space with F = (Ft)t≥0. Let (Xt)t≥0 be an isotropic
α-stable process starting at X0. For x ∈ D denote Px the probability measure conditional to
X0 = x and Ex the respective expectation. Finally, define for any B ⊂ Rd the exit time for
the set B as

σB = inf{t ≥ 0 : Xt /∈ B}.

Now we introduce the classical WoS process.

Definition 4.1 ([25]) The Walk-on-Spheres (WoS) process ρ := (ρn)n∈N is defined as follows:

• ρ0 = x, x ∈ D;

• given ρn−1, n ≥ 1, the distribution of ρn is chosen according to an independent sample of
XσBn

under Pρn−1, where Bn is the ball centered on ρn−1 and radius rn = dist(ρn−1, ∂D).

Remark 4.0.1 Notice by the Markov property that the process ρ can be written as the
recurrence

ρn = ρn−1 + Zn, n ∈ N,

where Zn is an independent sample of XσB(0,rn) under P0.
From the previous Remark, it is possible to rewrite ρn for n ∈ N depending on x ∈ D and

on n independent processes distributing accord XσB(0,1) , as indicates the following Lemma.

Lemma 4.0.1 The WoS process ρ := (ρn)n∈N can be defined as follows

• ρ0 = x, x ∈ D;

• for n ≥ 1,
ρn = ρn−1 + rnYn, (4.1)

where Yn is an independent sample of XσB(0,1) and rn = dist(ρn−1, ∂D).

proof. Note by the scaling property (2.5) that

Xt and rnXr−α
n t
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have the same distribution for all n ∈ N. Therefore

σB(0,rn) = inf{t ≥ 0 : Xt /∈ B(0, rn)}
= rα

n inf{r−α
n t ≥ 0 : rnXr−α

n t /∈ B(0, rn)}
= rα

n inf{s ≥ 0 : rnXs /∈ B(0, rn)}
= rα

n inf{s ≥ 0 : Xs /∈ B(0, 1)} = rα
nσB(0,1).

(4.2)

This equality and the scaling property implies that

XσB(0,1) and r−1
n Xrα

nσB(0,1) (4.3)

are equal in law under P0, and then from Remark 4.1 Zn and rnXσB(0,1) have the same
distribution under P0. We can conclude that for n ≥ 1, ρn can be written as the recurrence

ρn = ρn−1 + rnYn,

where Yn is an independent sample of XσB(0,1) .

To study the WoS processes, we need to know about the processes XσB(0,1) . The following
result gives the distribution density of XσB(0,1) .

Theorem 4.1 (Blumenthal, Getoor, Ray, 1961. [9]) Suppose that B(0, 1) is a unit ball cen-
tered at the origin and write σB(0,1) = inf{t > 0 : Xt /∈ B(0, 1)}. Then,

P0
(
XσB(0,1) ∈ dy

)
= π−(d/2+1)Γ

(
d

2

)
sin(πα/2)

∣∣∣1 − |y|2
∣∣∣−α/2

|y|−ddy, |y| > 1. (4.4)

Using this result, one can prove a key result for the expectation of XσB(0,1) moments.

Corollary 4.1 For all α ∈ (0, 2), β ∈ [0, α) we have

E0

[∣∣∣XσB(0,1)

∣∣∣β] = sin(πα/2)
π

Γ
(
1 − α

2

)
Γ
(

α−β
2

)
Γ
(
1 − β

2

) =: K(α, β). (4.5)

Remark 4.0.2 Notice that the value of K(α, β) does not depend of the dimension d.

Remark 4.0.3 the condition β < α is necessary due to Corollary 2.1. If β ≥ α then
E[|Xt|β] = ∞ for all t > 0. Moreover, the integral

∫ ∞

1

rβ−1

(r2 − 1)α/2 dr,

obtained in the proof of the Corollary 4.1 does not converges if β ≥ α.

Proof of Corollary 4.1. Let α ∈ (0, 2), β ∈ [0, α). Notice by Theorem 4.1 and definition of
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the expectation that

E0

[∣∣∣XσB(0,1)

∣∣∣β] =
∫

|y|>1
|y|βP0

(
XσB(0,1) ∈ dy

)
= π−(d/2+1)Γ

(
d

2

)
sin(πα/2)

∫
|y|>1

∣∣∣1 − |y|2
∣∣∣−α/2

|y|β−ddy.
(4.6)

Using spherical coordinates one has∫
|y|>1

∣∣∣1 − |y|2
∣∣∣−α/2

|y|β−ddy =
∫
Sd−1

∫ ∞

1

∣∣∣1 − r2
∣∣∣−α/2

rβ−drd−1drdS,

where Sd−1 is the surface area of the unit (d − 1)-sphere embedded in dimension d. One has
that [31] ∣∣∣Sd−1

∣∣∣ = 2πd/2

Γ
(

d
2

) ,

and then ∫
|y|>1

∣∣∣1 − |y|2
∣∣∣−α/2

|y|β−ddy = 2πd/2

Γ
(

d
2

) ∫ ∞

1

rβ−1

(r2 − 1)α/2 dr.

Replacing this result into (4.6) give us that

E0

[∣∣∣XσB(0,1)

∣∣∣β] = 2
π

sin(πα/2)
∫ ∞

1

rβ−1

(r2 − 1)α/2 dr.

Now we are able to use a change of variables u = 1/r, then
∫ ∞

1

rβ−1

(r2 − 1)α/2 dr =
∫ 1

0

1
u2 u1−β uα

(1 − u2)−α/2 du =
∫ 1

0
uα−β−1(1 − u2)−α/2du.

Using another change of variable, t = u2 we have∫ 1

0

1
2t

1
2
t

α−β−1
2 (1 − t)− α

2 dt = 1
2

∫ 1

0
t

α−β
2 −1(1 − t)1− α

2 −1dt.

This result implies that

Ex

[∣∣∣XσB(0,1)

∣∣∣β] = sin(πα/2)
π

∫ 1

0
t

α−β
2 −1(1 − t)1− α

2 −1dt.

The integral has the form of the Beta function, formally defined as:

B(z, w) :=
∫ 1

0
uz−1(1 − u)w−1du,

For full details of the Beta function see, e.g. [13]. In particular, the Beta function satisfies

B(z, w) = Γ(z)Γ(w)
Γ(z + w) .
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Finally

E0

[∣∣∣XσB(0,1)

∣∣∣β] = sin(πα/2)
π

B

(
α − β

2 , 1 − α

2

)
= sin(πα/2)

π

Γ
(
1 − α

2

)
Γ
(

α−β
2

)
Γ
(
1 − β

2

) .

4.1. Relation between WoS and isotropic α-stable pro-
cess

Recall from Chapter 4 that the process (ρn)n≥0 is related to a family of processes distri-
buting accord XσB(0,1) . We want now to have a relation between the processes (Xt)t≥0 and
(ρn)n≥0. For this define r̃1 := dist(x, ∂D), B̃1 := B(x, r1), τ1 := σ

B̃1
and for all n ≥ 1 define:

r̃n+1 := dist(XI(n), ∂D), (4.7)
B̃n+1 := B

(
XI(n), r̃n+1

)
, (4.8)

τn+1 := inf{t ≥ 0 : Xt+I(n) /∈ B̃n+1}, (4.9)

where
I(n) :=

n∑
i=1

τi, I(0) = 0. (4.10)

I(n) represents the total time of the process Xt takes to exit the n balls B̃1, ..., B̃n. The
following Lemma establishes that for all n ∈ N, ρn is equally distributed to the process
(Xt)t≥0 exiting the n balls B̃1, ..., B̃n, that is, XI(n).

Lemma 4.1.1 For all n ≥ 0 and x ∈ D, ρn and XI(n) have the same distribution starting
at x.

proof. Note that under PXI(n−1) , XI(n) has the same distribution as Xσ
B̃n

. Thus, by the
Markov property and the scaling property one has

XI(n) = XI(n−1) + r̃nY ′
n,

where Y ′
n is an independent sample of XσB(0,1) under P0. From the two constructions below

in addition with induction, one has that ρn and XI(n) has the same distribution starting at
x, for all n ≥ 0 and x ∈ D.

Let
N = min{n ∈ N : ρn /∈ D}. (4.11)

This random variable describes the quantity of balls B̃n that the process (Xt)t≥0 exits before
exits the domain D. The following Theorem ensures that N is almost surely finite.

Theorem 4.2 ( [25], Theorem 5.4) Let D be a open and bounded set. Therefore for all x ∈ D,
there exists a constant p̃ = p̃(α, d) > 0 independent of x and D, and a random variable Γ
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such that N ≤ Γ Px-a.s., where

Px(Γ = k) = (1 − p̃)k−1p̃, k ∈ N. (4.12)

Remark 4.1.1 Although the random variable Γ has the same distribution for each x ∈ D,
it is not the same random variable for each x ∈ D.

Remark 4.1.2 This theorem implies that

Px(N > n) ≤ Px(Γ > n) = (1 − p̃)n, n ∈ N.

The definition of I(n) and N in (4.10) and (4.11) imply that the total time of (Xt)t≥0 that
takes to exit N balls B̃1, ..., B̃N is equal to the time of (Xt)t≥0 that takes to exit D. More
precisely

Lemma 4.1.2 For x ∈ D, let Xt be an isotropic α-stable process. Therefore, a.s.

I(N) = σD.

proof. For the inequality ≥, note by definition of N that

XI(N) /∈ D.

Recall that σD is the infimum time t ≥ 0 such that Xt /∈ D, then

I(N) ≥ σD.

For ≤ suppose by contradiction that σD < I(N). If σD < I(N − 1), then

XI(N−1) /∈ D.

This is a contradiction with the definition of N , because N − 1 is a natural less than N
satisfying the above condition. Therefore I(N − 1) ≤ σD and this implies that there exists
t∗ ≥ 0 such that

I(N) > σD = I(N − 1) + t∗,

Using the definition of I(n), for n ∈ N and the supposition σD < I(N), one has

t∗ < τN ,

but
XσD

= XI(N−1)+t∗ /∈ D,

therefore, from the definition of τN in (4.9),

τN ≤ t∗,

a contradiction. Therefore I(N − 1) ≤ σD and we can conclude that

I(N) = σD.
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Remark 4.1.3 From the relation between XI(n) and ρn for n ∈ N, it follows that

Ex [ρN ] = Ex

[
XI(N)

]
= Ex [XσD

] .

Remark 4.1.3 give us a relation between (Xt)t≥0 and (ρn)n≥0. Figure ?? shows in an
example the relation between WoS and isotropic α-stable processes, exiting a bounded domain
D.

ρ1

ρ2
ρ3

ρ4

x

D

Figure 4.1: Illustration of isotropic α-stable and WoS processes starting at
x exiting a domain D. The blue line represents the α-stable process (Xt)t≥0,
the orange dots are the WoS process (ρn)n≥0 and the red balls are given by
Definition 4.1. In this case N = 4 and ρ4 = XσD

.

24



Chapter 5

Stochastic representation of the
Fractional Laplacian

5.1. Stochastic Representation
Recall Problem (1.2). The following theorem gives an stochastic representation of the

solution of problem (1.2) from the process (Xt)t≥0. The proof of this Theorem can be found
in [25]

Theorem 5.1 ([25], Theorem 6.1) Let d ≥ 2 and assume that D is a bounded domain in Rd.
Additionally, assume (Hg-0) and (Hf-0). Then there exist a unique continuous solution
for (1.2) in L1

α(Rd), given by the explicit formula

u(x) = Ex [g(XσD
)] + Ex

[∫ σD

0
f(Xs)ds

]
, (5.1)

valid for any x ∈ D.
The previous representation can be expressed in terms of the WoS process. For this define

the expected occupation measure of the stable process prior to exiting a ball of radius r > 0
centered in x ∈ Rd as follows:

Vr(x, dy) :=
∫ ∞

0
Px

(
Xt ∈ dy, t < σB(x,r)

)
dt, x ∈ Rd, |y| < 1, r > 0. (5.2)

We have the following result for V1(0, dy).

Theorem 5.2 ([25], Theorem 6.2) The measure V1(0, dy) is given for |y| < 1, by

V1(0, dy) = 2−απ−d/2 Γ(d/2)
Γ(α/2)2 |y|α−d

(∫ |y|−2−1

0
(u + 1)−d/2uα/2−1du

)
dy. (5.3)

Denote Vr(x, f(·)) =
∫

|y−x|<r
f(y)Vr(x, dy) for a bounded measurable function f . Vr(x, f(·))

defines the expected value of f under the measure Vr(x, dy) over the ball B(x, r). An impor-
tant property of this expected value is the following: for r > 0 and x ∈ Rd

Vr(x, f(·)) = V1(0, f(x + r·)). (5.4)
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The proof of this property can be found in [25]. The following Lemma uses the WoS
process and the Theorem 5.2. Recall that (ρn)n=1,...,N represents the WoS process defined in
Chapter 4, and rn = dist(ρn, ∂D).

Lemma 5.1 ([25], Lema 6.3) For x ∈ D, g ∈ L1
α(Dc) and f ∈ Cα+ε0(D) we have the

representation

u(x) = Ex [g(ρN)] + Ex

[
N∑

n=1
rα

nV1(0, f(ρn−1 + rn·))
]

. (5.5)

Remark 5.1.1 Recall that ρn and XI(n) are equal on law under Px for all n ∈ N. Therefore
we can write

u(x) = Ex

[
g
(
XI(N)

)]
+ Ex

[
N∑

n=1
rα

nV1
(
0, f

(
XI(n−1) + rn·

))]
. (5.6)

5.2. Equivalent representations of non-homogeneous
solution

Consider again the problem (1.2). Remember from Remark 5.1.1 that its solution can be
written as

u(x) = Ex

[
g
(
XI(N)

)]
+ Ex

[
N∑

n=1
rα

nV1(0, f(XI(n−1) + rn·))
]

.

