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FECHA: 2022
PROF. GUÍA: PABLO ESTÉVEZ VALENCIA

CLASIFICACIÓN PROFUNDA DE CURVAS DE LUZ MULTI-BANDA BASADA EN
ATENCIÓN

En estudios astronómicos, como Zwicky Transient Facility (ZTF), las supernovas (SNe) son
objetos poco comunes en comparación con otras clases de eventos astronómicos. Junto con
esta escasez de datos, el procesamiento de curvas de luz multi-banda es una tarea desafiante
debido a la cadencia altamente irregular, largos intervalos de tiempo, mediciones perdidas,
baja cantidad de observaciones, etc. Estos problemas son particularmente perjudiciales para
el análisis de eventos transitorios usando curvas de luz, especialmente SNe. En este trabajo,
se ofrecen tres contribuciones principales. 1) Basándose en una modulación temporal y en
mecanismos de atención, se propone un modelo llamado TimeModAttn que busca clasificar
curvas de luz multi-banda de diferentes tipos de SNe. 2) Se propone un modelo para la ge-
neración sintética de curvas de luz multi-banda de SNe basado en un Modelo Paramétrico
de SNe (SPM). Esto busca poder aumentar el número de muestras y diversidad de cadencia.
El modelo TimeModAttn propuesto superó a un clasificador Random Forest, incrementan-
do el balanced-F1score desde ≈ .525 hasta ≈ .596. TimeModAttn también superó a otros
modelos de aprendizaje profundo, basados en Redes Neuronales Recurrentes (RNNs), en dos
escenarios: clasificación tardía y clasificación temprana. 3) Se realizaron experimentos de
interpretabilidad buscando validar el funcionamiento del modelo TimeModAttn.
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DEEP ATTENTION-BASED SUPERNOVAE CLASSIFICATION OF MULTI-BAND
LIGHT-CURVES

In astronomical surveys, such as the Zwicky Transient Facility (ZTF), supernovae (SNe) are
relatively uncommon objects compared to other classes of variable events. Along with this
scarcity, the processing of multi-band light-curves is a challenging task due to the highly irre-
gular cadence, long time gaps, missing-values, low number of observations, etc. These issues
are particularly detrimental for the analysis of transient events with SN-like light-curves. In
this work, we offer three main contributions. 1) Based on temporal modulation and attention
mechanisms, we propose a Deep Attention model called TimeModAttn to classify multi-
band light-curves of different SN types, avoiding photometric or hand-crafted feature compu-
tations, missing-values assumptions, and explicit imputation and interpolation methods. 2)
We propose a model for the synthetic generation of SN multi-band light-curves based on the
Supernova Parametric Model (SPM). This allows us to increase the number of samples and
the diversity of the cadence. The proposed TimeModAttn model outperformed a Random
Forest classifier, increasing the balanced-F1score from ≈ .525 to ≈ .596. TimeModAttn also
outperformed other Deep Learning models, based on Recurrent Neural Networks (RNNs),
in two scenarios: late-classification and early-classification. 3) We conducted interpretability
experiments to evaluate and validate proposed model.

«To learn something new, you need to try new things and not be afraid to be wrong.»
Roy T. Bennett.
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Chapter 1

Introduction

1.1. Motivation

The supernovae are transient astronomical events resulting from a powerful and bright
stellar explosion, which have captured the curiosity of astronomers since ancient times. In
the past, it was believed that a supernova was a very bright new star in the firmament, which
is why it was coined with the name «super-novae» or «new» from Latin. However, it is now
known that a supernova is an explosion that marks the end of the life cycle of a star. The
brightness caused by this explosion can be so extreme that it can even be compared to the
brightness emitted by the galaxy that hosts the supernova event (Fig. 1.1 shows an example
of a supernova along with its host galaxy).

The study of transient astronomical events, specifically supernovae (SNe), has played
a critical role in astronomy. Type Ia SNe (thermonuclear SNe) are standardizable candles
and have become important tools for cosmological distance determinations (Wright & Li,
2018), leading to the discovery of the accelerated expansion of the universe (Schmidt et al.,
1998; Riess et al., 1998) and its precise characterization with projects such as the Dark
Energy Survey (DES; Sánchez, 2006; Dark Energy Survey Collaboration et al., 2016). At
the same time, the study of Type Ib/c and Type II supernovae (core-collapse SNe) has
helped astronomers to understand the evolution and explosion mechanisms of stars, including
insights into the formation of stellar mass black holes (Sukhbold & Adams, 2020).

These expanded opportunities to study the cosmos are a consequence of the constant
efforts to develop new telescopes that collect massive amounts of data every night, creating
a new Big Data paradigm for astronomy. High-volume data collection is managed by astro-
nomical surveys such as the Zwicky Transient Facility survey (ZTF; Bellm et al., 2019) and
experiments such as the High Cadence Transient Survey (HiTS; Förster et al., 2016). These
surveys are preparing us for the Vera C. Rubin Observatory and its Legacy Survey of Space
and Time (LSST; Ivezić et al., 2019). The LSST survey is expected to gather approximately
15 terabytes of raw data per night by observing up to 37 billion astronomical objects in 10
years, including several millions of SNe (Ivezić et al., 2019).
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Figure 1.1: Example of the appearance of a SN in the host galaxy M82 (marked with a blue
circle). Original figure extracted from https://www.universetoday.com/108386/bright-
new-supernova-blows-up-in-nearby-m82-the-cigar-galaxy/.

1.1.1. Previous Works

Historically, SNe have been studied and classified into different types through optical
spectroscopy. However, the use of this technique requires an immense investment of time
and human effort. Given this limitation, only a marginal proportion of the SN candidates,
reported from high-volume data streams, are being effectively studied and followed-up.

The Big Data paradigm challenge has motivated the scientific community to search for
alternative methods for classification other than spectroscopic observations. In particular,
several methods have been proposed to classify different types of SNe using the discovery
images and light-curves. Most existing methods are based on features extracted from the light-
curves by using parametric models (Karpenka et al., 2012; Noebauer et al., 2017; Lochner
et al., 2016; Villar et al., 2019), PCA and Kernel PCA reductions (Ishida & de Souza,
2013; Lochner et al., 2016), Wavelet based features (Varughese et al., 2015; Lochner et al.,
2016), Gaussian processes light-curve augmentation (Boone, 2019), and different hand-crafted
features (Villar et al., 2019).

A successful example for the processing of discovery images and light-curves is the Auto-
matic Learning for the Rapid Classification of Events broker (ALeRCE; Förster et al., 2021;
Sánchez-Sáez et al., 2021; Carrasco-Davis et al., 2021). The ALeRCE broker considered a vast
collection of features1 based on prior astrophysical expert knowledge (Sánchez-Sáez et al.,
2021), including a SN parametric model. These extracted features are used to classify SNe
(or other astronomical events) along with classical Machine Learning models, such as the
Balanced Random Forest (BRF), Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM), and Gradient Boosting.

A notable difficulty is the intrinsic scarcity in the number of empirical SN light-curves,
especially for certain SN types such as the Superluminous SNe (SLSN), which also leads to

1http://alerce.science/features/.
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a high class imbalance within the SN classes. These difficulties have motivated the release
of several simulated SN light-curve datasets as part of data classification challenges, such
as the Supernova Photometric Classification Challenge (SPCC; Kessler et al., 2010) and
the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC; The
PLAsTiCC team et al., 2018).

Several Deep Learning models have been motivated by these challenges. In Charnock &
Moss (2017), SN light-curve classifiers based on Recurrent Neural Networks (RNNs) were pro-
posed using models such as the Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM). To deal with the multi-band missing-values, a light-curve imputation was perfor-
med using random values between the last and next valid light-curve observations. In Moss
(2018), a Phased-LSTM model was used to include the time information as a new memory
gate, computing averages between the last and next observations to deal with missing-values.

The PELICAN project (Pasquet et al., 2019) proposed an autoencoder (encoder-decoder)
architecture based on the use of Convolutional Neural Networks (CNNs) that are adapted to
process time series, such as SN multi-band light-curves. This work dealt with the irregular
cadence by using a missing-value assumption, where a set of additional loss functions were
proposed to attenuate the overfitting risk associated with zero mask values. In Brunel et al.
(2019), an adapted CNN based model was also proposed for the processing of SN light-curves
along with a promising Siamese network architecture.

The RAPID project (Muthukrishna et al., 2019) used a GRU model to classify different
transient and SN types, including a new pseudo-class to characterize the SN pre-explosion
region. The irregular cadence and multi-band misalignments were treated using a grid linear
interpolation. In Möller & de Boissière (2020) a Bayesian RNN model was developed, where
the time difference information between the current and last observation was included to
describe the irregular cadence information as model input.

In addition, notable efforts have been made for the classification of other astronomical
light-curves, such as variable stars and stochastic events. Deep Learning encoder and autoen-
coder models (encoder-decoder), based on RNN models (Naul et al., 2018; Jamal & Bloom,
2020; Tachibana et al., 2020; Donoso-Oliva et al., 2021) and Temporal CNN (TCNN) models
(Jamal & Bloom, 2020; Zhang & Bloom, 2021), have been proposed for the automatic feature
extraction from light-curves. Moreover, the direct processing of image-stamp sequences has
been also proposed using Recurrent CNNs (RCNNs) (Carrasco-Davis et al., 2019; Gómez
et al., 2020).

As a competitive alternative to RNNs, CNNs, and TCNNs, light-curve classification mo-
dels based on attention mechanisms have started to emerge. In Ibsen & Mann (2020), a GRU
model was jointly used with a self-attention mechanism to improve the early-classification
performance. Recently, in Allam & McEwen (2021), a model to classify light-curves using an
adapted Transformer model was developed, where a Gaussian process interpolation method
was used to deal with the irregular cadence. However, both works used simulated light-curves
from the PLAsTiCC dataset in a completely supervised learning scheme and heavily relying
on light-curve interpolation methods.

Additional details about several of the aforementioned works, along with other not men-
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tioned works, can be found in Appendix §A.1.

1.1.2. General Problem and Associated Difficulties

A brief summary of some of the difficulties reported in the literature w.r.t. processing SN
multi-band light-curve datasets is presented below:

• Scarcity of data: unlike periodic events or variable stars, the transient SN event has
a limited time of existence in the cosmos. This, along with the intrinsic rarity and
unpredictability of this event, ultimately produces a general scarcity of SN light-curves
that are captured by the astronomical surveys. In general, it has been already reported
that the associated number of SN light-curves in these datasets are not properly suitable
for the Deep Learning standards (Charnock & Moss, 2017).

• Imbalance of SN types: there are SN types whose probability of occurrence in the
cosmos is higher than others. In particular, it is common to find, in astronomical sur-
veys, a high number of light-curves associated with the Ia type, but a low number of
light-curves of the core-collapse SN type. This SN type imbalance can be highly detri-
mental for some automatic classification algorithms as it usually induces a bias on the
types with the highest number of samples: the model can ensure a good performance
by correctly characterizing only the most abundant or majority class (Hosenie et al.,
2020).

Fig. 1.2 shows an example of a SN multi-band light-curve. The study and processing of SN
multi-band light-curves is also confronted with important challenges, such as the following
ones:

• Irregular cadence: in the terrestrial survey context, there is an intrinsic irregularity
in the continuous observation of the cosmos (photometric follow-up) due to factors such
as unfavorable atmospheric conditions for the measurements, general unavailability of
the telescope and the used optical bands, rotation of the earth, position of the sun and
the moon, etc. Notice that these factors have an external nature to the astronomical
object to be followed-up; therefore, the irregular sampling (cadence) does not show
an especial correlation w.r.t. the original behavior of the astronomical event. In turn,
this irregular cadence behavior also produces an extra set of especial challenges and
difficulties:

– Time gaps without observations: due to the irregular cadence, it is common
to find light-curves that present long periods of time without any observations,
which may even exceed 100 days in extreme cases.

– Missing observations between bands: it is not always possible to have simul-
taneous observations for all the optical filters in the telescope. Therefore, observa-
tions associated with one or multiple bands may be lost (missing-values problem)2.

2This phenomena can also be considered as a temporal multi-band misalignment problem.

4
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Figure 1.2: Example of a SN multi-band light-curve. Challenges, such as the irregular cadence,
variable-length, multi-band missing-values, and long time gaps, can be observed in this light-
curve. Relevant SN regions are also noted: SN-rise, SN-peak, SN-fall, SN-plateau, and SN-
extinction. It is worth mentioning that, in general, not all the SN light-curves are so well-
behaved, especially in case of empirical surveys such as the ZTF survey.

– Variable-length: in general, the empirical available light-curves have an arbitrary
number of observations for each of the optical photometric bands, i.e., they are
variable-length multi-variable time series. In some extreme cases, by considering
the transient behavior of the SN event, this problem may even produce light-curves
with few or even zero number of observations in one photometric band.

– Irregular time offset: due to the irregular cadence, it is possible to start cap-
turing the photometric information of SNe after its brightness peak has already
occurred (time offset). Having no information from the SN-peak, or the very first
days of the SN, can be highly detrimental for a correct characterization of the SN
light-curve.

• Disturbances by external factors: the behavior of the apparent maximum bright-
ness of a light-curve can be affected by external factors, e.g., weather conditions, sky
brightness, distance of the SN captured w.r.t. the observer (planet Earth), etc. This
difficulty can be worked out, in some degree, along with variables obtained from spec-
trometry techniques, such as the redshift. Unfortunately, consistently having access to
these type of spectral variables is highly unlikely in the new paradigm of Big Data in
astronomy.

• Intrinsic misclassifications between SN types: the classification between types of
SN can be a challenging task due to some intrinsic similarities in the nature of these
events. For instance, as previously reported in the literature (Moss, 2018; Villar et al.,
2019; Sánchez-Sáez et al., 2021), a common confusion between the Ia and Ibc SN types
can be usually found among Machine Learning classification algorithms. This confusion
may be related with intrinsic similarities of the mechanisms that explain the SN-peak:
the diffusion of energy deposited by radioactive 56Ni (Arnett, 2008).

• Heteroscedastic noise: the uncertainties associated with brightness observations on
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a light-curve are heteroscedastic, i.e., the dispersion behavior does not follow a fixed
trend. Moreover, this behavior can be different for each photometric band, presenting
bands with a higher associated intrinsic noise than others.

By taking into account the intrinsic characteristics associated with the handling of em-
pirical SN multi-band light-curves, the methodology of this work is developed in chapter
§3. We propose methods and strategies that aim to correctly deal with the problems and
difficulties aforementioned, especially with important challenges such as the general scarcity
of SN light-curves from non-simulated SN datasets, the high class imbalance, and the high
sampling irregularity (irregular cadence) presented in the SN multi-band light-curves.

1.2. Hypotheses

1. Models based on temporal modulation and attention mechanisms are able to automa-
tically extract meaningful features and temporal dependencies from the SN multi-band
light-curves. These features are sufficiently expressive to allow the model to solve two
main tasks: 1) A SN multi-band light-curve reconstruction task. 2) A categorical dis-
crimination task between different types of SNe.

2. We hypothesize that models based on temporal modulation and attention mechanisms
can solve the proposed classification task equal to or better than two other alternatives
previously implemented in the literature: 1) Models based on astrophysical and hand-
crafted feature engineering. 2) Models based on other type of Deep Learning methods
such as RNNs.

3. The use of synthetic light-curves allows the models to explore information that may not
be correctly captured given the highly irregular sampling (irregular cadence) that arises
when working with empirical SN light-curves. Then, the use of synthetic SN light-curves
results in an equal or superior classification performance than the use of only empirical
SN light-curves for both: 1) Models based on astrophysical and hand-crafted feature
engineering. 2) Models based on other type of Deep Learning methods, e.g., RNNs.

1.3. General Objective

To propose and implement a model based on time modulation and attention mechanisms
for the classification of SN multi-band light-curves from the ZTF survey, and to develop a
method for the generation of synthetic SN multi-band light-curves by using a parametric
model of SNe.

1.4. Specific Objectives

1. To propose and implement a Deep Learning classifier, based on temporal modulation
and attention mechanisms, to discriminate among different SN types by automatically
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extracting meaningful features from the SN multi-band light-curves. To implement Deep
Learning training strategies that allow us to deal with the high class imbalance and
data scarcity: imbalance learning and data-augmentation techniques.

2. To compare the performance of the proposed Deep Learning model w.r.t. classical
methodologies based on the engineering of astrophysical and hand-crafted features
extracted from the SN multi-band light-curves. To compare the performance of the
proposed model w.r.t. other Deep Learning alternatives used in the literature (e.g.,
RNNs). These comparisons are studied in two scenarios: the late-classification and the
early-classification scenarios.

3. To implement interpretability experiments, supported by the interpretative intrinsic ca-
pacity of the temporal modulation and attention mechanisms, that allow us to inspect,
evaluate, and validate the automatic decisions exposed by the proposed model when
processing the SN multi-band light-curves.

4. To develop a method for the synthetic generation of SN multi-band light-curves based
on a parametric model for SNe. To design experiments to evaluate the quality of the ge-
nerated synthetic SN light-curves and to compare them with other synthetic generation
baseline alternatives.

1.5. Main Contributions

In this work, we propose an attention-based model for the classification of different types
of SN by using empirical multi-band light-curves from the ZTF survey. Our main contri-
butions are the following: 1) We propose a Deep Attention model (TimeModAttn), based
on temporal modulation (TimeFiLM) and attention mechanisms (MHSelfAttn), to process
and classify SN multi-band light-curves. The proposed model avoids the computation of any
time-consuming photometric or hand-crafted features, as well as the use of missing-value
assumptions and explicit light-curve imputation or interpolation methods. From our expe-
riments, we found that the TimeModAttn model achieved higher performance than other
classical baselines: a feature-based model (BRF) and RNN-based models (GRU, LSTM). 2)
To support the optimization of the tested Deep Learning models, we propose a new method to
generate synthetic SN multi-band light-curves as an effort to increase both, the total number
of samples and the diversity of the irregular cadence population from the original dataset. 3)
We conduct several interpretability experiments for SN multi-band light-curves in order to
explore, evaluate, and validate the proposed model.

1.6. Organization of this Work

This thesis is structured as follows:

• Introduction (chapter §1): the general problem and the main motivations of this
work are introduced. Additionally, some of the most important previous works are des-
cribed (literature review) along with a brief summary of the most important challenges
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of this work. Finally, the hypotheses, objectives, and main contributions of this work
are described.

• Theoretical Background (chapter §2): the mathematical notation used in this
work is introduced. In addition, a brief background about relevant theoretical concepts
is presented. First, in section §2.2, methods associated with the area of Data Science
and Machine Learning are described. Then, in section §2.3, general astronomy concepts
are presented.

• Methodology (chapter §3): in section §3.1, we introduce the light-curve dataset used
in this work and describe the pre-processing procedures. In section §3.2, we describe
our methodology for generating synthetic SN multi-band light-curves. In section §3.3,
the classifier baseline used for comparison purposes is described, which is based on
photometric features and the Balanced Random Forest (BRF) model. In section §3.4,
we describe the complete methodology associated with our proposed model (TimeMo-
dAttn) and the optimization process for the classification of SN light-curves. We also
describe other baselines based on RNN models.

• Results and Analyses (chapter §4): the results from our experiments are reported
using several metrics to compare the performance of the TimeModAttn model w.r.t.
the tested baselines. In addition, we conduct several interpretability experiments based
on the proposed model.

• Conclusions (chapter §5): finally, we draw the conclusions and propose guidelines
for future work in this research line.

• Appendices: this section describes extra details about the methodology and the work
in general. In addition, additional experiments and results are shown and explored, e.g.,
ablation studies, different and alternative model configurations, etc.
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Chapter 2

Theoretical Background

In this chapter, a set of key and relevant theoretical contents for this thesis are presented.
This chapter is distributed into three main sections: 1) In section §2.1, the notations used in
this work are defined. 2) In section §2.2, several concepts and methods associated with Data
Science and Machine Learning are explored. 3) In section §2.3, general theoretical concepts
about astronomy are presented.

2.1. Notation

2.1.1. Multi-Band Light-Curve

An arbitrary i-th multi-band light-curve Φi, from a light-curve dataset, is defined as
follows:

Φi ≡
{(

µi,j, σi,j, ti,j, bi,j
)}Li

j=1|ti,j′ > ti,j,∀j′ > j, (2.1)

where the light-curve Φi is defined as a sequence set1 with an arbitrary (variable-length)
number of Li photometric multi-band observations. Each observation contains photometric
information, such as the observation-flux µi,j (flux) and the observation-error σi,j (flux error).
Also, each observation is associated with an observation-time ti,j (days) and an observation-
band indicator bi,j ∈ {1, . . . , B}, where B is the total number of photometric bands available
on the survey dataset. Note that the subscript notation i, j denotes that the observation value
is associated with the j-th observation in the i-th light curve Φi. The light-curve sequence
object is defined to be causally sorted over time, i.e., the observation-time ti,j increases
monotonically if the sequence step j also increases: ti,j′ > ti,j,∀j′ > j.

In addition, given a target band b, a single-band operator (·)(b), for an arbitrary i-th

1{ϕi,j}Li

j=1 = {ϕi,1, . . . , ϕi,Li
}, where ϕi,j is an arbitrary object.
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multi-band light-curve Φi, is defined as follows2:

Φ
(b)
i ≡ (Φi)

(b) ≡
({(

µi,j, σi,j, ti,j, bi,j
)}Li

j=1

)(b)
, (2.2)

≡
{(

µi,j(b) , σi,j(b) , ti,j(b) , bi,j(b)
)}L(b)

i

j(b)=1
, (2.3)

where the resulting single-band light-curve Φ
(b)
i is defined as a sequence set collection of all

the photometric observations from the multi-band light-curve Φi that are associated with the
selected band b. In this case, the light-curve Φ

(b)
i has an arbitrary (variable-length) number

of L(b)
i ≤ Li photometric observations3. For simplicity, if a sequence step has the form j(b),

it is then related with the single-band light-curve Φ
(b)
i . This single-band operator is used, in

the following sections, to define operations and formulations exclusively over a target band
b.

2.1.2. First and Last Sequence Steps

The sequence step j = 1 is associated with the very first observation from a multi-band
light-curve Φi (at any band). The sequence step j = Li is associated with the very last
observation from a multi-band light-curve Φi (at any band). As a simplified notation, we use
1 and −1 for the first and last sequence steps, respectively (e.g., µi,1, µi,−1).

The sequence step j(b) = 1 is associated with the very first observation from a single-band
light-curve Φ

(b)
i (first observation, occurring in band b, from the multi-band light-curve Φi).

The simplified sequence step j(b) = L
(b)
i is used to denote the sequence step that is associated

with the very last observation from a single-band light-curve Φ
(b)
i (last observation, occurring

in band b, from the multi-band light-curve Φi). As a simplified notation, we use 1(b) and −1(b)
for the first and last sequence steps, respectively (e.g., µi,1(b) , µi,−1(b)).

2.1.3. Time Difference

Given a multi-band light-curve Φi, an arbitrary time difference is defined as follows:

∆ti,j ≡

{
0, if j = 1,

ti,j − ti,j−1, otherwise ,
(2.4)

where the time difference associated with the first observation is ∆ti,1 = 0. Moreover, the
time difference between the current observation (at the sequence step j) and the previous
observation (at the sequence step j − 1) is denoted as ti,j − ti,j−1.

In addition, given a single-band light-curve Φ
(b)
i , an arbitrary time difference is defined as

2Note that the band indicator bi,j(b) is redundant after applying the band operator.
3The total variable-length of the multi-band light-curve is the sum from all band observations as Li =∑B

b=1 L
(b)
i .
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follows:

∆t
(b)

i,j(b)
≡

{
ti,j(b) − ti,1, if j(b) = 1,

ti,j(b) − ti,j(b)−1, otherwise ,
(2.5)

where the time difference associated with the first observation is ti,j(b) − ti,1. Therefore, the
first time difference is ∆t

(b)

i,1(b)
= 0 only if the first observation of the multi-band light-curve Φi

occurs in the target band b. Moreover, the time difference between the current observation
(at the sequence step j(b)) and the previous observation (at the sequence step j(b) − 1) is
denoted as ti,j(b) − ti,j(b)−1.

2.2. Data Science

In this section we describe relevant models, algorithms, methods, and concepts about
Data Science, Machine Learning, and Deep Learning. In addition, some basic concepts about
Linear Algebra, Probability Theory, and Information Theory are also briefly described for
the sake of completeness.

2.2.1. Linear Algebra

2.2.1.1. Vector Concatenation

Given a set of vectors
{
xi ∈ RMi

}N
i=1

4, the concatenation operation of these vectors is
defined as follows:

x′ = cat[x1, . . . ,xN ] =
[
xT
1 , . . . ,x

T
N

]T
, (2.6)

= [x1,1, . . . , x1,M1 , . . . , xN,1, . . . ., xN,MN
]T , (2.7)

where x′ ∈ RM1+···+MN is the new vector produced by the concatenation operation (cat[. . . ]).

2.2.1.2. Linear Projection

A linear projection is defined as a linear transformation of a vector by using a matrix.
Then, a linear projection fA(x) : RM 7→ RN is defined as follows:

z = fA(x) = A
Tx, (2.8)

where A ∈ RM×N is a matrix, x ∈ RM is the input vector, and z ∈ RN is the output vector
that is projected into a new vectorial space.

4For simplicity, we denote the domain RMi×1×···×1 just as the domain RMi .
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2.2.1.3. Eigenvectors and Eigenvalues

Given a square matrix A ∈ RM×M , an associated arbitrary eigenvector vi ∈ RM and
eigenvalue λi ∈ R must satisfy the following condition:

Avi = λivi, (2.9)

where this expression can be generalized and extended as follows:

(A− λI)vi = 0⃗, (2.10)

det (A− λI) = 0⃗, (2.11)

where, by solving eq. (2.11), the different eigenvectors and eigenvalues associated with the
matrix A can be obtained. Note that the solution over the eigenvector v must be distinct
from the zero vector 0⃗.

Intuitively, in eq. (2.9), the vector vi can be interpreted as a vector that is marking the
direction where, after applying a linear transformationA, all vectors aligned in that direction
(the direction of the vector vi) do not change their direction in the projected hyperspace.
While the direction is not affected, the scale is still affected. This produces that all vectors in
the direction of vi are scaled, after the linear transformation using A, by a weighted factor
λi.

2.2.2. Probability Theory

2.2.2.1. Random Variable and Probability Distribution

A discrete random variable is defined as a function and it is denoted as follows: X : Ω 7→
R+. This function allows us to map the outcome of a random experiment, from the domain
set Ω, to a certain positive real numerical value. The set Ω is the sample space, i.e., the set of
all possible experiment outcomes associated with the random experiment. It should be noted
that a formal and extended definition can be described by using the Measure Theory and the
σ-algebra.

In this probability framework, the expression pX(X = x) is defined as the probability that
the random variable X (random experiment) takes the particular result of the experiment
event x. For simplicity, the following notation can also be used: pX(X = x) = pX(x) = p(x).
Then, we call the function p(·) as the Probability Mass Function (PMF) which, in the discrete
case, must satisfy the following conditions:

p(x) ≤ 1,∀x ∈ X, (2.12)∑
x∈X

p(x) = 1. (2.13)

The above concept of random variable can also be extended to the continuous case. Here,
we call the function p(·) as the Probability Density Function (PDF)5, satisfying the following

5It is very common to refer interchangeably to both, the PMF and the PDF, as the «probability distri-
bution».
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condition: ∫
p(x)dx =

∫
x∈X

p(x) = 1, (2.14)

where, it should be noted, the discrete condition p(x) ≤ 1 is not necessary in the continuous
case as long as the density integrates a value equals to 1 over the entire domain of the random
variable X.

2.2.2.2. Cumulative Distribution Function (CDF)

Given a random variable X, the cumulative probability function (CDF) is defined as
follows:

FX(x) ≡ pX(X ≤ x) =
∑
xi≤x

p(xi), (2.15)

where FX : R 7→ [0, 1] is the CDF and pX is the probability distribution of X. It should be
noted that the CDF is a monotonically increasing function that holds the following condition:
ĺımx→−∞ FX(x) = 0 ∧ ĺımx→+∞ FX(x) = 1.

Similarly, in the continuous case, the definition of the CDF is as follows:

FX(x) ≡ pX(X ≤ x) =

∫ x

−∞
p(x)dx. (2.16)

2.2.2.3. Expectation Operator

Given a discrete random variable X, then the definition of the expectation operator is as
follows:

E
x∼p(x)

[f(x)] ≡ E
x
[f(x)] =

∑
x∈X

f(x)p(x). (2.17)

Moreover, this definition is also directly extensible to the continuous case:

E
x∼p(x)

[f(x)] ≡ E
x
[f(x)] =

∫
x∈X

f(x)p(x). (2.18)

2.2.2.4. Covariance and Variance

Given two random variables X and Y , the covariance and variance operations are defined
as follows:

cov(X, Y ) = cov(Y,X) =
1

N − 1

N∑
i=1

(xi − x̂)(yi − ŷ), (2.19)
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var(X) = cov(X,X) =
1

N − 1

N∑
i=1

(xi − x̂)(xi − x̂), (2.20)

var(Y ) = cov(Y, Y ) =
1

N − 1

N∑
i=1

(yi − ŷ)(yi − ŷ), (2.21)

where cov(X, Y ) ∈ R is the covariance between X and Y , and var(X) ∈ R and var(Y ) ∈ R
are the variances of X and Y , respectively. The covariance offers a basic idea of the linear
relationship between the two random variables X and Y . If the covariance is positive, then
it means that an increase in the values of x is related with an increase in the values of y. If
negative, an increase in x is related with a decrease in y. Finally, if the covariance is 0, it
indicates that there is no trend between the random variables.

It should be noted that the covariance can only offer a broad notion of the relationship
between X and Y . In fact, the magnitude of the covariance does not relate to the strength
of the trend. In general, covariance is very difficult to interpret on its own, but it is used to
calculate a more interpretable statistic: the correlation.

2.2.2.5. Covariance Matrix

The covariance operation can be extended, for more than two random variables, into
the covariance matrix. Given a random vector X = [X1, . . . , XK ]

T , the covariance matrix
Σ ∈ RK×K (square matrix) is defined as follows:

Σ =

 var(X1) . . . cov(XK , X1)
... . . . ...

cov(X1, XK) . . . var(XK)

 , (2.22)

where {X1, . . . , XK} are the different random variables used to build the random vector X.

Intuitively, the covariance matrix Σ can be interpreted as a linear transformation that
turns any vector toward the direction of the largest dispersion/variance in the data (assuming
mean equals to 0⃗). Given this matrix, it is observed that the eigenvector vi, with largest
eigenvalue λi, is aligned in the direction of largest general dispersion. Note that, given that
cov(Xk, Xk′) = cov(Xk′ , Xk), the covariance matrix Σ is symmetric; therefore, its eigenvectors
are orthogonal, defining a new orthogonal basis space.

2.2.3. Information Theory

The Information Theory (Hockett et al., 1953) consists of the mathematical background
of concepts, parameters, and fundamental rules that govern the transmission of messages
through communication systems, usually governed by high noise and uncertainty. Information
Theory is a concept founded by Claude Shannon (1916–2001), who laid the foundations and
fundamental limits that would be exploited and implemented throughout the preceding years
in various areas, including the Data Science and Machine Learning research fields.
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2.2.3.1. Entropy

One of the fundamental definitions in Information Theory consists of the Shannon entropy
H(p), which is a function defined as a measure of the uncertainty of a random variable X.
The entropy definition is as follows:

H(p) ≡ E
x
[− log (p(x))] , (2.23)

≡ −
N∑
i=1

p(xi) log (p(xi)), (2.24)

where X corresponds to a discrete random variable and p(x) is its probabilistic distribution.
One way to analyze this definition is to consider that the entropy H(p) consists of the
expectation of the information, defined as − log (p(xi)), which is offered by the different
outcome events x from a random variable X. Intuitively, rare events, with low probability
of occurrence p(xi), offer more information when they occur. In contrast, frequent or trivial
events, with high probability of occurrence, usually do not offer any valuable information.

It should be noted that the definition of entropy can also be directly extended over a
framework of continuous random variables, bearing the name of differential entropy. The
differential entropy definition is as follows:

H(p) ≡−
∫
x

p(x) log (p(x)), (2.25)

where X is a continuous random variable.

2.2.3.2. Cross-Entropy

Given two probability distributions associated with the random variable X, p(x) and q(x),
the cross-entropy operator is defined as follows:

H(p, q) ≡ E
x∼p(x)

[− log (q(x))] , (2.26)

≡ −
N∑
i=1

p(xi) log (q(xi)), (2.27)

where q(x) consists of an approximated distribution of the real distribution p(x) of the ran-
dom variable X. If the approximation q(x) is adequate and it properly describes the real
distribution p(x); then, the cross-entropy is minimized when q(x) ≈ p(x), reaching the theo-
retical lower bound H(p)6.

2.2.4. Machine Learning

Machine Learning (ML) can be described as a broad family of methods and algorithms
that are capable of detecting, partially or fully automatically, patterns, structures, and re-

6H(p, q) = H(p) + DKL (p || q) ≥ H(p), where DKL (p || q) is the Kullback Leibler divergence between
the real distribution p(x) and the approximated distribution q(x).
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lationships hidden in a set of data (dataset). Usually, these datasets are often governed by
high noise, uncertainty, and other types of ambiguities and challenges.

Currently, the world is rushing headlong into a new paradigm called Big Data. In this
paradigm, it is common to find, throughout all areas of knowledge, different scenarios that
generate an increasingly abundant amount of data. For instance, in the case of the Internet
itself, it already store a massive amount of data, where almost 1,700 Terabytes of data are
uploaded each minute7 and almost 500 hours of video are uploaded each minute on websites
like Youtube8. Another example is astronomy, where a huge stream of data is expected to
be extracted from the cosmos by the new generation of telescopes, such as the future Vera
C. Rubin Observatory Legacy Survey of Space and Time (LSST; Ivezić et al., 2019) survey.
For instance, for the LSST project, approximately 15 terabytes of raw data are expected per
night by observing a large number of astronomical objects up to 37 billion objects in 10 years
(Ivezić et al., 2019).

In general, this raw data is not as useful or interesting to study, by itself, as the information
that can be extracted from it. As an example, although one can access an image, composed
of hundreds or thousands of pixels; ultimately, the value of the data lies in the information
contained within the image, e.g., knowing if there are faces in the image, describing textures
or geometric shapes, finding and describing letters. This requisite for information extraction,
as well as the vertiginous increase in the data quantity, means that the study and processing
of the data gets out of hand when it is delegated solely to human experts. For these reasons,
this large volume of data needs to be processed automatically in order to extract useful and
condensed information, as well as to discover new knowledge about the data and the processes
that generate it.

In the Big Data paradigm context, Machine Learning results in an extremely attractive
strategy because it allows scientists and engineers to automatically process the increasingly
colossal data collections, with little or even no human intervention. Another possible advan-
tage is that the use of Machine Learning methods can help to reduce strong assumptions
coming from expert knowledge (human bias) about the proposed problems to solve, letting
the algorithms, by themselves, try to find the best solutions by extracting information directly
from the raw data.

A frequently accepted way of tackling the problems proposed by Machine Learning is to
consider a probabilistic framework or scheme, also called a Bayesian scheme. This approach
considers that, in a modeling or approximation problem, there always will exist associated
uncertainties; therefore, the best alternative is to consider and deal with them by working
according to a probabilistic approach. Some intrinsic encountered uncertainties may be: ¿Is
this approximation really the most correct one? ¿Is the model used the best alternative for
this problem? ¿Are these data reliable or are they the product of noise and/or interference?
among many others.

In general, in the literature, it is very common to divide the Machine Learning research
area into three main sub-categories: Supervised Learning, Unsupervised Learning, and Rein-
forcement Learning. For the sake of simplicity, we will only briefly introduce the first two of

7https://everysecond.io/the-internet.
8https://everysecond.io/youtube.
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them.

2.2.4.1. Supervised Learning

In Supervised Learning, the main goal is to generate (a.k.a. to learn) a mapping rela-
tionship from a data instance x (input vector) to a response y (output vector). This map
can be represented as finding a function approximation f̂(·), of a hidden function f(·), that
allows us to correctly describe the following relationship: ŷ = f̂(x)9.

We define the dataset D as a collection of N individual instances, each one denoted
vectorially as follows: xi = [xi,1, . . . , xi,D]

T ∈ RD, where an input vector xi aims to describe
the i-th data instance by considering D numerical variables, usually called characteristics
or features. The vector xi can be the representation of an image, a video, a time series, a
point cloud, a paragraph, etc. For simplicity, the theoretical explanation will be carried out
by considering xi as a vector, but it is directly extensible to another type of more complex
mathematical object, such as matrices or tensors (high-dimensional matrix).

In addition, for each input vector xi, we also have the output response yi, also denoted as
a vector. This response vector is usually generated from the supervision of a human expert,
but it can even be generated by another external algorithm. The vector yi aims to describe
some known output response associated with the input vector xi. Finally, the dataset in a
supervised learning scenario can be represented according to the following dataset notation:
D = {(x1,y1), . . . , (xN ,yN)} = {(xi,yi)}

N
i=1.

