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"Nor need we fear that this ph¡losophy, while it endeavours to limit our enquiries to
common life, should ever underm¡ne the reasonings of common life, and carry its
doubts so far as to destroy all action, as well as speculation. Nature will always
ma¡ntain her rights, and prevail in the end over any abstract reasoning whatsoever.
Though we should conclude, for instance, as in the foregoing section, that, ¡n all
reasonings from experience, there is a step taken by the mind which is not supported
by any argument or process of the understanding; there is no danger that these
reasonings, on which almost all knowledge depends, will ever be affected by such a
d¡scovery. lf the m¡nd be not engaged by argument to make this step, it must be
induced by some other princ¡ple of equal weight and authority; and that principle will
preserve its influence as long as human nature remains the same. What that principle is
may well be worth the pains of enquiry."

r

- David Hume
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ABSTRACT

Anthropogenic climate change is a major threat to biodiversity; the development of

models that reliably predict its effects on species distributions is a priority for

conservat¡on biogeography. Common issues for accurate predict¡ons of Species

Distribution Models (SDM) across time are model extrapolation and realistic

incorporaiion of dispersal capacities. We invest¡gated the consequences of these

issues on the success of predicting recent (1970-2010) climate-driven changes in the

distribution of Darwin's frog Rhinoderma darw¡ni¡. We built SDMs that ¡ncorporate

dispersal processes and compared their pred¡ct¡ons with predictions from SDMs without

dispersal limitations. We generated new dataset of bioclimat¡c variables for three iime

periods (l 970, I 990, 2010), and calibrated SDMs with histor¡cal occurrences (1950-

1975) f¡tted to 1970s climate, and projecied them to condit¡ons of the 2010s. Accuracy

of models was assessed through AUC, sensitivity and specificity rates, contrasting

binary model predictions across time aga¡nst current presences/absences. The

incorporation of dispersal capacity enhanced accuracy, reducing the false presence

rate in model predictions, and this was consistent with discr¡m¡nation of suitable but

inaccessible habitat. This enhancement also had consequences on range s¡ze changes

over time, a metric commonly used to assess extinction risk from climate change.

Comparing the climates of 1970 and 2010, the area of current climates that was absent

¡n the 1970s (no-analogue climates) represents 39% of the study area (35'{6'5;71'-
75'W)- As a consequence models showed a high degree of env¡ronmenial

extrapolation, leading to a decrease in accuracy of model predictions for no-analogue

climate areas compared to analogue ones. Our results highl¡ght the consequences of

two acknowledged issues of species distribution forecasts on the accuracy of SDM

predictions, proposing ways to ¡mprove model pred¡ctability and reduce uncertainiies of

over-simplistic full/no dispersal scenarios, hoping to provide more reliable information

for conservation decis¡on makers.
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RESUMEN

Desanollar modelos que permitan predec¡r de manera confiable los efectos del cambio

climático sobre la biodiversidad es una pr¡oridad para su gestión. Problemas comunes

a la precisión predict¡va de los Modelos de Distribuc¡ón de Especies (MDE) al

transferirlos en el tiempo son la extrapolac¡ón ambiental y una incorporación realista de

las capacidades de dispersión de las especies. lnvestigamos las consecuencias de

tales problemas sobre el éx¡to al predec¡r cambios rec¡entes en la d¡str¡buc¡ón de la

ranita de Darwin Rhrnode rma darvvinii (1970-2014). Construimos MDEs que incorporan

explicitamente procesos de dispersión biológica, comparando sus pred¡cciones con las

de MDEs que no los incorporan. Para esto, generamos capas bioclimáticas para tres

per¡odos (1 970, 1990 y 2010), y calibramos los MDEs ajustando las ocurrencias

h¡stór¡cas (1950-f975) y proyectándolas al clima más reciente. La precis¡ón de los

modelos fue evaluada contrastando predicciones binarias de los modelos a través del

t¡empo, con presencias y ausenc¡as actuales (2000-2014). La ¡ncorporac¡ón de

procesos de dispersión mejora la precisión, reduciendo la tasa de falsas presencias de

las predicciones, lo cual es consistente con la discrim¡nac¡ón de hábitats adecuados

pero inacces¡bles. El espac¡o climático de 2010 que no se encontraban en 1970 (no-

análogos climáticos) representa el 39% del área de estudio (35"-46'5;71"-75'O). Como

consecuencia, las transferencias temporales de los modelos presentaron un alto grado

de extrapolación, resultando en una disminución en la precisión de las predicciones en

áreas no-análogas climáticas respecto de áreas análogas. A partir de estos resultados

se proponen alternaiivas para mejorar la precisión de las predicciones temporales de

los MDEs, reduciendo ¡ncertezas de escenarios demasiado s¡mplif¡cados de dispersión,

y haciendo un llamado a comunicar las áreas geográficas donde los MDES sean

extrapolados. Con esto esperamos se proporcione información más fiable de los

efectos del cambio climático a los tomadores de decisiones de conservac¡ón.
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INTRODUCTION

Anthropogenic climate change is a major threat to biodiversity; the prediction of its

effects on species distributions is a priority for conservation biology (Botkin et al. 2007).

Predicting changes in species distribuiions and their extent is a key factor in extinction

risk assessment (Rowland et al. 2011), and therefore fundamental to support

conservation decisions (Guisan et al. 2013). The most commonly used tools to forecast

climate-driven changes of species distribution are Species Distribution Models (SDM),

which associate occurrences and environmental conditions at a given time to estimate

the probability of occurrence ¡n space (Guisan and Zimmermann 2000). By updating

environmental variables, these models can be used to forecast shifts in species

distributions over t¡me (F¡tzpatr¡ck and Hargrove 2009). Recently, growing evidence is

questioning their temporal predictability (i.e. capacity to predict potent¡al distributions

accurately over time; Araújo and Rahbek 2006, Dobrowsk¡ et al. 2011, Rapacciuolo el

al. 2012), and therefore the¡r ut¡l¡ty to dec¡de how scarce funds should be allocated in

large-scale conservation projects (Sinclair et al. 2010).