Notice also that from the definition of V1(0, f(·)), it can be expressed as the expectation
of f under the measure V1(0, dy) on B(0, 1). This measure is not necessarily a probability
measure, so we are going to normalize the measure V1(0, dy). For this define for all d ≥ 2,
d ∈ N and α ∈ (0, 2)

κd,α =
∫

B(0,1)
V1(0, dy).

In the following Lemma we prove that κd,α is positive and finite

Lemma 5.2.1 For all d ≥ 2 and α ∈ (0, 2), we have that 0 < κd,α < +∞.

proof. Notice first from Theorem 4.1 that

κd,α = c̃d,α

∫
B(0,1)

|y|α−d

(∫ |y|−2−1

0
(u + 1)−d/2uα/2−1du

)
dy,

where c̃d,α = 2−απ−d/2 Γ(d/2)
Γ(α/2)2 . Now we work with the interior integral. With a change of

variables u = 1 − t

t
and integral properties one has:

∫ |y|2

1
td/2

(1 − t

t

)α/2−1
(−t−2)dt

=
∫ 1

0
td/2−α/2−1(1 − t)α/2−1dt −

∫ |y|2

0
td/2−α/2−1(1 − t)α/2−1dt.
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For z, w > 0, x ∈ [0, 1] let B(z, w) and I(x; z, w) be the Beta and the Incomplete Beta
functions respectively, defined as

B(z, w) :=
∫ 1

0
uz−1(1 − u)w−1du,

I(x; z, w) := 1
B(z, w)

∫ x

0
uz−1(1 − u)w−1du.

For further details of these functions the reader can consult [13]. Notice that κd,α can be
written in terms of B(z, w) and I(x; z, w). Indeed

κd,α = c̃d,αB

(
d

2 − α

2 ,
α

2

)∫
B(0,1)

|y|α−d

(
1 − I

(
|y|2; d

2 − α

2 ,
α

2

))
dy.

Note by property of Beta function that

B

(
d

2 − α

2 ,
α

2

)
=

Γ
(

d
2 − α

2

)
Γ
(

α
2

)
Γ
(

d
2

) .

The Gamma function is well defined and positive on (0, ∞). If d > α then

0 < B

(
d

2 − α

2 ,
α

2

)
< +∞.

On the other hand side, note by the definition of I(x; z, w) that for x < 1,

0 ≤ I(x; z, w) <
1

B(z, w)

∫ 1

0
uz−1(1 − u)w−1du = 1,

Then for all |y|2 < 1,

0 < 1 − I

(
|y|2; d

2 − α

2 ,
α

2

)
≤ 1.

Therefore in κd,α we are integrating the multiplication of two positive functions over a set of
positive measure. This implies that

0 < κd,α ≤ c̃d,αB

(
d

2 − α

2 ,
α

2

)∫
B(0,1)

|y|α−ddy.

The above integral can be calculated using a change of variables in spherical coordinates,
and his value is finite. Finally we conclude that

0 < κd,α < +∞.

Now we are able to define a probability measure µ on B(0, 1) given by

µ(dy) := κ−1
d,αV1(0, dy).
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Therefore, for any bounded measurable function f we have

V1(0, f(XI(n−1) + rn·)) =
∫

B(0,1)
f(XI(n−1) + rny)V1(0, dy)

= κd,α

∫
B(0,1)

f(XI(n−1) + rny)µ(dy)

= κd,αE(µ)
[
f(XI(n−1) + rn·)

]
. (5.7)

where E(µ) correspond to the expectation over the probability measure µ on B(0, 1). With
this representation, we can rewrite the solution of (1.2) as

u(x) = Ex

[
g
(
XI(N)

)]
+ Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
. (5.8)

From the construction of κd,α, the following properties are valid

Lemma 5.2.2 One has

1.
Ex

[
N∑

n=1
rα

nκd,α

]
= Ex [σD] ,

2.

Ex

∣∣∣∣∣
N∑

n=1
rα

nκd,α

∣∣∣∣∣
2 ≤ Ex

[
σ2

D

]
.

proof.

1. Notice from the definition of V1(0, f(·)), with f ≡ 1 that

κd,α = V1
(
0, 1

(
XI(n−1) + rn·

))
.

It follows from (5.4) that

rα
nκd,α = Vrn

(
XI(n−1), 1(·)

)
.

Moreover
Ex

[
N∑

n=1
rα

nκd,α

]
= Ex

[
N∑

n=1
Vrn

(
XI(n−1), 1(·)

)]

= Ex

[∫ σD

0
1(Xs)ds

]
= Ex [σD] .

2. From the definition of Vr(x, f(·)) with f ≡ 1, it follows that

Vrn

(
XI(n−1), 1(·)

)
= EXI(n−1)

[∫ σB(XI(n−1),rn)

0
1(Xt)dt

]
= EXI(n−1)

[
σB(XI(n−1),rn)

]
.

By definition of τn, n ∈ N, (4.9) and Markov property one has

EXI(n−1)

[
σB(XI(n−1),rn)

]
= E0 [τn] .
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Then, Jensen inequality implies

Ex

∣∣∣∣∣
N∑

n=1
rα

nκd,α

∣∣∣∣∣
2 = Ex

∣∣∣∣∣
N∑

n=1
E0 [τn]

∣∣∣∣∣
2 ≤ Ex

E0

∣∣∣∣∣
N∑

n=1
τn

∣∣∣∣∣
2 .

Finally, by tower property

Ex

∣∣∣∣∣
N∑

n=1
rα

nκd,α

∣∣∣∣∣
2 ≤ Ex

[
I(N)2

]
= Ex

[
σ2

D

]
.
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Chapter 6

Approximation of solutions of the
Fractional Dirichlet problem using
DNNs: the boundary data case

As usual, Problem (1.2) can be decomposed in two subproblems, that will be treated in a
separate way. In this Chapter we first deal with the homogeneous case.

6.1. Homogeneous Fractional Laplacian
We consider (1.2) with f ≡ 0, namely,{

(−∆)α/2u(x) = 0 for x ∈ D,

u(x) = g(x) for x ∈ Dc.
(6.1)

Note that under (Hg-0), one has from (5.1)

u(x) = Ex [g(XσD
)] , x ∈ D. (6.2)

The main idea of this section is approximate the solution (6.2) by a deep neural network
with ReLu activation, with an accurateness ε > 0. For this we going to assume that g can be
approximated by a ReLu DNN satisfying several hypotheses. These hypotheses are expressed
in the following assumption.

Recall that |||·||| represents the maximum number of hidden layers dimensions introduced
in (3.5), R is the realization of a DNN as in (3.3), and D was introduced in (3.4).

Assumptions 1 Let d ≥ 2. Let g : Dc → R satisfying (Hg-0). Let δg ∈ (0, 1), a, b ≥ 1,
p ∈ (1, α) and B > 0. Then there exists a ReLu DNN Φg ∈ N with

1. R(Φg) : Dc → R is continuous, and
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2. The following are satisfied:

|g(y) − (R(Φg)) (y)| ≤ δgBdp(1 + |y|)p, ∀y ∈ Dc. (Hg-1)
| (R(Φg)) (y)| ≤ Bdp(1 + |y|)p, ∀y ∈ Dc. (Hg-2)

|||D(Φg)||| ≤ Bdbδ−a
g , (Hg-3)

Remark 6.1.1 We use the hypotheses presented in [23] for the approximation of function
defined over non bounded sets.

In addition to the previous assumptions, we will require structural properties related to
the domain D itself.

Assumptions 2 Let α ∈ (1, 2), a, b ≥ 1 and B > 0. Suppose that D bounded domain enjoys
the following structure.

1. For any δdist ∈ (0, 1), the function x 7→ dist(x, ∂D) can be approximated by a ReLu
DNN Φdist ∈ N such that

sup
x∈D

|dist(x, ∂D) − (R(Φdist)) (x)| ≤ δdist, (HD-1)

and
|||D(Φdist)||| ≤ Bdb⌈log

(
δ−1

dist

)
⌉a. (HD-2)

2. For all δα ∈ (0, 1) there exists a ReLu DNN Φα ∈ N such that

sup
x∈[0,diam(D)]

|(R(Φα)) (x) − xα| ≤ δα. (HD-3)

and
|||D(Φα)||| ≤ Bdbδ−a

α . (HD-4)

Moreover, R(Φα) is a Lα-Lipschitz function, Lα > 0, for |x| ≤ diam(D).

Remark 6.1.2 Notice that Assumption (HD-3) is assured by Hornik’s Theorem [22]. Also,
(HD-2) may seem too demanding because of the log term, but actually this is the situation
in the case of a ball, see [17].

In the next proposition prove the existence of a ReLu DNN such that the Dirichlet problem
without source is well approximated.

Proposition 6.1 Let α ∈ (1, 2), Lg > 0 and

p, s ∈ (1, α) such that s < α
p

and q ∈
[
s, α

p

)
. (6.3)

Suppose that the function g satisfies (Hg-0) and Assumptions 1. Suppose additionally that D
satisfies Assumptions 2. Then for all ε ∈ (0, 1) there exists a ReLu DNN Ψ1,ε that satisfies

1. Proximity in Lq(D):
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− (R(Ψ1,ε)) (x)

∣∣∣q dx
) 1

q

≤ ε. (6.4)
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2. Realization: R(Ψ1,ε) has the following structure: there exists M ∈ N, N i ∈ N, Yi,n i.i.d.
copies of XσB(0,1) under P0, for i = 1, ..., M , n = 1, ..., N i such that for all x ∈ D,

R(Ψ1,ε)(x) = 1
M

M∑
i=1

(
R(Φg) ◦ R(Φi

N i
)
)

(x) , (6.5)

where Φi
N i

is a ReLu DNN approximating X i
I(N i)

= X i
I(N i)

(x, Yi,1, ..., Yi,N i
).

3. Bounds: There exists B̃ > 0 such that

|||D(Ψ1,ε)||| ≤ B̃|D|
1
q (2a+ap+ s

s−1 (1+2a+ap))db+2ap+2ap2+ ps
s−1 (1+2a+ap)ε−a− s

s−1 (1+2a+ap). (6.6)

Remark 6.1.3 The hypotheses (6.3) are non empty if α ∈ (1, 2). This requirement is stan-
dard in the literature devoted to the Fractional Laplacian, where some proofs are highly
dependent on the cases α ∈ (0, 1] versus α ∈ (1, 2).

Remark 6.1.4 The condition α ∈ (1, 2) is very important. In particular, if α ∈ (0, 1) the
hyportheses (6.3) are empty, and moreover, processes that we are working with not necessarily
have finite expectation and there are not guarantee on the convergence of the ReLu DNNs.

6.2. Proof of Proposition 6.1: existence
The proof will be divided in several steps. As explained before, we follow the ideas in [17],

with several changes due to the nonlocal character of the treated equation.

Let s, p and q be as in (6.3).

Step 1. Preliminaries. Let (ρn)n∈N be a WoS process introduced in Definition 4.1 starting
from x ∈ D. Let also I(N) and N be defined as in (4.10) and (4.11). Recall that from (5.1),

u(x) = Ex[g(ρN)] = Ex[g(XI(N))]. (6.7)

From the construction of XI(N), one has that XI(N) ∈ Dc and it depends on N i.i.d. copies
of XσB(0,1) , namely

XI(N) = XI(N)(x, Y1, ..., YN), (6.8)

where each Yn, n = 1, . . . , N , is an independent copy of XσB(0,1) under P0.

Let M ∈ N. Consider M copies of XI(N) starting from x ∈ D, as described in (6.8). We
denote such copies as

X i
I(Ni) = X i

I(Ni)(x, Yi,1, ..., Yi,Ni
), (6.9)

with Yi,n, i = 1, ..., M , n = 1, ..., Ni i.i.d. copies of XσB(0,1) under P0, and where each Ni is an
i.i.d. copy of N . Notice that for each copy, Ni can be different (as a random variable).
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With this in mind, and following [17], we introduce the Monte Carlo operator

EM(x) := 1
M

M∑
i=1

(R(Φg))
(
X i

I(Ni)

)
, (6.10)

where R(Φg) denotes the realization as a continuous function of the DNN Φg ∈ N that ap-
proximates g in Assumption 1. Notice that EM(x) may not be a DNN in the general case.

Our main objective in the following steps is to obtain suitable bounds on the difference bet-
ween the expectation of g(XI(N)) and EM(x), in a certain sense to be determined. Step 2 con-
trols the difference between Ex

[
g
(
XI(N)

)]
and the intermediate term Ex

[
(R(Φg))

(
XI(N)

)]
.

Notice that this last term is not necessarily a DNN, because of the quantity XI(N).

Step 2. Define
J1 :=

∣∣∣Ex

[
g
(
XI(N)

)]
− Ex

[
(R(Φg))

(
XI(N)

)]∣∣∣ .
Notice that by Jensen inequality and hypothesis (Hg-1) one has

J1 ≤ Ex

[∣∣∣g (XI(N)
)

− (R(Φg))
(
XI(N)

)∣∣∣] ≤ BdpδgEx

[(
1 +

∣∣∣XI(N)

∣∣∣)p]
.

