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Abstract—This work addresses testing the independence of two
continuous and finite-dimensional random variables from the de-
sign of a data-driven partition. The empirical log-likelihood statis-
tic is adopted to approximate the sufficient statistics of an oracle
test against independence (that knows the two hypotheses). It is
shown that approximating the sufficient statistics of the oracle test
offers a learning criterion for designing a data-driven partition that
connects with the problem of mutual information estimation. Ap-
plying these ideas in the context of a data-dependent tree-structured
partition (TSP), we derive conditions on the TSP’s parameters to
achieve a strongly consistent distribution-free test of independence
over the family of probabilities equipped with a density. Com-
plementing this result, we present finite-length results that show
our TSP scheme’s capacity to detect the scenario of independence
structurally with the data-driven partition as well as new sampling
complexity bounds for this detection. Finally, some experimental
analyses provide evidence regarding our scheme’s advantage for
testing independence compared with some strategies that do not
use data-driven representations.

Index Terms—Independence testing, non-parametric learning,
learning representations, data-driven partitions, tree-structure
partitions, mutual information, consistency, finite-length analysis.

I. INTRODUCTION

THE problem of detecting independence from i.i.d. samples
in a learning setting (distribution-free) is fundamental in

statistics and has found numerous applications in statistical
signal processing, data analysis, machine learning, inference,
and decision problems [1]–[4]. For instance, the capacity to
detect independent and conditional independent structures from
data is relevant when having invariances and probabilistic sym-
metries in decision and machine learning models [5]–[8]. This
capacity has been used in blind source separation, independent
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component analysis (ICA) [1]–[4], [9] and the detection of
associations in data [10]. Detecting independence from data
has been systematically studied, and the literature is vast. Dif-
ferent non-parametric strategies have been proposed for this
task using kernel-based statistics [11]–[14], distance-based ap-
proaches [15]–[19], histogram-based approaches [10], [20]–
[24], log-likelihood statistics [20], [25], correlation-based ap-
proaches [26], [27], φ-divergence estimators [20], [25], entropy
and mutual information estimators [10], [10], [28]–[30], among
many others.

A natural strategy, and the one we follow in this paper, is
to partition the observation space (the binning approach) to
evaluate the discrepancy (in some sense) between two empir-
ical distributions [12], [15], [20]–[22], [29]. We highlight the
following works using this approach: Gretton and Györfi [20]
introduced a family of product data-independent partitions using
the L1-statistics [31] and the I-divergence statistics [32]. With
these two approaches, sufficient conditions are established on the
partition and other learning parameters to achieve strong consis-
tency for detecting independence distribution-free in a continu-
ous multivariate scenario. Szekely et al. [15] also use partitions
on the sample space, utilizing empirical distance correlation and
distance covariance statistics to introduce a novel test of indepen-
dence. The test is consistent and shows better empirical results
than classical likelihood-ratio tests in scenarios with non-linear
dependencies. Shi et al. [33] address the multivariate scenario
by incorporating the concept of transportation-based ranks and
signs. They propose plugging the center-outward distribution
function into the mentioned distance covariance statistic [15] to
determine a distribution-free test of independence.

More recently, Zhang [22] proposed a non-parametric test
of independence assuming a rich class of models with known
marginal distributions (uniform over [0, 1]). This work proposed
a binary expansion filtration of the space and deeply studied
some symmetric properties to create a novel test that is uniformly
consistent (on the power loss) and minimax for the power (in
the sample size) assuming a large class of alternative distri-
butions. Zhang et al. [34] presented a novel extension of the
binary expansion filtration strategy [22] to a multidimensional
setting by cleverly approximating an oracle Neyman-Pearson
(NP) statistic. They propose a data-adaptive weight strategy (for
the binary expansion) to approximate the ideal weight of the
NP test. This new test unifies several important tests (χ2 test
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statistics, distance correlation) and shows promising empirical
results.

On the important connection between testing independence
and information measures [35], [36], we highlight the work of
Kontoyiannis and Skoularidou [30], where the problem of esti-
mating directed information (directed information rate) between
two discrete (finite alphabet) processes was explored based on
a plug-in estimator. Importantly, the authors used this plug-in
estimator to test the presence or absence of causality between the
processes. Along the same lines, Suzuki [29] explored different
strategies to estimate mutual information between discrete and
continuous random variables and then evaluated those strategies
experimentally for the task of testing independence. Finally,
Reshef et al. [10] introduced the maximal information coeffi-
cient (MIC) to measure complex functional dependencies be-
tween a pair of variables by maximizing the (empirical) mutual
information computed for collections of (adaptive) partitions of
different resolutions.

In many of the methods mentioned that use partitions (or
binning) for testing independence, a component that has not
been explored systematically is the role played by data-driven
partitions [10], [37], [38]. Data-driven partitions use data for
the binning process (vector quantization) to construct the cells
and define the final structure of the partition. This flexibil-
ity offers the capacity to better address inference and learn-
ing problems. Supporting this idea, data-driven representations
have shown great approximation properties and better decision-
estimation performance in numerous non-parametric learning
problems [37]–[41].

In our context, the motivation that piqued our interest in
data-driven partitions is the fact that under the hypothesis of
independence, the trivial partition (the partition with one cell
that contains all the space) is a sufficient representation of the
problem. Our initial conjecture is that a well-designed adaptive
data-driven partition could have the ability to detect (learn from
data) this trivial solution by implementing a form of explicit
regularization in its design. This adaptive ability could provide
better detection of independence than non-adaptive partition
schemes, which has prompted the exploration of data-driven
methods for testing independence in this work.

Motivated by this, we look at the problem of designing a
new learning criterion that selects a data-driven partition of
the space (adaptive binning) as the optimal trade-off between
estimation and approximation errors in a learning problem. To
formulate this representation learning task, we adopt ideas from
universal source coding to introduce a regret term that measures
the discrepancy attributed to the use of empirical log-likelihood
statistics — restricted over a partition — with respect to the
oracle sufficient statistics of an ideal test that knows the true
(two) probabilities: the oracle test against independence [36],
[42]. Using this regret analysis, we establish a novel connection
with the problem of mutual information (MI) estimation [30].
Furthermore, general conditions are derived to obtain a strongly
consistent test of independence in the strong (almost-sure and
distribution-free) sense introduced in [20].

We apply this framework in the context of tree-structured
partitions (TSP) [39], which is the main application focus of this

work. TSP algorithms were selected for the following important
reasons: Their implementation is simple, TSP have a binary
structure that can be used to address learning tasks efficiently
for a large class of optimization problems (minimum cost-tree
pruning) [43]–[45], and they have been shown to be expres-
sive (with good approximation properties) when compared with
other partition strategies in non-parametric learning and decision
tasks [37], [37]–[41], [43], [44], [46].

On the proposed test, we derive concrete connections with
results on mutual information estimation [39]. From these con-
nections, we established new design conditions to obtain a
strongly consistent test of independence and, more importantly,
non-asymptotic results that express our framework’s capacity
to approximate the information term of the oracle (ideal) test
with a finite sample-size. Going a step further in this finite
length performance analysis, we study our scheme’s capacity to
detect independence structurally with the underlying data-driven
partition, which was one of the original motivations used to
explore data-driven partition for this task.

Indeed, we show that under the independence assumption,
our data-driven partition collapses to the trivial solution with
one cell (implying that the resulting MI estimator is zero) with
a finite sample-size almost surely. This is a remarkable property
attributed to our scheme’s capacity to adapt its representation
to the sufficient statistics of the problem, which is the trivial
partition in the context of independence. From this ability, we
improve our original result concerning our test’s consistency
(density-free) and provide refined sampling complexity bounds
for detecting the scenario of independence.

To implement our approach, we propose a learning algorithm
that offers a computationally efficient implementation of our
data-driven strategy for testing independence. The algorithm is
divided in two important phases (a growing and pruning stage),
which are both shown to have a polynomial complexity on
the side of the problem (the sample size). Finally, we provide
empirical evidence of the advantage of our strategy in some
controlled simulation scenarios. For this last analysis, we intro-
duce concrete non-asymptotic metrics (in the form of sampling
complexity indicators) to measure the test’s ability to detect the
correct hypothesis with a finite number of samples.

A preliminary version of this work was presented in [47]. This
work significantly expands the technical contribution in [47] and
explores implementations and experimental analyses.

A. Organization of the Paper

Section II introduces the problem and basic notations. Sec-
tion III presents the general histogram-based scheme, and Sec-
tion IV introduces the regret-based analysis proposed in this
work and its connection with the problem of MI estimation. Sec-
tion IV-B presents a general consistency result for our problem
(Theorem 1). Section V introduces the family of tree-structured
data-driven partitions and presents consistency results (Theorem
2, Lemma 2 and Corollary 1). Section VI analyzes some finite-
length properties (Theorem 2) and elaborates on the structural
capacity of our scheme to detect independence under the null
hypothesis (Lemma 3, and Theorems 3 and 4). Sections VII and
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VIII cover implementation and empirical analysis, respectively.
Finally, Section IX concludes with some discussion and future
directions. The proofs are presented in the Appendix.

II. PRELIMINARIES

Let us consider two random variables X and Y taking
values in Rp and Rq , respectively, with joint distribution P
in (Rd,B(Rd)), where d = p+ q and B(Rd) is the Borel
sigma field. Let us denote by P0 the class of probabilities in
(Rd,B(Rd)) under which (X,Y ) are independent, meaning that
if P ∈ P0, then P (A×B) = P (Rp ×B) · P (A× Rq) for any
A ∈ B(Rp) and B ∈ B(Rq).

