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UN MODELO MORFO-CINEMÁTICO DEL MEDIO CIRCUMGALÁCTICO A ALTO
REDSHIFT CONSTREÑIDO CON ESTADÍSTICA DE LINEAS DE ABSORCIÓN EN

QUÁSARES

El medio circumgalacico (CGM) corresponde al gas que rodea una galaxia, pero sigue grav-
itacionalmente ligado a esta. Este componente es de suma importancia en el campo de evolución
galactica, ya que provee el combustible que lleva a las galaxias a la formación estelar. Las líneas de
absorción de Mg II en el espectro de QSOs proveen una forma de rastrear el gas frío en el CGM. En
esta tesis propongo un modelo morpho-cinemático para el CGM de un disco poblado de nubes in-
dividuales de Mg II que estén en rotación. Dado este modelo, género líneas sintéticas de absorción
de Mg II para constreñir el modelo propuesto, usando observaciones reales de líneas de absorción
de Mg II en espectro de QSO. Haciendo uso del ancho equivalente y su conocida dependencia con
el parámetro de impacto, constreñí los parámetros del modelo usando simulaciones Markov Chain
Monte Carlo (MCMC). Los resultados muestran que la distribución de nubes, modelada por el
parámetro volumetric filling factor, decrece con la distancia a la galaxia. Específicamente, una
función exponencial decreciente con un radio característico de r0 = 0.26Rvir puede explicar la
dependencia del ancho equivalente con el parámetro de impacto. Los resultados también mues-
tran que el tamaño de las nubes, csize, se relaciona con el alto del disco, h, de la siguiente forma:
h ≈ 6csize + 12. También, los resultados muestran que el disco tiene que tener una rotación sólida,
sin gradiente de velocidad en la componente vertical, para reproducir el scatter observado. En esta
tesis también calculé el pixel velocity two-point correlation function para el mejor modelo, para
diferentes ángulos azimutales e inclinaciones de la galaxia. Al comparar estos resultados con las
observaciones, se puede ver que el modelo puede reproducir la dispersión de velocidad observada
en líneas de visión que pasan cerca del eje mayor, donde esperamos encontrar rotación y acre-
ción. Sin embargo, produce dispersiones de velocidad menores a lo observado en líneas de visión
cercanas al eje menor, donde esperamos encontrar gas saliendo del CGM. Por lo tanto estos resul-
tados sugieren que al modelo le hace falta una componente de gas saliendo del disco para poder
reproducir la dispersión de velocidad observada.
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A MORPHO-KINEMATIC MODEL OF THE HIGH-REDSHIFT CIRCUMGALACTIC
MEDIUM CONSTRAINED BY QUASAR ABSORPTION LINES

The circumgalactic medium (CGM) is loosely defined as the gas that surrounds galaxies outside
the stellar disc, but is still gravitationally bound to the galaxy. The CGM is key to galaxy formation
and evolution, since it is the volume where galactic-scale processes meet in what is called the
"baryon cycle of galaxies". In summary, cold streams of fresh gas from the intergalactic medium
acquire momentum and eventually provide fuel for star formation, while processed gas is expelled
out in galactic-scale winds driven by supernova explosions and/or active galactic nucleus (AGN)
activity. Mg II absorption lines in the spectra of quasi-stellar objects (QSO) provide a sensitive
observational tool to trace the diffuse and cool gas present in the CGM; however, despite a wealth
of observational data acquired so far, not much has been proposed on modeling the CGM. In this
thesis I propose a morpho-kinematic model of a rotating disk-like CGM populated with individual
Mg II clouds. The model generates synthetic Mg II absorption lines that are used to recreate the
observed rest-frame equivalent width versus impact parameter relation and to constrain the model
via Markov Chain Monte Carlo simulations. The results are as follows: the distribution of clouds,
modeled by the volumetric filling factor, decreases as an exponential function with characteristic
radius, r0 = 0.26Rvir, i.e., ≈1/4 of the virial radius, the cloud size is correlated with the height
of the disk, the disc needs to have a solid rotation, with no vertical velocity gradient in order to
reproduce the large scatter observed in the equivalent width vs. impact parameter distribution. The
best-fit model is used to compute the pixel velocity two point correlation function for different
azimuthal angles and inclinations. By comparing these results with observations, it can be seen
that the model is able to reproduce the velocity dispersion in sightlines near the major axis, which
is where we expect to find accretion or rotation. However the model under-predicts the velocity
dispersion along the minor axis where we expect to find outflows. Thus the results suggest that in
order to reproduce the observed velocity dispersion along the minor axis, the model is missing an
out-flowing component.
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Si no estás dispuesta a seguir buscando la luz en los lugares más oscuros sin parar, incluso
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Chapter 1

Introduction

1.1. Motivation
In the Universe objects tend to group in structures, some of them are galaxies. Besides dark

matter, galaxies are made of baryonic matter, which, unlike DM, can be detected thanks to its
interaction with electromagnetic radiation, either in emission or in absorption. This is the only
direct constraint to test theoretical predictions on galaxy formation and evolution; therefore, it is
essential to understand galaxy-scale mechanisms involving transfer of baryonic matter to properly
interpret observations. Thus, studying such "baryon cycle" makes it possible to better understand
the processes leading to star formation, which is fueled by such baryons (Rees & Ostriker, 1977;
White & Rees, 1978), and therefore also galaxy evolution.

Beginning in the 1960s, multiple absorption lines by atomic transitions of heavy atoms ("met-
als") were recognized in the spectra of quasi-stellar objects (hereafter indistinctly called "quasars"
or "QSOs") at different redshifts (Bahcall & Spitzer, 1969). Today it is well established that such
lines are produced by the interstellar medium of galaxies and/or tenuous gas in the extended ha-
los of intervening galaxies (Bahcall & Spitzer, 1969; Behroozi et al., 2010). The discovery of gas
surrounding galaxies outside the interstellar medium (ISM) and surrounded by the intergalactic
medium (IGM), forced astronomers to define the notion of circumgalactic medium (CGM).

The CGM is a good place to start looking for answers to some of the questions that are still
remaining in the field of galaxy evolution (Tumlinson et al., 2017). For example, the problem of
the galactic. missing baryons, which arises from the fact that observations of baryonic matter in
late type galaxies only account for less than half of the baryons in the early universe (Behroozi
et al., 2010; McGaugh et al., 2010). By examining the baryonic gas in the CGM if we could find
those missing baryons. This would mean that half of the baryonic matter in galaxies resides in the
CGM (Zheng et al., 2015; Peeples et al., 2014).

Another question is how galaxies sustain their star formation, since the gas in their ISM can
last for only a small fraction of the time they have been forming stars (Peeples et al., 2014). One
possible explanation for this is that there is gas accreting into the ISM and a good place to look for
this gas supply is the CGM. In the same line is the question of how galaxies stop forming stars and
become passive and a possible explanation relies on the way the baryon supply is shut off from the
ISM into the IGM passing through the CGM.
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In order to corroborate these theories it is necessary to do an extensive study of the gas in the
CGM. During the last years there has been a lot of work in this area, specially with advances in
technology. From an observational point of view, there are bigger telescopes capable of detecting
fainter objects, higher resolution spectrographs, which are perfect to the study of the CGM, which
is very diffuse gas. With these new kind of observations comes the necessity to create new models,
capable of explaining them.

However, a theoretical framework is needed to put the wealth of precise observations of the
CGM in context. The main motivation for the present thesis comes in this context, in which there
seems to be few models to account for the large quantity of data available. Models allow one
to understand the processes occurring in the CGM which is fundamental to understand galaxy
evolution.

In the following sections I provide a summary of what we already know about the CGM (Sec-
tion 1.2), ways to observe the CGM (Section 1.3) and the content of the present thesis work (Sec-
tion 1.4).

1.2. The circumgalactic medium
The CGM is usually defined as the gas located outside the stellar disk but inside the virial radius,

where the virial radius corresponds to the. radius of a spherical volume which is sufficiently over-
dense to start collapsing to form a structure (see Figure 1.1) (Tumlinson et al., 2017). Thus, it can
be seen as the link between the IGM and the ISM, so if any material exchange occurs between these,
it necessarily needs to pass through the CGM. Even though models exist capable of explaining the
exchange of gas and stellar mass without defining a CGM (Bouché et al., 2010; Lilly et al., 2013;
Dekel & Mandelker, 2014; Somerville & Davé, 2015), nowadays most galaxy evolution theories
require some kind of material flow to explain the observations (Voit et al., 2015).

The CGM is known to be multi phase, meaning that different physical conditions (density and
temperature) are derived from observations of species with different ionization potentials. These
phases can be separated in three main groups:

• The hot CGM: T > 106K, highly ionized gas. It has been observed through emission lines
(Anderson & Bregman, 2010; Anderson et al., 2013; Bregman et al., 2018; Nicastro et al.,
2018) and absorption (Williams et al., 2005; Gupta et al., 2012; Nicastro et al., 2002).

• The cool CGM: T ~ 104K, moderately ionized gas. Mainly detected in absorption (Tumlin-
son et al., 2013; Martin et al., 2012; Chen et al., 2010a), but also in emission (Rubin et al.,
2011; Zhang et al., 2018). This thesis focuses on this phase using observations of Mg II

absorption systems towards background quasars.

• The cold CGM: T ~ 102K, mostly neutral gas. It has been observed in absorption (Steidel
et al., 2010; Rudie et al., 2012; Werk et al., 2013; Turner et al., 2014)

The CGM contains signatures of gas flow that drives the evolution of galaxies, this is why there
has been increasing interest in studying it, both observationally and theoretically, especially with
the advent of high-resolution spectrographs on 8-10m class telescopes. However, the spatial and
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kinematic structures of the CGM are still a topic of debate in the astronomical community, which
are the topics of the present thesis. The next sections address previous works, both on observations
and models, and give a general picture of the state of the art on this topic.

1.2.1. Baryon cycle

Currently, most theories assume that star-formation in galaxies is regulated by gas flows going
in and out at galactic scales (Tumlinson et al., 2017; Schaye et al., 2015; Oppenheimer et al., 2016).
Gas flowing into the galaxies provides the material necessary to maintain observed star formation
rates, while gas flowing out of galaxies regulates star formation.

Figure 1.1: Artistic representation of the current state of the art on the baryon
cycle. In orange we can see the outflowing structures and in pink we can see how
some of the outflowing material falls back onto the galaxy. In blue we can see the
gas being accreted into the ISM. In purple we see all the diffuse gas that composes
the CGM. Figure from Tumlinson et al. (2017)

The presence of inflows and outflows could lead to a process of gas recycling. This refers to gas
that has been expelled from the galaxy by outflows and can turn into inflowing gas. Simulations
suggest that this process is fundamental to explain galaxy evolution (Oppenheimer et al., 2010;
Ford et al., 2014; Christensen et al., 2016; Muratov et al., 2017) more so, it suggests that at z=0,
around 60% (Ford et al., 2014) of the gas that forms stars was in the CGM before, suggesting that
the matter responsible for forming stars comes from recycled gas in the CGM (Figure 1.1 in pink).
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To date, substantial evidence of outflows exists (see Veilleux et al. (2005), for a review). This
structure, as the name suggests, is responsible for expelling gas away from the galactic disk and
thus regulating star formation. The expelled gas could be responsible for enriching the CGM and
even the IGM; without such mechanism it would be impossible to explain the presence of metals
in the IGM (Hummels et al., 2013; Ford et al., 2013). Observations suggest that these outflows
are preferably located along the minor axis of the galaxies, suggesting a biconical outflow model
(Martin et al., 2012; Rubin et al., 2014). Figure 1.1 shows a simplified model of the CGM; it can
be seen that outflows, in orange, can reach a large distance from the galaxy.

On the other hand, in order to form stars, galaxies need to get fresh gas from the IGM; this
process is called accretion or inflows. Simulations (Kereš et al., 2005) have shown that the mor-
phology of accreted gas occurs in filaments of cold gas, parallel to the galactic disk,which is where
star formation occurs. Figure 1.1 shows this structure in blue. The problem with this model has
been its limited observational prediction power. The gas is quite diffuse and sometimes can be
obscured by outflows. For instance, using Mg II there have been evidence of larger velocity dis-
persion for edge-on galaxies along the major axis (Rubin et al., 2012; Nielsen et al., 2015), which
might be associated with cold accretion along the disk. However, to better understand the process
of accretion it is necessary to develop models that constrain other effects, like disk rotation, the
focus of this thesis.

The goal of the present thesis is to create a morpho-kinematic model for the cool gas in the
CGM. The model consists of a rotating disk, as suggested by some authors (Prochaska & Wolfe,
1997; Haehnelt et al., 1998; Ledoux et al., 1998) and is constrained by observational data (details
of which are described in the next section).

1.3. Advances in CGM science used in the present thesis

Emission line maps of the CGM are still challenging to get, because they look for photons
directly emitted by the CGM, which has very low densities, nH ~ 10−2 cm−1 or less, and emission
scales as n2. However, another technique to observe the CGM is using absorption against bright
background sources, like QSOs. This offers some advantages over emission line studies: (1) It is
sensitive to very low column densities, N ' 1012cm−2, (2) It can access a wide range of densities,
unlike emission line measurements and (3) detection limits do not vary with host galaxy redshift or
luminosity.

1.3.1. CGM in absorption

QSO absorption lines provide the majority of information available today to understand the
different structures in the CGM (Lanzetta et al., 1995; Chen et al., 1998; Churchill et al., 2000;
Nielsen et al., 2013; Prochaska et al., 2017; Chen, 2017). This powerful technique takes advantage
of the QSO light travelling to the Earth and being absorbed by the gas present in the intervening
CGM of galaxies close in projection (Figure 1.2). Thus, such QSO absorption line technique is
free of the usual dimming bias affecting galaxies in emission. Moreover, QSOs are good back-
ground sources because of their extreme luminosities, relatively flat spectral slopes, and relatively
featureless intrinsic spectra. This said, the main limitation for this technique is that it provides
a one-dimensional, projected, pencil-beam measure of the intervening gas, usually limited to one
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line-of-sight per galaxy given the rarity of background quasars.

Some efforts have been done to overcome this challenge. One way is to use extended back-
ground sources, like background galaxies (Rubin et al., 2010; Steidel et al., 2010; Lee et al., 2014;
Cooke & O’Meara, 2015) and more recently gravitational arcs (Lopez et al., 2018, 2020; Tejos
et al., 2021). These kinds of studies offer the advantage of having several sightlines per source,
which allows one to get a better understanding of the spatial structure of the CGM in a single
galaxy. However, with extended sources it is more difficult to get a sufficient SNR to get reliable
absorption detections.

Figure 1.2: Schematic representation of the QSO probing CGM technique. At the
top is a representation on how the light of the quasar travels towards the Earth
and encounters intervening gas in its way. At the bottom we see the QSO spectra
with several absorption resulting from the intervening gas. Most of the redshifted
transitions are by neutral hydrogen from the inter-galactic medium (forming the
so-called “Lyman-alpha forest” ). Some of them, though, are by metal lines, re-
vealing enriched material. Figure by Joe Liske.