There are some shortcomings regarding the temporal predictability of SDMs. These

include, but are not lim¡ted to, the lack of species-environment equilibrium due to

d¡spersal limitations and the emergence of novel environments outside the range of

conditions used to calibrate the models (i.e. model extrapolation to no-analogue

climates, Rapacciuolo el al.2012). However, the consequences of these shortcomings

on model predictions are not well understood, because they have not been tested using

independent temporal records to validate model pred¡ct¡ons through time, despite the

recent calls for the need to assess the effects of d¡spersal constra¡nts on predictive

performance of SDMs over time (Eskildsen ei al. 2013, Miller and Holloway 201 5).

D¡spersal is a key process in range dynamics (Dav¡s et al- 1998), but its consequences

on the accuracy of SDM predictions over time have received little attent¡on.

Furthermore, most SDM stud¡es have ignored d¡spersal or dealt with it in overly

simplistic ways (e.9. no dispersal versus unlimited dispersal). lncorporating dispersal

processes could allow distinguishing the suitable area that is accessible from which thai

is not, a crit¡cal ¡ssue to predict range shifts successfully (Soberon and Peterson 2005,



Barve et al.2011); by doing so ¡t ¡s expected to result in more accurate projections of

range shifts (Miller and Holloway 20í5).

While the inclusion of d¡spersal processes in mechan¡stic models usually requires

information that is lacking for most species (e.9. dynamic range models; Schurr et al.

2012), alternaiive dynamic SDMs which need little species knowledge and that couple

hab¡tat suitability w¡th d¡spersal rates have been proposed to ¡mprove the prediction of

range sh¡fts under climate change (Engler and Guisan 2009, Franklin 2010, Bateman et

al. 2013). Species w¡th l¡mited dispersal capacity may be expected to be more

vulnerable to climate change, since those species won't be able to track climatic

changes at current or future rates (Schloss et al- 2012, Zhu et al. 2012), generating

non-equilibrium conditions that challenge range shift predictions (Schun et al- 2012).

The study of Dobrowski et al. (2011) on temporal predictability of SDMs suggested that

dispersal-limited species would have lower predictive accuracy over t¡me than spec¡es

with high dispersal capacity, but the consequences of explic¡tly ¡ncorporat¡ng dispersal

processes remain untested.

Model extrapolation into environments d¡ss¡m¡lar to those characterizing the conditions

for which the model was originally cal¡brated is another factor that could underm¡ne

temporal predictability of SDMs and has received scarce attention (Fitzpatrick and

Hargrove 2009). ln fact, environmental factors that l¡mit distributions may change

substantially under a new climatic regime, and observed trends may not be valid

beyond the range of in¡t¡al environmental cond¡tions (Dormann 2007). The emergence

of non-analogue climates challenges the capacity to forecast the effects of climate

change, because liitle information ex¡sts to predict how spec¡es w¡ll respond in novel

environments (Fitzpatr¡ck and Hargrove 2009)- Using an independent temporal dataset

to assess the accuracy of model predictions over time (model evaluated at a time

window different than the calibration time, using observed presence/absence daia),

Dobrowski ei al. (2011) found that model predictions for no-analogue areas had similar

accuracy to those of analogue areas but significantly greater variance, indicating a

higher uncertainty in model predictions in no-analogue areas.

Within this framework, we assessed the consequences of incorporating dispersal

constraints and model extrapolation on the temporal predictability of climate-based



SDMs, measured as the accuracy of predictions over time. We addressed two

questions: (1) Can the incorporation of dispersal constraints in SDMs improve the

temporal predictability of SDMs? and (2) Are environmental extrapolations of SDMs io

no-analogue climates leading to decreased temporal predictability? We hypothesize

that a) incorporating dispersal processes to SDMs lransferred in time will restrict range

sh¡fts to suitable climates that are accessible, w¡th the consequence that pred¡ctions of

SDMs transfered in time that explicitly incorporate d¡spersal processes will outperform

those of SDMS that do not, and b) as it is not possible to characterize fully the

relat¡onsh¡p between env¡ronment and species distribut¡on from the realized niche (i.e.

occurrence data), geographic areas where no-analogue climates have arisen will

experience not only higher uncertainties, but also lower temporal predictability than

cl¡mate analogue areas. We tested our hypotheses using observed distributional data of

Darwin's trog (Rhinoderma daruvinií), a species w¡th apparently low dispersal capacity

(Valenzuela-Sánchez et al. 2014), which could highlight consequences of d¡spersal

processes in the accuracy of SDMs when transfened in time. This species is also

endemic to temperate rainforests of South America, a region where climate is already

changing (Jacques-Coper and Garreaud 2015).

METHODS

Based on historical occunence records (1950-1975) and data on observed climatic

change over the last 40 years, we constructed SDMs including and not including

dispersal processes, and projected them to the current cl¡mate to predict potential range

shifts of R. darw¡n¡¡. ln order to assess model accuracies, we contrasted model

pred¡ct¡ons with time-independent present day presence/absence for 2OO0-2O14. We

then compared model accuracy between SDMs that incorporated dispersal l¡m¡tations

and those that d¡d not. Finally, to assess the effects of env¡ronmental extrapolation of

SDMS on temporal predictability, we stratified model project¡ons to no-analogue

climates and climatic analogue areas.
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Studv case

Rhinoderma darwinii was chosen as subject of study because of its: 1) low mobility,

small home range and low net displacement (Crump 2002, Valenzuela-Sánchez et al.