Given n i.i.d. samples of (X,Y ), denoted by Zn
1 ≡ (Z1 ≡

(X1, Y1), Z2 ≡ (X2, Y2), .., Zn ≡ (Xn, Yn)) ∈ Rd driven by
the modelP ∈ P(Rd), the problem is to decide fromZn

1 whether
X and Y are independent (meaning that P ∈ P0) or, alterna-
tively, X and Y have some statistical dependency, i.e., P /∈ P0.
In this context, a decision rule φn(·) of length n is a function
from (Rd)n to {0, 1}, where φn(z

n
1 ) = 0 means that the rule

decides that the underlying probability producing zn1 belongs
to P0. Then, for any decision rule φn ∈ Πn

1 of length n, we
recognize two errors:
� Assuming that P ∈ P0 (H0), the non-detection of inde-

pendence between X and Y is measured by2

P(φn(Z
n
1 ) = 1) = Pn({zn1 : φn(z

n
1 ) = 1}),

� Assuming that P /∈ P0 (H1), the false detection of inde-
pendence between X and Y is measured by

P(φn(Z
n
1 ) = 0) = Pn({zn1 : φn(z

n
1 ) = 0}).

The following is the classical notion of strong-consistency
used to evaluate the asymptotic goodness of a universal scheme
(collection of rules of different lengths) for detecting indepen-
dence from data [20].

Definition 1: Given a scheme ξ = {φn ∈ Πn, n ≥ 1}, where
φn is a decision rule of length n, we say that ξ is strongly
consistent for detecting independence if

i) under H0: (φn(Z
n
1 ))n≥1 reaches 0 eventually with prob-

ability one, or P-almost surely (a.s.),
ii) under H1: (φn(Z

n
1 ))n≥1 reaches 1 eventually P-a.s.

A. The Divergence and Mutual Information

Let P , Q be two probability measures in (Rd,B(Rd)) such
that P � Q, and let us consider π = {Ai, i ∈ I} a measurable
partition of Rd where I is finite or countable. The divergence
of P with respect to Q restricted over π (or the sub-sigma field
induced by π denoted by σ(π)) is given by [32], [36]

Dσ(π)(P ||Q) ≡
∑
i∈I

P (Ai) log
P (Ai)

Q(Ai)
. (1)

1Πn denotes the collection of binary rules acting on Rdn.
2P denotes the entire process distribution of (Zn)n≥1 and Pn is the n-fold

probability in Rdn induced by the marginal P .

The divergence of P with respect to Q is [32], [36]

D(P ||Q) ≡ sup
π∈Q(Rd)

Dσ(π)(P ||Q) (2)

where Q(Rd) is the collection of finite measurable3 partitions
of Rd.

III. THE EMPIRICAL LOG-LIKELIHOOD STATISTICS FROM A

DATA-DRIVEN PARTITION

In this work, we adopt a histogram-based log-likelihood
statistics approach [20]. We interpret this approach as an em-
pirical version of the Neyman-Pearson (NP) test against inde-
pendence [42]. The ideal (oracle) NP test against independence
decides whether the samples belong to the following two known
cases: P (for some P /∈ P0) or Q∗(P ) ∈ P0, where Q∗(A×
B) = P (Rp ×B) · P (A× Rq) for any A ∈ B(Rp) and B ∈
B(Rq).4

The specific approach proposed in this work is a two-stage
process that uses the data Zn

1 ∼ Pn twice: first, to estimate P ,
and its projected version Q∗(P ) (over P0), with the caveat that
the estimation is restricted over the events of a finite partition of
the joint space Rd (i.e., a histogram-based estimation of P and
Q∗(P ), respectively); second, to compute an empirical version
of the log likelihood-ratio to decide (using a threshold) if P̂ =
Q̂∗ (independence) or P̂ �= Q̂∗ (non-independence).

There are two elements of learning design that determine our
empirical test. The first is a data-driven partition rule denoted
by πn(·), which is a function that maps sequences in (Rd)n

into a finite measurable partitions of Rd. The second element
is a non-negative threshold denoted by an ∈ R+. Then given a
pair (πn(·), an) and some data zn1 ∈ Rdn, the data-driven test is
constructed as follows:

1) Use the quantizationπn(z
n
1 ) = {Ai, i = 1, .., |πn(z

n
1 )|} ⊂

B(Rd) to estimate P over the cells πn(z
n
1 ):

P̂n(A) ≡
1

n

n∑
i=1

1A(zi) and (3)

Q̂∗
n(A

1 ×A2︸ ︷︷ ︸
A=

) ≡ P̂n(A
1 × Rq) · P̂n(R

p ×A2), (4)

for any A ∈ πn(z
n
1 ). In (4) we assume that the cells of πn(z

n
1 )

have a product structure, i.e., A = A1 ×A2 where A1 ∈ B(Rp)
and A2 ∈ B(Rq).5

2) Project the data zn1 over the cells of πn(z
n
1 ). A simple

projection (or representation) function is the following:

Oπn
(z) ≡

|πn(z
n
1 )|∑

j=1

j · 1Aj
(z) ∈ {1, .., |πn(z

n
1 )|} . (5)

The projected data is given and denoted by on1 ≡ (o1 =
Oπn

(z1), .., on = Oπn
(zn)).

3) Compute the log-likelihood ratio of the empirical distri-
butions in (3) and (4) using the quantized (or projected over

3B(Rd) is the sigma field of Borel sets.
4Q∗(P ) can be interpreted as the projection of P on P0 in the information

divergence sense, i.e., Q∗(P ) is the solution of minQ∈P0
D(P ||Q).

5This event-wise product structure on the cells ofπn(z
n
1 ) is needed to estimate

both P and Q∗ from i.i.d. samples of P .

Authorized licensed use limited to: Universidad de chile. Downloaded on September 01,2022 at 18:43:47 UTC from IEEE Xplore.  Restrictions apply. 



GONZALEZ et al.: DATA-DRIVEN REPRESENTATIONS FOR TESTING INDEPENDENCE: MODELING, ANALYSIS AND CONNECTION 161

σ(πn(z
n
1 ))) data on1 . In particular, we consider the following

log-likelihood ratio per sample as

îπn
(on1 ) ≡

1

n
log

P̂Oπn
(o1)P̂Oπn

(o2) · · · P̂Oπn
(on)

Q̂Oπn
(o1)Q̂Oπn

(o2) · · · Q̂Oπn
(on)

, (6)

where P̂Oπn
and Q̂∗

Oπn
denote the empirical distributions of

the quantized random variable Oπn
in its representation space

{1, .., |πn(z
n
1 )|}, meaning that by construction P̂Oπn

(j) =

P̂n(Aj) and Q̂Oπn
(j) = Q̂∗

n(Aj) for all j ∈ {1, .., |πn(z
n
1 )|}.

4) Finally, the decision is given by the following rule:

φπn,an
(on1 ) ≡

{
0 if îπn

(on1 ) < an
1 if îπn

(on1 ) ≥ an
. (7)

The second step introduced Oπn
(Z) in (5). This object cap-

tures the role played by the data-driven partition (πn) in our
log-likelihood statistics in (6).

IV. REGRET ANALYSIS: THE REPRESENTATION

LEARNING PROBLEM

To analyze the quality of the proposed test, in this section we
compare the proposed statistics in (6) with the statistics used
by an oracle NP test. We consider the data-driven partition in
the pair (πn(·), an) as a learning agent. For this analysis, let
us first fix a finite partition π = {Ai, i = 1, .., {1, .., J}}. Given
i.i.d. realizations Z1, .., Zn from P ∈ P(Rd), we consider the
empirical-quantized log-likelihood statistics in (6). Adopting
the notion of regret from universal source coding [35], let us
consider as a reference the true likelihood ratio ofP with respect
to Q∗(P ) associated with the expression in (6) but with no
quantization effects, i.e.,6

in(z1, . . ., zn) ≡
1

n
log

dP

dQ∗ (z1) ·
dP

dQ∗ (z2) · · ·
dP

dQ∗ (zn). (8)

in(z1, . . ., zn) is the ideal (oracle) information term used by the
NP test against independence [35]. We measure the (sample-
wise) regret of π as

in(z1, . . ., zn)− îπ(Oπ(z1), . . .., Oπ(zn)), (9)

which measures the discrepancy between the empirical-
quantized statistics in (6) and the oracle term in (8).

A. Connection With Divergence Estimation

The regret in (9) has two error sources: one associated with
the quantization of the space (the representation quality of π)
and the other associated with the fact that we use the empirical
distribution P̂n in (3) instead of the true model P . To isolate
these components, it is useful to introduce the oracle-quantized
information given by

iπ(o
n
1 ) ≡

1

n
log

n∏
i=1

POπ
(oi)

Q∗
Oπ

(oi)
with on1 ∈ {1, .., J}n , (10)

6By construction P � Q∗; therefore, the RN derivative dP
dQ∗ is well defined

in (8) where it is clear that if (log dP
dQ∗ (z))z∈Rd ∈ �1(P ), then I(X,Y ) =

EZ∼P {log dP
dQ∗ (Z))} < ∞.

where POπ
(j) = P (Aj) and Q∗

Oπ
(j) = Q∗(Aj) for all j ∈

{1, .., J} are short-hand for the true probabilities induced by
Oπ(·), P and Q∗ in {1, .., J}. Then, the regret in (9) can be
decomposed in two components:

in(z1, . . ., zn)− îπ(Oπ(z1), . . .., Oπ(zn)) =

in(z1, . . ., zn)− iπ(Oπ(z1), . . .., Oπ(zn))︸ ︷︷ ︸
I

+

iπ(Oπ(z1), . . .., Oπ(zn))− îπ(Oπ(z1), . . .., Oπ(zn))︸ ︷︷ ︸
II

. (11)