Classification Problem Scenario

A frequent scenario in supervised learning is the classification task. When working on a
classification problem, the output variable yi = yi is often used as a categorical variable, being
an integer of the form yi ∈ {1, . . . , C}, where C is the number of classes existing in the dataset
D. Also, the value of yi directly indicates the index of the class to which the input vector xi

belongs to. As an example, different types of supernova photometric light-curves are present
in a dataset D; then, the supervised categorical variable yi can be independently generated
from a external study performed with complex spectrometry techniques and evaluated by
human experts.

Recalling the objective of the input-output mapping relationship x 7→ y, it is possible to
express the classification problem according to a probabilistic approach as follows:

ŷi = f̂(xi) = argmax
c∈{1,...,C}

p(yi = c|xi;D,θ), (2.28)

where the function f̂(·), to be approximated, corresponds to a density or conditional proba-
bility distribution p that describes the behavior of the categorical variable yi. Thus, the class
distribution of the i-th data instance is conditioned by the characteristics of the input vector

9The notation ·̂ indicates that the mathematical object is an approximation, either of a variable or of a
function.
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xi, the rest of the dataset D, and the model θ that is used for modeling or approximating
the function.

Given a model θ, the vector θ = [θ1, . . . , θM ]T corresponds to a set of M parameters
that conforms the model, where these parameters can be changed and adjusted by some
optimization process, obtaining the optimal values denoted as θ∗ = [θ∗1, . . . , θ

∗
M ]10. In the

context of Machine Learning, the process of finding θ∗ is called «training», where it is said
that these values are «learned», coining the term «Machine Learning».

For simplicity, it is very common to omit some variables in the formulation of the problem,
as well as to handle subscripts indicating the model linked to the approximation of some
function, as follows:

ŷi = f̂θ(xi) = argmax
c∈{1,...,C}

p(yi = c|xi), (2.29)

where it is said that the function fθ is modeled by the model θ. By considering this proba-
bilistic approximation, the most probable class is obtained by finding the maximum of the
class distribution over the classes c ∈ {1, . . . , C}. Finding this value corresponds to finding
the mode of the distribution of yi; therefore, finding the best bet or approximation of ŷi
associated with the input vector xi. This methodology is also known as the Maximum a
Posteriori estimation (MAP)11.

Regression Problem Scenario

Another very common supervised learning scenario is the regression task. In this scenario,
if we want to regress a variable, we have that yi = yi is a number value of the form yi ∈
R, which represents a response associated with the input vector xi. In such a case, the
probabilistic model is similar to the one described above, being of the form p(yi|xi;D,θ).
As an example, a regression problem could be to perform a regression of the brightness flux
from a supernova light-curve.

2.2.4.2. Unsupervised Learning

In the unsupervised learning scenario, we have a dataset composed of the input vectors
only: D = {x1, . . . ,xN} = {xi}Ni=1. Because there is no externally characterized supervised
output vector yi (as in the supervised scenario), the goal of unsupervised learning is to
perform knowledge discovery, i.e., finding hidden and interesting patterns, structures, and/or
relationships in the data.

In the absence of a supervised output variable linked to an input variable, the unsupervi-
sed problem is formalized as a probabilistic density estimation problem, where the idea is to
express models as p(xi|D,θ). In this sense, there are two main differences w.r.t. the super-
vised case: 1) In the supervised case a conditional density must be estimated, while in the

10The notation ·∗ is used to denote the optimal values reached after some optimization process.
11In this case, the MAP estimation is performed over the variable yi and not over the model θ. The latter

case will be discussed later in section §2.2.5.2.

18



unsupervised case this distribution is non-conditional. 2) The fact that xi is a vector makes
the density estimation to consider multi-modal distributions, which drastically increases the
complexities and challenges for solving the problem.

In general, the unsupervised scenario is a highly challenging scenario because the problem
to be solved is usually not very intuitive, especially considering that usually there is no a clear
idea of the hidden patterns that we are actually trying to find. The great advantage is that
in the unsupervised scenario it is not necessary (or explicitly required) to have supervised
variables, which are usually very expensive to obtain (or even impossible) in some cases since
the effort of human experts is required.

2.2.4.3. Semi-Supervised Learning

It is often possible to find cases where, although there is an supervised output vector yi,
it is only partially characterized for a subset of input vectors xi. Then, in the semi-supervised
learning scenario, techniques and strategies from both, the supervised and the unsupervised
learning, are used to solve the problem.

2.2.4.4. Models and Algorithms

Currently, there are many algorithms, also called models, belonging to the Machine Lear-
ning family. A major distinction of these algorithms is usually made by noting whether these
models are considered as parameterized or non-parameterized models.

The parameterized models consist of models θ = [θ1, . . . , θM ]T whose number of para-
meters M is fixed. An advantage of having a fixed defined quantity is that these models
are usually fast and computationally less expensive. A disadvantage is that it is necessary
to make strong assumptions about the distribution of the data, which may not always be
correct or may only consider particular cases and circumstances. Some examples of paramete-
rized models are the following: Naive Bayes Classifier, Linear Regression, Logistic Regression,
Artificial Neural Networks (ANNs)12, among others.

On the other hand, in the case of the non-parameterized models, the number of para-
meters M that conforms the model θ usually grows w.r.t. the amount of data worked. This
normally translates into higher computational times and costs as the dataset D grows into
a larger volume. Some examples of non-parameterized models are the following: Classifica-
tion and Regression Trees (CART), Random Forest (RF), Support Vector Machine (SVM),
k-Nearest Neighbors (kNN), Gaussian Process (GP), Kernel Density Estimation (KDE), Ge-
netic Algorithms (GAs), Particle Swarm Optimization (PSO), among others.

12Along with the whole wide family of ANN-based models, some of which will be studied in the following
sections.
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2.2.5. Bayesian Learning

The Bayesian Learning corresponds to a probabilistic framework based on the Bayes theo-
rem. This concept is radically important to understand the basis of many types of Machine
Learning algorithms, such as the ANN-based model optimization.

2.2.5.1. Bayes Theorem

Rev. Thomas Bayes (1702–1761) was an English Nonconformist Prebyterian minister and
author of one of the most influential ideas in the probability theory: the Bayes theorem. The
Bayes theorem is defined as follows:

posterior = p(θ|D) = p(D|θ)p(θ)
p(D)

=
likelihood · prior
marginalization

, (2.30)

where the detailed explanation is as follows13:

1. Model: the model θ corresponds to an hypothesis of a possible model that aims to
explain the empirical observations of the data D. It should be clarified that the model
θ comes from the space of all possible models that can be constructed, i.e., all possible
combinations of parameters that generate the vector θ = [θ1, . . . , θM ]T 14.

2. Prior: the prior term p(θ) corresponds to the probability of occurrence of the model
θ. The prior is used to induce any kind of knowledge about the context of the given
problem. For example, by using the prior, one can assign a higher probability on certain
models that are known to be more plausible than others. Likewise, a non-informative
prior can be used when all models are equally probable in the prior distribution. In this
case, the lack of preliminary knowledge can be expressed by using a prior distribution
defined as an uniform distribution over the models.

3. Likelihood: the likelihood term p(D|θ) corresponds to the conditional likelihood of the
observations from the data D given a fixed model θ. The likelihood attempts to express
the likelihood of having actually observed the data D given the model choice (not
necessarily optimal) of a model that aims to describe the data observations. Note that,
if we considers a number of N data observations D = {xi}Ni=1, then the likelihood must
consider the joint probability of all observation as follows: p(D|θ) = p(x1, . . . ,xN |θ).

4. Marginalization: the marginalization term p(D) consists of the marginal likelihood
of the observed data D. Theoretically, this probability can be expressed as p(D) =∑
θ′ p(D,θ

′) =
∑
θ′ p(D|θ

′)p(θ′) in the discrete case15, which is a marginalization w.r.t.
the full domain of models. In addition, p(D) could be directly considered as a constant

13It is common to find this explanation based on the concept of hypothesis H and evidence E. For this
work, the hypothesis H can be assumed directly as the hypothesis of considering a possible configuration of
the model θ which attempt to explain the empirical observations (i.e., the evidence E) from the data D.

14In a real scenario, we only work with a bounded set of possible solutions for the model θ due to
computational numerical constraints.

15p(D) =
∫
θ′ p(D|θ′)p(θ′) in the continuous case.
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term since it is a scaling factor, ensuring that the final result (posterior term) effectively
corresponds to probabilities coming from a well-defined distribution that satisfies the
associated conditions, e.g.,

∑
θ p(θ|D) = 116.

5. Posterior: the posterior term p(θ|D) corresponds to the conditional probability of
the model θ given the empirical observation of the data D. The posterior is simply
the multiplication of the likelihood with the prior probability, finally scaled by the
marginalization term.

Therefore, the posterior is a distribution that exposes which models θ are the most or least
likely given that the data observations D have already been empirically observed. In general,
with sufficient data, the interest lies in studying the modes of the posterior distribution.
Usually, in those distribution regions, the models that are statistically the most adequate to
explain the observations from the data D are presented.

An interpretation of Bayesian Learning is that it consists of a scheme where the idea is
to be able to update the current hypotheses as new evidence is gathered and empirically
observed from the world, i.e., to update and correct the initial beliefs about a model θ after
having observed the data D. In that sense, it is even possible to dynamically update and
replace the prior distribution, with the posterior distribution, as follows: p(θ) ← p(θ|D), a
process that is also known as Bayesian Update.

2.2.5.2. Maximum A Posteriori (MAP) Estimation

As previously mentioned, the key idea of the Bayesian Learning is to be able to find an
optimal model θ∗ that can adequately explain the empirical observations in the data D. One
formulation of this problem is the Maximum a Posteriori (MAP) estimation over the model
distribution, which is defined as follows:

θ∗ = argmax
θ

p(θ|D) = argmax
θ

p(D|θ)p(θ)
p(D)

, (2.31)

= argmax
θ

p(D|θ)p(θ), (2.32)

where this expression states that the optimal model θ∗ is presented in the mode of the
distribution of models θ given the empirical observations of the data D.

Intuitively, the MAP estimation attempts to solve the following questions:

1. Given the set of empirical data observations D ¿What is the distribution of possible
models θ that attempt to explain them?

2. According to this model distribution, where the most probable model is the one that
can best explain the behavior of the data observations D ¿Which is the most probable
model, i.e., the optimal model θ∗?

16
∫
θ
p(θ|D) = 1 in the continuous case.
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Eq. (2.32) is valid since the data p(D) is an expression that does not depend on the model θ
for the maximization problem. Also, the following proportion holds: p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ).

This results in a great advantage as the term p(D) is intractable in the vast majority of
practical cases. The intractability of the term p(D) easily occurs in scenarios where the
models possess high-dimensional vectors, where the integral

∫
θ′
p(D|θ′)p(θ′) hardly have a

known or even computable analytical solution.

2.2.5.3. Maximum Likelihood Estimation (MLE)

It is often common to simplify the MAP estimation into the Maximum Likelihood Esti-
mation (MLE), which is defined as follows:

θ∗ = argmax
θ

ℓ(θ|D), (2.33)

ℓ(θ|D) = p(D|θ), (2.34)

where eq. (2.34) is obtained by directly considering the following proportion: p(D|θ)p(θ)
p(D)

∝
p(D|θ)p(θ) ∝ p(D|θ).

It can be observed that, in MLE, it is not necessary to work with a prior distribution
for the model θ: the maximization optimization depends only on the likelihood distribution.
Also, it is important to note that the term ℓ(θ|D) is called the likelihood function, which
does not necessarily holds the condition

∑
θ ℓ(θ|D) = 1; therefore, it does not correspond to

a probability distribution of the models.

In summary, in the MLE context, we seek to explain how plausible an arbitrary model
θ is given the data observation D. Then, finding the maximum of the likelihood function is
equivalent to finding a potentially optimal model θ∗.

Linear Regression Example

In this section, we present a brief example of the regression optimization problem by
using the aforementioned Bayesian Learning scheme. Given that the regression task can be
considered as a supervised learning problem, we define the observations as follows: D =
{(xi, yi)}Ni=1. In this case, the problem is simplified by considering observations of the input
values xi and output values yi as scalar values. By assuming that all output values yi are
independent of each other, then the likelihood function is defined as follows:

ℓ(θ|D) = p(y1, . . . , yN |x1, . . . , xN ;θ), (2.35)
= p(y1|x1, . . . , xN ;θ) . . . p(yN |x1, . . . , xN ;θ), (2.36)

=
N∏
i=1

p(yi|x1, . . . , xN ;θ), (2.37)
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then, by assuming that each output value yi depends only on the associated input value xi

and the model θ, the likelihood function can be expressed as follows:

ℓ(θ|D) =
N∏
i=1

p(yi|xi;θ), (2.38)

where, to further analytically work this expression, the following assumptions are required:

1. All output values yi follow an i.i.d.17 Gaussian distribution scheme of the form yi ∼
N (µi, σ

2
i ), where the fixed standard deviation σi is defined as follows: σi = σ,∀i ∈

{1, . . . , N}.

2. The mean of the i-th Gaussian distribution is defined as follows: µi = W Txi. In this
case, the model is defined as θ =W = [b, a]T ∈ R2, where a is a scale and b is an offset.
In addition, a notation trick is used to represent the original input values in a vectorial
form as follows: xi = [1, xi]

T ∈ R2. In this way, it is straightforward to obtain a linear
expression for an output estimation: ŷi =W Txi = a · xi + b.

Eq. (2.38) is analytically worked as follows:

ℓ(θ|D) =
N∏
i=1

p(yi|xi;θ), (2.39)

=
1√
2πσ2

exp

(
−(y1 − µ1)

2

2σ2

)
. . .

1√
2πσ2

exp

(
−(yN − µN)

2

2σ2

)
, (2.40)

and by taking the logarithm of the likelihood:

log (ℓ(θ|D)) = c− (y1 − µ1)
2

2σ2
· · · − (yN − µN)

2

2σ2
, (2.41)

= c−
∑N

i=1(yi − µi)
2

2σ2
, (2.42)

= c−
∑N

i=1(yi −wTxi)
2

2σ2
, (2.43)

where c is an arbitrary constant term. Finally and returning to the maximization optimization
problem, the optimal model can be expressed as follows:

θ∗ = argmax
θ

ℓ(θ|D) = argmin
θ
− log (ℓ(θ|D)), (2.44)

= argmin
θ

∑N
i=1(yi −wTxi)

2

2σ2
, (2.45)

= argmin
θ

N∑
i=1

(yi −wTxi)
2, (2.46)

= argmin
θ

N∑
i=1

(yi − (a · xi + b))2, (2.47)

17Independent and identically distributed.
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where, in eq. (2.47), the Mean Squared Error (MSE), between the empirical output value
yi and the approximation value ŷi = a · xi + b, is computed. The MSE expression is highly
important as it is widely used in the literature. This is because it has a well-known analytical
solution and it is directly extensible to the high-dimensional case when the input values are
vectors.

2.2.6. Iterative Optimization Algorithms

Although the previously example of the linear regression does have a well-known analytical
solution, this is not the case for the majority of real-world problems, where it is almost
impossible to find a closed analytical solution for the MAP or the MLE schemes. Given this
challenge, it is then necessary to incorporate a mechanism capable of dealing with the complex
optimization problems proposed in Machine Learning in general, without relying on the
existence of closed analytical solutions. Therefore, in this section, some relevant algorithmic
solutions for this challenge are described, which are iterative optimization algorithms based
on Gradient Descent.

2.2.6.1. Gradient Descent (GD)

The Gradient Descent algorithm (GD) describes the iterative model update rule according
to the error evaluation over an optimization surface. According to the GD algorithm, the
model θ update rule is described as follows:

θ ← θ − η∇θJ(θ), (2.48)

where the function J , also known as the target or loss function, is the function that is required
to be minimized when evaluated over an optimal model θ∗. The term ∇θJ is the gradient of
the loss function J w.r.t. the model θ. The factor η corresponds to the model update factor,
which is also called the «learning rate».

Intuitively, the minimization over the loss function or surface J is required to solve the
proposed optimization problem. The assumption is that several local minimum points in J
may exist associated with different sets of model parameters θ = [θ1, . . . , θM ]T . In GD, given
a model θ, we assume the existence of a nearest local minimum where the loss function is
minimized as follows: J∗ = J(θ∗), where θ∗ is the evaluated optimal model that minimizes
the loss function J . To find this optimal model, small update changes are applied over the
model parameters by following the direction pointing to the nearest local minimum in J∗.
Then, given a model θ, the update direction over the optimization surface can be computed
as the opposite direction defined by the gradient of the loss function: −∇θJ(θ).

Given the previously defined model update direction, the model parameters are changed in
order to perform small update steps towards the nearest local minimum loss function value J∗

evaluated over the optimal model θ∗. The idea is to iteratively perform small update steps of
the model, updating the parameters and the update direction −∇θJ(θ) at each optimization
iteration. This iterative process allows the model parameters to be slowly updated towards
the local minimum solution at θ∗, eventually reaching the local minimum with an adequate
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Algorithm 1: Stochastic Gradient Descent pseudo-code.
1 for epoch ∈ epochs do
2 Randomly shuffle the instances within the dataset D
3 Generate a number of #(D)

N
mini-batches from the dataset D// Where N = #(Dmb)

4 for mini-batch ∈ mini-batches do
5 θ ← θ − η

N

∑N
i=1∇θJi(θ)// Compute the gradient estimation using the mini-batch Dmb

number of optimization iterations. Finally, the strength of the update changes towards the
local minimum is controlled by the learning rate factor η, performing small update changes
if η is also an small value.

2.2.6.2. Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent algorithm (SGD) corresponds to the practical extension
of GD, where the required gradient computation is estimated from a subset of instances Dmb

within a dataset D. The subset Dmb is known as the «mini-batch» set. Then, the model
update rule in the SGD algorithm is described as:

θ ← θ − η∇θ

(
1

N

N∑
i=1

Ji(θ)

)
= θ − η

N

N∑
i=1

∇θJi(θ), (2.49)

where N is the mini-batch subset size: N = #(Dmb). The main idea of SGD it to compute a
gradient approximation of the original GD formulation as follows:∇θJ(θ) ≈ 1

N

∑N
i=1∇θJi(θ),

where Ji(θ) is the loss function value evaluated on the i-th instance in the mini-batch subset
Dmb. This mini-batch is usually a random and smaller selection of instances from the complete
dataset D.

Although the SGD algorithm has an stochastic behavior when building the different mini-
batches Dmb, the optimization is still performed in such a way that all instances within the
dataset D are finally evaluated on the loss function. As an extra explanation, algorithm 1
describes the SGD pseudo-code. In SGD, each evaluation and update step, using a mini-
batch, is called an «iteration». In addition, an «epoch» is passed once all the mini-batches
are used to evaluate the loss function, completing the evaluation of all the instances within
the original dataset D.

Noted that, in the context of real-world optimization problems, the implementation of
the GD algorithm is almost impossible due to the high computational cost and memory that
is required, specially with high-volume datasets expected in the Big Data paradigm. For
this reason, the implementations are usually framed with the key concepts used in the SGD
algorithm, where the use of mini-batches, iterations, and epochs is specially important to
ensure tractable computational costs during the optimization.

In addition, the stochastic behavior of the SGD algorithm allows the optimization process
to avoid and even escape from possible sub-optimal local minimum surfaces along the opti-
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Figure 2.1: Illustrative comparison between the GD and the SGD optimization algorithms.
A smooth and straightforward path towards the local surface minimum (red point) can be
observed for the GD when using the complete dataset to update (blue path). A moderate
stochasticity can be also observed when using a mini-batch routine for the GD algorithm
(green path). For the SGD, a highly stochastic behavior can be observed, producing random
changes along the path and reaching the minimum of the surface in a longer number of
iterations (purple path). Original figure extracted from https://medium.com/analytics-v
idhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4.

mization path. Fig. 2.1 illustrates a comparison between the GD and the SGD optimization
algorithms over a 2D optimization surface.

2.2.6.3. Other Optimization Algorithms

Based on the GD and SGD algorithm, a vast family of optimization algorithms has been
proposed in Machine Learning, being the optimization algorithm design a very active research
field. Some notable optimizer examples are the following: Adagrad (Duchi et al., 2011), Ada-
delta (Zeiler, 2012), Momentum Optimizer (MO), Root Mean Square Propagation (RMS-
Prop), Adaptive Moment Estimation (Adam; Kingma & Ba, 2015), AdamW (Loshchilov &
Hutter, 2017), among many others.

2.2.7. Monte Carlo Method

The Monte Carlo is an experimental methodology that incorporates, to a greater or lesser
extent, some mechanism of empirical sampling from a stochastic experiment to be studied.
Although the MC usage cases cover a large number of algorithms and strategies, they all share
the characteristic of considering empirical sampling to estimate some function or statistic of
interest.

To illustrate the Monte Carlo methodology, a random variable with Gaussian distribution
x ∼ N (µ, σ2) and an arbitrary function f(·) are defined as an example. According to the
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Monte Carlo method, an estimate of the expected value on such function, based on a collection
of empirical samples, is expressed as follows:

E
x
[f(x)] =

∫
x

p(x)f(x) ≈ ĺım
N→∞

1

N

N∑
i=1

f(xi), xi ∼ p(x), (2.50)

where xi corresponds to the i-th empirical sample obtained from the random variable X. In
this case, the quality of the empirical estimation is expected to improve as the number of
samples N also increases.

For instance, in this example, if f(x) = x is used, then the Monte Carlo method would
give an estimate of Ex [f(x)] = Ex [x] = µ ≈ ĺımN→∞

1
N

∑N
i=1 xi, xi ∼ p(x), where µ is the

mean of the Gaussian distribution. Noted that the estimates may be only adequate if there
is a large number of samples N .

Finally, given the practical difficulties associated with the generation of samples from a
Gaussian distribution (e.g., infinite domain), the above estimation can be also described in
terms of the inverse transform method as follows:

E
x
[f(x)] ≈ ĺım

N→∞

1

N

N∑
i=1

f
(
F−1
X (zi)

)
, (2.51)

where z is sampled from an uniform distribution z ∼ Z = U(0, 1) and F−1
X is the inverse

CDF of the Gaussian distribution pX .

2.2.8. Markov Chain Model

The Markov Chain is a statistical model that aims to describe the evolution of a dynamic
system between different possible discrete states for a random variable X. This evolution can
operate over sequential iterations, sequential steps, or discrete changes in time.

In this probabilistic framework it is assumed that the state changes are stochastic; the-
refore, changing from a previous state Xj−1 = aj−1 to a current state Xj = aj is subject
to a probability by considering that there exist a set of possible states: {a1, . . . , aN}. This
transition probability is expressed as follows:

paj−1 7→aj = paj−1,aj = p(Xj = aj|Xj−1 = aj−1, Xj−2 = aj−2, . . . , X1 = aj=1), (2.52)

where it is observed that the current state of Xj, at the sequence step j, depends explicitly
on all the previous states (the complete evolution of the system) starting from the initial
state X1 = aj=1.

A Markov Chain must satisfies the Markov property that is defined as follows:

paj−1 7→aj = paj−1,aj = p(Xj = aj|Xj−1 = aj−1, Xj−2 = aj−2, . . . , X1 = aj=1), (2.53)
= p(Xj = aj|Xj−1 = aj−1), (2.54)

where the distribution over the current state Xj, given all the history of the system, de-
pends only on the most immediate past Xj−1. Intuitively, this expresses that knowing the
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states Xj−2, . . . , X1 is irrelevant when describing the current state Xj since such evolution is
implicitly «stored» in the previous state Xj−1. This property is of great help as it removes
the need to follow the complete history of a dynamical system, which can be prohibitively
expensive in some cases.

The probabilistic change of states in a Markov Chain can be expressed into the following
square matrix P , also called state transition matrix:

P = from states




to states︷ ︸︸ ︷
pa1,a1 . . . pa1,aN

... . . . ...
paN ,a1 . . . paN ,aN

 (2.55)

where the entries of the matrix P follow the form pak 7→am = pak,am = p(Xj = am|Xj−1 = ak)
which is the conditional probability of changing from the previous state ak to the current state
am. Note that the sum across the rows of this matrix must sum up to one:

∑N
m=1 pak,am = 1,∀k.

Additionally, an auxiliary vector πj−1, conformed of the probabilities of being in any of
the N states at a certain sequence step j, is defined as follows:

πj−1 = [π1,j, . . . , πN,j]
T = [p(Xj−1 = a1), . . . , p(Xj−1 = aN)]

T , (2.56)

where this vector is constructed by using the marginal probabilities of each possible state,
satisfying the following condition:

∑N
k=1 πk,j = 1,∀j. Therefore, the evolution of a dynamical

system, from one sequence step j−1 to another sequence step j, can be expressed as follows:

πj = P Tπj−1. (2.57)

2.2.8.1. Stationary Distribution

Depending on the values of the state transition matrix P , the dynamical system can
converge to a particular and stable distribution. This distribution is called the stationary
distribution of the system. To find this distribution, it is necessary to solve the following
system:

π = P Tπ, (2.58)
N∑
k=1

πk = 1|πk ≥ 0,∀k, (2.59)

which arises by imposing the condition πj−1 = πj = π, where π is the stationary distribution.
Intuitively, this expression indicates that, given a number of evolution steps of the dynamical
system, the vector with the marginal distributions π will not change by the linear projection
P , reaching the steady state of the system defined under the stationary distribution in π.

Eq. (2.58) describes the same restriction imposed in the extraction of the eigenvectors
and eigenvalues of a matrix. Therefore, to find the stationary distribution of the system π, it
is required to find the eigenvectors and eigenvalues of the matrix P . In addition, in eq. (2.59),
an extra condition is presented to ensure that the elements of the eigenvectors correspond to
a valid distribution.
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2.2.9. Monte Carlo Inference

The Monte Carlo inference is a strategy that uses the generation of empirical samples for
the estimation of probability distributions by using the Monte Carlo method. By its nature,
this strategy is particularly useful and necessary in scenarios involving the estimation of
intractable distributions, i.e., those without the existence of trivial or computable analytical
solution.

An example of a complex distribution estimation is the posterior distribution in the
context of Bayesian inference:

p(θ|D) = p(D|θ)p(θ)
p(D)

, (2.60)

where the term p(D) (marginalization constant) is generally intractable in practical problems,
especially when high-dimensional models θ are used.

2.2.9.1. Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo (MCMC) is a Monte Carlo inference algorithm based
on the Markov Chain statistical model. An example of an MCMC algorithm is the popular
Metropolis Hastings algorithm (Chib & Greenberg, 1995).

2.2.9.2. Metropolis Hastings (MH)

The Metropolis Hastings (MH) is a well-known algorithm belonging to the MCMC family.
This algorithm aims to estimate the posterior distribution p(θ|x, y), of a model θ, by starting
with a certain initial condition θ1. Algorithm 2 describes the iterative estimation according
of the MH algorithm.

A common design in the literature is to choose an isotropic Gaussian proposal distribution:
q(θk|θk−1) = N (θk;θk−1, Iσ

2
τ ), which considers a Gaussian hypersphere centered on the

previous model θk−1. The standard deviation στ gives us an idea of the size of the random
jump that is realized in the hyperspace when sampling the candidate model θ(c)k . Intuitively,
this algorithm will accept and retain the candidate models that obtain a higher posterior
probability w.r.t. the previous iterations: p(θ(c)k |x, y) > p(θk−1|x, y).

Since the candidate model update is based on a probability, this algorithm works over the
Markov Chain assumption: after a large number of iterations, it is expected that the chain
will reach the equilibrium, converging to the stationary distribution of the dynamic system.
At this theoretical point, the generated samples of the algorithm will correspond to samples
obtained from an adequate estimation of the posterior distribution p(θ|x, y)18.

18While having access to a mechanism for generating samples from an estimated distribution is extremely
useful, it is also possible to estimate the posterior distribution using other techniques based on histogram
computation or KDE.
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Algorithm 2: Metropolis Hastings MCMC algorithm.
1 A proposal distribution q(θk|θk−1) is selected// this distribution describes the probability

of a new model θk given a previous model θk−1.

2 A model initial condition is generated θ1
3 for k ∈ {2, . . . , K} do
4 A candidate model is sampled from θ

(c)
k ∼ q(θk|θk−1)

5 The posterior probability is computed by using the new candidate model θ(c)k :
p(θ

(c)
k |x, y) ∝ p(y|θ(c)k , x)p(θ

(c)
k |x) = p(y|θ(c)k , x)p(θ

(c)
k )

6 The posterior probability is computed by using the previous model θk−1:
p(θk−1|x, y) ∝ p(y|θk−1, x)p(θk−1|x) = p(y|θk−1, x)p(θk−1)

7 The acceptance probability of the candidate model θ(c)k is computed:

α = min

{
1,

p(y|θ(c)k ,x)p(θ
(c)
k )

p(y|θk−1,x)p(θk−1)

}
8 r ∼ U(0, 1)
9 if r < α then

10 θk = θ
(c)
k // the candidate model θ(c)k is accepted: θ(c)k is used to update the model.

11 else
12 θk = θk−1// the candidate model θ(c)k is rejected: θk−1 is used to update the model.

A notable advantage of the MH is that it allows us to generate samples from a posterior
distribution even if the analytical solution of that distribution is unknown. This is remarkably
important and useful in many practical cases, especially when using high-dimensional models
θ. In that sense, to achieve the estimation of the posterior distribution, it is only required to
compute the product between the probabilities from the likelihood and the prior distributions:
p(y|θ(c)k , x)p(θ

(c)
k ).

In contrast, this algorithm present some disadvantages which are described as follows:

1. Initial condition sensitivity: given the Markov chain assumption, the MH algorithm
has a high sensitivity to the initial condition θ1. A commonly accepted way to deal
with this problem consists of the «burning period». This strategy consists of defining a
certain number of initial iterations only as the evolution of the system, discarding them
as invalid samples from the distribution to be estimated. For example, by considering
a burning period of k′, the valid samples are defined in the following iterations: k ≥ k′.

2. Markov Chain correlation: given the Markov Chain assumption in the MH algo-
rithm, the model samples θk and θk−1 can be strongly correlated. This behavior is
incorrect as it is assumed that these samples come from independent samples from
the estimated distribution. A solution for this problem could be to consider as valid
samples only intermediate samples within the chain, a process called «thinning». For
example, when considering a certain thinning value of k′, then the valid samples ite-
rations must satisfy k%k′ = 0, where % is the modulus operator. However, it is not
always possible to ensure uncorrelated samples as this strongly depends on the dis-
tribution to be estimated and the data. Therefore, it is very important to study this
behavior empirically.
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3. Long convergence time: a major difficulty associated with the MH algorithm is
that the Markov Chain assumption precludes the implementation of a parallelizable
computation of the iterative evolution of the Markov Chain, i.e., it is required to perform
the computation in the previous iteration k − 1 to perform the current iteration k.
Because of this, the convergence time of the algorithm is usually quite high. One way
to mitigate this problem is to implement, in parallel, the evolution of multiple Markov
Chains, each one independent of each other (and with different initial conditions).
This has two main advantages: 1) Samples from all chains can be considered valid
simultaneously once they have reached the equilibrium distribution. At this point, it is
even common to concatenate the samples from the chains. 2) Since each parallel chain
has a different initial condition, this can also help to deal with the sensitivity of the
algorithm to initial conditions.

2.2.10. Artificial Neural Networks (ANNs) and Deep Learning

Throughout history, nature has inspired humans in the development of science and tech-
nology. For instance, the first prototypes of flight machines were inspired on birds. In the
search of building intelligent machines, it results natural then to take inspiration from nature
and from the core of the human intelligence: our own brains. The Artificial Neural Networks
(ANNs) are versatile models inspired on the biological neuron networks that conform the
animal brain.

The ANNs are known to have the flexibility to build highly complex architectures with a
large number of free parameters and possible architecture designs. This flexibility has been the
very core of the «Deep Learning» paradigm. Since the formulation of the perceptron model,
more complex, powerful, and scalable automatic learning system architectures have arisen in
the literature of computer science. In general, this modern phenomenon, coined as the Deep
Learning paradigm, considers the use of big and complex systems to estimate functions and
distributions, allowing scientists to solve challenging real-world problems that were considered
impossible decades ago (e.g., computational vision, Natural Language Processing (NLP),
image generation). For example, millions or even billions of parameters can conform a model,
such as the GTP model (Radford et al., 2019): a famous and big model used to solve several
NLP tasks.

2.2.10.1. Perceptron Model

The perceptron (Rosenblatt, 1958) is a mathematical model inspired and designed on how
the biological neuron cells operate and interact between each other. In this model, an output
value y can be computed given a set of different input values (cell units). The perceptron
model is defined as follows:

y = ϕ(x1w1 + · · ·+ xNwN), (2.61)
= ϕ

(
wTx

)
, (2.62)
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where x = [x1, . . . , xN ]
T is the input vector, containing N input values. The vector w =

[w1, . . . , wN ]
T contains the N weights of the model, each one associated with an input value.

Finally, the function ϕ : R 7→ R is the activation function, which is usually defined as
a nonlinear function. Some commonly used nonlinear functions are the hyperbolic tangent
function, sigmoid, Rectified Linear Unit (ReLU), softmax, among many others. In addition,
usually an optional constant term is added to the above expression as follows:

y = ϕ
(
wTx+ b

)
, (2.63)

where b ∈ R is the bias term.

In general, the weight vector w and the bias term b are considered as the free parameters
that conforms the perceptron model. Therefore, these are the parameters that are iteratively
adjusted during the optimization processes such as the SGD.

2.2.10.2. Fully-Connected Layer

Also called a dense layer, a fully-connected layer is a model designed as a extended
collection of perceptrons. Given a number of M perceptron models, a fully-connected layer is
connected in such a way that all the M output units are connected to all the N input units
from a previous layer through the associated weights. Thus, an arbitrary output value yi, in
a fully-connected layer, is defined as follows:

yi = ϕ
(
wT

i x
)
,∀i ∈ {1, . . . ,M}, (2.64)

or, in matrix notation:

y = ϕ(Wx), (2.65)

where W = [w1, . . . ,wM ]T ∈ RM×N is a matrix of weights. The vector x ∈ RM is the
input vector, y ∈ RM is the output vector, and ϕ is an element-wise arbitrary nonlinear
function. Furthermore, it is possible to observe a direct relationship with the concept of
linear projection using the matrix W 19.

In addition, as in the perceptron model, usually we add extra bias terms in the expression
as follows:

y = ϕ(Wx+ b), (2.66)

where b ∈ RM is the vector of biases.

Finally, a common notation is to express a fully-connected layer in terms of a parame-
terized function: y = fθ(x), where θ = [w1,1, . . . , wM,N , b1, . . . , bM ]T is the vector containing
all the free parameters of the model.

19A fully-connected layer is often referred to as a linear projection followed by a nonlinear operation.
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... ...

1st sequence step

initial state vector
(initial condition)

2nd sequence step 3rd sequence step j-th sequence step

Figure 2.2: Graph diagram representing a causal sequence for an arbitrary i-th sequence
instance. The vector xi,j is the input vector, hi,j is the state vector, and yi,j is the output
vector at an arbitrary sequence step j.

2.2.10.3. Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP; Rumelhart et al., 1986) model is an architecture based
on a collection of fully-connected layers that are causally and sequentially connected in a
stack scheme, i.e., the output of one layer is the input of the next layer. Thus, given an input
vector x ∈ RN , the output vector y ∈ RM is expressed as follows:

y = fθN ◦ · · · ◦ fθ1(x), (2.67)

where fθ1 , . . . , fθNL
are the N different fully-connected layers used to define the MLP model.

Finally, a common notation is to express the MLP model as a parameterized function:
y = fθ(x), where θ = cat[θ1, . . . ,θNL

] is the vector containing all the free parameters of the
model, which are the parameters of the NL fully-connected layers used.

2.2.11. Recurrent Neural Networks (RNNs)

The Recurrent Neural Network (RNN; Rumelhart et al., 1986; Zimmermann et al., 2012)
is a type of ANN-based architecture designed to process time series or causal sequences. In
RNNs, the Markov property on a vector state hi,j is used as a base assumption, i.e., the
current state of the system hi,j can be inferred based on its most immediate past hi,j−1.
Then, the RNN model is described with the following relationships (Fig. 2.2 shows a graph-
like illustration to represent a causal sequence):

hi,j = f(xi,j,hi,j−1), (2.68)
yi,j = g(hi,j), (2.69)

where hi,j ∈ RDh is the vector representing a Dh-dimensional state vector of the dynamical
system. This state is modeled by a transition function f(·) that uses as argument both, the
current Dx-dimensional input vector xi,j ∈ RDx and the previous state vector hi,j−1 ∈ RDh .
In addition, the observed output of the system y is modeled by a function g(·) that uses as
input the current state hi,j.
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2.2.11.1. Vanilla RNNs

The first approach to model the functions f(·) and g(·) is to use a simple parameterization
based on ANNs. In that case, the expressions (2.68)-(2.69) are rewritten as:

hi,j = f(xi,j,hi,j−1) = ϕ
(
W T

xxi,j + bx +W
T
hhi,j−1 + bh

)
, (2.70)

yi,j = g(hi,j) = hi,j, (2.71)

where eq. (2.70) computes the current state vector hi,j as a function of the current input
vector xi,j and the previous state vector hi,j−1. For this, the weight matrices W x ∈ RDx×Dh

and W h ∈ RDh×Dh , and the bias vectors bx ∈ RDh and bh ∈ RDh , are used. Additionally, an
arbitrary nonlinear activation function ϕ is used to induce nonlinear interactions. Note that
eq. (2.70) can also be implemented by using a fully-connected layer, where the input is the
concatenation of the input vector xi,j and the previous state vector hi,j−1: cat[xi,j,hi,j−1].