2U4: 2) well-studied distribution, with a number of known present and past

georeferenced occurrences, from which updated distribution range maps have been

produced (Soto-Azat et al. 20'13a); 3) endangered condition, undergoing rapid

population decl¡nes in recent years due mainly to habitat loss, while climate change and

infectious diseases are cited as potent¡al main threats (Soto-Azat et al. 2O13a,2O13b).

The study area covers central and southern Chile and adjacent areas of Argentina (35'-

46"S; 71"-75'W, F¡gure I ). ln this area the greatest decrease in precipitation is

expected to occur along with the greatest increase in temperature; ¡t ¡s also where most

vulnerable ecosystems of Chile occur (Santibañez et al. 2013). lt spans about 37,000

km2 and is characterized by a highly irregular topography, includ¡ng the Pacific Coast

Range, the western slope of the Andes Range and part of the fiords of northern

Patagonia. lts ten¡tory includes the Chilean Winter Ralnfall-Valdivian Forests, a

recognized biodiversity hotspot (Mittermeier et al. 1999).

Occurrence data

Both histor¡cal and current occurrences were obtained from the most recently published

review of Darw¡n's frog's d¡stribution (Soto-Azat et al. 2013a) and include additional

non-published records. Historical occurrence records for the species were restricted to

all archived specimens found in museums around the world that were collected

between 1950 and 1975 (Soto-Azat et al. 2013a; ti), while current presences and

absences (i.e. sites prospected but no individual found) included georeferenced records

from individuals captured between 2000 and 2014 from 35 field campa¡gns across the

ent¡re histor¡cal distribution of R. darwinii carried out between 2008 and 20la (tf). The

historical dataset included 97 records, corresponding to 28 unique occurrences (¡.e.

information regarding a single cell in a gr¡d-based georeferenced data with -1x'l km

resolution); the presenlday dataset included 1,422 records, corresponding to 83 unique

occurrences plus 54 unique absences. lt was assumed that the absence of a record
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from a sampled grid cell corresponds to a true absence of the species. Details on

georeferenced records are avarlable in Table S1 .

  Occurences 1970's

I Occurrences 2010's

O Absences 2010's

[lT] current distribution

--Kms

0 41 82 164

Figure 1. Study area, geographic distrlbution and location of historical and current

presence-absence datasets f or Rh i nod erma darw¡ n i ¡.



Characterizino recent climate chanqe

Using po¡nt data of meteorological stations between 34"-48'S and 70"-75'W, cl¡matic

surfaces for three recent past periods (1970; 1990; 2010) were built" Meteorological

data encompassed 293 weather stations, and were extracted from the Direcc¡ón

Meteorológica de Chile (DMC), Dirección General de Aguas de Chile (DGA) and the

FAOC|im-NET Agroclimatic database management system (FAO 2001), recording

monthly records of mean daily minimum temperature, mean daily maximum

temperature and total rainfall for 5-year per¡ods (1965-1969; 1985-1989; 2005-2009).

For each period monthly values of each climatic variable were interpolated to generate

surfaces using Anusplin v-4-4 (Hutchinson and Xu 2006), which applies the same

algorithm used to derive the WorldClim bioclimatic surfaces (H¡jmans et al. 2005).

lnterpolations were fitted al a -1x1 Km resolution with the second-order spline method

using elevat¡on as an independent variable (Hutch¡nson and Xu 2006, Pliscoff et al.

2014). Finally, surfaces of 19 b¡oclimatic variables were generated using the d¡smo

package in R (Hijmans et al. 2014). To investigate the observed change in recent

cl¡mate (last 40 years), we assessed d¡fferences between the bioclimatic values of the

1970s and 2010s for a random subset of 10000 grid cells using non-parametric

Friedman analysis of variance of ranks for repeated measures.

Habitat suitabilitv models

Hab¡tat suitab¡lity models were fitted using the max¡mum entropy algorithms

¡mplemented in the Maxent software (Phillips et al- 2006), which have better

performance with limited presence data (Elith et al. 2010) and a combination of high

spaiial and temporal predictability (Heikkinen et al. 2012, Rapacciuolo el al. 2012).

H¡stor¡cal occurrences were randomly subsampled by distance to reduce the effects of

spatial autocorrelation (Marino et al 2011), avo¡ding occurrences that were less than 4

km apart, resulting in a subsample of 24 occunences, which shows non-significant

autoconelat¡on levels by Moran's I Test (Moran 1950), as well as exceeding the

theoretical min¡mum sample size (i.e. 13) required to obtain good model performance

(¡.e- AUC > 0.9) in an ideal, balanced and orthogonal world (van Proosdij et al. in
press). All models were calibrated us¡ng 70% of the dataset points (train¡ng data), while
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the rema¡ning 30% were used for ¡nternal evaluation of model performance ("internal

evaluation" [E] sensu Dobrowski et al. 201 1). To reflect ihe relationship between

habitat suitability and local abundance better (Brown et al. 1995) climate variables that

were closely related to local abundance were prioritized, selecting a subset of 5 of the

19 bioclimatic variables by their degree of conelat¡on with the population density of 15

populations across the entire distribution of Rhinoderma darvvinii but avoiding the

incorporation of pairs of collinear biocl¡matic var¡ables (i.e. Pearson's r > 0.7). Using this

selection procedure, temperature seasonal¡ty (standard deviation *100), mean

temperature of the wettest quarter, annual precipitation, precipitation seasonal¡ty

(coeffic¡ent of variation) and precipitation in the coldest quarter were selected. To

characterize the effects of model extrapolation to no-analogue climates, "do clamping"

was not used; this is the default option in the Maxent software that constrains the upper

and lower bounds of future values of env¡ronmental variables to the range in which the

model was calibrated; Phillips et al- 2006). Fifty replicates were conducted, and using

the lE 15 repl¡cates that had the best performance on 1970 project¡ons (i-e. h¡ghest