Another technique used to study the CGM in absorption is using the absorbing galaxy as back-
ground source (so called "down the barrel" absorption). This technique uses the light of the own
absorbing galaxy to prove its own halo (Martin, 2005; Kornei et al., 2012; Bordoloi et al., 2011;
Rubin et al., 2014; Heckman et al., 2015; Kacprzak et al., 2014). The disadvantage of this method
is that the exact position of the absorber is uncertain, it could be at any distance from the center of
the galaxy. The same could be said about QSO absorption lines and extended sources, however we
can measure the projected distances, which gives us a proxy for real distance.

Thus, every technique to study the CGM has its advantages and disadvantages. In this thesis
I make use of the large amount of data available in QSO absorption line studies to constrain a
morpho-kinematic model of the CGM. I create synthetic observations of Mg II absorption lines,
given the model, and statistically compare these with real Mg II absorption lines in the spectra of
QSO.
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1.3.2. Mg II absorption data

Mg II is a very commonly used species to trace cool CGM gas (Bergeron & Boissé, 1991; Steidel
et al., 1994; Churchill et al., 2005; Chen et al., 2010a; Kacprzak et al., 2011). This species probe
photoionized gas with nH ≈ 10−1g cm−3 and T ≈ 104.5K. Mg II absorption is easily observed
in ground based telescopes in the optical range at redshifts 0.1 < z < 2.5, it has high cosmic
abundance and the resonant transitions Mg II 2796 and Mg II 2803 have large oscillator strengths
with 2-to-1 ratio, thus they are easy to identify in QSO spectra.

Figure 1.3 shows examples of Mg II(λ2796) absorption systems at high resolution (Keck/HIRES
spectrograph, R = λ/∆λ = 45.000) QSO spectra (Churchill & Vogt, 2001). They are plotted in
the rest-frame velocity scale, which converts the wavelength scale into a radial velocities according
to the Doppler effect around an arbitrary systemic redshift at v = 0 km s−1. Each absorption
system has vertical lines above, indicating the position of individual absorption components, thus
each system is composed of several individual absorbers that are at different velocities.
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Figure 1.3: A gallery of Mg II(λ2796) profiles as a function of rest–frame velocity.
The profiles are separated into subsamples (B, C, E and High redshift) and ordered
by increasing equivalent width. The rest–frame equivalent widths are labeled in
the lower corners of each subpanel and in Å units. Figure from Churchill & Vogt
(2001).

By using large surveys of Mg II absorption lines one could statistically study CGM properties.
There are two main ways in which Mg II absorption catalogs for high redshift galaxies are built
nowadays. The first type of catalogs selects bright QSOs with known Mg II systems first and then
looks for foreground galaxies at similar Mg II redshifts, which are potentially responsible for the
absorption (Guillemin & Bergeron, 1997; Steidel et al., 1994; Kacprzak et al., 2011). Such studies
commonly target the brightest galaxies close in projection to the QSO sightline and therefore may
result in biased galaxy populations. The second type of catalogs selects galaxy-QSO pairs without
prior knowledge of the presence (or not) of Mg II absorption lines, thus producing unbiased samples
(Chen et al., 2010a; Johnson et al., 2015; Huang et al., 2016; Lan & Mo, 2018; Martin et al., 2019).

The Mg II Absorber-Galaxy Catalog (MAGiiCAT)

Nielsen et al. (2013) presented a compilation of 182 galaxies (with spectroscopic redshifts) with
Mg II absorptions from their CGM within projected distances of 200kpc from background QSOs,
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called MAGiiCAT. This work is a compilation of several previous works (Steidel et al., 1994;
Churchill et al., 1996; Guillemin & Bergeron, 1997; Steidel et al., 1997; Chen & Tinker, 2008;
Barton & Cooke, 2009; Chen et al., 2010b; Kacprzak et al., 2010; Gauthier & Chen, 2011; Kacprzak
et al., 2011; Churchill et al., 2013), thus it mixes different selection criteria and observations with
a variety of spectral resolutions. The goal of MAGiiCAT is to have a large compilation of Mg II

absorption lines, where the host galaxy properties are standardized in the same system. They
do so by relying on the published observations and calculate new values according to the newest
cosmology. Table 1.1 shows a summary of properties of their sample.

Table 1.1: MAGiiCAT properties. Wr(2796)(Å): rest frame equivalent width of
Mg II(2796). zgal: redshift of the absorbing galaxy. d(kpc): impact parameter of
the sightline with respect to the galaxy. MB: absolute magnitude in the B-band.
MK : absolute magnitude in the K-band. LB/L∗B: B-band luminosity. LK/L∗K :
K-band luminosity. B −K: rest-frame color.

Property Min value Max value Mean value Median value
Wr(2796)(Å) 0.003 4.422 0.629 0.400
zgal 0.072 1.120 0.418 0.359
d(kpc) 5.4 193.5 61.1 48.7
MB -16.1 -23.1 -20.3 -20.4
MK -17.0 -25.3 -21.9 -22.0
LB/L

∗
B 0.017 5.869 0.855 0.611

LK/L
∗
K 0.006 9.712 0.883 0.493

B −K 0.04 4.09 1.54 1.48

The MAGiiCAT team have six papers published where they measure different Mg II systems
properties and their dependence with galactic properties. In this thesis I use the data published
by MAGiiCAT to constrain the rotating disk model of CGM. In particular I use their equivalent
width/impact parameters database, their pixel velocity two-point correlation function, and their
range of galaxy properties.

1.3.3. Equivalent width

One way to analyze Mg II absorption lines in the spectra of QSO is by measuring the rest frame
equivalent width (Wr), which provides a measurement of the strength of absorption, independent
of the spectral resolution and redshift. It is defined as the area of an absorption, under the nor-
malized continuum or as the width of a box from 0 to the continuum flux that has the same area
as the spectral line divided by (1 + zabs) (See figure Figure 1.4). If the absorbing clouds ("ve-
locity components") are resolved, this quantity depends on the number of atoms present in the
absorbing gas, which is characterized by the column density (i.e., the "curve of growth"; more on
column densities in Section 2.2 where I define how to model the absorption lines). On the other
hand, in low-resolution spectra Wr depends strongly on the line-of-sight velocity structure of the
(unresolved) individual components (See Figure 1.3).

Several studies show an anti-correlation betweenWr and impact parameter (d), i.e., the projected
distance from the QSO to the galaxy (Lanzetta & Bowen, 1990; Bergeron & Boissé, 1991; Bouché
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et al., 2006; Kacprzak et al., 2008; Chen et al., 2010a; Churchill et al., 2013). However there is a
very large scatter in this relationship. The source of this scatter could be due to: galaxy luminosity
(Kacprzak et al., 2008; Chen et al., 2010a), stellar mass or specific star formation rate (Chen et al.,
2010b), morphology (Kacprzak et al., 2007), or geometry and orientation (Bouché et al., 2012;
Kacprzak et al., 2011). In Churchill et al. (2013) they study the dependence of Wr on galaxy halo
mass. Using MAGiiCAT, they were able to establish that lower mass halos tend to produce lower
Wr than higher mass halos. Given that the mass is a big source of scatter in the Wr− d relationship
they decided to measure Wr vs. d/Rvir, since Rvir ∝ M1/3. They obtained the values of Rvir
for each galaxy in the sample using halo abundance matching and found out that the scatter was
significantly reduced in the Wr − d/Rvir plane.

Figure 1.4: Schematic picture of the two definitions of equivalent width. On the
left there is an absorption profile with the area under the continuum colored with
blue, this area would be the equivalent width if the flux is normalized. On the right
there is a rectangle with the same area, the width of this rectangle would be the
Wr. Picture from COSMOS - The SAO Encyclopedia of Astronomy

Figure 1.5 (from Churchill et al. (2013)) shows Wr values for the sample in MAGiiCAT with
respect to the impact parameter, d (panel (a) and (b)) and d/Rvir (panel (c)), with different colors
for halo mass bins. They performed a two-dimensional Kolmogrov-Smirnov (KS) test on the two
samples in panel (b) and ruled out the hypothesis that the two samples came from the same distri-
bution. In panel (c) they plotted the Wr vs. d/Rvir relationship and performed a BHB-τ test to find
out that Wr is anti-correlated with d/Rvir at a 8.9σ significance.
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Figure 1.5: Equivalent width vs. impact parameter for sample in MAGiiCAT.
Arrows show the upper limits of the sample, solid curve shows the fit and dashed
curve shows the 1σ envelope. (a) Wr vs. d for four different mass bins. (b) Wr vs.
d for two different mass bins. (c) Wr vs. d/Rvir for the same four mass bins as
panel (a). Figure from Churchill et al. (2013)

In this thesis work I use these results on Wr to constrain the model. The goal is to determine if
the simple morpho-kinematic model presented in this work is able to reproduce the same results.

1.3.4. Velocity Two-point correlation function

Due to the limitations in interpreting Wr in terms of the kinematics signature, many works study
the kinematics of Mg II absorption lines by calculating the two-point correlation function (TPCF)
(Sargent et al., 1988; Petitjean & Bergeron, 1990; Churchill et al., 1996; Churchill & Vogt, 2001;
Evans, 2011). Nielsen et al. (2015) uses the pixel velocity TPCF , which is a measurement of the
line-of-sight velocity dispersion of the absorbers and is computed by using the velocities of pixels
in regions of the spectrum where Mg II absorption is formally detected.

Nielsen et al. (2015) use MAGiiCAT data from which there is high resolution spectra available
(Keck/HIRES and VLT/UVES) to compute the pixel TPCF. The authors separate that sample in
different sub-samples according to azimuthal angle (α)and galaxy inclination (i). Both of these
properties are important to define where the absorber is located around the galaxy. By calculating
the TPCF for this sub-samples Nielsen et al. (2015) find differences in the velocity dispersion
(Figure 1.6) that could give us better understanding of the kinematic structures present in the CGM.

Table 1.2 shows the cut values Nielsen et al. (2015) use to define their sub-samples and the
amount of Mg II systems in each of them.
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Table 1.2: Sub-samples used in Nielsen et al. 2015. α is azimuthal angle and i is
galaxy inclination

Sub-sample Number of galaxies Cut value
Face-on 17 i < 57◦
Edge-on 13 i ≥ 57◦
Major-axis 15 α < 45◦
Minor-axis 15 α ≥ 45◦
Face-on & Major-axis 10 i < 57◦ & α < 45◦
Face-on & Minor-axis 7 i < 57◦ & α ≥ 45◦
Edge-on & Major-axis 5 i ≥ 57◦ & α < 45◦
Edge-on & Minor-axis 8 i ≥ 57◦ & α ≥ 45◦

After having the different sub-samples Nielsen et al. (2015) defines the regions of absorption
using the methods of Churchill & Vogt (2001). They pull out every velocity pixel in the absorbing
region for every spectra in the sub-sample and calculate the absolute velocity difference for each
possible pixel velocity pair. They bin up the pixel-velocity separations and normalize each bin by
the total number of pixel pairs in the sub-sample, thus the TPCF is a probability distribution. Each
bin has a width of 10 km s−1 which correspond to roughly one resolution element in UVES.

Figure 1.6 shows the TPCFs for the different sub-samples in Nielsen et al. (2015). In the top row
they compare the TPCF for face-on galaxies (blue) and edge-on galaxies (orange) at all azimuthal
angles (panel(a)), along the minor axis (panel (b)) and along the major axis (panel (c)). In the
bottom row they plot the TPCF for sightlines along the major axis (green) and along the minor axis
(pink) for all inclination (panel (d)), for edge-on galaxies (panel (e)) and for face-on galaxies (panel
(f)). The TPCF is represented by solid lines and the shaded regions represent the 1σ bootstrap
uncertainties for 100 realizations.

11



Figure 1.6: Pixel-velocity two-point correlation function (TPCF) for different
inclinations and azimuthal angles. Panels (a)-(c) show the TPCF for edge-on
(i ≥ 57°) and face-on (i < 57°) galaxies with sighlines with all azimuthal an-
gles, sightlines along the minor axis (α ≥ 45°) and sightline along the major axis
(α < 45°) respectively. Panels (d)-(f) show the TPCF for sighlines along the ma-
jor (α < 45°) and minor (α ≥ 45°) axis for galaxies with all inclinations, edge-on
(i ≥ 57°) galaxies and face-on (i < 57°) galaxies. All these panels include all
galaxy colors, B-K. The solid lines represent the TPCFs and the colored regions
are the 1σ bootstrap uncertainties. Each panel includes also a reduced χ2 value of
comparing the two TPCFs, and the degrees of freedom, ν. Figure from Nielsen
et al. (2015)

Nielsen et al. (2015) also study the TPCF for sub-samples of blue and red galaxies, to see how
the star formation rate could affect the velocity dispersion and study the column density values in
each sample. In this thesis work I only examine the dependencies on α and i. They find a larger
velocity dispersion for sightlines along the major axis of edge-on galaxies than for face-on galaxies
(Figure 1.6 panel (c)), they associate this with rotating gas whose line of sight velocity is maximized
for edge-on galaxies compared to face-on. They suggest that the velocity dispersion is larger for
sightlines along the minor axis of face-on galaxies than edge-on (Figure 1.6 panel b)because they
are observing bi-conical outflows into the flow as opposed to across, which will produces more
dispersion .

In summary Nielsen et al. (2015) indicate that the differences in the TPCF of edge-on vs. face-
on galaxies with sighlines along the major vs. minor axis are due to two main kinematic structures.
One is the rotating material along the disk plane of the galaxy and the other one is outflowing
material in the form of bi-conical outflows. The morpho-kinematic model presented in this thesis
consists of a single rotating disk with a vertical velocity gradient (See Chapter 2 for a full descrip-
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tion of the model) and it does not include any form of outflows.

1.4. This Thesis
In this thesis I present a morpho-kinematic model for the CGM. Using this model I create cata-

logs of synthetic Mg II absorption lines and compare them with the MAGiiCAT observational data.
The model consists of an extended and rotating disk of gas that is aligned with the galactic disk of
the host galaxy. The extended disk is populated with individual Mg II absorbing clouds having a
cloud distribution given by the filling factor. The rotation of such clouds proceeds in the plane of
the disk and has a vertical velocity gradient that makes clouds on the edge of the disk rotate slower
that clouds in the disk mid-plane. Model parameters are constrained by comparing synthetic and
observed equivalent width vs. impact parameter relation via MCMC minimization. In a second
stage, the fitted model produces a TPCF that is also compared with MAGiiCAT, but in a qualitative
fashion. By comparing the models TPCF with the results in Nielsen et al. (2015) I aim to see if the
rotating disk model is enough to explain the velocity dispersion we observe.