Although the above formulation is theoretically correct, in practice, this model usually
suffers from two main problems: the vanishing gradient and exploding gradient problems. The
vanishing gradient problem consists in the fact that, after successive applications of the chain
rule during the back-propagation algorithm, the gradient values may ends up converging to
0. Such a small gradient implies that the updating of the model parameters is also performed
with small changes, which drastically slows down the convergence to a local minimum in the
optimization of the cost function. On the other hand, the exploding gradient refers to the
scenario when the values of the model parameters grow abruptly and uncontrollably during
the training process, finally producing a computational overflow problem.

2.2.11.2. Long Short-Term Memory Model (LSTM)

The Long Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 1997) model is a type
of RNN that tries to solve the problems usually encountered in the Vanilla RNN models: the
Vanishing and exploding gradients problems. Fig. 2.3 shows a diagram that describes a single
cell of the LSTM model.

The main assumption of the LSTM model is the existence of a memory cell that can
learn how to handle which information should be read and stored, at each sequence step, in
a current internal state hi,j. It also could learn which information should be forgotten from
hi,j and which information should be displayed in the output vector yi,j. The equations that
define the operation of an LSTM cell are the following:

ii,j = σ
(
W T

xixi,j + bxi +W
T
hihi,j−1 + bhi

)
, (2.72)

f i,j = σ
(
W T

xfxi,j + bxf +W
T
hfhi,j−1 + bhf

)
, (2.73)

oi,j = σ
(
W T

xoxi,j ++bxo +W
T
hohi,j−1 + bho

)
, (2.74)

ĉi,j = ϕtanh
(
W T

xĉxi,j + bxĉ +W
T
hĉhi,j−1 + bhĉ

)
, (2.75)

ci,j = f i,j ⊙ ci,j−1 + ii,j ⊙ ĉi,j, (2.76)
yi,j = hi,j = oi,j ⊙ ϕtanh(ci,j), (2.77)
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Figure 2.3: Explanatory diagram of a single LSTM cell. The operations are shown at an
arbitrary sequence step j, where xi,j is the input vector, yi,j is the output vector, hi,j is the
current state vector, hi,j−1 is the previous state vector, ci,j is the current memory vector,
and ci,j−1 is the previous memory vector.

where ϕtanh and σ are the nonlinear hyperbolic tangent and sigmoid functions, respectively.
The operator ⊙ is the element-wise product. The detailed explanation of the LSTM model
is as follows:

1. Input gate vector: in eq. (2.72), the input gate vector ii,j is computed by using the
input vector xi,j and the previous state vector hi,j−1. Note that the values of ii,j are
in the range [0, 1] given the sigmoid function σ. This operation is modeled by using a
fully-connected layer, with the weight matrices W xi and W hi, and the bias vectors bxi
and bhi.

2. Output forget vector: in eq. (2.73), the output forget vector f i,j is computed by
using the input vector xi,j and the previous state vector hi,j−1. Note that the values of
ii,j are in the range [0, 1] given the sigmoid function σ. This operation is modeled by
using a fully-connected layer, with the weight matrices W xf and W hf , and the bias
vectors bxf and bhf .

3. Output gate vector: in eq. (2.74), the output forget vector oi,j is computed by using
the input vector xi,j and the previous state vector hi,j−1. Note that the values of oi,j
are in the range [0, 1] given the sigmoid function σ. This operation is modeled by using
a fully-connected layer, with the weight matrices W xo and W ho, and the bias vectors
bxo and bho.

4. Candidate memory vector: in eq. (2.75), the candidate memory vector ĉi,j is com-
puted by using the input vector xi,j and the previous state vector hi,j−1. Note that the
values of ĉi,j are in the range (−1, 1) given the hyperbolic tangent function ϕtanh. This
operation is modeled by using a fully-connected layer, with the weight matrices W xĉ

and W hĉ, and the bias vectors bxĉ and bhĉ.
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5. Memory vector, input, and forget gate operation: in eq. (2.76), the memory
vector ci,j is computed, controlling the flow of information that is transferred from
the candidate memory vector ĉi,j to a new memory vector ci,j. Given the operation
ii,j ⊙ ĉi,j, unwanted elements from ĉi,j can be attenuated or «ignored» when the values
associated with the input gate ii,j are close to 0. On the other hand, the operation
f i,j ⊙ ci,j−1 allows the model to attenuate or «forget» unnecessary elements from the
previous memory vector ci,j−1, when the values associated with the input gate vector
f i,j are close to 0.

6. State, output vector, and output gate operation: in eq. (2.77), the «selection»
of the elements in the memory vector ci,j that should be stored in the current state
hi,j is performed. Like the previous cases, this is performed by attenuating unwanted
elements by using values close to 0 in the output gate vector oi,j. Note that, in the
LSTM model, the external output vector yi,j directly corresponds to the state vector
hi,j.

Additionally, an important consideration is taken w.r.t. the initialization of the bias vec-
tors in the LSTM model. The bias vector bf , associated with the forget gate, is initialized as
a one vector 1⃗ (instead of the usual alternative of zero vector 0⃗ initialization). This conside-
ration is taken in order to prevent that all the information is «forgotten» just in the first few
iterations of the training optimization. Finally, if it is not explicitly mentioned, the memory
vector ci,j and the state vector hi,j are initialized as zero vectors: c0 = h0 = 0⃗.

2.2.11.3. Gated Recurrent Unit (GRU) Model

The Gated Recurrent Unit (GRU; Chung et al., 2014) model is a simplified alternative of
the LSTM model. A direct advantage of the GRU model is that it has fewer parameters than
the LSTM model. This makes the GRU model less complex, occupying less computational
memory and operations. Fig. 2.4 shows a diagram that describes a single cell of the GRU
model.

By following similar ideas from the LSTM model, the equations for the GRU model are
the following:

zi,j = σ
(
W T

xzxi,j + bxz +W
T
hzhi,j−1 + bhz

)
, (2.78)

ri,j = σ
(
W T

xrxi,j + bxr +W
T
hrhi,j−1 + bhr

)
, (2.79)

gi,j = ϕtanh
(
W T

xgxi,j + bxg + ri,j ⊙
(
W T

hghi,j−1 + bhg
))
, (2.80)

yi,j = hi,j = zi,j ⊙ hi,j−1 + (1− zi,j)⊙ gi,j, (2.81)

where ϕtanh and σ are the nonlinear hyperbolic tangent and sigmoid functions, respectively.
The operator ⊙ is the element-wise product. A detailed explanation of the GRU model is
described as follows:

1. Update gate vector: in eq. (2.78), the update gate vector zi,j is computed by using
the input vector xi,j and the previous state vector hi,j−1. Note that the values of zi,j
are in the range [0, 1] given the sigmoid function σ. This operation is modeled by using
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Figure 2.4: Explanatory diagram of a single GRU cell. The operations are shown at an
arbitrary sequence step j, where xi,j is the input vector, yi,j is the output vector, hi,j is the
current state vector, and hi,j−1 is the previous state vector.

a fully-connected layer, with the weight matrices W xz and W hz, and the bias vectors
bxz and bhz.

2. Reset gate vector: in eq. (2.79), the reset gate vector ri,j is computed by using the
input vector xi,j and the previous state vector hi,j−1. Note that the values of ri,j are
in the range [0, 1] given the sigmoid function σ. This operation is modeled by using a
fully-connected layer, with the weight matrices W xr and W hr, and the bias vectors bxr
and bhr.

3. Candidate memory vector and update gate operation: in eq. (2.80), the candi-
date memory vector gi,j is computed by using the input vector xi,j and the previous
state vector hi,j−1. Note that the values of gi,j are in the range (−1, 1) given the hy-
perbolic tangent function ϕtanh. This operation is modeled by using a fully-connected
layer, with the weight matrices W xg and W hg, and the bias vectors bxg and bhg. Simi-
lar to the input gate in the LSTM model, the reset vector ri,j controls which elements
from the state vector hi,j−1 should be attenuated or «discarded» when constructing the
candidate memory vector gi,j.

4. State, output vector, and reset gate operation: in eq. (2.81), the current state
vector hi,j is computed. Two main operations can be observed. First, the operation
zi,j ⊙ hi,j−1 aims to attenuate or «forget» irrelevant values from the previous state
vector hi,j−1 by using the update vector zi,j. Second, the operation (1 − zi,j) ⊙ gi,j
aims to attenuate or «ignore» unwanted values from the candidate memory vector gi,j
by using the vector (1 − zi,j). Given an arbitrary k-th component of the update gate
vector zi,j, then the update dynamic for the state vector hi,j is performed as follows:

(a) When the value zi,j,k is close to 1, then the value hi,j−1,k, from the previous state
vector hi,j−1, are completely used in the updated of the new state vector hi,j.
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(b) At the same time, this induces a value close to 0 for the value (1 − zi,j,k), which
produces that the value gi,j,k, from the candidate memory vector gi,j, is completely
ignored in the update of the new state vector hi,j.

Note that the inverse effect occurs if a value in the update gate vector zi,j is close to
0. Also, notice that, in contrast to the LSTM model, in the GRU model there is no
output gate vector oi,j that exclusively controls the elements stored in the state vector
hi,j. Finally, the output yi,j is directly the state vector of the model: hi,j.

From the above explanation, it can be observed how the GRU model simultaneously
simplifies and unifies the operations, previously seen in the LSTM model, of «forget» and
«input» into a single new operation «reset». It should be highlighted that although the GRU
model is a simplified version of the LSTM model, in practice, it is usual to achieve competitive
performance between in both models. Therefore, it is a good idea to experiment with both
models and to compare the results empirically. Finally, if it is not explicitly mentioned, the
state vector hi,j is initialized as a zero vector: h0 = 0⃗.

2.2.12. Multi-Head Self-Attention Mechanisms

The attention mechanisms were initially conceived as strategies to support the processing
of word sequences (tokens) in the Natural Language Processing (NLP) research field. One
of the first architectures to include an attention mechanism was proposed as an alternative
to improve the performance of an LSTM-RNN model (Hochreiter & Schmidhuber, 1997) for
the language translation task (Bahdanau et al., 2014). In general, this composite architecture
design, based on RNNs and supported by attention mechanisms, has been vastly used in the
NLP research field for several years.

Later on, the idea of implementing Deep Learning models based solely on attention me-
chanisms was introduced by the Transformer model (Vaswani et al., 2017). Along with this
model, an increasing interest in the use of attention mechanisms has been developed over the
last few years along with notable examples, such as the BERT model (Devlin et al., 2019) or
the GTP model (Radford et al., 2019) for different NLP tasks. Recently, this interest has also
spread among other research fields outside NLP, with attention-based models used in general
multi-variate time-series classification (Lin et al., 2020), healthcare and clinical time-series
processing (Horn et al., 2019; Lee et al., 2021; Shukla & Marlin, 2021), financial time-series
(Kim & Kang, 2019), or simulated photometric transient light-curves classification (Ibsen &
Mann, 2020; Allam & McEwen, 2021).

2.2.12.1. Multi-Head Dot-Attention

In this section, the multi-head dot-attention mechanism is described, which is the principal
mechanism of the Transformer model (Vaswani et al., 2017). The attention mechanisms allows
us to process and extract, hopefully useful, information from a collection of an arbitrary
number of vectors. Moreover, this capability can be extended to process a causal sequence of
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vectors, e.g., the photometric information from an astronomical event expressed as a variable-
length light-curve.

The definition of the multi-head dot-attention mechanism is based on concepts such as
the query, key, value, and context vectors. An intuitive understanding of the attention me-
chanism can be grasped as an user search operation over a collection of contents. First, a
search operation (query) is performed over a set of content descriptions (keys), each one
related with a different content (values), matching the current query against each one of the
keys. Then, the search system can «pay high attention to» and retrieve all the best-matched
values according to the best-matched associated keys given the current query. Additionally,
a summarized description (context) can be constructed by summarizing all the common and
relevant information among all the best-matched retrieved values. Note that the above ope-
ration (single-head attention mechanism) could be performed multiple times independently
(multi-head attention mechanism), where, depending on the user search query, different con-
texts can be constructed.

Let’s assume a sequence set of arbitrary input vectors {xi,1, . . . ,xi,L} = {xi,j′}Lj′=1 (asso-
ciated with the key and value vectors) and an arbitrary input vector xi,j (associated with the
query vector), where the sequence of vectors is analogous to an arbitrary light-curve Φi. As
it is fully detailed in section §3.4, each input vector xi,j is a high-dimensional representation
that is expected to automatically contain information about the current observation, such as
the observation-flux µi,j, the band indicator bi,j, and the observation-time ti,j (days).

The equations that describe the multi-head dot-attention mechanism are the following20:

a
(h)
i,j′ =

1√
Dk

(
W

(h)T

k xi,j′ + b
(h)
k

)T
︸ ︷︷ ︸

key: k(h)
i,j′

(
W (h)T

q xi,j + b
(h)
q

)
︸ ︷︷ ︸

query: q(h)i,j

, Aligment values (2.82)

s
(h)
i,j′ =

exp
(
a
(h)
i,j′

)
∑L

j′=1 exp
(
a
(h)
i,j′

) , Attention score (2.83)

c
(h)
i,j =

L∑
j′=1

s
(h)
i,j′ ·

(
W (h)T

v xi,j′ + b
(h)
v

)
︸ ︷︷ ︸

value: v(h)
i,j′

, Context vector (2.84)

ci,j =W
T
c

cat

c(1)i,j , . . . , c
(H)
i,j︸ ︷︷ ︸

head contexts


+ bc, Multi-head context vector (2.85)

where eqs. (2.82)-(2.84) follow the example scheme shown in Fig. 2.5: given a query vector
q
(h)
i,j , the goal of the attention mechanism is to compute a context vector c(h)i,j based on the set

of key vectors
{
k
(h)
i,j′

}L

j′=1
and the set of value vectors

{
v
(h)
i,j′

}L

j′=1
. Note that the computation

of the context vector can be performed independently and in parallel for each attention head
h ∈ {1, . . . , H}, where H is an arbitrary number of context vector computations: the number

20According to the implementation in https://pytorch.org/docs/stable/generated/torch.nn.Mul
tiheadAttention.html. For extra details, see the original Transformer model in Vaswani et al. (2017).
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Figure 2.5: A simplified example of a dot-attention mechanism given an arbitrary attention
head h. In order to better illustrate the alignments, the query and key vectors are represented
as pointing arrow 2D vectors (e.g., q(h)i,j = [.707, .707]T ). Those 2D vectors (and the value
vectors) are the projected vectors, from the input vectors, obtained by using the associated
learnable linear projections and bias vectors for the attention head h. The attention scores
are based on the scaled dot-product between the query and key vectors. The value vectors
are represented as color codes, explaining the final color used for the context vector c(h)i,j . This
operation can be extended and parallelized for an arbitrary number of H multiple attention
heads.

of attention heads (denoting h as an arbitrary attention head). Therefore, in eq. (2.85), the
final context vector ci,j is computed by using the information from all the H parallel attention
heads (the operator cat[. . . ] stands for the concatenation operator for vectors). A detailed
explanation of the multi-head dot-attention mechanism is as follows:

1. Alignment values: given an arbitrary attention head h, in eq. (2.82), the alignment
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values
{
a
(h)
i,j′

}L

j′=1
are computed as the dot product between a query vector q(h)i,j and

the key vectors in the set
{
k
(h)
i,j′

}L

j′=1
. Both, the query and key vectors, are projected

from an input vector xi,j and a set of input vectors {xi,j′}Lj′=1, respectively. A learnable
linear projection W (h)

q ∈ RD×Dq , and a bias vector bq, are used for the query vector;
and a learnable linear projection W (h)

k ∈ RD×Dk , and a bias vector bk, are used for
the key vectors. The dimensions D, Dq, and Dk are associated with the input, query,
and key vectors, respectively21. The alignment values are computed using a scaled
dot-product operation between the query and key vectors as 1√

Dk
kT
i,j′qi,j (scaled dot-

attention mechanism). This operation represents an estimation of the linear correlation
between the query and key vectors, where a high correlation implies a high alignment
value.

2. Attention scores: given an arbitrary attention head h, in eq. (2.83), the attention

scores
{
s
(h)
i,j′

}L

j′=1
are computed using the alignment values

{
a
(h)
i,j′

}L

j′=1
. This operation

is performed using the softmax function over the set of alignment values, construc-
ting a discrete distribution, where the following condition holds:

∑L
j′=1 s

(h)
i,j′ = 1, s

(h)
i,j′ ∈

(0, 1),∀h ∈ {1, . . . , H}. Note that the best-matched key vectors, w.r.t. the query vector,
achieve higher attention scores.

3. Context vector: given an arbitrary attention head h, in eq. (2.84) the context vector

c
(h)
i,j is computed as the vector aggregation from the value vectors

{
v
(h)
i,j′

}L

j′=1
weighted by

the attention scores
{
s
(h)
i,j′

}L

j′=1
. These value vectors are projected from the same input

vectors used for the key values, through the learnable linear projection W (h)
v ∈ RD×Dv

and a bias vector bv, where Dv = D/H is the value vector dimension. Recalling that the
attention scores represent a discrete distribution, this operation is like the estimation
of the vector expectation over the set of value vectors. Finally, if a given query q(h)i,j gets
a high alignment with the key k(h)

i,j′ ; then, the associated vector v(h)i,j′ will be weighted
higher in the resulting context vector c(h)i,j .

4. Multi-head context vector: one of the novel architecture ideas introduced by the
Transformer model is the multi-head attention capability. This configuration allows
the model to distribute the attention computation, as described above, among several
heads running independently and in parallel. This usually helps to increase the model
performance, as each head can specialize in different tasks, paying attention to different
patterns along the input sequence. Therefore, in eq. (2.85), a final context vector ci,j is
projected from the concatenation of all the H parallel attention heads context vectors{
c
(1)
i,j , . . . , c

(H)
i,j

}
. This final context is computed through the learnable linear projection

W c ∈ R(H·Dv)×D and a bias vector bc. Finally, this operation allows the model to
capture relevant information from all the H parallel context vectors c(h)i,j .

21The dimensions Dq and Dk are selected as Dq = D/H and Dk = D/H, respectively (Vaswani et al.,
2017). Note that the dimensions for the query and key values must be the same in order to properly compute
the dot-product between both vectors.
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Figure 2.6: Self-attention example diagram. The key ki,j, value vi,j, and query qi,j vector
relationships are shown for the 1st, 2nd, (L− 1)-th, and L-th sequence steps. For simplicity,
we assume a single attention head mechanism and omit the attention head superscript (·)(h).
This operation is causal as each context vector ci,j computation only depends on the current
and previous sequence steps. All query, key, and value vectors come from the same sequence.

2.2.12.2. Multi-Head Self-Attention

A self-attention scenario arises when the query vectors are projected from the same se-
quence domain as the key and value vectors. Given a sequence of input vectors {xi,j′}Lj′=1,
the context vector ci,j (at an arbitrary sequence step j) is computed using query vectors also
projected from the current sequence step j, with key and value vectors projected from the
current and previous sequence steps: {1, . . . , j}. An example diagram for this operation is
shown in Fig. 2.6, where the causality of the self-attention mechanisms can be observed.

This configuration directly produces a causal context vector computation for each inter-
mediate sequence step j, obtaining a new context vector sequence from the original input
vector sequence, where both share the same variable-length L. This process reminds the cau-
sal structure in the output of the RNN sequential processing: an output sequence where each
memory-vector computation strictly depends on the current and previous memory-vectors.

2.2.12.3. Additional Operations

Additional Residual Connections (where an arbitrary function f(xi,j) is added to the
current function input xi,j), plus a nonlinear operation, are included in the Transformer
model formulation as follows22:

c′i,j = ci,j︸︷︷︸
MHSelfAttn: f(xi,j)

+xi,j, (2.86)

c′′i,j =W
T
2

(
ϕReLU

(
W T

1 c
′
i,j + b1

))
+ b2︸ ︷︷ ︸

MLP: f(c′i,j)

+c′i,j, (2.87)

22For simplicity of the explanation, we omit the Layer Normalization (Ba et al., 2016) used in the original
Transformer model.
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where a 1-hidden-layer Multi-Layer Perceptron model (MLP; Rumelhart et al., 1986) is used
to induce nonlinear interactions among the context vectors from all heads. The terms W 1 ∈
RD×(kmlp·D) and W 2 ∈ R(kmlp·D)×D are the MLP linear projections and bias vectors b1 and b2,
where kmlp = 2 controls the number of the MLP hidden units used: kmlp ·D. The expression
ϕReLU stands for the Rectified Linear Unit function (ReLU).

Recalling that self-attention can compute a new causal sequence of context vectors, this
operation can be stacked into a multi-layer sequence processing architecture using an arbi-
trary number of NL layers. For simplicity, in the following sections of this thesis, we use the
term Multi-Head Self-Attention (MHSelfAttn) for the aforementioned and extended formu-
lation, calling the processed vector c′′i,j for the context vector ci,j.

2.2.12.4. Extra Properties and Limitations

Some extra properties of the attention mechanisms are the following:

1. Long sequences: empirically, attention-based models have shown higher performance
than the RNN models for long sequence processing in NLP tasks (Vaswani et al., 2017).
For RNN models, the maximum length between long-term dependencies (maximum
path length) results in O(L) as the maximum path connection requires to pass over the
complete sequence length. In contrast, for attention mechanisms, this maximum path
length is O(1) given the existence of a direct shortcut path between each context vector
and each value vector, connecting the context with the entire sequence at a constant
cost. These direct paths facilitate the learning of long-term sequence dependencies
(Hochreiter et al., 2001).

2. Parallelizable computation: attention mechanisms have a complexity, per layer, of
O(L2 ·D) operations, while RNN models have a complexity of O(L ·D2) operations.
This implies that attention mechanisms have lower computational complexity than the
RNN models when L is lower than the embedding dimension D (Vaswani et al., 2017).
However, the RNN models require a number of O(L) strictly non-parallelizable sequen-
tial operations as each memory-vector computation requires the previously computed
memory-vector. In contrast, for attention mechanisms, all context vectors for both, the
entire sequence and H parallel heads, can be computed simultaneously in a highly pa-
rallelizable operation which is optimal for the GPU usage (constant number of O(1)
non-sequential operations).

3. Attention masks: the variable-length and explicit causality of the self-attention for-
mulation are directly implemented with attention score masks over the alignment va-
lues. A negative infinite value −∞ can be used to replace the alignments values over
invalid sequence steps, where null attention is required (zero attention score). Optio-
nally, null attention scores can be randomly imputed in the attention mask, during the
model training process, as a sequence dropout regularization technique (Vaswani et al.,
2017).

4. Positional encoding: one of the main limitations of the attention mechanisms is the
loss of the sequential information, i.e., the explicit information of which sequence step
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Table 2.1: Comparison between different approaches for the processing of sequences (e.g., time
series, light-curves): Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), Temporal CNNs (tCNNs), and the multi-head dot-attention mechanism (Vaswani
et al., 2017). We denote D as the dimensionality of the model embedding, L as the variable-
length of a processed sequence, and k as the kernel size of convolutions. For all models, a
causal configuration is assumed.

Feature RNNs (e.g., LSTM,
GRU)

CNNs TCNNs Multi-head self-
attention

Maximum
path length

Complete: a cost of O(L)
is required as the model
requires to pass over the
complete sequence

Medium: an stack of
O(L/k) convolutions are
required to reach the
furthest sequence step

Medium: an stack of
O(logk(L)) convolutions
are required to reach the
furthest sequence step
(less than those required
for CNNs)

Direct: a cost of O(1) is
required as a direct path
exists to each sequence
step

Complexity
per layer

O
(
L ·D2

)
O
(
k · L ·D2

)
O
(
k · L ·D2

)
O
(
L2 ·D

)
Number
of sequen-
tial non-
parallelizable
operations

O(L): RNNs have a
strictly sequential opti-
mization process. This
may result in a compu-
tational cost bottleneck

O(1): it is highly para-
llelizable and optimal for
GPU usage

same as CNNs O(1): it is highly para-
llelizable and optimal for
GPU usage

The variable
length hand-
ling

Variable length can
be directly handled by
performing a recurrent
graph unrolling for
RNNs

The standard implemen-
tation is not designed to
directly handle variable
length input: other stra-
tegies, after the proces-
sing of CNNs, must be
used, e.g., pooling opera-
tions

Same as CNNs The variable length can
be directly handled by
inducing null attention
in the attention score
masks

Interpretability The flow of the infor-
mation in the memory
vector of RNN could be
really hard to interpret,
especially in experiments
that uses real data

Even if interpretability
experiments can be per-
formed based on the
learned convolution ker-
nels, this is not direct for
convolution over time se-
ries data

Same as CNNs Different and explicit
interpretability experi-
ments can be designed
by exploring the atten-
tion scores that can help
us to understand the
model

comes before or after another sequence step. This is a direct consequence of the value
vector aggregation using the attention scores: an operation that is invariant to the
order of the vectors. As a solution, the original Transformer model proposed the use of
a positional encoding vector, which is a collection of fixed sinusoidal waves that aims to
preserve the sequential information for models based solely on attention mechanisms.

Additionally, table 2.1 shows a comparison between the self-attention mechanism w.r.t.
RNNs and other sequential processing models.

2.2.13. Sequence Encoding

2.2.13.1. Positional Encoding

The Positional Encoding (PE; Vaswani et al., 2017) is a simple technique that aims to
encode and preserve the positional information within an ordered sequence. This encoding
was used as an ingenious and simple strategy to deal with the major difficulty in architectures
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based solely on attention mechanisms: the loss of the sequential information in a sequence of
objects (such as sequence of tokens in NLP).

Given an arbitrary integer sequence step j ∈ N, then the associated positional encoding
vector zj ∈ RK is computed as follows:

zj = fPE(j) =

 F1(ω1j)
...

FK(ωKj)

 , (2.88)

ωk =
2π

Tk

, (2.89)

where Fk is a periodic function and Tk is the period of that function. The underlying idea
is to construct an encoding vector where the k-th component of the vector is calculated by
evaluating a periodic function. For this, it is required to define two main design settings: the
periodic functions {Fk}Kk=1 and the different periods {Tk}Kk=1.

2.2.13.2. Juxtaposed Positional Encoding

The juxtaposed Positional Encoding, which is the encoding method that is finally used
in the Transformer model (PE; Vaswani et al., 2017), is built by using the following setting:

Fk(·) =

{
sin(·), if k is an odd number
cos(·), if k is an even number

, (2.90)

ωk =

{
ωk, if k is an odd number
ωk−1, if k is an even number

, (2.91)

therefore, the final expression of the juxtaposed Positional Encoding vector is as follows:

zj =


F1(·)
F2(·)

...
FK−1(·)
FK(·)

 =


sin(ω1j)
cos(ω1j)

...
sin(ωK/2j)
cos(ωK/2j)

 , (2.92)

Note that the resulting vector zj maintains the number dimensions K, but, given the chosen
setting of interleaving sine and cosine functions, as well as the repetition of some periods,
it is then only necessary to choose K/2 different periods to describe this type of encoding
vector.

2.2.13.3. Temporal Encoding

The Temporal Encoding (TE; Horn et al., 2019; Takase & Okazaki, 2019; Sousa et al.,
2020) is a simple technique for generating time descriptors in the form of dense vectors, often
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presented as an extension of the Positional Encoding. These encoding vectors are expected
to be a more suitable representation of time for the ANN-based models.

Given an arbitrary time value tj ∈ R, associated with a sequence step j, the temporal
encoding vector zj ∈ RK is computed as follows:

zj = fTE(tj) =

 F1(ω1tj + ϕ1)
...

FK(ωKtj + ϕK)

 , (2.93)

ωk =
2π

Tk

, (2.94)

where Fk is a periodic function, Tk is the period of such function, and ϕk is the associated
phase. As in the Positional Encoding, it is required to define the periodic functions {Fk}Kk=1,
the different periods {Tk}Kk=1, and phases {ϕk}Kk=1, to be used.

2.2.13.4. Juxtaposed Temporal Encoding

The juxtaposed Temporal Encoding is build by using the following setting:

Fk(·) =

{
sin(·), if k is an odd number
cos(·), if k is an even number

, (2.95)

{ωk, ϕk} =

{
{ωk, ϕk}, if k is an odd number
{ωk−1, ϕk−1}, if k is an even number

, (2.96)

therefore, the final expression for the juxtaposed Temporal Encoding is defined as follows:

zj =


F1(·)
F2(·)

...
FK−1(·)
FK(·)

 =


sin (ω1tj + ϕ1)
cos (ω1tj + ϕ1)

...
sin
(
ωK/2tj + ϕK/2

)
cos
(
ωK/2tj + ϕK/2

)

 , (2.97)

where, as in the juxtaposed Positional Encoding, the resulting encoding vector zj still main-
tains a number of K dimensions, but it is only required to choose a number of K/2 different
periods and phases.

2.2.13.5. Time2Vec Encoding

For the sake of completeness, the Time2Vec encoding is also described in this theoretical
background. The Time2Vec (Kazemi et al., 2019) encoding is a simple variant of the temporal
encoding that introduces an extra flexibility by allowing the values of periods and phases to
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be learned. The Time2Vec encoding zj ∈ RK is defined as follows:

zj =


F1(ω1tj + ϕ1)
F2(ω2tj + ϕ2)

...
FK(ωKtj + ϕK)

 =


ω1tj + ϕ1

F2(ω2tj + ϕ2)
...

FK(ωKtj + ϕK)

 , (2.98)

where the periods {Tk}Kk=1 and phases {ϕk}Kk=1 are free learnable parameters. Therefore, the
main idea of this formulation is to allow the model to learn an specific encoding via back-
propagation, learning the optimal values of the periods and phases. As the periodic function,
the sine function is directly used: Fk(·) = sin(·),∀k ∈ {2, . . . , K}. Additionally, note that
the encoding associated with the 1st component of the encoding vector (F1) is defined as a
non-periodic linear expression: zj,1 = ω1tj + ϕ1.

2.2.14. Fourier Decomposition

The Fourier Decomposition is a mathematical tool for decomposing a given function
or signal into its basic components. With this tool, a function can be broken down into
different levels by using a collection of sine and cosine functions with different frequencies.
In consequence, an arbitrary function can be build, by assuming a Fourier Decomposition
framework, as an aggregation of basic periodic components. Given an arbitrary time defined
function f(t), the Fourier decomposition is described as follows:

f(t) =
M∑
m=0

a′m sin

(
2πm

Tmax
t

)
+ b′m cos

(
2πm

Tmax
t

)
, (2.99)

= b′0 +
M∑
m=1

a′m sin

(
2πm

Tmax
t

)
+ b′m cos

(
2πm

Tmax
t

)
, (2.100)

where the time-function f(t) is decomposed into M periodic components plus a constant
component b′0 (induced by m = 0). We denote this type of decomposition as a Fourier de-
composition with a number of M harmonics components. The term Tmax is the maximum
period value selected for the Fourier decomposition. Fig. 2.7 illustrates a Fourier decompo-
sition for an arbitrary signal, where several harmonics, for sine and cosine functions, are
shown.

Note that a limitation of this method23 is that the resulting time-function f(t) is only
non-redundant in the time range [0, Tmax]. This means that the same function output could
be found in the time ranges [Tmax, 2Tmax], [2Tmax, 3Tmax], etc. To alleviate this effect, and
depending on the signal, a large enough value of Tmax could be selected.

23Note that this limitation also applies for the sequence encoding methods, such as the Positional and
Temporal Encodings.
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Figure 2.7: Example of an arbitrary Fourier decomposition operation. Several harmonics for
the sine and cosine functions are shown.

2.2.15. Feature-wise Linear Modulation (FiLM)

The Feature-wise Linear Modulation (FiLM; Perez et al., 2018) consists of an operation
that aims to perform a modulation over an arbitrary vector xi,j by using another, related or
non-related, arbitrary external vector zi,j. Usually, this operation is used along with ANN-
based models. The FiLM operation is defined as follows:

x̃i,j = fαβ(xi,j, zi,j) = ϕtanh(α(zi,j))⊙ xi,j + β(zi,j), (2.101)

where the vector x̃i,j is the output vector that is «modulated» by the vectors α(zi,j) and
β(zi,j), which are called the scale and bias vectors, respectively. This modulation operation
is defined as the element-wise product (⊙) followed by the element-wise addition (+) (FiLM
operation). Note that the scale and bias vectors are explicitly related with the vector zi,j.
For instance, a fully-connected layer can be used to project the vector zi,j into α(zi,j) and
β(zi,j). Additionally, an optional hyperbolic tangent function ϕtanh can be used to prevent
explosive product values.

2.2.16. Deep Learning Regularization and Training Techniques

As previously explored, a high complexity and flexibility can be achieved with Deep
Learning models, which is often accompanied with a notable increment in the number of
free adjustable/learnable parameters. Usually, this can also increase the risk of undesired
effects and problems, such as the overfitting. Overfitting occurs when a complex model is
able to adapt almost perfectly to a training dataset, but, at the same time, it is unable to
generalize its predictions to new examples never seen before. Therefore, in the literature,
multiple techniques and methods have been proposed to mitigate the risk of overfitting when
optimizing Deep Learning models.
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2.2.16.1. Dropout

The Dropout technique (Srivastava et al., 2014; Hinton et al., 2012) is one of the most
popular regularization techniques used in Machine Learning algorithms based on ANNs and
SGD training strategies. The Dropout is defined as a function z = f(x; p) with two main
behaviors:

1. Model training: the Dropout function randomly deactivates some component of the
vector x according to a probability p. For example, the vector x could correspond to
the hidden-layer in a fully-connected layer model. Deactivating a component implies
the replacement of that value by a null value equals to 0 in the new output vector z.
These stochastic deactivations are renewed at each new iteration of the optimization
process.

2. Model evaluation: after the optimization process in finished, when evaluating the
model, the Dropout function is replaced by z = f(x; p) = k · I(x), being now an
identity function and weighting the vector with the factor k = 1

1−p
.

The success of the Dropout as a regularization technique is associated with the fact that
it aims to prevent the co-adaptation of neighboring units or «neurons» in an ANN-based
model.

2.2.16.2. Early Stopping

The early stopping is a very simple regularization technique that is applied along with
iterative GD-based optimizations. During training, a Deep Learning model gradually learns
to solve a desired task for instances from a training-set Dtraining. Eventually, this model may
learn to make perfect predictions for these instances, overfitting for the training-set Dtraining.
Therefore, the idea of the early stopping is to stop the training process before this overfitting
is produced, assuming that an optimal model, given an unknown training iteration, exists for
both: the training instances and the new unobserved instances.

To achieve this, a validation-set Dval is used, which is conformed of instances that are
not used for the optimization of the model’s parameters during the training process. Given
the GD training framework, the idea of the early stopping is to constantly evaluate, after a
number of epochs, the performance of the model over the instances of the validation-set Dval,
preserving the model version that obtain the best performance for this dataset. The training
process stops when no longer and consistent improvement in performance is achieved by
training for more epochs, returning the best preserved model (according to the performance
using the validation-set Dval) as the final optimized version.

2.2.16.3. Batch Normalization

The Batch Normalization (BN; Ioffe & Szegedy, 2015) is a normalization technique used
for Deep Learning architectures. Given a input vector xi ∈ RK the BN is performed as
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follows:

zi =
xi − E [x]√
var(x) + ε

⊙ γ + β, (2.102)

where zi ∈ RK is the normalized vector output, and γ and β are learnable vectors. The
terms E [x] and var(x) are the mean and variance calculated over the mini-batches during
training, respectively.

For the evaluation of the model, instead of computing the mean and variance of the
mini-batches, running estimates are used. The running estimates are defined as follows:

E [x]∗ ← αE [x]∗ + (1− α)E [x] , (2.103)

var(x)∗ ← αvar(x)∗ + (1− α)var(x), (2.104)

where E [x]∗ and var(x)∗ are the running estimates for the mean and variance, respectively.
These running estimates are dynamically updated during training and are saved for the
posterior evaluation of the models. Note that this process is controlled by the momentum
term α.

Following similar ideas of the BN method, several other normalization alternatives could
be used, such as the Layer Normalization, Group Normalization, Instance Normalization,
etc. In general, the selection of these alternatives depends on the proposed Deep Learning
architecture used to process the data.

2.2.16.4. Linear Warm-Up Schedule

In the literature, different strategies have been explored in order to stabilize the optimi-
zation process on models based on ANNs and SGD optimization strategies. These strategies
are usually used to control the evolution over one of the most important and critical training
SGD hyperparameters: the learning rate.

The linear warm-up corresponds to a strategy that gradually increases the learning rate
throughout the optimization process. The simplest scenario contemplates a linear increment
defined as follows:

p =
min (epoch,∆epoch)

∆epoch
, (2.105)

lr = (1− p) · lrmin + p · lrmax, (2.106)

where the learning rate lr is incremented, from a minimum value lrmin to a maximum value
lrmax, in a defined number of training epochs ∆epoch. Note that 0 ≤ p ≤ 1 is a control variable
and epoch ≥ 0 corresponds to an integer counter of the training epochs.