Recall that we have an expression for E0

[∣∣∣XσB(0,1)

∣∣∣β] with β < α from Corollary 4.1. The

idea is to find a bound for Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p]
in terms of (4.5).

Let R > 1 be large enough to have D ⊂ B∗ := B(x, R). The right hand side of the previous
inequality is going to be separated in two terms: the case where σD = σB∗ , and otherwise.
Notice that σD > σB∗ is not possible. We obtain:

J1 ≤ Bdpδg

(
Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p
1{σD=σB∗ }

]
+ Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p
1{σD<σB∗ }

] )
.

In the case of the equality, the processes XI(N) and XσB∗ are equal on law under Px from
Lemma 4.1.2 and Remark 4.1.3. Then the Markov property and the scaling property of the
process (see (4.2) and (4.3)) can be used to get

Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p
1{σD=σB∗ }

]
= E0

[(
1 +

∣∣∣x + RXσB(0,1)

∣∣∣)p]
.

On the other hand note that if σD < σB∗ then XI(N) ∈ B∗ \ D. Therefore

Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p
1{σD<σB∗ }

]
≤ sup

y∈B∗\D
(1 + |y|)p.

We conclude

J1 ≤ Bdpδg

E0
[(

1 +
∣∣∣x + RXσB(0,1)

∣∣∣)p]
+ sup

y∈B∗\D
(1 + |y|)p

.

Using the Minkowski inequality and the fact that the sets D and B∗ \ D are bounded, one
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has
J1 ≤ Bdpδg

((
1 + |x| + RE0

[∣∣∣XσB(0,1)

∣∣∣p] 1
p

)p

+ sup
y∈B∗\D

(1 + |y|)p

)

≤ Bdpδg

((
K1 + RE0

[∣∣∣XσB(0,1)

∣∣∣p] 1
p

)p

+ Kp
2

)
,

where K1 and K2 are constants such that for all x ∈ D, y ∈ B∗ \ D

1 + |x| ≤ K1 and 1 + |y| ≤ K2. (6.11)

By Corollaries 2.1 and 4.1 one has

E0
[∣∣∣XσB(0,1)

∣∣∣p] 1
p = K(α, p)

1
p < ∞ ⇐⇒ p < α.

Therefore, from the choice of p, one has that J1 is finite and bounded as follows:

J1 ≤ Bdpδg

((
K1 + RK(α, p)

1
p

)p
+ Kp

2

)
, (6.12)

with K(α, p) < +∞ defined in (4.5).

Step 3. In this step we control the difference between the intermediate term Ex

[
(R(Φg))

(
XI(N)

)]
previously introduced in Step 2, and the Monte Carlo EM(x) (6.10). Define

J2 :=
∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]
− EM(x)

∥∥∥
Lq(Ω,Px)

.

In order to bound this term, we are going to use Corollary 2.2. First of all notice from (Hg-2)
that

Ex

[
| (R(Φg)) (XI(N))|

]
< BdpEx

[(
1 +

∣∣∣XI(N)

∣∣∣)p]
.

Note by Step 2 that

Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)p]
≤
(
K1 + RK(α, p)

1
p

)p
+ Kp

2 < +∞,

where K1 and K2 are defined in (6.11). Therefore one can conclude that

Ex

[∣∣∣(R(Φg)) (XI(N))
∣∣∣] < ∞.

Then for all i ∈ {1, ..., M}, (R(Φg)) (X i
I(Ni)) ∈ L1(Ω,Px). For s as in (6.3), Corollary 2.2

ensures that for all q ∈ [s, ∞) (and in particular for all q as in (6.3)), one has

J2 ≤ Θq,s

M1− 1
s

∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]
− (R(Φg))

(
XI(N)

)∥∥∥
Lq(Ω,Px)

. (6.13)
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Now we bound the norm on the right hand side of (6.13). By Minkowski’s inequality one has∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]
− (R(Φg))

(
XI(N)

)∥∥∥
Lq(Ω,Px)

≤
∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]∥∥∥
Lq(Ω,Px)

+
∥∥∥(R(Φg))

(
XI(N)

)∥∥∥
Lq(Ω,Px)

≤ 2Ex

[∣∣∣(R(Φg))
(
XI(N)

)∣∣∣q] 1
q .

Now using hypothesis (Hg-2) and the same results in previous Step to obtain∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]
− (R(Φg))

(
XI(N)

)∥∥∥
Lq(Ω,Px)

≤ 2BdpEx

[(
1 +

∣∣∣XI(N)

∣∣∣)pq] 1
q

≤ 2Bdp
(
Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)pq
1{σD=σB∗ }

] 1
q + Ex

[(
1 +

∣∣∣XI(N)

∣∣∣)pq
1{σD<σB∗ }

] 1
q

)
,

where we recall that B∗ is a ball in Rd centered in x with radious R > 1 large enough such
that D ⊂ B∗. Then using the scaling property of X and Minkowski inequality, we have∥∥∥Ex

[
(R(Φg))

(
XI(N)

)]
− (R(Φg))

(
XI(N)

)∥∥∥
Lq(Ω,Px)

≤ 2Bdp

(
E0
[(

1 +
∣∣∣x + RXσB(0,1)

∣∣∣)pq] 1
q + sup

y∈B∗\D
(1 + |y|)pq

)

≤ 2Bdp

((
K1 + RE0

[∣∣∣XσB(0,1)

∣∣∣pq] 1
pq

)p

+ Kp
2

)
.

(6.14)

Therefore, by (6.13), (6.14) and Corollary 4.1 we have that J2 is finite and bounded as follows:

J2 ≤ 2Θq,s

M1− 1
s

Bdp
((

K1 + RK(α, pq)
1

pq

)p
+ Kp

2

)
. (6.15)

Step 4. Thanks to Steps 2 and 3 now it is possible to bound the difference∥∥∥Ex

[
g
(
XI(N)

)]
− EM(x)

∥∥∥
Lq(Ω,Px)

.

Indeed, first notice from Jensen inequality in (4.5) that for 1 < q < α
p

(see (6.3)),

K(α, p)
1
p ≤ K(α, pq)

1
pq < +∞.

Condition q < α
p

is necessary in order to have K(α, pq) finite (see Corollary (4.1)). It follows
from (6.12), (6.15) and Minkowski’s inequality that∥∥∥Ex

[
g
(
XI(N)

)]
− EM(x)

∥∥∥
Lq(Ω,Px)

≤ J1 + J2

≤
(

δg + 2Θq,s

M1− 1
s

)
Bdp

((
K1 + RK(α, pq)

1
pq

)p
+ Kp

2

)
.

(6.16)
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Define
C :=

((
K1 + RK(α, pq)

1
pq

)p
+ Kp

2

)
< ∞. (6.17)

Note that the choice of R depends on the starting point x in order to have D ⊂ B(x, R). If
we choose e.g. R = 2 diam(D), it follows that for all x ∈ D, D ⊂ B(x, 2 diam(D)) and then
C is uniform w.r.t. x ∈ D. Fubini and (6.16) implies that

Ex

[∫
D

∣∣∣Ex

[
g
(
XI(N)

)]
− EM(x)

∣∣∣q dx
]

≤
(

δg + 2Θq,s

M1− 1
s

)q

|D|BqdpqCq. (6.18)

In the following steps we are going to control two quantities that help us to obtain bounds
for the random variables Ni and |Yi,n|, for all i = 1, ..., M , n = 1, ..., Ni. Although similar to
the steps followed in [17], here we need additional estimates because of the non continuous
nature of the Lévy jump processes.

Step 5. In order to bound the following expectation

Ex

∣∣∣∣∣Ex[N ] − 1
M

M∑
i=1

Ni

∣∣∣∣∣
q
 ,

we are going to use Corollary 2.2. Notice by Theorem 4.2 that for all x ∈ D there exists a
geometric random variable Γ with parameter p̃ = p̃(α, d) > 0 such that

Ex [|N |] ≤ Ex [Γ] = 1
p̃

< ∞,

and then for all i ∈ {1, ..., M}, Ni ∈ L1(Ω,Px). For s as in (6.3), Corollary 2.2 implies for all
q as in (6.3) that

Ex

∣∣∣∣∣Ex[N ] − 1
M

M∑
i=1

Ni

∣∣∣∣∣
q
 ≤

(
2Θq,s

M1− 1
s

)q

Ex [|N |q] ≤
(

2Θq,s

M1− 1
s

)q

Ex

[
|N |2

]
, (6.19)

where we used that q < 2 and then Ex [| · |q] ≤ Ex [| · |2]. Recall that

Ex

[
|N |2

]
≤ Ex

[
Γ2
]

= 2 − p̃

p̃2 < ∞, (6.20)

and therefore, it holds from (6.19) and (6.20) that

Ex

∣∣∣∣∣Ex[N ] − 1
M

M∑
i=1

Ni

∣∣∣∣∣
q
 ≤

(
2Θq,s

M1− 1
s

)q 2 − p̃

p̃2 . (6.21)

Step 6. Finally, we want to estimate

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q ,
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where Yi,n were introduced in (6.9). As in the previous step, we use the Corollary 2.2. First
of all, it follows from the independence of (Yn)k

n=1 and N for fixed k ∈ N (Yn and X are
independent), and the law of total expectation that

Ex

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
]

=
∑
k≥1

Ex

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
∣∣∣∣∣ N = k

]
Px(N = k)

=
∑
k≥1

E0

[∣∣∣∣∣
k∑

n=1
|Yn|

∣∣∣∣∣
]
Px(N = k).

Recall that (Yn)k
n=1 are i.i.d. with the same distribution as XσB(0,1) . Triangle inequality ensures

that
Ex

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
]

≤
∑
k≥1

k∑
n=1

E0 [|Yn|]Px(N = k)

= E0
[∣∣∣XσB(0,1)

∣∣∣]∑
k≥1

kPx(N = k)

= K(α, 1)Ex[N ].

Then for all i ∈ {1, ..., M}, ∑Ni
n=1 |Yi,n| ∈ L1(Ω,Px). Moreover, with similar arguments

Ex

∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
q
 =

∑
k≥1

Ex

∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
q
∣∣∣∣∣∣ N = k

Px(N = k)

=
∑
k≥1

E0

∣∣∣∣∣
k∑

n=1
|Yn|

∣∣∣∣∣
q
Px(N = k).

Recall from the bounds of q that appear in (6.3), one has that q ∈ (1, 2) and the function
| · |q is convex. This implies that, for all k ∈ N∣∣∣∣∣

k∑
n=1

|Yn|
k

∣∣∣∣∣
q

≤
k∑

n=1

|Yn|q

k
.

Therefore ∣∣∣∣∣
k∑

n=1
|Yn|

∣∣∣∣∣
q

≤ kq−1
k∑

n=1
|Yn|q.

Replacing this on the previous estimate one has

Ex

∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
q
 ≤

∑
k≥1

k∑
n=1

kq−1E0 [|Yn|q]Px(N = k)

= E0
[∣∣∣XσB(0,1)

∣∣∣q]∑
k≥1

kqPx(N = k)

= K(α, q)Ex[N q].

(6.22)
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For s as in (6.3), Corollary 2.2 implies for all q as in (6.3) that

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q ≤

(
2Θq,s

M1− 1
s

)q

Ex

∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
q
 .

Therefore it follows from (6.20) and (6.22) that

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q ≤

(
2Θq,s

M1− 1
s

)q

K(α, q)2 − p̃

p̃2 . (6.23)

Step 7. Coupling the bounds obtained in (6.18), (6.21) and (6.23), it holds that

Ex

∫
D

∣∣∣Ex

[
g
(
XI(N)

)]
− EM(x)

∣∣∣q dx +
∣∣∣∣∣Ex[N ] − 1

M

M∑
i=1

Ni

∣∣∣∣∣
q

+

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q

≤
(

δg + 2Θq,s

M1− 1
s

)q

|D|BqdpqCq +
(

2Θq,s

M1− 1
s

)q

(1 + K(α, q))2 − p̃

p̃2 . =: errorq
g

(6.24)

Using now that E(Z) ≤ c < +∞, we summarize the following result.

Lemma 6.2.1 There exists N i ∈ N, Yi,n i.i.d. copies of XσB(0,1) under P0, i = 1, ..., M ,
n = 1, ..., N i such that

∫
D

∣∣∣∣∣Ex

[
g
(
XI(N)

)]
− 1

M

M∑
i=1

(R(Φg))
(
X i

I(N i)

)∣∣∣∣∣
q

dx

+
∣∣∣∣∣Ex[N ] − 1

M

M∑
i=1

N i

∣∣∣∣∣
q

+

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M

M∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q

≤ errorq
g.

(6.25)

With a slight abuse of notation, we redefine EM from (6.10) as

EM(x) = 1
M

M∑
i=1

(R(Φg))
(
X i

I(N i)

)
. (6.26)

Step 8. We are going to prove now that X i
I(N i)

can be approximated by a ReLu DNN. Let
δdist ∈ (0, 1). Recall that from (HD-1) there exists Φdist ∈ N ReLu DNN such that for all
x ∈ D

|(R(Φdist)) (x) − dist(x, ∂D)| ≤ δdist.