The first term (I) on the right hand side (RHS) of Eq.(11)
captures an information loss attributed to the quantization (5)
(the approximation error). This expression convergences as
n tends to infinity to D(P ||Q∗)−Dσ(π)(P ||Q∗) ≥ 0 almost
surely. The second term (II) on the RHS of (11) captures the
discrepancy in the information density attributed to the use
of empirical distributions. Crucially, these two error sources
are driven by the partition π. At this point, it is worth notic-
ing that the empirical information term can be expressed as

îπ(Oπ(z1), . . .., Oπ(zn)) =
∑

A∈π P̂n(A) log
P̂n(A)

Q̂∗
n(A)

, which is

a histogram-based estimator of the divergence restricted over the
cells of π [39], [40], [48]. From these results, the RHS of (11)
can be re-structured as follows

in(Z1, . . ., Zn)− îπ(Oπ(Z1), . . .., Oπ(Zn)) =

in(Z1, . . ., Zn)−D(P ||Q∗)︸ ︷︷ ︸
I

+D(P ||Q∗)−Dσ(π)(P ||Q∗)︸ ︷︷ ︸
II

+

Dσ(π)(P ||Q∗)−Dσ(π)(P̂n||Q̂∗
n)︸ ︷︷ ︸

III

. (12)

The first term (I) on the RHS of (12) goes to zero with prob-
ability one (by the strong law of large numbers assuming that
D(P ||Q∗) < ∞) independent ofπ. Therefore, from the perspec-
tive of evaluating the effect of π in the regret, this term can be
overlooked. On the other hand, the second term (II) captures
the approximation error, or what we lost in discrimination (as
the number of samples goes to infinity) when projecting the
data over σ(π) with respect to the lossless term in (8). Finally,
the last term (III) measures the estimation error, which is
the discrepancy between the true (oracle) distributions and the
empirical distributions in the information divergence sense over
events of σ(π) (see Eq.(1)).

1) The Representation Problem: Here we introduce the main
design problem of this work, which is to find a data-driven
partition that offers an optimal balance between the two rel-
evant terms presented in (12). For the estimation error, the
idea is to adopt distribution-free (universal) error bounds for
|Dσ(π)(P ||Q∗)−Dσ(π)(P̂ ||Q̂∗)| of the form (more details in
Section V-B):

P
(∣∣∣Dσ(π)(P ||Q∗)−Dσ(π)(P̂n||Q̂∗

n)
∣∣∣ ≤ rn(π)

)
≥ 1− δ,

where rn(π) is the confidence interval for the confidence
probability 1− δ. Equipped with this result, we could
use the following upper bound for the regret: D(P ||Q∗)
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− îπ(Oπ(z1), . . .., Oπ(zn)) ≤ [D(P ||Q∗)−Dσ(π)(P ||Q∗)] +
rn(π), with high probability. Finally, we could formulate the
problem of selecting π over a family of representations Π
(subset of Q(Rd)) as the solution of the following regularized
info-max problem:

π∗
n ≡ argmax

π∈Π
Dσ(π)(P ||Q∗)− rn(π). (13)

The learning task in (13) is still intractable. It resembles an
oracle learner agent (teacher) that selects π in Π solving the
trade-off between the two errors, one of which needs the true
model P . Section V addresses a tractable info-max version of
(13), where instead of P the empirical distribution P̂ in (3) is
adopted.

B. Strong Consistency: A Basic Requirement

In this subsection, we introduce the idea of measuring the
discrepancy between îπn

(Oπn
(z1), . . .., Oπn

(zn)) and the ideal
(oracle) information in(z1, . . ., zn). From this perspective, we
could introduce a new notion of consistency based on this
learning objective.

Definition 2: Our scheme {(πn, an), n ≥ 1} is said to be
strongly consistent on the regret if for any P ∈ P(Rd) and i.i.d.
process (Zn)n≥1 with Zi ∼ P , it follows that

lim
n→∞

∣∣∣in(Z1, . . ., Zn)− îπn
(Oπn

(Z1), . . .., Oπn
(Zn))

∣∣∣ = 0,

P-almost surely (a.s.).
A simple result follows:
Proposition 1: If {(πn, an), n ≥ 1} is strongly consistent

on the regret, then îπn
(Oπn

(Z1), . . .., Oπn
(Zn)) is a strongly

consistent estimator of the MI between X and Y .7

Returning to our original problem, the next result offers
sufficient conditions for a data-driven scheme {(πn, an)n ≥ 1}
to be strongly consistent for detecting independence (Def. 1).

Theorem 1: Let {(πn, an), n ≥ 1} be the data-driven scheme
of Section III.

i) If (an)n is o(1),
ii) {πn, n ≥ 1} is strongly consistent on the regret (Def. 2),

iii) under H0, (̂iπn
(Oπn

(Z1), . . .., Oπn
(Zn)))n≥1 is o(an)

in the sense that limn→∞
îπn (Oπn (Z1),....,Oπn (Zn))

an
= 0

P-a.s.,
then (φπn,an

(Oπn
(·)))n≥1 in (7) is strongly consistent for de-

tecting independence (Def. 1).
The proof is presented in Appendix A.
Consistency is a basic asymptotic requirement that is non-

sufficient when looking into practical applications that operate
with a finite sample size. Hence, in the next sections, we present
a test that is strongly consistent (Th. 3) but also satisfies some
relevant non-asymptotic properties in the form of finite-length
performance results (Ths. 2, 4 and Lemma 3).

7From Definition 2, it follows directly that
limn→∞ îπn (Oπn (Z1), ...., Oπn (Zn)) = D(P ||Q∗) = I(X,Y ), P-almost
surely.

V. TREE-STRUCTURED DATA-DRIVEN PARTITIONS

In this section, an empirical version of (13) is studied consid-
ering for Π a dictionary of tree-structured data-driven partitions
(TSP). This TSP family was introduced in [39] for the problem
of MI estimation. The focus of this section is to demonstrate its
potential for the problem of testing independence.

A. The Collection of Partitions

The construction of this family begins by defining a “root”
node to index the trivial partition Aroot ≡ {Rd}. The process
continues by selecting a coordinate in{1, .., d} to project the data
(1D projection), then order the projected data (scalar values),
select the median of the ordered sequence, and finally create
a statistically equivalent partition of Aroot using the selected
coordinate axis and the median to split the cell. Two new cells
are created from Aroot with almost half the sample points in
each (exactly half when n is an even integer).

These new cells are indexed as the left and right children of
the “root” denoted by (l(root), r(root)); i.e., the new cells are
Al(root) and Ar(root) where Aroot = Al(root) ∪Ar(root). The
process continues by selecting a new coordinate in {1, .., d},
where the statistically equivalent binary splitting criterion is
iterated inAl(root) andAr(root) until a stopping condition is met.
The stopping criterion adopted here imposed a minimum empiri-
cal probability in each created cell that we denote by bn ∈ (0, 1).
Therefore, at the end of this growing binary process, a col-
lection of nodes is produced I ≡ {root, l(root), r(root), . . .}
associated with a binary tree (by construction) and the nodes’
respective cells {Av, v ∈ I}where P̂n(Av) ≥ bn for any v ∈ I.

Using the Breiman et al. [43] convention, a binary tree T is
a collection of nodes in I: one node of degree 2 (the “root”),
and the remaining nodes of degree 3 (internal nodes) or degree
1 (leaf or terminal nodes) [43]. In this convention, the full-tree
is denoted and given by T full

bn
≡ I. Importantly, if T̃ ⊂ T full

bn

and T̃ is a binary tree by itself, then we say that T̃ is a subtree
of T full

bn
. Moreover, if both have the same root, we say that T̃

is a pruned version of T full
bn

, and we denote this by T̃ � T full
bn

.
Finally, if we denote by L(T ) the leaf nodes of an arbitrary tree
T � T full

bn
, it is simple to verify that πT ≡ {Av, v ∈ L(T )} is

a data-driven partition of Rd indexed by T where every cell in
πT has the desired product structure in (4) [39].8

B. Regularized (Empirical) Information Maximization

To address the info-max design objective in (13) using our
(data-driven) tree-indexed family Πn ≡ {πT : T � T full

bn
}, we

have to first find an expression for rn(π) in (13) for anyπT ∈ Πn.
The next result offers the following:

Lemma 1: (Silva et al.[39, Th. 1]) Let Gk
bn

≡ {T � T full
bn

:
|T | = k} be the family of pruned TSPs of size k. Then, ∀k ∈
{1, .., |T full

bn
|}, ∀n > 0, and any small δ ∈ (0, 1), there is a

8The interested reader is referenced to [39] for a systematic explanation of
this TSP construction.
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threshold εc(·) where

P

(
sup

T∈Gk
bn

∣∣∣Dσ(πT )(P ||Q∗)−Dσ(πT )(P̂n||Q̂∗
n)
∣∣∣ ≤ εc(·)

)
≥

1− δ, (14)

where specifically εc(n, bn, d, δ, k) =

24
√
2

bn
√
n

√
ln(8/δ) + k [(d+ 1) ln(2) + d ln(n)]. (15)

Importantly the bound in (14) is distribution-free [39], and a
function of bn and k (the size of the family Gk

bn
). From this

distribution-free concentration result, the union bound tells us
that the following events in Rdn{

sup
T∈Gk

bn

∣∣∣Dσ(πT )(P ||Q∗)−Dσ(πT )(P̂n||Q̂∗
n)
∣∣∣ ≤ rbn,δ(k)

}
,

(16)

with rbn,δ(k) ≡ εc(n, bn, d, δ · bn, k), happen simultaneously
for any k = 1, .., |T full

bn
| with probability at least 1− δ (with

respect to P). Equipped with these penalizations, i.e., rbn,δ(|T |)
in (16) for any T � T full

bn
, the empirical version of the info-max

problem in (13) is

T̂bn,δn ≡ arg max
T�T full

bn

Dσ(πT )(P̂n||Q̂∗
n)− rbn,δn(|T |). (17)

Finally, it is important to note that both (bn)n≥1 and (δn)n≥1

determine the trees (T̂bn,δn)n≥1 and TS partitions that we denote
here by (πbn,δn)n≥1. In addition, if we include the thresholds
(an)n≥1, we denote by (φbn,δn,an

(·))n≥1 the rules induced by
(πbn,δn)n≥1 and (an)n≥1 in (7).