Area Under Curve [AUC] values of the receiver operating characteristic ROC function)

were selected" The models were projected to 1990 and 2010 for the 15 replicates

selected. Finally, projections of those replicates were transformed from logistic output

(an estimate of probabil¡ty of occurrence) to b¡nary maps of presence-absence. To do

so, the maximum training sensitivity plus specificity threshold was used, calculated for

each SDM, to transform pred¡cted probab¡l¡t¡es of occurrence above the selected

threshold to presences, and those below to absences. This threshold algorithm has

previously been found to perform better than others (Swets 1988, Jiménez-Valdeverde

and Lobo 2007).

lncorporatinq d¡spersal processes

To simulate species-specific dispersal constraints we used MigOlim (Engler and Guisan

2009), a cellular automaton-based dynamic SDM, which can be used in conjunction

with habitat suitabil¡ty and demographic information to explore the spatial

consequences of climate change. ln this model the colonization probability of an

unoccupied cell is a function of propagule production and distance from nearby

7



occupied cells, d¡spersal barr¡ers and habitat "invasib¡lity" (based on habitat suitability

at a given time; Engler and Guisan 2009)- Using inputs of dispersal and demographic

parameters, maps of initial distribution (1970), and climatic habitat distributions based

on changing climate cond¡tions (i.e. environmental steps: 1990 and 2010) it was

possible to distinguish suitable climates that were accessible from those which were

not. The initial distribution was the potential climate distribution modeled from habitat

suitab¡l¡ty models fitted and projected on 1970, while the environmental steps were the

same climate envelope model projected to 1990 and 2010, transformed to binomial

maps (suitable/unsuitable) using thresholds as described above. Since the dispersal

kernel of R. darw¡nii has not been fitted, extreme values from currently published

dispersal kernels of amphibians were used, as m¡nimum (Triturus cr¡status; Kovar et al.

2009) and maximum (Rana temporaria; Kovar et al. 2009) potential dispersal scenarios

(see Table 52 for all published dispersal kernels fitted for amphibian species). Finally,

first reproduction age was estimated from the experience of ex-s¡tu conservat¡on,

establishing the age of first reproduction and sexual matur¡ty at 3 and 6 years,

respectively (Busse 2002, Bourke 2010). As probability densities of dispersal by

distance at annual time periods were incorporated and the environmental steps (1990,

2010) were separated by twenty years, the CA model produced had a total of 40 annual

steps (or "dispersal steps"). All dynamic models were developed using the MigClim

package in R (Engler et al. 2012).

Quantifvinq emerqence of no-analoque climates

To measure the emergence of no-analogue climates from past (1970) to present (2010;

i.e. the degree of extrapolation in SDM project¡ons over time) we used the Extrapolat¡on

Detection tool (ExDet), based on Mahalanobis distances (Mesgaran et al. 2014). The

Exdet tool, implemented in the ExDet software, measures the s¡milarity between the

reference and projection domains by accounting for both the deviation from the mean

(novelty type l) and changes ¡n the correlation between variables (novelty iype ll,

Mesgaran el al. 2014). The novelty (i.e. no-analogue climates) was assessed

employing the same climatic variables used to cal¡brate SDMs, by using the 1970 layers

as reference and the 2010layers as projected cl¡mates.
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Assessment of temporal oredictabilitv of SDMs

Usually accuracy of SDM projections ¡s assessed using a data-split or a resampled set

of the distribution records used to build the models. This involves a l¡mited approach

that can overestimate the predictive accuracy (Dobrowski et al. 20't 1). An emerging and

more robust approach to assess the temporal predictability of SDMs is contrasting

model predictions across a time per¡od d¡fferent than that with which the model was

originally calibrated with presence/absence data from that new time period (e.9.

Pearman et al. 2008, Kharouba et al. 2009, Dobrowski et a|.2011, Rapacc¡uolo et al.

2012, Watling et al. 2013). Thus to quantify the temporal predictability of SDMs, we

estimated the models'ability to d¡scriminate between occupied and non-occupied sites,

comparing model predictions with contemporary (2OOO-2O14) presences and absences

("external evaluation" [EE] sensu Dobrowski et al. 2011). This was done for each of the

'15 replicates of the three different model parametrizations separately by calculat¡ng

three alternative measures of prediction accuracy: i) AUC, the area under the ROC-

curve (Fielding and Bell 1997), (iD sensit¡vity (i.e., proportion of correctly predicted

presences) and (iii) specificity (i.e., proportion of correctly pred¡cted absences), using

the SDMTools package (Van Der Wal et al. 2011). lnterpreiation of AUC scores

followed the gu¡del¡nes recommended by Swets (1988): excellent AUC > 0.90; good

0.80 < AUC < 0.90; fair 0.70 < AUC < 0.80; poor 0.60 < AUC < 0.70; and fail 0.50 <

AUC < 0.60.

Dispersion and extrapolation on temporal predictabilitv of SDMs

To assess the effects of dispersal processes on the temporal predictability of SDMs, the

Kruskal-Wallis test was conducted to compare medians of the three measures of

prediction accuracy between SDMs with and w¡thout d¡spersal l¡m¡tation (both

scenarios), followed by post-hoc pairw¡se comparisons among model treatments using

Tukey's HSD test when differences were found. To assess the effect of model

extrapolation, the predictive accuracy between skatified validation datasets was

compared for extrapolation and no extrapolat¡on areas (i.e. analogue climates vs no-

analogue cl¡mates) us¡ng a Mann-Whitney test. AII analyses were performed ¡n R v.