Define (Φi,n)i=1,...,M,n=1,...,N i
∈ N as follows: for x ∈ D

(R(Φi,1)) (x) = x + Yi,1 (R(Φdist)) (x), (6.27)
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and for all n = 2, ..., N i, x ∈ D

(R(Φi,n)) (x) = (R(Φi,n−1)) (x) + Yi,n (R(Φdist) ◦ R(Φi,n−1)) (x). (6.28)

In the Section 6.3 we will see that (Φi,n)i=1,...,M,n=1,...,N i
is indeed a ReLu DNN. Note that,

for x ∈ D, i = 1, ..., M ,

∣∣∣X i
I(1) − (R(Φi,1)) (x)

∣∣∣ ≤ |Yi,1| |(R(Φdist)) (x) − dist(x, ∂D)| ≤ δdist

N i∑
n=1

|Yi,n|,

and for all n = 2, ..., N i, by triangle inequality∣∣∣X i
I(n) − (R(Φi,n)) (x)

∣∣∣ ≤
∣∣∣X i

I(n−1) − (R(Φi,n−1)) (x)
∣∣∣

+ |Yi,n|
∣∣∣dist

(
X i

I(n−1), ∂D
)

− dist ((R(Φi,n−1)) (x), ∂D)
∣∣∣

+ |Yi,n| |dist ((R(Φi,n−1)) (x), ∂D) − (R(Φdist) ◦ R(Φi,n−1)) (x)| .

Using the hypothesis on Φdist and the fact that the function x → dist(x, ∂D) is 1-Lipschitz
one has

∣∣∣X i
I(n) − (R(Φi,n)) (x)

∣∣∣ ≤

 N i∑
n=1

|Yi,n| + 1
 ∣∣∣X i

I(n−1) − (R(Φi,n−1)) (x)
∣∣∣+ δdist

N i∑
n=1

|Yi,n|.

By the previous recursion one obtain that for all i = 1, ..., M

∣∣∣X i
I(N i) −

(
R(Φi,N i

)
)

(x)
∣∣∣ ≤

 N i∑
n=1

|Yi,n|

 δdist

N i∑
i=1

 N i∑
n=1

|Yi,n| + 1
i−1

≤

 N i∑
n=1

|Yi,n|

 δdist

(∑N i
n=1 |Yi,n| + 1

)N i

− 1(∑N i
n=1 |Yi,n| + 1

)
− 1

≤ δdist

 N i∑
n=1

|Yi,n| + 1
N i

.

Step 9. With the ReLu DNNs defined in Step 8, we are able to find a ReLu DNN that
approximates EM(x). Define Φi

g ∈ N as follows(
R(Φi

g)
)

(x) =
(
R(Φg) ◦ R(Φi,N i

)
)

(x), (6.29)

valid for x ∈ D. Notice from Lemma 3.2 that Φi
g is indeed a ReLu DNN. For full details see

Section 6.1. By triangle inequality one has∣∣∣(R(Φg))
(
X i

I(N i)

)
−
(
R(Φi

g)
)

(x)
∣∣∣

≤
∣∣∣(R(Φg))

(
X i

I(N i)

)
− g

(
X i

I(N i)

)∣∣∣+ ∣∣∣g (X i
I(N i)

)
−
(
g ◦ R(Φi,N i

)
)

(x)
∣∣∣

+
∣∣∣(g ◦ R(Φi,N i

)
)

(x) −
(
R(Φi

g)
)

(x)
∣∣∣ .
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We use the hypothesis (Hg-1) and the assumption that g is Lg-Lipschitz to obtain∣∣∣(R(Φg))
(
X i

I(N i)

)
−
(
R(Φi

g)
)

(x)
∣∣∣

≤ Bdpδg

((
1 +

∣∣∣X i
I(N i)

∣∣∣)p
+
(
1 +

∣∣∣(R(Φi,N i
)
)

(x)
∣∣∣)p)

+ Lg

∣∣∣X i
I(N i) −

(
R(Φi,N i

)
)

(x)
∣∣∣ .

By triangle inequality one has∣∣∣(R(Φi,N i
)
)

(x)
∣∣∣ ≤

∣∣∣X i
I(N i) −

(
R(Φi,N i

)
)

(x)
∣∣∣+ ∣∣∣X i

I(N i)

∣∣∣ .
With the previous estimate and using that (·)p is a convex function, we obtain∣∣∣(R(Φg))

(
X i

I(N i)

)
−
(
R(Φi

g)
)

(x)
∣∣∣

≤ Bdpδg

(
1 +

∣∣∣X i
I(N i)

∣∣∣)p
+ Lg

∣∣∣X i
I(N i) −

(
R(Φi,N i

)
)

(x)
∣∣∣

+ 2p−1Bdpδg

((
1 +

∣∣∣X i
I(N i)

∣∣∣)p
+
∣∣∣X i

I(N i) −
(
R(Φi,N i

)
)

(x)
∣∣∣p) .

Notice that from (4.1), ∣∣∣X i
I(N i)

∣∣∣ ≤ |x| + diam(D)
N i∑

n=1
|Yi,n|.

Therefore, in addition to Step 6, one has

∣∣∣(R(Φg))
(
X i

I(N i)

)
−
(
R(Φi

g)
)

(x)
∣∣∣ ≤ 3Bdpδg

1 + |x| + diam(D)
N i∑

n=1
|Yi,n|

p

+ Lgδdist

1 +
N i∑

n=1
|Yi,n|

N i

+ 2Bdpδgδp
dist

1 +
N i∑

n=1
|Yi,n|

pN i

.

(6.30)

Now define for ε ∈ (0, 1) the ReLu DNN Ψ1,ε such that it satisfies for x ∈ D

(R(Ψ1,ε)) (x) = 1
M

M∑
i=1

(
R(Φi

g)
)

(x).

This is the requested DNN. Section 6.3 shows that Ψ1,ε is a ReLu DNN. From the bound
obtained in (6.30), we have that

|EM(x) − (R(Ψ1,ε)) (x)| ≤ 1
M

M∑
i=1

∣∣∣(R(Φg))
(
X i

I(N i)

)
−
(
R(Φi

g)
)

(x)
∣∣∣

≤ 3Bdpδg

K1 + diam(D)
M∑

i=1

N i∑
n=1

|Yi,n|

p

+ Lgδdist

1 +
M∑

i=1

N i∑
n=1

|Yi,n|


∑M

i=1 N i

+ 2Bdpδgδp
dist

1 +
M∑

i=1

N i∑
n=1

|Yi,n|

p
∑M

i=1 N i

.
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Step 10. We want to bound errorg. Using that 1
q

< 1 one has

errorg ≤
(

δg + 2Θq,s

M1− 1
s

)
|D|

1
q BdpC + 2 Θq,s

M1− 1
s

(
1 + K(α, q)

1
q

)(2 − p̃

p̃2

) 1
q

.

= 2 Θq,s

M1− 1
s

|D|
1
q BdpC +

(
2 − p̃

p̃2

) 1
q (

1 + K(α, q)
1
q

)+ δg|D|
1
q BdpC

Denote

C1 = 2Θq,s

|D|
1
q BdpC +

(
2 − p̃

p̃2

) 1
q (

1 + K(α, q)
1
q

) , and C2 = |D|
1
q BdpC. (6.31)

Note that C1 and C2 are polynomial on the dimension d. Then

errorg ≤ C1

M1− 1
s

+ C2δg. (6.32)

In adition, thanks to Step 5, one has

M∑
i=1

N i∑
n=1

|Yi,n| ≤ M

(
errorg + Ex

[
N∑

n=1
|Yi,n|

])
≤ M

(
errorg + K(α, 1)1

p̃

)
.

Define C3 := K(α, 1)/p̃, then

M∑
i=1

N i∑
n=1

|Yi,n| ≤ M
1
s C1 + MδgC2 + MC3

≤ M
1
s C1 + M(C2 + C3).

On the other hand side define C4 = 1
p̃
, then

M∑
i=1

N i ≤ M(errorg + Ex[N ]) ≤ M
1
s C1 + MδgC2 + M

p̃

≤ M
1
s C1 + M(C2 + C4).

Step 11. Using the auxiliary Lemma 6.2.1 and (6.32), it follows that
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− EM(x)

∣∣∣q dx
) 1

q

≤ C1

M1− 1
s

+ C2δg.
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In addition, from Step 9 and (6.32) one has
(∫

D
|EM(x) − (R(Ψ1)) (x)|q dx

) 1
q

≤ 3|D|
1
q Bdpδg

(
K1 + diam(D)

(
M

1
s C1 + M(C2 + C3)

))p

+ |D|
1
q Lgδdist

(
1 + M

1
s C1 + M(C2 + C3)

)M
1
s C1+M(C2+C4)

+ 2|D|
1
q Bdpδgδp

dist

(
1 + M

1
s C1 + M(C2 + C3)

)p

(
M

1
s C1+M(C2+C4)

)
.

Therefore, Minkowski inequality implies that
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− (R(Ψ1,ε)) (x)

∣∣∣q dx
) 1

q

≤
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− EM(x)

∣∣∣q dx
) 1

q

+
(∫

D
|EM(x) − (R(Ψ1)) (x)|q dx

) 1
q

≤ C1

M1− 1
s

+ C2δg + 3|D|
1
q Bdpδg

(
K1 + diam(D)

(
M

1
s C1 + M(C2 + C3)

))p

+ |D|
1
q Lgδdist

(
1 + M

1
s C1 + M(C2 + C3)

)M
1
s C1+M(C2+C4)

+ 2|D|
1
q Bdpδgδp

dist

(
1 + M

1
s C1 + M(C2 + C3)

)p

(
M

1
s C1+M(C2+C4)

)
.

(6.33)

for ε ∈ (0, 1) let M ∈ N large enough such that

M =
⌈(5C1

ε

) s
s−1
⌉

, and δdist ∈ (0, 1) small enough such that

δdist = ε

5|D|
1
q Lg

(
1 + M

1
s C1 + M(C2 + C3)

)−
(

M
1
s C1+M(C2+C4)

)
.

Let

C5 = max

C2, 3|D|
1
q Bdp

(
K1 + diam(D)

(
M

1
s C1 + M(C2 + C3)

))p
,
2|D|

1
q Bdp

5p|D|
p
q Lp

g

 , (6.34)

and consider δg ∈ (0, 1) small enough such that

δg = ε

5C5
.

Therefore each term of (6.33) can be bounded by ε/5. Then
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− (R(Ψ1,ε)) (x)

∣∣∣q dx
) 1

q

≤ ε.
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This allos us to conclude that 6.2 can be approximated in Lq(D) by a DNN Ψ1,ε with accu-
rateness ε ∈ (0, 1).

6.3. Proof of Proposition 6.1: Quantification of DNNs
In this Section we will prove that Ψ1,ε is in fact a ReLu DNN wich does not suffer of the

curse of dimensionality.

Step 12. We now use the Definitions and Lemmas of Chapter 3 to study Ψ1,ε. Let

βdist = D(Φdist) and Hdist = dim(βdist) − 2.

And we will verify by induction that for all i = 1, ..., M n = 1, ..., N i, Φi,n (defined in 6.27
and 6.28) is a ReLu DNN that satisfy

D(Φi,n) =
n
⊙

m=1
(dnHdist+2 ⊞ β̃dist), (6.35)

where
β̃dist = (βdist,0, ..., βdist,Hdist , d) ∈ NHdist+2.

If 6.35 is true, then from (6.35) and the definition of the operator ⊙ is easy to see that

|||D(Φi,n)||| ≤ 2d + |||D(Φdist)|||, and dim(D(Φi,n)) = (Hdist + 1)n + 1. (6.36)

For n = 1, recall the definition of Φi,1 from (6.27). By Lemma 3.5 one has that

Yi,1R(Φdist) ∈ R
({

Φ ∈ N : D(Φ) = β̃dist
})

.

By Lemma 3.1, the identity function can be represented by a ReLu DNN with Hdist + 2
number of layers. Therefore by Lemma 3.3 it follows that R(Φi,1) ∈ C(D,Rd) and

D(Φi,1) = dnHdist+2 ⊞ β̃dist, dim(D(Φi,1)) = Hdist + 2.

Moreover
|||D(Φi,1)||| ≤ 2d + |||D(Φdist)|||.

Now suppose that for n = 2, ..., N i − 1 that (6.35) is valid. Recall the definition of Φi,n from
(6.28). Notice that R(Φi,n+1) can be written as

R(Φi,n+1) = R(Φ̃i,n+1) ◦ R(Φi,n).

where Φ̃i,n ∈ N is a ReLu DNN that satisfies(
R(Φ̃i,n)

)
(x) = x + Yi,n (R(Φdist)) (x).

By the same arguments as in the case n = 1, it follows for all n = 2, ..., N i that

D(Φ̃i,n) = dnHdist+2 ⊞ β̃dist, dim(D(Φ̃i,n)) = Hdist + 2,
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and ∣∣∣∣∣∣∣∣∣D(Φ̃i,n)
∣∣∣∣∣∣∣∣∣ ≤ 2d + |||D(Φdist)|||.

Therefore from the inductive hypothesis (6.35) and Lemma 3.2, Φi,n+1 is a ReLu DNN that
satisfies

D(Φi,n+1) = (dnHdist+2 ⊞ β̃dist) ⊙
(

n
⊙

m=1
(dnHdist+2 ⊞ β̃dist)

)
=

n+1
⊙

m=1
(dnHdist+2 ⊞ β̃dist).

Then the claim for Φi,n is proved for any i = 1, ..., M , n = 1, ..., N i. Recall that 6.36 is valid
too. Therefore

D(Φi,N i
) =

N i⊙
m=1

(dnHdist+2 ⊞ β̃dist).

Moreover∣∣∣∣∣∣∣∣∣D(Φi,N i
)
∣∣∣∣∣∣∣∣∣ ≤ 2d + |||D(Φdist)|||, and dim(D(Φi,N i

)) = (Hdist + 1)N i + 1.