The goals of this thesis are:

1. Find whether a disk populated with individual Mg II clouds can reproduce QSO absorption
line observations.

2. Find whether a single rotating component in the CGM can reproduce the Mg II QSO absorp-
tion line statistics.

3. Fit the distribution of Mg II clouds and their filling factor to infer the covering factor of the
CGM.

4. Fit other model parameters like cloud size, the height of the disk and the velocity scale factor.

The rest of the thesis is structured as follows: In Chapter 2 the CGM model, the creation of
synthetic spectra and the creation of Wr catalogs are described. In Chapter 3 the methods used to
constrain the model against QSO statistics are shown. The results are presented in Chapter 4 and
later discussed in Chapter 5. This last chapter also contains the main conclusions and an outline of
possible future work.
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Chapter 2

Modeled data

Currently there are many spectroscopic confirmations of galaxies believed to host Mg II absorption
systems (Bahcall & Spitzer, 1969; Bergeron & Boissé, 1991; Lanzetta et al., 1995; Churchill et al.,
2000; Werk et al., 2014; Prochaska et al., 2017; Chen, 2017; Dutta et al., 2020) in their CGM.
In the current paradigm of galaxy evolution, this gas is believed to flow in and out of galaxies
(Tumlinson et al., 2017; Schaye et al., 2015; Oppenheimer et al., 2016) (See Subsection 1.2.1).
Some theories exist on how this process occurs, but there is no real consensus, especially in the
process of fresh gas flowing into galaxies. One theory establishes that the gas is distributed on a
disk that co-rotates with the galaxy (Prochaska & Wolfe, 1997), another one suggests that it has a
spherical shape (McDonald & Miralda-Escudé, 1999). In this thesis work I explore the scenario of
a rotating disk model, taking advantage of the large amount of Mg II absorption lines in the spectra
of QSO sightlines to constrain it.

To constrain the model I create synthetic observational data with groups of different representa-
tive absorption lines that can be compared with observational statistics. The model creates several
Mg II absorption lines which probe the CGM of different galaxy types, to simulate different proper-
ties found in observational catalogs. This chapter is divided into three different sections: a detailed
description of the model morphology and kinematics (Section 2.1), the procedure to create individ-
ual spectra from the model (Section 2.2), and how to produce groups of representative absorption
lines (Section 2.3).

2.1. The model
In this section I describe the morpho-kinematic model proposed in this work. This section

is divided into three subsections: the geometry of the model, the filling factor of Mg II and the
kinematics of the model.

2.1.1. Model geometry

The model geometry is based on a rotating disk. This choice is supported by several works
suggesting that this is the preferred geometry to explain Mg II QSO observations close to galaxies
(Steidel et al., 2002; Nielsen et al., 2015; Rubin et al., 2012; Christensen et al., 2016). The rotating
disk geometry is also supported by the finding of gas at large impact parameters with velocity
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corotating with the stellar disk (Barcons et al., 1995; Ho et al., 2017; Zabl et al., 2019).

Based on Steidel et al. (2002) and Ho et al. (2017), the model’s CGM disk is an extension of
the stellar disk of the galaxy which has a circular symmetry in the plane of the galactic disc. When
observing the galaxy perpendicular to this plane (face-on) we can see that the stellar disk has a
circular form. On the other hand, when observing the galaxy very near the edge of the disk (edge-
on), the stellar disk appears elliptical. This effect is defined by the inclination (i), which goes from
0◦ when the galaxy is face-on, to 90◦ when it is edge-on. For this model the CGM disk has the
same inclination as its host galaxy (See Figure 2.1 and a list with all geometrical parameters in
Table 2.1).

Another parameter to take into consideration is the thickness of the CGM disk (h) (see Figure
2.1). Steidel et al. 2002 show that, in order to reproduce velocity dispersions observed in Mg II

absorption line systems, the disk needs to be thick (≈ 30 − 40kpc) and/or have a vertical velocity
gradient. One of the goals of this thesis is to explore these parameters in more detail and constrain
them using the statistics of QSO absorption lines.

Since the objective of this model is to fit it to real QSO absorption line observations, it is also
necessary to define a background, point-like source. In the 2D plane of the sky, the QSO sightline
is seen like a point and its position relative to the galaxy is defined by two parameters: the impact
parameter (d) defined as the projected distance from the center of the galaxy to the sightline posi-
tion, and the azimuthal angle (α) which is the angle (measured clockwise) between the major axis
of the galaxy and the line connecting the galaxy center and the sightline position (see Figure 2.1
and Table 2.1).

(a) Plane of the sky view (b) Plane parallel to the sightline view

Figure 2.1: Model’s geometry, light blue represents the CGM disk and darker blue
represents the stellar disk. The yellow star and arrow represent the QSO sightline;
panel (a), black arrow represents the major axis of the galaxy. d is the impact
parameter, which is the projected distance between the center of the galaxy and
the sightline, α is the azimuthal angle, which is the angle between the major axis
of the galaxy and the line connecting the galaxy centre and the position of the QSO
on the sky, h is the thickness of the disk and i is the line-of-sight inclination of the
galaxy.
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To produce spectra that represent QSO sightlines in the 2D plane of the sky (d and α), as a result
of sightlines passing through a 3D representation of the CGM, there needs to be a 3D framework to
describe exactly where the sightline is crossing the gas, for any given CGM geometry. To this end
I use a 3D coordinate system. (Figure 2.2). The point (0,0,0) of this coordinate system is located
at the center of the disk. The x-axis is aligned with the mayor axis (but on top of the disk) and
the positive side of the x-axis is defined to be the one that has a redshifted velocity. As shown by
Figure 2.2 (a), the y-axis lays in the plane of the disk and Figure 2.2 (b) shows that the z-axis is
perpendicular to the plane of the disk.

Instead of modelling the entire disk and then creating spectra, the model is only computed where
the sightline intercepts the CGM. This saves a wealth of computational time. Given the observable
parameters in the plane of the sky, d and α; the geometrical parameters i and h; and the coordinate
system, it is possible to define the intersection between the sightline and the disk. Since the sightline
is perpendicular to the x-axis, by construction, the sightline position varies only along the y-axis
and z-axis, and is constant in the x-axis with a value of x0 (see Figure 2.2) (a)). The coordinates
(y,z) where the sightline enters and leave the disk can be calculated with the following formulas:

ymin = y0 −
h

2 tan(i) (2.1)

ymax = y0 + h

2 tan(i) (2.2)

where y0 is the perpendicular distance from the mid-plane z = 0 to the QSO sightline intersection.
y0 can be calculated as:

y0 = d sin(α)
cos(i) . (2.3)
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(a) x-y plane (Plane of the disk)

(b) y-z plane (Plane parallel to the sightline view)

Figure 2.2: Coordinate system of the model, light blue represents the CGM disk
and darker blue represents the stellar disk. Fig. (a) shows a sketch of the model in
the x-y plane or the plane of the disk. x0 is the x-coordinate where the sightline
intercepts the disk. vrot shows the direction of rotation of the stellar disk. Fig. (b)
is a sketch of the model in the y-z plane or side view of the disk. ymax and ymin
are the y-coordinates where the sightline enters and leaves the disk; and y0 is the
y-coordinate where the sightline intercepts the mid-plane of the disk.

In Table 2.1 there is a list of all geometrical parameters that were defined in this section. With
this 3D coordinate system in place, it is now possible to insert Mg II clouds into the disk model.

Table 2.1: Geometrical parameters of the model

Model parameters

Geometrical
Parameters

Inclination (i)
Height (h)

Impact parameter (d)
Azimuthal angle (α)
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2.1.2. Mg II clouds

It is known from the literature, specially from absorption line studies (Werk et al., 2013, 2014;
Tumlinson et al., 2013), that the cool CGM is not homogeneous, but is in fact composed of indi-
vidual absorbing gas clouds with different velocities (see Figure 1.3). This has also been observed
in the Milky Way and nearby galaxies (see Putman et al. (2012) for a review). A very important
parameter to understand how the CGM affects the galaxy is the distribution of these clouds in
space. My model assumes a disk morphology and in this section I explain how the gas clouds are
distributed inside the CGM disk.

Using the connection between the geometrical parameters and the physical coordinates of the
disk (Table 2.1), the Mg II clouds that constitute the CGM need to be included in the model follow-
ing a method that reproduces the observational structure of the CGM. As proxy for cloud "sizes",
I use resolution elements. The disk is separated into a 3D quadrangular grid where each cell is a
cube with edge size equal to csize in kpc units. Using Equation 2.1 and Equation 2.2 it is possible
to calculate all cells that are crossed by a sightline.

Figure 2.3 shows a schematic picture of how this grid system looks like. In red are all the
resolution elements that are probed by the sightline and therefore, where the model is computed.
Figure 2.3 (a) is a representation of the grid system in the plane of the disk. From this perspective
all cells that are probed by the sightline have x-coordinate equal to x0 and, depending on their z-
coordinate and y-coordinate, they are crossed or not by the line of sight. This effect is shown in the
side view of the disk in Figure 2.3 (b).
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(a) x-y plane (Plane of the disk)

(b) y-z plane (Plane parallel to the QSO sightline view)

Figure 2.3: Schematic picture of the grid used in the model. The volume of each
grid cell is csize x csize x csize. Red cells are the cells that are crossed by the
sightline, R is the 2-d distance from the center of the disk to the center of each
cell in the projected plane of the disk and z is the perpendicular distance from the
mid-plane of the disk (z=0) to the center of each cell.

Observations of QSO sightlines crossing the CGM of galaxies, inform us that not all sightlines
that cross near a galaxy produce absorption (Chen et al., 2010b; Huang et al., 2021). This feature is
commonly quantify in the literature by the "covering fraction" (fcov), which is defined as the frac-
tion of sightlines that have detected absorption versus the total, within a given impact parameter bin.
Given that observations are noisy, to define an absorption there needs to be a minimum detection
threshold. Above a certain equivalent width value, the sightline is considered to have an absorption
and below it, it is considered to have no absorption. This quantity is purely observational, but it
tells us something about the clumpiness of the CGM.

Thus, fcov is not always unity (Chen et al., 2010b; Huang et al., 2021). This implies that the
Mg II gas is clumpy, with some volumes devoid of detectable absorption at. given threshold. fcov is a
purely observational parameter. The physical parameter that describes clumpiness is the volumetric
filling factor (fv), which is defined as the percentage of volume in the CGM that actually produces
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absorption. In some cases a sightline crosses a volume of the CGM filled with Mg II and in other
cases it crosses an empty volume, explaining why the observable fcov is not always unity (Steidel
et al., 2002).

Observations suggest that fcov depends on the impact parameter. Consequently, the present
model assumes that fv depends on the (3D) distance to the galaxy, R (see Figure 2.3 (a)). In
reality, fv probably depends on the z position as well but this dependence is much harder to test
with observations and it would add more free parameters to the model. There also seems to be a
relationship between fcov and halo mass of the galaxy (Churchill et al., 2013); therefore, the model
fv depends on R scaled to virial radius in order to compare galaxies of different masses in the
model. Thus fv in the model is a function of R/Rvir.

The model allows one to control the physical parameter fv(R/Rvir). Looking at Figure 2.3,
each of the crossing cells (red cells) have two possible states; filled with Mg II gas or completely
empty. The state of each cell depends on fv, if fv = 1, at a certain R/Rvir distance, all cells are
filled with Mg II, if fv = 0.5, only half of the cells are filled with Mg II. It is important to mention
that since the model is defined in a 3D Cartesian grid, the volume unit in this case is a cylinder of
inner radius R− csize, outer radius R+ csize and height h. So, fv(R/Rvir) is actually a probability
function that defines the probability of having a Mg II cloud in a cell that is located at R/Rvir.

Each of the cells crossed by the sightline is randomly filled with a cloud using fv(R/Rvir). This
approach of randomly filling cells according to a probability function produces different absorption
profiles for the same set of parameters in the model, in the same fashion as we do not expect the
same absorption profiles in two galaxies of the same mass at the same impact parameter. Thus this
method is very useful to constrain a model with QSO statistics, because it adds some randomness
that we expect in real observations.

Figure 2.4 shows two examples of how the cells are populated according to different fv(R/Rvir)
values. Figure 2.4 (a) shows a plot of the two different fv vs. R/Rvir, one is an exponential and
the other one is a step function with fv = 1 for R/Rvir ≤ 0.7. Panel (b) shows a schematic picture
on how would the plane of the populated disk look like with the two examples of fv(R/Rvir) and
panel (c) shows a side view of the two different disks. This figure shows two possible distributions
for Mg II clouds inside the disk. In Chapter 4 I explore how different distributions result in different
statistics for QSOs and I present a function that is capable of reproducing the QSO statistics.
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(a) Two different examples of possible filling factors.

(b) Plane of the disk view of two models with different filling factors.

(c) Side view of the disk of two models with different filling factors.

Figure 2.4: Schematic picture of two different fv(R/Rvir). (a) Shows a plot of the
two different filling factors, a step function fv(R/Rvir) (pink) and an exponential
fv(R/Rvir) (green). (b) Schematic picture of how would the plane of the disk look
like with the two different fv(R/Rvir). Circles are used to show which cells are
filled with Mg II. Black dotted circles show a distance of R = 0.7Rvir from the
center of the galaxy and blue dotted circles show a distance of R = Rvir from the
center of the galaxy. Left panel (with pink circles) shows the CGM disk for the
step function fv(R/Rvir), right panel (with green circles) shows CGM disk for an
exponential fv(R/Rvir). (c) Schematic picture of how the side of the CGM disk
would look like with the two different filling factors. Right picture is for the step
function filling factor and left is for the exponential.21



Table 2.2 shows a list of the parameters that define the process of placing the individual Mg II

clouds in the CGM disk.

Table 2.2: Cloud parameters

Model parameters

Mg II clouds
Grid size (csize)

Virial radius (Rvir)
Filling factor (fv(R/Rvir))

2.1.3. Cloud kinematics

Clearly, the velocity field of the individual clouds affects the final Mg II absorption profile. After
placing the clouds within the grid, it is necessary to calculate their velocity. If a sightline crosses
different clouds with different velocities the final spectra are composed of various absorption lines
centered at different wavelengths. If the cloud is moving away from us, the cloud is redshifted with
respect to the redshift of the host galaxy, and blueshifted if the cloud is moving towards us. We
know from observations that in fact QSO sightlines cross different clouds with different velocities
because we can observe different components at different wavelengths (see Figure 1.3).

The kinematic model used in this work is the same as in Steidel et al. (2002). In that model the
velocity of the Mg II clouds depends on the measured circular velocity at the mid-plane (vc) and the
distance from the plane z=0 to the cloud (z). The rotational velocity of a cloud within the plane of
the disk is given by:

vcir(R, z) = vc(R)exp(−z
hv

), (2.4)

where vc is the velocity of rotation of the disk and hv is the velocity scale height.