3.1.2.
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RESULTS

Predicted shifts of suitable climates

AII five bioclimatic variables showed significant changes betuveen 1965-1969 (ti) and

2005-2009 (tf). Temperature seasonality (standard deviat¡on *100), mean temperature

of wettest quarter, precipitation seasonality (coefficient of fariation) and precipitation of

coldest quarter experienced significant increases, while annual precipitation showed a

significant decrease (Friedman repeated measures analys¡s of variance on ranks, all p

< 0.001). Over the last 40 years, the suitable climates for R- darwinii predicted by SDMs

have sh¡fted, experiencing upward spread and resulting in increases in the climatically

suitable area by 46% on average under no dispersal limitations (Figure 4).

ry,",

'.. 0 003

Figure 2. Maps showing predicted suitable climates for 1970 and predictions for 2010

through temporal transference of SDMs without dispersal l¡mitat¡ons. Hatched area

¡ndicates probability of occurrence probability greater than the cutoff threshold.

Probability
ocauffence
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ldentifvinq su¡table but inaccess¡ble climates

The MigClim output allows d¡st¡ngu¡sh¡ng betvveen sultable habitats that are accessible

from suitable habitats that are not accessible due to dispersal limitat¡ons (Figure 3).

This geographic area where dispersal limltations were identified was aiso consistent

with populations of R" darwinii that were identified as potential recent local extinctions

(2000-2014).

simple SDM projection SDM

ffi Remain occup¡ed

Never occup¡ed

Dispersallimilations

Decolonized

Colonized

Figure 3. Differences in predicted range change for the last 40 years (1970-2010) for

Rhinoderma danuinii using simple SDMs and dispersal-constrained SDMs that

incorporate dispersal capacity (maximum d¡spersal rate). Range change categories

following Engler & Guisan (2009), defined for simple SDM projections using presence-

absence predicted distributional changes s¡nce 1970 to 2010 using geographic

intersections.

' | -t0.0,0,§
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SDMs ihat explicitly ¡ncorporated dispersal constraints restricted the upward

extensions, result¡ng ¡n decreases in the range areas by 35o/o or 'l2o/o over the last 40

years using minimum and maximum dispersal capacity scenarios for dynamic SDMs,

respectively. These contrasting patterns in predicied range size changes (a metric

usually used to assess extinction risk under climate change scenarios) between simple

SDMs and dispersal-constrained SDMs were s¡gn¡ficantly different (Kruskal-Wallis Test

H=16.29, p<0.001; Figure 4).

w

Figure 4. Boxplot (median, 25th and 75th percentiles) showing the consequences of

dispersal constraints on predicted range size change (%) from 1970 to 2010. Significant

effects are denoted by *. Different letters indicate stat¡stical differences in model

accuracy between different modeling treatments.
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D¡spersal limitations on temporal predictab¡l¡tv of SDMs

Model accuracy estimated using EE was significantly less than using lE, independently

of dispersal constraints (Kruskal-Wallis test H = 36.31, p > 0.0'l; Figure 5). The median

AUC estimated for SDMs without dispersal process poections was 0.71 (with 25th

percentile = 0.67, 75th percentile = 0.75), which corresponds to overall poor to fair

accuracy (sensu Swets 1988). For SDMs with dispersal constraints the median AUC

estimated was 0.74 (25 th percentile = 0.71,75 th percent¡le = 0.79) for the minimum

dispersal capac¡ty scenario and 0-76 for the maximum dispersal capacity scenario (25th

percent¡le = 0.73, 75th percentile = 0.80; Figure 5) which corresponds to overall fair to

good accuracy (sensu Swets 1988). Accuracy of SDM project¡ons over time (AUC from

a t¡me-¡ndependent dataset) significantly increased when dispersal l¡mitations were

incorporated (Kruskal-Wallis test H = 8.44, p < 0.05; F¡gure 5), but pa¡M¡se

comparisons showed that only SDM projections with maximum dispersal capacity

outperform projections of SDMs without dispersal constraints (Figure 5). Also, both

dynam¡c SDM project¡ons (max¡mum and m¡n¡mum dispersal capacity) exhibited

significantly greater sensitivity values than SDM projections that do not incorporate

dispersal processes (Kruskal-Wallis test H = 12.19, p < 0.01; Figure 5). Othenrvise, no

significant differences in model specificity were found, independently of the SDM

framework (KruskaFWallis test H = 2.12, p > 0.34; Figure 5)-

Model environmental extrapolation on temporal predictabilitv of SDMs

No-analogue cl¡mates have arisen in >39o/o of the study area over the last 40 years,

including both projected suitable and non-suitable habitats for R. darwinii (Figure 6).

Thereby, SDMs had to extrapolate into 2010 cl¡mat¡c condit¡ons unrepresented in the

cal¡brat¡on dataset to be projected. The climatic novelties reported by the ExDet tool

only occurred in the range of univariate variation (i.e. exceeding the range of values of

at least one cl¡matic variable that occurred under the in¡t¡al cl¡mat¡c conditions), with

novel combinations between covariates not being observed.
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We found thal no-analogue cl¡mate samples showed significantly lower AUC (all Mann-

Whitney test U < 59, all p-values < 0.05) and sensitivity values (all Mann-Whitney test U

< 29, all p-values < 0.001 ) than analogue samples, but no significant differences in

model specificity were observed (all Mann-Whitney U>74, ali p-values > 0.1),

independently of the SDM framework (Figure 5).

i-.'.1; No.lnalogue cllmates
Pradlctcd ¡bsrñca

f p¡adlcted presence,

Figure 6. Predicted geograph¡cal distribut¡on map

darwinii) for 2010 using dispersal-constra¡ned SDM

and the extent of model extrapolation (no-analogue

observed recent cl¡mate change (1970-2010).

for Darwin's frog (Rhinoderma

with m¡nimum dispersal capacity;

climate areas) after 40 years of
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DISCUSS¡ON

Predicting species range shifts under global climate change ¡s a major challenge for

conservat¡on biogeography (Araújo et al. 2005, Botkin et al. 2007, Carvalho et al. 2011).