Additionally, extra learning rate schedules can be found in the literature, such as the
exponential decay and the cosine annealing schedules. These methods offer the flexibility
to not only increase the learning rate (e.g., linear warm-up), but also to decrease it (e.g.,
exponential decay) or to evolve it periodically (e.g., cosine annealing) according to the needs
of the problem to be solved and the model to be optimized. Note that the combination of
different methods is also possible to obtain more complex learning rate schedule.
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Figure 2.8: Example diagram of an optimized 3-depth decision tree structure for the Iris
flower dataset (with 3 classes: setosa, versicolor, and virginica). For each node, the following
information is shown: the gini impurity score, the number of samples in the node, the number
of samples for each class, and the node predicted class. Original figure extracted from https:
//www.researchgate.net/figure/Visualisation-for-a-decision-tree-trained-on
-the-Iris-dataset-Source-http_fig5_320384121.

2.2.17. Decision Trees

The decision trees are Machine Learning tree-like algorithms used to model predictions or
event outcomes. Known by their simplicity, these algorithms can be used to solve supervised
learning problems, such as classification, regression or even multi-output tasks. Even if the
decision trees are simple and highly intuitive algorithms, they can also be very powerful
and flexible, capable of fitting complex datasets. These algorithms are being used in real-
world problems even up to date, being the core component of other powerful models such as
Random Forest.

A decision tree consists of a graph-like collection of multiple conditions branches that
control and guide the flow of decisions that an user can select (branch node), ultimately
leading to a desired and final prediction outcome given an specific to-solve task. The multiple
decisions of a tree are controlled by learnable thresholds which are applied over the conditions
of different attributes or features from the input instances. For example, Fig. 2.8 illustrates
a simple decision tree used to solve a classification task for the Iris flower dataset24, where
each node can be separated into two different sub-nodes (left and right) according to features
such as petal length and petal width, and selected thresholds (e.g., petal width≤ kth = 1.75).

To measure the quality of a decision node, an impurity score is introduced: the gini
24https://www.kaggle.com/arshid/iris-flower-dataset.
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impurity. A node is called pure if the impurity score is 0. Then, given an arbitrary node w,
the gini impurity score is defined as follows:

Gw = 1−
C∑
c=1

p2w,c, (2.107)

where C is the total number of classes in the dataset. The term pw,c is the ratio of the number
of samples from the class c w.r.t. the total number of samples in the node w. For example, the
gini impurity score of the depth-3 green node, of the previous diagram (Fig. 2.8), is calculated
as follows: G = 1−

(
0
48

)2 − (47
48

)2 − ( 1
48

)2 ≈ 0.0408.

Alternatively, an impurity score, based on the entropy operator, can be defined as follows:

Gw = −
C∑
c=1

pw,c log (pw,c). (2.108)

2.2.17.1. Classification and Regression Trees (CART)

The Classification and Regression Trees (CART) algorithm is the iterative strategy used
to, given a task to solve, automatically build the optimized structure of a decision tree and
to learn the correct decision rules in each node (threshold values).

As usual in Machine Learning algorithms, a loss function must be defined in order to
solve a proposed optimization problem (minimization). Given an arbitrary feature pair and
threshold pair {k, kth}, the loss function to minimize in the CART algorithm is defined as
follows:

L(k, kth) =
mleft

mleft +mright
Gleft +

mright

mleft +mright
Gright, (2.109)

where Gleft and Gright are the impurity score of the left and right sub-nodes, respectively;
and mleft and mright are the number of instances in the left and right sub-nodes, respectively.
Note that this definition corresponds to a weighted sum of the two impurity scores of both
sub-nodes: the left and right nodes.

Intuitively, the idea of the CART algorithm is to first split the complete dataset into
two sub-nodes (left and right) by using a threshold value kth over the feature k, e.g., petal
length≤ kth = 2.45 (Fig. 2.8). In order to use the optimal pair {k, kth}, the loss function
defined above is computed: given the feature k, the threshold value kth that minimizes the
loss function L(k, kth) is found, i.e., the threshold value that produces the purest sub-nodes
(weighted sum).

After this first initial split, a new split can be performed, by minimizing a new loss
function, over the collection of instances of each of the created sub-nodes by selecting again
the optimal pair {k, kth}, e.g., petal width≤ kth = 1.75 (Fig. 2.8). This process can be then
performed iteratively for the sub-nodes produced by each new split, gradually building a
complete decision tree. The stop criterion of this process is when the impurity score of a
node can not be longer minimized, when a defined maximum depth tree value is reached
or when other type of terminal conditions are satisfied (controlled with other decision tree
hyperparameters).
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2.2.18. Random Forest (RF)

The Random Forest (RF; Breiman, 2001) is an ensemble model that consist of a group
of different decision tree predictors (ensemble learning system). The idea is to aggregate all
the predictions obtained from these basic predictors. Usually, by doing this, a better, more
accurate, and robust final prediction can be obtained than the one obtained from a single
predictor («wisdom of the crowd»). For example, in the classification problem scenario, the
final class prediction is computed by counting the class votes (predictions) from all the
decision trees from the ensemble. Then, the final class prediction corresponds to the most
voted class.

In order to induce a degree of variability in this type of ensemble model, two main stra-
tegies are usually introduced in the RF model: a random selection of samples and a random
selection of features for each decision tree. First, the instance objects that are used to opti-
mize (or train) each one of the different decision trees in the RF are different. In general, the
instances for each tree are sampled by using the boostrap aggregating method (a.k.a. bag-
ging), i.e., by generating a new subset by performing a stratified sampling, with replacement,
of instances drag from an original complete dataset D. Second, the sets of input features that
are used by each tree are also randomly selected. Each decision tree, in the RF model, is
optimized by using a random selection of the original set of features. For example, random
sets of log2(n) or

√
n number of features are selected, where n is the number of original

features in the dataset D25.

The optimization process of the RF, along with other model settings, can be controlled by
setting several RF hyperparameters, such as the number of decision trees (estimators), the
quality of a split criterion in the decision trees (e.g., gini, entropy), the maximum reachable
depth in the decision trees, the number of features used to optimize each decision tree, among
others.

As a very popular and versatile algorithm, the RF model has some notable advantages:

1. Little data preparation: in general, very little feature pre-preprocessing is required
to use the RF model. Usually, no scaling, normalization or centering are required as the
decision trees can properly handle different range of values for each of the processed
features in the dataset. This makes the RF model very easy and straightforward to use.

2. Interpretability: a ranking of features can be obtained from an optimized RF. Ideally,
this ranking describes, from the highest to the lowest, the importance or relevance that
each one of the features has over the final prediction of the model. While having the
ranking may offer us a certain degree of interpretability, it should be noted that this
tool is not always reliable for all situations. For example, it may produce results that
can be misleading when random forest variable importance measures are used with data
of varying types (Strobl et al., 2007).

Depending on the dataset, one main disadvantage of the RF could be the requirement of
extra meaningful features extracted from the original instances to be processed by the model.

25Note that, instead of a random selection, all the n features can be used.
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For example, the astronomical light-curves are highly complex objects. In order to use them
along with the RF model, a set of astrophysical or hand-crafted features are required to be
pre-computed from these light-curves. In general, this task, also called feature engineering,
is non-trivial and can be highly challenging and computationally costly, requiring time for a
streaming application.

2.2.18.1. Balanced Random Forest (BRF)

The Balanced Random Forest (BRF; Chen et al., 2004) model is a variation of the RF
model. The BRF algorithm aims to deal with the possible class imbalance presented in the
dataset D that is used to optimized the model, i.e., when one or several classes (majority
classes) present a notable higher number of instances than the others (minority classes).
Usually, this type of class imbalance can be highly detrimental for the performance of some
algorithms such as the RF, where a bias towards the majority class can be produced: the
model may well-characterize instances from the majority class while ignoring the minority
class.

To deal with the class imbalance, the BRF train each decision tree of a RF model by
using a balanced bootstrapped sampling method, i.e., the samples are equally distributed in
terms of the number of instances corresponding to each one of the classes in the dataset.
This type of bootstrapping aims to allow the model to well-represent the instances from the
minority class as well as those of the majority class.

2.2.19. Dimensionality Reduction

When working with real-world data, it is usual to find data that is described in term of
high-dimensional structures, i.e., by using vector instances with a high number of dimensions.
In general, the high number of dimensions can be a very challenging problem for Machine
Learning and statistical methods and algorithms: an scenario known as the «curse of di-
mensionality». To deal with this type of data, a popular alternative is the dimensionality
reduction. These techniques aim to automatically reduce the dimensional space of the ori-
ginal data, from a large number of dimensions K, to a lower and more tractable number
of dimensions K ′ < K. For instance, even if a handwritten number image can be a high-
dimensional object (with thousands of pixels), some basic structures can be described in order
to adequately represent the content in a lower dimensional space, e.g., strokes, curves, circles,
pixel correlations. On the other hand, some dimensions of the data can offer little or zero
information and could be ignored, e.g., the border pixels are usually empty in a handwritten
number image.

Another popular use of dimensionality reduction techniques is for data visualization.
The comprehension of high-dimensional data can be a difficult task for the human brain;
therefore, a good alternative is to find a proper way to represent this type of data into a
lower number of dimensions. For example, the dimensionality reduction technique can be
used to represent high-dimensional data into 2D or 3D maps that can be easily visualized
and explored, allowing us to look for trends, relationships, class separations, structures like
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Figure 2.9: Examples of three dimensionality reduction techniques for the Kannada MNIST
dataset: PCA, t-SNE, and UMAP. By representing each class with a different color, a class
separation can be observed in the scatter maps for each method. This class separation is more
appreciable depending of the method used, e.g., t-SNE, UMAP. Original figure extracted from
https://www.kaggle.com/parulpandey/part3-visualising-kannada-mnist-with-um
ap.

clusters, outliers in the distributions, among others. Fig. 2.9 illustrates three dimensionality
reduction techniques for the Kannada MNIST dataset26, representing handwritten number
images of 784 pixels (high-dimensional space) into 2D scatter maps (low-dimensional space).

2.2.19.1. Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) algorithm is a popular, simple, and intuitive
dimensionality reduction method. The goal of PCA is to build a new low-dimension hy-
perspace to project the original high-dimension data while preserving the maximum original
variance. To solve this, the PCA algorithm is strongly based on the use of the covariance
matrix. As a simple and straightforward to implement algorithm, the PCA is usually used as
a pre-processing reduction for other and more complex dimensionality reduction techniques
(e.g., t-SNE, UMAP).

Given a set of K-dimensional vector instances (i.e., a data instance can be described with
K features values), a covariance matrix Σ ∈ RK×K can be computed by assuming a random
vector framework (see section §2.2.2.5 for details). Then, the associated eigenvectors vi ∈ RK

and eigenvalues λi ∈ R of Σ must satisfy the following condition:

Σvi = λivi, (2.110)

where vi is the i-th eigenvector associated with the eigenvalue λi.

In PCA, the eigenvectors of the covariance matrix Σ are calculated and a new orthogonal
space, where the dataset is going to be projected, is defined. The eigenvector vi associa-
ted with the eigenvalue λi is called the i-th principal component of the PCA. Then, the
eigenvector with the highest eigenvalue is the 1st principal component and it is aligned in

26https://www.kaggle.com/c/Kannada-MNIST.
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Figure 2.10: A simple example of the PCA algorithm. The first two principal component vec-
tors are shown over the original data space. The projection over the first principal component
is also shown. Original figure extracted from Müller & Guido (2017).

the direction of the highest dataset variance or dispersion. The 2nd principal component
is orthogonal to the 1st principal component and it is associated with the second highest
eigenvalue. Then, when working with K-dimensional data, the PCA algorithm construct K
eigenvectors defining an orthogonal space of K principal components.

In order to reduce the dimensionality of the original dataset, the first K ′ < K principal
components should be selected. Then, all instances must be linearly projected into the new
orthogonal space defined by the first K ′ principal components. The PCA algorithm aims
to perform this reduction with a minimum loss of information by the assumption that it is
desired to preserve the maximum variance information of the data, that is, by preserving
the maximum statistical moment-2 criterion (minimum square error). For example, Fig. 2.10
illustrates the projection of the PCA algorithm over the 1st principal component.

2.2.19.2. Uniform Manifold Approximation and Projection (UMAP)

The Uniform Manifold Approximation and Projection (UMAP; McInnes et al., 2018) is
a complex dimensionality reduction method that can be used for general nonlinear dimen-
sion reduction. The UMAP is founded on a solid mathematical background, where three
assumptions about the data are required:

1. The data is uniformly distributed on a Riemannian manifold.

2. The Riemannian metric is locally constant (or can be approximated as such).

3. The manifold is locally connected.
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Given these assumptions, it is possible to model the manifold by using a fuzzy topological
structure. The embedding can be found by searching for a low dimensional projection of the
data that has the closest possible equivalent fuzzy topological structure. The UMAP works
under the influence of several important hyperparameters that controls the low dimensional
projection of the data, e.g., number of neighbors, minimum distance, distance metric. In
general, the selection of these hyperparameters is non-trivial and highly depends on the
data27.

Additionally, a parametric extension of UMAP was proposed in Sainburg et al. (2020):
the Parametric UMAP. This method extends the second step of UMAP to a parametric
optimization by using ANNs, learning a parametric relationship between the data and the
embedding. Some advantages of the Parametric UMAP method are: 1) The optimization
using ANNs usually reduces the computation costs and time. 2) The non-stochastic parame-
trization solves the intrinsic stochasticity of the UMAP algorithm, correctly producing the
same output embeddings given the same data inputs28.

2.3. Astronomy

Astronomy is the natural science that deals with the study of celestial bodies that populate
the vast cosmos, identifying important phenomena that occur in the universe. This science
field has a strong and complex theoretical background in different areas such as mathematics,
physics, and chemistry. In this section, several concepts of astronomy are briefly described.

2.3.1. Optical Spectrometry

The optical spectrometry is a technique that allows scientists to study the interaction
between the matter and the electromagnetic radiation. In astronomy, the optical spectrometry
allows astronomers to inspect which are the different chemical components that affect the
behaviour of the electromagnetic radiation emitted by a specific light-source (astronomical
object or event). The characterization of the light-source can be achieved by measuring
the absorption lines presented in a spectral profile, allowing scientists to build chemical
profiles of the light-sources, which often are known as the «chemical fingerprints». By using
spectrometry techniques, it is possible to identify concentrations of Hydrogen, Helium, traces
of Silicon, among other elements, which, for instance, has helped to classify different types
of SNe: SNIa, SNIb, SNIc, SNIIb, SNIIn, SNIIL, SNIIP, SLSN, etc (Petschek, 1990; Alsabti
& Murdin, 2017).

Given the immense investment of time and human effort that optical spectrometry re-
quires, only a marginal proportion of the data collected has been effectively studied and
followed-up, especially given the new astronomical Big Data paradigm. This also heavily res-
trains the availability of other variables extracted from spectral studies such as the redshift.

27See https://umap-learn.readthedocs.io/en/latest/parameters.html for a deep explanation
about the UMAP hyperparameters.

28see details about this issue in https://github.com/lmcinnes/umap/issues/566.
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Roughly speaking, the redshift is the Doppler effect of light: if a light-source is moving away
from the observer (planet Earth), the wavelengths of the perceived light are elongated. As a
human interpretation of the color, the longer wavelengths are redder than the shorter ones,
coining the name of the redshift effect. The redshift information, as metadata, may be useful
for the characterization of the SNe (Boone, 2019; Möller & de Boissière, 2020), but consis-
tently relying on this type of information is highly unexpected, especially in the Big Data
paradigm.

2.3.2. Optical Photometry

The optical photometry is a technique that allows scientists to measure the perceived light
level, by an observer, from a light-source. In astronomy, the photometry is used to extract
the brightness level information from a astronomical object or event given a specific range of
frequency (photometric band). In an optical telescope, a Couple Charge Device (CCD) is used
to capture the photons from a light-source. Each pixel in the CCD can count the number
of electrons charges, in Analog to Digital Units (ADUs) units, over a period of exposure
time (controlled by a shutter). These counts are proportional to the brightness observed
from the light-source. Finally, this photometry information can be transformed into other
brightness measurement units such as the photometric flux or the apparent magnitude. In
addition, consistently using the optical photometry over time allows astronomers to construct
an useful type of time series: the light-curves.

In general, the photometry process can be performed by using multiple and different
operating ranges of light frequencies, called the «photometric bands», which correspond to
optical filters located in the telescopes used to capture the electromagnetic information from
the astronomical objects. By using different types of bands, the information captured by a
particular astronomical object can be described in terms of different modalities, providing
a more complete profile to characterize a light-source. As an example, Fig. 2.11 shows the
wavelength ranges of the bands of the commonly used SDSS system. Note that the use of
multiple bands allows the construction of multi-variate time series: the multi-band light-
curves (see section §2.3.2.4 for extra details).

2.3.2.1. Photometric Flux

The photometric flux is the measurement of the brightness captured, by an observer
(planet Earth), from a light-source in the sky (astronomical object or event). The flux is
directly related with the photons received by an observer and, hence, with the estimated
brightness. In general, the brightness measurements in astronomy are strongly subject to a
vastly family of sources of noise and uncertainty, e.g., unfavorable atmospheric conditions,
light from the moon. Therefore, it is common to associate the flux measurement with an error
estimation (observation-error). This observation-error is denoted by σFs ≥ 0 when working
with the flux unit, obtaining brightness measurements of the form Fs ± σFs , where Fs ≥ 0 is
the photometric flux.
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Figure 2.11: Wavelength ranges of the bands of the SDSS system. Left) The standard SDSS
bands system is shown: {u, g, r, i, z}. Right) As a comparison, the LSST bands system is
shown: {u, g, r, i, z, y}. Original figure extracted from https://community.lsst.org/t/l
sst-filters-versus-sdss/2429/6.

2.3.2.2. Apparent Magnitude

Another widely used brightness measurement is the apparent magnitude, which is a mea-
surement inversely proportional to the brightness of a star that is observed from the planet
Earth. Then, a larger apparent magnitude implies that the observer perceives less brightness
from the object. The apparent magnitude m ≥ 0 is defined as follows:

m = −2.5 log10
(

Fs

Fref

)
, (2.111)

m = −2.5 log10 (Fs) + zp, (2.112)

where Fs is the photometric flux captured from the observed light-source and Fref is a reference
flux. Another way to represent m is to use an auxiliary variable zp (zero point), which includes
the information captured by the term Fref and it is related to the absorption and diffraction
rates of the color produced by the atmosphere. Similar to the flux measurements, the apparent
magnitude has an associated observation-error. Therefore, the magnitude measurements are
expressed in the form m± σm, where σm ≥ 0 is the magnitude observation-error.

2.3.2.3. Magnitude-Flux Transformation

In order to convert an apparent magnitude measurement, to a flux measurement, the
following transformation is required:

Fs(m) = 10−
1
2.5

(m−zp), (2.113)

σFs(m,σm) = 10−
1
2.5

(m−zp) − 10−
1
2.5

((m+σm)−zp), (2.114)

where, the flux and flux error are computed in eqs. (2.113) and (2.114), respectively.
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Figure 2.12: Example of a sequence of stamp-images captured over a period of time. The
science, template, and difference are shown for the object ExZTF19aavounq from the ZTF
survey. Original figures extracted from https://alerce.online/object/ZTF19aavounq.

2.3.2.4. Multi-Band Light-Curve

Astronomical events, such as SNe, can be characterized by using light-curves, which are
time series structures that describe the evolution or change of the brightness of an astrono-
mical object over time. Therefore, a light-curve can be defined as a collection of observations,
over time, that contains information of the brightness in terms of photometric counts, flux or
apparent magnitude. For instance, in the case of SNe, the typical light-curve shows a phase
of increasing the brightness (SN-rise), a peak of the brightness (SN-peak), and then a decay
(SN-fall) until the extinction of the brightness (SN-extinction).

First, given an astronomical object of interest, a sequence of stamp-images is captured
by a telescope over a period of time. Usually, these sequences are composed of three types of
stamp-images: science, template, and difference stamp-images (see Fig. 2.12 for an example).
Then, complex techniques such as the Naylor’s optimal photometry (Naylor, 1998) are used
to extract the brightness measurements from the sequence of stamp-images (in photometric
counts, flux or apparent magnitude units). As a sequential measurement of an astronomical
object over time, this process can be used to construct a light-curve object.

As discussed in previous sections, an error estimation is associated with the brightness
measurements. Therefore, the light-curves are constructed as a sequence or time series con-
taining both, the brightness information (observation) and the brightness error information
(observation-error) associated with that observation. The brightness observations of the light-
curve can also be captured by using different frequency ranges along with the optical filters
of the telescope (photometric bands). This produces multi-band light-curves or, in a broader
context, multi-variate time series.

The change in brightness can be produced by either intrinsic physicochemical reactions of
the astronomical object or by other external effects and phenomena. For instance, the light-
curves are strongly subject to independent factors of the observed astronomical event, such
as the atmospheric conditions, telescope state, among many others. Ultimately, this produces
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challenges such as light-curves with an arbitrary number of observations (variable-length), a
highly irregular sampling rate (irregular cadence), a non-aligned multi-variability among the
photometric bands, etc.

2.3.3. Supernovae (SNe)

The supernovae (SNe) are transient astronomical events resulting from a powerful and
bright stellar explosion. There is a wide range of types of SNe, leading to a vast nomencla-
ture. In general, the nomenclature of SNe is guided by their electromagnetic spectrum, often
known as the «chemical fingerprint», which allows the astronomers to inspect which are the
different chemical elements that affect the behaviour of the light emitted by the light-source
(absorption lines). Therefore, it is possible to identify concentrations of Hydrogen, Helium,
traces of Silicon, among other elements, giving rise to different types of SNe such as SNIa,
SNIb, SNIc, SNIIb, SNIIn, SNIIL, SNIIP, SLSN, etc (Petschek, 1990; Alsabti & Murdin,
2017).

There are several plausible theories and explanations that attempt to describe the SN
phenomenon, in particular, the explosion mechanism that trigger this astronomical event. In
general, the SNe can be separated into two main groups: thermonuclear and core-collapse
SNe.

2.3.3.1. Thermonuclear SNe

A thermonuclear SN is produced by an imbalance in the nuclear fusion process in a stellar
close binary system, which contain a white dwarf star. Given special circumstances, the white
dwarf progressively increases its mass due to material absorbed from its companion in the
binary system (where a short distance separates the two stars). When the white dwarf reaches
the Chandrasekhar limit (about 1.44 solar masses) a thermonuclear runaway occurs due to
a positive feedback in the nuclear fusion mechanism, which ultimately leads to the explosion
of the white dwarf (Petschek, 1990; Alsabti & Murdin, 2017).

The above mechanism is thought to be the particular cause of the type Ia SNe (thermo-
nuclear SNe), which show a high consistency of the reached maximum apparent brightness.
This behaviour could be explained due to the particularly stable intrinsic conditions that
trigger the explosion mechanism of the progenitor star. Given this high consistency, the SNIa
type is also known as the cosmological standard candle (Wright & Li, 2018). Due to its pecu-
liar properties, the study of the SNIa type has played a critical role in several scientific and
astronomical research fields, allowing cosmologists to measure extra-galactic distances in the
cosmos, which ultimately led to the discovery of the accelerated expansion of the universe
(nobel prize in 2011; Schmidt et al., 1998; Riess et al., 1998) and its precise characterization
with projects such as the Dark Energy Survey (DES; Sánchez, 2006; Dark Energy Survey
Collaboration et al., 2016).
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2.3.3.2. Core-Collapse SNe

Theoretically, the core-collapse explosion scenario explains the birth of the great majority
of SNe, e.g., SNIb/c, SNII, SLSN. A core-collapse SN is produced by the collapse of the
star nucleus due to the energetic exhaustion of the nuclear fusion process, breaking the
existing equilibrium between the thermonuclear repulsion and the gravitational attraction of
the stellar plasma. Due to this imbalance, the gravitational force ends up being predominant,
producing a strong implosion of the nucleus and a rebound of the surrounding material, which
shoots out in a large and abrupt explosion (Petschek, 1990; Alsabti & Murdin, 2017).

Additionally, the study of Type Ib/c and Type II supernovae (core-collapse SNe) has
helped astronomers to understand the evolution and explosion mechanisms of stars, including
insights about the formation of stellar mass black holes (Sukhbold & Adams, 2020).

2.3.4. Astronomical Surveys, Datasets, and Brokers

The astronomical surveys are the execution of a plan to perform a stellar mapping of the
sky. This mapping is performed by using images from specialized telescopes, defining which
regions of the sky will be captured, as well as in which bands and dates. Usually, surveys are
designed with the objective of capturing a special type of astronomical object or event, such
as transient events or SNe. For example, the Zwicky Transient Facility survey (ZTF; Bellm
et al., 2019) was designed to detect objects with a rapid and abrupt change in brightness,
such as transient events like SNe, Gamma Rays or collisions between stars. Table 2.2 shows
the properties of several surveys along with extra astronomical datasets, such as simulated
SN light-curves datasets.

Usually, the astronomical surveys produce a high-volume of data collected from the sky
every night (stream of alerts). To collaborate with the process of these data, the alerts can be
distributed to the called community «brokers», such as the Automatic Learning for the Rapid
Classification of Events (ALeRCE; Förster et al., 2021; Sánchez-Sáez et al., 2021; Carrasco-
Davis et al., 2021), Arizona-NOIRLab Temporal Analysis and Response to Events System
(ANTARES; Matheson et al., 2021), Lasair (Smith et al., 2019), among others. Therefore,
a broker is a public pipeline that will ingest and process the stream of astronomical alerts,
helping the scientific community to handle the high-volume data with task such as cross-
match association, identification and prioritization of astronomical objects to follow-up, light-
curve analysis, etc. For instance, the Chilean ALeRCE broker performs a real-time processing
of astronomical events captured by the ZTF survey. The broker can process discovery images
and light-curves, automatically extracting astrophysical features. These features are then
used, along with Machine Learning methods, to classify detected astronomical events into
three main different categories: transient, variable, and stochastic events.
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Table 2.2: Brief summary of some astronomical datasets. Most of the datasets correspond to
empirical data from surveys projects, while the rest correspond to simulated data. For the
multi-band system, we denote SDSS ({u, g, r, i, z}) and INT WFC ({U, B, V, R, I, Z}) for
SDSS-like and INT WFC-like multi-band systems, respectively. *: datasets/surveys that use
other multi-band system.

Acronym Survey name Simulated
data

Number
of bands

Multi-
band
system

MACHO (Alcock et al., 1996) Massive Compact Halo Object 2 *
SDSS (York et al., 2000) Sloan Digital Sky Survey 5 SDSS
LINEAR (Stokes et al., 2000) LIncoln Near-Earth Asteroid Re-

search
1 SDSS

OGLE-III (Udalski, 2003) Optical Gravitational Lensing
Experiment

2 INT WFC

ASAS (Pojmanski, G., Pilecki,
B., Szczygiel, 2005)

All Sky Automated Survey 2 INT WFC

DES (Sánchez, 2006; Dark
Energy Survey Collaboration
et al., 2016)

Dark Energy Survey 5 SDSS

CRTS (Drake et al., 2009) Catalina Real-Time Survey 1 INT WFC
SNANA (Kessler et al., 2009) Supernova Analysis software ✓ ≥ 1 SDSS
WISE (Wright et al., 2010) Wide-field Infrared Survey Ex-

plorer
4 *

SPCC (Kessler et al., 2010) Supernova Photometric Classifi-
cation Challenge

✓ 4 SDSS

HiTS (Förster et al., 2016) The High Cadence Transient
Survey

1 SDSS

Gaia (Gaia Collaboration, 2016) Gaia 3 *
Pan-STARRS (Chambers et al.,
2016)

Paranoramic Survey Telescope
and Rapid Response System

5 SDSS

PLAsTiCC (The PLAsTiCC
team et al., 2018)

Photometric LSST Astronomical
Time-Series Classification Cha-
llenge

✓ 6 SDSS

ASAS-SN (Jayasinghe et al.,
2018)

All Sky Automated Survey for
Supernovae

2 SDSS,
INT WFC

ZTF (Bellm et al., 2019) Zwicky Transient Facility 2 SDSS
LSST (Ivezić et al., 2019) Vera C. Rubin Observatory Le-

gacy Survey of Space and Time
6 SDSS

2.3.5. Supernova Parametric Model (SPM)

The Supernova Parametric Model (SPM; Villar et al., 2019; Sánchez-Sáez et al., 2021)
is an analytical function that attempts to describe the typical behavior of a SN light-curve.
The SPM function is defined as follows:

fsne(t;θ) = fearly(t) · (1− g(t)) + flate(t) · g(t), (2.115)
g(t) = σ(s · (t− (γ + t0))), (2.116)
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fearly(t) =
A ·
(
1− β′ (t−t0)

γ

)
1 + exp

(
−(t−t0)
τrise

) , (2.117)

flate(t) =
A · (1− β′) · exp

(
−(t−(γ+t0))

τfall

)
1 + exp

(
−(t−t0)
τrise

) , (2.118)

where the SPM function fsne(t) : R 7→ R allows us to construct a light-curve (flux) for a SN
by evaluating the SPM model, given a vector of SPM parameters θ = [A, t0, γ, β

′, τrise, τfall]
T ,

along with a collection of arbitrary and continuous-time values {tj}Lj=1 (days). This analytical
function is defined as a smooth transition between an early function fearly(t) : R 7→ R, in
eq. (2.117), and a late function flate(t) : R 7→ R, in eq. (2.118). The use of these functions
aims to characterize a typical SN behavior: the brightness abruptly increases (SN-rise) up
to a maximum (SN-peak), followed with a decrease (SN-fall) (where a plateau or radioactive
tail (SN-plateau) could be observed), and ending with the final extinction of the transient
event (SN-extinction). The transition between the early and late functions is controlled by
the function g(t) : R 7→ (0, 1), where σ is the sigmoid function and s = .2 is a transition
smoothness control factor.

Intuitions behind the 6 SPM parameters are given by:

1. A ∈ R+: affects the brightness scale for the SN light-curve.

2. t0 ∈ R: acts as a temporal shift for the light-curve. Even though this value is close
to the light-curve maximum brightness, it does not exactly correspond to the SN-peak
time.

3. γ ∈ R+: controls the time duration of the SN-plateau region.

4. β′ ∈ [0, 1]: controls the slope of the SN-plateau region.

5. τrise ∈ R+: controls the required time to reach the maximum brightness along the
light-curve.

6. τfall ∈ R+: controls the brightness decay time along and after the SN-plateau region.

To better illustrate the behavior of the SPM, Fig. 2.13 shows several light-curves obtained
by changing some of the SPM parameter in a particular range. It can be observed how the
model aims to characterize the SN typical regions described above: SN-rise, SN-peak, SN-
plateau, SN-fall, and SN-extinction.

2.3.6. Computation of Astrophysical Features for Light-Curves

The astronomical light-curves are challenging objects to handle due to their intrinsic
irregular cadence, variable-length, multi-band observations, among others. Therefore, several
descriptors (features) can be extracted from the light-curves by using irregular time-series
related methods and astrophysical knowledge. These features aim to characterize the general
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Figure 2.13: Examples of different arbitrary and simulated SN light-curves (represented by
the SPM function) produced by changing the parameters of the SPM.

behavior of a variable-length multi-band light-curve Φi into a fixed-length feature vector
zi = f(Φi) ∈ RK , which is composed of K descriptors.

For example, some features can be statistics such as the mean or standard deviation of
the observations in a light-curve. Other features can be obtained by complex methods, such
as the Lomb–Scargle periodogram. This periodogram can be used to estimate periods in a
light-curve by fitting a set of sinusoidal functions to the observations (Scargle, 1982). Other
type of functions can be also fitted to the light-curves, such as analytical models of SNe
(Villar et al., 2019). All these extracted features can be used to classify astronomical events
along with classical Machine Learning models, such as the Balanced Random Forest (BRF),
Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Gradient Boosting, etc.

In the literature, a vast and diverse family of astrophysical feature extraction methods
has been proposed over the years (Sánchez-Sáez et al., 2021; Stellingwerf & Donohoe, 1986;
Richards et al., 2011; Villar et al., 2019; Kim et al., 2011; Arévalo et al., 2012; Nun et al., 2015;
Kim et al., 2014; Schmidt et al., 2010; Graham et al., 2017; Tachibana & Miller, 2018; Huijse
et al., 2018; Allevato et al., 2013; McLaughlin et al., 1996; Eyheramendy et al., 2018; Mondrik
et al., 2015)29. In addition, Application Programming Interfaces (APIs), such as the Feature
Analysis for Time Series (FATS; Nun et al., 2015), has helped the scientific community
to easily incorporate feature extraction methods into light-curve processing pipelines. As a
real-world example, the Automatic Learning for the Rapid Classification of Events (ALeRCE;
Förster et al., 2021; Sánchez-Sáez et al., 2021; Carrasco-Davis et al., 2021) broker can process,

29See http://alerce.science/features/ for extra details of these features.
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in real-time, empirical light-curves from the ZTF survey. For this, the broker computes a vast
set of features based on prior astrophysical expert knowledge (Sánchez-Sáez et al., 2021).
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Chapter 3

Methodology

3.1. Dataset and Pre-Processing

3.1.1. Dataset

In this work, we use a dataset D that consists of a collection of flux SN multi-band light-
curves from the Zwicky Transient Facility survey (ZTF; Bellm et al., 2019), composed of
two bands: g and r. These SN events have been confirmed spectroscopically and reported in
the Transient Name Server (TNS) catalog1. As we aim to classify different types of SNe, the
following SN types are used from the dataset D: SNIa, SNIbc, SNII, and SLSN, as researched
in Sánchez-Sáez et al. (2021). We remove short-length SN multi-band light-curves: only multi-
band light-curves having at least L(b)

i ≥ 5 observations, in any of the B bands, are preserved
in the dataset D. Fig. 3.1 shows the class distribution, where a high class imbalance can be
observed with majority classes (SNIa, SNII) and minority classes (SLSN, SNIbc).

0 250 500 750 1000 1250 1500 1750
#samples

SLSN

SNII

SNIa

SNIbc

 30 (1.52%)

 348 (17.59%)

 1,500 (75.83%)

 100 (5.06%)

set=alerceZTFv7.1-gr; total #samples=1,978

Figure 3.1: Class population distribution of SN types (from the original dataset D).

1https://wis-tns.weizmann.ac.il.

67

https://wis-tns.weizmann.ac.il


3.1.2. Pre-Processing

In order to prepare the dataset and light-curves, the following pre-processing procedures
are implemented.

3.1.2.1. Stratified 5-Fold Cross-Validation

A non-stochastic 5-fold cross-validation procedure is performed. The dataset D is split
into 5 different variations of training/validation/test sets, following the proportion #(Dtraining)
/#(Dval)/#(Dtest) = 60/20/20. The imbalance of classes is similar for all sets as this split
is stratified. When performing the splits, we aim to ensure that each fold configuration is
almost unique, ensuring that each SN light-curve appears at least once in some of the test-set
variations. This methodology aims to correctly preserve the representativeness of each split,
which is important for the minority classes.

3.1.2.2. Simultaneous Multiple Observations

Given a single-band light-curve Φ(b)
i , all photometric observations reported within a short-

range time-window ∆t = 12 [hours] are merged into a single observation. Close observations
are merged because multiple observations in the same night can be redundant and can harm
the performance of some algorithms. Given an arbitrary group of close observations, the
merging process is performed by using weight factors wi,j(b) ∈ [0, 1] defined as follows:

wi,j(b) =
e
− log

(
σ
i,j(b)

+ε
)

∑
j(b)∈∆J

(b)
i

e
− log

(
σ
i,j(b)

+ε
) ,∀j(b) ∈ ∆J

(b)
i , (3.1)

where σi,j(b) is the observation-error and ∆J
(b)
i is a subset of the sequence steps associa-

ted with all the observations, in the single-band light-curve Φ
(b)
i , that are sharing the same

time-window ∆t. A new observation-flux can be generated as a weighted sum of all close
observations within ∆t, as µi,j(b) ←

∑
j(b)∈∆J

(b)
i

wi,j(b) ·µi,j(b) . The motivation of this weighting
method is to make observations with lower observation-errors (lower uncertainty) to be more
represented in the final weighted sum. Similarly, this weighting is also used to generate the
new observation-times and observation-errors. With this process we merge close observations,
reducing the total number of observations in our ZTF dataset by approximately 13%2.

3.1.2.3. Sigma Clipping Error Filter

Sigma clipping is used to remove highly uncertain photometric observations from the
datasets. As this is related to the observation-error, the sigma clipping is applied to remo-
ve observations, from a single-band light-curve Φ

(b)
i , with observation-errors σi,j(b) above a

213.151%.
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threshold of 5σ(b). The standard deviation σ(b) is computed using all the observation-errors
from the band b in the training-set Dtraining.

3.2. Generation of Supernova Synthetic Multi-Band Light-
Curves

In this section, a method to generate synthetic multi-band light-curves for SNe, based
on the SPM model, is described. Given the scarcity of spectroscopically confirmed SN light-
curves in the ZTF survey, we perform this artificial generation to support the training of
several Deep Learning models with a stable and well-behaved optimization scenario.

3.2.1. Estimation of the Posterior Distribution of SPM Parameters

To generate a new SN light-curve, a method to sample an optimal and well-behaved
set of SPM parameters is required. We use a Bayesian framework to estimate the posterior
distribution of the SPM parameters θ(b)i , given an empirical single-band light-curve Φ

(b)
i , as

p
(
θ
(b)
i |Φ

(b)
i

)
∝ p
(
Φ

(b)
i |θ

(b)
i

)
p
(
θ
(b)
i

)
.