Observations of rotation curves in nearby galaxies show that the maximum velocity, vmax, is
already reached at distances of the order of 100 pc away from the center of the galaxy (Sofue &
Rubin, 2001). Thus, when probing the CGM (distances 7kpc ≤ d ≤ 200kpc), the velocity of
rotation vc is equal to vmax. Thus the only parameter that affects the velocity of the clouds is the
velocity scale height, hv, which affects vcir depending on the distance from the mid-plane of the
disk to the cloud, z. Figure 2.5 shows vcir in terms of vmax as a function of z/h, for three different
hv values. z = 0 represents the mid-plane of the CGM disk. It can be seen that clouds at higher
distances from the mid-plane of the disk rotate slower and that this decrease is faster for lower
values of hv.
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Figure 2.5: Plot of the circular velocity, in terms of the maximum velocity of
rotation, of a cloud with respect to the distance to the mid-plane of the disk. y-axis
shows z values, where z=0 is the mid-plane of the disk, black dotted line. Color
lines show the velocities for three different hv values.

Equation 2.4 defines the real velocity of the clouds in the plane of the CGM disk. In order
to generate synthetic spectra the velocities of the clouds need to be projected along the sightline.
Using Equation 2.4 and the transformations defined in Section 2.1 the projected velocity along the
sightline (vLOS) for a cloud is given by:

vLOS = vmaxsin(i)√
1 + (y/d)2

exp(−|y − y0|
hvtan(i) ) (2.5)

where i is the inclination of the disk, y is the position of the cloud in the y-axis, d is the impact
parameter of the QSO sightline, y0 is the position in the y-axis where the sightline crosses the
mid-plane (Equation 2.3) and hv is the velocity scale height.

Table 2.3 shows a list with all the parameters that define the kinematics of the clouds. Given all
parameters defined so far, it is possible to create the synthetic spectra.

Table 2.3: Velocity parameters.

Model parameters

Cloud kinematics
maximum velocity of rotation (vmax)

velocity scale height (hv)
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2.2. Absorption line spectra
This section illustrates the process of creating synthetic spectra given the model described in the

previous section.

An atomic absorption line is described by a Voigt profile. This profile is the result of two
broadening mechanisms working together, Doppler broadening and pressure broadening, the final
profile is a convolution of both (Mitchell, 1971). The Doppler broadening is modeled by a Gaussian
profile and is produced by the random motion of particles that depends on the gas temperature and
the velocity of individual atoms or molecules in the gas. The parameter that characterizes this
effect in the final spectra is the Doppler parameter (b) and it is measured in km s−1. On the other
hand the final spectra also are affected by the quantity of absorbing material, this is called pressure
broadening and it is modeled as a Lorentzian profile. This profile is parameterized by the column
density (N ), which is the number of absorbers per unit area, with unit cm−2.

Figure 2.6 shows a Gaussian profile, a Lorentzian profile and a Voigt profile, all normalized to
unity area and having FWHM = 1. The Gaussian profile shows a narrower shape than the Lorentzian
and the Voigt profile is the convolution of both.

Figure 2.6: Plot of three different profiles that characterize an absorption line.
Blue: Gaussian profile, which models the Doppler broadening of the random mo-
tion of the gas. Orange: Lorentzian profile that models the pressure broadening.
Green: Voigt profile, which is the convolution of the two previous profiles and
shows the form of the final absorption profile. All these profiles are normalize so
that the area under the curve is equal to 1 and with FWHM = 1

In this thesis the procedure to generate the actual absorption profiles, is based on the software
BayesVP for Voigt profile fitting (Liang & Kravtsov, 2017). There are three parameters that affect
the shape of the absorption, N , b, and the redshift, zabs, which indicates the line centroid. zabs is
usually a combination of two different redshifts, zcosmological and zdoppler. The first one is the shift
produced in the wavelength of the absorption due to the elongation of the wave traveling trough
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an expanding space. On the other hand, zdoppler depends on the motion of the object, in this case
it shows the effect of vLOS (Equation 2.5), which is the velocity of the individual clouds. In this
model I assume zcos = 0 and take into account zdoppler only.

The spectrum can be normalized, which means that the flux is re-scaled so that the continuum
(wavelengths at which no absorption is detected) the flux is equal to 1. All synthetic spectra in the
model are normalized. The final flux is the exponential of the negative optical depth (τ ):

F (λ|N, b, zabs) = e-τ(λ) (2.6)

where τ is modeled as a Voigt profile and is calculated as follow:

τ(λ|N, b, zabs) = Nσ0foscΦ(λ|b, zabs) (2.7)

where N is the column density, σ0 is the cross section (σ0 =
√
πe2

mec2 , where e is the charge of the
electron, me is the mass of the electron and c is the speed of light), fosc is the oscillator strength
(Morton, 2003), Φ is the Voigt function, λ is the wavelength, b is the Doppler parameter and zabs
is the Doppler redshift. This work focuses only on the Mg II 2796 transition, thus some of the
parameters needed to produce the absorption are constant for all the individual clouds. Table 2.4
shows a list of all the atomic constants and their value.

Table 2.4: Atomic constants

Value Units
e 1.602× 10-19 C
me 9.109× 10-31 kg
c 299792.45 km s−1

λ0 (Mg II2796) 2796.352 Å
fosc (Mg II 2796) 0.6155 dimensionless
Γ× 108 (Mg II 2796) 2.612 sec−1

With Equation 2.7 I can calculate the flux produced by each cloud crossed by the sightline in
a range of λ, this range is chosen so that all the absorption is sampled. In Figure 2.7 there is an
example of different Mg II 2796 absorbing profile. The aim of this figure is to show the effect of
the parameters N and b in the final absorption. Figure 2.7 (a) shows three different profiles, all
with b = 7 km s−1, centered at 2796Å and three different N . Figure 2.7 (b) shows three different
profiles with N = 1014 cm−1 and three different b.
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(a) Effect of having three different column densities N . All absorp-
tion lines have a Doppler parameter of b = 8km s−1 and are centered
at 2796Å.

(b) Effect of having three different Doppler parameters b. All absorp-
tion lines have a column density of N = 1014 cm−1 and are centered
at 2796Å.

Figure 2.7: Plots of different Mg II 2796 absorption profiles calculated with Equa-
tion 2.7. Panel (a) shows the effect of changing the column densityN and panel (b)
shows the effect of changing the Doppler parameter b for. optically thick systems.

Table 2.5 shows a summary of all parameters of the model that where explained in last Sec-
tion 2.1, plus the free parameters to produce the absorption profile. It is important to mention that
zabs is calculated from the velocity of the sightline (Equation 2.5) this is why it does not appear in
this table.

One sightline can cross several clouds when intersecting the CGM (see Subsection 2.1.2); con-
sequently, this produces several different Voigt profiles. Thus a final spectra will be composed of
several individual absorption lines. Figure 2.8 shows an example of a 3-components (3 clouds)
spectrum. The individual cloud parameters are indicated in the legend. In the figure the flux is
shown as a function of velocity, where v = 0 is arbitrarily centred on the second component.
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Table 2.5: Summary of all parameters necessary to produce a Mg II absorption
profile given this model.

Parameter

Geometrical parameters

Inclination (i)
Height (h)
Impact parameter (d)
Azimuthal angle (α)

Mg II clouds
Grid size (csize)
Virial radius (Rvir)
Filling factor (fv(R/Rvir))

Cloud kinematics
Maximum velocity (vmax)
Velocity scale height (hv)

Absorbing parameters
Column density (N )
Doppler parameter (b)

Figure 2.8: Plot to show the effect of adding the absorption lines of different clouds
to produce the final absorption profile. In blue are three individual profiles, all with
b = 8km s−1, different N and different velocities. In red is the total absorbing
profile, resulting from adding the three individual profiles.

Finally, to compare synthetic and observed spectra one needs to take into account the instrument
profile of the observations. The so called "Line Spread Function" (LSF) is a model of the spectro-
graph’s response to a monochromatic light source. It is defined as the (observed) spectrum of an
infinitely thin spectral line ("real" spectrum). The width ∆λ of the LSF is called the spectral reso-
lution, and it can be expressed in wavelength or velocity units. The dimensionless quantity λ/∆λ
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is called the "resolving power" (R). Thus, the net effect of a spectrograph is to broaden all spectral
features due to the finite resolution of the instrument. This is usually modeled as a convolution
between the real signal and the LSF. A commonly used LSF is a Gaussian with kernel = ∆λ.

Figure 2.9: Plot to show the effect of different spectral resolutions. Red is the
real spectrum, blue shows how the spectrum would look like with a spectrograph
with resolution R = 45000, orange shows how the spectra would look like with
R=10000 and green line shows how the spectrum would look like with a spectro-
graph with resolution R = 4000.

Figure 2.9 shows the effect of different spectral resolutions. The red line is the real spectrum (as
Figure 2.9). The blue line is the observed spectrum at high resolution (R = 45 000), orange is with
medium resolution (R = 10 000) and the green line is the low resolution version (R = 4 000). It can
be seen that for high resolution the individual absorption profiles can still be resolved. However,
in the low resolution spectrograph, the absorption system looks like a single very broad absorbing
profile, therefore unresolved. During this thesis work, every spectra I produce with the model has
R = 45 000, which is the spectral resolution of the UVES instrument.

So far I have explained the process of creating the individual spectrum of a QSO sightline
crossing the CGM and defined all the parameters of the model. In the next section I explain the
procedure of assigning a value to those parameters in order to create realistic synthetic catalogs to
be compared to the data.
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2.3. Synthetic catalogs of spectra

To fit model parameters, MAGiiCAT is used, hereafter "the Mg II Absorber-Galaxy Catalog".
This is one of the most complete, but heterogeneous, Mg II catalogs available in the literature,
including systems associated to a wide range of galaxy types and properties. Such diversity can be
used to fit more realistic models.

MAGiiCAT is a compilation of 182 isolated (meaning no other spectroscopically identified
galaxy within a projected distance of 100kpc and a sightline velocity separation of 500 km s−1)
galaxies with associated Mg II absorption lines in the spectra of background quasars. The Absorber-
galaxy pairs in MAGiiCAT are a compilation of Mg II absorbers found in other works (see Table
1 in Nielsen et al. (2013)), thus there is a mix of different spectral resolutions. All these galaxies
have a spectroscopic redshift between 0.07 ≤ z ≤ 1.1 and a quasar at an impact parameter of
d ≤ 200kpc. (For more properties of the MAGiiCATs sample see Table 1.1)

The model has 4 free parameters (fv(R/Rvir), csize, h and hv) (Table 2.5) and galaxy parameters
that are chosen according to MAGiiCATs ranges. To fit the free parameters one needs to produce
synthetic catalogs that are comparable to the real catalogs. When running the model several times
to produce many individual spectra (details in Section 2.2) it is necessary to assign a value to each
of the parameters in the model (See Table 2.5 for a summary of the parameters) each time the
model runs, to simulate the different kinds of galaxies that exist in the universe. Some parameters
are observable, meaning that it is possible to obtain them from real observations. For those kinds
of data I assume a distribution from the literature. The other parameters are specific to this model,
thus it is not possible to observe them, and I consider them as free parameters of the model. In
Table 2.6 there is a list with all the observable parameters and their assumed distribution and all the
free parameters.

Based on the model description in Section 2.1, there are four groups of parameters and in this
section I summarize previous observations that guide the choice of parameters distributions when
creating my synthetic catalogues. This section is divided as: galaxy geometrical parameters (Sub-
section 2.3.1), Mg II clouds (Subsection 2.3.2), velocity parameters (Subsection 2.3.3) and absorp-
tion parameters (Subsection 2.3.4).

2.3.1. Geometrical parameters

This group of parameters are the ones that define first, the position of the QSO sightline with
respect to the galaxy and secondly, the geometry of the disk model. The inclination determines how
the sightline intercepts the disk, the impact parameter and azimuthal angle determine the position
of the QSO sightline with respect to the disk and the height of the disk is a parameter particular to
the chosen geometry.

For the inclination (i) of the disk, which is considered here to be the same as the host galaxy,
there is no information available, because there is no HST data for the sample in MAGiiCAT. To
circumvent this problem, one can assume that the distribution of inclinations in MAGiiCAT is
random. Random disks in the sky are distributed according to sin(i) and the distribution of sin(i),
fy, with y = sin(i) is (Ho & Turner, 2011; Lopez & Jenkins, 2012):
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fy(y)dy = y√
1− y2 (2.8)

To create the synthetic catalogs I use fy to generate random values in each iteration of the model,
to sample from a realistic distribution of random inclinations. This distribution implies that disks
with higher inclinations, i.e., close to edge-on, are more probable than face-on disks. Figure 2.10
shows a plot of the used distribution for sin(i).

Figure 2.10: Distribution of sin(i) used to create the synthetic catalogs. fy is
the distribution of sin(i) assuming a random distribution for inclinations of disk
objects. Figure from Lopez & Jenkins (2012).

To create impact parameters, I randomly draw them from the distribution provided by MAGi-
iCAT (See Figure 2.11). This ensures that the synthetic data has the same distribution as the ob-
servations, which is a better approach than simply assuming a uniform distribution in the sky.
Figure 2.11 shows an histogram with all the impact parameters in MAGiiCAT. Data for the az-
imuthal angles of their sources was not published, however in MAGiiCAT V they state that there
is no bias in the azimuthal angle distribution of their sample, so it seems safe to assume a uniform
distribution for α.
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Figure 2.11: Distribution of impact parameters present in the MAGiiCAT sample.

2.3.2. Mg II clouds

The filling factor defines how the individual Mg II clouds are distributed in the gaseous disk. The
grid size, csize, determines how many clouds are placed in the model CGM. A large csize means
fewer clouds and a very fine csize means more clouds. On the other hand, the virial radius is a
characteristic of the host galaxy, which is an input for the filling factor. The filling factor is a very
important parameter as it defines the density of clouds within the CGM. In this section I explain in
detail how to assign values to these parameters when creating the synthetic catalogs.

The grid size is specific to this model so csize is left as a free parameter when creating the
synthetic catalogs. The filling factor is a function, that for this work depends on R and Rvir (See
Subsection 2.1.2). This function could have any shape in principle. There is very little literature on
this function (Stern et al., 2016); thus, here it is considered a free parameter. In Section 4.1 there is
an analysis on the shape of fv(R/Rvir).

To estimate a distribution of virial radii I assume a spherical collapse model, which assumes
that structures in the Universe form from the collapse of high density dark matter regions. They
form the so called virialized structures or dark matter halos. The dark matter halo radii follows (Mo
et al., 1998):

Rvir = 0.1vmaxH(z)−1, (2.9)

where H(z) is the Hubble parameter at redshift z and is calculated using a ΛCDM cosmology with
the following cosmological parameters: H0 = 70kms-1Mpc−1, Ωm = 0.3, and ΩΛ = 0.7. Here
z = 0.66 is the median redshift in MAGiiCAT. The values of vmax vary from galaxy to galaxy; in
the next section there is an explanation on how to obtain this value.