However, the most commonly used approach to forecast range shifts, the SDMs, have

shortcomings that could limit the¡r predictive accuracy over t¡me (Elith and Leathwick

2009, Franklin 2013). Two key obstacles to predicting range shifts reliably under global

change scenarios are: i) no ¡ncorporation of dispersal processes in SDMs (Miller and

Holloway 2015), and i¡) the environmental extrapolation of these models (Fitzpatrick and

Hargrove 2009). Here we demonstrated the consequences of these shortcom¡ngs on

temporal predictability using h¡storical data to predict the present d¡stribution of the

dispersal-limited frcg R. darwin¡¡, assessing the accuracy of predictions contrasted with

current presence/absence data.

Our results offer new insights to predict range shifts reliably. They support for the first

t¡me with emp¡rical and time-independent results the recognized idea that incorporating

dispersal processes would significantly improve the temporal pred¡ctab¡lity of SDMs

(e.9. Pitelka et al. 1997, Midgley et al. 2006, Schurr et al 2012, Eskildsen et al. 20'13,

M¡ller and Holloway 2015). This m¡ght help to reduce one of the most common sources

of uncertainty of SDM predictions, the difference between full and no dispersal

scenarios (Thuiller et al. 2006). Our results also showed that model extrapolations could

lead not only to higher uncertainties (Dobrowski et al. 2011), but also to lower predictive

accuracy over time. This is especially relevant as the rise of no-analogue climates is

expected to be inevitable, and therefore reporting the geographic distribution of model

extrapolation is key to better informed conservat¡on decis¡ons. Our results also support

previous reports that model evaluation with non-independent data (e.9. data-splitting of

the calibration datasei) provides overly optimistic assessments of predictive accuracy

over time; the time-independent dataset is the most robust way to assess model

accuracy over t¡me (Araújo et al. 2005, Kharouba et al. 2009, Dobrowski et al. 2011,

Esk¡ldsen et al. 2013).

While SDM forecasts usually show good pred¡ctability over t¡me (¡.e. AUC > 0.8;

Kharouba et al. 2009, Dobrowski et al. 201 1), the ability to predict changes in

occupancy siatus due to climate change using SDMS that do not incorporate dispersal
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processes is at best weak (Rapaccioulo et al. 2012, Eskildsen et al. 2013). Two key

processes that could limit the accuracy of SDMs in range shift predictions are the

persistence of populations in habitats initially suitable and occupied, but that have

become unsu¡table; and the dispersal capacity to colon¡ze new su¡table hab¡tats (i.e. to

track climate change; Thuiller et al. 2008, Póyry et al. 2009, Devictor et al. 2012, Lenoir

and Svenning 2015). lncorporating dispersal processes not only has consequences for

reducing the uncertainty of projected range shifts needed in conservation planning

(Carvalho et al. 201 1), but also for extinction risk assessments. Usually, SDM

projeciions using full dispersal assumptions overest¡mate the geographical range area

because these models are not able to distinguish an accessible habitat from that one

that is inaccessible (Miller and Holloway 2015), and therefore might lead to ¡ncorrect

estimations of extinction risk (Hamann and Aitken 2013). Moreover, the relationship

between projected suitable habitat (accessible and inaccessible) and extinction risk is

often weak (Fordham el al. 2012), and this apparent weakness could be explained by

differences between incorporating or not the d¡spersal capacity of species when

assessing the risk of extinction due to cl¡mate change through SDMs. For R. darwinii,

simple SDM forecasts predicted an increase in potential climatically suitable area.

However, dispersal-constrained SDMs predicted decreases in the range area for 14 out

of 15 repl¡cates, highlighting that dispersal capac¡ty plays an important role in accurate

assessment of extinction risk.

lmprovement in temporal predictability when dispersal constra¡nts are included in

dispersal-constrained SDMs is clearly explained by the desirable increase in model

sensit¡v¡ty (i.e. a decrease in false presence predictions). Model sensitivity has been

suggesied as more critical to model rel¡ab¡lity to support conservat¡on decisions than

model specif¡city (Jiménez-Valverde et al. 201 1). This is important in conservation

management because the former allows more accurate reports of where the species is

expected to spread and where the spec¡es should not colonize due to dispersal

limitations, even though the model predicts suitable climates. The increase ¡n model

sensitivity for R. darvvinii using dispersal-constrained SDMs with respect to projections

from simple SDMs is cons¡stent with large areas of habitat that have become suitable,

but which R. darwinii cannot access due to dispersal limitations (e.9. high latitude

islands in Patagonian fjords and high altitudes in the Andes; Figure 3). However, we did



not observe improvements ¡n SDM specificity (i.e. no decrease ¡n false absence

predictions) when dispersal capac¡ty was incorporated. Th¡s could be interpreted as a

limitation in the ability of SDMs to predict species distributional responses to cl¡mate

change at the trailing edge of a species' range, which is not explained by dispersal

constraints. Two alternative explanations compete for false absence predictions: Firsi,

SDM projections are probably pessimistic in predicting habitat loss at the trailing edge

of a species' range, because SDMS aré based on the realized climat¡c n¡che, which can

be much narrower than the fundamental niche (Jackson and Overpeck 2000). This is

also consistent w¡ih non-cl¡matic range limitations, which have been recently proposed

as likely the norm rather than the exception (Early and Sax 2014). Second, another

overly pessimistic issue of SDM projections in face of climate change is the assumption

that populations under unsu¡table conditions are comm¡tted to local ext¡nction (e.9.