Let βg = D(Φg) and Hg = dim(βg) − 2. By Lemma 3.2 one has that

D(Φi
g) = βg ⊙

(
N i⊙

m=1
(dnHdist+2 ⊞ β̃dist)

)
, dim(D(Φi

g)) = (Hdist + 1)N i + Hg + 2.

Moreover ∣∣∣∣∣∣∣∣∣D(Φi
g)
∣∣∣∣∣∣∣∣∣ ≤ max{|||D(Φg)|||, 2d + |||D(Φdist)|||}.

Recall that N i not necessarily be the same for i = 1, ..., M . Now we need that for all
i = 1, ..., M , Φi

g have the same number of layers to use Lemma 3.3. For any i = 1, ..., M
define

Hi = (Hdist + 1)
 M∑

j=1
N j − N i

− 1.

By Lemma 3.1, The identity function can be represented by a ReLu DNN with Hi hidden
layers. Recall the definition of Φi

g in (6.29). Using Lemma 3.2 we have that

D(Φi
g) = nHi+2 ⊙ βg ⊙

(
N i⊙

m=1
(dnHdist+2 ⊞ β̃dist)

)
,

and
dim(D(Φi

g)) = (Hdist + 1)
M∑

i=1
N i + Hg + 2.

Now we use Lemma 3.3 to conclude that

D(Ψ1,ε) =
M

⊞
i=1

(
nHi+2 ⊙ βg ⊙

(
N i⊙

m=1
(dnHdist+2 ⊞ β̃dist)

))
,

and
dim(D(Ψ1,ε)) = (Hdist + 1)

M∑
i=1

N i + Hg + 2.
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In addition
|||D(Ψ1,ε)||| ≤

M∑
i=1

max{|||D(Φg)|||, 2d + |||D(Φdist)|||}

≤ M(|||D(Φg)||| + 2d + |||D(Φdist)|||).
(6.37)

Notice fron (6.31) that the constants C1 and C2 are bounded by a multiple of |D|
1
q dp. The-

refore, by choice of M ,
M ≤ B1|D|

s
q(s−1) d

ps
s−1 ε− s

s−1 , (6.38)

where B1 > 0 is a generic constant. With (6.38) and the bound of C1 and C2, we have that
C5 defined in (6.34) is bounded by a multiple of

|D|
1
q (1+p+ ps

s−1)dp+p2+ p2s
s−1 ε− ps

s−1 .

By the choice of δg we have, for B2 > 0 a generic constant that

δ−a
g ≤ B2|D|

a
q (1+p+ ps

s−1)dap+ap2+ ap2s
s−1 ε−a− aps

s−1 . (6.39)

For δdist we estimate log
(
δ−1

dist

)
as indicates Assumption 2. By the choice of δdist and properties

of log function, we have that

log
(
δ−1

dist

)
≤ 5|D|

1
q Lgε−1 + (M 1

s C1 + M(C2 + C4))(1 + M
1
s C1 + M(C2 + C3)).

Therefore
⌈log

(
δ−1

dist

)
⌉a ≤ B3|D|

2a
q (1+ s

s−1)d2ap(1+ s
s−1)ε−a− 2as

s−1 , (6.40)

where B3 > 0 is a generic constant. Assumptions 1 and 2, in addition with (6.37) implies
that

|||D(Ψ1,ε)||| ≤ B4d
bM(δ−a

g + ⌈log
(
δ−1

dist

)
⌉a),

where B4 > 0 is a generic constant. Therefore, from (6.38), (6.39) and (6.40) we conclude
that there exists B̃ > 0 such that

|||D(Ψ1,ε)||| ≤ B̃|D|
1
q (2a+ap+ s

s−1 (1+2a+ap))db+2ap+ap2+ ps
s−1 (1+2a+ap)ε−a− s

s−1 (1+2a+ap).

Note also that this implies from Remark 3.1.2 that Ψ1,ε overcomes the curse of dimensionality.
This completes the proof of Proposition 6.1.
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Chapter 7

Approximation of solutions of the
Fractional Dirichlet problem using
DNNs: the source case

7.1. Non-homogeneous Fractional Laplacian
In the previous Chapter we have proved the the solution (6.2) of the fractional Dirichlet

Problem without source can be approximated by a ReLu DNN. In this Section we focus in
the term

Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
. (7.1)

We will prove that (7.1) can be approximated by a ReLu DNN that does not suffer of the
curse of dimensionality. Notice that (7.1) corresponds to the extra term in the solution (1.3)
of the fractional Dirichlet Problem with source (1.2). In order to do this approximation, the
following assumption will be introduced

Assumptions 3 Let d ≥ 2. Let f : D → R a function satisfying (Hf-0). Let δf ∈ (0, 1),
a, b ≥ 1 and B > 0. Then there exists a ReLu DNN Φf ∈ N with

1. R(Φf ) : D → R is L̃f -Lipschitz continuous, L̃f > 0, and

2. The following are satisfied:

|f(x) − (R(Φf )) (x)| ≤ δf , x ∈ D. (Hf-1)
|||D(Φf )||| ≤ Bdbδ−a

f . (Hf-2)

Remark 7.1.1 If Φf satisfies Assumptions 3, then it holds for all x ∈ D that

| (R(Φf )) (x)| ≤ |f(x) − (R(Φf )) (x)| + |f(x)| ≤ δf + ∥f∥L∞(D).

Then
∥R(Φf )∥L∞(D) ≤ δf + ∥f∥L∞(D). (7.2)

The main result of this Section is the following proposition, that ensures the existence of
a ReLu DNN such that (7.1) is well approximated
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Proposition 7.1 Let α ∈ (1, 2), Lf > 0 and

p, s ∈ (1, α) such that s < α
p
, and q ∈

[
s, α

p

)
. (7.3)

Suppose that f is a function satisfying (Hf-0) and Assumptions 3. Suppose additionally that
D satisfies Assumptions 2.

Then for all ε̃ ∈ (0, 1), there exists a ReLu DNN Ψ2,ε̃ such that

1. Proximity in Lq(D):
∫

D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nV1(0, f(XI(n−1) + rn·))
]

−
(
R(Ψ2,ε̃)

)
(x)
∣∣∣∣∣
q
 1

q

≤ ε̃. (7.4)

2. Realization: R(Ψ2,ε̃) has the following structure: there exist M1, M2 ∈ N, N i ∈ N,
Yi,n i.i.d copies of XσB(0,1) under P0, vi,j,n i.i.d copies with law µ under B(0, 1), for
i = 1, ..., M1, j = 1, ..., M2, n = 1, ..., N i such that for all x ∈ D,

(
R(Ψ2,ε̃)

)
(x) = 1

M1

M1∑
i=1

N i∑
n=1

κd,α (R(Υ))
((

R(Φα) ◦ R(Φi,n
r )
)

(x),
(
R(Φi,n

f )
)

(x)
)

, (7.5)

where for all y ∈ D (
R(Φi,n

r )
)

(y) = (R(Φdist) ◦ R(Φi,n−1)) (y), (7.6)

(
R(Φi,n

f )
)

(y) = 1
M2

M2∑
j=1

(
R(Φf ) ◦

(
R(Φi,n) + vi,j,nR(Φi,n

r )
))

(y), (7.7)

and R(Φi,n) is a Relu DNN that approximates X i
I(n), for i = 1, ..., M1, n = 1, ..., N i.

3. Bounds: there exists B̃ > 0 such that∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)
∣∣∣∣∣∣∣∣∣ ≤ B̃|D|

1
q (1+2a+ 2s

s−1 (1+a))dbε̃−a− 2s
s−1 (1+a). (7.8)

7.2. Proof of Proposition 7.1: existence
As in the proof of Proposition 6.1, this proof will be divided in several steps. Let s, p and q

as in (7.3).

Step 1. Let (ρn)n∈N the WoS process starting at x ∈ D. Recall that for all n = 1, ..., N the
process XI(n) depends of the point x ∈ D and n copies of XσB(0,1) , namely

XI(n) = XI(n)(x, Y1, ..., Yn), (7.9)

where Yk, k = 1, ..., n are i.i.d. copies of XσB(0,1) under P0. Let M1 ∈ N. Consider M1 copies
of XI(n) starting at x ∈ D, as described in (7.9). We denote such copies as

X i
I(n) = X i

I(n)(x, Yi,1, ..., Yi,n),
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where Yi,k, i = 1, ..., M1, n = 1..., Ni, k = 1, ..., n are i.i.d. copies of XσB(0,1) under P0, and each
Ni is an i.i.d. copy of N . Recall that Ni not necessarily be the same (as a random variable).

Let M2 ∈ N. for all n = 1, ..., N let (vj,n)M2
j=1 be M2 copies of a random variable v with

distribution µ over B(0, 1). For all n = 1, ..., N and χ ∈ L2(B(0, 1), µ) define the Monte Carlo
operator

En
M2(χ(·)) = 1

M2

M2∑
j=1

χ(vj,n), (7.10)

and we will refer to EM2 when the copies of v in 7.10 do not depend on n. Additionally define
the operator

EM1(x) = 1
M1

M1∑
i=1

Ni∑
n=1

(ri
n)ακd,αEM2

(
(R(Φf ))

(
X i

I(n−1) + ri
n·
))

, (7.11)

where
ri,n = dist

(
X i

I(n−1), ∂D
)

, (7.12)

and R(Φf ) denotes the realization as a Lipschitz continuous funtion of the DNN Φf ∈ N
that approximates f in Assumption (3). Note that EM1 not necessarily be a DNN.

We want to establish suitable bounds of the difference between (7.1) and the operator
EM1(x). For this, in the next step we work for all n = 1, ..., N with the term

En
M2

(
(R(Φf ))

(
XI(n−1) + rn·

))
.

Step 2. Notice by Remark 7.1.1 that for all n = 1, ..., N that

E(µ)
(∣∣∣(R(Φf ))

(
XI(n−1) + rn·

)∣∣∣) ≤ δf + ∥f∥L∞(D). (7.13)

Then for all j = 1, ..., M2, (R(Φf ))
(
XI(n−1) + rnvj,n

)
∈ L1(B(0, 1), µ). For s as in (7.3) it

follows from Corollary 2.2 that for all q as in (7.3)∥∥∥E(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]
− EM2

(
(R(Φf ))

(
XI(n−1) + rn·

))∥∥∥
Lq(B(0,1),µ)

≤ 2Θq,s

M
1− 1

s
2

E(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)q] 1
q .

From Remark 7.1.1 it follows that

E(µ)
(∣∣∣(R(Φf ))

(
XI(n−1) + rn·

)∣∣∣q) 1
q ≤ δf + ∥f∥L∞(D).
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Therefore∥∥∥E(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]
− EM2

(
(R(Φf ))

(
XI(n−1) + rn·

))∥∥∥
Lq(B(0,1),µ)

≤
2Θq,s

(
δf + ∥f∥L∞(D)

)
M

1− 1
s

2

.

Then for any n = 1, ..., N there exists vj,n, j = 1, ..., M2, i.i.d random variables with distri-
bution µ such that∣∣∣∣∣∣E(µ)

[
(R(Φf ))

(
XI(n−1) + rn·

)]
− 1

M2

M2∑
j=1

(R(Φf ))
(
XI(n−1) + rnvj,n

)∣∣∣∣∣∣
≤

2Θq,s

(
δf + ∥f∥L∞(D)

)
M

1− 1
s

2

.

We redefine En
M2 with the random variables vj,n found for all n = 1, ..., N .

In the two next steps we control the difference between (7.1) and EM1 with the intermediate
term

Ex

[
N∑

n=1
rα

nκd,αEn
M2 (R(Φf ))

(
XI(n−1) + rn·

)]
,

Step 3. Define

J3 =

∥∥∥∥∥∥Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]]

− Ex

[
N∑

n=1
rα

nκd,αEn
M2

(
(R(Φf ))

(
XI(n−1) + rn·

))] ∥∥∥∥∥∥
Lq(Ω,Px)

.

From Step 2 we have

J3 ≤ 2Θq,s

M
1− 1

s
2

(
δf + ∥f∥L∞(D)

) ∥∥∥∥∥Ex

[
N∑

n=1
rα

nκd,α

]∥∥∥∥∥
Lq(Ω,Px)

.

Using Lemma 5.2.2 it follows that

J3 ≤ 2Θq,s

M
1− 1

s
2

(
δf + ∥f∥L∞(D)

)
Ex[σD].

Step 4. Define

J4 =
∥∥∥∥∥Ex

[
N∑

n=1
rα

nκd,αEn
M2 (R(Φf ))

(
XI(n−1) + rn·

)]
− EM1(x)

∥∥∥∥∥
Lq(Ω,Px)

.
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Recall Remark 7.1.1. Then

Ex

[∣∣∣∣∣
N∑

n=1
rα

nκd,αEn
M2 (R(Φf ))

(
XI(n−1) + rn·

)∣∣∣∣∣
]

≤ (δf + ∥f∥L∞(D))Ex[σD] < ∞.

This implies that

N∑
n=1

rα
i,nκd,αEn

M2 (R(Φf ))
(
X i

I(n−1) + ri,n·
)

∈ L1(Ω,Px).

Then using Corollary 2.2 we have for s as in (7.3) it holds for all q as in (7.3) that

J4 ≤ 2Θq,s

M
1− 1

s
1

Ex

( N∑
n=1

rα
nκd,αEn

M2

(
(R(ϕf )) (XI(n−1) + rn·)

))q
 1

q

. (7.14)

Remark 7.1.1 implies that

J4 ≤ 2Θq,s

M
1− 1

s
1

(
δf + ∥f∥L∞(D)

)
Ex

( N∑
n=1

rα
nκd,α

)q
 1

q

By Lemma 5.2.2 and Jensen inequality with (·)
2
q , q < 2, we have

Ex

( N∑
n=1

rα
nκd,α

)q
 1

q

≤ Ex

( N∑
n=1

rα
nκd,α

)2
1
2

≤ Ex[σ2
D] 1

2 .