C. Consistency: A Preliminary Analysis

The following results show that the TSP scheme in (17) is
strongly consistent on the regret (Def. 2).

Lemma 2: Let us assume that P has a density9 in Rd.
i) Under the conditions that (bn) ≈ (n−l) for l ∈ (0, 1/3),

(δn) is o(1) and (1/δn) is O(en
1/3

), we have that

lim
n→∞

∣∣∣in(Z1, . . ., Zn)− îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn))

∣∣∣
= 0, P-a.s.. (18)

ii) Assuming that X and Y are independent (H0), if we select
(1/δn)n ≈ (en

1/3
), it follows that for any p > 0

(̂iπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn)))n≥1 is o(n−p),P-a.s..

(19)

The proof is presented in Appendix B.
In addition to achieve consistency on the regret, stated

in part i), the part ii) of this result shows that under H0

the regret achieves a super polynomial velocity of conver-
gence to zero: note that in(Z1, . . ., Zn) = 0 with probabil-
ity one under H0. Therefore, the empirical information rate

9P is absolutely continuous with respect to the Lebesgue measure in
(Rd,B(Rd)).

îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn)) tends to zero faster

than any polynomial order in n with probability one, which is a
remarkable capacity to detect this condition from data. In light
of Theorem 1, we could have a range of admissible vanishing
thresholds (an)n≥1 where strong consistency for detecting inde-
pendence can be achieved (Def. 1). This is stated in the following
result.

Corollary 1: Let us assume the setting and conditions on
(bn)n≥1 and (δn)n≥1 stated in Lemma 2 part ii) for the TSP
scheme. If (an)n≥1 is O(n−q) for some arbitrary q > 0, then
the TSP scheme {φbn,δn,an

, n ≥ 1} is strongly consistent for
detecting independence (Def. 1).

Proof: The proof derives directly from Theorem 1 and the
two results obtained in Lemma 2. �

VI. MAIN FINITE-LENGTH RESULTS

In this section, we focus on finite-length (non-asymptotic)
results. We establish conditions where the solution of (17) nearly
matches the performance of its equivalent oracle version in (13)
with high probability. This non-asymptotic result is instrumental
to show later one of the main findings of our work: the capacity
of our scheme to detect H0 with the structure of the partition.

Theorem 2: Under the conditions that (bn) ≈ (n−l) for l ∈
(0, 1/3), (δn) is o(1) and (1/δn) is O(en

1/3
), we have that

i) under H0: for any ε > 0 there is N(ε) > 0 such that ∀n ≥
N(ε), the equality

îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn))= in(Z1, . . ., Zn)︸ ︷︷ ︸

zero regret regime

=0,

(20)

holds with P-probability 1− ε.
ii) underH1: for any ε > 0 there isN(ε) such that ∀n ≥ N(ε)

the bound

in(Z1, . . ., Zn)− îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn))

≤ in(Z1, . . ., Zn)− I(X,Y )+

min
T�T full

bn

[
D(P ||Q∗(P ))−Dσ(πT )(P ||Q∗(P ))

]
+2rbn,δn(|T |).

(21)

holds with P-probability 1− ε.
The proof of this result is presented in Appendix C.
This result presents two optimality bounds for the informa-

tion term of the TSP scheme under the two main hypotheses
(H0 and H1) of our problem. Under H0, our regularization
approach is capable of detecting this structure (with an arbitrary
high probability 1− ε) in the sense that T̂bn,δn in (17) reduces
to the trivial partition {Rd}. From this, we obtain the zero
regret condition îπbn,δn

(Oπbn,δn
(Z1), . . .., Oπbn,δn

(Zn)) =

in(Z1, . . ., Zn). This means that the solution of T̂bn,δn by itself
(with no threshold) is capable of detecting independence.

On the other hand, under H1, we notice that it is only
relevant to bound the under-estimation of in(Z1, . . ., Zn)
with the empirical (log-likelihood ratio) information
îπbn,δn

(Oπbn,δn
(Z1), . . .., Oπbn,δn

(Zn)). Limiting the analysis
only to the underestimation of in(Z1, . . ., Zn) can be
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argued from the well-known observation that quantization
(on average) provides a bias (under-estimation) estimation
of E(in(Z1, . . ., Zn)) = I(X;Y ). More importantly for
our problem, an overestimation of the oracle information
in(Z1, . . ., Zn) does not increase the type 2 error when using
îπbn,δn

(Oπbn,δn
(Z1), . . .., Oπbn,δn

(Zn)) instead of the oracle
in(Z1, . . ., Zn) under H1.

In summary, Theorem 2 indicates that with an arbitrary high
probability, the empirical TSP solution of (17) achieves the
performance of the oracle solution that optimizes the upper
bound on the regret derived in Eq.(13) over the TSP family
{πT , T � T full

bn
}.

Remark 1: In the proof of Theorem 2, we determine a set
En
δn,bn

(see Eq.(39)) where if zn1 ∈ En
δn,bn

then (20) holds un-
der H0 and (21) holds under H1. Importantly, we obtain that
P(En

δn,bn
) ≥ 1− δn from Lemma 1. Therefore, in Theorem 2,

N(ε) is fully determined by (δn)n≥1 for any ε > 0. Indeed,
N(ε) = inf{n ≥ 1, st. δn < ε}, which is well-defined since
(δn) is o(1). In particular, for the case (1/δn) being O(en

1/3
),

it follows that N(ε) is O(ln(1/ε)3).

A. Detecting Independence With the Structure of T̂bn,δn

From (20), our data-driven partition has the capacity to detect
independence (underH0) in a stronger structural way: (with high
probability) the data-driven partition collapses to the trivial cell,
i.e., πbn,δn = {Rd}, with a finite sample size. Here, we improve
this result by showing that the condition πbn,δn = {Rd} happens
within a finite sample size almost surely.

Let us introduce the (random) time at which the partition
process (πbn,δn)n≥1 collapses to the trivial set Aroot = {Rd}:

Definition 3: T0((Zn)n≥1) ≡

sup
{
m ≥ 1 :

∣∣∣T̂bm,δm

∣∣∣ > 1
}
∈ N∗ ≡ N ∪ {∞} . (22)

If T0((Zn)n≥1) = k, it means that |T̂bn,δn | = 1 ⇔ πbn,δn =
{Rd} for any n > k. Therefore, if T0((Zn)n≥1) ∈ N, this
value is expressing the last time the data-driven partition
is different from the trivial solution {Rd}. On the other
hand, if T0((Zn)n≥1) = ∞, this condition means that non-
trivial partitions are observed infinitely often (i.o.) in the
sequence (πbn,δn(Z

n))n≥1. In general, we could have that
P(T0((Zn)n≥1) = ∞) > 0 underH0, which does not contradict
the capacity that (φbn,δn,an

(·))n≥1 has for detecting indepen-
dence consistently under H0 (see Corollary 1).

The following result shows that T0((Zn)n≥1) is finite with
probability one under some mild conditions.

Lemma 3: Let us assume that (bn) ≈ (n−l) for l ∈ (0, 1/3)

and (δn) is 	1(N), (1/δn) isO(en
1/3

). Then under the hypothesis
that P ∈ P0: P(T0((Zn)n≥1) < ∞) = 1.

The proof is presented in Appendix D.
Importantly, the condition P(T0((Zn)n≥1) < ∞) = 1 im-

plies that (φbn,δn,an
(Z1, . . .., Zn))n≥1 reaches 0 eventually with

probability one for any sequence (an)n≥1 ∈ [0, 1]N. From this
observation, we obtain the following result that improves the
regime of parameters where a consistent test is achieved (estab-
lished in Corollary 1).

Theorem 3: If (bn)n≥1 ≈ (n−l) for l ∈ (0, 1/3), (δn)n≥1 is
	1(N), (1/δn)n≥1 is O(en

1/3
), and (an)n≥1 is o(1), then the

scheme (φbn,δn,an
(Z1, . . .., Zn))n≥1 is strongly consistent for

detecting independence (Def. 1).
The proof is presented in Appendix E.
Finally, if we focus on the admissible solution where

(1/δn) ≈ (en
1/3

), we have the following refined description for
the distribution of T0((Zn)n≥1) under H0.

Theorem 4: Under the assumption of Theorem 3, let us
consider that (1/δn) ≈ (en

1/3
). Under H0, we have that

P(T0((Zn)n≥1) ≥ m) ≤ Ke−m1/3 ∼ O(e−m1/3
) for any m ≥

1 and for some universal constant K > 0.
The proof is presented in Appendix F.

B. Remarks About Theorem 4

1: If we introduce T ((Zn)n≥1, (an)n≥1) ≡

sup {m ≥ 1 : φbm,δm,am
(Z1, .., Zm)) = 1}, (23)

as the first time when the binary process
(φbn,δn,an

(Z1, .., Zn))n≥1 reaches and stays at 0, it is
simple to verify that P(T ((Zn)n≥1, (an)n≥1) ≥ m) ≤
P(T0((Zn)n≥1) ≥ m) for any (an)n (see Appendix E).
Therefore, under H0 and the assumptions of Theorem 4, we
have as a corollary that P(T ((Zn)n≥1, (an)n≥1) ≥ m) ≤
Ke−m1/3 ∼ O(e−m1/3

) for any sequence (an)n≥1 as long as
(an)n≥1 is o(1).

