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Resumen

Diseño y análisis de un estudio dinámico de seropositividad de IgG para COVID-
19 mediante MIP e inferencia Bayesiana

En esta tesis se resolverá el problema que surge al tratar de analizar la presencia de una vari-
able binaria en una población dados diferentes factores y resolviendo un MIP que buscaba
lograr la mayor representatividad posible de la muestra. En este caso particular, el problema
planteado fue conocer la presencia de anticuerpos para SARS-CoV-2 en la población de Chile,
teniendo en cuenta diferentes parámetros biológicos y no biológicos. La implementación de
los modelos implicó la realización de pruebas de IgG; donde un resultado positivo indicaŕıa la
presencia de anticuerpos en el sujeto, ayudando tanto a disminuir la probabilidad de contraer
SARS-CoV-2 como a disminuir la gravedad de este en caso de ser contráıdo.
El primer modelo que presentamos busca lograr la máxima representatividad de la población
para los centros urbanos de Chile, utilizando las zonas censales como parámetro geográfico
para medir la representatividad geográfica, además de otros factores como la edad y las
comorbilidades. Los resultados del primer modelo muestran que fue posible obtener una
muestra representativa mucho mayor. A modo de ejemplo, Gran Santiago mostró una uti-
lización teórica del 84% de los resultados (12957 de 15404 muestras) a partir del 13 de julio,
una mejora importante teniendo en cuenta que el marco temporal anterior teńıa 15% de datos
utilizables (1182 de 7902)
Futuras implementaciones de un modelo de este tipo debeŕıan buscar la mayor flexibilidad
posible en la reasignación de los lugares de recolección de muestras, ya que este factor de-
mostró ser la mayor limitación a la hora de cerrar la brecha entre la implementación y el
modelo teórico, por lo que mejorarlo aumentaŕıa en gran medida la posibilidad de adaptarse
a los datos recolectados y obtener una muestra más representativa.
El segundo modelo presentado en la tesis pretende analizar la muestra recolectada, con el fin
de estimar la probabilidad de detectar la presencia de IgG asumiendo una prueba perfecta.
Utiliza variables biológicas como la edad y la comorbilidad, aśı como variables no biológicas
como el método de transporte y la frecuencia del mismo. Combina estos factores como una
regresión loǵıstica para estimar la probabilidad descrita. Se utiliza un enfoque bayesiano y
el algoritmo Marcov Chain Monte Carlo para ajustar el modelo. Nuestros resultados mues-
tran una notable diferencia en la presencia esperada de IgG entre individuos vacunados y no
vacunados, aśı como una considerable diferencia entre vacunas, donde BNT162b12 muestra
una mayor seroprevalencia.
Futuras implementaciones de un modelo de este tipo debeŕıan tratar de optimizar tanto el
código como el hardware utilizado, con el objetivo de perfeccionar los resultados y reducir la
complejidad temporal del algoritmo.
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Abstract

This thesis will solve the problem that arises when trying to analyze the presence of a binary
variable in a population given different factors and solving a MIP that sought to achieve the
biggest representative sample possible. In this particular case, the problem presented was
understanding the presence of antibodies for SARS-CoV-2 in the population of Chile, taking
into consideration different biological and non-biological parameters. The implementation of
the models involved testing for IgG; having a positive result that would indicate the presence
of antibodies in the subject, helping in both lowering the probability of contracting SARS-
CoV-2 as well as lessening the severity of it if contracted.

The first model we present seeks to achieve the maximum representative sample of the popu-
lation for urban centers in Chile, using census zones as a geographical parameter to measure
geographical representativeness, as well as other factors such as age and comorbidities. Re-
sults from the first model show that it was possible to obtain a much larger representative
sample. As an example,Gran Santiago showed a theoretical usage of 84% of the results (12957
out of 15404 samples) as of July 13th, an important improvement considering the prior time
frame had a usable data of 15% (1182 out of 7902)
Future implementations of a model of this kind should seek as much flexibility as possible in
the reallocation of sites to collect samples, as this factor proved to be the biggest limitation
at closing the gap between the implementation and the theoretical model, hence improving
it would greatly increase the possibility to adapt to the collected data and get a larger rep-
resentative sample.

The second model presented in the thesis seeks to analyze the sample collected, in order
to estimate the probability to detect the presence of IgG assuming a perfect test. It used
biological variables such as age and comorbidity, as well as non-biological variables such as
method of transportation and frequency of transportation. It combines these factors as a
logistic regression to estimate the probability described. Using a bayesian approach and Mar-
cov Chain Monte Carlo algorithm to fit the model. Our results show a notable difference in
the expected presence of IgG between vaccinated and not vaccinated individuals, as well as
a considerable difference between vaccines, where BNT162b12 shows higher seroprevalence.
Future implementations of a model of this kind should seek to optimize both the code and
hardware used, aiming to refine results and lower the algorithm’s time complexity.
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Chapter 1