In this framework, a correct estimation of the posterior distribution allows us to sam-
ple SPM parameters given a set of empirical observations from a single-band light-curve
as θ(b)∗i ∼ p

(
θ
(b)
i |Φ

(b)
i

)
. For estimating this distribution, the Markov Chain Monte Carlo

(MCMC) Ensemble Samplers algorithm (Goodman & Weare, 2010) is used. To estimate the
distribution with the MCMC algorithm, given an arbitrary single-band light-curve Φ

(b)
i , the

likelihood and prior distributions are defined as follows:

p
(
Φ

(b)
i |θ

(b)
i

)
=

L
(b)
i∏

j(b)=1

1

σ′
i,j(b)

√
2π

exp

(
−1

2σ′2
i,j(b)

(
µi,j(b) − fsne

(
t;θ

(b)
i

))2)
, (3.2)

p
(
θ
(b)
i

)
= N

(
θ
(b)
i ;θ

(b′ ̸=b)
i ,Σ

)
. (3.3)

The explanation for the choices made above are the following:

1. Likelihood: in eq. (3.2), the likelihood distribution is defined. This formulation is
based on the assumption of a Gaussian distribution for the empirical observation-fluxes
µi,j(b) , where the standard deviation is proportional to the empirical observation-errors
σi,j(b) . The standard deviation is defined as σ′

i,j(b) = γ · σ2
i,j(b)

+ β, where γ = 10 and
β = 1 are empirically selected to adjust the influence of the observation-error in the
standard deviation. This setting seeks to prevent that observations with extremely low
observation-errors completely control the likelihood of the light-curve.
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As mentioned above, γ and β were empirically selected, searching for a correct optimi-
zation of the MCMC algorithm. The most important parameter is β as it helps to avoid
explosive values for the function cost, during the optimization, when the observation-
errors are zero or close to zero, i.e., β allows us to induce a systematic error in the
optimization. In such cases, and without β (β = 0), there may exist a risk of bia-
sing the optimization toward the observations with observation-errors close to zero,
possibly causing the undesired effect of the model ignoring observations with higher
observation-errors. The term γ allows us to increase or decrease the influence of the
observation-error on the optimization. A value of γ was selected to obtain an acceptable
diversity of the generated synthetic light-curves after the MCMC optimization. Note
that γ = 0 transforms the eq. (3.2) into a MSE-like function, completely ignoring the
influence of the observation-errors.

2. Prior: in eq. (3.3), the prior distribution is defined. This formulation implies that
the SPM prior selection is based on the SPM optimal parameters from the companion
band b′ ̸= b of the single-band light-curve Φ(b)

i (a companion band within the multi-band
light-curve Φi). The prior is defined as an isotropic multivariate Gaussian distribution
centered in the companion band b′ optimal SPM parameters, with Σ ∈ R6×6 a diagonal
matrix for the standard deviation. This prior selection attempts to induce information
from the companion band b′ in the optimization of the target band b. This might correct
the optimization in scenarios where no empirical observation is found from the SN-rise
and SN-peak regions from the current band. The optimal SPM parameters from the
companion band are found using Maximum Likelihood Estimation (MLE) over the
empirical observations (see Appendix §B.2 for details). This prior formulation could be
extended, for more than two bands, by using a Gaussian Mixture Model (GMM) as the
prior distribution.
As it is fully detailed in Appendix §B.2, we remark that all the Gaussian distributions
used in the prior definition are truncated by the SPM bounds to avoid sampling in-
valid SPM parameter values during the MCMC optimization. These SPM bounds are
designed and defined in order avoid the sampling of non-valid SPM parameters, e.g.,
some SPM parameters are required to be bounded and/or non-negative values. On the
other hand, other prior distributions could be further explored for an extended defini-
tion of the prior. For example, distributions such as beta could be used for bounded
SPM parameters, and distributions such as log-normal or gamma could be used for
non-negative SPM parameters. In this work we opted for a simpler solution, leaving
the exploration of better prior distributions out the scope of this thesis. By following
this line of research, an improvement of correct convergence of the MCMC algorithm
may be reach as a finer selection of prior distributions may facilitate the convergence
of the sampler.

3.2.1.1. MCMC parameters and settings

As previously mentioned, the Markov Chain Monte Carlo (MCMC) Ensemble Samplers
algorithm (Goodman & Weare, 2010) is used for the estimation of the posterior distribution.
For this, the Emcee3 implementation was used. The, the important parameters that control

3https://emcee.readthedocs.io/en/stable/.
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the optimization process are the following4:

1. Number of chains: the number of walkers (chains) used in the ensemble. A number
of n_chains = 24 parallel ensembles running in parallel are used.

2. Burning period: the number of initial steps that are discarded from the chains as
burn-in. A burning period of discard = n_tune/n_chains, for each one of the parallel
ensemble, is selected. The value n_tune = 2000 is used.

3. Number of steps: the number of steps (MCMC iterations) to run each one of the para-
llel walkers. A number of nsteps = (n_trace_samples+ n_tune)/n_chains steps, for
each one of the parallel ensemble, is used. Note that the burning period n_tune is inclu-
ded in the total number of iterations as these iterations will be subsequently discarded.
The value n_trace_samples = 480 is used. Note that n_tune > n_trace_samples
as there is a priority to have a high burning period, aiming to lower the impact of
the initial condition. In general, n_trace_samples can be further increased but with a
higher computational cost.

4. Thinning: the process to set as valid only a portion of intermediate samples within
the chain during the algorithm optimization, aiming to decrease the Markov Chain
correlation. A number of thin_by = 20 steps is used in order to store and yield every
thin_by samples for each one of the parallel chains. Note that a trade-off exists: a higher
value of thin_by may help to decrease the chain correlation but with an increase of the
computational cost and time.

By using the configuration above, a number of n_trace_samples/n_chains = 20 itera-
tions are obtained for each one of the parallel chains. Then, the result for all chains are also
merged together, giving us a new final chain with n_trace_samples/n_chains · n_chains =
480 samples for the estimated posterior distribution. If a sub-set of ks samples are required,
then the last ks samples can be selected from the final chain. Although the number of samples
per chain (20) may seem rather low; in fact, there are the following aspects to consider: 1)
There is a high number of parallel samplers. 2) There is a long burning period; therefore, we
aim to decrease the sensibility to initial conditions. 3) There is a high thinning value: we are
only storing a part (n_trace_samples) of the total number of effective iterations. In fact,
the algorithm is internally computing almost thin_by times more iterations than the ones
that we are actually saving and using.

In general, it is difficult to ensure convergence for the MCMC algorithm for each one
of the possible light-curves in the dataset. Therefore, possible MCMC algorithm exceptions
and divergences may appear for some exceptional cases. Whenever an MCMC chain does
not converge, an alternative and simpler solution is used instead. This solution consists of
replacing the SPM analytical function fsne with a linear interpolation between empirical
observations, i.e., the existence of a continuous-time function is assumed as the connection of
two consecutive observations. Note that we are not explicitly verifying a proper convergence
of the MCMC algorithm, instead, we are trying to solve conflict cases where the convergence
is not reached. A more elaborate verification of the MCMC convergence is beyond the scope
of this thesis.

4https://emcee.readthedocs.io/en/stable/user/sampler/.
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3.2.2. Sampling Time Window

To evaluate the SPM analytical function at different observation-times, a Sampling Ti-
me Window (STW), consisting of a collection of L time values, is defined as ∆t

(b)
stwi ={

t|t ∼ U
(
t
(b)
initi, t

(b)
finali

)}L

j=1
, where the STW consists of a temporal grid with L time values

sampled from a uniform distribution. The size of the STW is defined by the number of
empirical observations from the current single-band light-curve Φ

(b)
i (L = L

(b)
i ).

The STW uniform distribution lower bound is defined as follows:

t
(b)
initi =

{
ti,1(b) , if ti,1(b) < t

(b)
maxi,

ti,1(b) −∆t, otherwise,
(3.4)

where ti,1(b) represents the first empirical observation-time from the single-band light-curve
Φ

(b)
i . The term t

(b)
maxi is the time value associated with the global maximum of the optimized

SPM function evaluated using the optimal SPM parameters θ(b)∗i . By setting ∆t = 10 [days],
the STW can be used to sample observation-times before the first empirical observation, e.g.,
when no observation is available close to the SN-peak (according to the SPM function ma-
ximum). This extension allows generating plausible observations over the poorly represented
SN-rise and SN-peak regions, originally observed from the dataset D.

The uniform distribution upper bound is defined as tfinali = ti,−1(b) , where ti,−1(b) represents
the last empirical observation-time from the single-band light-curve Φ

(b)
i . This bound ensures

that the sampled observation-times are bounded by the last empirical observation-time.

3.2.3. Generation of Synthetic Observations

Given an arbitrary SN multi-band light-curve Φi, the process to generate synthetic light-
curves is shown in algorithm 3. In addition, Fig. 3.2 shows several examples of synthetic
generation of multi-band light-curves for each SN type.

First, a set of optimal SPM parameters θ(b)∗i are sampled by using an MCMC posterior
distribution estimation from the empirical observations. The MCMC sampling procedure
allows us to introduce a moderate diversity of the SPM parameters when generating a new
light-curve5. After this, the STW is generated, and the sampled time values are evaluated
using the SPM analytical function fsne and a set of optimal SPM parameters θ(b)∗i . In this
way, multiple synthetic observation-fluxes µ̂i,j(b) are generated.

Next, the synthetic observation-errors are sampled from a conditional distribution p(σ|µ̂i,j(b) , b),
which describes the observation-error distribution σ, given an observation-flux µ̂ and a band
b. Sampling from this distribution allows generating plausible observation-errors given an
arbitrary observation-flux. To estimate this distribution, a collection of Gaussian distribu-

5Possible MCMC algorithm exceptions and divergences are handled by replacing the SPM analytical
function fsne with a linear interpolation between empirical observations. This strategy is also used in the case
where there is no other band information.
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Algorithm 3: SN multi-band synthetic light-curve generation based on SPM.
1 repeat
2 for b ∈ {1, . . . , B} do
3 θ

(b)∗
i ∼ p

(
Φ

(b)
i |θ

(b)
i

)
p
(
θ
(b)
i

)
4 for ti,j(b) ∈ ∆t

(b)
stwi do

5 µ̂i,j(b) = fsne

(
ti,j(b) ;θ

(b)∗
i

)
6 σ̂ i,j(b) ∼ p(σ|µ̂i,j(b) , b)
7 µ̂i,j(b) ← µ̂i,j(b) + k · σ̂ i,j(b) · ε, ε ∼ t-student(ν)

8 for b ∈ {1, . . . , B} do
9 ti,j(b) ← ti,j(b) − ti,1,∀j(b)// Observation-time re-offset

10 until A number of ks new light-curves are generated from Φi
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Figure 3.2: Examples of synthetic SN multi-band light-curves (before the observation-time
re-offset). The SPM posterior samples (ks = 32) from MCMC are shown as continuous-time
curves for each band. Empirical observation-fluxes are shown as color circles with observation-
error bars. Synthetic observation-fluxes, using a random SPM posterior sample, are shown
as black outlined circles. (a) SLSN type. (b) SNII type. (c) SNIa type. (d) SNIbc type.

tions are fitted using a variable binning strategy over a transformed observation-flux versus
observation-error distribution from the training-set Dtraining (see Appendix §B.3 for details).

A new synthetic observation-flux is then generated by re-sampling the synthetic observation-
flux µ̂i,j(b) by using a clipped t-student distribution scaled by k · σ̂ i,j(b) . Several methods of
light-curve observation-flux re-sampling have been explored in the literature using the Gaus-
sian distribution (Moss, 2018; Naul et al., 2018; Gómez et al., 2020; Hosenie et al., 2020), but
in this work, we explore the use of the t-student distribution as it shows higher dispersion
over the distribution tails, generating a higher proportion of outlier observation-fluxes along
the light-curve. The Gaussian distribution can be recovered by increasing ν → ∞, where ν
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is the degree of freedom of the t-student distribution. For our dataset D, we set k = 5e−1
and ν = 2 to obtain a general well-behaved re-sampling dispersion.

3.2.4. Synthetic Training-Set Generation

Given an empirical SN multi-band light-curve, the proposed method can generate an arbi-
trary number ks of new synthetic light-curves. Therefore, an augmented synthetic training-set
Dtraining[s] is built by generating a number of ks = 32 new synthetic light-curves for each empi-
rical light-curve from the original training-set Dtraining. The construction of this new synthetic
training-set Dtraining[s] is an effort to increase both, the total number of samples and the di-
versity of the irregular cadence population observed in the original training-set Dtraining.

3.3. BRF Baseline Classifier

In this section, the Balanced Random Forest (BRF) model is described as a baseline
classifier. This model uses a set of features extracted from the light-curves to classify different
types of SNe.

3.3.1. Photometric and Astrophysical Features

Given a multi-band light-curve Φi, several features can be extracted using irregular time-
series related methods and astrophysical knowledge. These features aim to characterize the
general behavior of a variable-length multi-band light-curve into a fixed-length feature vec-
tor. For the feature extraction, photometric and astrophysical features implemented by the
ALeRCE broker6 (Sánchez-Sáez et al., 2021) are used, which consist of a collection of 152
photometric features that are computed from light-curves. The ALeRCE broker proposed
a vast set of novel features, but it also collected features from previous works (Nun et al.,
2015). For instance, the ALeRCE broker proposed to fit the SPM parameters, based on an
MLE estimation, as a novel approach to characterize SN light-curves.

In this work, we exclude some metadata-based features such as the ALLWISE colors or
the galactic coordinates features, as these features seem to not influence the performance
of the transient classifier as reported by the ALeRCE team (Sánchez-Sáez et al., 2021).
Extra transient features, such as the Star Galaxy Separation score (SGS score) metadata
or non-detection features, are not used because we aim to classify SNe based solely on the
detected photometric information, i.e., the light-curves. This gives us a total of 144 features
computed from each SN multi-band light-curve. The observation-fluxes, used for our methods,
are consequently transformed into apparent magnitude to correctly compute the features.

6https://github.com/alercebroker/lc_classifier.
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SN multi-band light-curve

Figure 3.3: Proposed model architecture based on an autoencoder {ψ,φ}, which is composed
of an encoder ψ and a decoder φ. The representation-vector zi serves as input to a classifier
λ.

3.3.2. Balanced Random Forest

For the baseline classifier, the Balanced Random Forest model (BRF; Chen et al., 2004)
is used, which is a variation of the original Random Forest model (RF; Breiman, 2001). The
main advantage of the BRF algorithm is that it can deal with the high class imbalance of the
training-set Dtraining. To deal with the imbalance, the BRF train each decision tree with a
bootstrapped sample that is balanced in class samples, where the minority class is potentially
well-represented.

To train and test the BRF model, the photometric features are computed from all the
SN multi-band light-curves. Infinite and NaN features, which are produced due to incorrect
feature extraction and programming code exceptions, are replaced with an especial value of
−999 (Sánchez-Sáez et al., 2021). In addition, the best hyperparameter configuration is found
by using a grid search over different values for the split quality criterion (e.g., gini, entropy)
and tree maximum depth. The best selected configuration is the one associated with the best
performance reported over the validation-set Dval by monitoring the maximum value of the
balanced b-F1score metric (see Appendix §A.2 for details).

3.4. TimeModAttn Model

In this section, the proposed TimeModAttn model for the SN multi-band light-curve
classification is described. As shown in Fig. 3.3, this model is based on an autoencoder
(encoder-decoder) and a classifier. A more detailed diagram is illustrated in Fig. 3.4. Note
that this model can be used to process arbitrary multi-band light-curves; therefore, it is not
limited to SN light-curves.
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Figure 3.4: Diagram for the proposed autoencoder model (TimeModAttn), which is composed
of an encoder ψ (shown on the left side of the diagram) and a decoder φ (shown on the right
side of the diagram). There are two variations for the encoder: serial and parallel. For the
band operator, the notation Φ(b=1) is used for the band g, and Φ(b=2) is used for the band r.
An arbitrary number of NL stacked layers is shown for the MHSelfAttn multi-layer sequence
processing. Optional tensor dimensional information is also shown (e.g., (N,L,D)), which is
related to the model implementation. N stands for the mini-batch size, L for the sequence
steps tensor dimension, and D for the representation-vector dimension.

3.4.1. Loss Functions

First, given a multi-band light-curve Φi, a Mean Squared Error (MSE) reconstruction loss
function is defined as follows:

Lreci =
1

B

B∑
b=1

1

L
(b)
i

L
(b)
i∑

j(b)=1

(
µi,j(b) − µ̂i,j(b)

)2
, (3.5)

where µi,j(b) are the observation-fluxes from the single-band light-curve Φ
(b)
i (with variable-

length L
(b)
i ). The observation-fluxes predicted by the decoder, for the single-band light-curve

Φ
(b)
i , are denoted as µ̂i,j(b) . Note that the final value of the loss consist of an average of the

reconstruction losses from all the B bands7.

Second, given a multi-band light-curve Φi and based on the Cross-Entropy (CE) H(p|q),
a categorical loss function is defined as follows:

Lcati = H(p(yi|Φi), q(yi|Φi)), (3.6)

7During the preparation of this thesis, we thought that we were using another definition for the recons-
truction loss that was based on the Weighted MSE (WMSE) loss. After an inspection of our implementation,
we finally decided that the shown loss (MSE) was the most theoretically correct way to define the used
reconstruction loss. For more details regarding this issue, see Appendix §B.4
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=
C∑
c=1

−pc(yi|Φi) · log (ŷi,c), (3.7)

where C is the total number of classes presented in the dataset, p(yi|Φi) is the true class
distribution, q(yi|Φi) is the model estimated class distribution, and ŷi,c is the model estimated
probability for class c.

3.4.2. Proposed Model Formulation

To model the loss functions defined above, we use an autoencoder model (encoder-
decoder). Following Jamal & Bloom (2020), two main architectures are implemented to deal
with the multi-band light-curve processing: serial encoder and parallel encoder.

3.4.3. Serial Encoder

The main goal of the encoder is to generate an automatic fixed-length representation-
vector zi from the variable-length multi-band light-curve Φi as shown in Fig. 3.3. For the
serial encoder ψ, the formulation is as follows:

x̆i,j =W
T
ψinxi,j,∀j ∈ {1, . . . , Li}, (3.8)

zi,j = fψ

(
{(x̆i,j′ , ti,j′)}j′≤j

)
,∀j ∈ {1, . . . , Li}, (3.9)

zi = zi,−1, (3.10)

where xi,j is the encoder input vector, which is composed of photometric observations8 that
are associated with the arbitrary sequence step j. For the model input, the logarithm of
the observation-flux is used as xi,j = [log (µi,j + ε)]T . The logarithm function is used to
attenuate large observation-flux values from the SN-peak, helping in the normalization of the
input distribution for the Deep Learning models9. Note that no explicit time information is
included in the input vector as the TimeModAttn model uses a temporal modulation strategy
(see details in section §3.4.3.1).

For the serial encoder, a one-hot vector, which is defined as bi,j =
[
0, . . . , 1bi,j=b, . . . , 0

]T ∈
RB, is used as a band indicator and concatenated with the encoder input. This operation
produces a new encoder input vector xi,j ∈ R(1+B). Then, the input vector is projected into a
higher D = 128 dimensional space x̆i,j ∈ RD by using the linear projectionWψin ∈ R(1+B)×D,
with shared parameters over all sequence steps.

In eq. (3.9), a causal sequence processing formulation is given. For an arbitrary sequen-
ce step j, a representation-vector zi,j is computed using the current and previous vectors

8All model input vectors are normalized using a standardization method with statistics computed from
synthetic training-set Dtraining[s] (see Appendix §B.5 for details).

9An inverse hyperbolic sine (asinh) function can be used if a forced photometry scenario is presented
(with possible negative observation-fluxes).
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and observation-times {(x̆i,1, ti,1), . . . , (x̆i,j, ti,j)}. We propose a temporal modulation (sec-
tion §3.4.3.1) followed by an attention mechanism (section §3.4.3.2) to solve this formulation.
The idea of this setting is to process a time-modulated sequence of representation-vectors by
using the attention mechanism.

In eq. (3.10), the final representation-vector from the encoder is defined as the last
representation-vector zi,−1 from the sequence {zi,j}Li

j=1. This vector is associated with the
last sequence step j = Li, where Li is the variable-length of the multi-band light-curve Φi.
Additionally, a Batch Normalization (BN; Ioffe & Szegedy, 2015) operation is performed over
the final representation-vector zi,−1.

3.4.3.1. Temporal Modulation (TimeFiLM)

A method is required to induce the sequential information in attention mechanisms, as
well as the observation-time information, to correctly process and characterize the SN light-
curves with highly irregular cadence.

Inspired by the idea of the Feature-wise Linear Modulation operation (FiLM; Perez et al.,
2018), we propose a temporal modulation (TimeFiLM) to induce the time information in the
input sequence that is processed by the attention mechanism (see Fig. 3.4). The formulation
of the proposed temporal modulation is as follows:

x̃i(ti,j) = ϕtanh(γ(ti,j))⊙ x̆i(ti,j + εt) + β(ti,j), (3.11)
x̃′
i(ti,j) = ϕReLU

(
W T x̃i(ti,j) + b

)
, (3.12)

γk(t) =
M∑
m=1

a′k,m sin

(
2πm

Tmax
t

)
+ b′k,m cos

(
2πm

Tmax
t

)
, (3.13)

βk(t) =
M∑
m=1

v′k,m sin

(
2πm

Tmax
t

)
+ w′

k,m cos

(
2πm

Tmax
t

)
, (3.14)

where the vector x̆i,j (associated with the observation-time ti,j) stands for the vector time
function evaluated on ti,j: x̆i,j ≡ x̆i(ti,j). Given an arbitrary input vector time function
x̆i(ti,j + εt) : R 7→ RK , the result of the modulation operation x̃i(ti,j) : R 7→ RK , in eq.
(3.11), is defined as the element-wise product (⊙) followed by the element-wise addition (+)
(FiLM operation) using the vector time functions γ(ti,j) and β(ti,j), respectively. An optional
hyperbolic tangent function ϕtanh is used to prevent explosive product values.

The vector time functions are constructed as γ(t) = [γ1(t), . . . , γK(t)]
T and β(t) =

[β1(t), . . . , βK(t)]
T , where γk(t) : R 7→ R and βk(t) : R 7→ R are the scale and bias time

functions, respectively. We assume that these functions are continuously defined and can be
evaluated at any arbitrary time value. In eq. (3.11), a new time-modulated vector function
x̃i(ti,j) is generated from the input vector function by using K different scale and bias time
functions, each one associated with one dimension component of the modulator input vector
x̆i,j (see Fig. 3.5).

The construction of both time functions, the scale, in eq. (3.13), and bias, in eq. (3.14),
is based on a Fourier decomposition with M harmonic components. The term m = 0 is
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bias time-function
scale time-function

Figure 3.5: Proposed temporal modulation x̃i,j, where x̆i,k(ti,j) is the k-th component of
the vector time function x̆i(ti,j), which represents the vector x̆i,j associated with the ti-
me value ti,j. The scale γk(t) and bias βk(t) functions, represented with solid lines, can be
evaluated at any arbitrary continuous-time value, giving a non-redundant and continuous-
time modulation-range [0, Tmax]. Dashed lines represent empirical unobserved time functions,
which are associated with the model input.

not included to attenuate the risk of constructing time functions that are invariant in time,
which may be produced by significantly high linear term values. Then, the K ·M learnable

parameters of the modulation are
{{

a′k,m, b
′
k,m, v

′
k,m, w

′
k,m

}K
k=1

}M

m=1

10, where K = D is used,
corresponding with the dimensionality of the vector x̆i,j.

This formulation allows the model to learn arbitrary smooth and continuous-time fun-
ctions, inducing a non-redundant temporal modulation over a finite time interval [0, Tmax],
where Tmax = kT ·max {ti,−1}Ni=1 is defined as the maximum period, associated with the mini-
mum harmonic frequency of the Fourier decomposition. This maximum period is arbitrarily
defined such that it exceeds the maximum empirical last observation-time ti,−1, found among
the light-curves from the training-set Dtraining, by setting kT = 1.5.

The flexibility to learn any arbitrary time function11, and not just a collection of periodic
functions, as done in (Vaswani et al., 2017; Kazemi et al., 2019; Sousa et al., 2020), might
be especially beneficial for non-periodic transient events such as SNe, as there could be
potentially more informative time regions in the early explosion days: earlier than and close to
the SN-peak, instead of periodically spaced informative zones. Therefore, the TimeModAttn
model might learn to induce a highly expressive modulation over those SN time regions. The
learning of periodic functions was tested in preliminary experiments, but the collapse of some
learned periods was observed, increasing the risk of constructing time-invariant functions.
This may be due to the fact that no hidden or intrinsic periodic behavior is expected in the
SNe dataset.

10The parameters are randomly initialized with uniform Kaiming initialization (He et al., 2015). Also,
higher harmonics are attenuated by using an exponential decay e−k·(m−1), k = .5, stabilizing the early training
epochs by starting with smooth and amplitude controlled modulation curves.

11Maximum flexibility and smoothness are constrained by the selected number of M harmonics components
used.
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As an optional and direct regularization technique, a noise term εt is added to each
evaluated time value ti,j only during the training process. For the SNe, this noise can be
dynamically sampled from a uniform distribution with values between -6 and 6 hours, which
can induce a dynamic and moderate disturbance over the original light-curves.

In eq. (3.12), the final modulated vector function x̃′
i(ti,j) is computed using the linear

projection W ∈ RK×K , plus a bias vector b, and the ReLU function ϕReLU, with shared
parameters over all sequence steps. This operation allows the model to perform nonlinear
interactions among the different dimension components of the time-modulated vector.

In summary, the proposed temporal modulation allows the model to properly capture
the highly irregular cadence of light-curves by directly using the observation-times to induce
an smooth and non-redundant modulation over the time interval [0, Tmax]. This allows us to
avoid using missing-values assumptions, as well as any explicit imputation and interpolation
methods. The latter methods might be detrimental because they can introduce artifacts
and anomaly light-curve behaviors. Additionally, the construction of continuous-time defined
functions using Fourier decomposition allows us to directly inspect the learned functions,
exploring for possible and interpretable temporal modulation tendencies produced by the
processing of transient events.

3.4.3.2. Multi-Head Self-Attention Mechanism (MHSelfAttn)

To complete the formulation of a solution for the causal sequence processing described
in eq. (3.9), we propose the use of a multi-head self-attention (MHSelfAttn) mechanism12.
This operation is performed over the output sequence vectors

{
x̃′
i,j

}Li

j=1
obtained from the

temporal modulation method (TimeFiLM). The goal of the attention mechanism is to cons-
truct expressive and meaningful context vectors given the query, key, and value vectors as
explained in section §2.2.12.

We highlight that the context vectors are computed over a sequence of vectors with
induced time information from the proposed temporal modulation (TimeFiLM). Therefore,
a meaningful context vector could contain automatic time representations computed along
the light-curve, such as time differences, elapsed times, short and long-range trends and time
dependencies, among others. This can be achieved by computing the correlations between
the time-modulated versions of the query and key vectors, but also with the final vector
aggregation using the time-modulated value vectors.

3.4.3.3. Temporal Offsets in Multi-Band Light-curves

Due to the irregular cadence affecting the multi-band light-curves, it is possible that time
gaps between the first observations of the different bands are presented (a.k.a. temporal off-
sets), i.e., it is highly likely that one band starts being observed before or after another band.

12For simplicity, a single MHSelfAttn’s layer is used (NL = 1). Also, the number of units in the MH-
SelfAttn’s MLP hidden-layer is reduced (kmlp = 1). Note that more MHSelfAttn’s layers could be used if
required.
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Ultimately, this can also be seen as a time shift of one band w.r.t. the other bands. As this
offset may provide valuable information about the multi-band behavior of the light-curves,
we expect that the proposed model will be able to capture this information automatically.

As it is shown in Fig. 3.3 (serial configuration of the model) and presented in section §2.1,
the model input sequence is constructed in such a way that all observations, from all bands,
are ordered causally and sequentially (where we use an indicator vector to denote the band
information of each observation). This also affects the serial sequence of observation-times
used for the model input. Additionally, note that our multi-band light-curves are re-offsetted
in time, i.e., the first observation of any multi-band light-curve is forced to occur at the
observation-time ti,1 = 013.

Given the proposed configuration of the model input, then any possible time offset between
bands is explicitly exposed in the model input. Therefore, the model, ideally, should have
access to and capture such information during the optimization thanks to the temporal
modulation operation. For example, by assuming that the multi-band observations start in
band g (with the corresponding band indicator vector), then the time offset of band r, relative
to band g, could be captured as soon as the first band indicator vector associated with band
r appears in the model input sequence.

3.4.4. Parallel Encoder

The formulation for the parallel encoder ψ model is as follows:

x̆i,j(b) =W
(b)T

ψin xi,j(b) ,∀j(b) ∈
{
1, . . . , L

(b)
i

}
, (3.15)

zi,j(b) =f
(b)
ψ

({(
x̆i,j(b)

′ , ti,j(b)′
)}

j(b)
′≤j(b)

)
, (3.16)

∀j(b) ∈
{
1, . . . , L

(b)
i

}
,

z
(b)
i =zi,−1(b) , (3.17)

zi =W
T
ψ

(
cat
[
z
(1)
i , . . . ,z

(B)
i

])
, (3.18)

where eqs. (3.15)-(3.17) follow similar ideas as those from the serial encoder. In general, in
the parallel case, the sequence processing is performed independently for each of the B bands
in the multi-band light-curve Φi.

In contrast to the serial encoder, in eq. (3.15) the one-hot vector bi,j is not included in
the encoder input vector xi,j(b) =

[
log
(
µi,j(b) + ε

)]T , as it is not required to include the band
information for the parallel encoder. The high-dimensional space of the encoder is decreased,
from D to (D/B), by using the linear projection W (b)

ψin ∈ R1×(D/B). This dimensionality re-
duction is performed in order to have a similar total number of learnable parameters for both,
the serial and parallel encoders. Additionally, to keep an equal attention head dimensional
space (Dq, Dk, Dv), we decrease the number of attention heads from H to H/B.

13As each multi-band light-curve is always re-offsetted in time, then there are no time gaps between light-
curves within the dataset D. Therefore, original time gaps between light-curves, due to differences in the
starting dates (MJD) of the captured astronomical events, are not a problem given our methodology.
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For the final representation-vector note that, in eq. (3.17), the final representation-vector

zi,−1(b) is defined as the last representation-vector from the sequence
{
zi,j(b)

}L(b)
i

j(b)=1. This vector

is associated with the last sequence step j(b) = L
(b)
i , where L

(b)
i is the variable-length of the

single-band light-curve Φ
(b)
i .

In eq. (3.18), the final representation-vector zi is projected by using the linear projection
Wψ ∈ RD×D from the joint space constructed with the concatenation of each of the B band
representation-vectors:

{
z
(1)
i , . . . ,z

(B)
i

}
. This operation allows the model to capture relevant

information, from each band representation-vector, into a final representation-vector with the
same number of dimensions D as those of the serial encoder.

3.4.4.1. Temporal Offsets in Multi-Band Light-curves

As previously shown in Fig. 3.3 (parallel configuration of the model) and presented in
section §2.1, the original model input sequence (serial configuration) is split into several
single-band light-curves (each one associated with one band). Given this parallel processing
of the model input sequence, any possible time gap between bands, w.r.t. the first observation-
time ti,1 = 0, of the multi-band light-curve, is properly preserved in the input sequence for
each parallel model. Note that no time re-offset is applied to the light-curves after the parallel
split is performed, or, otherwise, the offset information would definitely be lost.

As the time offset information is presented in the model input of each parallel sequence
processing model, then, ideally, each model should be capable to capture this information
thanks to each temporal modulator. This could be possible as the first observation-time, for
each single-band light-curve, contains the offset w.r.t. the first observation of the multi-band
light-curve. Moreover, the time gap information between bands could be further processed in
the last representation-vector that is projected from all the independent band representation-
vectors (eq. (3.18)).

3.4.5. Parallel Decoder

The parallel decoder φ formulation is based on a state-space model as follows:

hi,j(b) =

f
(b)
φ

(
zi,∆t

(b)

i,j(b)

)
if j(b) = 1,

f
(b)
φ

(
hi,j(b)−1,∆t

(b)

i,j(b)

)
, otherwise,

, (3.19)

µ̂i,j(b) = g(b)φ
(
hi,j(b)

)
, (3.20)

where the initial state-vector hi,1(b) is defined as the representation-vector zi computed by the
encoder ψ. In eq. (3.19), the transfer function f

(b)
φ is defined to model the evolution dynamic

for the current sequence step state-vector hi,j(b) given both, the previous state-vector hi,j(b)−1

and the time difference ∆t
(b)

i,j(b)
between both observations. In eq. (3.20), the function g

(b)
φ is

defined to generate the single-band light-curve observation-flux estimations µ̂i,j(b) given the
current state-vector hi,j(b) .
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For simplicity and because our major research interest is the expressive capacity of the
encoder ψ, only the parallel approach is used for the decoder. This approach is also shared
with all the encoder variations and baselines implemented in this work. As a remark, the
same initial state-vector zi is used for each of the B parallel decoders, where each decoder is
associated with a particular band.

The function f
(b)
φ is modeled with a Gated Recurrent Unit (GRU; Chung et al., 2014),

having a 1-dimensional input space for the time difference input and D dimensions for the
hidden state-vector. The function g

(b)
φ is modeled with a 1-hidden-layer Multi-Layer Percep-

tron (MLP; Rumelhart et al., 1986), with a 1-dimensional output space and a linear activation
function at the output. This MLP model shared parameters over all sequence steps.

3.4.6. Classifier

The proposed formulation for the classifier λ is as follows:

ŷi = ϕsoftmax(fλ(zi)), (3.21)

where the function fλ is modeled using a 2-hidden-layer MLP. The output dimension is set as
the number of classes C. The softmax function ϕsoftmax is used to generate a final categorical
probability vector for the discrete class prediction distribution ŷi = [ŷi,1, . . . , ŷi,C ]

T . A dropout
probability (Srivastava et al., 2014) of 50% is used for the MLP model.

3.4.7. Optimization Problem

Given the aforementioned loss functions and the TimeModAttn model formulation, the
complete optimization problem is defined as follows:

Lpre-training =
1

N

N∑
i=1

k0 · Lreci︸ ︷︷ ︸
multi-band
light-curve

reconstruction

+ k1 · Lcati︸ ︷︷ ︸
cross-entropy
regularization

, (3.22)

Lfine-tuning =
1

N

N∑
i=1

Lcati︸︷︷︸
cross-entropy

, (3.23)

where k0 = 1e4 and k1 = 1. This setting implies a higher relevance for the reconstruction loss
term, i.e., the unsupervised learning term Lreci . Here, N is the number of light-curves used
to compute the loss functions (mini-batch size). The minimization optimization problem is
split into the following two main steps:

1. Pre-training: first, the autoencoder {ψ,φ} is trained to solve an auxiliary multi-band
light-curve reconstruction task using a training-set composed of synthetic light-curves
from Dtraining[s]. The encoder ψ computes a fixed-length representation-vector zi from

83



the variable-length multi-band light-curve Φi. This representation-vector zi automa-
tically summarize all the relevant aspects of the dynamics of the light-curve in order
to estimate the correct light-curve reconstruction using the decoder φ. The dynamics
might include short and long-range trends and time dependencies; significant informa-
tion about the first days of observations, SN-peak and SN-plateau regions; correlations
and differences between bands; among others.
The representation-vector zi serves as input to the classifier λ in order to discrimi-
nate among SN types. Additionally, in eq. (3.22), a semi-supervised learning scheme
is used by including the labels of the synthetic light-curves on a cross-entropy regu-
larization term over the representation-vector from the encoder. This regularization
aims to improve the degree of nonlinear separation of the SN types over the repre-
sentation space. The aim of the encoder is to automatically generate an informative
representation-vector zi useful for both, a multi-band reconstruction task and a cate-
gorical discrimination task.
The pre-training optimization step is performed using the Adam optimizer (King-
ma & Ba, 2015) with the following setting: {params={ψ,φ,λ}, batch_size= 200,
betas=(.9, .999), weight_decay=2e−4}. A linear learning rate warm-up schedule is
implemented, increasing the learning rate lr, from lrmin = 1e−10 to lrmax = 1.1e−3, in
∆epoch = 10 train epochs (Vaswani et al., 2017; Lee et al., 2021).

2. Fine-tuning: after the pre-training process, a classification task is solved using a
training-set composed only of empirical light-curves from Dtraining. In this step, no
synthetic light-curves are used. The fine-tuning process is performed as a domain adap-
tation technique, aiming to minimize the model’s gaps and discrepancies between the
synthetic distribution and the empirical distribution of light-curves. Discrepancies may
arise as the synthetic light-curves behavior could be biased towards the SPM’s overly
smooth behavior, general incorrect SPM parameters fit, inter-band peak time shifts
and time differences, among others.
The fine-tuning optimization step is trained using the Stochastic Gradient Descent
optimizer (SGD) with the following setting: {params= {λ}, batch_size= 50, lr=
1e−3, momentum= .9}. In the fine-tuning process only the parameters of the classifier
λ are re-optimized, while freezing the autoencoder parameters {ψ,φ}. Therefore, the
encoder is used as a fixed-length representation-vector extractor from the multi-band
light-curves.