Thomas et al. 2004)" Therefore, these models rarely incorporate persistence of

populat¡ons when the climate of a given area became unsuitable, which could explain ai

least part of false absence predictions. This highl¡ghts the need for incorporat¡ng not

only dispersal proesses in dynamic SDMs, but also population persistence under

unsuitable conditions (Schurr et al.2007, Thuiller et al. 2008), disentangling the effects

of misrepresented niche and persistence in unsuitable hab¡tats on the temporal

predictabili§ of SDMs. An example of incorporating both processes is presented in

Early and Sax (201l), who demonstrated that population persistence could be critical to

pred¡ct spec¡es range sh¡fts. However, to our understanding the consequences of

incorporat¡ng population persistence in temporal pred¡ctability of SDMs have not been

demonstrated so far (e.9. through time-independent validation of predictions).

Moreover, if persistence has an effect on the predictability of SDMs over time, its effects

should be greater in long-lived spec¡es because of a greater temporal lag for local

extinctions (cl¡mat¡c extinction debts; Devictor el al. 2012), assuming that it is somewhat

unlikely that these populat¡ons could evolve to adapt to new conditions. Although most

amphibians are expected to live for only few years, R. darwinii appears to live longer.

Field studies have recorded adults a m¡nimum of eight years-old (Soto-Azat, pers.

comm), while in capt¡v¡ty individuals have surv¡ved up to 15 years (Busse 2002); this is

e reason why the persistence of populations under unsuitable conditions should be

considered ¡n future forecasts of range dynamics for lhis species.
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Current climate conditions are changing, w¡th some ctimates disappearing and new

ones emergrng. However, reports of no-analogue climates to take account of prediction

uncertainty are still an uncommon practice in species distribution forecasts (Elith and

Leathwick 2009). lnstead studies typically extrapolate models ¡nio no-analogue

cond¡t¡ons and assume such eñrapolat¡ons are valid (Fitzpatrick and Hargroove 2009)_

Our results suggest that, similarly to spatial extrapolation (Heikkinen el al.2012), a

good capability of SDMs to predict species distributions under training conditions does

not automatically guarantee equally good performance when these are transferred in

time. ln spite of decreased pred¡ct¡ve accuracy and increased uncertainty of SDMs for

no-analogue climate areas, environmental extrapolation seems to be a situation that

often cannot be avoided when these correlative SDMS are be¡ng transferred in space or

time. For this reason, it is strongly recommended to report the degree of env¡ronmental

extrapolat¡on both for temporal and spatial transference of SDMS (e.g. El¡th et al. 2010,

Mesgaran et al. 2014) to prevent erroneous or imprecise pred¡ct¡ons, or at least

communicate where model predictions are rel¡able and where they are not.

S¡gn¡f¡cant improvements in temporal model predictab¡lity can be obtained when

realistic dispersal constraints are included in dynamic sDMs, reducing the uncertainty

of the over-simplistic approach of no/full dispersal. This may be more important for

dispersal-limited species, which have shown lower temporal predictabillty than species

with high mob¡lity. However, the pred¡ctive performance of SDMs significanfly

decreases in non-analogue climate areas, and as the r¡se of cl¡mat¡c novelty is
inev¡table, reporting the geographic distribution of model extrapolat¡on is key to better

informed conservation decisions. Studies performing time-independent evaluations of

SDM projections over t¡me are needed, since this ¡s a more robust way to assess the

pred¡ctive accuracy of SDMS in a context of environmental change. Furthermore, the

development of new dynam¡c SDMs should include, in add¡t¡on to dispersal processes,

population persistence in unsuilable habitats, thus reporting poected climatic extinction

debts and thereby reducing false absences in model predictions.
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APPENDIX

Table Sl. Georeferenced records for R. darvvinii for both historical (t950-1975) and
present-day datasets.

Detaset Latitude Long¡tude Presence absence

o
ñ

-

36.43437 -73.05174 1

-37.31748 -73.25377 1

-37.77274 -73.11200 1

37.40194 -72.46087 1

-37.42t22 -73.02545 1

-37.90961 -73.29170 1

-31.92s43 -13.21364 1

38.01743 73.77208 1

-38.01824 -73.42494 1

-38.35393 -73,92694 1

-39.43464 ,13.21289 1

-39.63808 -72.33494 1
,39.80236 -13.25997 1

-39.445L7 -73.29474 1

-39.86961 -73.39462 1

-39.88607 73.43211 7

40.16L17 73.66398 1

40.52833 -73.70777 1

-40.55296 -73.71374 1

41.03432 71.88996 L

41.04311 7\.9aOO7 1

-41.20839 -72.53452 1

41.22545 -72.27370 1.

-41.22847 -72.26457 1

41.46915 12.93076 1

41.46629 73.4223L 7

42.01883 -72.69432 1

44.32650 ,72.55200 1

3s.83300 72.s080s 0
-35.93611 -'71.60734 0
-36.85260 -73.041ü 0
36.90967 73.O7724 0

-36.91013 -73.01607 o
36.920s8 72.96992 0
31.O2L2s 72.971L7 0
3'7.03293 13.07263 0

3'1_24473 73.446]2 0
-37.29194 73.25164 0
-37.30058 -73.25038 o
-37.31148 -73.253L7 0
-37.17235 -73.19883 0
-37.42722 -73.02545 0
,37.4248"1 ,73.01365 0

37.82600 73.02467 0
-37.82785 -73.01005 o
37.42894 73.t7269 0
37.82925 73.16339 0

37.83083 -73.16167 1

-37.83150 -73.76224 L

-37.84153 -72.99883 0
-37.48992 73.27s14 0
-37.49042 -73.27551 1

37.89306 -73.28550 0
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-37.89419 -73,28636 1