Introduction

SARS-CoV-2 is a virus that generated a pandemic starting in December 2019 in Wuhan
China. Countries all over the world had to make tough decisions to control the situation as
well as possible. An important factor in decision-making is not only to understand the virus
and to create a vaccine, but to understand the current state of the population in order to
defend itself against the virus.
Chile, as many other countries, took emergency measures to stop the problem as it was inves-
tigated, starting with a lockdown, and evolving into social distancing and sanitary measures.
As this evolved, availability of information for decision-making was crucial.
Two main factors help decision-making in different ways. The first one consists in the cur-
rent number of people infected with SARS-CoV-2, the number of interactions and severity
of cases those present, helping decisions such as hospitalization capacity in different sectors.
The second factor is understanding the presence of antibodies in the population, helping
estimate in particular the severity that the first factor could bring given those interactions.
This thesis will focus on the latter, by testing for IgG antibodies, having a positive result
that would indicate the presence of antibodies in the subject and helping in both lowering the
probability of contracting SARS-CoV-2 as well as lessening the severity of it if contracted.
In particular, the objective of the study was to collect data as close to the Chilean population
as possible in order to help this decision-making in a national scale.
The use of this information depends both on data collection as well as its analysis, therefore
the following chapters will be mainly divided in two parts; the first one refers to a model to
collect data as representative of the population as possible, and the second is a model that
helps estimate the positivity of IgG antibodies in the population.
For the first part, we used a model that, as is seen in chapter 3 section 2, aims to improve the
maximum representative data. As an example, Gran Santiago could have enabled the usage
of 84% of the data (12957 out of 15404 samples), an important improvement considering that
the samples prior to the implementation of the model had a usable data of 15% (1182 out of
7902)
The second part uses a model that, as is seen in chapter 4 section 2, shows a notable differ-
ence in the expected presence of IgG between vaccinated and not vaccinated individuals, as
well as a considerable difference in the vaccines, as BNT162b2 presents higher seroprevalence
through time, putting the usefulness of the vaccine in evidence.
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It is important to note that this is done in the context of a real serological study, and
the results obtained were in fact implemented. This was possible with the help of health au-
thorities; by assigning the logistic responsibilities of installing the selected sites that recollect
samples of IgG antibodies to the corresponding Health Services1.

1State entities that have assigned territories in which they are responsible for the implementation of
integrated actions for the promotion, protection, and recovery of health.
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Chapter 2

Objectives and Background

2.1 Objectives

2.1.1 General Objectives

This thesis resolves the problem of sampling a population so as to match theoretical popu-
lation data by the use of Mixed integer optimization as well as the use of this data, logistic
regression, and Bayesian inference in order to estimate the presence of antibodies in the
population.

2.1.2 Specific Objectives

1. Localization model

(a) Improve the maximum representative sample retrievable from the data collected.

(b) Help the decision-making of health authorities, particularly in selecting the loca-
tions at which one should collect data through time.

(c) Show the application of the model and corresponding analysis to inspire future
replication in similar use cases.

2. Seroprevalence Model

(a) Gather analysis that generates insight about which factors of the individuals can
be related to the expected seroprevalence.

(b) Give insight about what is the situation of seroprevalence for the population of
Chile.

(c) Show the application of the model and corresponding analysis to inspire future
replication in similar use cases.

3



2.2 Background

The implementation of this operation was made possible with the help of Redes Asisten-
ciales1, which supported the coordination of the corresponding Health Services. Each Health
Service (see Figure 2.1 in the appendix for the full list) was in charge of the installation
of a testing station in their corresponding territory, with the exception of Araucańıa Sur
which had capacity to manage the installation of two testing stations, and the Health Ser-
vices Metropolitano Central, Norte and Occidental which did not participate in the study as
entities, having that territory for site installation directly managed by Redes Asistenciales
with two different testing station to be allocated.

The territory of the 29 Health Services was separated into 21 urban centers and 86 coun-
ties, in which individuals were mainly vaccinated with Coronavac and BNT16b2 in a 2:1 ratio
approximately.

To show Health Services where to install the sites, a map was provided via web offering
the solution of the model with the recommended location for site installation (an example
can be seen as Figure 2.2 in the Appendix). Meetings were offered to explain the usage of
the tools provided, as well as to discuss the exact position of the site to be installed.

Individuals that participated in the study provided information via a form that was filled
in real time by people of the corresponding Health Service, as can be seen in the appendix
as Figure 2.3.

1State entity whose mission is to regulate and supervise the operation of health networks.
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Chapter 3

Localization Model

3.1 Data Collection Method

From March 12, 2021, 28 testing stations for SARS-CoV-2 IgG detection were installed in
hotspots based on cellular-phone mobility tracking within the most populated cities in Chile.
Each testing station was assigned to a Health Service with the corresponding jurisdiction
over the area.
In each station, individuals were invited to do a lateral flow test (LFT) by finger prick volun-
tarily and respond to a questionnaire on sociodemographic characteristics, vaccination status
(including type of vaccine if one was received), variables associated with SARS-CoV-2 expo-
sure, and comorbidities.

For the localization model, the initial and main objective was to have representative
geographical data. A good representation means that samples for each county are similar,
percentage-wise, to the official census percentages for each urban center.
For this section, individuals were excluded if they did not live in any urban center in Chile
(noting the fact that there are certain counties that do not belong to any). Further analysis
of data in latter chapters will exclude individuals if they were younger than 18 years, had
no declared gender, had an invalid IgG test result, had previously tested positive for SARS-
CoV-2 infection on PCR, could not recall their vaccination status, and further analysis will
even exclude individuals had been immunized against COVID-19 with vaccines other than
CoronaVac or BNT162b2.
Data reported for all the following chapters corresponds to people tested up to July 2nd,
2021 for every urban center other than Gran Santiago, for which we report data collected up
to December 13th.

5



3.2 Localization model

An optimization model was used mixed-integer program (MIP) based on weekly analysis of
national mobile phone mobility data, facilitated by Chile’s largest telecommunications agency
(Empresa Nacional de Telecomunicaciones, Santiago, Chile), to select sites with high traffic
volume and wide county-level distribution of people.
The model aims at maximizing the size of a representative sample according to the geo-
graphical distribution, at county granularity, for each urban center. The model used was as
follows:

Parameters

• I: set of census zones.

• J : set of counties.

• m(i,j,t,tb): expected number of samples from county j obtained in the census zone i
during day t in time block tb.

• pj: population of county j, relative to the total of the urban center.

• Btb: number of testing sites to be allocated on each time block tb.