2.3.3. Velocity parameters

Two parameters characterize the kinematics of gaseous disks: the maximum velocity of rotation
of the disk and the velocity scale height (See Equation 2.4).
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vmax is not the same for all galaxies. To make sure the model is sampling a realistic distribution
of galaxy masses, I draw vmax randomly from the distribution in Zwaan et al. (2010). These authors
measure the distribution of rotational velocities and fit it with a Schechter function (Figure 2.12).
Given this distribution each sample in the synthetic catalog gets assigned a random vmax. With this
value I also calculate Rvir using Equation 2.9.

Figure 2.12: Schechter function that characterises the distribution of maximum ve-
locities of rotation for stellar disk galaxies in the low redshift Universe for different
inclinations. Figure from Zwaan et al. (2010).

Finally, the velocity scale height, hv, which relates the maximum velocity to the height of the
disk, is left as a free parameter.

2.3.4. Absorption line parameters

Not all Mg II clouds have the same column density and Doppler parameter. These parameters
are drawn randomly from the observed distributions in Churchill et al. (2020). Such distributions
result from fitting Mg II Voigt profiles in 249 high resolution quasar spectra (from Keck/HIRES
and VLT/UVES) having a total of 2989 different Mg II components. Figure 2.13 (a) shows a plot
with the N distribution obtained in Churchill et al. (2020). Figure 2.13 (b) shows a plot with the b
distribution obtained in Churchill et al. (2020).
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(a) (b)

Figure 2.13: Data from Churchill et al. (2020) Panel (a): Mg II column density
distribution from Voigt profile fitting. (b) Mg II Doppler parameter distribution
from Voigt profile fitting.

It is important to mention that the distributions in Figure 2.13 result from every single Mg II

absorbing profile found in high resolution QSO spectra. I cannot confirm that all those absorption
systems came from the CGM of a single galaxy. Also, I cannot discard that there is a dependence
of N and/or b with some galactic property. Thus, this model assumes that the N and b distributions
are the same regardless of galaxy types and through the entire CGM disk, which is not necessary
correct.

Table 2.6 shows a list with all the parameters of the model, in yellow are all free parameters and
in blue the ones that are drawn from assumed distributions. In the last column there is the method
used to assign those values.
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Table 2.6: All model parameters and the method used to assign their values in the
individual spectra of the synthetic catalog. In blue are the parameters that take
values from a distribution in the literature. In yellow are the free parameters of the
model.

Parameter Synthetic catalog value

Inclination (i) Distribution of disk objects inclinations
(Ho & Turner 2011)

Height (h) Free parameter
Impact parameter (d) Distribution from MAGiiCAT (See Fig-

ure 2.10)

Geometrical parameters

Azimuthal angle (α) Assume homogeneous distribution
Cloud size (csize) Free parameter
Volumetric filling factor
(fv)

Free parameter

Cloud parameters Virial radius (Rvir) Calculated from vmax assuming a
spherical collapse model (See Section
2.3.2)

Maximum velocity (vmax) Distribution function of rotational ve-
locities (Zwaan et al. 2009)

Velocity parameters
Velocity scale height (hv) Free parameter
Column density (N ) Distribution from Churchill et al. 2020

(See Figure 2.12)
Absorption parameters

Doppler parameter (b) Distribution from Churchill et al. 2020
(See Figure 2.12)
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Chapter 3

Model comparison with QSO statistics

The procedure detailed in Chapter 2 allows me to produce catalogs of synthetic Mg II absorption
lines, given rotating disk model for the CGM, with properties similar to MAGiiCAT. In this Chapter
I explain how to constrain the model using MAGiiCAT data through two different diagnoses: the
equivalent width vs. impact parameter relation (Section 3.1) and the pixel velocity two-point cor-
relation function (Section 3.2). To find the posterior distributions of free parameters I use Markov
Chain Monte Carlo (MCMC) (Section 3.3).

3.1. Equivalent width vs. impact parameter

Several studies observe an anti-correlation between Wr and impact parameter d (See Subsec-
tion 1.3.3), meaning that sightlines crossing at larger distances from the host galaxy tend to produce
weaker Mg II absorption lines. Figure 3.1 shows a sample of several Mg II detections and Wr upper
limits as a function of impact parameter. The points show data in MAGiiCAT and the two lines
show fits using two different catalogs, black line is for MAGiiCAT and green line is for Chen et al.
(2010a).
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Figure 3.1: Wr − d relation. Blue points show Mg II detections that are included
in MAGiiCAT, white points with arrows show upper limits, solid black line shows
the best fit for MAGiiCAT data of a fixed form, dashed black line show the 1σ
uncertainty of the fit and green line shows the best fit power-law using Chen et al.
(2010a) sample. Figure from Nielsen et al. (2013).

To get the Wr value for a synthetic spectrum, first I need to select the range of the spectra where
absorption in formally detected, called kinematic subsystems. Since the spectra in my model are
noise-free and already normalized, the kinematic subsystem is in the range of λ where the flux
is < 1 (the grey regions in Figure 3.2). To calculate the area under the absorption I just sum the
value of 1-flux in each spectral pixel and multiply it by the pixel size in Å, which in this case
is selected to match UVES resolution, although it does not matter because Wr is independent of
spectral resolution. I do not need to divide these value by (1+z), because the synthetic spectra are
already at rest-frame, which means are already independent of redshift.

Figure 3.2 shows ten examples of synthetic spectra. The black lines represent the fluxes and the
grey areas show the kinematic subsystems. All of these absorption profiles are generated using the
same model parameters, but with different impact parameters (d). Each panel of the plot shows
the value of d and Wr. The spectra are generated in the rest-frame, thus they are centered at the
rest-frame wavelength of Mg II(2796). The spectra look realistic (Figure 1.3), except for the fact
that they are noise-free.

The total Wr depends on the actual number of clouds and intrinsic kinematics along the sight-
lines. Considering the model, the number of clouds can depend on many parameters; the incli-
nation, the height (h), the position of the QSO sightline with respect to the galaxy, the grid size
(csize), the virial radius and the filling factor (fv(R/Rvir)). Among these parameters the ones that
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are not taken from a fixed distribution, hence they can vary from model to model, are: h, csize and
fv(R/Rvir). The kinematics can vary from model to model by changing the velocity scale height
(hv).

In summary all model free parameters affect Wr. Even more, they could affect the model’s
Wr − d/Rvir relation. I use this relationship as a diagnostics for the model, i.e., the model relation
is compared with the observational relation.

The observational Wr − d/Rvir obtained from MAGiiCAT, shows a dependence of Wr with
d/Rvir, where sighlines that are closer to the galaxy tend to show larger Wr. This observed feature
is used to constrain the model using MCMC, more on this technique and how to apply it to this
specific problem in Section 3.3.
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Figure 3.2: Example of absorption profile produced by the model plotted in the
rest-frame velocity scale. Each panel shows a different possible synthetic spectra
that can come out of the model at a given impact parameter. Solid lines are the
profiles and grey areas represent the kinematic subsystems. Each panel shows the
rest-frame equivalent width, these values are in Å, produced by each absorption
profile. It can be seen that smaller d tend to produce larger Wr.
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3.2. Two-point correlation function

The number of sightlines Nielsen et al. (2015) have for each sub-sample they use to calculate the
TPCF is variable. The larger sub-sample consists of 17 spectra (See Table 1.2). To make sure that
the models produce enough data to show a trend in each sub-sample I generate 30 sightlines per
sub-sample. This is almost twice the largest sample in MAGiiCAT, which ensures that the model
TPCF shows a realistic trend for each sub-sample.

Once all the sub-groups are created, I can compute the TPCF for each of the sub-samples. To
calculate the TPCF for a given sub-sample first I need to obtain the velocities of all pixels where
Mg II absorption is formally detected (kinematic subsystems) for each spectra in the sub-sample.
For the synthetic spectra, the kinematic sub-systems are defined as the range of wavelengths or
velocities where the flux is < 1 (grey areas in Figure 3.2).

With the kinematic sub-systems defined for the synthetic spectra I pull out every velocity pixel in
the kinematic sub-system for every spectra in a sub-sample. Then I calculate the absolute difference
between every possible pixel pairs to get ∆vpixel. I bin up these pixel velocity separations in bins of
10 km s−1 (same as in Nielsen et al. (2015)) and normalize each bin by the number of pixels pairs
in the sub-sample, for comparison between sub-samples. If the TPCF shows a larger probability
towards larger ∆vpixel for a given sub-sample of spectral lines, it means that such sub-sample has a
larger velocity dispersion.
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Figure 3.3: Example of TPCFs for two different samples of spectra. Each sample
has five different spectra. The top five panels on the left show the three different
spectra in the first sample. They are plotted on a rest-frame velocity scale. First
five plots on the right show the three spectra for the second sample, plotted on a
rest-frame velocity scale. Bottom panel on the left shows the TPCF for the first
sample and bottom panel on the right shows TPCF for the second sample. x-axis
in TPCF plots show velocity absolute difference, y-axis shows the probability of
having two absorption pixels with a given velocity absolute difference.

40



Figure 3.3 shows an example of two TPCF for two different sub-samples. Using the sample of
model spectra showed in Figure 3.2 I separated it in two sub-samples, one with d < 50kpc and
another with d > 50kpc. Figure 3.3 shows the two sub-samples and the resulting TPCF for each. It
can be seen that for d < 50kpc the TPCF shows a wider distribution towards larger ∆vpixel values,
thus that sample has a larger velocity dispersion.

The same is done for the synthetic spectral sample resulting from the best fit model according
to Wr − d/Rvir relations for the same sub-samples as in Nielsen et al. (2015) (See Table 1.2). The
idea is to see for which sub-samples the best fit model is able to reproduce the observed velocity
dispersion. These results are shown in Section 4.4.

3.3. Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) is a very used tool in Astronomy and other fields to do

comparisons between models and observations. In this thesis work I use MCMC to find a range of
free parameter values of the rotating disk model (the height of the disk (h), the grid size (csize), the
filling factor (fv(R/Rvir)) and the velocity scale height (hv)), that can reproduce QSO statistics,
given MAGiiCAT data.

MCMC makes use of the Bayes theorem to find the joint posterior distribution (PDF), which
describes the probability of having an event A occur once event B has already occurred:

P (A|B) = P (B|A)P (A)
P (B) , (3.1)

where P(A|B) is the posterior distribution, P(B|A) is the likelihood, P(A) is the prior distribution of
A and P(B) is the probability that B has occurred.

If A is the model, and B is the data, the PDF tells us the probability of the model given the
measured data. The likelihood (L ) is a way to measure how well does the model reproduce the
observations, the prior is the probability of the model in the absence of any new data and P(B) is
the probability of the data, which is called the evidence. For model inference, Bayes theorem can
be written as:

PDF ∝ L × Prior, (3.2)

where the P(B) term is encoded in the proportionality, due to the fact that the PDF equation has to
equal 1 (as we are determining a probability).

MCMC uses walkers that move through the parameter space to efficiently map the PDF. At each
step it evaluates L and decides how to keep moving depending on the value, in such a way that
the probability to be at a point is proportional to the PDF. After the run it multiplies the resulting
probability with the Prior to get the final PDF. There are several ways in which MCMC can
handle the process of proposing a new position. The most common one is called Metropolis-
Hastings algorithm, in which the new position is draw from a Gaussian distribution centered at the
old position.

The way in which MCMC works is the following:
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1. Select a random initial position in the model parameters space, θ.

2. For i in number of steps, repeat:

(a) Draw new candidate, θ∗, using Metropolis-Hasting algorithm

(b) Calculate L (θ∗)

(c) Calculate a = L (θ∗)/L (θ)

(d) if a ≥ 1 accept θ∗ and set θ = θ∗

if 0 < a < 1: accept θ∗ and set θ = θ∗ with probability a
reject θ∗ and set θ = θ with probability 1− a

This process of proposing a new position and moving (or not) towards the new position is re-
peated several times, allowing the walker to move to the set of parameters that better fit the data.
In MCMC one can use several walkers at the same time to sample from the same PDF. In this
way one can choose different initial values for θ and assure that a larger the space of parameters
is covered. The walkers save in an array all the values of accepted θs so when all walkers have
taken all the steps it is possible to plot the sample of θs that the walkers produce. By combining
the results of every walkers it is possible to plot the corner plots, to show the marginalized PDF of
every parameter to see the best fit and the uncertainties and the 2D PDFs to look for degeneracy
between parameters in the model. In the next sections I discuss how to use MCMC to fit the model
presented in this thesis using the Wr − d/Rvir relationship.

3.3.1. The Likelihood function

The first step to run MCMC is to compute the model, which returns several synthetic MgII spec-
tra depending on the free parameters (the procedure to do so is explained in Chapter 2). MAGiiCAT
consist of a sample of 182 QSO spectra, thus I produce 200 synthetic spectra in each iteration of the
model, to apparently match the observational sample size. In MAGiiCAT they use only absorbing
lines with Wr ≥ 0.003Å, so after producing a model sample I need to select absorption lines that
produce Wr ≥ 0.003Å before comparing with MAGiiCAT data.

After creating the model catalog I calculate the models Wr − d/Rvir relationship with the
methodology described in Section 1.3. After this, the model is ready to reproduce observables
that can be compared to MAGiiCAT observations using MCMC.

I need to define a likelihood function (L ), which gives the probability of the modelsWr−d/Rvir
relationship given the data Wr− d/Rvir relationship. A common way to compare two distributions
is the Kolmogorov-Smirnov (KS) test, which assesses whether two samples come from the same
underlying distribution. This test is usually used for 1 dimensional data, however, there is an
implementation for 2 dimensional distributions (Fasano & Franceschini, 1987).

The aim of this test is to answer the question of what the probability that two samples come
from the same probability distribution is. The null hypothesis of this test is that both samples have
identical Wr − d/Rvir relation. This test returns a p-value, small p-values can be interpreted as
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the two samples being significantly different, larger p-values means that the two samples are not
significantly different (Press, W.H. et al. 2007, Numerical Recipes, section 14.8).

To deal with upper limits in MAGiiCAT sample, I decided to do a bootstrap of the observations
when calculating the likelihood. The way I do this is the following: I produce a model, I take the
observations and change all the upper limit values randomly with a uniform distribution from 0 to
the upper limit value 1000 times, I calculate the p-value from a 2D KS test for all 1000 different
observations compared to the model and finally take as likelihood the mean of p-values.

Given that p-values are usually very small, one can use the log of the likelihood function, with
no loss of generality, as maximizing the log of a function is the same as maximizing the function.
Thus the likelihood function is:

L = ln
(
p-value

)
, (3.3)

where the line over p-value indicates the mean of 1000 iterations with different values for observa-
tional Wr upper limits.

3.3.2. Priors

To properly run MCMC a prior distribution is needed that gives the information we already know
about the model parameters. Since I do not have any prior information on the free parameters I use
a uniform distribution with some boundaries for all of the four free parameters. The boundaries are
selected so that the model makes physical sense and to save computational time.

The filling factor is one of the free parameters of the model and it is a function that depends on
R/Rvir. In principle fv(R/Rvir) could have any possible shape, in Section 4.1 I conclude that an
exponential function with characteristic radius r0 is a good fit. To run MCMC I use r0 as a free
parameter.