2: With this bound, we could determine (under H0) a lower
bound on the number of samples needed to guarantee that we
detect independence structurally, i.e., reaching πbn,δn = {Rd},
and also with our schemes (φbn,δn,an

(·))n≥1 with a confidence
probability 1− ε. This critical number of samples is achieved for
m(ε) such that Ke−m(ε)1/3 < ε and Ke−(m(ε)−1)1/3 ≥ ε. This
number scales like (m(ε))ε ≈ (ln(K/ε))3 ∼ O(ln(1/ε)3).

VII. IMPLEMENTATION

A. The Learning Algorithm

Let us briefly revisit the stages presented in Section V for the
construction of our TSP scheme. Beginning with the partition,
there are two phases: growing and pruning. In the growing phase,
presented in Section V-A, we have a collection of tree-indexed
partitions {πT , T � T full

bn
} where πT = {Av, v ∈ L(T )} and

by construction P̂n(Av) ≥ bn = w · n−l for any v ∈ T . Here,
we added a scalar parameter w > 0 as a relevant design element
for our numerical analysis. In the pruning phase, we implement
the following complexity-regularized information maximiza-
tion:

T̂bn,δn(α) ≡ arg max
T�T full

bn

Dσ(πT )(P̂n||Q̂∗
n)− α · rbn,δn(|T |),

(24)

where we included a regularized parameter α ∈ R+.
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B. Computational Cost

To analize the cost of implementing (24), we analyze the cost
of each of its two phases individually.

Growing Phase: During the growing stage (see Section V-A),
we obtain a collection of tree-indexed partitions {πT , T �
T full
bn

}, where πT = {Av, v ∈ L(T )}. The full tree T full
bn

is ob-
tained after a series of statistically equivalent binary partitions.
The computational cost of the growing phase depends on the
number of sub-partitions (or binary splittings) needed to obtain
the full tree (which depends on the number of cells), and the
cost of sorting the projected data of each cell and selecting the
median of the ordered sequence to partition the cell. The number
of cells in the full tree |πT full

bn

| can be estimated considering that

our design criterion states that P̂n(Av) ≥ bn = w · n−l for any
v ∈ T , where w ∈ R+ and l ∈ (0, 1/3) are design parameters
of our method. Then, we should have at least bn · n samples
per cell. Therefore, the number of cells associated with T full

bn
is

bounded by ∣∣∣πT full
bn

∣∣∣ ≤ n

bn · n =
1

bn
≈ nl (25)

On the other hand, the cost of sorting the projected data of each
cell depends on the number of data points to be ordered. In partic-
ular, if a cell has m points, then the sorting cost is O(m log(m))
[49]. As we reach deeper levels in the tree, the number of points
per cell reduces. If we consider a level of depth k (where k = 1

corresponds to the root and k =
⌈
log(|πT full

bn

|)
⌉
≈ �log(nl)�

corresponds to the full tree), there are 2k−1 cells and each
cell contains roughly n/2k points. Therefore, the order of the
total number of operations during the growing phase can be
approximated to

O

⎛
⎝�log(nl)�∑

k=1

2k−1 · n

2k−1
log
( n

2k−1

)⎞⎠ = O
(
n log2(n)

)
Pruning Phase: The main regularized info-max problem in

Eq. (24) is solved in this stage. The first term Dσ(πT )(P̂n||Q̂∗
n)

is additive (in the sense presented in [45]), whereas the penalty
rbn,δn(|T |) scales like O(

√
|T |), and, therefore, it is a sub-

additive function of the size of the tree. In this scenario, Scott [45,
Th. 1] showed that the family of minimum cost trees {Ri}mi=1:

Ri ≡ arg max
T�T full

bn

|T |=m−i+1

Dσ(πT )(P̂n||Q̂∗
n) , i ∈ {1 . . .m} (26)

is embedded, i.e.,R1 = T full
bn

� R2 � . . . � Rm = {Aroot}.
Furthermore, [45, Th. 2] states that the solution of our prob-
lem in (24) corresponds to one of these embedded trees: i.e.,
for any α > 0, ∃i ∈ {1 . . .m} such that T̂bn,δn(α) = Ri. This
embedded property allows computationally efficient algorithms
to be designed. Indeed, Scott [45] presented two algorithms to
solve (24) with a worst case cost of O(|T full

bn
|2). In our case

we have that |T full
bn

| ≤ 1/bn, then the pruning stage in (24)
has a computational cost of O(n2/3), which is a polynomial
(sub-linear) function of n. The pseudo code of this stage is
presented in Algorithm 1.

In summary, the construction of our partition (growing and
pruning) has a computational cost that is O(n log2(n)) on the
sample size n.

VIII. EMPIRICAL ANALYSIS

In this section, we present some controlled synthetic scenarios
to evaluate the performance of our method. We begin analyzing
how the selection of parameters affects the capacity of our
scheme to estimate MI. From these results and insights, we
analyze the performance of the solutions {T̂bn,δn(α), α ≥ 0}
for testing independence. For the rest of this section, πα

bn,δn
(·)

denotes the TS partition, îαbn,δn(·) denotes the MI estimator, and
φα
bn,δn,an

(·) denotes the final test.

A. Testing Independence: Non-Asymptotic Empirical Analysis

We analyze the problem of testing independence with our
data-driven test φα

bn,δn,an
(·) in (7). Here we focus on the non-

asymptotic capacity of our framework to detect the two hypothe-
ses. For this, we propose the following detection times:10

T̃0((Zn)n≥1) ≡ sup
{
m ≥ 1 : φα

bm,δm,am
(Z1, .., Zm) = 1

}
,

(27)

T̃1((Zn)n≥1) ≡ sup
{
m ≥ 1 : φα

bm,δm,am
(Z1, .., Zm) = 0

}
.

(28)

T̃0((Zn)n≥1) and T̃1((Zn)n≥1) are random variables (rvs.) in
N∗ = N ∪ {∞} determining when our test reaches 0 and 1,
respectively. Indeed, Theorem 3 (under specific conditions) tells
us that underH0, P(T̃0((Zn)n≥1) < ∞) = 1 and that underH1,

10To simplify the notation, the dependency of T̃0((Zn)n≥1) and
T̃1((Zn)n≥1) on (bm), (δm), (am) and the scalar parameters w, α introduced
in Section VII-A will be considered implicit.
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Fig. 1. Illustration of the trade-off between M0(ε = 0.05) and Mσ
1 (ε = 0.05), presented in Eqs. (29) and (30), for different parameters of our TSP approach.

Each curve is associated with fixed values of l and w and is produced using different values of α. Three scenarios of correlation (under H1) are σ = E(XY ) ∈
{0.3, 0.5, 0.7}. For the graph in the first row w = 0.05, whereas l = 0.167 in the graph depicted in the second row.

P(T̃1((Zn)n≥1) < ∞) = 1. However, we are interested in the
complete distribution of the rvs. T̃0((Zn)n≥1) and T̃1((Zn)n≥1)
under H0 and H1, respectively. In particular, we are interested
in evaluating the pmf of T̃i(·), i.e., (P(T̃i((Zn)n≥1) = k))k≥1

under Hi (with i ∈ {0, 1}). Looking at these distributions, for
any ε > 0 we can define

M0(ε) ≡ min
{
m ≥ 1, P(T̃0((Zn)n≥1) ≤ m) ≥ 1− ε

}
(29)

M1(ε) ≡ min
{
m ≥ 1, P(T̃1((Zn)n≥1) ≤ m) ≥ 1− ε

}
(30)

M0(ε) (and M1(ε)) indicates how many observations (sampling
complexity) are needed to detect independence (and statistical
dependency) with a confidence probability 1− ε under H0 (and
H1). In the context of our solution, for a given TSP scheme
(function of the parameters l, w, α and the sequence (an)), we
will look at the trade-off expressed in the pair (M0(ε),M1(ε))
of induced tests when varying key parameters of our method.

1) Simulation Setting: We consider a joint vector Z =
(X,Y ) following a zero-mean Gaussian distribution in R2 where
the correlation coefficient determining I(X,Y ) is parametrized
by σ = E(XY ). Concerning the alternative hypothesis (H1),
we consider different levels of MI indexed by σ = E(XY ) ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. We use 1,000 iid realizations of (X,Y )
under the different scenarios (H0 and Hσ

1 ) to run our test with
these iid samples. By doing so, we obtain 1,000 realizations
of the rvs. T̃0((Zn)n≥1) and T̃1((Zn)n≥1) and with those re-
alizations we obtain an empirical estimation of their pmfs. and

empirical estimations ofM0(ε) andMσ
1 (ε) (indexed by the value

σ), respectively.11

2) Parameter Selection for φα
bn,δn,an

(·): To evaluate the
sensitivity of our TSP scheme, we consider the following
fixed sequences (an) = (0.5 · n−1) and (δn) = (e−n1/3

) in
the admissible regime established in Theorem 3.12 Consid-
ering (bn) = (w · n−l) (parametrized by w and l) and α
(used to solve T̂bn,δn(α) in Eq.(24)), we consider a prelim-
inary analysis on MI estimation to select a range of reason-
able values (in Supplemental Material–Section I). In particu-
lar, we consider l ∈ {0.001, 0.125, 0.167, 0.25, 0.3} and w ∈
{0.005, 0.01, 0.05, 0.1, 0.2}. We proceed as follows: given fixed
parameters l and w, we explore values of α in [0, 4 · 10−4) to
express the trade-off between M0(ε) and Mσ

1 (ε) under different
data scenarios: σ ∈ {0.3, 0.5, 0.7}.