• T : set of days of the week (Monday to Friday). Not including weekends

• TB Time Block, T1 for mornings and T2 for afternoons

We need to decide in what census zone should the sites be located. We define for i ∈ I, t ∈ T
and tb ∈ TB the decision variable

xi,t,tb =

{
1 if a site is assigned to zone i in day t and time block tb

0 ∼
.

For a given allocation, we compute the number of samples to obtain from the county j ∈ J
as

yj =
∑

i,t,tb∈I,T,TB

xi m(i,j,t,tb).

Then, to obtain a representative sample of the urban center of size n, we have to collect at
least n pj samples from county j for each county in J . Then, given the allocation of sites,
the size of the representative sample is the maximum value of n that satisfies the condition

n pj ≤ yj,∀j ∈ J.

We want to maximize the size of the representative sample obtained by the allocation of
testing sites. With this, we had the following optimization problem

6



maxn (3.1a)

s.t. n pj ≤
∑

i,t,tb∈I,T,TB

xi,t,tb m(i,j,t,tb)∀j (3.1b)∑
i∈I

xi,t,tb ≤ B ∀t, tb (3.1c)

xi,t,tb ∈ {0, 1}. (3.1d)

Because the theoretical and real data collected were understandably not the same, the
model was solved on a rolling horizon basis with a weekly plan for resolving, weighting in
the recollected data in the model, re-calculating the sites to test accordingly.
This was done by considering the data already recollected on the right side of restriction 3.1b.
In that way, the optimization problem would factor in the current distribution of samples
taken and weight in that into the approximation of the best representative data in the future.
Then, the size of a sample from j is:∑

i,t,tb∈I,T,TB

xi m(i,j,t,tb) + k(j).

Where k(j) is the current number of samples obtained for j. With this, the optimization
problem becomes:

maxn

s.t. n pj ≤
∑

i,t,tb∈I,T,TB

xi,t,tb m(i,j,t,tb) + k(j). ∀j∑
i∈I xi,t,tb ≤ B ∀t, tb
xi,t,tb ∈ {0, 1}.

As samples were collected, another difference was noted: the mobility data was underesti-
mating the internal movement of individuals within a county. This endogenous movement
represented people that moved within census zones of the same county, and as higher internal
movement occurred; data collection for a given ĵ had more samples of individuals from ĵ than
expected. This meant that an adaptation to the model was necessary in order to correct the
estimation and data recollection, to account for this endogenous movement.
To correct the proportion of internal versus external movement of the recollected data, an
analysis was made in contrast to the data given by telecommunications. This adjustment
consisted in comparing the data collected in the census zone with the theoretical data to mea-
sure the proportion of endogenous movement. Then to adapt to this, the model used that
difference in proportion as a factor to re-normalized the distribution of endogenous versus
non-endogenous movement accordingly.

Because of this dynamic adaptation, incorporating the current data recollected as a factor,
the model was run periodically to adjust to the best solution given the current sample. This
allowed a plan for data recollection that was limited by the capacity to change locations of
each Health Service.

7



Figure 3.1 shows an example of a particular solution. The data used was July 13 and for
a more clear representation of how the solution gets a good representative sample size over
time, a whole month of solution follows. To accomplish this, the solution of the week before
assumes an optimistic data recollection of 50 samples by time block, using that theoretical
result to add into the existing sample for the next week’s solution.

Figure 3.1: Gran Santiago Urban Center Solution

The blue bars represent the real distribution of the urban center based on census data, the
gray portion of the bars represent the sampled data, the bar’s yellow portion represent the
samples that should be collected based on the solution of the first week, and the bar’s light
blue, green, and dark blue portions correspond to the samples that should be collected on
the second, third, and fourth week correspondingly.
To put the result into perspective; this allows a usable representative data of 12957 out of
the total sampled data of 15404 (84%), whereas before that month the current usable data
was 1182 out of the 7902 (15%).

Figure 3.2 shows how the distribution looked for that date, before the solution was de-
ployed.

8



Figure 3.2: Gran Santiago Urban Center Before Solution

Figure 3.3 shows the amount of data sampled for each county given the previous solution.

Figure 3.3: Gran Santiago Urban Center Total Sample

Here, the blue bar represents the maximum number of representative samples for each
county and the red bar the total number of samples for each county.
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3.3 Limitations to Data recollection

There are several factors that limited data collection in different ways. In a perfect scenario
the model could be as dynamic as having morning and noon time blocks given that the move-
ment in the morning and afternoons tends to vary by factors such as labor time schedules.
In this scenario, the flexibility could allow the program to be run after the morning data was
recollected to evaluate a change in location for the afternoon.

In reality, this flexibility was not possible since every Health Service had to make admin-
istrative requests before changing location, which took more than a labor day. This meant,
in the long run, that changes could only be done at most on a weekly basis.

Another Limitation was related to the specific location in the census zone. Each site had
to be safe for the people working there, have a roof and bathroom nearby, and preferably be
a public space, as it would facilitate the installment of the testing station.
This meant that after having the results for the optimal set of census zones, an analysis was
made in each census zone in order to understand what was the driving factor for that move-
ment, in order to find the exact location for the site; this could be for example a shopping
mall or individual store in the zone that generated that movement.

The model then worked as follows:
A month plan was made with weekly flexibility. This meant that the second week of the
model assumed that the theoretical data of the first one was met, the third week assumed
the first two weeks of data were achieved, and so on. This allowed Health Services to prepare
all the paperwork necessary for the installation of sites in the selected places.
After each week the program was run again, this time with the real data collected replacing
the theoretical data of the past week, to evaluate possible changes.
The optimization problem would then be

maxn

s.t. n pj ≤
∑
i,∈I

xi m(i,j) + k(j). ∀j∑
i∈I xi ≤ B

xi ∈ {0, 1}.