Table 3.1 shows the boundaries for the uniform priors for each of the free parameters of the
model:

Table 3.1: Boundaries for uniform priors of the free parameters

Lower boundary Upper boundary
r0

1
10Rvir 2Rvir

csize 0.01kpc 10kpc
h 1kpc 70kpc
hv 10−3h 105h

3.3.3. Computational times

One of the biggest difficulties of performing an MCMC with this model is the large compu-
tational times needed to compute the model. Each time the model is computed, it produces 200
synthetic sightlines. For this thesis work I run the models in a computer from the Arc-Tomo col-
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laboration, located in the department of astronomy in Universidad de Chile. This computer has an
Intel Xeon Silver 4210R Processor (2.40GHz, 20 nodes) with a total RAM of 125 GB.

Depending on the model parameters it will take more or less time to produce the model. For
example, a model with very fine grid size, csize, and large heights, h, will take longer to compute
than a model with big csize and small h. Given the prior ranges (Table 3.1) and the used computer,
the model with the smallest csize and largest h takes 10 minutes and 32.52 seconds to run. The
model with largest csize and smallest h takes 0.147161 seconds to run.

MCMC requires to compute the model each time the walkers takes a step. Ideally one would
like to have many walkers and many steps to make sure that the sample converges to the PDF, but
this would require to evaluate the model many times. A good compromise I found between seen
results and having doable computational times is 200 walkers with 8000 steps each, which took
almost five days to run. The results of the MCMC run are presented in Section 4.2.
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Chapter 4

Results

In this section the results of comparing the model (Chapter 2) to the data are presented. The goal is
to find a set of free parameters for the model (See Table 2.6) that can reproduce observable features
present in the QSO catalogs, from MAGiiCAT. First the Wr vs. d/Rvir relation is calculated to find
a general shape for fv(R/Rvir) that is consistent with the observational data (Section 4.1).

Then I show the results of the MCMC run. To do this I chose the Wr vs. d/Rvir relation as a
diagnostic. I use MCMC to find the posterior distribution of free parameters (Section 4.2). I use
the TPCF as a way to get a better understanding of the best parameters I get from the Wr − d/Rvir
fitting by plotting the models TPCF and compare them to the observational TPCF (Section 4.3). At
the end I provide a summary of all results (Section 4.4).

4.1. Filling factor
In principle, the filling factor, fv(R/Rvir), could have any form (see Subsection 2.1.2 for more

details on how fv(R/Rvir) is defined). To avoid large computational times when fitting the four
free parameters of the model in this section I explore four simple functions for fv(R/Rvir) to see
which general form fits better the data and use that as an input for the fitting.

The methodology used is a simple visual inspection of the model against the data. I produce
some synthetic catalogs with different fv(R/Rvir) functions, measure the Wr vs. d/Rvir relation,
with the procedure explained in Section 3.1, and plot them against the Wr vs d/Rvir relation of
MAGiiCAT. The idea is to see how the shape of fv(R/Rvir) affects the model relationship of
Wr vs. d/Rvir and if I can discard some fv(R/Rvir) functions and find one that reproduces the
observational relationship. First I tried three very simple functions. An increasing step function
(Equation 4.1), a decreasing step function (Equation 4.2) and a constant function (Equation 4.3):

Increasing step fv(R/Rvir) =


0 if R/Rvir ≤ 0.7

1 if R/Rvir > 0.7
(4.1)

Decreasing step fv(R/Rvir) =


1 if R/Rvir ≤ 0.7

0 if R/Rvir > 0.7
(4.2)
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Constant fv(R/Rvir) = 1 (4.3)

The Increasing step fv (top panel of Figure 4.1 (a)) has a donut shape (completely empty
from R=0 to R=0.7Rvir and full of MgII clouds for R > 0.7Rvir), the Decreasing step fv (middle
panel of Figure 4.1 (a)) has a disk shape (filled with clouds until R = 0.7Rvir) and the Constant fv
(bottom panel of Figure 4.1 (a)) is a completely solid disk (filled with clouds at every R value).

Three different catalogs of spectra are created, one for each function, each having 200 spectral
systems and the same values for height (h), cloud size (csize) and velocity scale height (hv). The
values for these three free parameters were chosen to have reasonable values (according to MCMC
results showed in Section 4.2), h=45 kpc, csize=5kpc and hv = 104h. Each of the three catalogs
have a different fv(R/Rvir), described before.

Figure 4.1 shows the Wr vs. d/Rvir relation for each of the catalogs with different fv(R/Rvir).
Panel (a) shows the three different fv(R/Rvir) used to produce the catalogs in three different col-
ors. Panel (b) shows at the top an histogram with the distribution of log(d/Rvir) for each of the
three catalogs, in the same colors as in panel (a) and in grey is the log(d/Rvir) histogram for the
observations. At the bottom of the histogram there is a plot of Wr vs. d/Rvir in logarithmic scale
for both axes. The grey dots are Wr detections in MAGiiCAT and the grey arrows are the upper
limits. The three different colored areas correspond to the maximum and minimum values of Wr
in 9 different bins of d/Rvir for each of the synthetic catalogs. The plotted squares, diamonds
and triangles correspond to the mean values of Wr in the same 9 bins. Each color in the Wr plot
correspond to the model with the same color in panel (a) of Figure 4.1.
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(a) (b)

Figure 4.1: Wr−d/Rvir relation for three different fv(R/Rvir). (a): three different
fv(R/Rvir), in blue is the increasing step fv, in green the decreasing step fv
and in orange the constant step fv. (b): Wr − d/Rvir relationship for each
fv(R/Rvir). Colored areas show the maximum and minimum of Wr in 9 bins of
d/Rvir, for each fv(R/Rvir), with the respective colors. Grey points and arrows
show detections and upper limits in MAGiiCAT respectively. I performed a KS
test to compare the models relationship to the observations, the p-values where:
≈ 10−20 (increasing step fv), ≈ 10−8 (decreasing step fv) and ≈ 10−14

(constant step fv). Top of panel (b): histograms showing the distributions of
d/Rvir for each sample, in the same bins as the Wr areas and in the same colors as
panel (a), and in grey, the d/Rvir distribution for the MAGiiCAT data.

From Figure 4.1 we can see how fv(R/Rvir) affects the synthetic Wr − d/Rvir relation. The
increasing step fv(R/Rvir) or "donut shape" CGM does not produce any absorption at small d/Rvir,
as seen in the blue area in panel (b) of Figure 4.1, even though there are sightlines at these distances
(as shown by the blue histogram at the top). This occurs because by definition this fv(R/Rvir)
models a disk with no Mg II very close to the galaxy, so it make sense that sightlines crossing near
the galaxy do not produce any absorption lines. We observe absorption lines for sightlines very
near to the galaxy, therefore, a "donut shape" does not seem to be a good guess for the fv(R/Rvir)
function, which is also shown by the low p-value.

The other two models produce a better representation of theWr−d/Rvir relation. Both are sim-
ilar in that they contain clouds in the middle of the disk and show scatter. However, the decreasing
step fv shows a larger scatter towards larger d/Rvir than the constant function, and a slight decrease
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of the values, which seems to be more consistent with observations, as shown by the larger p-value.
This trend stops at some d < Rvir, after that no absorption is produced. The constant function
shows absorption up to much larger d/Rvir values, however the values of Wr do not seem to show
a decrease as the observations do, which is why it has a lower p-value.

From Figure 4.1, one sees that if fv(R/Rvir) has an increasing, decreasing or constant shape,
that translates to the Wr(d) relation in the same way. Also, if fv(R/Rvir) falls down abruptly
(to 0), at some point this is reflected in the Wr values as zero-absorption for some d/Rvir values.
Since the observations show a decreasing trend of Wr with d/Rvir I propose a fv(R/Rvir) that
has a decreasing form. Also, observations show no gap in the Wr − d/Rvir relation, at least until
d ' 1.2Rvir, so I propose a smooth function, with no abrupt steps. In conclusion, a good candidate
for fv(R/Rvir) can be an exponential:

fv(R/Rvir) = A e
− 1

r0
R

Rvir , (4.4)

where A is a normalization constant and r0 is the characteristic radius, which is the R/Rvir value
at which the exponent of the exponential is -1. I assume that fv(R/Rvir) is 1 at R=0. The first
result of the present thesis work is that this fv can in fact reproduce the observational Wr − d/Rvir
relationship.

All other free parameters of the model are the same as the ones used to produce data in Fig-
ure 4.1, h = 45 kpc, csize = 5 kpc and hv = 104h (reasonable values according to MCMC results
shown in Section 4.2). I try r0 = 2Rvir, 1

3Rvir, 1
10Rvir. These values define how steep the exponen-

tial function is, Figure 4.2 (a) shows a plot of these three functions.
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(a) (b)

Figure 4.2: Wr − d/Rvir relationship for three different exponential fv(R/Rvir),
with different r0, panel (a). (b): resulting Wr − d/Rvir relations with each
fv(R/Rvir). Color areas show the maximum and minimum of Wr in 9 bins of
d/Rvir, for each fv(R/Rvir), with the respective colors. Grey points and arrows
show detections and upper limits in MAGiiCAT respectively. I performed a KS
test to compare the models distribution to the observations, the p-values where:
≈ 10−14 (r0 = 2Rvir), ≈ 10−3 (r0 = 1

3Rvir) and ≈ 10−16 ( 1
10Rvir). Top of panel

(b): histograms showing the distributions of d/Rvir for each sample, in the same
bins as the Wr areas and in the same colors as panel (a), and in black, the d/Rvir
distribution for the MAGiiCAT data.

Figure 4.2 shows theWr vs. d/Rvir relation for three different exponential models for fv(R/Rvir).
Panel (a) shows fv(R/Rvir), the blue one has a r0 = 2Rvir, the green plot shows an exponential
with r0 = 1

3Rvir and the orange one has a r0 = 1
10Rvir. Panel (b) of Figure 4.2 shows the Wr vs.

d/Rvir for the three different fv(R/Rvir). The areas represent the minimum and maximum values
of Wr in ten different bins of d/Rvir, the triangles, squares and diamonds represent the mean values
in the same bins.

Figure 4.2 shows that the steeper fv(R/Rvir) is, the steeper the Wr vs. d/Rvir relationship is.
The sample plotted in green has the largest p-values, indicating that it is the one more similar to
the observations. From Figure 4.2 I conclude that an exponential fv(R/Rvir) (Equation 4.4) could
reproduce the observational relationship better than a step fv or a constant fv, as seen from larger
p-values. With the correct value of r0 and the correct combination of free parameters I could find a
model that reproduces the observations. In the next sections I explore how the model is affected by
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all the free parameters assuming an exponential fv(R/Rvir).

4.2. MCMC results
Using MCMC I got the posterior distribution of all four free parameters of the model, for better

visualisation of the results I define new variables as input for the model: 1
r0
Rvir, the grid size (csize)

in kpc, the height of the disk (h) in kpc and log(hvh).

For this model I use MCMC and compare the model and observational Wr− d/Rvir. The likeli-
hood function (estimator) is a KS test between the model and the observations (See Subsection 3.3.1
for more details on how this is done). The model Wr − d/Rvir relations are computed from cat-
alogs of 200 synthetic spectra and the observational relation comes from 182 Mg II systems with
Wr > 0.003Å presented in MAGiiCAT. By comparing these two relationships the marginalized
PDF for each free parameter is obtained and also, the 2 dimensional PDF for each pair of param-
eters is computed. The marginalized PDF gives the best fit parameters and their uncertainty. The
PDFs also provide an idea of possible degeneracy between parameters.

Figure 4.3 shows MCMC corner plots for 200 walkers and 8000 steps. Diagonal panels show the
marginalized PDF for each of the free parameters, the middle vertical line in each PDF plot shows
the median value of the distribution and the two lines by the sides indicate the 1σ (68%) intervals
of the distributions. At the top of each marginalized PDF is the mean value for each parameter with
the 1σ intervals. The off-diagonal plots show the 2D PDF for each pair of parameters. Very light
grey points represent positions in the 2D parameter space where the walkers stepped into at some
point of the run. The light grey, dark grey and black areas represent where the 0.84, 0.5 and 0.16
percent of the sample is, respectively.

50



Figure 4.3: Corner plots showing the PDFs obtained with MCMC. Diagonal plots
show the marginalized PDF for each free parameter, the median value and the 1σ
intervals are showed by dashed lines. At the top of each PDF are the median values
and 1σ values. Off-diagonal plots show the 2 dimensional PDFs for each pair
of free parameters. Light grey points show where the MCMC walkers accepted
values, light grey area, dark grey area and black area show where the 0.84, 0.5 and
0.16 of the sample lay.

The corner plots show some degeneracy between 1
r0
Rvir and csize; and between czise and h (the

samples lay over large areas). Well behaved fits would show contours that are concentric circles,
with low deviations. The 1

r0
Rvir vs. csize PDF has an elongated form, suggesting correlation
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between these two parameters. The same can be seen in csize vs. h, where the data allows models
with low csize and low h or models with large csize and big h.

This trend could be due to the data not being able to fully constrain the model or due to poor per-
formance of MCMC. One way to analyze how well MCMC performed is to look at the acceptance
ratio. This value is the number of times the algorithm accepted a proposed new position divided
by the total number of proposals. If MCMC is accepting almost all proposals, then the steps taken
are too small and the algorithm is not exploring the entire parameter space. On the contrary if it is
accepting almost no new proposal, the walkers are not converging to the best parameter space. A
good number for the acceptance ratio is between 0.215 and 0.5 (Roberts & Rosenthal, 2001).

Figure 4.4: Histogram of acceptance ratios of individual walkers. The x-axis
shows the acceptance ratio value and y-axis shows the number of walkers.

Figure 4.4 shows an histogram with the distribution of acceptance ratios in the present MCMC
run. Most of the walkers have acceptance ratios between 0.13 and 0.23. However there is a smaller
group of walkers that have very small acceptance ratios, between 0 and 0.05. One way to figure out
why there are two groups of walkers with so different acceptance ratios is by looking at the trace
plots, which are plots of the parameter values as a function of steps.
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Figure 4.5: Trace plots for MCMC walkers. It shows the parameter values for
each parameter and each walker at each step. Blue lines are walkers with high
acceptance ratio, red lines are walkers with low acceptance ratio and green lines
show the mean value for each parameter. x-axis is the step number.

Figure 4.5 shows the values of the four free parameters that each walker moves to, as a function
of number of steps. Blue lines are the walkers with higher acceptance ratio and red lines are walkers
with lower acceptance ratio. Green lines show the mean values of the marginalized PDF for each
parameter. Ideally the walkers should move around the mean values. This Figure suggest that
walkers with low acceptance ratios moved in a different parameter region as walkers with higher
acceptance ratios. This is very clear specially in the plot for h (third plot top to bottom), where we
can see that walkers plotted in red move toward very low values of h and blue walkers move around
the mean value of h.