3) Results: Fig. 1 shows the curves expressing the trade-off
between M0(ε) and Mσ

1 (ε) for different parameter configura-
tions of our method in the range for l and w mentioned above
and for ε = 0.05. In general, we notice that the effect of these two
parameters is relevant in the trade-off expressed in the curves.
Both w and l determine the growing phase (i.e., the creation
of the full tree) and also the pruning phase (regularization in
Eq.(24)) because rbn,δn(|T |) is also a function of bn. Therefore,

11By the law of large numbers, the estimators of M0(ε) and Mσ
1 (ε) are

strongly consistent. 1000 samples shown to be sufficient for the purpose of the
analysis.

12(an)n≥1 needs to be o(1) and (δn) needs to be �1(N). Other configurations
for (an) and (δn) can be explored within the admissible range declared in
Theorem 3.
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Fig. 2. Empirical estimation of the probability mass functions of T̃0((Zn)n≥1) in Eq.(27) and T̃1((Zn)n≥1) in Eq.(28). Four scenarios of the regularization
parameter α are considered to illustrate its effects in the distribution of T̃0((Zn)n≥1) and T̃1((Zn)n≥1). For each case, the values of M0(ε) and Mσ

1 (ε) are also
illustrated (vertical lines) considering ε = 0.05 and σ = 0.3.

the effects of (bn)n≥1 on the results are not easy to express
theoretically.

Describing the curves, we could say in general that a bigger
value of w within the explored range reduces the full tree’s size
in the growing phase. This effect is expressed in a better trade-off
of the pair (M0(ε), Mσ

1 (ε)) in the regime where M0(ε) ≤ 102,
at the expense of a worse trade-off of (M0(ε), Mσ

1 (ε)) when
M0(ε) ≥ 103. A similar general effect in the trade-off (M0(ε),
Mσ

1 (ε)) is produced when decreasing the value of l within the
explored range. Our family of solutions offers a collection of
different trade-offs between M0(ε) and Mσ

1 (ε) by exploring
different values of α ∈ [0, 4 · 10−4) in our solution. Therefore,
the selection of the best parameters should be a function of the
regime of sample size we want to consider for the detection
of H0. For the final comparison with alternative approaches,
we decided to consider one of the curves with a less promi-
nent decreasing transition in Fig. 1 (obtained for w = 0.1 and
l = 0.001).

Fig. 2 illustrates the estimated (empirical) pmfs of
T̃0((Zn)n≥1) and T̃1((Zn)n≥1) under σ = 0 (H0) and σ =
0.3 (H1), respectively. These histograms illustrate how the
distributions are affected by the regularization parameter α
and, with that, the trade-off in M0(ε) and Mσ

1 (ε) observed in
Fig. 1. Specifically, a small value of α concentrates the distri-
bution of T0((Zn)n≥1) in a high number of observations, while
T1((Zn)n≥1) concentrates on a lower number of observations.
This leads to a high value of M0(ε) and a low value of Mσ

1 (ε)
for that specific α. The opposite holds for higher values of α.

Finally, we compared our TSP scheme in terms of
the trade-off in (M0(ε),M

σ
1 (ε)) with ε = 0.05 and σ ∈

{0.1, 0.3, 0.5, 0.7, 0.9} (for H1) exploring three strategies pre-
sented in the literature [20]: the L1 test, the log-likelihood test,
and the Pearson-χ2 test. Each trade-off curve is generated by
multiplying a well-selected range of values C ∈ R to the corre-
sponding threshold for the independence detection [20]. For the
parameters of the alternative tests, we consider regimes where
these tests are strongly consistent13. Within that, we selected

13We consider the number of partitions per dimension as m(n) = np with
p ∈ (0, 0.5), which satisfies the strong-consistency conditions of theL1 and the
log-likelihood tests established in [20]. Although there is no explicit proof of
Pearson-χ2 test strong-consistency, we use a regime of values for p ∈ (0, 1/3)
according to the range suggested in [20].

parameters that offer a smooth transition between their sampling
complexity pairs’ trade-off as we did to select the parameters of
our method.

Fig. 3 presents these curves for our method and the alternative
approaches. These curves express the trade-off between the
ability to detect independence and non-product probabilistic
structure (H0 and H1) from data. In general, we could say that
our method shows better results in almost all explored scenarios
(σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) where the TSP trade-off curves
dominate the others. There is one exception to this general trend
in the regime of M0(ε) < 102 for lower values of correlation
for H1. However, in all the other regimes, our method performs
better than the alternatives. In particular, it performs better
than its closest relative, which is the log-likelihood test that
uses non-adaptive partitions [20]. Interestingly, our method’s
performance improvements increase with the magnitude of σ
(for H1). This shows that our approach’s advantage is more
prominent when the alternative scenario has a higher level of
mutual information.

B. Multidimensional Analysis

We conclude this analysis by evaluating our method in higher
dimensions. As in the previous analysis d = 2, we need to select
the parameters w and l of our scheme. In this multi-dimensional
context, we select a value of l that offers a smooth trade-off
curve according to the experimental results in Fig. 1. However,
as w has a stronger impact on the resulting number of partitions,
rather than choosing it individually for every dimension d, we
propose w = Cp·d as a heuristic rule for selecting w according
to d, where C > 0 and p > 0.

This rule and its parameters were designed on the principle
that every dimension of the joint space Rd should be explored at
least once in the growing phase. This criterion ensures that our
data-driven scheme explores every coordinate of Rd in the pur-
suit of detecting relevant statistical dependencies under H1. For
a dimension d > 0, the full tree needs to have at least 2d leaves
(cells). For this, a basic condition is that bn is lower bounded
by 1/n (our stopping criterion requires at least one sample per
cell), which implies that to explore all the d dimensions we
need at least 2d i.i.d. samples to meet this requirement. Then
assuming the non-trivial regime n ≥ 2d, we selected C and p in
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Fig. 3. Illustration of the trade-off between M0(ε) and Mσ
1 (ε) obtained for our TSP test, the L1-test, the log-likelihood test, and the χ2-test. The TSP test

parameter configuration is l = 0.001 and w = 0.1, with α ∈ [0.00001, 0.0005]. The L1 test parameter configuration is m(n) = n0.2, with C ∈ [0.7, 1.46].
The log-likelihood test parameter configuration is m(n) = n0.2, with C ∈ [0.05, 0.3]. The Pearson-χ2 test parameter configuration is m(n) = n0.25, with
C ∈ [0.005, 0.185]. Five scenarios of correlation are presented for H1 considering σ = E(XY ) ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Fig. 4. Number of partitions generated for the full tree of the TSP under l = 0.001 as a function of the dimensionality d of the joint space of the random variables
for n ∈ {103, 104, 105} number of samples and two heuristic rules for the parameter w. Left: w = 0.1d/2. Right: w = 0.225d/2. Diagonal line determines the
minimum number of partitions that allow each dimension of the joint space to be partitioned at least once.

our rule with the objective that |T full
bn

| ≥ 2d is met independent
of the value of d (as long as n ≥ 2d). This happens if w becomes
smaller when d increases, which happens in our rule for C < 1
and p > 0.

Fig. 4 shows the number of cells of the full-tree, namely
|T full

bn
|, for two settings: w = 0.1d/2 (C = 0.1 and p = 1/2)

in the left panel, and w = 0.225d/2 (C = 0.225 and p = 1/2) in
the right panel. The curves are shown across d for three scenarios
of sample-size n = 103, n = 104 and n = 105. We also include
the curve 2d (dashed line) to indicate the critical lower bound.
Both settings satisfy the proposed criterion of partitioning each
dimension at least once (points above the diagonal) in the whole
regime whenn ≥ 2d. The horizontal line shows the points where
the number of partitions generated by our method is equal

to the number of samples (which happens when bn = 1/n).
Interestingly, when d approaches the critical condition 2d = n,
our full tree meets a scenario where every cell has one sample.
Of the two settings, the selection on the right panel is more
conservative, and it is the one we will use for the rest of this
analysis. This selection partitions each dimension just above the
minimum requirement (for the values of d where n ≥ 2d) and
achieves the critical condition n = 2d as d increases.

Using this rule w = 0.225d/2 and l = 0.001, we consider
a zero-mean joint Gaussian vector (X,Y ) in Rd, where X =
(X1, .., Xp) and Y = (Y1, .., Yq) and, under H1, a diagonal co-
variance of the form cov(Xi, Yj) = δijσ(d)

2 (with δij the Kro-
necker’s delta). For these results, we consider n = 104 i.i.d sam-
ples meeting the condition that n ≥ 2d for d ∈ {4, 6, 8, 10, 12}.
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Fig. 5. Illustration of the trade-off between M0(ε) and Mσ
1 (ε) obtained for the TSP test using samples from a multidimensional Gaussian distribution with

component-wise correlation cov(Xi, Yj) = δijσ(d), where σ(d) is selected to preserve the mutual information between the variables along the dimensions
p = q ∈ {2, 3, 4, 5, 6}of each random variable under l = 0.001 andw = 0.225d/2 withd = p+ q. Three scenarios of mutual information are explored I(X;Y ) ∈
{0.06803, 0.20752, 0.48572}, which correspond to the theoretical mutual information obtained in the univariate Gaussian case p = q = 1withE(XY ) = σ, σ ∈
{0.3, 0.5, 0.7}, respectively.