Where there is no longer t nor tb. As for the mobility data that helped the selection, a weekly
average for each site was made, converting the time block daily granularity to an average
movement by week.
As the representative sample size for several urban centers increased, other objectives could
be considered. For example, as vaccination status would be a relevant parameter in future
analysis; locating testing stations in sites where there was a higher number of unvaccinated
individuals would increase the amount of samples that had that characteristic (as unvacci-
nated individuals were a minority). Other factors that make a sample representative were
assumed to be met at first (gender, age), since the data was randomly sampled, but were
then later confirmed in data analysis to ensure representation, and also looking for further
insights into certain groups of people being more keen to participate in the study (with no
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conclusive evidence that this was happening).
As weeks passed and some urban centers did not have a considerable number of weeks left,
a variation was presented to the model where m(i,j) would now be multiplied by the approx-
imate weeks left of study to assume no further changes would be able to be made. As for
the next week’s calculation, the problem would assume the same thing, having one week
subtracted in that multiplication and assuming the samples of the first week were met. This
could allow a more robust solution for the remaining weeks of study as it assumed time was
limited, and represented a less “greedy” approach.

3.4 Results

Considering the limitations stated in the previous section, optimal data collection was not
achievable for many practical reasons. In addition, the model assumed 50 collected samples
per time block (being this an optimistic assumption, based on the results of the urban center
of Gran Santiago that varied between 25-75 test for each time block approximately). Noting
that this is the urban center with the highest population and that even though 50 is half of
the range mentioned, the average number of samples collected lowered as the study continued.

As of 2 of July, the total number of data recollected was 66625 for all urban centers except
Gran Santiago, which continued sampling data consistently for a longer period of time, the
data sampled as of 13 of December for the urban center of Gran Santiago was 23444 as a
total, of which 18491 was useful for analysis (meeting the criteria mentioned before).

The distribution of data recollected for each urban center for those dates resulted as
follows:

Figure 3.4: Gran Santiago Urban Center Distribution
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Figure 3.5: Gran Valparáıso Urban Center Distribution

This allows for a maximum data of 773 for Santiago, which again could be compared to
what the maximum theoretical data shown with the 13 of July example to show the potential
that flexibility could provide. This can be put into perspective as shown in Figure 3.6 below

Figure 3.6: Gran Santiago Urban Center Distribution

Of the 66625 samples taken as of July 2nd 2021, only 53501 were useful for further
analysis due to reasons such as not following the minimum age restriction, having incomplete
or wrongly filled data in the formulary, having an invalid result in the test. For a reference
of the characteristics of those 53501 samples, see Figure 3.7 in the appendix.

As for Santiago, which continued taking tests further on, the 23444 samples became
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18491 when discarding tests that did not follow the criteria described above, the detail of
these samples can be seen as Figure 3.8 in the appendix.

The Distribution for Santiago as of that date goes as follows:

Figure 3.9: Gran Santiago Urban Center Distribution

It can be seen that, even though the over-representation of the most populated counties
Puente Alto, Santiago and La Florida was reduced from July 2nd to December 13 (Figure 3.4
to Figure 3.9), the underrepresented counties have not gained enough representation as the
solution was offering. This, again, due to a lack of flexibility when changing sites, over
sampling the sites for being there a longer period of time. (See Figures 3.10 to 3.28 in the
appendix to see the distributions up to July 2nd for all the other urban centers)

A few conclusions can be drawn from this section:

1. The total number of data collected as of December 13th was 103917 out of which 83198
samples belong to the urban centers of the study. This number could be improved by
monitoring the average samples taken at each testing station and seeking to increase
the number via three methods:

• Reduce the amount of time the testing station is vacant (if that happens), by
prioritizing sites with a higher mobility over sites with higher representativity.

• Optimize the process at which individuals are tested to reduce the average sample
time and consequentially increase the capacity of the station.

• Increase the number of tests that can be done simultaneously, either by having
more personnel or by increasing the amount of samples a health worker can take
at the same time.

2. Allow higher flexibility in logistic and administrative factors should be a priority, as it
limits the quality of the solution substantially.
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The most important conclusion; the model can be implemented in a real scenario and achieve
results that better understand the population’s situation (for this particular case) and help
decision-making.
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Chapter 4

Seroprevalence Model

4.1 Seroprevalence

From March 12, 2021, 28 testing stations for SARS-CoV-2 IgG detection were installed in
hotspots based on cellular-phone mobility tracking within the most populated cities in Chile.
Each testing station was assigned to a Health Service with the corresponding jurisdiction
over the area.
In each station, individuals were invited to do a lateral flow test (LFT) by finger prick volun-
tarily and respond to a questionnaire on sociodemographic characteristics, vaccination status
(including type of vaccine if one was received), variables associated with SARS-CoV-2 expo-
sure, and comorbidities.

For the Seroprevalence model, the main objective was to represent the presence of IgG for
the population. This model used both biological and non-biological traits of the population
as factors that can be related to variation in the presence of IgG for both vaccinated and
unvaccinated individuals.
For this section, individuals were excluded if they did not live in any urban center in Chile
(noting the fact that there are certain counties that do not belong to any). For this Section,
individuals were excluded if they were younger than 18 years, had no declared gender, had
an invalid IgG test result, had previously tested positive for SARS-CoV-2 infection on PCR,
could not recall their vaccination status, immunization other than CoronaVac, BNT162b2 or
ChAdOx1

Data reported for all the following chapters corresponds to people tested up to July 2nd,
2021 for every urban center other than Gran Santiago, for which we report data collected up
to December 13th.
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4.2 Model

We model the probability of the presence of IgG assuming a perfect test. We let P (x) be the
result of a perfect test. Note that IgG can come both from a vaccine or by contracting the
virus.
In this section we use the following notation/definitions

• y: relevant demographic variables such as Age, Gender, and Comorbidities

• s: vaccine related variables such as vaccination status, type of vaccine, dates after
vaccination, etc.