Therefore

J4 ≤ 2Θq,s

M
1− 1

s
1

(
δf + ∥f∥L∞(D)

)
Ex[σ2

D] 1
2 . (7.15)

Step 5. With the bounds obtained in Steps 3 and 4, we have by Minkowski inequality that∥∥∥∥∥Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]]
− EM1(x)

∥∥∥∥∥
Lq(Ω,Px)

≤ J3 + J4

≤ 2Θq,s

(
δf + ∥f∥L∞(D)

)Ex[σD]
M

1− 1
s

2

+ Ex[|σD|2] 1
2

M
1− 1

s
1

 .

(7.16)

Fubini and (7.16) implies that

Ex

∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]]
− EM1(x)

∣∣∣∣∣
q

dx


≤ 2q|D|Θq

q,s

(
δf + ∥f∥L∞(D)

)q

Ex[σD]
M

1− 1
s

2

+ Ex[σ2
D] 1

2

M
1− 1

s
1

q (7.17)
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On the other hand side, from hypothesis (Hf-1) and Lemma 5.2.2 one has

Ex

[∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
(R(ϕf ))

(
XI(n−1) + rn·

)]]

−Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]∣∣∣∣∣
q

dx

 ≤ δq
f |D|Ex[σD]q.

Therefore, using that (·)q is a convex function and (7.17) it follows that

Ex

∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
− EM1(x)

∣∣∣∣∣
q

dx


≤ 2q−1δq

f |D|Ex[σD]q + 2q−12q|D|Θq
q,s

(
δf + ∥f∥L∞(D)

)q

Ex[σD]
M

1− 1
s

2

+ Ex[σ2
D] 1

2

M
1− 1

s
1

q

≤ 2δq
f |D|Ex[σD]q + 2q+1|D|Θq

q,s

(
δf + ∥f∥L∞(D)

)q

Ex[σD]
M

1− 1
s

2

+ Ex[σ2
D] 1

2

M
1− 1

s
1

q

,

(7.18)

where we use that 2q−1 < 2 since q < 2.

Step 6. In order to bound the following expectation

Ex

∣∣∣∣∣∣Ex[N ] − 1
M1

M1∑
i=1

Ni

∣∣∣∣∣∣
q ,

we use Corollary 2.2. Notice by Theorem 4.2 that for all x ∈ D there exists a geometric
random variable Γ with parameter p̃ = p̃(α, d) > 0 such that

Ex [|N |] ≤ Ex [Γ] = 1
p̃

< ∞,

and then for all i ∈ {1, ..., M1}, Ni ∈ L1(Px, | · |). For s as in (7.3), Corollary 2.2 implies for
all q as in (7.3) that

Ex

∣∣∣∣∣∣Ex[N ] − 1
M1

M1∑
i=1

Ni

∣∣∣∣∣∣
q ≤

 2Θq,s

M
1− 1

s
1

q

Ex [|N |q] ≤

 2Θq,s

M
1− 1

s
1

q

Ex

[
|N |2

]
, (7.19)

where we used that q < 2 and then Ex [| · |q] ≤ Ex [| · |2]. Recall that

Ex

[
|N |2

]
≤ Ex

[
Γ2
]

= 2 − p̃

p̃2 < ∞, (7.20)

and therefore, it holds from (7.19) and (7.20) that

Ex

∣∣∣∣∣∣Ex[N ] − 1
M1

M1∑
i=1

Ni

∣∣∣∣∣∣
q ≤

 2Θq,s

M
1− 1

s
1

q
2 − p̃

p̃2 . (7.21)
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Step 7. We want to estimate

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M1

M1∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q

As in the previous step, we use the Corollary 2.2. First of all, it follows from the independence
of (Yn)k

n=1 and N for fixed k ∈ N (Yn and X are independent), and law of total expectation
that

Ex

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
]

=
∑
k≥1

E0

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
∣∣∣∣∣N = k

]
Px(N = k)

=
∑
k≥1

E0

[∣∣∣∣∣
k∑

n=1
|Yn|

∣∣∣∣∣
]
Px(N = k).

Recall that (Yn)k
n=1 are i.i.d. with the same distribution as XσB(0,1) . Triangle inequality ensures

that
Ex

[∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
]

≤
∑
k≥1

k∑
n=1

E0 [|Yn|]Px(N = k)

= E0
[∣∣∣XσB(0,1)

∣∣∣]∑
k≥1

kPx(N = k)

= K(α, 1)Ex[N ].

and then for all i ∈ {1, ..., M1}, ∑N
n=1 |Yn| ∈ L1(Px, | · |). Moreover, with similar arguments it

holds that

Ex

∣∣∣∣∣
N∑

n=1
|Yi,n|

∣∣∣∣∣
q
 ≤ K(α, q)Ex[N q]. (7.22)

For s as in (7.3), Corollary 2.2 implies for all q as in (7.3) that

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M1

M1∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q ≤

 2Θq,s

M
1− 1

s
1

q

Ex

∣∣∣∣∣
N∑

n=1
|Yn|

∣∣∣∣∣
q
 .

And therefore it follows from (7.20) and (7.22) that

Ex

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M1

M1∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q ≤

 2Θq,s

M
1− 1

s
1

q

K(α, q)2 − p̃

p̃2 . (7.23)
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Step 8. It follows from (7.18), (7.21) and (7.23) that

Ex

∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
(R(Φf ))

(
XI(n−1) + rn·

)]]
− EM1(x)

∣∣∣∣∣
q

dx

+

∣∣∣∣∣∣Ex [N ] − 1
M1

M1∑
i=1

Ni

∣∣∣∣∣∣
q

+

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M1

M1∑
i=1

Ni∑
n=1

|Yi,n|

∣∣∣∣∣∣
q

≤ 2δq
f |D|Ex[σD]q + 2q+1|D|Θq

q,s

(
δf + ∥f∥L∞(D)

)q

Ex[σD]
M

1− 1
s

2

+ Ex[σ2
D] 1

2

M
1− 1

s
1

q

+
 2Θq,s

M
1− 1

s
1

q

(1 + K(α, q))2 − p̃

p̃2 =: errorq
f .

(7.24)

Using now that E(Z) ≤ c < ∞ we have the following result

Lemma 7.2.1 This implies that there exists N i ∈ N, Yi,n i.i.d. copies of XσB(0,1) , vi,j,n i.i.d.
random variables with law µ, i = 1, ..., M1, j = 1, ..., M2, n = 1, ..., N i such that

∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
− EM1(x)

∣∣∣∣∣
q

dx

+

∣∣∣∣∣∣Ex [N ] − 1
M1

M1∑
i=1

N i

∣∣∣∣∣∣
q

+

∣∣∣∣∣∣Ex

[
N∑

n=1
|Yn|

]
− 1

M1

M1∑
i=1

N i∑
n=1

|Yi,n|

∣∣∣∣∣∣
q

≤ errorq
f .

(7.25)

Here, EM1 will be redefined from (7.11) according to the copies found in Lemma 7.2.1,
with the Monte Carlo operator Ei,n

M2 defined from the copies (vi,j,n)M2
j=1.

Step 9. As similar in Step 8 of Proposition 6.1, we can see that for all i = 1, ..., M1 n =
1, ..., N i X i

I(n−1) can be approximated by a ReLu DNN Φi,n−1 ∈ N which satisfies for all
x ∈ D ∣∣∣X i

I(n−1) − (R(Φi,n−1)) (x)
∣∣∣ ≤ δdist

 N i∑
n=1

|Yi,n| + 1
N i

.

We can find now a DNN that approximates ri,n in (7.12). Indeed, define Φi,n
r ∈ N as follows:(

R(Φi,n
r )
)

(x) = (R(Φdist) ◦ R(Φi,n−1)) (x),

valid for x ∈ D. In Section 7.3 we show that Φi,n
r is in fact a ReLu DNN. For x ∈ D we have

by triangle inequality that∣∣∣ri,n −
(
R(Φi,n

r )
)

(x)
∣∣∣ ≤ |ri,n − dist ((Φi,n−1) (x), ∂D)|

+
∣∣∣dist ((Φi,n−1) (x), ∂D) −

(
R(Φi,n

r )
)

(x)
∣∣∣
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Hypothesis (HD-1) and the fact that the function x 7→ dist(x, ∂D) is 1-Lipschitz implies∣∣∣ri,n −
(
R(Φi,n

r )
)

(x)
∣∣∣ ≤

∣∣∣X i
I(n−1) − (R(Φi,n−1)) (x)

∣∣∣+ δdist

≤ δdist

 N i∑
n=1

|Yi,n| + 1
N i

+ δdist.

Step 10. We will find now a DNN that approximates

Ei,n
M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

. (7.26)

Define the DNN Φi,n
f ∈ N as follows: for x ∈ D

(
R(Φi,n

f )
)

(x) = 1
M2

M2∑
j=1

(
R(Φf ) ◦

(
R(Φi,n−1) + vi,j,nR(Φi,n

r )
))

(x).

In Section 7.3 we will prove that Φi,n
f is a ReLu DNN. We now use the assumption that

R(Φf ) is a L̃f -Lipschitz function to obtain∣∣∣Ei,n
M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

−
(
R(Φi,n

f )
)

(x)
∣∣∣

≤ L̃f

M2

M2∑
j=1

(∣∣∣X i
I(n−1) − (R(Φi,n−1)) (x)

∣∣∣+ |vi,j,n|
∣∣∣ri,n −

(
R(Φi,n

r )
)

(x)
∣∣∣) .

Notice that for all i = 1, ..., M1, j = 1, ..., M2, n = 1, ..., N i one has |vi,j,n| ≤ 1 (vi,j,n is a
random variable on B(0, 1)). Therefore, it follows from Step 9 that∣∣∣Ei,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

−
(
R(Φi,n

f )
)

(x)
∣∣∣

≤ L̃fδdist

2
 N i∑

n=1
|Yi,n| + 1

N i

+ 1

 .

Step 11. We want to approximate the multiplication between rα
i,n and (7.26). For all i =

1, ..., M1, n = 1, ..., N i define the DNN Υi,n ∈ N as

(R(Υi,n)) (x) = (R(Υ))
((

R(Φα) ◦ R(Φi,n
r )
)

(x),
(
R(Φi,n

f )
)

(x)
)

,

valid for x ∈ D. In Section 7.3 we show that Υi,n is a ReLu DNN. Note by triangle inequality
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that for all x ∈ D∣∣∣rα
i,nEi,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

− (R(Υi,n)) (x)
∣∣∣

≤
∣∣∣∣rα

i,n

(
Ei,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

−
(
R(Φi,n

f )
)

(x)
)∣∣∣∣

+
∣∣∣(R(Φi,n

f )
)

(x)
(
rα

i,n −
(
R(Φα) ◦ R(Φi,n

r )
)

(x)
)∣∣∣

+
∣∣∣(R(Φi,n

f )
)

(x)
(
R(Φα) ◦ R(Φi,n

r )
)

(x) − (R(Υi,n)) (x)
∣∣∣

For all i = 1, ..., M1, n = 1, ..., M1 one has ri
n < diam(D). From Step 9, the first term can be

bounded as ∣∣∣rα
i,n

(
Ei,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

−
(
R(Φi,n

f )
)

(x)
)∣∣∣

≤ diam(D)αL̃fδdist

2
 N i∑

n=1
|Yi,n| + 1

N i

+ 1

 .

For the second term of the inequality, note that∣∣∣(R(Φi,n
f )
)

(x)
∣∣∣ ≤ ∥R(Φf )∥L∞(D) ≤ δf + ∥f∥L∞(D).

Also, by triangle inequality∣∣∣rα
i,n −

(
R(Φα) ◦ R(Φi,n

r )
)

(x)
∣∣∣ ≤

∣∣∣rα
i,n − (R(Φα)) (ri,n)

∣∣∣
+
∣∣∣(R(Φα)) (ri,n) −

(
R(Φα) ◦ R(Φi,n

r )
)

(x)
∣∣∣ .

From the Hypothesis HD-3 and the fact that R(Φα) is Lα-Lipschitz one has∣∣∣rα
i,n −

(
R(Φα) ◦ R(Φi,n

r )
)

(x)
∣∣∣ ≤ δα + Lα

∣∣∣ri,n −
(
R(Φi,n

r )
)

(x)
∣∣∣

And by Step 9 it follows that∣∣∣(R(Φi,n
f )
)

(x)
(
rα

i,n −
(
R(Φα) ◦ R(Φi,n

r )
)

(x)
)∣∣∣

≤
(
δf + ∥f∥L∞(D)

)δα + Lαδdist


 N i∑

n=1
|Yi,n| + 1

N i

+ 1


 .

Finally, by Lemma 3.6 for all δΥ ∈
(
0, 1

2

)
the third term can be bounded by

∣∣∣(R(Φi,n
f )
)

(x)
(
R(Φα) ◦ R(Φi,n

r )
)

(x) − (R(Υi,n)) (x)
∣∣∣ ≤ δΥ.

with κ from the Lemma 3.6 equal to

κ = max

1 + ∥f∥L∞(D), 1 + Lα


N i∑

i=1
|Yi,n| + 1

N i

+ 1

+ diam(D)α
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Therefore∣∣∣rα
i,nEi,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

− (R(Υi,n)) (x)
∣∣∣

≤ diam(D)αLfδdist

2
 N i∑

n=1
|Yi,n| + 1

N i

+ 1



+
(
δf + ∥f∥L∞(D)

)δα + Lαδdist


 N i∑

n=1
|Yi,n| + 1

N i

+ 1


+ δΥ.