For the alternative, we consider σ ∈ {0.3, 0.5, 0.7} for d = 2
(p = q = 1), and we choose the values of σ(d) for d ≥ 4 such
that the mutual information betweenX and Y is the same as that
obtained for d = 2 with σ ∈ {0.3, 0.5, 0.7}. Therefore, for the
alternative, we create three scenarios of constant MI I(X;Y ) ∈
{0.06803, 0.20752, 0.48572} across dimensions. This experi-
mental design allows us to isolate the effect of dimensionality
from the discrimination of the underlying task, which is known
to be proportional to the value of MI under H1 [32], [35], [36].

Fig. 5 presents the trade-off between (M0(ε),M
σ
1 (ε)) for the

following values of σ(d) (under H1) and for different dimen-
sions d ∈ {4, 6, 8, 10, 12}. First, we confirm that our scheme de-
tects both hypotheses with a finite sample size as our theoretical
results predict. Here, we observe that by increasing the dimen-
sions of the problem the curves (M0(ε),M

σ
1 (ε)) show sharper

transitions (beyond a critical value for M0(ε)) and overall the
problems become (in general) more difficult: for a given value
of M0(ε), its respective Mσ

1 (ε) increases with the dimension
d = p+ q. In other words, for a relatively good capacity to
detect independence (when M0(ε) ≤ 103), it is more challeng-
ing for our test to detect the alternative as d is higher. This
performance trend could be attributed to the observation that in
higher dimensions it is more challenging for a non-parametric
framework to detect salient features under the alternative H1

and, consequently, more observations (evidence) are required to
correctly detect the alternative with probability 1− ε. On the
other hand, if we fix a dimension, let us say d = p+ q = 8, the
higher the MI the better the trade-off between ((M0(ε),M

σ
1 (ε))),

which is a trend consistent with our observation that MI is
an indicator of the task discrimination, and consequently, the
performance of our scheme is sensitive to the level of MI under
the alternative.

IX. SUMMARY AND FINAL DISCUSSION

We present a novel framework to address the problem of
universal testing of independence using data-driven represen-
tations. Consistency and finite length (non-asymptotic) results
express our solution’s capacity to adapt its representations to
the problem’s sufficient statistics. This capacity is particularly

evident under the hypothesis of independence. Precise results
show that our scheme detects this scenario – collapsing to the
trivial partition with one cell for representing the joint space –
with a finite sample size. On the experimental side, our solution
offers a computationally efficient implementation.

In a controlled experimental setting, we show that our
scheme offers a clear advantage compared with alternative
non-parametric solutions that do not adapt their representations
to the data. These results confirm the critical role that data-
driven partitions could play in implementing a universal test
of independence. Further analysis is needed to fully uncover
this method’s potential for machine learning (ML) problems
and other applications. We anticipate that ML algorithms could
benefit from both the representations obtained from our solutions
(as an approximator of sufficient statistics) and our solution’s
capacity to detect independence with a finite number of samples.

A. Limitations and Future Work

Our distribution-free results in Section VI provide a range of
admissible parameters for our test; however, they do not provide
a criterion for selecting them in a specific problem setting. To ad-
dress this last practical aspect, we select a set of parameters from
empirical observations and some basic heuristic rules. Then, it
is an open research avenue to fully study conditions that would
make a selection of optimal parameters (or nearly optimal) for
our test under some specific conditions. Along these lines, it
is relevant to further investigate specific classes of models, and
based on this model assumption find a more constrained range
of good parameters with improved finite-length performance
results. In this vein, there are interesting ideas and results worth
exploring about adaptivity that have been explored in statistical
learning [50] and universal source coding [51], [52].

B. A Recent Related Work

The authors in [34] have recently introduced a non-parametric
test with a similar oracle-base design principle. They proposed a
data-adaptive weight strategy to approximate the ideal weights
of a NP statistic. That strategy has an interesting connection
with our design approach in Section IV because they adapt
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key parameters of their method to approximate a best (oracle)
statistic. On the differences, the authors in [34] addressed the
independence test by performing a binary expansion filtration of
the observations and adapting the weights matrix of a quadratic
form. Instead, our work addresses the independence test by esti-
mating the mutual information (our statistics) through an adap-
tive tree-structured partition of the observation space. Therefore,
although both approaches share a similar learning principle, the
methods and components used to adapt them to the sample are
entirely different.

C. Statistical Significance Analysis

We want to conclude with a discussion about the statistical sig-
nificance of our test. Given our test φbn,δn,an

(·), and assuming
H0, the statistical significance is expressed by α(bn, δn, an) ≡
P({φbn,δn,an

(Z1, .., Zn) = 1}). Importantly, from the proofs of
Theorem 2 and Theorem 3, we have the following:

Proposition 2: Under the assumptions of Theorem 2 on (bn)
and (δn), for any P ∈ P0 (H0) and any an > 0, it follows that
α(bn, δn, an) ≤ δn, ∀n ≥ 1.14

This result implies that the statistical significance of our test
is fully controlled by the sequence (δn), which is one of our
design parameters. Furthermore, the proof of this result shows
that this bound is uniform over the class of models in P0. Direct
corollaries of Proposition 2 are the following:
� adding the assumptions of Theorem 3 and under H0, it

follows that limn→∞ α(bn, δn, an) = 0. Importantly, this
convergence to zero is uniform for every model in P0.
[Uniform vanishing condition on (α(bn, δn, an))n≥1]

� adding the assumptions of Theorem 4 and under H0, it
follows that for any n ≥ 1, α(bn, δn, an) ≤ δn ≈ e−n1/3

.
Therefore, we achieve an exponentially fast vanishing error
under H0. Importantly, this velocity is obtained uniformly
(distribution-free) over P ∈ P0.

These uniform bounds on the statistical significance are ob-
tained under H0. Under H1, we have from strong consistency
(Definition 1) that P({φbn,δn,an

(Z1, .., Zn) = 1}) (the power of
the test) tends to 1 as n tends to infinity.15

APPENDIX A
PROOF OF THEOREM 1

Proof: In general, first we know that if (φn(Z
n
1 ))n≥1 reaches

0 eventually with probability one, it is equivalent to saying that
the process (φn(Z

n
1 ))n≥1 does not visit the event {1} infinitely

often (i.o.). This observation reduces to verify the following

P

(
lim sup

n

{
zn1 ∈ Rdn : φn(z

n
1 ) = 1

})
≡

P

(⋂
m≥1

⋃
n≥m

{
zn1 ∈ Rdn : φn(z

n
1 ) = 1

})
= 0. (31)

14The proof is presented in the Supplementary Material.
15This argument is presented in the Supplementary Material.

Equivalently, saying that (φn(Z
n
1 ))n≥1 reaches 1 eventually

with probability one reduces to

P

(
lim sup

n

{
zn1 ∈ Rdn : φn(z

n
1 ) = 0

})
≡

P

(⋂
m≥1

⋃
n≥m

{
zn1 ∈ Rdn : φn(z

n
1 ) = 0

})
= 0. (32)

For the rest of the proof, we use On
1 , .., O

n
n to

denote Oπn
(Z1), . . .., Oπn

(Zn) and on1 , .., o
n
n to denote

Oπn
(z1), . . .., Oπn

(zn).
Under H0, we have from the third hypothesis that

îπn
(On

1 , . . .., O
n
n)/an tends to 0 with probability one, which

means that for any ε > 0

P

(⋂
m≥1

⋃
n≥m

Bπn,an
ε,n

)
= 0, (33)

where Bπn,an
ε,n ≡ {zn1 ∈ Rnd : îπn

(on1 , . . .., o
n
n) > ε · an}. Un-

der H0, let us consider the error event of φπn,an
() by

Eπn,an
n ≡

{
zn1 ∈ Rnd : φπn,an

(on1 , .., o
n
n) = 1

}
.

If zn ∈ Eπn,an
n (by definition of the rule φπn,an

(·)), it follows
that îπn

(on1 , . . .., o
n
n) ≥ an (see (7)). Then from definition of

Bπn,an
ε,n , for any ε < 1 it follows thatEπn,an

n ⊂ Bπn,an
ε,n . This im-

plies that
⋂

m≥1

⋃
n≥m Eπn,an

n ⊂
⋂

m≥1

⋃
n≥m Bπn,an

ε,n which
from (33) implies that

P

(⋂
m≥1

⋃
n≥m

Eπn,an
n

)
= 0. (34)

On the other hand, under the assumption that I(X,Y ) > 0
(H1), let us choose ε0 ∈ (0, I(X,Y )). Then, from the second
assumption (see Definition 2), it follows that îπn

(On
1 , . . .., O

n
n)

convergences to something strictly greater than ε0 with proba-
bility one. This formally means that

P

(⋂
m≥1

⋃
n≥m

{
zn1 ∈ Rnd : îπn

(on1 , . . .., o
n
n) ∈ (0, ε0)

})
= 0,

(35)
The error event of φπn,an

() under H1 in this case is

Ẽπn,an
n ≡

{
zn1 ∈ Rnd : îπn

(on1 , . . .., o
n
n) < an

}
. (36)

Finally using the condition that (an)n≥1 tends to zero with n
((an)n is o(1)), we have that

Ẽπn,an
n ⊂

{
zn1 ∈ Rnd : îπn

(on1 , . . .., o
n
n) ∈ (0, ε0)

}
(37)

eventually in n, which implies from (35) that

P

(⋂
m≥1

⋃
n≥m

Ẽπn,an
n

)
= 0. (38)

�

APPENDIX B
PROOF OF LEMMA 2

We use the following results from [39].
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Lemma 4: [39, Th.3] Under the assumptions of Lemma 2,
limn→∞ îπbn,δn

(O1, . . .., On) = I(X,Y ) with probability one.
Lemma 5: [39, Th.4] Under the assumptions of Lemma 2 part

ii), for any p > 0, îπbn,δn
(O1, . . .., On) is o(n−p). 16

Proof: Eq.(18) follows from Lemma 4, the fact that by the
strong law of large number limn→∞ in(Z1, . . ., Zn) = I(X,Y )
with probability one and the union bound.