• x = (y, s): individual’s profile (y demographic variables, s vaccination status).

• Pn(y): probability of detectable IgG due to virus exposition and not to the vaccine.

• Pv(x): probability of detectable IgG due to vaccination.

• v(x) := type of vaccine.

• V : Set of vaccines.

For an unvaccinated individual we set, x = (y, ∅), and define Pv(y, ∅) = 0. With this:

P (x) = Pv(x) + (1− Pv(x)) · Pn(y)

Note that the only vaccines in question are CoronaVac and BNT162b2, then further analysis
can be made by separating both of them. The model is then:

P (x) = 1{v(x)=CoronaV ac} · PvCoronaV ac(y, s)

+ 1{v(x)=BNT162b2} · PvBNT162b2(y, s)

+ (1− 1{v(x)=CoronaV ac} · PvCoronaV ac(y, s))

· (1− 1{v(x)=BNT162b2} · PvBNT162b2(y, s)) · Pn(y)

Using (Lancet,2021)[11] paper, we calibrate

Pv(y, s) =
exp(f(y, s))

1 + exp(f(y, s))
, f(y, s) = log

Pv(y, s)

1− Pv(y, s)

Where f(y, s) depends only on s, and the components in y associated with age, gender, and
comorbidities.

With regard to Pn(y), it depends on variables such as: age, gender, comorbidities, per-
ception of exposition, as well as the time frame and place of where the test realized. That
is,

f(y, s) = βv
t + βv

gender + βv
age + βv

comorb
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Here v represents the vaccine, t the number of fortnights since the first dose

For the unvaccinated,

Pn(y) =
exp(g(y))

1 + exp(g(y))
, g(y) = log

Pn(y)

1− Pn(y)

Where g(y) depends only on relevant demographic variables represented by y.

g(y) = αt + αgender + αage + αcomorb + αfreq + αexp

Then h(y, s) has both α and β to account for variables represented in f(y, s) and g(y)

h(y, s) = αt + αgender + αage + αcomorb+ αfreq + αexp +
∑
v∈V

1{v(x)=v} · (βv
t + βv

comorb)

With,

P (y, s) =
exp(h(y, s))

1 + exp(h(y, s))
, h(y, s) = log

P (y, s)

1− P (y, s)

This model was applied for two datasets, the first one considered data from the 6 most
populated urban centers (that contain more than 50% of the population) from March 12th
to July 2nd and added the variable Urban Center to the definition of Pn(y), and the second
one considered only the capital (Gran Santiago), using data from March 12th to December
13th and variables such as Type of transport and Frequency of Transport were added to Pn(y).

Because Gran Santiago had data up to a later date than the rest of the urban centers, a
different model could be made that included information that was collected for samples in
later stages. This happened because as time passed, Chilean authorities started supplying
booster shots for people. This booster doses could either be homologous or heterologous,
so another model measuring the effect of the booster dose could be made. Since the most
common vaccine was CoronaVac (as can be seen in Figures 3.7 and 3.8 of the appendix) this
vaccine could be further disaggregated into boosted and not boosted samples, as it had a
better chance of showing statistical significance. The main booster vaccines used in people
that had CoronaVac as their first two doses were ChAdOx1, and BNT162b2.

The model then had the following modification:

P (x) = PvCoronaV ac(y, s) + PvBNT162b2(y, s) + (1− PvCoronaV ac(y, s)) · (1− PvBNT162b2(y, s)) · Pn(y)

Where:

PvCoronaV ac(y, s) = PvChAdOx1(y, s) + PvBNT162b2(y, s)

+ (1− PvChAdOx1(y, s)) · (1− PvBNT162b2(y, s)) · PNoBooster(y)
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4.2.1 Bayesian Approach

We used a Bayesian approach, which helps the perception that taking into consideration
information of individuals that are alike would help when building a model to predict posi-
tivity.
Then the logistic regression would be a Discriminative model, where we can directly estimate
the posterior probability with the data and use maximum likelihood to estimate the param-
eters
For this particular case, because there was no prior notion about the distribution of the vari-
ables, a Normal(0,100) distribution was set for all of them as well as setting all parameters
to return a real value.
Marcov Chain Monte Carlo (MCMC) was used as the algorithm to estimate the model’s
parameters
Lastly, the simulations associated were run for 1000 iterations and four chains for all models
except the last one, that given the complexity and time of resolution, only had two chains.
We used a Laptop With an Intel(R) Core(TM) i7-950H CPU @ 2.60GHz, simulations took
from 6 hours to 30 hours depending on the complexity of the model.

4.3 Results

4.3.1 Model Results

Instance I: For the first instance the variables studied are as follows,

Figure 4.1: Variables 6 most populated urban centers
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Figure 4.1 shows the betas of the model for the main urban centers from March 12th till
July 2nd, can be seen as Figure 4.2 in the appendix.