≤ δΥ + δα

(
δf + ∥f∥L∞(D)

)

+ δdist
(
diam(D)αLf + Lα

(
δf + ∥f∥L∞(D)

))2
 N i∑

n=1
|Yi,n| + 1

N i

+ 1

 .

(7.27)

Step 12. For ε̃ ∈ (0, 1) define the DNN Ψ2,ε̃ ∈ N as follows: for any x ∈ D

(
R(Ψ2,ε̃)

)
(x) = 1

M1

M1∑
i=1

N i∑
n=1

κd,α (R (Υi,n)) (x).

This is the requested DNN. See Section 7.3 for the proof that Ψ2,ε̃ is indeed a ReLu DNN.
By triangle inequality and (7.27) we have∣∣∣EM1(x) −

(
R(Ψ2,ε̃)

)
(x)
∣∣∣

≤ κd,α

M1

M1∑
i=1

N i∑
n=1

∣∣∣rα
i,nEi,n

M2

(
(R(Φf ))

(
X i

I(n−1) + ri,n·
))

− (R(Υi,n)) (x)
∣∣∣ .

≤ κd,α

M1

(
δΥ + δα

(
δf + ∥f∥L∞(D)

)) M1∑
i=1

N i

+ κd,α

M1
δdist

(
diam(D)αLf + Lα

(
δf + ∥f∥L∞(D)

)) M1∑
i=1

N i

2
 N i∑

n=1
|Yi,n| + 1

N i

+ 1

 .

Therefore ∣∣∣EM1(x) −
(
R(Ψ2,ε̃)

)
(x)
∣∣∣

≤ κd,α

M1

(
δΥ + δα

(
δf + ∥f∥L∞(D)

)) M1∑
i=1

N i

+ κd,αδdist
(
diam(D)αLf + Lα

(
δf + ∥f∥L∞(D)

))M1∑
i=1

N i

 ℓ,

with ℓ :=
(

2
(∑M1

i=1
∑N i

n=1 |Yi,n| + 1
)∑M1

i=1 N i

+ 1
)

.
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Step 13. We want to bound errorf . Notice that

errorf ≤ 2
1
q |D|

1
q δfEx[σD] + 21+ 1

q |D|
1
q Θq,s

(
δf + ∥f∥L∞(D)

)Ex [σD]
M

1− 1
s

2

+ Ex [σ2
D]

1
2

M
1− 1

s
1


+ 21+ 1

q Θq,s

M
1− 1

s
1

(1 + K(α, q))
1
q

(
2 − p̃

p̃2

) 1
q

.

Consider now M ∈ N and let M = M1 = M2. Define the constant C̃1 as

C̃1 = 21+ 1
q Θq,s

|D|
1
q

(
1 + ∥f∥L∞(D)

)(
Ex [σD] + Ex

[
σ2

D

] 1
2
)

+ (1 + K(α, q))
1
q

(
2 − p̃

p̃2

) 1
q

 ,

and the constant C̃2 as
C̃2 = 2

1
q |D|

1
q Ex [σD] .

Therefore
errorf ≤ C̃1

M1− 1
s

+ C̃2δf . (7.28)

In addition

M∑
i=1

N i∑
n=1

|Yi,n| ≤ M

(
errorf + Ex

[
N∑

n=1
|Yi,n|

])
≤ M

(
errorf + K(α, 1)1

p̃

)
.

Recall that C3 = K(α, 1)1
p̃
. Then

M∑
i=1

N i∑
n=1

|Yi,n| ≤ M
1
s C̃1 + M

(
δf C̃2 + C3

)
.

≤ M
1
s C̃1 + M(C̃2 + C3).

Recall that C4 = 1
p̃
, therefore

M∑
i=1

N i ≤ M(errorf + Ex[N ]) ≤ M
1
s C̃1 + M

(
δf C̃2 + C4

)
≤ M

1
s C̃1 + M(C̃2 + C4).

From the Step 12 and the estimates of this step it follows that∣∣∣EM1(x) −
(
R(Ψ2,ε̃)

)
(x)
∣∣∣

≤ κd,α

(
δΥ + δα

(
δf + ∥f∥L∞(D)

)) (
M

1
s

−1C̃1 + C̃2 + C4
)

+ κd,αδdist
(
diam(D)αLf + Lα

(
δf + ∥f∥L∞(D)

)) (
M

1
s C̃1 + M(C̃2 + C4)

)
ℓ̃,
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where ℓ̃ :=
(

2
(
M

1
s C̃1 + M(C̃2 + C3) + 1

)M
1
s C̃1+M(C̃2+C4)

+ 1
)

.

Step 14. Lemma 7.2.1, the inequality (7.28), Step 13 and Minkowski inequality ensure that
∫

D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
−
(
R(Ψ2,ε̃)

)
(x)
∣∣∣∣∣
q

dx

 1
q

≤

∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
− EM1(x)

∣∣∣∣∣
q

dx

 1
q

+
(∫

D

∣∣∣EM1(x) −
(
R(Ψ2,ε̃)

)
(x)
∣∣∣q dx

) 1
q

≤ C̃1

M1− 1
s

+ C̃2δf + |D|
1
q κd,α

(
δΥ + δα

(
δf + ∥f∥L∞(D)

)) (
M

1
s

−1C̃1 + C̃2 + C4
)

+ |D|
1
q κd,αδdist

(
diam(D)αLf + Lα

(
δf + ∥f∥L∞(D)

)) (
M

1
s C̃1 + M(C̃2 + C4)

)
ℓ̃.

For ε̃ ∈ (0, 1), let M ∈ N large enough such that

M =

(

5C̃1

ε̃

) s
s−1
 ,

and from the choice of M let δΥ ∈
(
0, 1

2

)
δdist, δα ∈ (0, 1) small enough such that

δΥ = ε̃

5|D|
1
q κd,α

(
M

1
s

−1C̃1 + C̃2 + C4
)−1

,

δα = ε̃

5|D|
1
q κd,α

(
1 + ∥f∥L∞(D)

)−1 (
M

1
s

−1C̃1 + C̃2 + C4
)−1

,

δdist = ε̃

5|D|
1
q κd,αℓ̃

(
diam(D)αLf + Lα

(
1 + ∥f∥L∞(D)

))−1 (
M

1
s C̃1 + M(C̃2 + C4)

)−1
.

Finally we choose δf ∈ (0, 1) small enough such that

δf = ε̃

5C̃2
.

Therefore∫
D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
−
(
R(Ψ2,ε̃)

)
(x)
∣∣∣∣∣
q

dx

 1
q

≤ ε̃.

We conclude that for all ε̃ ∈ (0, 1) there exists Ψ2,ε̃ ∈ N that approximates (7.1) with
accuracy ε̃.
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7.3. Proof of Proposition 7.1: quantification of DNNs
In this Section we will prove that Ψ2,ε̃ is a ReLu DNN such that overcomes the curse of

dimensionality.

Step 15. We now study the DNN Ψ2,ε̃ with the Definitions and Lemmas of Chapter 3. Let

βdist = D(Φdist) and Hdist = dim(βdist) − 2.

Recall from Step 12 in the proof of Proposition 6.1 that for all i = 1, ..., M

D(Φi,1) = dnHdist+2 ⊞ β̃dist, dim(D(Φi,1)) = Hdist + 2,

where
β̃dist = (βdist,0, ..., βdist,Hdist , d) ∈ NHdist+2,

and for all n = 2, ..., N i

D(Φi,n) =
n
⊙

m=1
(dnHdist+2 ⊞ β̃dist), dim(D(Φi,n)) = (Hdist + 1)n + 1,

with
|||D(Φi,n)||| ≤ 2d + |||D(Φdist)|||.

Denote
βf = D(Φf ) and Hf = dim(βf ) − 2.

Define Φ̃i,j,n ∈ N as follows:

R(Φ̃i,j,n) = x + vi,j,nR(Φdist)(x).

As similar as in the case of Φi,1, we have that Φ̃i,j,n is a ReLu DNN such that

D(Φ̃i,j,n) = dnHdist+2 ⊞ β̃dist, dim(D(Φ̃i,j,n)) = Hdist + 2.

Moreover ∣∣∣∣∣∣∣∣∣D(Φ̃i,j,n)
∣∣∣∣∣∣∣∣∣ ≤ 2d + |||D(Φdist)|||.

Using the DNN Φ̃i,j,n we have that

R(Φi,n−1) + vi,j,nR(Φi,n
r ) = R(Φ̃i,j,n) ◦ R(Φi,n−1).

Therefore, by Lemma 3.2 it follows that

R(Φf ) ◦
(
R(Φi,n) + vi,j,nR(Φi,n

r )
)

∈ R
({

Φ ∈ N : D(Φ) = βf ⊙
(

n
⊙

m=1

(
dnHdist+2 ⊞ β̃dist

))})
.

with (Hdist + 1)n + Hf + 2 the total number of layers. Note this ReLu DNN is continuous
from D to R. Let

βα = D(Φα), and Hα = dim(βα) − 2.

For n = 1, ..., N i we compound the previous DNN with the identity with (Hdist+1)(∑M1
i=1 N i−
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n) + Hα + 1 layers to obtain a DNN Φ̂i,j,n ∈ N such that

R(Φ̂i,j,n) = R(Φf ) ◦ R(Φ̃i,j,n) ◦ R(Φi,n),

with
D(Φ̂i,j,n) =

(
n(Hdist+1)(

∑M1
i=1 N i−n)+Hα+1

)
⊙ βf ⊙

(
n
⊙

m=1

(
dnHdist+2 ⊞ β̃dist

))
,

and
dim(D(Φ̂i,j,n)) = (Hdist + 1)

M1∑
i=1

N i + Hα + Hf + 2.

Note from the definition of DNN Φi,n
f that

R(Φi,n
f ) =

M2∑
j=1

R(Φ̂i,j,n).

Therefore, Lemma 3.3 implies that Φi,n
f is a ReLu DNN with

D(Φi,n
f ) =

M2
⊞

j=1

(
n(Hdist+1)(

∑M1
i=1 N i−n)+Hα+1 ⊙ βf ⊙

(
n
⊙

m=1

(
dnHdist+2 ⊞ β̃dist

)))
,

and
dim(D(Φi,n

f )) = (Hdist + 1)
M1∑
i=1

N i + Hα + Hf + 2.

Moreover
∣∣∣∣∣∣∣∣∣D(Φi,n

f )
∣∣∣∣∣∣∣∣∣ ≤

M2∑
j=1

max{|||D(Φf )|||, 2d + |||D(Φdist)|||} = M2 max{|||D(Φf )|||, 2d + |||D(Φdist)|||}.

On the other hand side, note that

D(Φi,n
r ) = βdist ⊙ D(Φi,n−1), dim(D(Φi,n

r )) = (Hdist + 1)n + 1,

and ∣∣∣∣∣∣∣∣∣D(Φi,n
r )
∣∣∣∣∣∣∣∣∣ ≤ max{2d, |||D(Φdist)|||, 2d + |||D(Φdist)|||} = 2d + |||D(Φdist)|||.

Therefore by Lemma 3.2

R(Φα) ◦ R(Φi,n
r ) ∈ R

({
Φ ∈ N : D(Φ) = βα ⊙ βdist ⊙

(
n
⊙

m=1

(
dnHdist+2 ⊞ β̃dist

))})
,

with (Hdist + 1)n + Hα + 2 number of layers. Like before, we compound the previous DNN
with the identity with (Hdist + 1)(∑M1

i=1 N i − n) + Hf + 1 to obtain, by Lemma 3.2 a DNN
Φ̂i,n ∈ N such that

R(Φ̂i,n) = R(Φα) ◦ R(Φi,n
r ),

with

D(Φ̂i,n) = n(Hdist+1)(
∑M1

i=1 N i−n)+Hf +1 ⊙ βα ⊙ βdist ⊙
(

n
⊙

m=1

(
dnHdist+2 ⊞ β̃dist

))
,
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and
dim(D(Φ̂i,n)) = (Hdist + 1)

M1∑
i=1

N i + Hα + Hf + 2.

Moreover ∣∣∣∣∣∣∣∣∣D(Φ̂i,n)
∣∣∣∣∣∣∣∣∣ ≤ max{|||D(Φα)|||, 2d + |||D(Φdist)|||}.

Define H ∈ N as

H = (Hdist + 1)
M1∑
i=1

N i + Hα + Hf .

We now realize a parallelization between the DNNs Φ̂i,n and Φi,n
f . By Lemma 3.4, there exists

a ReLu DNN Φi,n ∈ N such that

R(Φi,n) = (R(Φ̂i,n), R(Φi,n
f )),

with
D(Φi,n) = D(Φ̂i,n) ⊞ D(Φi,n

f ) + eH+2,

and
dim(D(Φi,n)) = (Hdist + 1)

M1∑
i=1

N i + Hα + Hf + 2,

where
eH+2 = (0, ..., 0, 1) ∈ RH+2.

Moreover, ∣∣∣∣∣∣∣∣∣D(Φi,n)
∣∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣D(Φ̂i,n)
∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣D(Φi,n

f )
∣∣∣∣∣∣∣∣∣,

and thus ∣∣∣∣∣∣∣∣∣D(Φi,n)
∣∣∣∣∣∣∣∣∣ ≤ |||D(Φα)||| + M2|||D(Φf )||| + (M2 + 1)(2d + |||D(Φdist)|||).