Under the assumption that P ∈ P0 (i.e. I(X,Y ) = 0),
we have that P = Q∗(P ). This implies by definition that
in(Z1, . . ., Zn) = 0 with probability one. Then the regret is
basically our empirical information term îπbn,δn

(O1, . . .., On).
Then, Lemma 5 implies the result in (19). �

APPENDIX C
PROOF OF THEOREM 2

Proof: If we define the event En,k
δn,bn

≡{
zn1 : sup

T∈Gk
bn

∣∣∣Dσ(πT )(P ||Q∗)−Dσ(πT )(P̂n||Q̂∗
n)
∣∣∣≤rbn,δn(k)

}
,

(39)
for all k ∈ {1, .., , |T full

bn
|}, we have that the conditions stated

on (bn) and (δn) are the weakest to obtain from (15) that
limn→∞ supk∈{1,..,,|T full

bn
|} rbn,δn(k) = 0. This last condition is

crucial to being able to apply Lemma 1 in {En,k
δn,bn

, k}. In

fact, P

(
En
δn,bn

≡
⋂|T full

bn
|

k=1 En,k
δn,bn

)
≥ 1− δn by definition of

rbn,δn(k) in (16) and the condition expressed in (15).
Importantly under H0 (i.e., I(X;Y ) = 0), for k = 1, we

can consider that rbn,δn(k) = 0, because Dσ({Rd})(P ||Q∗) =

Dσ({Rd})(P̂n||Q̂∗
n) = 0 for any zn1 ∈ Rdn. Consequently, for any

zn1 ∈ En
δn,bn

=
⋂|T full

bn
|

k=1 En,k
δn,bn

, it follows that

Dσ(πT̂bn,δn
)(P̂n||Q̂∗

n)− rbn,δn

(∣∣∣T̂bn,δn

∣∣∣) ≥

sup
T∈Gk

bn

Dσ(πT )(P̂n||Q̂∗
n)− rbn,δn(k) (40)

≥ sup
T∈Gk

bn

Dσ(πT )(P ||Q∗)− 2rbn,δn(k), (41)

for any k ∈ {1, .., |T full
bn

|}. The first inequality in (40) is from

the definition of T̂bn,δn in (17) and the second inequality in (41)
is from the fact that if zn1 ∈ En,k

δn,bn
(see (39)), then∣∣∣∣∣ supT∈Gk

bn

Dσ(πT )(P ||Q∗)− sup
T∈Gk

bn

Dσ(πT )(P̂n||Q̂∗
n)

∣∣∣∣∣ ≤ rbn,δn(k).

(42)

On the other hand, if zn1 ∈ En
δn,bn

, then

Dσ(πT̂bn,δn
)(P̂n||Q̂∗

n)− rbn,δn(
∣∣∣T̂bn,δn

∣∣∣)
≤ Dσ(πT̂bn,δn

)(P ||Q∗) ≤ D(P ||Q∗). (43)

16This means formally that limn→∞
îπbn,δn

(O1,....,On)

n−p = 0 with proba-
bility one.

At this point, we use the independence assumption17 and the two
inequalities (41) and (43) to obtain that for any zn1 ∈ En

δn,bn
:

Dσ(πT̂bn,δn
)(P̂n||Q̂∗

n)− rbn,δn(
∣∣∣T̂bn,δn

∣∣∣) = 0. (44)

Finally using that rbn,δn(1) = 0, it is simple to verify that for
any zn1 ∈ En

δn,bn
the trivial tree (with one cell) is a solution for

(17), i.e., |T̂bn,δn | = 1. Then from (44),Dσ(πT̂bn,δn
)(P̂n||Q̂∗

n) =

îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn)) = 0, which concludes

the argument using that P(En
δn,bn

) ≥ 1− δn and the assumption
that (δn) is o(1).

Under H1 (i.e., I(X;Y ) > 0), Silva et al. [39, Th. 2, Eq.(33)]
showed that for any zn1 ∈ En

δn,bn

I(X,Y )− îπbn,δn
(Oπbn,δn

(Z1), . . .., Oπbn,δn
(Zn))

≤ min
T�T full

bn

[
I(X;Y )−Dσ(πT )(P ||Q∗(P ))

]
+ 2rbn,δn(T ).

Again using that P(En
δn,bn

) ≥ 1− δn, we obtain the bound in
(21). �

APPENDIX D
PROOF OF LEMMA 3

Proof: Let us use the definition of the typical set introduced

in (39) and En
δn,bn

≡
⋂|T full

bn
|

k=1 En,k
δn,bn

. Under the assumption of
this result, we know that P(En

δn,bn
) ≥ 1− δn. In addition, in

the proof of Theorem 2, it is shown that if zn ∈ En
δn,bn

, then

|T̂bn,δn | = 1, which means that πbnδn = {Rd}. Therefore, we
have that18

En
δn,bn

⊂
{
zn ∈ Rdn : πbn,δn(z

n) =
{
Rd
}}

. (45)

Using the definition of T0((zn)n≥1), we have that

P(T0((Zn)n≥1)≤ M)=PZ

( ⋂
n>M

{
zn : πbn,δn(z

n)=
{
Rd
}})
(46)

= 1− PZ

( ⋃
n>M

{
zn : πbn,δn(z

n) �=
{
Rd
}})

(47)

≥ 1−
∑
n>M

PZ

({
zn : πbn,δn(z

n) �=
{
Rd
}})

(48)

≥ 1−
∑
n>M

PZ

(
(En

δn,bn
)c
)
≥ 1−

∑
n>M

δn. (49)

The equality in (46) comes from definition in (22). The inequal-
ity in (48) comes from the sub-additivity of PZ and the bounds
in (49) follow from (45) and the construction of En

δn,bn
. Finally,

using the assumption that (δn) ∈ 	1(N) in (49), we have that

P(T0((Zn)n≥1) < ∞) = lim
M→∞

P(T0((Zn)n≥1) ≤ M) = 1.

(50)

�

17Under H0, we have that Dσ(πT )(P ||Q∗) = 0 for any T � T full
bn

.
18Here we use the notation πbn,δn (z

n) to make explicit that the partition is
data-driven.
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APPENDIX E
PROOF OF THEOREM 3

Proof: Under H1, the assumptions on (bn) and
(δn) are within the admissible range stated in
Theorem 2 part i). Consequently, we have consis-
tency on the regret, i.e., limn→∞ |in(Z1, . . ., Zn)−
îπbn,δn

(Oπbn,δn
(Z1), . . .., Oπbn,δn

(Zn)| = 0, P-almost surely.
This result is sufficient to obtain that
(φbn,δn,an

(Z1, . . .., Zn))n≥1 reaches 1 eventually with
probability one, from the arguments presented in the proof of
Theorem 1.

Under H0, it is useful to define the following last exit time
associated with the detection of independence:

T ((zn)n≥1, (an)n≥1) ≡
sup {m ≥ 1 : φbm,δm,am

(z1, .., zm) = 1} ∈ N ∪ {∞} . (51)

Saying that (φbn,δn,an
(Z1, . . .., Zn))n≥1 reaches 0 eventually

with probability one is equivalent to the condition that

P(T ((Zn)n≥1, (an)n≥1) < ∞) = 1, (52)

from the arguments presented in the proof of Theorem 1. At
this point, it is important to revisit the definition of T0((zn)n≥1)
in (22), where if for some zm ∈ Rdm we have that |T̂bm,δm | =
1; this implies that îπbm,δm

(Oπbm,δm
(z1), . . .., Oπbm,δm

(zm) =
im(z1, . . ., zm) = 0 (details on Appendix C), and therefore,
φbm,δm,am

(z1, .., zm) = 0 independent of am (see Eq.(7)). Con-
sequently, we have that

{
zm ∈ Rdm : πbm,δm(zm) =

{
Rd
}}

=
{
zm :

∣∣∣T̂bm,δm

∣∣∣ = 1
}

⊂
{
zm ∈ Rdm : φbm,δm,am

(z1, .., zm)) = 0
}

(53)

for any an, and it follows that

P(T ((Zn)n≥1, (an)n≥1) ≤ M) =

PZ

( ⋂
n>M

{zn : φbn,δn,an
(z1, .., zn)) = 0}

)
(54)

≥ PZ

( ⋂
n>M

{
zn : πbn,δn(z

n) =
{
Rd
}})

(55)

= P(T0((Zn)n≥1) ≤ M). (56)

The identity in (54) follows from the definition in (51),
and equations (55) and (56) follow from (53) and (46), re-
spectively. The argument concludes from Lemma 3, as we
know that under the assumptions stated on (bn) and (δn),
limM→∞ P(T0((Zn)n≥1) ≤ M) = 1, which implies the result
in (52) from (56). �

APPENDIX F
PROOF OF THEOREM 4

Proof: Under H0, we can adopt directly the bound presented
in (49):

P(T0((Zn)n≥1) < m) ≥ 1−
∑
n≥m

δn = 1−
∑
n≥m

Ce−n1/3

,

(57)
where we include the assumption that (1/δn)n ≈ (en

1/3
) (i.e.,

C is positive constant). For the series in (57) we have∑
n≥m

e−n1/3

= e−m1/3

[
1 +

e−(m+1)1/3

e−m1/3
+ · · ·+ e−(m+j)1/3

e−m1/3
+ ..

]
(58)

= e−m1/3 ·
∑
j≥0

e−j1/3

︸ ︷︷ ︸
≡I

, (59)

whereI < ∞. Therefore, we have that P(T0((Zn)n≥1) ≥ m) ≤
CIe−m1/3

. �
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