A non-exhaustive Figure follows to show some of the statistically relevant variables:

Figure 4.3: Statistically relevant variables for Instance I [non-exhaustive]

Our results show a positive statistical significance in values between urban centers by
fortnight. There are several factors that could be causing this. Mainly indirect factors such
as population density, the distribution of infection that could affect the future spread of the
virus and the use of different methods of transportation and other contact related factors
that could not be captured by the other variables in this particular model. This can be
further seen when comparing the Fortnight of study * Urban Center value with the urban
center value on its own, seeing that the latter is negative in comparison to the base while the
other improves fortnight by fortnight. As for the Age Range in comparison to the base (18-
39) a positive significant difference can be observed in values as the age increases, meaning
that for older ages, there is a decrease in the positivity of the test. For the fortnights 1
through 6 there can be seen an increase in the positivity in comparison to the base case,
meaning that as the study continued, more positivity was expected, attributed arguably to
the indirect situation of the number of people with the virus as well as many other non-
controllable factors. For comorbidities, we can see a significant decrease in positivity for
obese and diabetic participants in comparison to the base group of the same category.
Instance II:

As of December 13th for Gran Santiago’s urban center the following Figure shows the
variables analyzed, and the betas of the model can be seen as Figure 4.5 in the appendix:
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Figure 4.4: Variables December 13th Gran Santiago

A non-exhaustive Figure follows to show some of the statistically relevant variables:

Figure 4.6: Statistically relevant variables for Instance II [non-exhaustive]
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Transportation: A statistical difference can be seen in the positivity of people who use
the subway as a transportation method, not achieving a statistical difference in the frequency
of this usage. This could be explained by the high interaction that transportation method
presents, increasing the chances of contracting the virus and therefore presenting more posi-
tivity in the test.

Fortnights of study: There is a positive statistical difference in the number of fortnights
after the study started, this could be caused by the general infection of the percentage of
population as time passes. Another positive statistical difference can be seen in the people
that went out 3-5 times a week compared to the people that left their homes less than 3 times
a week, this could be explained by how leaving home increases contact with other people,
increasing the chances of contracting the virus and therefore having antibodies for it.

Frequency of movement: A negative statistical difference can be seen in the group of peo-
ple that went out more than 7 times a week, which can not be explained in a direct way since
the distribution of method of transportation (which would be the most relevant explanation)
is similar between all the frequencies as can be seen in the following Figure noting that the
base case is walking as a method of transportation.

Figure 4.7: Distribution of transport for each frequency

Personal Evaluation: A positive statistical difference in seroprevalence can be observed in
individuals that evaluate themselves as having a high risk of contraction in comparison to
individuals that evaluate themselves as low risk of infection. This is probably due to them
actually getting infected and consequently having more defenses against the virus.

Age: All the age groups vaccinated with BNT162b2 have lower seroprevalence in compar-
ison to the youngest age group (18-39) but only the 60-69 age group had statistical difference.
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This can be due to the capacity of younger individuals to maintain more antibodies, as sev-
eral studies suggest[12]

Fortnights after vaccination: A positive statistical difference can be found in the fortnights
1-11 and 15-16 after vaccination with BNT162b2 in comparison to the first one where the
ones with no statistical difference were also positive and where no strict trend could be
found between fortnights. Suggesting either a bigger number of antibodies generated at
first, making it possible to still pass the thresh hold of positivity after several fortnights
of decreasing antibodies, or a better maintenance of the generated antibodies with that
particular vaccine.

Gender: A positive statistical difference can be found in women vaccinated with Coron-
aVac versus male individuals, which can be supported by other studies[8].

Age with CoronaVac: A positive statistical difference can be found in people of age 70+
vaccinated with CoronaVac in comparison to people from 18-39 years of age, with no direct
interpretation.

Fortnights after vaccination with CoronaVac: A positive statistical difference can be found
in people 1-5 and 13-18 fortnights after vaccination with CoronaVac and negative statistical
difference in fortnights 8-11. This can be due to the creation of antibodies at first and later
decrease of it due to time, later growing again because of the use of a Reinforcement vaccine.

Comorbidities: A negative statistical difference can be seen in people with High blood
pressure and Diabetes in comparison to people without it and the same vaccine.

As for the model that had the booster shot as a factor the variables are the same as the
model shown before, adding the Interaction with both booster vaccines as well as Alpha4
that represents the intercept for individuals that received ChAdOx1 as their vaccine and
Alpha5 to represent the intercept for individuals that received BNT162b2 as their booster
vaccine, the results for the betas can be seen as Figure 4.8 in the appendix

A non-exhaustive Figure follows to show some of the statistically relevant variables:
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Figure 4.9: Statistically relevant variables for Instance II-Booster [non-exhaustive]

Transportation: Just as the prior model showed, there can be seen a statistical difference
in the positivity of people who use the Subway as a transportation method, not achieving
a statistical difference in the frequency of this usage. This could be explained by the high
interaction that transportation method presents, increasing the chances of contracting the
virus and therefore presenting more positivity in the test.
Gender: There can be seen a positive statistical difference in gender where the base scenario
corresponds to males, meaning female individuals are expected to have higher antibodies,
which again can be supported by other studies[8].

Fortnights of study: Just as the model before there can also be seen a positive statistical
difference in the number of fortnights after the study started, this could be caused by the
general infection of the percentage of population as time passes.
Age: There can also be seen a positive statistical difference in every age group compared to
the base case of 18 to 39 years of age, with no clear explanation.
Frequency of movement: Just as the model before, another positive statistical difference can
be seen in the people that went out 3-5 times a week compared to the people that left their
homes less than 3 times a week, this could be explained by how leaving home increases con-
tact with other people, increasing the chances of contracting the virus and therefore having
antibodies for it.