Let
βΥ = D(Υ), and HΥ = dim(βΥ) + 2.

Therefore, by Lemma 3.2 it follows that

D(Υi,n) = βΥ ⊙
(
D(Φ̂i,n) ⊞ D(Φi,n

f ) + eH+2
)

,

and
dim(D(Υi,n)) = H + HΥ + 3.

Moreover

|||D(Υi,n)||| ≤ max{|||D(Υ)|||,
∣∣∣∣∣∣∣∣∣D(Φi,n)

∣∣∣∣∣∣∣∣∣}
≤ |||D(Υ)||| + |||D(Φα)||| + M2|||D(Φf )||| + (M2 + 1)(2d + |||D(Φdist)|||).

Finally, from Lemma 3.3 it follows that

D(Ψ2,ε̃) =
M1
⊞
i=1

N i

⊞
n=1

(
βΥ ⊙

(
D(Φ̂i,n) ⊞ D(Φi,n

f ) + eH+2
))

,
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and
dim(D(Ψ2,ε̃)) = H + HΥ + 3.

Moreover
∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)

∣∣∣∣∣∣∣∣∣ ≤
(

|||D(Υ)|||+|||D(Φα)|||+M2|||D(Φf )|||+(M2+1)(2d+|||D(Φdist)|||)
) M1∑

i=1
N i. (7.29)

Notice from the definition of C̃1 and C̃2 that both constants are multiple of |D|
1
q . Therefore,

by choice of M1 and M2 we have

M2 = M1 ≤ B1|D|
s

q(s−1) ε̃− s
s−1 , (7.30)

where B1 > 0 is a generic constant. The choice of δf and the constant C̃2 implies that

δ−a
f ≤ B2|D|

a
q ε̃−a, (7.31)

for some constant B2 > 0. From the choice of δΥ, δα and (7.30) it follows that

log
(
δ−1

Υ

)
≤ δ−1

Υ ≤ B3|D|
2
q ε̃−1, (7.32)

and
δ−a

α ≤ B4|D|
2a
q ε̃−a. (7.33)

where B3, B4 > 0 are a generic constant, and from the choice of δdist and properties of
Logarithm function we have

log
(
δ−1

dist

)
≤ 5|D|

1
q κd,α

(
diam(D)αLf + Lα

(
1 + ∥f∥L∞(D)

)) (
M

1
s C̃1 + M(C̃2 + C4)

)
ε̃−1

+ 4
(
M

1
s C̃1 + M(C̃2 + C4)

) (
M

1
s C̃1 + M(C̃2 + C3) + 1

)
.

Therefore from (7.30)
⌈log

(
δ−1

dist

)
⌉a ≤ B5|D|

2a
q (1+ s

s−1)ε̃−a− 2as
s−1 , (7.34)

for some B5 > 0 generic. Note also that

M1∑
i=1

N i ≤ B6|D|
1
q (1+ s

s−1)ε̃− s
s−1 , (7.35)

with B6 > 0. Finally from Assumptions 2, 3 and inequalities (7.29), (7.35) we got∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)
∣∣∣∣∣∣∣∣∣

≤ B6|D|
1
q (1+ s

s−1)ε̃− s
s−1

(
log
(
δ−1

Υ

)
+ δ−a

α + M2Bdbδ−a
f + (M2 + 1)(2d + Bdb⌈log

(
δ−1

dist

)
⌉a)
)

.

Finally, from inequalities (7.30), (7.31), (7.32), (7.33) and (7.34) we conclude that there exists
B̃ > 0 such that ∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)

∣∣∣∣∣∣∣∣∣ ≤ B̃|D|
1
q (1+2a+ 2s

s−1 (1+a))dbε̃−a− 2s
s−1 (1+a).

This completes the proof of Proposition 7.1.
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Chapter 8

Proof of the Main Result

This final Chapter is devoted to the proof of Theorem 1.7.1. Gathering Propositions 6.1
and 7.1, Theorem 1.7.1 is finally proved.

Step 1. Let α ∈ (1, 2), p, s ∈ (1, α) such that s < α
p

and q ∈
[
s, α

p

)
. Let Assumptions (Hg-0)

and (Hf-0) be satisfied. Recall from Theorem 5.1 and Lemma 5.1 that the solution u of (1.2)
takes the form of (5.8), namely

u(x) = Ex

[
g
(
XI(N)

)]
+ Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f
(
XI(n−1) + rn·

)]]
, x ∈ D.

From Propositions 6.1 and 7.1 for all ε, ε̃ ∈ (0, 1) there exist ReLu DNNs Ψ1,ε and Ψ2,ε̃ that
satisfy (6.4) and (7.4). For the right approximation of the ReLu DNNs, δdist and M will be
defined as

δdist ≤ min{ℓ1, ℓ2}, M ≥ max


⌈(5C1

ε

) s
s−1
⌉

,


(

5C̃1

ε̃

) s
s−1

 ,

where
ℓ1 := ε

5|D|
1
q Lg

(
1 + M

1
s C1 + M(C2 + C3)

)−
(

M
1
s C1+M(C2+C4)

)
,

and

ℓ2 := ε̃

5|D|
1
q ℓ̃

(
diam(D)αLf + Lα

(
1 + ∥f∥L∞(D)

))−1 (
M

1
s C̃1 + M(C̃2 + C4)

)−1
.

Recall that the constants in ℓ1 and ℓ2 are defined in Propositions 6.1 and 7.1. Let ϵ ∈ (0, 1)
and define the ReLu DNN Ψϵ that satisfies for all x ∈ D

(R(Ψϵ)) (x) = (R(Ψ1,ε)) (x) +
(
R(Ψ2,ε̃)

)
(x),
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where ε = ε̃ = ϵ
2 . From Minkowski inequality one has

(∫
D

|u(x) − (R(Ψϵ)) (x)|q dx
) 1

q

≤
(∫

D

∣∣∣Ex

[
g
(
XI(N)

)]
− (R(Ψ1,ε)) (x)

∣∣∣q dx
) 1

q

+
∫

D

∣∣∣∣∣Ex

[
N∑

n=1
rα

nκd,αE(µ)
[
f(XI(n−1) + rn·)

]]
−
(
R(Ψ2,ε̃)

)∣∣∣∣∣
q

dx

 1
q

≤ ϵ

2 + ϵ

2 = ϵ.

Step 2 We now study the ReLu DNN Ψϵ. For i = 1, ..., M Let N i,1, N i,2 the random variables
N i found in the Propositions 6.1 and 7.1, respectively. Recall that the DNN Ψ1,ε satisfy

D(Ψ1,ε) =
M

⊞
i=1

(
nHi+2 ⊙ βg ⊙

(
N i,1
⊙

m=1
(dnHdist+2 ⊞ β̃dist)

))
,

where Hi is defined as

Hi = (Hdist + 1)
 M∑

j=1
N j,1 − N i,1

− 1.

and
dim(D(Ψ1,ε)) = (Hdist + 1)

M∑
i=1

N i,1 + Hg + 2.

Recall also that Ψ2,ε̃ satisfy

D(Ψ2,ε̃) =
M1
⊞
i=1

N i,2

⊞
n=1

(
βΥ ⊙

(
D(Φ̂i,n) ⊞ D(Φi,n

f ) + eH+2
))

,

where eH+2 = (0, ..., 0, 1) ∈ RH+2 with H defined as

H = (Hdist + 1)
M1∑
i=1

N i,2 + Hα + Hf ,

and
dim(D(Ψ2,ε̃)) = H + HΥ + 3.

To use Lemma 3.3, the ReLu DNNs Ψ1,ε and Ψ2,ε̃ must have the same number of layers. We
compound each DNN by a suitable ReLu DNN that represents the identity function. Define
then the ReLu DNN Ψ1,ε that satisfy R(Ψ1,ε) = R(Ψ1,ε) with

D(Ψ1,ε) = nH+HΥ+3 ⊙ D(Ψ1,ε),
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and Define the ReLu DNN Ψ2,ε̃ that satisfy R(Ψ2,ε̃) = R(Ψ2,ε̃) with

D(Ψ2,ε̃) = n(Hdist+1)
∑M

i=1 N i,1+Hg+2 ⊙ D(Ψ2,ε̃),

Therefore we have that dim(D(Ψ1,ε)) = dim(D(Ψ2,ε̃)). Moreover

dim(D(Ψ1,ε)) = (Hdist + 1)
M∑

i=1
(N i,1 + N i,2) + Hα + Hf + Hg + HΥ + 4.

Therefore we can use Lemma 3.3 to obtain that Ψϵ is a ReLu DNN such that

D(Ψϵ) = D(Ψ1,ε) ⊞ D(Ψ2,ε̃),

and
dim(D(Ψϵ)) = (Hdist + 1)

M∑
i=1

(N i,1 + N i,2) + Hα + Hf + Hg + HΥ + 4.

Moreover
|||D(Ψϵ)||| ≤ |||D(Ψ1,ε)||| +

∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)
∣∣∣∣∣∣∣∣∣.

Recall from Propositions 6.1 and 7.1 that there exists B̃ > 0 such that

|||D(Ψ1,ε)||| ≤ B̃|D|
1
q (2a+ap+ s

s−1 (1+2a+ap))db+2ap+2ap2+ ps
s−1 (1+2a+ap)ε−a− s

s−1 (1+2a+ap).

and ∣∣∣∣∣∣∣∣∣D(Ψ2,ε̃)
∣∣∣∣∣∣∣∣∣ ≤ B̃|D|

1
q (1+2a+ 2s

s−1 (1+a))dbε̃−a− 2s
s−1 (1+a).

Therefore

|||D(Ψϵ)||| ≤ B̂|D|
1
q (1+2a+ap+ s

s−1 (2+2a+ap))db+2ap+ap2+ ps
s−1 (1+2a+ap)ϵ−a− s

s−1 (2+2a+ap),

where B̂ > 0 is a generic constant. Theorem 1.7.1 can be concluded choosing η > 0 as the
maximum between 1

q

(
1 + 2a + ap + s

s−1(2 + 2a + ap)
)
, b + 2ap + ap2 + ps

s−1(1 + 2a + ap) and
s

s−1(2 + 2a + ap).
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Chapter 9

Conclusions

9.1. Findings
In this work we establish DNNs approximations for the fractional Dirichlet Problem for

α ∈ (1, 2), with arbitrary accuracy, and avoiding the curse of dimensionality.

As stated before, for the approximation of the solutions of Problem (1.2) we followed the
ideas presented in the work of Grohs and Herrmann [17], with several changes due the non
local nature of the fractional Laplacian. In particular:

1. The non local problem has the boundary condition g defined on the complement of the
domain D and the local problem has g defined on ∂D. This variation changes the way to
approximates g by DNNs. The Assumption 1 is classical in the literature for functions
defined in unbounded sets (see, e.g. [23]).

2. The isotropic α-stable process associated to the fractional Laplacian has no second
moment, therefore the approximation can not be approximated in L2(D), but in Lq(D)
for some suitable q < 2.

3. The process associated to the local case is a Brownian motion that is continuous, then
the norm of the process exiting the unit ball centered at the origin is equal to 1, i.e,
|XσB(0,1)| = 1. In the non local case the isotropic α-stable is a pure jump process, therefore
|XσB(0,1)| > 1. This is the reason because in our proof we approximate the copies of this
random variable to have that the copies of XσB(0,1) exits near the domain D.

4. The last notable difference is about the sum that appears in (1.4): The value of rn is
raised to the power of α, then we need an extra hypothesis for the approximation of the
function (·)α by DNNs. In the local case rn is squared, then can be approximated by
DNNs using the Lemma 3.6 stated in Chapter 3.

Finally, just before finishing this work, we learned about the research by Changtao Sheng
et al. [30], who have showed numerical simulations of the Problem (1.2) using similar Monte
Carlo methods. However, our methods are radically different in terms of the main goal, which
is here to approximate the solution by DNNs in a rigorous fashion.
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9.2. Perspectives
For the proof of main theorem and the Assumptions used in this work, the condition

α > 1 was required. We do not discard that in the case of α ∈ (0, 1) there exists a DNN that
approximates the solution with arbitrary accuracy, but unfortunately here we do not deal
with this case. We expect to be able to treat this case in a future work.

We also remark that the solution approximated is the unique continuous solution for the
fractional Dirichlet Problem (1.2), but there exist blow up solutions for a similar problem,
studied in [1]. In order to obtain these solutions, an additional boundary condition h is re-
quired on ∂D. The condition g in Problem (1.2) therefore has support on Dc \ ∂D, and
the solution studied in [1] has a representation from the Green function and the boundary
conditions. A possible extension of this thesis is to prove that the solutions exposed in [1]
can be approximated by deep neural networks overcoming the curse of dimensionality.

A similar way to represent solutions to the Problem (1.2) is found in the work of Gulian
and Pang [20]. They worked with the spectral fractional Laplacian, and thanks to stochas-
tic calculus results (see, e.g. [3, 8]), the processes described in that work and the isotropic
α-stable processes are similar. In addition, in that paper they found a Feynman-Kac formula
for the parabolic generalized problem for the associated fractional Laplacian.

In a possible extension we could see if the parabolic generalized problem can be adapted
to our setting, i.e. the solution of the parabolic case can be approximated by DNNs that
overcome the curse of dimensionality. Even better, following the results by Topp and colla-
borators, we may extend these results for a fractional Problem with more general fractional
operators.
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