37.90961 -73.29710 0
-38.01158 73.1422s 1

-38,01743 -73.r7208 L

-38.03058 -73.20412 1

-38,286s8 -72.@9s2 0
-38.72866 -72.58804 0

-39,a3722 -7r.77312 0
39.13894 -7a.70967 1

-39.13900 -77.70995 1

-39.14889 -71.77t43 0

39.15092 77.1L506 0
-39.48650 -71.85310 1

-39.48683 -7LA5324 1

-39.48694 -7L4s292 7

-39.48700 -7r.85281 I
39.s1612 -71.86251 0

-39.55036 -71.98803 1

39.S5047 77.98817 1

-39.57967 -71.53383 0
-39.69815 -73.30187 1

39.69440 -73.10220 1

-39.71520 -73.4¡242 0
39.77497 77.6392s 1

39.7915s 7\.66504 1

-39.80089 -71_52733 1

-39.8s31s -71.9606s l-

-39.8s32s -71.96061 1

39.8s8s6 71.93550 1

-39.86367 -11.97728 1

-39.86761 -1L.9t192 1

39.86988 -71.9L832 1

-39.87022 -7t.91L75 1

-39.87025 -71.91181 1

39.472s8 -7L.97975 7

-39.47261 -71.97367 1
,39.47267 -71.91353 7

-39.87436 -7!.92047 1

-39.87483 -71.92764 1

-40.13725 -71.65843 0
-40.19792 -73.437a7 t
40.54400 -73.69177 0

-40.66376 -72_17045 1

-40.66456 -72.17550 1.

40.66798 72.L8556 I
-40.68189 -72.L4317 0
-40.68206 -12.14317 1

-41.01469 -t!.82L9L L

47.44777 -72.19t)5 0
-41.83893 -73.@O15 1

41.88080 73.67605 L

-41.88130 -73.67605 1

41.44747 73.61623 1

-41.88197 -73.67551 L

-41.88200 -73.67562 1

41.88789 72.38294 0
-4237546 -72.41082 o
-4234760 72.40t70 0
-42.8572a -74.08827 L

42.8s308 74.O7853 1



)7

42,93910 73.49431 1

42.97203 -72.46464 1

43.02533 -73.79739 t
-43.08475 -72.45835 o
-42.L2542 73.98862 1

43.13892 -74.047tO 1

43.15005 74.08957 1

-43.16478 -74.12077 0
43.16478 74.L2071 1

-43.79575 -74.t1461 1

-43.24677 -74.L2463 ,
$.27547 72.432L7 0

-43.28540 -"14.L2173 1

-43.29893 -14.17620 1

-43.35332 -74.7L!99 L

-43.35654 -74.10807 1

-43.35797 -74.LL7L4 1

-43.35878 -74.11147 1
,43.35956 -74.11736 1

-43.35976 -74.13733 0
-43.36118 -74.11108 7

-43.36124 -74.77130 1

-43.36731 74.11902 1

43.36150 74.11054 r
-43.36267 -74.11093 1

-43.36378 -74.12273 0
-44.08778 -13.04242 1

44.08806 73.083s6 1

-44.08806 -73,08376 1

44.08919 73.08369 1

44.09649 -73.09642 0
-44.096s0 13.09682 0
-44.10821 -73.11854 1

-44.rLO45 -73.11899 0

M.23700 72.50677 1

44.23210 72.50663 0
44.23222 72.s0660 1.

-44.23225 -72.50614 1

44.23303 -72.53477 0
-44.23327 -72.s0933 1

44.23332 ,12.50930 1

-44.23340 -1250922 1

-44.23366 -72.s0469 1

-44.23430 -72.50696 1

-44.3]401 -72.53257 o
44.32164 72.54320 0

-44.46984 -72.54042 0
-44.62046 -72.97927 0

-44.62404 ,72.96297 0
-44.63034 -72.96633 0
45.09967 72.9554L 1

,45.18970 -72.95238 1
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Table 52. Published dispersal kernels fitted for amphibian species.

Distance Im] Probabilitv of movemeñt {1vear period)

Kovar et a|.2009 1000 0.0018182014

2000 0.0000694200

2500 0.000020599E

3000 0.0000071912

4000 0.0000012243

5000 0.0000002825

1000 0.04035053s4
2000 o.4137354567

2500 0.0093302509

3000 0.0067039344
4000 0-0038736591
5000 0.0024742u6

MII'IIMUM DISPEf, SAt SCENARIO

1000 0.0000408084

2000 0.0000000904

2500 0.000@00090
3000 0.0000000012
4000 0.0000000000

5000 0.0000000000

1000 0.0006589338
2000 0.0000653491

2500 0.0000287910

3000 0_0000143359
4000 0.0000045353

5000 0.0000017796

1000 0.0124026118

2000 0.0009243800

2500 0.0003452872

3000 0.0001452259

4000 0.0000340830
5000 0.0000101130

1000 0.0500623583

2000 0.0070545444
2500 0.0033107077

3000 0.0017034202

4000 0.0005479031
5000 0.0002113160

MAXIMUM DISPERSAL

SCENARIO

1000 0.1094510939

2000 0.055732848s
2500 0.0437945153

3000 0.0356519798
2r000 0.0253576971

5000 o.4192029422
Sinsch et al. 2012

(Sandy so¡k- ernpir¡cal)

1000 0.3092340000

2000 0.0907676000

3000 0.0268259000
4000 0.0037003600

5000 0.0009762080

(sandy soils- potential)
1000 0.4941060000
2000 0.2454920000

3000 0.1192100000

4000 0.0584622000

5000 0.0297608000

Sinsch 2014
(empirical)

1000 0.3123390000

2000 0.0964010000

3000 0.0295630000

4000 0.0077120800
Tingley et a1.2013 1000 0.0003963590

2000 0.0001411400

3000 0.0069561900
4000 0.0000407579

5000 0.0000270451