Personal Evaluation: Again, individuals that evaluate themselves as having a high risk of
contraction present a positive statistical difference in seroprevalence in comparison to the
people that evaluate themselves as low risk of infection. This is probably due to them actu-
ally getting infected and consequently having more defenses against the virus.
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Age and BNT162b2: Individuals with 60-69 years of age vaccinated with BNT162b2 show
statistically lower seroprevalence in comparison to the youngest age group (18-39). The
group of more than 70 years of age present statistically higher seroprevalence with no clear
explanation.
Fortnights of BNT162b2As for fortnights after being vaccinated with BNT162b2, a high
number of fortnights present a higher statistically difference versus the base group with no
fortnights after vaccination, this could help show a positive progression of the build of anti-
bodies in a short time frame.
Comorbidites and BNT162b2: Individuals with obesity, hypertension, chronic pulmonary
disease have a negative statistical difference. Individuals with chronic cardiovascular disease
present positive statistical difference versus the base group of vaccinated individuals with no
comorbidities.
Fortnights and CoronaVac: For individuals vaccinated with CoronaVac there can be seen a
negative statistical difference in antibodies the first 4 fortnights, this would no have a clear
explanation. After the sixth fortnight, a positive statistical difference can be seen till the
fortnight number 12. This could show the effect of antibodies generated by the vaccine in
the short term, and since the 15th fortnight shows negative seroprevalence, a decline could
be seen in antibodies in a longer time period, justifying the supply of booster shots.
Comorbidities and CoronaVac: A positive seroprevalence can be observed for individuals
with hypertension and diabetes and negative seroprevalence for individuals with chronic car-
diovascular disease, contrary to what was observed with individuals that received BNT162b2
with no clear explanation.
For individuals that received booster shot, both individuals that received ChAdOx1 and indi-
viduals that received BNT162b2, present negative statistical difference in gender, being male
the base. All other variables that show significant difference for individuals with booster shot
can not be inferred to have any direct cause.

4.3.2 Estimating Seroprevalence

With the previous information, an estimate of the population’s antibodies can be made, as
P(x) is different for people with different profiles, then for an accurate estimate of the pop-
ulation, a representative sample of the population can be withdrawn from the used data.
For this model, important factors for this estimation were comorbidities, gender, age, propor-
tion of people vaccinated with CoronaVac and BNT162b2. The proportions of these factors
were estimated using different sources such as the census to get the closest to the population’s
real proportion as possible The model is then as follows

Parameters:

• C Set of comorbidities

• A Set of age ranges

• I Set of Samples.

• Ic Subset of individuals with comorbidity c ∈ C
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• IG Subset of female individuals.

• Ia Subset of individuals with age range a ∈ A

• IPf Subset of individuals vaccinated with BNT162b2.

• ICo Subset of individuals vaccinated with CoronaVac.

• Rc Chilean proportion of individuals with comorbidity c ∈ C

• RG Chilean proportion of female individuals.

• Ra Chilean proportion of individuals with age range
a ∈ A

• RPf Chilean proportion of individuals vaccinated with BNT162b2.

• RCo Chilean proportion of individuals vaccinated with CoronaVac.

Note the missing proportions such as the male gender and individuals without comorbidities
would automatically fill the missing proportion of samples taken.

xi =

{
1 if sample i is selected

0 ∼
.

The optimization problem is then as follows

maxn

s.t.
∑

i∈Is xi ≤ Rs n

s ∈ {C,G,A, Pf, Co}∑
i∈I xi = n

xi ∈ {0, 1}
n ∈ N.

Where n is the number of representative samples that we are trying to maximize.

Out of the 17935 samples that were left after filtering vaccines other than CoronaVac and
BNT16b2 a sample of size 1727 achieved the restrictions perfectly.
The second model was applied, using each of this sample size 1727, P(x) was calculated by
calculating each component of the equation

P (x) = PvCoronaV ac(y, s) + PvBNT162b2(y, s) + (1− PvCoronaV ac(y, s)) · (1− PvBNT162b2(y, s)) · Pn(y)

Noting that both PvCoronaV ac(y, s) and PvBNT162b2 fulfill the equation

Pv(y, s) =
exp(f(y, s))

1 + exp(f(y, s))

f(y, s) = log
Pv(y, s)

1− Pv(y, s)
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as Pn(y) fulfills

Pn(y) =
exp(g(y))

1 + exp(g(y))

g(y) = log
Pn(y)

1− Pn(y)

Using all the variables in f(y, s) and g(y) described before.
After calculating P (x) for each individual of the sample, an average P (x) could be calculated
(which in this case was 0,73) as well as graphs showing the evolution of antibodies for this
representative data through time.

Figure 4.10: Antibodies After Vaccination Gran Santiago

This graph shows the estimate P (x) for individuals of these different vaccination statuses
and for each corresponding fortnight after vaccination.
A spike of antibodies can be observed after the eleventh fortnight, this could be explained
by the introduction of booster shots to the population months after the first two doses.
To filter this factor out, the model was then applied to samples filtering those who had
booster dose (reducing the number to 12055) resulting in a sample size of 1428 that achieved
the restrictions perfectly.
Again calculating P (x) for individuals of these different vaccination status and for each
corresponding fortnight after vaccination and representing it in the following graph
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Figure 4.11: Antibodies After Vaccination Gran Santiago

The following graph shows the evolution of the virus by number of fortnights after the
study started for the first case that included individuals with booster dose:

Figure 4.12: Antibodies After the start of the study Gran Santiago

A slight up-trend can be observed for each vaccination status noting that this is, as the
model that constructed it suggests, due to the contraction of the virus or antibodies gener-
ated by the vaccine. Noting in particular that non vaccinated people can only contract the
virus, and as time passes eventually get higher antibodies consequentially.
In both Figure 4.10 and Figure 4.12 a notable difference can be observed between vaccinated
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and not vaccinated individuals, helping to lay the usefulness of the vaccine in evidence, as
well as a considerable difference in the vaccines as BNT162b2 presents higher seroprevalence
through time.