The difference between low acceptance rate walkers and high acceptance rate walkers is also
clear in the other parameters. In the trace plot for 1

r0
Rvir we can see that red lines move to higher

values, which is not the case for blue walkers. The same can be seen in the csize trace plot, where
low acceptance walkers tend to go to high values, while high acceptance walkers move though the
space around the mean value. The contrary happens in the log(hvh) trace plot, where red walkers
move in the entire space while blue walkers seem to converge to large values, around the mean
value.
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Figure 4.6: Wr−d/Rvir relations for model with high probability for walkers with
high acceptance ratio (blue points left panel) and walkers with low acceptance ratio
(red points right panel). In both panels black dots and arrows show MAGiiCAT
detections and upper limits respectively. At the bottom left corner in each panel,
tables show the mean values of parameters for each group of walkers.

Figure 4.6 shows theWr−d/Rvir relation for the mean values of free parameters for the walkers
with high acceptance ratio (blue points) and for walkers with low acceptance ratio (red points),
plotted against the values of MAGiiCAT (black points). In the left panel we see that theWr−d/Rvir
relation for the model with mean values of the high acceptance ratio walkers produce Wr with a
distribution very similar to the data. On the right panel we see that low acceptance ratio models
produce many unabsorbed sightlines, hence the lack of points in the plot.

It makes sense that parameters on the right panel produce very few absorption lines. The value
of 1

r0
Rvir informs how rapidly the number of clouds decreases with R and csize is a proxy for cloud

size, the bigger the clouds, fewer clouds can be placed inside the CGM. Thus a model with very
large clouds and a rapidly decreasing fv(R/Rvir) produces CGM disks with very few Mg II clouds
inside. Thus producing models with very few (7 out of 200) sightlines with Wr > 0.003Å.

Why do some walkers move to these regions of the parameter space where models produce so
few sightlines with absorption lines? This is because of the likelihood function used to compute
MCMC. Using a KS test, this statistical test needs a large amount of data (at least 30 points) to
be considered a good comparison between distributions. The power of the test is the chance of
having false negatives, the lower the number of samples, the worst is the power of the test. The null
hypothesis in KS test is that two samples come from the same distribution, thus if the test fails to
reject the null hypothesis, for small samples, that tells little, due to the high false negative rate.
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For this reason, walkers that converge to values of the parameters that produce very few sight-
lines with Wr > 0.003Å are not trustworthy. Looking at the right panel of Figure 4.6, even with
the low amount of samples, those sets of parameters do not seem to produce a distribution similar
to the observations. Hence, it should be safe to exclude walkers with low acceptance ratios from
the MCMC run. Figure 4.7 shows the MCMC corner plots considering only the good 184 walkers.
In red are the 2D PDFs produced by the low acceptance ratio walkers, just for comparison.

Figure 4.7: MCMC corner plots using only walkers with high acceptance ratios.
Same caption as Figure 4.3 but in red are the 2D PDF for walkers with low accep-
tance ratios, just for comparison.

By excluding bad walkers, I can observe the same tendencies in the marginalized PDFs, but
they are more defined, meaning high probability values are even more probable. This is specially
noticeable in the h PDF, where in Figure 4.3 there is a very high peak of probability for very low h
values, while in Figure 4.7 that later peak completely disappears.
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Even clean corner plots show degeneracy between model parameters. Degeneracies are specially
noticeable in the 1

r0
Rvir vs csize PDF and the h vs. csize PDF. I already established that 1

r0
Rvir and

csize relate to the number of clouds inside the CGM disk, and so does h. The thicker the disk,
the more clouds of a certain size can be placed inside. The degeneracies suggest that the data is
actually constraining the number of individual Mg II clouds inside the CGM disk.

From the 2D PDF of h vs. csize it can be seen that models with h = 30kpc & csize = 3kpc
are as probable as models with h = 60kpc & csize = 8kpc. This suggests a linear relationship
between these two parameters (with a big scatter, as indicated by the large area in the 2D PDF).
The relationship suggest that h ≈ 6csize + 12. In Chapter 5 I discuss what this implies about the
number of individual clouds.

For the hv parameter the results in Figure 4.7 show that regardless of the other three free param-
eters the model needs to have a very large value of hv to reproduce the observations. This parameter
tells us about the gradient in rotational velocity with the height of the disk (Equation 2.4). If hv
is too small, the velocity decreases very fast with the height, if it is too large it decreases quite
slowly. The results show that in order to reproduce MAGiiCAT observations, the model needs to
have log(hvh) > 2. This means that, if the maximum velocity of rotation of the disk is vmax, which
occurs at the middle of the disk (z = 0), at the maximum height of the disk, which is z = h

2 , the
velocity is 0.995vmax. Thus the velocity decreases only a 0.5%, which is almost nothing. Thus,
the results suggest that a disk with constant rotation has a higher probability of reproducing the
observations.

Summarizing, MCMC corner plots are useful to visualize if the data is able to constrain the
model and if so, what areas of the parameter space reproduce the observations. In this case, using
MCMC, I was able to find degeneracies between parameters, which indicate that the model is
actually constraining the number of clouds in the CGM. I was also able to find out that the model
should have little to no gradient in rotational velocity in order to reproduce the data. In Chapter 5
I discuss why this happens, but before, to better understand the model, I need to look into the
Wr − d/Rvir relation produced with different set of parameters. This allows us to understand the
physical implications of the MCMC results and why they show what they show.

4.2.1. Wr − d/Rvir relations

Why do some sets of parameters have higher probabilities than others, as shown by the corner
plots (Figure 4.7) ? To address this effect I choose a high probability value and a low probability
value for each of the parameters of the model and produce Wr − d/Rvir relations with all possible
combinations of them. Since I have four free parameters and I take two values for each and pro-
duce models with each possible combination of them, I have 16 different models. By plotting the
resulting distributions one can better understand the MCMC results.

According to MCMC results, Table 4.1 shows a high and a low probability value for each free
parameter.
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Table 4.1: High and low probability values for each parameter of the model ac-
cording to MCMC

Free paramater High probability Low probability
1
r0
Rvir 3 8

csize 5kpc 0.1kpc
h 45 kpc 5kpc
log(hvh) 4 -2

Figure 4.8 shows the Wr− d/Rvir relation for all 16 possible models that can be produced from
a combination of high and low probability values. Every plot shows observational Wr values and
upper limits (in grey), for comparison with the model relationship. Blue points indicate the values
for models generated with high probability 1

r0
Rvir, orange points show model with low probability

1
r0
Rvir.
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Figure 4.8: Model Wr − d/Rvir relationship for different sets of parameters. In
each panel there are grey points and arrows showing MAGiiCAT detections and
upper limits, blue points showing models with 1

r0
Rvir = 3 and orange points

showing models with 1
r0
Rvir = 8. Panels in the left column (a,b,e and f) show

models with h = 45kpc and on the right column panels (c,d,g and h) are models
with h = 5kpc. The first row of panels (a,b,c and d) show models with log(hvh) =
4 and bottom row panels (e,f,g and h) show models with log(hvh) = −2. Finally
in each corner of the figure are two panels, all top panel at each corner (a,c,e and
g) show models with csize = 5kpc and bottom panels at each corner (b,d,f and h)
show models with csize = 0.1kpc. In each panel there are two values annotated,in
the upper left corner, one in blue, one in orange, those are the p-values for each
model in each panel.
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These are three main takeaways from Figure 4.8:

1. Exponential filling factor: Models with large 1
r0
Rvir values (orange points) produce a faster

decrease of Wr with d/Rvir than models with small 1
r0
Rvir values (blue points), regardless of

the other parameters. If fv decreases too fast with R/Rvir, the model Wr − d/Rvir relation
also decreases too fast, which is not consistent observations.

2. Height and cloud size: If csize is too small compared with h (panel (b) and (f)), the model
fails to reproduce small Wr values. If the clouds are too large compared to h (panel (c) and
(g)) the model fails to reproduce large Wr values. This is because small clouds imply many
clouds in the sightline and thus always larger Wr. MCMC results show that there needs to be
a relationship of h ≈ 6csize + 12 in order to reproduce observational Wr − d/Rvir relation.

3. Velocity scale height: Models with small log(hvh) values fail to reproduce the large Wr
values we see in observations (panels (e), (f), (g) and (h)). The disk needs to have a constant
rotation (panel (a)) in order to reproduce Wr − d/Rvir relation. If the velocity decreases with
the height of the disk, too many clouds have low (and similar) velocities and do not add to the
final Wr and are not able to reproduce the large MAGiiCAT values.

These results gives an idea on how Wr − d/Rvir is affected by the individual model parameters,
how the MCMC results should be understood and how robust the present CGM model is. The
interconnection between parameters h and csize, required to match the observations, are the second
result of this thesis. In Chapter 5 I discuss these results and later summarize the main conclusions.

4.2.2. Number of clouds

MCMC results show a large degeneracy between csize and h, where the relationship that needs
to occur is h = 6csize+12, with a large scatter as shown by the 2D PDF (Figure 4.7). csize is related
to the number of clouds, where small csize allows for more clouds to be placed inside the CGM disk
and larger csize translate to fewer clouds. h also relates to the number of clouds, higher h means
more volume for clouds to be placed inside the CGM disk and lower h translates to thinner disks,
thus less volume to place clouds.

This degeneracy suggests that the data is constraining the number of individual MgII clouds,
instead of csize and h. Churchill et al. (2020) measure the distribution of number of different Voigt
profiles they could fit in 422 different high resolution Mg II absorption systems. This number allows
them to measure the number of individual Mg II clouds that are crossed by a single sightline.

Figure 4.9 shows in red the number of clouds distribution measured in Churchill et al. (2020) in
random sightlines. It can be seen that the individual sightlines cross between 1 and 40 individual
clouds, where fewer clouds are more probable than many clouds, except for the first bin. I generated
three different models with the best fit 1

r0
Rvir = 3.8, hv = 104h and height, h = 45 kpc, but

different csize values: 5.5 kpc (blue), 0.1 kpc(green) and 15 kpc (orange). Figure 4.9 shows the
distribution of number of clouds for each of the models in the respective colors. Blue is the best fit
csize, green is a small csize and orange is a big csize.
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Figure 4.9: Distribution of number of clouds crossed a sightline. Red histogram
shows distribution from Churchill et al. (2020), which comes from Voigt profile
fitting to high resolution spectra of random sightlines. Blue, green and orange
histograms show the number of clouds for three different models, all of them with
h = 44.45kpc, but different csize, csize = 4kpc, csize = 0.1kpc, csize = 15kpc,
which translate to different number of clouds densities.

It can be seen, in Figure 4.9, that the fitted model produces a number of clouds distribution very
similar to Churchill et al. (2020). The model with small clouds produces a distribution with larger
number of clouds than what we observe, thus confirming that small clouds translate to more clouds
than we expect. The opposite happens with the model with bigger clouds, the number of clouds
distribution shows fewer clouds than what is expected from observations, thus confirming that big
clouds translate to a small number of clouds.

According to MCMC results models with different csize values that follow the relationship h =
6csize + 12 (with a big scatter), are a good fit to observations. Figure 4.10 shows again in red the
number of clouds distribution from Churchill et al. (2020). I generated three different models with
different h values: 30 kpc (blue), 60 kpc (green) and 90 kpc (orange). All of the models have csize
values that follow the fitted relationship.
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Figure 4.10: Number of clouds crossed by a single distribution. Red histogram
shows distribution from Churchill et al. (2020), which comes from Voigt profile
fitting to high resolution spectra. Blue, green and orange histograms show the
number of clouds for three different models, with h = 30kpc, h = 60kpc and
h = 30kpc respectively. All of the models where created with csize values that
follow h = 6csize + 12.

It can be seen, in Figure 4.10, that all three models produce a number of clouds distribution
similar to Churchill et al. (2020), further confirming that the data is constraining the number of
individual clouds, thus we observe a big degeneracy between h and csize. The results suggest that
the sightlines need to intersect between 0 and 40 individual clouds to reproduce the data. Therefore,
this test provides a second confirmation for the best fit model by comparing the results to Churchill
et al. (2020) results.

4.3. Two-point correlation function results
As has been shown, the Wr− d/Rvir relation is a useful observable to constrain the morphology

and kinematics of the CGM. However, it has some limitations. The data include a large number
of sightlines crossing different types of galaxies, having a variety of geometries. To better con-
strain CGM structures, it seems convenient to select sub-samples according to azimuthal angle and
inclination.

Nielsen et al. (2013) use the TPCF to study the velocity dispersion found in different regions
of the CGM (see Subsection 1.3.4 for a detailed description of Nielsen et al. (2013)). Those au-
thors compute the TPCF for different sub-samples of sightlines: near the galaxy major axis, near
the galaxy minor axis, for face-on galaxies, for edge-on galaxies, and also for all possible combi-
nations between the two groups of α and inclinations (Table 1.2). In this chapter, a comparison
is made between the present CGM model and MAGiiCAT TPCF for different sub-samples. The
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only downside of this comparison is that the TPCF requires high-resolution spectra, making the
MAGiiCAT TPCF dataset (17 sightlines for the largest sub-sample) much smaller than that for the
Wr − d/Rvir data.

Despite the smaller sample, Nielsen et al. (2013) are able to find trends (See Figure 1.6). Sight-
lines near the major axis have a larger velocity dispersion for edge-on galaxies, while sightlines
near the minor axis show larger velocity dispersion for face-on galaxies. Nielsen et al. (2013) sug-
gest two different components in the CGM to explain these results: a rotational component in the
plane of the disk, and an outflowing component. The model presented in this thesis consists only
of a rotational component in the plane of the disk.

The model TPCF is calculated (see Section 3.2 for the same sub-samples as in Nielsen et al.
(2013) (See Table 1.2) and using the best-fit parameters found in the previous section. The idea is
to see if by reproducing the Wr − d/Rvir the model can also reproduce the TPCF. The rational is
the following: if the best fit model can reproduce the TPCF for all sub-samples, it can constrain
a single rotational component, which could explain the observed velocity dispersion, without the
need of an outflowing component. If it does not reproduce the observed velocity dispersion, the
model is incomplete.

Figure 4.11: Pixel two-point correlation function computed from the model with
higher probability of reproducing Wr − d/Rvir relation, in different sub-samples
of galaxy inclination and azimuthal angle. Panel (a) shows all sightlines, (b) shows
only sightlines near the minor axis, (c) shows only sightlines near the major axis,
(d) shows all galaxies, (e) shows only edge on galaxies and (f) show only face-on
galaxies. Light blue represent face-on galaxies, orange represent edge-on galaxies,
green represents sightlines near the major axis and pink represents sightlines near
the minor axis. Solid lines are the TPCF for the model and colored areas show the
1σ intervals for MAGiiCAT data.
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Figure 4.11 shows the model TPCF for the same sub-samples as in Nielsen et al. (2013). The
x-axis shows the pixel velocity absolute difference bins and y-axis shows the PDF at each velocity
bin. Different colors in each panel represent different sub-samples. Solid lines are the model
TPCFs for each sub-sample, where the model was computed with the MCMC best-fit parameters,
and colored areas show the 1σ intervals of MAGiiCAT’s TPFCs in each sub-sample.