3.4.7.1. Imbalance Learn and Regularization

To deal with class imbalance, the model is trained using mini-batches sampled from
balanced auxiliary training-sets, which are dynamically and randomly constructed at each
new training epoch using a stratified bootstrap strategy. This balancing strategy is applied
during both optimization steps (see Appendix §B.6 for details).

In addition, as a regularization technique, an early stopping routine is executed during
both optimization steps. This technique is performed by evaluating the losses over the imba-
lanced validation-sets Dval. The losses of each light-curve Φi, of class c, are weighted according
to the factor kc =

1
Nc·C , where Nc is the number of samples from class c and C is the total
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number of classes. This procedure allows us to evaluate a kind of balanced loss function over
an imbalanced validation-set.

Finally, during both optimization steps, a dynamical data-augmentation procedure is also
implemented by introducing observation-flux noise and removing random observations along
the multi-band light-curves. For further comparison purposes, we implement three levels of
data-augmentation: zero, weak, and strong data-augmentation levels (see Appendix §B.7 for
details).

3.4.8. RNN Baseline Models

In addition to the proposed attention-based encoder, baseline models based on Recurrent
Neural Networks (RNNs; Rumelhart et al., 1986; Zimmermann et al., 2012) were implemen-
ted.

For the serial encoder, two different RNN models are tested: the Long Short-Term Memory
(LSTM; Hochreiter & Schmidhuber, 1997) and the Gated Recurrent Unit (GRU; Chung
et al., 2014), which results in an alternative formulation for eq. (3.9). Similar to previous
works (Naul et al., 2018; Carrasco-Davis et al., 2019; Tsang & Schultz, 2019; Gómez et al.,
2020; Becker et al., 2020; Möller & de Boissière, 2020; Tachibana et al., 2020), the encoder
input vector xi,j, shown in eq. (3.8), is re-defined as xi,j = [log (µi,j + ε),∆ti,j]

T , where the
time difference term ∆ti,j, for a multi-band light-curve Φi, is included. This term aims to
describe the irregular cadence information for the encoder to correctly capture relevant time
dependencies.

Likewise, for the parallel encoder, eq. (3.16) is modeled with LSTM and GRU models.
Additionally, the encoder input vector, described in eq. (3.15), is re-defined to include the

time information as xi,j(b) =
[
log
(
µi,j(b) + ε

)
,∆t

(b)

i,j(b)

]T
, where ∆t

(b)

i,j(b)
is the time difference

computed for the single-band light-curve Φ
(b)
i .

3.4.8.1. Temporal Offsets in Multi-Band Light-curves

For the sake of fair comparisons between the proposed model and the RNN baselines, it is
necessary that the offset information can also be captured by the models without the temporal
modulator. As explained above, the RNN baselines use the time differences information,
instead of the raw observation-times, as the temporal information. The definition of the time
differences is fully described in section §2.1.3.

First, for the serial case, note that the RNN-based model, ideally, would capture the offset
information by accumulating the time differences from the first observation of the multi-band
light-curve up to the first observation of a particular band (this could be triggered by the
band indicator vector). For the parallel case, the offset information of each band is explicit
according to the definition proposed in §2.1.3. This definition was selected precisely so that
this parallel configuration would not lose the offset information. It should be noted that the
same explanation applies to the parallel decoder presented in section §3.4.5 since it also uses
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the time difference information as model input.
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Chapter 4

Results and Analyses

4.1. Results and Analyses

In this section, the experimental results are presented and the main analyses are perfor-
med. The notations S-{} and P-{} stand for the serial and parallel encoders, respectively.

Due to computational cost limitations, all SN light-curve observations beyond a threshold-
day of 100 [days] were removed from all sets: Dtrain[s], Dtrain, Dval, and Dtest. We found this
threshold-day representative enough to properly study the SN events from the ZTF survey1.

If not specified otherwise, all results are reported by evaluating the models over the test-
set Dtest, which is composed of empirical light-curves only. The reported results consist of
the aggregation of the results reported from all folds in the stratified 5-fold cross-validation.
In addition, six random model’s initializations (runs) per fold were performed, giving a total
number of Nruns = 30 runs per model implementation.

Due to the general high variance found in the results, the p-values (p) from significance
statistical tests are also included when necessary, complementing the analysis of results. Given
the non-Gaussian distribution observed in the test-set results2, a non-parametric statistical
test is used: the permutation test3. We use a threshold of p < .05 to denote a statistical
significance when comparing differences (∆) between population means.

All Deep Learning models were implemented on Pytorch 1.8.1 (Paszke et al., 2019), using
a GeForce GTX 1080 Ti GPU4.

1Under this consideration, the extended non-redundant modulation-range is [0, 150] [days].
2The non-Gaussianity (and high variance) of the aggregated 5-fold cross-validation results is produced

due to differences in the reported classification performance among the test-set folds. These performance
differences are usually influenced by the high class imbalance, the small number of samples, and the general
quality of the light-curves presented in each test-set fold.

3http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/.
4https://github.com/oscarpimentel/astro-lightcurves-classifier.
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4.1.1. Late-Classification Scenario

First, we report the late-classification performance for all models using multi-band light-
curves with a maximum threshold-day of tth = 100 [days], which are called 100-day light-
curves in what follows. These light-curves are still of variable-length, where the maximum
light-curve length found in this scenario is close to Li = 150.

Table 4.1 shows the balanced metrics (b-{}) for the multi-class classification scenario:
Precision, Recall, F1score, Area Under the Receiver Operating Characteristic Curve (AU-
CROC), and Area Under the Precision-Recall Curve (AUCPR). These balanced metrics
assume that each class is equally important despite the high class imbalance (see Appen-
dix §A.2 for details). Additionally, for comparison purposes, the results for the zero, weak,
and strong data-augmentation levels are shown. In the zero data-augmentation level, none
of the data-augmentation procedures are used. In the weak level, a probability of 10% is
used to randomly remove observations in the light-curves during training. Consequently, this
probability value produces a moderate disturbance in the irregular cadence observed during
training. In contrast, in the strong data-augmentation level, a probability of 50% is used,
heavily affecting the cadence observed during training (see Appendix §B.7 for details). The
results for a pre-training optimization step, using empirical light-curves from the training-set
Dtrain, are also shown for comparison purposes (empirical pre-training).

A significant performance improvement, w.r.t. the empirical pre-training, can be observed
when using the synthetic pre-training settings (for all reported metrics): where the synthetic
light-curves are used to perform the pre-processing optimization step. This improvement is
achieved by all the tested Deep Learning models for both, the serial and parallel encoders.
These results confirm that the use of synthetic light-curves is effectively beneficial to support
the optimization of the Deep Learning models (RNN and attention-based models), producing
a higher general performance than the BRF baseline performance (without synthetic data).

For all the synthetic pre-training settings, it can be observed that the proposed TimeMo-
dAttn model outperformed the BRF baseline (for all reported metrics). In particular, we high-
light the weak data-augmentation level, where the following are the metric mean’s differences,
w.r.t. the BRF baseline, for the serial encoder: ∆b-Precision=.0611***, ∆b-Recall=.0719***,
∆b-F1score= .0703***, ∆b-AUCROC=.0437***, and ∆b-AUCPR= .0691***5. For the parallel
encoder, the metric differences are as follows: ∆b-Precision=.0530***, ∆b-Recall=.0654***,
∆b-F1score= .0687***, ∆b-AUCROC=.0446***, and ∆b-AUCPR= .0865***. Additionally, no
strong or consistent statistical evidence was found to conclude that either, the serial encoder
or the parallel encoder, is the best alternative (p ∈ [.021, .403]6), implying that the type of
encoder may be irrelevant in terms of general performance for the TimeModAttn model.

It can be observed that the level of the data-augmentation affected the performance of
the RNN baselines for both the serial and parallel encoders. The strong data-augmentation
level was detrimental to the performance of the RNN baselines. This effect may be explained
because the data-augmentation dynamically influences the number of observations in the

5The statistical significance notation used is as follows:
***p ≤ .001, **p ≤ .01, *p ≤ .05, and +p ≤ .1.

6p ∈ {.021, .206, .403, .391, .036}.
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Table 4.1: Late-classification performances for the BRF baseline, RNN baselines, and
attention-based models (TimeModAttn) using 100-day multi-band light-curves. Both, the
serial (S-{}) and parallel (P-{}) encoders are reported along with several pre-training and
data-augmentation schemes (mean±std from 5-fold cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

BRF (fmode=all; training-set=[r]) .527±.030 .687±.052 .525±.039 .866±.020 .602±.051

Serial models Empirical pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .520±.043 .626±.050 .528±.039 .852±.021 .577±.049

S-RNN+∆t (cell=LSTM) .497±.030 .602±.044 .502±.034 .840±.019 .568±.031

S-TimeModAttn (M=12; H=8; εt=6/24) .551±.034 .664±.058 .565±.040 .874±.024 .597±.036

Synthetic pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .562±.051 .688±.058 .579±.049 .885±.036 .627±.062

S-RNN+∆t (cell=LSTM) .561±.035 .680±.053 .578±.040 .884±.028 .619±.046

S-TimeModAttn (M=12; H=8; εt=6/24) .598±.030 .736±.056 .614±.036 .904±.029 .665±.060

Synthetic pre-training (weak data-augmentation)

S-RNN+∆t (cell=GRU) .545±.034 .706±.070 .556±.045 .879±.034 .610±.066

S-RNN+∆t (cell=LSTM) .550±.031 .711±.070 .558±.040 .887±.033 .621±.070

S-TimeModAttn (M=12; H=8; εt=6/24) .588±.023 .759±.040 .596±.033 .910±.020 .671±.056
Synthetic pre-training (strong data-augmentation)

S-RNN+∆t (cell=GRU) .491±.024 .649±.068 .496±.036 .860±.032 .561±.063

S-RNN+∆t (cell=LSTM) .497±.021 .657±.066 .494±.028 .864±.031 .565±.055

S-TimeModAttn (M=12; H=8; εt=6/24) .582±.017 .754±.039 .584±.031 .911±.019 .665±.053

Parallel models Empirical pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .521±.042 .613±.042 .527±.044 .849±.013 .561±.032

P-RNN+∆t (cell=LSTM) .497±.034 .604±.049 .500±.041 .834±.016 .548±.027

P-TimeModAttn (M=12; H=4; εt=6/24) .543±.026 .671±.053 .562±.029 .865±.022 .599±.038

Synthetic pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .566±.038 .685±.056 .582±.040 .883±.027 .624±.047

P-RNN+∆t (cell=LSTM) .567±.029 .683±.041 .580±.036 .881±.027 .645±.048

P-TimeModAttn (M=12; H=4; εt=6/24) .591±.021 .729±.038 .610±.026 .897±.023 .676±.059

Synthetic pre-training (weak data-augmentation)

P-RNN+∆t (cell=GRU) .547±.030 .697±.070 .552±.041 .879±.031 .610±.055

P-RNN+∆t (cell=LSTM) .541±.022 .704±.061 .540±.032 .876±.029 .606±.051

P-TimeModAttn (M=12; H=4; εt=6/24) .580±.020 .753±.044 .594±.035 .911±.017 .689±.047
Synthetic pre-training (strong data-augmentation)

P-RNN+∆t (cell=GRU) .490±.020 .645±.057 .482±.024 .856±.032 .577±.064

P-RNN+∆t (cell=LSTM) .499±.020 .660±.061 .484±.031 .857±.031 .573±.053

P-TimeModAttn (M=12; H=4; εt=6/24) .581±.019 .750±.039 .585±.036 .907±.016 .679±.043

light-curves during the model optimization, directly affecting the values of the computed time
differences ∆ti,j: the higher the probability of removing observations, the longer the computed
time differences. Therefore, the data-augmentation produces a discrepancy between the time
difference distributions of the training-set and the test-set, which may lead to a poor model
generalization for unobserved light-curves presented in the test-set. Note that the maximum
discrepancy between these distributions arises in the strong data-augmentation level, where
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the worst performance was reported for the RNN baselines.

In contrast, high robustness against different data-augmentation levels can be observed for
the TimeModAttn model. This could be explained because the encoder in the TimeModAttn
model (TimeFiLM) directly uses the observation-times, without just relying on the time
difference values. Therefore, the time representation used in the TimeModAttn model might
be less sensitive to the general irregularity of the cadence, achieving a higher degree of model
generalization for the unobserved light-curves in the test-set. This effect can be observed in
the reported performances in Table 4.1 where, for all the tested data-augmentation levels and
all reported metrics, the TimeModAttn model achieved higher performance than the RNN
baselines. Note that the TimeModAttn model achieved high classification performances even
in the strong data-augmentation level.

For further comparisons, we analyze the zero data-augmentation level because the RNN
baselines achieved the best general performance in that setting. The TimeModAttn model
outperforms the GRU baseline for both, the serial encoder (p ≤ .001,∀p) and the parallel
encoder (p ≤ .001,∀p). Similar statistical evidence was also found when comparing the Ti-
meModAttn model w.r.t. the LSTM baseline for both, the serial encoder (p ≤ .001,∀p) and
the parallel encoder (p ≤ .001,∀p). Additionally, no strong or consistent statistical signifi-
cance was found when comparing the GRU and LSTM baselines for both, the serial encoder
(p ∈ [.212, .459]7) and the parallel encoder (p ∈ [.009, .482]8). Therefore, no major difference
exists between both RNN models in the context of this work.

4.1.2. Early-Classification Scenario

Herein we study the case when a higher number of observations is gradually available
in the test-set Dtest. With this aim, a moving threshold-day tth ∈ [1, 100] [days] is used in
order to remove all observations, from test-set Dtest, above a given threshold. Note that if
tth = 100 [days]; then, the test-set Dtest is equivalent to the set used in the late-classification
scenario. For the feature extraction, algorithm instabilities arise when just a single observation
is used to fit the SPM model. Therefore, for the BRF baseline, the results start being reported
only since a minimum number of observations is reached: when all light-curves in the test-set
Dtest have at least one band with a number equal or higher than L

(b)
i ≥ 2 observations.

For example, Fig. 4.1 shows the evolution of the b-AUCROC metric as a function of
a moving threshold-day tth in the weak data-augmentation level. As expected, the general
performance for this metric increased with larger threshold-days. This is because the models
have access to longer light-curves; hence, more information about the evolution of the SN
transient event. From the b-AUCROC curves, we also observe that the performance of the
TimeModAttn model tended to be higher than the rest of the tested baselines for most of
the operation points. In particular, the TimeModAttn model achieved the BRF’s maximum
b-AUCROC performance several days earlier (tth ∈ (32, 40) [days]) than the BRF baseline
(tth ∈ (52, 60) [days]). This result indicates that the TimeModAttn model can discriminate
between SN types using light-curves with fewer observations than those used by the BRF

7p ∈ {.453, .212, .459, .440, .215}.
8p ∈ {.482, .447, .380, .370, .009}.
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b-AUCROC curve using the moving threshold-day

Figure 4.1: b-AUCROC metric-curve v/s moving threshold-day for the attention-based mo-
dels, BRF baseline, and RNN baselines in the weak data-augmentation level (for the sake
of better visualization, mean±1

2
std curve and region are shown from 5-fold cross-validation).

The moving threshold-day Curve Average (mtdCA) is shown for the TimeModAttn model
and RNN baselines. Note that the horizontal axis (evolution of the threshold-day) relates
with the observation-time since the first observation. (a) Models with serial encoder. (b) Mo-
dels with parallel encoder.

baseline.

To summarize the early-classification results, the Curve Average (CA) is computed for the
curves constructed by using the moving threshold-day (mtdCA). High values of the mtdCA
are achieved if the performance of the model is consistently high along all the operation
points defined by the moving threshold-day. Table 4.2 shows the computed mtdCA for all
the reported balanced metrics.

Our findings in the early-classification scenario follow a similar trend as those previously
reported in the late-classification scenario. As before, the use of synthetic light-curves (synthe-
tic pre-training) was beneficial for all the tested Deep Learning models. Also, no strong or
consistent strong statistical evidence was found to conclude which encoder alternative is the
best (serial or parallel) for the TimeModAttn model (p ∈ [.022, .458]9) in the weak data-
augmentation level.

For all the different pre-training settings and all reported metrics, the TimeModAttn
model achieved higher performance than the RNN baselines. When comparing performan-
ces of the TimeModAttn model against the RNN baselines (GRU and LSTM), in the zero
data-augmentation level (best late-classification setting for the RNN baselines), a significant
difference was found for both, the serial encoder (p ≤ .001,∀p) and the parallel encoder
(p ≤ .001,∀p). These results, along with Fig. 4.1, indicate that the TimeModAttn model
outperforms the RNN baselines in the early-classification scenario of light-curves with few
observations.

As before, general robustness against the level of the data-augmentation was again obser-
ved for the TimeModAttn model. Furthermore, the results shown in Table 4.2 suggest that
the use of data-augmentation could be beneficial in the early-classification performance for

9p ∈ {.022, .034, .164, .458, .118}.
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Table 4.2: Early-classification performances for the RNN baselines and attention-based mo-
dels (TimeModAttn). The moving threshold-day Curve Average (mtdCA) is used (‡). Both,
the serial (S-{}) and parallel (P-{}) encoders are reported along with several pre-training
and data-augmentation schemes (mean±std from 5-fold cross-validation).

Model b-Precision‡ b-Recall‡ b-F1score‡ b-AUCROC‡ b-AUCPR‡

Serial models Empirical pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .427±.025 .491±.029 .404±.034 .745±.020 .461±.022

S-RNN+∆t (cell=LSTM) .412±.021 .489±.028 .395±.026 .749±.018 .450±.028

S-TimeModAttn (M=12; H=8; εt=6/24) .474±.025 .535±.033 .448±.030 .806±.023 .509±.028

Synthetic pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .471±.033 .536±.036 .440±.036 .780±.029 .505±.038

S-RNN+∆t (cell=LSTM) .481±.035 .559±.035 .459±.042 .797±.024 .518±.038

S-TimeModAttn (M=12; H=8; εt=6/24) .516±.022 .608±.033 .497±.022 .832±.024 .562±.038

Synthetic pre-training (weak data-augmentation)

S-RNN+∆t (cell=GRU) .481±.030 .577±.044 .454±.031 .792±.024 .520±.039

S-RNN+∆t (cell=LSTM) .480±.023 .590±.036 .457±.027 .804±.026 .527±.043

S-TimeModAttn (M=12; H=8; εt=6/24) .522±.022 .630±.026 .495±.020 .841±.016 .580±.040
Synthetic pre-training (strong data-augmentation)

S-RNN+∆t (cell=GRU) .447±.023 .556±.036 .430±.026 .783±.020 .491±.033

S-RNN+∆t (cell=LSTM) .445±.019 .567±.035 .422±.021 .790±.021 .492±.031

S-TimeModAttn (M=12; H=8; εt=6/24) .522±.018 .632±.023 .493±.020 .845±.012 .579±.039

Parallel models Empirical pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .447±.028 .501±.029 .420±.030 .762±.018 .471±.018

P-RNN+∆t (cell=LSTM) .422±.026 .494±.024 .400±.033 .749±.026 .458±.026

P-TimeModAttn (M=12; H=4; εt=6/24) .461±.023 .516±.026 .438±.022 .789±.021 .495±.023

Synthetic pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .492±.032 .549±.034 .464±.033 .788±.026 .519±.033

P-RNN+∆t (cell=LSTM) .488±.025 .552±.024 .461±.029 .791±.030 .530±.034

P-TimeModAttn (M=12; H=4; εt=6/24) .516±.017 .597±.018 .499±.018 .826±.020 .565±.027

Synthetic pre-training (weak data-augmentation)

P-RNN+∆t (cell=GRU) .485±.023 .580±.041 .462±.028 .795±.026 .524±.040

P-RNN+∆t (cell=LSTM) .476±.018 .586±.036 .451±.024 .795±.025 .516±.034

P-TimeModAttn (M=12; H=4; εt=6/24) .514±.018 .621±.027 .499±.019 .841±.015 .587±.029
Synthetic pre-training (strong data-augmentation)

P-RNN+∆t (cell=GRU) .440±.016 .561±.045 .422±.022 .777±.023 .496±.039

P-RNN+∆t (cell=LSTM) .442±.016 .564±.043 .416±.018 .782±.020 .493±.032

P-TimeModAttn (M=12; H=4; εt=6/24) .515±.015 .623±.022 .495±.020 .841±.014 .582±.034

the TimeModAttn model.

The above results show that the performance of the TimeModAttn model is not only
higher in the late-classification scenario, but it is also consistently higher along with different
early-classification operation points that are defined by changing the moving threshold-day.
Moreover, the early-classification performance of the TimeModAttn model was higher than
all the other tested baselines.
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Figure 4.2: Confusion matrices for the SNe classification task using 100-day multi-band light-
curves (mean±std from 5-fold cross-validation). The corresponding b-Recall and b-F1score
metrics are given on the top of each matrix. (a) BRF baseline model. (b) S-TimeModAttn
model. (c) P-TimeModAttn model.

If not specified otherwise, the weak data-augmentation level is selected and explored as the
main pre-training setting for the following experiments in this work. Additionally, examples
of SN multi-band light-curve reconstructions can be found in Appendix §C.4 for the weak
data-augmentation level.

4.1.3. Confusion Matrices and Operational Curves

Fig. 4.2 shows the confusion matrices for the classification of SN multi-band light-curves.
As previously reported in the literature (Moss, 2018; Villar et al., 2019; Sánchez-Sáez et al.,
2021), we can observe a common confusion between the SNIa and SNIbc types, in all confusion
matrices, that may be related with intrinsic similarities of the mechanisms that cause the SN-
peak: the diffusion of energy deposited by radioactive 56Ni (Arnett, 2008). The TimeModAttn
model decreased the confusion between the SNIa and SNIbc types w.r.t. the BRF baseline
for both, the serial and parallel encoders. The TimeModAttn model achieved a maximum
increment of the True Positive (TP) percentage for the SNIa type of ∆TPSNIa = 9.2939***,
for the SNIbc type of ∆TPSNIbc = 8.8333***, for the SNII type of ∆TPSNII = 4.6453***, and
for the SLSN type of ∆TPSLSN = 6.9444***5.

Fig. 4.3 shows four light-curve examples that were correctly classified by the TimeMo-
dAttn model but incorrectly classified by the BRF baseline. Several misclassification errors
arise among curves that, due to the irregular cadence, do not present observations in the
SN-rise and/or SN-peak regions. This might cause instabilities in the SPM fitting, producing
misleading features for the BRF baseline. For instance, features related with the rising time
or the maximum brightness could be incorrectly estimated. Consequently, this may be es-
pecially detrimental for the discrimination between the SNIa and SNIbc types. In addition,
multi-band light-curves having zero or few observations in one band tended to be misclas-
sified by the BRF baseline too. As stated before, the scarcity of observations could lead to
highly unstable SPM fittings and misleading features.
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Figure 4.3: Four examples of misclassified SN multi-band light-curves by the BRF baseline
that were correctly classified by the P-TimeModAttn model.

Figure 4.4: ROC curves for the SNe classification task using 100-day light-curves, where TPR
and FPR stand for the True Positive Rate and False Positive Rate, respectively (50-percentile
curve and 30-70-percentile region are shown from 5-fold cross-validation). In both plots,
the BRF ROC curves are shown as dashed lines. (a) S-TimeModAttn. (b) P-TimeModAttn
model.

Fig. 4.4 shows the ROC operational curves for each SN type. In general, it can be observed
that, for all the SN types, the ROC curves reported from the TimeModAttn models are
above those from the BRF baseline, leading to higher AUCROC scores per SN type for the
TimeModAttn model. We highlight the ROC curves separation for the SNIa and SNIbc types,
with maximum AUCROC differences of ∆AUCROCSNIa = .0457*** and ∆AUCROCSNIbc =
.0877***5, respectively. This fact correlates with the decrease of confusion errors found in the
confusion matrices for these SN types.
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Table 4.3: Late-classification performances for the BRF baseline and attention-based models
(TimeModAttn) using 100-day multi-band light-curves and different target preserved single-
bands. The value pb={g, r} indicates the target preserved single-band b∗. To avoid empty
light-curve evaluations in the preserved single-band scenarios, light-curves with zero obser-
vations, in any of the B bands, were removed from the test-set Dtest. Both, the serial (S-{})
and parallel (P-{}) encoders are reported (mean±std from 5-fold cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

Multi-band models

BRF (fmode=all; training-set=[r]) .530±.032 .692±.055 .530±.042 .867±.020 .605±.052

S-TimeModAttn (M=12; H=8; εt=6/24) .592±.022 .762±.039 .600±.033 .911±.019 .675±.055

P-TimeModAttn (M=12; H=4; εt=6/24) .586±.018 .757±.044 .599±.036 .914±.017 .692±.047
Single-band models

P-TimeModAttn (M=12; H=4; εt=6/24; pb=g) .518±.019 .661±.044 .508±.027 .848±.026 .584±.074

P-TimeModAttn (M=12; H=4; εt=6/24; pb=r) .525±.019 .625±.057 .495±.036 .846±.024 .582±.031

4.1.4. Multi-band Effect in Classification

To study the effect of the multi-band information, we designed a setting to train and
evaluate the TimeModAttn model using only a single-band b∗. With this aim, we use the
parallel encoder where, given a target preserved single-band b∗, all the representation-vectors
associated with the rest of the bands are replaced with zero vectors as z(b

′)
i = 0⃗,∀b′ ∈

{1, . . . , B} − {b∗}. Moreover, extra considerations were implemented to properly test this
experiment, e.g., a zero reconstruction loss, in eq. (3.22), is used for all bands except for
the target preserved single-band b∗; all information related with the observation-times is
properly adjusted. Table 4.3 shows the reported performance for the TimeModAttn model
with different target preserved single-bands.

The reported metrics show that the exclusive use of a single-band information (g or r)
is significantly detrimental for the classification performance of the TimeModAttn model;
therefore, using both bands is required to correctly characterize the SN transient events.
Using all the available bands is especially beneficial when just a few observations are available
in a particular band, where the model requires to support the classification task by using
observations from the rest of the bands. Consequently, the use of serial or parallel encoders
is recommended to properly capture all the information from a multi-band light-curve.

4.1.5. Interpretability Experiments

To explore, evaluate, and validate the automatic decisions of the TimeModAttn model,
several experiments on interpretability are presented in this section. These experiments are
based on the parallel encoder formulation, allowing us to explore the attention scores and
the learned temporal modulation in each band.
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Figure 4.5: Examples of the normalized attention scores for the P-TimeModAttn model after
pre-training. The bigger the shadow circle, the higher the attention score of an observation.
(a) SLSN type. (b) SNII type. (c) SNIa type. (d) SNIbc type.

4.1.5.1. Attention Scores

Given a single-band light-curve Φ
(b)
i , the attention scores

{
si,j(b)

}L(b)
i

j(b)=1
are collected from

the last MHSelfAttn’s layer. In the multi-head attention scenario, the average score among
the H heads is used: si,j(b) = 1

H

∑H
h=1 s

(h)

i,j(b)
,∀j(b). Then, these attention scores are normalized

as follows:

s̄i,j(b) =
(
si,j(b) − s

(b)
imin

)
/
(
s
(b)
imax
− s

(b)
imin

)
, (4.1)

where s̄i,j(b) ∈ [0, 1] is the normalized attention score given the original attention score si,j(b) ∈
R+. The maximum and minimum attention scores, found in the band b, are denoted as

s
(b)
imax

= max
{
si,j(b)

}L(b)
i

j(b)=1 and s
(b)
imin

= min
{
si,j(b)

}L(b)
i

j(b)=1, respectively. This procedure generates
a maximum normalized attention score value of s̄i,j(b) = 1 in the observation with the highest
original attention score and a value of s̄i,j(b) = 0 at the lowest.

Fig. 4.5 shows examples of the normalized attention scores for different SN multi-band
light-curves. In general, the model tended to assign high normalized attention scores to (pay
more attention to) early observations from the SN events, i.e., observations earlier than and
close to the SN-peak.

We hypothesize that this attention behavior is produced because the first observations
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seem to contain highly valuable information about the following evolution of the SN transient
events. For example, the first observations can help the model to construct inner represen-
tations of the SN rising time (SN-rise region) and maximum brightness (SN-peak) that are
relevant to discriminate among SNe, such as the SNIa and SNIbc types. In addition, the
early SN observations (before the SN-peak) can be scarce due to the limited duration of the
SN events and irregular cadence, which could also explain how the model handles the inner
attention resources, prioritizing high attention scores on the early time region.

We highlight the high attention scores for the very first observations of a light-curve.
For example, by using just the first observation, the model could construct an initial slope
representation to distinguish if a SN light-curve started to be detected before the SN-peak (in
the SN-rise region) or after the SN-peak (in the SN-fall region) due to the irregular cadence.
The first observation could be used also as an observation-time offset, allowing the model to
construct a representation of the elapsed time for each relevant and posterior observation.
The first observation-time differences, among the bands, may offer relevant information of
the multi-band behavior, which could be especially important when a specific band is started
to be followed-up a long time after the rest of the bands.

4.1.5.2. Attention-Based Statistics

The main limitation of the attention score exploration presented above is that it heavily
relies on a visual interpretation over a set of examples from a dataset D. Based on a statistical
approach, a new interpretability experiment is conducted to explore the attention behavior
over a complete dataset D. With this aim, we propose to use two simple and interpretable
local features for a SN light-curve. Given a single-band light-curve Φ

(b)
i , the following local

SN-features are defined:

m∗
i,j(b) , n

∗
i,j(b) = argmin

m
i,j(b)

,n
i,j(b)

∑
j(b)

′∈∆J
(b)
i

(
µi,j(b)

′ − µ̂i,j(b)
′

)2
, (4.2)

∆t∗i,j(b) =
1

L

∑
j(b)

′∈∆J
(b)
i

(
ti,j(b)′ − t

i,j
(b)
max

)
, (4.3)

where the explanation is the following:

1. SN-local-slope: Given a linear function µ̂i,j(b)
′ = mi,j(b) · ti,j(b)′ + ni,j(b) , in eq. (4.2), a

local slope value mi,j(b) and an offset value ni,j(b) are computed. The optimal values are
estimated using a Mean Square Error (MSE) optimization, fitting the linear function
over a group of empirical observation-fluxes defined by a window of local sequence steps
∆J

(b)
i centered in the sequence step j(b). A window size of L = #

(
∆J

(b)
i

)
= 3 is used, i.e.,

the slope values are fitted using the observation-times
{
ti,j(b)−1, ti,j(b) , ti,j(b)+1

}
and the

observation-fluxes
{
µi,j(b)−1, µi,j(b) , µi,j(b)+1

}
. Positive values of m∗

i,j(b)
are associated with

observations with a local increase in brightness, while negative values are associated
with observations with a local decrease in brightness.

2. SN-peak-distance: eq. (4.3) represents the average time difference (days) between the
observation-times used to fit the SN-local-slope and the SN-peak time: the observation-
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time associated with the empirical maximum brightness found along the light-curve.
The maximum brightness observation-time is denoted as t

i,j
(b)
max

, where j
(b)
max = argmax

j(b){
µi,j(b)

}L(b)
i

j(b)=1
corresponds to the sequence step with the maximum observation-flux.

Negative values of ∆t∗
i,j(b)

are associated with observations detected earlier than the
SN-peak, while positive values are associated with observations detected after the SN-
peak.

Given a dataset D with N light-curves Φi, we can gather a collection of local SN-features,

for each observation, as

{{(
m∗

i,j(b)
,∆t∗

i,j(b)
, bi,j(b) , s̄i,j(b)

)}L
(b)
i

j(b)=1

}N

i=1

, where m∗
i,j(b)

, ∆t∗
i,j(b)

, bi,j(b)

and s̄i,j(b) , are the SN-local-slope, the SN-peak-distance, the band, and the normalized atten-
tion score, respectively.

Using a probabilistic framework, let m∗, ∆t∗, b, and s̄ be discrete random variables. Fig.
4.6 shows the joint distribution p(m∗,∆t∗, b) =

∑
s̄ p(m

∗,∆t∗, b, s̄) (marginalizing over the
normalized attention score s̄), in plots (a.0) and (b.0), for the bands g and r, respectively. An
expected SN behavior can be observed as the positive SN-local-slope values are distributed
earlier than the SN-peak (SN-rise region), while negative SN-local-slope values are distributed
after the SN-peak (SN-fall region). Small and zero values of the SN-local-slope are found in
two scenarios: close to the SN-peak and in the SN-extinction region.

Fig. 4.6 shows the conditional joint distribution p(m∗,∆t∗, b|s̄ ≥ s̄th), in plots (a.1) and
(b.1), for the bands g and r, respectively. These distributions show the local SN-features that
are related to high normalized attention scores using an attention threshold of s̄th = .75. When
comparing the high distribution density w.r.t. the joint distribution, it can be observed that
the high attention region is correlated with the attention score exploration shown in section
§4.1.5.1, i.e., the model tended to pay more attention over observations earlier than and close
to the SN-peak. The region of high attention was up to several days after the SN-peak, which
might be an informative region to characterize the SN-plateau slope and duration10.

Our findings suggest that early SN observations are the most important observations
for the TimeModAttn model. Moreover, these observations can be directly captured by the
attention-based models even in the case of long light-curves. We think this is important during
training as early observations may be always available regarding the length of the light-curve,
helping in the generalization of incomplete light-curves. In contrast, the RNN models may
be biased to complete light-curves during training as their processing is forced to be se-
quential through all the sequence steps, which may hurt the generalization of incomplete
light-curves. Moreover, RNN models may have difficulties when capturing information from
early observations because the maximum path length could be large and composed of unin-
formative observations (SN-extinction region), especially in long-duration SN light-curves.
This may explain why the TimeModAttn model achieved a general higher performance in
early-classification than the RNN baselines.

10In general, this behavior is similar for both bands. Also, similar tendency was also observed when using
more MHSelfAttn’s layers (NL = 2) or a different number of H attention heads.
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Figure 4.6: Attention-based statistics for the P-TimeModAttn model after pre-training. In
the top row (plots (a.0) and (b.0) corresponding to the g and r band, respectively), the
joint distribution is shown for both local SN-features, the SN-local-slope and the SN-peak-
distance. In the bottom row (plots (a.1) and (b.1)), the conditional joint distribution is shown
using a threshold for normalized attention scores of s̄th = .75. This allows highlighting the
regions with higher attention scores. Visual guides, for zero SN-local-slope and zero SN-peak-
distance, are shown as black lines. Green borders (plots (a.0) and (a.1)) correspond to the
band g. Red borders (plots (b.0) and (b.1)) correspond to the band r.

4.1.5.3. Temporal Modulation Variability

The scale and bias variability time-functions of the proposed temporal modulation (Ti-
meFiLM) are further analyzed. Given an arbitrary encoder associated with the band b, the
temporal modulation variability time-functions are defined as follows:

γ̄(b)(t) =
1

K

K∑
k=1

(
∂γ

(b)
k (t)

∂t

)2

, (4.4)

β̄(b)(t) =
1

K

K∑
k=1

(
∂β

(b)
k (t)

∂t

)2

, (4.5)

where the functions γ̄(b)(t) and β̄(b)(t) are the variability time-functions for the scale and bias,
respectively. These time-functions are defined as the average variability of the K modulation
time-functions learned by the model. The variability is defined as the squared derivative of
the modulation functions w.r.t. the time value t. Therefore, high values of the variability
time-functions indicate a high average variability of the modulation over time. Fig. 4.7 shows
the learned scale and bias variability time-functions for each run of the model.
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Figure 4.7: Variability functions for the scale time-function (plots (a.0) and (b.0)) and bias
time-function (plots (a.1) and (b.1)) computed from the temporal modulations learned by the
P-TimeModAttn model after the pre-training process for a time range [0, 100] [days]. A high
variability can be observed before the SN-peak time. Each model iteration (total of Nruns) is
represented with a black curve. The red curves are computed as the median curve using all
the Nruns model iterations. The SN-peak time is computed as the median empirical maximum
brightness time from the original dataset D. The gray region starts at the empirical median
SN last observation-time computed from the dataset D. Green borders (plots (a.0) and (a.1))
correspond to the band g. Red borders (plots (b.0) and (b.1)) correspond to the band r.

For both, the scale and bias variability time-functions, a general high variability over
the early time range can be observed, i.e., earlier than the empirical median of the SN-peak
time. This high variability could help the model to properly capture and differentiate small
changes of the time values. This effect can be seen as a high temporal modulation resolution
over the early time range11. This behavior is also correlated with the early high attention
scores previously explored. We hypothesize that a high resolution is required to support
the attention mechanisms, over the early time range, to correctly characterize the SN most
important time regions. This high resolution can be beneficial when computing correlations
between the time-modulated query and key vectors, as well as the final vector aggregation
using the time-modulated value vectors.

The observed high variability, for both modulation functions, starts decreasing after pas-
sing the empirical median of the SN-peak time. A lower modulation resolution could be
required in this time range, as the observation distribution becomes scarcer and sparser be-
cause the majority of light-curves have stopped being observed. Moreover, a large population

11Note that the scale function is a modulation operation that can offer a high degree of change over the
modulator input vector, with direct attenuations and sign inversions.
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Table 4.4: Total number of learnable parameters (#p) and empirical training times for RNN
and attention-based models during the pre-training process (in GPU). We denote mbIT as the
mini-batch Iteration Time measured for a complete forward and backward model operation.