As of the seroprevalence per fortnight filtering samples with booster dose, the graph is as
follows

Figure 4.13: Antibodies After the start of the study Gran Santiago

In this Figure, the main difference from Figure 4.12 is the downtrend represented by
CoronaVac that could be attributed to the lack of a booster dose.
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Chapter 5

Conclusion and General Comments

5.1 Conclusion

This thesis resolves the matching problem of sample testing to a theoretical population data
by the usage of a mixed integer optimization model as well as the usage of this data with
a logistic regression and simulation in order to estimate the presence of antibodies in the
population using the sample.
This general objective was achieved by improving the usable sample size collected by a con-
siderable amount, as well as providing insight into how different biological and non-biological
variables could affect the presence of antibodies in individuals.
In particular, the first part of the thesis corresponds to the optimization model based on
weekly analysis of national mobile phone mobility data, facilitated by Chile’s largest telecom-
munications agency (Empresa Nacional de Telecomunicaciones, Santiago, Chile), to select
sites with high traffic volume and wide county-level distribution of people.

The model sought maximizing the representative sample size that corresponds to the geo-
graphical distribution at county granularity for each urban center. Taking into consideration
parameters such as census zones, counties, expected number of samples, population of the
county, number of testing sites and current number of samples obtained and using an auxil-
iary variable to describe the size of the representative sample for the urban center. Then, a
binary variable was used to check if a site was assigned to a census zone in the corresponding
time frame.
The model then maximized the auxiliary variable with constrains in the number of assigned
sites and the distribution that was sought.
This theoretical model obtained results with significant improvements in the maximum rep-
resentative data. As an example Gran Santiago could have enabled the usage of 84% of the
results (12957 out of 15404 samples), an important improvement considering the samples
prior to the implementation of the model that had a usable data of 15% (1182 out of 7902)
The model could not be implemented at it’s full potential as changing sites required adminis-
trative paperwork behind which did not allow the frequency of change that would otherwise
be possible, as well as an additional layer of requirements for the selected sites such as bath-
rooms and safety that hindered the possibility of sites to be assigned. The model was then
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planned in a weekly basis and even so could not change as frequently as desired, achieving
consequently worse results. This, could be different if the study is recreated in the future,
more on this in the next section (5.2).

The second model sought to predict the probability to detect the presence of IgG assuming
a perfect test. It used biological variables such as age and comorbidities, as well as non-
biological variables such as method of transportation and frequency of transportation.
It then represented the probability to detect the presence of IgG as a combination of the
biological and non-biological variables expressed as a logistic regression.
The model used a bayesian approach and a Marcov Chain Monte Carlo algorithm to fit the
model with simulations, obtaining results that show a notable difference in the expected
presence of IgG between vaccinated and not vaccinated individuals as well as a considerable
difference in the vaccines as BNT162b2 presents higher seroprevalence through time putting
the use-fullness of the vaccine in evidence.
Lastly, these results were put into perspective by estimating the expected seroprevalence for
the population with a representative sample in order to visualize the seroprevalence through
time.

5.2 Future work

If this study or a similar one was replicated in the future, some important factors should be
taken into consideration.
First, the localization model has an important logistic and administrative limiting factor that
should be discussed and explored to achieve the most flexible implementation possible. This
would allow results that would match what the model is able to achieve.
As section 3.4 shows, the impact of a more flexible implementation is considerable in the
maximum representative sample achievable.
This can help better decision-making as more specific insight can be retrieved from the cor-
responding data.

As this data also helps the model used in the logistic regression, better results can be ex-
pected there as well.
Another improvement for the second model is the use of a better computer and looking into
a more optimized code as it could improve the resolution time and allow a bigger amount of
iterations and chains for simulation, that in similar studies could improve the insight achiev-
able of some specific variables.

As a last thought, this thesis and project as a whole generated an impact, as many oth-
ers in the decision-making in times of crisis. COVID-19 impacted the whole world, and the
ability to react and create this kind of projects is truly remarkable.
As a future reference, not only this, but many other studies will help even better speeds in
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implementation, noting that the first weeks and months of crisis are key for the development
of the situation that the population is facing.
Therefore, future possible implementations of the models shown in this thesis, if in a similar
context, should seek a fast and flexible implementation, not only achieving better results,
but more importantly a possible even bigger impact in the world.
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Annexes

ANNEX A

Figure 2.1: List of Health Services
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Figure 2.2: Example of how solutions of the model were displayed
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Figure 2.3: Form filled with information of individuals
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ANNEX B

Figure 3.7: Baseline characteristics of samples recollected
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Figure 3.8: Baseline characteristics of samples recollected for Gran Santiago
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Figure 3.10: Ancud Urban Center Distribution

Figure 3.11: Antofagasta Urban Center Distribution
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Figure 3.12: Arauco Urban Center Distribution

Figure 3.13: Arica Urban Center Distribution
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Figure 3.14: Gran Concepción Urban Center Distribution

Figure 3.15: Copiapó- Tierra Amarilla Urban Center Distribution
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Figure 3.16: Coyhaique Urban Center Distribution

Figure 3.17: Iquique- Alto Hospicio Urban Center Distribution
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Figure 3.18: Los Ángeles Urban Center Distribution

Figure 3.19: Osorno Urban Center Distribution
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Figure 3.20: Punta Arenas Urban Center Distribution

Figure 3.21: Puerto Montt- Puerto Varas Urban Center Distribution
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Figure 3.22: Gran Rancagua Urban Center Distribution

Figure 3.23: San Felipe Urban Center Distribution
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Figure 3.24: Talca Urban Center Distribution

Figure 3.25: Gran Temuco Urban Center Distribution
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Figure 3.26: Valdivia Urban Center Distribution

Figure 3.27: Gran Valparáıso Urban Center Distribution
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Figure 3.28: Victoria Urban Center Distribution

ANNEX C

Figure 4.2: Variables July 2th most populated urban centers

48



Figure 4.5: Logit Results Gran Santiago
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Figure 4.8: Booster Logit Results Gran Santiago
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