Visual inspection of Figure 4.11 shows in which sub-sample the best fit model performs best.
If the TPCF shows a larger distribution towards larger values of ∆v, that sub-sample has a larger
velocity dispersion. This visual comparison shows that:

1. Panel (a): The model produces smaller velocity dispersion in face-on galaxies compared with
edge-on galaxies. However, observations show that face-on galaxies tend to have larger ve-
locity dispersion.

2. Panel (b): For sightlines near the minor axis, the model produces very similar velocity disper-
sion in edge-on galaxies and face-on galaxies. However, observations show that for sightlines
near the minor axis, face-on galaxies produce larger velocity dispersion.

3. Panel (c): For sightlines near the major axis, the model is able to reproduce the observations.
Sightlines that cross edge-on galaxies have larger velocity dispersion than face-on galaxies.

4. Panel (d): For all galaxies, the model produces larger velocity dispersion in sightlines near the
major axis, this is the opposite in observations, where sightlines near the minor axis produce
larger velocity dispersion.

5. Panel (e): For edge-on galaxies, the model is able to reproduce the observational TPCF in
sightlines near the major axis and in sightlines near the minor axis.

6. Panel (f): For face-on galaxies, the model produce very similar velocity dispersion in sight-
lines near the major and minor axis. However, observations show a larger velocity dispersion
in sightlines near the minor axis.

In summary, the present CGM model is able to reproduce the TPCF for some of the sub-samples,
specifically sightlines near the major axis, for edge-on and face-on galaxies, but not all of them. It
is important to mention that this is true only for the MCMC best-fit parameters. I did not perform
any analysis on other values for the free parameters of the model, because of large computational
times (Subsection 3.3.3) thus I do not know if any set of parameters would be able to reproduce all
the sub-samples. However, the results shown in Figure 4.11 do have some physical implications
for the model. These implications are discussed in Section 5.

4.4. Summary of the results
After having compared the present CGM model and the observational Mg II MAGiiCAT data,

the results are as follows:

Filling factor exploration:

1. The volume filling factor of Mg II clouds in the z ∼ 1 CGM, fv(R/Rvir), needs to be a
smoothly decreasing function (Figure 4.1).
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2. A decreasing exponential for fv(R/Rvir) producesWr−d/Rvir model data that is qualitatively
consistent with the observations (Figure 4.2).

MCMC simulations:

1. The median of the parameters PDF of a rotating CGM model, given Wr − d/Rvir in the
MAGiiCAT data, are: the inverse of the characteristic radius of the exponential fv in terms of
Rvir ( 1

r0
Rvir = 3.80+1.84

−1.38), the size of the individual Mg II clouds in kpc (csize = 5.2+3.04
−2.83), the

height of the disk in kpc (h = 44.49+16.00
−15.71) and the logarithm of the velocity scale height in

terms of the height of the disk (log(hvh) = 3.35+1.14
−1.39) (Figure 4.7).

2. h and csize are correlated, suggesting that the data is constraining the number of clouds inside
the disk, rather than h and csize. The correlation that best reproduces the observations is
h = 6csize + 12 (Figure 4.7).

3. The fact that hv >> h indicates that a disk with constant rotation best reproduces the data.

4. Although not a model parameter, the best-fit model predicts a distribution of the number of
clouds crossed by the sightlines, which is consistent with the observations (Figure 4.10).

Two-point correlation function:

1. The MCMC "best-fit" model, given the Wr − d/Rvir data, cannot reproduce the TPCF of
MAGiiCAT sightlines near the minor axis (Figure 4.11 panel(b)).

2. The best-fit model can reproduce the TPCF of MAGiiCAT sightlines along the major axis
(Figure 4.11 panel(c)).

These results are further discussed in Chapter 5.
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Chapter 5

Discussion and Conclusions

In this section I discuss the results of fitting an extended rotating disk model for the cool CGM
to real data, and its implications for our understanding of the CGM. First I discuss all the results
presented in Chapter 4 (Section 5.1), then I present the main conclusions (Section 5.2) and lastly I
propose possible future work (Section 5.3).

5.1. Discussion

5.1.1. MgII spatial distribution

I have shown that, if the CGM has a disk morphology filled with individual Mg II clouds, the
cloud number needs to smoothly decrease with distance from the galaxy (see Figure 5.1). I assumed
an exponential fv which does reproduce observations (see Figure 3.2), although other functions are
possible (Stern et al., 2016).

The result on 1
r0
Rvir implies that the characteristic radius for the exponential fv, r0 = 0.26+0.15

−0.09Rvir.
Thus the mean value of fv (for sightlines crossing between 0.02Rvir < d < 1.51Rvir( which is the
MAGiiCAT sample range) goes from fv = 16%− 38%. On the other hand, the COS-Halos survey
(Werk et al., 2014) find a median value of fv = 11+15

−9 % for Mg II at impact parameters d ≤ 160kpc
to 44 galaxies, which is consistent with my results.

r0 = 0.26Rvir suggests that the gas fraction bearing Mg II decreases to 63% at R=0.26 Rvir,
assuming 100% at R = 0. Thus, beyond 0.26 Rvir Mg II is very diffuse. Both models shown
in Figure 5.1, have 28% of the Mg II clouds within R < 0.26Rvir and 91% of the gas within
R < Rvir. Hydrodynamical simulations show that accretion occurs in cold streams that acquire
angular momentum similar to the host galaxy (Stewart, 2017) and that these streams could be seen
inside one virial radius. Thus some of the rotating gas in the present model could be expected to
come from accretion.

Using extended background sources Rubin et al. (2018) find that the scale length over which
Wr(2796) does not vary (i.e., the “coherence scale” of Mg II) is lA > 1.9kpc. Cosmological simu-
lations that predict the presence of inflows also suggests coherence scales of ≈ 2 kpc (Stewart et
al. 2011, 2013). The results in this thesis further confirm these results, where the best fit model
indicates that cloud sizes are ≈ 3.8 kpc.

65



However, the model also shows degeneracy between csize and h. This occurs because the data
are rather constraining the number of clouds. The fitted relationship produces number of clouds
crossed by the sightlines similar to the one observed in Churchill et al. (2020). Figure 4.9 shows the
distribution of number of clouds for three fitted models and for Churchill et al. (2020) observations.
It can be seen that the sightlines need to intersect between 0 and 30 individual clouds to reproduce
the data. Given this diagnosis I have a second confirmation of this range by comparing the results
to Churchill et al. (2020). However, this comparison needs to be taken with caution, because even
though the number of fitted Voigt profiles can give us a proxy of the number of clouds intersected
by a sightline, it is not necessary the same as the model, because observations are limited due to
blending. Thus observations actually provide a lower limit on the real number of clouds in the
line-of-sight.

A typical MAGiiCAT galaxy has Rvir ≈ 200 kpc. Figure 5.1 shows a plot of how two typical
CGM disks would look like, for galaxies with Rvir = 200kpc, with the fitted parameters. Panel (a)
shows a CGM disk of h = 30kpc and panel (b) shows a CGM disk of h = 60kpc. Both of these
models are reproduced using the fitted fv. Upper panels show a view in the plane of the disk and
bottom panels show a side view of the disk. Light blue areas represent the Rvir and h of the disk.
Blue points represent the individual Mg II. Just for displaying purposes, the individual clouds are
shown as spheres (the model uses a rectangular grid). It can be seen how there is a big density of
clouds near the center of the disk, that gets smaller far away, for both models.

(a) (b)

Figure 5.1: Schematic picture of two different CGM models with high probability.
panel (a): model with h = 30kpc and csize = 3kpc. panel (b): model with
h = 60kpc and csize = 6kpc
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It is important to mention that there are some disadvantages of using MAGiiCAT data. Some
of the absorption systems in their sample come from absorption selected samples, which can lead
to biases over-representing sightlines with strong Wr. Thus the fitted distribution of Mg II clouds
could also be biased.

5.1.2. Kinematics of the CGM

The kinematic model presented in this work is inspired by the kinematic model presented in
Steidel et al. (2002) (to explain individual QSO sightlines, not to draw statistical conclusions like
the present work). Steidel et al. (2002) propose a rotating disk with a vertical velocity gradient,
the same used in this work. Their results show that in order to reproduce the observed velocity
dispersion the disks need to be extremely thick and/or have a rapidly decreasing rotational velocity
in their vertical component. As shown above, this work, using Wr − d/Rvir relationship as a
diagnosis, MCMC minimization favors a disk with constant rotation.

I analyzed velocity dispersion by comparing the model and observational TPCF (Figure 4.11).
It can be seen that the best fit model reproduces Nielsen et al. (2015) results for sightlines near the
major axis but not for sightlines near the minor axis. Some observations (see Veilleux et al. (2005))
suggest the presence of gas flowing out of the galaxy in a bi-conical way. Nielsen et al. (2015)
conclude that sightlines near the major axis are probing rotating gas, as proposed by this thesis,
while sightlines near the minor axis are probing an outflowing component in the CGM, which was
not a part of the proposed kinematic model.

Previous works found rotating material is usually probed in edge-on galaxies with sightlines
near the major axis (Steidel et al., 2002; Kacprzak et al., 2010; Rubin et al., 2012; Bouché et al.,
2012). Figure 4.11 panel (c) shows the TPCF for sightlines near the major axis for face-on galaxies
(blue) and edge-on galaxies (blue), for the model and for observations. It can be seen that both
sub-samples produce TPCF similar to the observations. The velocity dispersion is greater for edge-
on galaxies than for face-on galaxies. Nielsen et al. (2015) state that this may be due to rotating
gas whose line of sight velocity is maximized in edge-on inclinations, while the vertical velocity
dispersions in the disks of galaxies are small. This agrees with the model, which consists in rotating
gas and from MCMC results we obtained that the vertical velocity dispersion is very small or non
existing.

Thus, the best fit model for a rotating disk, using only Wr − d/Rvir, is able to reproduce the
results that suggest rotation. This gives a second constraint on the model and leads one to fur-
ther confirm that the model can reproduce observational data. This implies that a rotating thick
disk, aligned with the galaxy disk, populated with individual Mg II clouds whose number density
decreases exponentially is a possible model for the CGM. These results apply to the "best-fit" pa-
rameters, it cannot be discarded that other parameters could also reproduce the observations for
sightlines near the major axis.

Even though the model can reproduce the TPCF for sightlines near the major axis it fails at
reproducing other sub-samples. Figure 4.11 (b) shows the TPCF for sightlines near the minor
axis, for face-on and edge-on galaxies for MAGiiCAT sample and the model. Observations show
a larger velocity dispersion in face-on galaxies, Nielsen et al. (2015) associate this with outflows.
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When looking at face-on galaxies they observe through the outflows, thus the velocity dispersion
is greater. As showed by the models TPCFs, a single rotating disk cannot reproduce these results
everywhere, it produces very similar velocity dispersion for edge-on and face-on galaxies.

These results show that even though the model can reproduce observations that suggest rotation,
a single rotating disk is not sufficient to also explain the different velocity dispersions found along
the minor axis of galaxies with different inclinations. This suggests that the model could be miss-
ing a kinematic component, maybe bi-conical outflows as the observations suggest. This analysis
was done only using the best fit parameters of the model, thus I cannot discard that other sets of
parameters could reproduce these observations.

5.2. Summary and conclusions
In this MSc thesis I have proposed a morpho-kinematic model for the cool CGM. The model

consists of a single rotating disk populated with individual Mg II clouds, which rotates and has a
vertical velocity gradient. In total, the model has 4 free parameters: the characteristic radius of the
exponential filling factor, r0; the grid size, which is a proxy for cloud size, csize; the height of the
disk, h; and the velocity scale height hc. To properly compare model and observations the model
enables synthetic Mg II absorption line spectra at different impact parameters and azimuthal angles
and for different halo masses.

To constrain the model I have used QSO absorption line data presented in MAGiiCAT (Nielsen
et al., 2013). By taking advantage of 182 observed Wr-vs-d points and the two-point-correlation
function of different sub-samples in MAGiiCAT I created synthetic catalogs with similar charac-
teristics. An MCMC minimization scheme led to best-fit values for: filling factor (fv(R/Rvir), grid
size (csize), height of the disk (h) and velocity scale height (hv). On the other hand, the observed
TPCF was used to discuss these parameters in a qualitative fashion.

The main conclusions are:

1. The model is able to provide realistic QSO spectra, at least judging from visual comparison.
However each model can take up to 10 minutes to compute on a 20 nodes CPU (Subsec-
tion 3.3.3). These times can eventually get considerably long and prevent running MCMC
with a large number of walkers and steps.

2. MCMC results show that a disk morphology for the CGM is capable of explaining the Wr −
d/Rvir relation we see in QSO observations.

3. A single rotational component can explain observations of Wr − d/Rvir relation only if the
vertical velocity gradient is negligible, meaning that a disk with constant rotational velocity is
the best model representation given the MAGiiCAT data.

4. The distribution of Mg II clouds (or the number of clouds per unit volume) needs to decrease
smoothly with distance to the galaxy. The disk filling factor can be an exponential with r0 =
0.26Rvir.

5. The observational number of clouds that is crossed by individual sightlines is reproduced from
the best fit model. Results show that sightlines cross between 1 and 30 MgII clouds, which
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means that there needs to be a relationship between the height of the disk and the grid size,
which is: h = 6csize + 12.

6. Even though the model is able to reproduce the Wr − d/Rvir statistics in QSO sightlines,
the velocity dispersion, showed by the TPCF, is not totally explained by this model. For
geometries where we expect to find rotation, the model explains the observational TPCF. For
geometries where outflows are expected the model single rotation disk model cannot explain
the observed large velocity dispersion.

5.3. Future work

The available QSO absorption line statistics offers plenty of opportunities to test CGM models
like the one presented here. In this particular case, I have shown that more constrains are necessary
to completely accept or reject the model. For instance, adding the TPCF as an extra constraint
within the MCMC run would perhaps lead to parameters able to reproduce both the Wr − d/Rvir
relation and the TPCF. The extra constraint could perhaps solve the degeneracies we observe in the
current fit (although another possible way to constrain the model without degeneracies would be to
make csize depend on h and/or Rvir, which was not tested here).

The present MCMC results use only one observed relation, Wr−d/Rvir. This relation combines
every possible sightline. Since the proposed methodology allows one to create several synthetic
spectra from a model, one could use more than one constraint. For example one could use Wr
measurements for different azimuthal angles or inclinations, or one could use the observable cov-
ering fraction, or the two-point correlation function, or the distribution of equivalent widths. This
is proposed for future work.

Of course another possible continuation of this work is trying alternative models. Ho et al.
(2017) proposed a model similar to the one used in this work but with an extra inflow velocity in
the clouds. Using the methodology in this thesis one could constrain the inflow velocity of the
clouds. Another possible model is a CGM with bi-conical outflows, as suggested by the present
TPCF results and other works.
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