Serial models #p mbIT [s] mbIT/#p [µs]

S-RNN+∆t (cell=GRU) 267,270 .040±.007 .151±.026

S-RNN+∆t (cell=LSTM) 300,294 .041±.007 .135±.023

S-TimeModAttn (M=12; H=8; εt=6/24) 290,310 .038±.006 .132±.020
Parallel models

P-RNN+∆t (cell=GRU) 234,246 .044±.008 .187±.033

P-RNN+∆t (cell=LSTM) 250,886 .045±.007 .179±.029

P-TimeModAttn (M=12; H=4; εt=6/24) 249,094 .043±.007 .174±.027

of low attention score observations can be found in this time range, suggesting the presence of
irrelevant observations. A final high variability when reaching the time t = 100 [days] can be
observed. This final variability rise might be influenced by long-duration light-curves (e.g.,
SNII, SLSN) or by modulation instabilities when reaching the time range t > 100 [days],
where no empirical observations were found during training12.

4.1.6. Empirical Computational Cost

Table 4.4 shows the training times for the RNN baselines and TimeModAttn models. In
an effort to fairly compare different models capacities, we also include the metric ITmb/P,
which denotes the training time per total number of model learnable parameters. We do not
include the BRF baseline because its optimization does not rely on GPU usage and it heavily
depends on the CPU specifications and multi-threading strategies.

For a similar number of parameters, it can be observed that the TimeModAttn models
achieved highly competitive empirical training times w.r.t. the RNN baselines. Note that the
computational cost of the time modulation is also included in the reported training times.
From our experiments, the use of the serial encoder leads to lower values of mbIT/#p for each
of the tested Deep Learning models, suggesting that this encoder alternative is more efficient
in terms of training time per total number of parameters. Even if the parallel encoder is
parallel in our formulation, the optimization procedure was sequentially implemented in this
work. This implementation handles the computation of all B parallel representation-vectors
{z1, . . . ,zB} one after another, which may not be optimal in terms of GPU usage.

4.1.7. Additional Experiments

In order to further extend the results shown in this section, several additional experiments
where conducted. In Appendix §C.3, we propose and implement additional methods for the

12In general, this variability behavior was similar for both bands. Also, similar tendency was also observed
when using more MHSelfAttn’s layers (NL = 2) or a different number of M harmonic components for the
temporal modulation.
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generation of SN multi-band light-curves. For instance, we implement methods, based on a
linear and a B-spline interpolation, as an alternative to the optimization of SPM parameters
using MCMC. In Appendix §C.3.1, we also propose three different BRF optimization settings:
only empirical data, only synthetic data, and empirical and synthetic data. Along with these
configurations, we train the BRF model and study the performance obtained by the additional
generation methods.

On the other hand, in Appendix §C.6, several ablation studies and additional models
where implemented for the Deep Learning models. For example, in Appendix §C.6.1, we stu-
died how the bypass of the temporal modulation or/and the attention mechanisms affects the
overall performance of the TimeModAttn model. Also, in Appendix §C.6.2, we implement
additional models: 1) TimeModRNN model: to study the effect of using the temporal modu-
lation along with RNNs. 2) CatTimeAttn model: to study the effect of using a concatenated
Temporal Encoding instead of the temporal modulation in the TimeModAttn model.
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Chapter 5

Conclusions

5.1. Conclusions

In this work, a Deep Learning model (TimeModAttn), based on attention mechanisms
(MHSelfAttn) with temporal modulation (TimeFiLM), was proposed to process and classify
multi-band light-curves for different SN types. The proposed model avoids the requirement
for hand-crafted feature computations, missing-values assumptions, and explicit light-curve
imputation and interpolation methods. The training process was performed in two sequential
steps. First, a pre-training process was performed, using synthetic SN multi-band light-curves,
in a semi-supervised learning scheme with two simultaneous goals to solve: a multi-band light-
curve reconstruction task and a SN type classification task. Second, a domain adaptation
fine-tuning process was performed, using empirical multi-band light-curves, in a supervised
learning scheme, to solve a classification task. Moreover, we proposed a method for the
generation of synthetic SN multi-band light-curves, which is based on the SPM function.
This helps to increase both, the number of samples and the diversity of the irregular cadence
population.

By using SN multi-band light-curves from the ZTF survey, we first tested the proposed
TimeModAttn model in the late-classification scenario using different performance metrics.
From our experiments, we found that the TimeModAttn model outperformed the feature-
based BRF baseline. By comparing the confusion matrices of the TimeModAttn model, w.r.t.
the BRF baseline, it was observed that the TimeModAttn model obtained fewer confusions
between the SN types, with maximum and significant increments of the True Positive (TP)
percentages for the SNIa, SNIbc, SNII, and SLSN types. These results are correlated with
the ROC curves separation between the TimeModAttn model and the BRF baseline. We
highlight the confusion reduction obtained between the SNIa and SNIbc types, especially
recalling the importance of the SNIa type for cosmology purposes.

In the early-classification scenario, we found that the TimeModAttn model achieved the
maximum BRF’s reported b-AUCROC performance several days earlier. This indicates that
the TimeModAttn model can correctly discriminate between SN types using fewer obser-
vations, i.e., shorter SN multi-band light-curves. This early-classification capability of the
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TimeModAttn model could be especially useful for future high-volume data surveys such as
the LSST survey, where a fast and accurate classification of astronomical events must be per-
formed with the fewest number of observations as possible. These findings show us that the
TimeModAttn model can be effectively used to process and classify multi-band light-curves
from different SN types, without relying on any costly hand-crafted feature computation.

In this work, the TimeModAttn model outperformed the tested RNN baselines (LSTM
and GRU models). We obtained a higher, statistically significant, performance in both, the
late-classification and early-classification scenarios for the TimeModAttn model w.r.t. the
RNN baselines. For both types of Deep Learning models, we found that the generation of
synthetic light-curves allowed to increase their general performance. Our conjecture is that
attention-based models have the advantage of being able to access any observation from a
light-curve regarding the total length or current sequence step. In contrast, in RNN models
the processing is forced to be sequential through all the sequence steps (where many of them
could be uninformative). Therefore, we think that the proposed model performs better as it
can only focus and pay attention to observations that are relevant in the SN context: the
early observations from the SN light-curves.

On the other hand, and by testing different levels of data-augmentation, we observed a
high sensibility of the RNN baselines against the level of data-augmentation. Specifically,
a strong data-augmentation was highly detrimental for the RNN baselines. This effect may
be due to the existing gap of the time difference distributions between the training-set and
test-set when using the proposed data-augmentation procedures. In contrast, we observed
high robustness for the TimeModAttn model against the data-augmentation levels. This
robustness can be helpful when a significant discrepancy in the irregular cadence, between
the training-set and test-set, may be expected given the survey conditions. Additionally, we
found that the TimeModAttn model was highly competitive w.r.t. the RNN baselines in
terms of the reported empirical training cost.

From our experiments, we found that the use of all the available band information (multi-
band light-curve) resulted in a significant benefit for the TimeModAttn model performance
w.r.t. the use of a single-band information. Therefore, the serial or parallel encoder should
be used in order to correctly solve the proposed SN classification task by capturing all the
information from the multi-band light-curves. Additionally, no consistent or strong statistical
evidence was found to conclude which encoder alternative is the best for the SN classification
task. In this work, we used the parallel encoder to conduct interpretability experiments;
however, by taking into account the reported empirical training cost of the serial encoder,
this encoder could be more suitable when faster and efficient models (and no explicit multi-
band interpretability) are required. The parallel encoder could be further explored in the
near future when a higher number of bands will be available with surveys such as the future
LSST survey, where six bands will be available (Ivezić et al., 2019).

Since the proposed model uses raw light-curves, it should not be a major problem to use it
the context of ongoing and upcoming astronomical surveys based on light-curves. In fact, we
expect that the use of this model may be well scalable in surveys where a large volume of data
is expected per night (e.g., the current ZTF or the future LSST surveys), mainly because it is
not necessary to perform a continuous and costly computation of features from light-curves.
On the other hand, the proposed model can be easily parallelized given that its architecture
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is based on the multi-head dot-attention mechanism. This can be a great advantage when
optimizing pipelines for fast real-time inference of a large volume of data. Additionally, for
class inference, the decoder can be discarded from the model to further reduce the inference
time for real-time classification

We conducted several experiments on interpretability to explore the automatic decisions
of the TimeModAttn model. We observed that the model tended to pay more attention to the
first observations of the SN light-curves, i.e., the observations earlier than and close to the SN-
peak. This behavior might be because the first observations offer highly valuable information
about the evolution of SNe. This early attention behavior could allow the model to construct
meaningfully inner representations to characterize a SN light-curve, e.g., the initial brightness
slope; the SN brightness rising time, maximum peak, and early decay region; the elapsed time
between the very first observation and the posterior observations. We found that the early
high attention is correlated with a higher temporal modulation variability (or resolution) over
the early time range. This increase in the variability could be beneficial to correctly induce
the time information in the attention mechanisms operations: the computation of correlations
between the time-modulated query and key vectors, as well as the final vector aggregation
using the time-modulated value vectors.

In this thesis we also tested several alternative method for the generation of synthetic
SN light-curves. In general, we cannot strongly assure that the proposed SPM-based metho-
dology is superior to other simpler methods such as the linear interpolation. However, we
noted that the selection of the generation method must be taken with care. For example,
other methods, such as the B-spline interpolation, may not be completely appropriate due to
artifacts presented in the resulting SN light-curves (e.g., an incorrect final brightness rising
in the SN-extinction region)1.

On the other hand, we compare the proposed model TimeModAttn w.r.t. all the training
settings for the BRF baseline. In general, we highlight the fact that the use of synthetic
data for training helps in the performance for both, the TimeModAttn model and the BRF
baseline. In fact, although the TimeModAttn model shows a general better overall perfor-
mance than all the tested BRF settings (early and late-classification), it is not possible to
firmly conclude that this model is better for all the metrics used in this thesis (especially
when using synthetic data for training). In any case, the use of the proposed model still has
advantages over the use of feature-based models such as the BRF baseline. For example, we
highlight: 1) Although the performance of both models improves when using synthetic data,
this methodology is only scalable when using raw light-curves directly because the compu-
tation of features becomes extremely costly when including synthetic light-curves. 2) Possible
useful data-augmentation techniques are only really scalable when using raw light-curves. 3)
In contrast to the BRF baseline, the inference of the TimeModAttn model is straightfor-
ward for short light-curves with one o few observations. This effect can not be solved by
using synthetic light-curves. 4) The use of features still heavily depends on expert knowledge
which is a non-trivial and costly task. This task, moreover, should always be in constant
revision, especially if new types of astronomical objects need to be studied2.

1For extra details and discussion, see Appendix §C.3.
2For extra details and discussion, see Appendix §C.3.
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As a final comment, the presented thesis generated the additional manuscript of a paper3

for an astronomical journal (AJ). This manuscript was accepted, with minor revisions, by
the referees and it is currently in the process of being corrected by the authors.

5.1.1. Future Work

No astrophysical external metadata (e.g., ALLWISE colors, galactic coordinates, SGS
score, redshift) input capability was used in this work. To deal with optional and exter-
nal metadata, we propose to extend our model to include metadata values using an extra
modulation process. Given that metadata values could exhibit non-Gaussian distribution
behaviors (e.g., multi-modal, clipped range, sparse distributions), we can directly use our
proposed time modulation as a new «metadata modulation» over the corresponding non-
redundant metadata-range associated with the handled metadata values. This modulation
could be used, over the sequence input or directly over the encoder representation-vector,
inducing the metadata information in the representation-vectors. This could be extended to
multiple metadata values in a multi-layer metadata modulation architecture.

Given the space-state model formulation presented in this work (decoder), the forecasting
of SN light-curves could be further explored as the space-state model can evolve arbitrarily
over unobserved and future time values. Neural ODE decoders (Chen et al., 2018; Rubanova
et al., 2019) could be also tested to perform continuous-time forecasting, avoiding the use
of any explicit time differences information. Attention-based decoders could be also explored
to implement an autoencoder model based solely on attention mechanisms. Moreover, a
direct projection of the representation-vector (from the encoder) could be used as a decoding
strategy, where the temporal modulation could be used to induce the information of the time
values.

We believe that one of the major difficulties to face in a new survey may be the natu-
re of its irregular cadence as well as the class imbalance. To further validate our proposed
methodology, we propose to process data from other astronomical surveys, eventually testing
it on the future LSST survey. Our hope is that our proposed methodology and the TimeMo-
dAttn model will be robust enough to achieve competitive results. Alternatively, we propose
to classify other astronomical objects, such as stochastic events and periodic stars (using
unfolded or folded light-curves). Given that periodic stars usually have a larger number of
observations than SNe (therefore, longer light-curves), we expect that the use of the atten-
tion mechanisms could be beneficial given its natural long-term time dependencies learning
capability. In addition, new interpretability experiments could be proposed for periodic stars,
e.g., by exploring periodicities in the attention scores that could be better exposed by using
folded light-curves.

Along with important projects such as the LSST survey, thousands of new observations
will be detected every night in the future, which gives the scientific community the opportu-
nity to discover unexpected and rare events. Therefore, it is critically important to design new
algorithms that can process photometric information, allowing us the detection of anomalous
light-curves. Several novel works have aimed to tackle this anomaly detection (Webb et al.,

3https://arxiv.org/abs/2201.08482.
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2020; Villar et al., 2021; Malanchev et al., 2021; Muthukrishna et al., 2021). For example,
Villar et al. (2021) proposes the use of a Variational AutoEncoder (VAE) in order to collapse
the information from a light-curve into a latent space. Then, anomalous events can be de-
tected using methods such as an Isolation Forest. The encoder proposed in this thesis could
be used as an alternative when implementing an unsupervised VAE architecture, exploring
anomalous light-curves along with the Isolation Forest. The exploration of the attention sco-
res could help us to understand the local behaviors that cause a light-curve to be anomalous,
i.e., ¿What are the properties of some observations that lead the model pay more attention
to them?

In this thesis a simple expression for the reconstruction loss, based on the MSE loss, was
used. As future work, we aim to experiment with reconstruction losses that introduce the
observation-errors in their definition, i.e., the higher the observation-error, the lower the re-
construction penalty for that observation-flux estimation. An example of this is the Weighted
MSE (WMSE) loss proposed by Naul et al. (2018). Additional changes for the reconstruction
loss can be also further explored. In eq. (3.5), the empirical observation-flux µi,j(b) can be re-
refined as follows: µi,j(b) ← µi,j(b) ∼ N

(
µi,j(b) , (k · σi,j(b))

2
)
, which aims to capture the degree

of uncertainty (by using the observation-error σi,j(b)) directly in the loss function4. Note that
this new observation-flux definition is stochastic and must be dynamically sampled during the
training process. This stochasticity may allows us to induce an extra degree of regularization
in the Deep Learning model optimization. This can also be tackled by using the repara-
metrization trick found in Variational Autoencoders (VAEs): N (µ, σ2) ≈ µ + σ · ε, where
ε ∼ N (0, 1)5. Note that the aforementioned approach can resemble a denoising autoencoder,
a methodology that has been vastly and successfully used for image autoencoding.

The interpretability of the attention mechanisms can be extended. For example, although
in this thesis we simplified the problem by taking the average attention score among all
attention heads, we could also study the contribution of each attention head individually
¿Are there attention heads that specialize and focus on any particular behavior of the light-
curve, e.g., early time regions, brightness peaks, light-curve outliers, low observation-error
observations? ¿Are there attention heads that are redundant? ¿Can those attention heads be
pruned without affecting the overall performance of the model? In order to carry out this
study, inspiration could be taken from NLP-based works in the literature (Voita et al., 2019).

As described in the methodology section, the proposed model, thanks to the temporal
modulation, is prepared to handle the temporal offsets that may exist in the bands of a
multi-band light-curve. This information is accessible for both serial and parallel configu-
rations; therefore, we expect that the model is able to capture the temporal offsets during
optimization. For the RNN-based models, the time information is incorporated as tempo-
ral differences. It is worth noting that the characterization of the temporal offset between
bands is neither straightforward nor trivial for the serial configuration of the RNN baselines:
the model is expected to automatically be able to perform an accumulation of differences
to obtain this information. How the offset affects the performance of the models, both the
proposed and the RNN baselines, is outside the scope of this thesis. To study the impact,

4Extra considerations may be necessary if normalization methods are used for the observation-fluxes in
the reconstruction process.

5Even if it is straightforward to implement, it is limited to the Gaussian distribution assumption.
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we propose to use a data-augmentation method that only modifies or induce offsets between
bands. With this, we expect to measure the impact of increasing the offset in the multi-band
light-curves, studying which model characterize the temporal offsets the best.

Since real-time detection speed is critically important and a desired goal in the new
paradigm of Big Data in astronomy, model optimization techniques can be explored to reduce
the inference times of the proposed model. For example, we could further explore techniques
such as model quantization. Model quantization aims to discretize the full precision of the
model’s tensors into low-bit tensors without much degradation of the model performance. The
use of this technique has helped to to reduce the inference times in real-time text spotting
and detection models (Liu et al., 2021).

5.1.2. Limitations

An hypothetical limitation of the proposed temporal modulation (TimeFiLM) is the se-
lection of the non-redundant time modulation-range [0, Tmax]. In this work, the maximum
period Tmax was selected in order to be longer than a maximum fixed light-curve duration.
Hypothetically and depending on the dataset properties (e.g., maximum time duration light-
curves, sparsity of observation over time), the selection of Tmax could be non-trivial and could
even affect the performance. Note that this maximum non-redundant challenge is not presen-
ted in the RNN models as they use the time difference as the irregular cadence information;
therefore, no maximum period must be assumed.

If a poor empirical performance is found due to a wrong selection of Tmax, a possible
solution for the non-redundant time modulation problem is to perform a time sliding window
methodology. Given a light-curve with an arbitrary time duration Tmax, a variable number
of L′ short time windows of duration Tmax/L

′ can be used to split the original light-curve
into L′ new sub light-curves. Then, each sub light-curve6 can be processed by the proposed
TimeModAttn model to get a representation-vector. After this process, a variable number of
L′ representation-vectors will be obtained. Given that the sliding window methodology can be
performed with regular and sequentially separated time intervals, the set of representation-
vectors can be finally post-processed by using a simple variable-length average or even a
memory-based model, such as the GRU or LSTM models.

Another conflicting scenario may occur in the case when regions of the modulation-range
are not properly populated during the training process. Given this scenario, there may be
problems when evaluating new light-curves that could have observations along time values
never seen before during training (due to a poor model’s generalization). A possible solution
could be to pre-train the model using synthetic light-curves that are explicitly designed to
cover the entire modulation-range. These light-curves can even have a random behavior since
the main objective is to «familiarize» the model with different time values, which may be
beneficial for the subsequent fine-tuning processes.

6Each sub light-curve still maintains properties such as the irregular cadence, variable-length, multi-band,
etc.
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Annexed A

Theoretical Background Concepts

A.1. Additional Literature Summary Table

Table A.1 presents a brief summary of some of the literature works reviewed for the
writing of this thesis. All these works consider the processing of light-curves or stamp-image
sequences of different types of astronomical objects and events.

A.2. Balanced Multi-Class Performance Metrics

Given a multi-class dataset D and an arbitrary target class c ∈ {1, . . . , C}, where C is
the total number of classes in D, a new binary class dataset Dc is constructed, where Dc

has C = 2 classes: the positive class «c» and the negative class «c̄». The new binary classes
are assigned according to the original true class label c, and assigning the auxiliary negative
class c̄ to every sample from any other class different than the positive class c. Similarly,
the new model binary class predictions are assigned according to the original model class
prediction ci = argmax

c
[ŷi,1, . . . , ŷi,C ]

T , where ci is the class associated with the highest

predicted probability 1.

Given a binary class dataset Dc, the Precision, Recall, and F1score metrics are defined as
follows:

Precisionc =
TPc

TPc + FPc

, (A.1)

Recallc =
TPc

TPc + FNc

, (A.2)

F1scorec = 2 · Precisionc · Recallc
Precisionc + Recallc

, (A.3)

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_f
score_support.html.
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where TPc, FPc, and FNc stand for the True Positive, False Positive, and False Negative
binary class prediction scenarios given the dataset Dc, respectively.

The Receiver Operating Characteristic (ROC)2 and the Precision-Recall (PR)3 curves
are constructed by using the predicted probability ŷi,c for the positive class «c» and the
probability 1− ŷi,c for the negative class «c̄». For the experiments, the Area Under the Curve
(AUC) is reported for both, the ROC curve (AUCROC) and the PR curve (AUCPR).

All metrics computed along with binary datasetsDc can be aggregated into a new balanced
metric. For example, the balanced F1score is computed as follows:

b-F1score =
1

C

C∑
c=1

F1scorec, (A.4)

where each class performance is equally important for the final balanced metric result. The
same process can be applied for each of the metrics used in this work, obtaining the following
balanced metrics: b-Precision, b-Recall, b-F1score, b-AUCROC, and b-AUCPR.

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html.
3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_c

urve.html.
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Table A.1: Additional summary for some of the main works that process photometric light-curves from different astronomical
events. For each work, the processed SN types are shown. Several works can also/only process light-curves from different
variable stars, stochastic events, and/or other general transient events (non-SN), where the details of these type of objects are
not described for simplicity (∼). Information about the test model evaluation is also shown: evaluation over simulated data
and evaluation over empirical (real) data. If the main contribution of the work is a light-curve feature extraction method such
as SALT2, Gaussian Processes (GPs), Wavelet, SPM-based features, Auto-Regressive models (AR), hand-selected features, etc,
then these are denoted as Conventional Feature Extraction (CFE). Deep Learning methods such as Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), Temporal CNN (TCNN), dilated TCNN (dTCNN), self-attention mechanisms,
etc, are denoted as Deep Learning Feature Extraction (DLFE). †: the method presented can also process stamp-image sequences.
‡ : a function is used to model only the region previous to the SN-peak (SN-rise).

Reference Dataset Deals
with
multi-
band

Eval
over
sim
da-
ta

Eval
over
real
da-
ta

SN types CFE DLFE Uses
SNe
analy-
ti-
cal
mo-
del

Spencer & Reese (2013) SNANA ✓ {Ia, non-Ia} ✓
Karpenka et al. (2012) SPCC ✓ ✓ {Ia, non-Ia} ✓ ✓
Ishida & de Souza (2013) SPCC ✓ ✓ {Ia, non-Ia} ✓
Varughese et al. (2015) SPCC ✓ ✓ {Ia, non-Ia} ✓
Lochner et al. (2016) SPCC ✓ {Ia, II, Ibc} ✓ ✓
Charnock & Moss (2017) SPCC ✓ ✓ {Ia, non-Ia}, {I, II, III} ✓
Moss (2018) SPCC ✓ ✓ {Ia, non-Ia}, {Ia, II(IIn, IIP,

IIL), Ibc}, {Ia, II, IIn, IIP, IIL,
Ibc, Ib, Ic}

✓

Naul et al. (2018) ASAS, LI-
NEAR,
MACHO

✓ {∼} ✓

Feigelson et al. (2018) Kepler,
HATS,
ASAS

✓ {∼} ✓

Villar et al. (2019) Pan-
STARRS

✓ ✓ {SL, II, IIn, Ia, Ibc} ✓ ✓

Pasquet et al. (2019) SPCC,
SNANA,
SDSS

✓ ✓ ✓ {Ia, non-Ia} ✓

Boone (2019) PLAsTiCC ✓ ✓ {Ia, Ibc, II, Ia-91bg, Ia-x, point-
Ia, KN, SL, PI, ∼}

✓

Carrasco-Davis et al. (2019)† HiTS ✓ {SN(Ia, II), ∼} ✓
Tsang & Schultz (2019) ASAS-SN ✓ {∼} ✓
Muthukrishna et al. (2019) SNANA

(ZTF), ZTF
✓ ✓ ✓ {Ia, Ibc, II, Ia-91bg, Ia-x, point-

Ia, KN, SL, PI, ∼}
✓ ✓‡

Brunel et al. (2019) SNANA,
SPCC

✓ ✓ {Ia, non-Ia} ✓

Möller & de Boissière (2020) SNANA ✓ ✓ {Ia, non-Ia}, {Ia, Ibc(Ib, Ic),
II(IIn, IIL2, IIL1, IIP)}, {IIn,
IIL2, IIL1, Ib, Ic, IIP, Ia}

✓

Hosenie et al. (2020) CRTS ✓ {∼} ✓
Becker et al. (2020) OGLE-III,

Gaia, WISE
✓ {∼} ✓

Jamal & Bloom (2020) MACHO ✓ ✓ {∼} ✓
Gómez et al. (2020)† CRTS(TAO) ✓ {SN, ∼} ✓
Tachibana et al. (2020) CRTS ✓ {∼} ✓
Ibsen & Mann (2020) PLAsTiCC ✓ ✓ {Ia, Ibc, II, Ia-91bg, Ia-x, point-

Ia, KN, SL, PI, ∼}
✓

Sánchez-Sáez et al. (2021) ZTF ✓ ✓ {Ia, Ibc, II, SL}, {∼} ✓ ✓
Zhang & Bloom (2021) ASAS-SN,

MACHO,
OGLE-III

✓ {∼} ✓

Donoso-Oliva et al. (2021) ASAS,
OGLE-III,
MACHO,
LINEAR,
CRTS, Gaia,
WISE

✓ {∼} ✓

Allam & McEwen (2021) PLAsTiCC ✓ ✓ {Ia, Ibc, II, Ia-91bg, Ia-x, point-
Ia, KN, SL, PI, ∼}

✓
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Annexed B

Methodology Details

B.1. Feature Extraction Implementation Details

In this work, the implementation for the feature extraction, created by the ALeRCE bro-
ker (Sánchez-Sáez et al., 2021), were used1. In order to properly use the ALeRCE’s feature
extractor, and for the sake of a fair comparison between the BRF baseline and the different
Deep Learning models, some extra details of our implementation2 are described below. In
particular, we refer to the construction of the light-curve’s DataFrame object that is handled
and processed by the feature extractor object FeatureExtractorComposer3 from the ALeRCE
implementation. Therefore, the columns of the DataFrame used by the FeatureExtractorCom-
poser are defined as follows:

1. time: the observation-time is used.

2. magnitude: the magnitude, transformed from the observation-flux, is used (see section
§2.3.2.3).

3. error: the magnitude error, transformed from the observation-error, is used (see section
§2.3.2.3).

4. magpsf: the magnitude, transformed from the observation-flux, is used (same as magnitude).
It is required for the SNParametricModelExtractor object4

5. sigmapsf: the magnitude error, transformed from the observation-error, is used (same
as error). It is required for the SNParametricModelExtractor object4.

1https://github.com/alercebroker/lc_classifier.
2https://github.com/oscarpimentel/astro-lightcurves-features/blob/master/lcfeatures/e

xtractors.py.
3https://github.com/alercebroker/lc_classifier/blob/702451154c4482750f5395652117b296f

392951c/lc_classifier/features/core/base.py.
4https://github.com/alercebroker/lc_classifier/blob/af94c49fac46b91ac2fd5eadc64bc1f

aee1b621f/lc_classifier/features/extractors/sn_parametric_model_computer.py. Internally, the
SNParametricModelExtractor object performs a flux-to-magnitude transformation in order to correctly use
the SPM function.
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6. band: the band index, from the photometric band, is used.

7. isdiffpos: it is set to 15. Few and exceptional SN events, where values of -1 is presented
in the light-curve’s DataFrame column isdiffpos (wrong photometry process), are
removed from the scope of this work (and from the dataset) as one of the very first
steps of our pipeline.

We highlight that all the implemented Deep Learning models process the raw SN multi-
band Light-curves, without any extra information such as metadata (e.g., isdiffpos). The-
refore, for the sake of a fair comparison, the process of feature extraction is limited to the
same information handled by the Deep Learning models, limiting the use of metadata an-
d/or extra types of magnitude information (magnitude, magpsf). As future work, the Deep
Learning models could be adapted in order to use metadata, as well as extra Light-curves
constructed from additional flux information.

B.2. SPM Bounds and MCMC Prior Distribution

The Maximum Likelihood Estimation (MLE) optimization is performed using the curve-
fit algorithm6. To ensure positive flux values and a general MLE fit stabilization, we impose
valid bounds over the different SPM parameter values, which are shown in Table B.1. The
initial MLE parameter guesses p0 are also shown.

As mentioned in section §3.2.1, an isotropic multivariate Gaussian distribution is used for
the MCMC prior distribution with a diagonal standard deviation matrix Σ ∈ R6×6. Each dia-
gonal entry is proportional to the associated SPM bound range. For example, for the SPM pa-
rameter A, we define the standard deviation entry Σ1,1 as σ

A
(b)
i

= k
(
sup
(
A

(b)
i

)
− inf

(
A

(b)
i

))
,

where k = .1 is a scaling factor. Additionally, all the Gaussian distributions used in this
work are truncated by the SPM bounds to avoid sampling any invalid SPM parameter values
during the MCMC optimization.

B.3. Conditional Observation-Error Distribution Estima-
tion

To estimate the conditional observation-error versus observation-flux distribution, we use
the empirical samples from the training-set Dtraining. We compute the maximum dispersion
axis over the joint distribution p(µ, σ, b) using the principal component from a Principal
Component Analysis (PCA) reduction7. Then, a rotation operation of the original space
p(µ, σ, b) is performed by using the maximum dispersion axis slope for the construction of
a rotation linear projection W ∈ R2×2 (see Fig. B.1 for an example of the rotated space

5https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html.
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html.
7https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.
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Table B.1: SPM bounds and MLE initial guesses p0, given an arbitrary single-band Light-

curve’s Φ(b)
i , for different SPM parameters (P). The sequence step j

(b)
max = argmax

j(b)

{
µi,j(b)

}L(b)
i

j(b)=1

corresponds to the sequence step with the maximum observation-flux (maximum brightness).
The observation-times T (b)

i =
{
ti,j(b)

}
∀j(b)|µ

i,j(b)
≥ 1

3
µ
i,j

(b)
max

are the observation-times where the

observation-fluxes are above a brightness threshold of 1
3
µ
i,j

(b)
max

, where µ
i,j

(b)
max

is the maximum
observation-flux. The observation-time ti,1(b) is the first observation-time from the single-band
Light-curve’s Φ

(b)
i .

P Lower & upper SPM bounds p0

A
(b)
i

(
1
5
µ
i,j

(b)
max

, 5µ
i,j

(b)
max

)
1.2µ

i,j
(b)
max

t
(b)
zeroi

(
ti,1(b) − 10, t

i,j
(b)
max

+ 50
)

t
i,j

(b)
max

γ
(b)
i (1, 120) max T (b)

i −min T (b)
i

β′(b)
i (0, 1) .5

t
(b)
risei (1, 50) 1

2

(
t
i,j

(b)
max
− ti,1(b)

)
t
(b)
falli (1, 130) 40
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Figure B.1: Gaussian distribution fits for the conditional observation-error distribution (from
the training-set Dtraining of an arbitrary fold split). Green border (a) corresponds to the band
g. Red border (b) corresponds to the band r.

samples). Next, a collection of Gaussian distributions are fitted by MLE over the rotated
space p(σ′|µ′, b) by using several binned regions, where at least 50 empirical samples are
found in each bin (see Fig. B.1 for examples of the Gaussian distribution fits).

In order to generate a new observation-error sample σ̂, given the observation-flux µ and
the band b, we first find the corresponding bin (target bin) associated with the observation-
flux µ in the rotated space. Then, we sample a rotated observation-error σ̂ ′ from the fitted
Gaussian distribution associated with the target bin. Finally, the rotated observation-error
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σ̂ ′ is rotated back using the inverse rotation linear projection W−1 to obtain the required
observation-error sample σ̂.

B.4. Reconstruccion Loss Issue

During the preparation of this thesis, we thought that we were using another definition
for the reconstruction w.r.t. the loss that was actually used. Based on the Weighted MSE
(WMSE; Naul et al., 2018), our original loss definition is further described. Given a multi-
band light-curve Φi, a reconstruction loss function is defined as follows:

Lreci =
1

B

B∑
b=1

1

L
(b)
i

L
(b)
i∑

j(b)=1

(
µi,j(b) − µ̂i,j(b)

)2
γ · σ2

i,j(b)
+ β

, (B.1)

where µi,j(b) and σi,j(b) are the observation-flux and observation-error, from the single-band
light-curve Φ

(b)
i , respectively. The observation-flux predicted by the decoder, for the single-

band light-curve Φ
(b)
i , is denoted as µ̂i,j(b) . The values γ = 1e−3 and β = 1 are used to

adjust the penalty induced by the observation-errors. Similar to Naul et al. (2018), a Weigh-
ted Mean Squared Error (WMSE) like-function is used for the reconstruction loss by also
introducing the observation-errors σi,j(b) , i.e., the higher the observation-error, the lower the
reconstruction penalty for that observation-flux estimation.

In general, the motivation for the above definition is the following: the values γ and β
are used to adjust the penalty induced by the observation-errors. Our conjecture is that,
without this adjustment, the lowest observation-errors (presented in the training-set) can
drag the optimization to sub-optimal local minimum regions over the loss surface, leading to
a convergence biased towards these observations.

After reviewing our implementation, we observed that the value chosen for γ was too low
considering the empirical values achieved by the observation-errors. This finally produces
that the values for γ · σi,j(b) tend to 0 and, therefore, the expression γ · σ2

i,j(b)
+ β tends

to 1, yielding to a practical use of the MSE instead of the WMSE-like loss. Note that this
behaviour heavily depends on the dataset used and the distribution of the observation-errors.
For this reason, we finally decided that the MSE loss was the most theoretically correct way
to define the used reconstruction loss in this thesis.

Note that nothing stops us from experimenting with more and well-defined values for γ,
but this is beyond the scope of this thesis. Therefore, it remains as a future task the study
of the impact of using this type of WMSE loss, as well as the selection of the values for γ.
Our final conjecture is that the effective use of the WMSE loss does not necessarily imply an
improvement in the results presented in this thesis, but this must be corroborated with the
appropriate experiments.
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Algorithm 4: Dynamic training-set class balancing strategy.
1 Dc = {Φi|yi = c}Ni=1 ⊂ Dtraining// Collect the light-curves, of class c, into a new auxiliar

subset D(c)

2 Nmax = max {Nc = #(Dc)}Cc=1// Find the maximum population Nmax associated with the most

populated class c

3 for epoch ∈ epochs do
4 Dbalanced

training = {∅}// Init a new empty balanced training-set

5 for c ∈ {1, . . . , C} do
6 for i ∈ {1, . . . , Nmax} do
7 Φ′

i ∼ D(c)// Randomly choose a light-curve of class c with probability p = 1
Nc

8 Dbalanced
training

∪← {Φ′
i}// Append the selected light-curve into the balanced training-set

B.5. Model Input Normalization

For the serial formulation, the model input vectors are normalized as follows:

xi,j ←
xi,j −mean(x)

std(x) + ε
, (B.2)

where the mean and standard deviation vectors are computed over the auxiliary vector set
x =

{
{x1,j}L1

j=1, . . . , {xN,j}LN

j=1

}
, which is a variable-length vector collection consisting of all

the samples from the synthetic training-set Dtraining[s].

For the parallel formulation, the normalization follows as follows:

xi,j(b) ←
xi,j(b) −mean

(
x(b)
)

std(x(b)) + ε
, (B.3)

where the auxiliary vector set is collected, given the band b, as

x(b) =

{{
x1,j(b)

}L(b)
1

j(b)=1, . . . ,
{
xN,j(b)

}L(b)
N

j(b)=1

}
.

This method is used to normalize the input for both, the encoder model and the decoder
model (time difference values). It is also used over the observation-fluxes evaluated in the
reconstruction loss shown in section §3.4.1.

B.6. Class Balance Strategy

Algorithm 4 describes the strategy used to dynamically construct an auxiliary and balan-
ced training-set Dbalanced

training . This strategy is used during both, the pre-training and fine-tuning
processes to deal with the class imbalance.
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Algorithm 5: Dynamic data-augmentation strategy for a multi-band light-curve
Φi.
1 if model is training then
2 for b ∈ {1, . . . , B} do
3 Φ

(b)
i ← flcrss

(
Φ

(b)
i

)
// LCRSS

4 Φ
(b)
i ← flcrod

(
Φ

(b)
i

)
// LCROD

5 for j(b) ∈
{
1, . . . , L

(b)
i

}
do

6 µi,j(b) ← µi,j(b) + k · σi,j(b) · ε, ε ∼ t-student(ν)// LCORE

7 Φi ← f
({

Φ
(1)
i , . . . ,Φ

(B)
i

})
// Re-define the multi-band light-curve using the new single-band

light-curves

8 for b ∈ {1, . . . , B} do
9 ti,j(b) ← ti,j(b) − ti,1,∀j(b)// Observation-time re-offset

B.7. Multi-Band Light-Curve Data-Augmentation

Algorithm 5 describes the data-augmentation strategy used to dynamically construct
new multi-band light-curves during the training processes, allowing us to induce a degree of
variability in the light-curves processed by the models. This strategy is used during both, the
pre-training and fine-tuning processes.

The data-augmentation explanation is as follows:

1. Light-Curve Random Sub-Slide (LCRSS): given a single-band light-curve Φ
(b)
i , a

random light-curve sub-slide is selected from Φ
(b)
i , re-defining the original single-band

light-curve. The sub-slide is performed by randomly sampling both, an initial sequence
step and a new variable-length L

(b)
i .

2. Light-Curve Random Observation Dropout (LCROD): given a single-band light-
curve Φ

(b)
i , random individual observations are removed from the Φ

(b)
i , re-defining the

original single-band light-curve. A dropout probability of plcrod is used.

3. Light-Curve Observation-flux Re-Estimation (LCORE): given a single-band
light-curve Φ

(b)
i , and following the same method shown in section §3.2.3, a clipped

t-student distribution is used to re-sample each observation-flux µi,j(b) .

4. Observation-time re-offset: to avoid ill-defined multi-band light-curves Φi, the first
observation-time ti,1, from the resulting multi-band light-curve, is subtracted from all
the observation-times. This is performed to construct new multi-band light-curves where
the first observation-time is zero: ti,1 = 0. This procedure is also performed whenever
changes in the observation-times occur, e.g., when applying pre-processing methods
(section §3.1.2), when generating synthetic light-curves (section §3.2).

Three main levels of data-augmentation are used in this work: zero, weak, and strong data-
augmentation levels. In the zero data-augmentation level, all the aforementioned procedures
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fuzzy-tools

fuzzy-torch

astro-lightcurves-handler sne-lightcurves-synthetic

astro-lightcurves-features

astro-lightcurves-classifier

surveys-savesurveys-data

optional transfer of results

Figure B.2: Relationship between the different repositories implemented for this thesis.
Dashed lines indicate the dependencies of packages. Note that fuzzy-tools is used in all
the repositories as it is an auxiliary repository. The load and save of data is shown using
solid lines. The folders (not repositories) surveys-data and surveys-save are shown, where
files (light-curve datasets) are loaded and saved by different repositories.

are ignored, returning the original multi-band light-curves. In the weak data-augmentation
level, a dropout probability of plcrod = .1 is used. In the strong data-augmentation level, a
probability of plcrod = .5 is used. Because some of the data-augmentation procedures remove
observations, a minimum single-band light-curve length threshold of L

(b)
i ≥ 5 is imposed

as a new augmented light-curve requirement in order to avoid problems of short or empty
light-curves.

B.8. Repository Brief Roadmap and Used Software

The following is a list of repositories used for this thesis. In addition, the relationship
between the different repositories are shown in Fig. B.2.

1. fuzzy-tools: used as an auxiliary repository for multiple and diverse purposes, such as
file handling (Pickle-based); plot visualizations (Matplotlib-based); string, list, dictio-
nary, and other data-structures handling; different data science methods; among many
others. Url: https://github.com/oscarpimentel/fuzzy-tools.

2. fuzzy-torch: used as an auxiliary repository for training Pytorch based models. It
also contains several basic models, functions, methods, and routines used for the imple-
mentation of other Deep Learning models, such as the ones shown in this thesis. Url:
https://github.com/oscarpimentel/fuzzy-torch.

3. astro-lightcurves-handler: used as an auxiliary repository for the creation and hand-
ling of multi-band light-curves objects and light-curve datasets. It is also used to apply
the pre-processing methods over the light-curve datasets, e.g., sigma clipping, train/-
val/test split. Url: https://github.com/oscarpimentel/astro-lightcurves-handl
er.
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4. sne-lightcurves-synthetic: used for the generation of synthetic SN multi-band light-
curves and datasets. Url: https://github.com/oscarpimentel/sne-lightcurves-s
ynthetic.

5. astro-lightcurves-features: used for the extraction of features from the multi-band
light-curves. It is also used for the training of the BRF baseline. Url: https://github
.com/oscarpimentel/astro-lightcurves-features.

6. astro-lightcurves-classifier: used for the implementation and training of all the tes-
ted Deep Learning models. Url: https://github.com/oscarpimentel/astro-light
curves-classifier.

Software: Pytorch (Paszke et al., 2019), Jupyter8, Dask (Rocklin, 2015), Matplotlib
(Hunter, 2007), Pandas (Mckinney, 2011), Python9, Scikit-learn (Pedregosa et al., 2011),
Emcee (Foreman-Mackey et al., 2013).

8https://jupyter.org/.
9https://www.python.org/.
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Annexed C

Experiments and Results

C.1. Relevance Ranking of the BRF model

After the optimization of a BRF model, a relevance ranking can be obtained: an ordered
list that indicates the importance that each feature has for the final predictions of the BRF
model. Table C.1 shows two examples of relevance rankings for the BRF model. Similar to
the findings in Sánchez-Sáez et al. (2021) for the ZTF survey, the top position of the rankings
are usually dominated by the SPM features for the classification of transient events such as
SNe. Other common features, such as linear trends (e.g., LinearTrend), Mexican Hat Power
Spectrum (MHPS) features, multi-band features (e.g., g-r_max, g-r_mean), etc, can also be
found at top positions in the ranking.

We highlight the high variability found for the reported relevance rankings, where a
different ranking is usually obtained from each BRF model run. This may be produced due
to the intrinsic difficulty of the studied ZTF survey (e.g., the high irregular cadence and
imbalance for the SN light-curves), but also due to the notably low percentages obtained for
the top features (< 5%). Additionally and similar to the findings in Sánchez-Sáez et al. (2021),
features designed for periodic stars can be found in the relevance rankings, for transient
events, as all available features are used, e.g., Power_rate (from periodogram). Given that
no intrinsic periodic behavior is expected from transient events, those periodic features could
be misleading for the BRF model, increasing the risk of overfitting. Therefore, a feature
selection method could be utilized to improve the BRF model performance by removing
extra and unnecessary features for the SN event.

C.2. 2D Projections for Synthetic Light-Curves

A dimensionality reduction method is performed for visual inspection purposes over the
astrophysical and hand-crafted features extracted from both, the empirical and the synthe-
tic SN multi-band light-curves. This reduction is unsupervised and its pipeline steps are
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Table C.1: Two examples of relevance rankings obtained from the optimized BRF model. Only
the top 30 features of the ranking are shown. For single-band features, the name notation
{feature name}_{b} is used to denote in which band b the feature was computed.

Feature name Rank Relevance [ %]

SPM_t0_g 1 4.563
SPM_gamma_g 2 4.507
SPM_t0_r 3 4.026
g-r_max 4 2.589
first_mag_g 5 2.499
SPM_tau_rise_r 6 2.359
delta_mjd_fid_g 7 2.353
Power_rate_3 8 2.239
Power_rate_4 9 2.049
delta_mjd_fid_r 10 2.042
SPM_beta_r 11 1.936
LinearTrend_r 12 1.933
g-r_mean 13 1.788
MHPS_ratio_g 14 1.766
SPM_gamma_r 15 1.705
Skew_g 16 1.642
Harmonics_mag_1_r 17 1.552
Power_rate_2 18 1.534
first_mag_r 19 1.478
MedianAbsDev_r 20 1.401
LinearTrend_g 21 1.399
iqr_r 22 1.356
SPM_tau_fall_g 23 1.317
SPM_tau_rise_g 24 1.273
MHPS_high_r 25 1.182
Q31_r 26 1.171
Power_rate_1/2 27 1.147
delta_period_r 28 1.072
MHPS_high_g 29 1.028
AndersonDarling_g 30 .981

Feature name Rank Relevance [ %]

SPM_t0_r 1 3.658
SPM_t0_g 2 3.031
SPM_gamma_g 3 2.882
LinearTrend_r 4 2.753
delta_mjd_fid_g 5 2.363
SPM_tau_rise_r 6 2.302
g-r_max 7 2.023
g-r_mean 8 1.866
first_mag_r 9 1.860
first_mag_g 10 1.735
SPM_gamma_r 11 1.596
SPM_beta_r 12 1.593
SPM_tau_fall_g 13 1.575
Power_rate_4 14 1.535
Power_rate_3 15 1.505
MHPS_ratio_g 16 1.474
MHPS_high_g 17 1.471
delta_mjd_fid_r 18 1.381
Power_rate_2 19 1.359
LinearTrend_g 20 1.314
iqr_r 21 1.294
SPM_tau_fall_r 22 1.123
MHPS_high_r 23 1.119
SPM_tau_rise_g 24 1.066
Skew_g 25 1.015
AndersonDarling_g 26 1.014
Period_band_g 27 .957
delta_mag_fid_r 28 .873
Q31_r 29 .866
SF_ML_amplitude_r 30 .804

described as follows1:

1. A quantile normalization2 is used, transforming the distribution of the input to follow
a standard Gaussian distribution.

2. A standard scaling normalization3 is applied. This step is used to remove the mean
from the data, pre-processing the subsequent PCA algorithm.

1Note that those pipeline steps are applied sequentially over an arbitrary input vector xi.
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTran

sformer.html.
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScal

er.html.
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Figure C.1: Examples of dimensionality reductions using astrophysical and hand-crafted fea-
tures (from the same arbitrary fold split). Both, empirical SN (real) and synthetic SN (synth)
are shown. Left) Using all available features. Right) Using only SPM features.

3. A PCA reduction is performed: fpca(xi) : RDx 7→ R10, where Dx is the dimensionality
of the input vector xi.

4. A UMAP reduction is performed: fumap(xi) : R10 7→ R2. Empirically, we select the
following setting for the UMAP algorithm: {metric=euclidean, n_neighbors= 10,
min_dist= .01}.

Additionally, we tested two main scenarios for this dimensionality reduction: 1) Using all
the available astrophysical features, with a dimensionality of the input vectors of Dx = 144.
2) Using only the features associated with the SPM, with a dimensionality of the input
vectors of Dx = 144. Fig. C.1 shows both, the UMAP reduction when using all the available
features and the reduction when only using the SPM features. For comparison purposes, all
reductions are obtained from the same arbitrary fold split.

In general, we observe that the use of only SPM features leads to a more class-separable
projection w.r.t. the use of all the features, with a notable separation between classes SNIa and
SNII. Also, a major part of the SLSN instances are clustered together in a common region. On
the other hand, a high sparsity is observed for the SNIbc instances, where only few instances
are clustered together. This behavior could correlate with the BRF classification performance.
Therefore, we hypothesize that the use of only the SPM features may be beneficial when
performing this type of dimensionality reduction tasks for SN light-curves, where meaningless
features (e.g., periodic features) could induce a misleading variability that can be detrimental
for these unsupervised projection methods.

4A fit error feature is also included as implemented in https://github.com/alercebroker/lc_class
ifier.
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In order to check for possible outliers and/or incorrect fits in the generation of the synthe-
tic light-curves, we also search for maximum distances in the projected UMAP hyperplane.
These distances are defined as euclidean distances between an arbitrary empirical SN multi-
band light-curve w.r.t. the associated and generated synthetic light-curves. Fig. C.2 show
some empirical-synthetic computed distances for each SN type. Fig. C.3 shows examples of
the synthetic generation for some of the reported objects with maximum distance.

By inspecting the high distance objects in the UMAP hyperplane, we found wrong gene-
ration fits in cases where the light-curves present a uncommon general behavior (outliers-like
light-curves). On the other hand, we also found some SN light-curves with few observations,
which could produce instabilities and highly variable results in the extraction of the SPM
features. Even if this method could be used as an outlier searching tool, we highlight that this
reduction methodology for the search of outliers may be tricky as distances in the projected
UMAP reduction can be misleading. In any case, a simpler and linear method, such as a
linear PCA reduction, can be also performed.

C.2.1. Limitations

We emphasize that performing this dimensionality reduction is non-trivial for two impor-
tant reasons. 1) The optimal design of optimization and selection of the hyperparameters of
the pipeline is highly non-trivial, leaving plenty of room for experimentation. 2) This reduc-
tion methodology is unsupervised; consequently, the class information is not used at any step
(e.g., the optimization of the UMAP algorithm). This can be especially detrimental when
a high imbalance of the studied dataset is presented, like in this work. In their standard
version, these reduction algorithms do not deal with high class imbalances, so a risk of over
representation could exist biased towards the majority classes (e.g., SNIa, SNII). This could
explain the separability found for the class SLSN, which, while acceptable (as all instances
fall into a close and common region), this separability could be even better. Finally, these
reductions method must be used with caution in dataset like the one studied in this work,
using them as complementary tools.

C.3. Additional Synthetic Light-Curves Generation Methods

For the sake of comparison, additional methods for the generation of synthetic SN light-
curves were tested in this work:

1. mcmc-estw: it is the main method used and proposed in this work (see section §3.2
for details). This method is based on fitting the SPM function fsne

(
ti,j(b) ;θ

(b)∗
i

)
by

founding the optimal SPM parameters θ(b)∗i . Then, the generated synthetic observations
can be sampled from an extended Sampling Time Window (STW) ti,j(b) ∼ ∆t

(b)
stwi.

This extended STW allows us to sample synthetic observations previous to the first
observation.
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Figure C.2: Examples of dimensionality reductions using astrophysical and hand-crafted fea-
tures using only SPM features (from the same arbitrary fold split). Both, empirical SN ([real])
and synthetic SN ([synth]) are shown. Some maximum distance relationships, between an ar-
bitrary empirical instance and the related synthetic instances, are shown as line connections
(real-synth). (a) SLSN type. (b) SNII type. (c) SNIa type. (d) SNIbc type.

2. mcmc-fstw: the same methodology of the mcmc-estw is followed but, instead, a fi-
xed STW is used. This fixed STW is defined by fixing t

(b)
initi = ti,1(b) . In contrast to

mcmc-estw, in this method, the synthetic observations can only be sampled between
the first and last observations of a light-curve.
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Figure C.3: Examples of synthetic SN multi-band light-curves (before the observation-time
re-offset). The SPM posterior samples (ks = 32) from MCMC are shown as continuous-time
curves for each band. Empirical observation-fluxes are shown as color circles with observation-
error bars. Synthetic observation-fluxes, using a random SPM posterior sample, are shown
as black outlined circles. (a) SLSN type. (b) SNII type. (c) SNIa type. (d) SNIbc type.

3. linear-fstw: it is a simple linear interpolation5 of each empirical observation of the
light-curve with its subsequent observation. Therefore, this method re-define the fun-
ction fsne as a linear interpolation that can still be evaluated at any arbitrary time
value. To avoid possible artifact synthetic observations, a fixed STW is used.

4. bspline-fstw: the B-spline representation6 of a light-curve is found over the empirical
observations of a light-curve, re-defining the function fsne as a smooth and continuous
B-spline interpolation. To avoid possible artifact synthetic observations, a fixed STW
is used.

Fig. C.4 shows examples for the results of the different synthetic generation methods
aforementioned. For comparison purposes, these methods are optimized by using the same
arbitrary empirical SN light-curve.

C.3.1. Performance Comparison

To compare the different synthetic generation methods, we study the performance achie-
ved by using the BRF classifier baseline. Additionally and recalling the optimization settings
shown in section §3.3, we also propose three BRF optimization settings:

1. Only empirical data ([r]): it is the original setting described in section §3.3. Only
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html.
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html.
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Figure C.4: Examples of synthetic SN multi-band light-curves (before the observation-time
re-offset). The SPM posterior samples (ks = 32) from MCMC are shown as continuous-
time curves for each band. Empirical observation-fluxes are shown as color circles with
observation-error bars. Synthetic observation-fluxes, using a random SPM posterior sample,
are shown as black outlined circles. Given the same arbitrary and empirical SN light-curve,
the results of different generation methods are shown: mcmc-estw, mcmc-fstw, linear-fstw,
bspline-fstw. Note that only the methods based on the MCMC optimization present some
degree of variability on the estimated function fsne.

empirical light-curves, from the training-set Dtraining, are used to optimize the BRF
baseline.

2. Only synthetic data ([s]): in this setting, only the synthetic light-curves, from the
training-set Dtraining[s], are used to optimize the BRF baseline.

3. Empirical and synthetic data ([s+r]): in this setting, light-curves from both,
the empirical training-set Dtraining[s] and the synthetic training-set Dtraining[s], are used
to optimize the BRF baseline. The same proportion of each type of light-curve is
used; therefore, the each empirical light-curve from the training-set Dtraining[s] is re-
peated a number of ks = 32 times in the new combined training-set Dtraining[r+s], i.e.,
Dtraining[r+s] = ks × {Dtraining} ∪ Dtraining[s].

It should be noted that, for each fold split, exactly the same validation-set Dval and test-
set Dtest are used for all the aforementioned settings, which consist of only empirical light-
curves. Therefore, note that the selection of the type of light-curves (empirical or synthetic)
only affects the training-set that is used to optimize the BRF baseline.

Table C.2 shows the late-classification performances achieved by training the BRF baseline
under the aforementioned training settings ([r], [s], [r+s]) and using the different generation
methods (mcmc-estw, mcmc-fstw, linear-fstw, bspline-fstw) to build those training-set.
In addition, and by following the same methodology implemented for the early-classification
in section §4.1.2, Fig. C.5 shows the evolution of the performance for the b-AUCROC metric
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Table C.2: Late-classification performances for the BRF baseline using 100-day multi-band
light-curves. Results of the TimeModAttn model are also included for both, the serial
and the parallel encoders (weak data-augmentation level). All the tested training settings
([r], [s], [r+s]) and different generation methods (mcmc-estw, mcmc-fstw, linear-fstw,
bspline-fstw) are shown (mean±std from 5-fold cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

Feature-based models

BRF (fmode=all; training-set=[r]) .527±.030 .687±.052 .525±.039 .866±.020 .602±.051

BRF (fmode=all; training-set=spm-mcmc-estw[s]) .592±.032 .719±.048 .594±.047 .890±.018 .654±.053

BRF (fmode=all; training-set=spm-mcmc-fstw[s]) .591±.030 .719±.045 .595±.043 .890±.018 .655±.051

BRF (fmode=all; training-set=linear-fstw[s]) .583±.012 .732±.028 .586±.021 .891±.017 .652±.037

BRF (fmode=all; training-set=bspline-fstw[s]) .564±.016 .693±.047 .558±.026 .878±.023 .621±.049

BRF (fmode=all; training-set=spm-mcmc-estw[r+s]) .610±.041 .726±.050 .619±.050 .894±.016 .646±.054

BRF (fmode=all; training-set=spm-mcmc-fstw[r+s]) .612±.045 .725±.052 .621±.053 .894±.016 .647±.055

BRF (fmode=all; training-set=linear-fstw[r+s]) .597±.027 .722±.047 .608±.037 .894±.017 .646±.050

BRF (fmode=all; training-set=bspline-fstw[r+s]) .585±.030 .705±.045 .593±.036 .887±.018 .637±.052

Attention-based models

S-TimeModAttn (M=12; H=8; εt=6/24) .588±.023 .759±.040 .596±.033 .910±.020 .671±.056

P-TimeModAttn (M=12; H=4; εt=6/24) .580±.020 .753±.044 .594±.035 .911±.017 .689±.047

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

threshold-day [days]

0.5

0.6

0.7

0.8

0.9

b-
AU

CR
OC

b-AUCROC curve using the moving threshold-day

BRF (fmode=all; training-set=bspline-fstw[r+s])
BRF (fmode=all; training-set=bspline-fstw[s])
BRF (fmode=all; training-set=linear-fstw[r+s])
BRF (fmode=all; training-set=linear-fstw[s])
BRF (fmode=all; training-set=spm-mcmc-estw[r+s])
BRF (fmode=all; training-set=[r])
BRF (fmode=all; training-set=spm-mcmc-estw[s])
BRF (fmode=all; training-set=spm-mcmc-fstw[r+s])
BRF (fmode=all; training-set=spm-mcmc-fstw[s])
S-TimeModAttn (M=12; H=8; t=6/24)
P-TimeModAttn (M=12; H=4; t=6/24)

Figure C.5: b-AUCROC metric-curve v/s moving threshold-day for different training settings
of the BRF baseline. Results of the TimeModAttn model are also included for both, the
serial and the parallel encoders (weak data-augmentation level). All the tested training set-
tings ([r], [s], [r+s]) and different generation methods (mcmc-estw, mcmc-fstw, linear-fstw,
bspline-fstw) are shown. For the sake of better visualization, mean± 1

10
std curve and re-

gion are shown from 5-fold cross-validation. Note that the horizontal axis (evolution of the
threshold-day) relates with the observation-time since the first observation.

as a function of the moving threshold-day tth.
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Figure C.6: Examples of synthetic SN multi-band light-curves using the linear interpolation
method: linear-fstw method (before the observation-time re-offset). The SPM posterior
samples (ks = 32) from MCMC are shown as continuous-time curves for each band. Em-
pirical observation-fluxes are shown as color circles with observation-error bars. Synthetic
observation-fluxes, using a random SPM posterior sample, are shown as black outlined cir-
cles.

From our experiments, we observe that the use of any type of generation method achieved
a higher performance for both, the late-classification scenario and the early-classification sce-
nario (according to the b-AUCROC metric). In general, it is not possible to firmly conclude,
for all the tested metrics, which BRF optimization setting is the best: the only synthetic
data ([s]) or the empirical and synthetic data ([r+s]). On the other hand, a highly com-
petitive performance can be observed between three generation methods: spm-mcmc-estw,
spm-mcmc-fstw, and linear-fstw. Contrary to our original conjecture, we found that the
use of the ESTW does not necessarily relate with an increment in the overall classification
performance. In any case, extra experiments could be designed as future work to further
study the effect of the Sampling Time Window (STW).

For the linear-fstw method, a highly competitive performance was found w.r.t. the
SPM-based methods. This was unexpected because the linear interpolation still can produce
artifacts in the behavior of the light-curve. Fig. C.6 shows examples of light-curves gene-
rated with the linear-fstw method. In particular cases, it can be observed how missing
observations can induce different type of artifacts, e.g., missing observations in the SN-peak
can produce a «flat SN-peak», missing observations in the SN-rise and SN-fall regions can
produce linear rising and/or falling behaviors. Even if our initial conjecture was that this
type of artifacts could affect the performance, we empirically found that this is not the case:
the model still can correctly perform a classification task, even if these types of artifacts
are presented in the training-set. As future work, more experiments could be conducted to
further study this phenomena, testing at which degree the linear interpolation starts being
detrimental7.

On the other hand, the bspline-fstw method achieved the worst general performance
for both classification scenarios. This may be due to notable artifact behaviors presented
in the generated light-curves. To illustrate this, Fig. C.7 shows examples of the generated
light-curves for the bspline-fstw method, where an incorrect final rising could be observed

7As a side note, we highlight that the linear interpolation could be specially detrimental for other type
of astronomical events such as periodic stars, where the period could be radically altered when interpolating
between observations that are too separated in time.
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Figure C.7: Examples of synthetic SN multi-band light-curves using the B-spline interpolation
method: bspline-fstw method (before the observation-time re-offset). The SPM posterior
samples (ks = 32) from MCMC are shown as continuous-time curves for each band. Em-
pirical observation-fluxes are shown as color circles with observation-error bars. Synthetic
observation-fluxes, using a random SPM posterior sample, are shown as black outlined cir-
cles.

close to the SN-extinction region. This effect could be misleading given the context of the
SN event.

C.3.1.1. Comparison Against the TimeModAttn Model

To further study the late-classification scenario performance, for the BRF baseline settings
w.r.t. the TimeModAttn model, Table C.38 includes the additional BRF baseline setting
training with only synthetic data ([s]). Additionally, Fig. C.8 shows the confusion matrices
associated with all the previous tested settings for the BRF baseline. We can observe that the
confusion matrices for the TimeModAttn models (previously shown in section §4.1.3) show
a general higher and well-distributed TP percentage along the diagonal, ensuring a good
performance for all classes. This is important because all the classes must be, in principle,
equally relevant in the classification task.

We can also further study the evolution of the performance w.r.t. the general number of
observations in the test-set (by using the moving threshold-day). As shown before, Fig. C.5
shows the evolution of the performance, of the BRF baseline settings, for the b-AUCROC
metric as a function of the moving threshold-day tth. Note that we also include the best confi-
guration of the TimeModAttn model. Additionally, Fig. C.9 shows the same type of evolution
but in the frame of the Deep Learning models. We observe that the TimeModAttn model
achieved higher performance w.r.t. to the BRF baseline settings in both: early-classification
and late-classification.

In general, we highlight the fact that the use of synthetic data for training helps in the
performance for both, the TimeModAttn model and the BRF baselines. In fact, although the
TimeModAttn model shows a general better overall performance than all the tested BRF
settings (early and late-classification), it is not possible to firmly conclude that this model is
better for all the metrics used in this thesis (when using synthetic data for training). In any
case, the use of the proposed model still has advantages over the use of feature-based models

8It is essentially a copy of Table 4.1.
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Table C.3: Late-classification performances for the TimeModAttn model and the RNN base-
lines using 100-day multi-band light-curves. Results of the BRF baseline are also included for:
1) training using only real data ([r]), and 2) training using only synthetic data ([s]). Both,
the serial (S-{}) and parallel (P-{}) encoders are reported along with several pre-training
and data-augmentation schemes (mean±std from 5-fold cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

Feature-based models

BRF (fmode=all; training-set=[r]) .527±.030 .687±.052 .525±.039 .866±.020 .602±.051

BRF (fmode=all; training-set=spm-mcmc-estw[s]) .592±.032 .719±.048 .594±.047 .890±.018 .654±.053

Serial models Empirical pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .520±.043 .626±.050 .528±.039 .852±.021 .577±.049

S-RNN+∆t (cell=LSTM) .497±.030 .602±.044 .502±.034 .840±.019 .568±.031

S-TimeModAttn (M=12; H=8; εt=6/24) .551±.034 .664±.058 .565±.040 .874±.024 .597±.036

Synthetic pre-training (zero data-augmentation)

S-RNN+∆t (cell=GRU) .562±.051 .688±.058 .579±.049 .885±.036 .627±.062

S-RNN+∆t (cell=LSTM) .561±.035 .680±.053 .578±.040 .884±.028 .619±.046

S-TimeModAttn (M=12; H=8; εt=6/24) .598±.030 .736±.056 .614±.036 .904±.029 .665±.060

Synthetic pre-training (weak data-augmentation)

S-RNN+∆t (cell=GRU) .545±.034 .706±.070 .556±.045 .879±.034 .610±.066

S-RNN+∆t (cell=LSTM) .550±.031 .711±.070 .558±.040 .887±.033 .621±.070

S-TimeModAttn (M=12; H=8; εt=6/24) .588±.023 .759±.040 .596±.033 .910±.020 .671±.056
Synthetic pre-training (strong data-augmentation)

S-RNN+∆t (cell=GRU) .491±.024 .649±.068 .496±.036 .860±.032 .561±.063

S-RNN+∆t (cell=LSTM) .497±.021 .657±.066 .494±.028 .864±.031 .565±.055

S-TimeModAttn (M=12; H=8; εt=6/24) .582±.017 .754±.039 .584±.031 .911±.019 .665±.053

Parallel models Empirical pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .521±.042 .613±.042 .527±.044 .849±.013 .561±.032

P-RNN+∆t (cell=LSTM) .497±.034 .604±.049 .500±.041 .834±.016 .548±.027

P-TimeModAttn (M=12; H=4; εt=6/24) .543±.026 .671±.053 .562±.029 .865±.022 .599±.038

Synthetic pre-training (zero data-augmentation)

P-RNN+∆t (cell=GRU) .566±.038 .685±.056 .582±.040 .883±.027 .624±.047

P-RNN+∆t (cell=LSTM) .567±.029 .683±.041 .580±.036 .881±.027 .645±.048

P-TimeModAttn (M=12; H=4; εt=6/24) .591±.021 .729±.038 .610±.026 .897±.023 .676±.059

Synthetic pre-training (weak data-augmentation)

P-RNN+∆t (cell=GRU) .547±.030 .697±.070 .552±.041 .879±.031 .610±.055

P-RNN+∆t (cell=LSTM) .541±.022 .704±.061 .540±.032 .876±.029 .606±.051

P-TimeModAttn (M=12; H=4; εt=6/24) .580±.020 .753±.044 .594±.035 .911±.017 .689±.047
Synthetic pre-training (strong data-augmentation)

P-RNN+∆t (cell=GRU) .490±.020 .645±.057 .482±.024 .856±.032 .577±.064

P-RNN+∆t (cell=LSTM) .499±.020 .660±.061 .484±.031 .857±.031 .573±.053

P-TimeModAttn (M=12; H=4; εt=6/24) .581±.019 .750±.039 .585±.036 .907±.016 .679±.043

such as the BRF baseline:

1. It is worth remembering that the computation and extraction of features, from the
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Figure C.8: Confusion matrices for the SNe classification task using 100-day multi-band
light-curves. All the tested training settings ([r], [s], [r+s]) and different generation methods
(mcmc-estw, mcmc-fstw, linear-fstw, bspline-fstw) are shown (mean±std from 5-fold
cross-validation). The corresponding b-Recall and b-F1score metrics are given on the top of
each matrix.

light-curves, is mandatory when using the BRF model. Therefore, in order to optimize
the BRF using synthetic light-curves, the features of the latter are required. Because
the computation of features is a costly process (CPU-based), the optimization of the
BRF model using synthetic light-curves incurs in an even higher computational cost
w.r.t. the use of only empirical light-curves.

2. Note that including light-curves obtained with a data-augmentation method (such as
the one described in section §B.7) may be too demanding, incurring in an even higher
higher computational cost due to the feature computation: the features of every possible
augmented light-curve must be extracted.

3. It should be remembered that the inference of the Deep Learning models is straight-
forward for short light-curves with one o few observations. This is not the case for
the feature-based BRF model as the features extracted with one or few observations is
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Figure C.9: b-AUCROC metric-curve v/s moving threshold-day for the TimeModAttn model
and the RNN baselines (weak data-augmentation level). Results of the BRF baseline are also
included for: 1) training using only real data ([r]), and 2) training using only synthetic data
([s]). For the sake of better visualization, mean±1

2
std curve and region are shown from 5-

fold cross-validation. The moving threshold-day Curve Average (mtdCA) is shown for the
TimeModAttn model and RNN baselines. Note that the horizontal axis (evolution of the
threshold-day) relates with the observation-time since the first observation. (a) Models with
serial encoder. (b) Models with parallel encoder.

highly unstable. This effect can not be solved by using synthetic light-curves.

4. The use of features still heavily depends on expert knowledge which is a non-trivial and
costly task (and may even induce undesired expert biases). This task, moreover, should
always be subject to revision, especially if new types of astronomical objects need to
be studied.

Even though the reported metrics were useful in this work (b-Precision, b-Recall, b-
F1score, b-AUCROC, b-AUCPR), we must highlight that it may be still tricky to draw solid
conclusions by using this type of balanced metrics. For example, in some cases, a high b-
F1score metric may not directly relate with a well-distributed TP percentages in the diagonal
of the confusion matrix. Therefore, as future work, a more suitable and robust set of balanced
metrics could be explored to better study and compare the performance of the implemented
models. This is especially important in the current context due to the critical class imbalance.

Finally, we highlight that the previous comparison using different generation methods was
not performed using the Deep Learning framework and models. It was mainly due to the ex-
cessive computational costs associated with testing so many possible different configurations
of methods and Deep Learning models. In any case, we selected the mcmc-estw method as it
has a theoretical SN background (SPM) and it is the only method that allows us to extend the
generation of observations to early days (offering us a better opportunity to further explore
early observations). Nevertheless, we hypothesize that the final selection of the generation
method may not be too critical as the proposed Deep Learning framework uses the synthetic
light curves in a pre-training step. Therefore, possible domain gaps (between synthetic and
empirical data) may still be fixed in the following fine-tuning step with empirical light-curves
only.
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Figure C.10: Examples of multi-band light-curve reconstructions for the P-TimeModAttn
model after the pre-training process. Dashed lines are used for the reconstructed light-curves.
(a) SLSN type. (b) SNII type. (c) SNIa type. (d) SNIbc type.

C.4. Multi-band Light-Curve Reconstruction

Fig. C.10 shows examples of multi-band light-curve reconstructions for different SN types
using the TimeModAttn model. These examples show that the decoder can correctly estimate,
given the representation-vector zi generated by the encoder, the observation-fluxes for the
reconstruction of SN multi-band light-curves. This reconstruction is well-performed despite
the existence of long time gaps without any observation due to the irregular cadence.

It is worth noticing that the representation of the time information, handled by the Ti-
meModAttn model, is different for the encoder and decoder. For the encoder, a temporal
modulation based on the raw time values is induced in the input; while for the decoder,
the time difference values are used as the input. In general, this dual representation of the
time values produces a highly challenging scenario for the learning of time dependencies, for-
cing the autoencoder model to transform raw time value representations into time difference
representations. Given a correct optimization process, this dual time representation may ul-
timately lead to a highly meaningful representation space for both, the reconstruction task
and the classification task. This could explain the high classification performance obtained
by the TimeModAttn model, but further studies and experiments must be performed, which
are left for future work.
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C.5. 2D Projections for TimeModAttn Model

A dimentionality reduction method is performed for visual inspection purposes over an
arbitrary embedding extracted from the TimeModAttn model. This reduction is unsupervised
and its pipeline steps are described as follows9:

1. A standard scaling normalization10 is applied. This step is used to remove the mean
from the data, pre-processing the subsequent PCA algorithm.

2. A PCA reduction is performed: fpca(xi) : RDx 7→ R10, where Dx is the dimensionality
of the input vector xi.

3. An optional min-max scaling normalization11 is applied. This pipeline step is mainly
used to avoid warnings from the API of the Parametric UMAP algorithm.

4. A Parametric UMAP reduction is performed: fumap(xi) : R10 7→ R2. Empirically, we
select the following setting for the Parametric UMAP algorithm: {metric=euclidean,
n_neighbors= 50, min_dist= .01}.

We use the Parametric UMAP because it allows us to solve the intrinsic stochasticity
of the UMAP algorithm, i.e., the Parametric UMAP correctly produces the same output
embeddings given the same data inputs. This is relevant when reducing the dimensionality of
vectors, extracted from an arbitrary layer of the TimeModAttn model, when a higher number
of observations is gradually available in the test-set Dtest, such as the methodology followed
in the early-classification scenario (in section §4.1.2). In this scenario, several light-curves
may not change given a small change in the moving threshold-day; therefore, the Parametric
UMAP allows us to solve the stochasticity problem when those cases occur (this is especially
useful to create stable animations of the projections).

We study two embeddings extracted from the TimeModAttn model: 1) The representation-
vector zi (output of the encoder). 2) The last high-dimensional embedding of the classifier
(before the last linear projection with the softmax function activation). In both cases, the
dimensionality of the input vectors, for the reduction method, are Dx = 128. Fig. C.11 and
Fig. C.12 show the 2D projections of the representation-vectors and the last classifier’s em-
beddings, respectively. For comparison purposes, both reductions are obtained from the same
arbitrary fold split and model run.

For both sequences of projections, we can observe how both, the sparsity of the instances
and the class separability, gradually increase with the increment of the moving threshold-day:

1. Case tth = 1 [days]: an initial collapse of the representation can be observed, which is
expected as the information of the light-curves is minimal.

9Note that those pipeline steps are applied sequentially over an arbitrary input vector xi.
10https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScal

er.html.
11https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler

.html.

143

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


Figure C.11: Examples of dimensionality reductions for the S-TimeModAttn model using the
representation-vectors zi (from the same arbitrary fold split and model run). Several moving
threshold-day values are shown: 1, 20, 50, and 100 [days]. See the complete animation in
https://drive.google.com/file/d/1SBOHeEC5mZ5BvIhHfGfMY_V6kl7oEiqp/view?usp=s
haring.

2. Case tth = 20 [days]: the projections gradually start to sparse as more information
about the light-curve is fed to the model.

3. Case tth = 50 [days]: a stable and sparse configuration of the projections starts taking
form. For the representation-vector case (Fig. C.11), a class separability starts emerging.
In contrast, for the last classifier’s embedding (Fig. C.12), this class separability is more
evident, showing a notable separation between the classes SNIa, SNII, and SNIbc.
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Figure C.12: Examples of dimensionality reductions for the S-TimeModAttn model using
the last high-dimension embeddings of the classifier (from the same arbitrary fold split and
model run). Several moving threshold-day values are shown: 1, 20, 50, and 100 [days]. See
the complete animation in https://drive.google.com/file/d/1dMsFKz--PfxH7FwXIGPu1
vJk-5XKxrn4/view?usp=sharing.

4. Case tth = 100 [days]: the final configuration of the projections is reached. For the
representation-vector case (Fig. C.11), a notable separation between the classes SNIa
and SNII can be observed. For the last classifier’s embedding (Fig. C.12), a small
difference w.r.t. tth = 50 [days] projection is observed, slightly improving the previous
class separability.
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In general, the class separability for the last classifier’s embeddings is more pronounced
and, moreover, starts to appear with smaller values of tth. This can be explained as the
representation-vector shares information to solve both: a classification task and a recons-
truction task, entangling the information for just the class separability. On the other hand,
the last classifier’s embedding, processed from the representation-vector, only handles infor-
mation to solve the classification task; therefore, all the information may be useful for the
class separability. However and despite the difficulty of the case, we still highlight the class
separability obtained by using the representation-vectors, especially between the classes SNIa
and SNII.

Finally, we highlight that performing this dimensionality reduction is non-trivial for two
main reasons: the selection of hyperparameters and the class imbalance. For more details, see
the discussion in section §C.2.1.

C.6. Ablation Studies and Additional Models

C.6.1. Number of Fourier Decomposition Harmonics and Attention
Heads

To study the influence and relevance of key components of the TimeModAttn model, the
following architecture settings are proposed:

1. Case M = 0: by recalling eq. (3.11), a fully invariant temporal modulation is directly
induced by setting an invariant scale and bias time-functions: γk(t) = 1 ∧ βk(t) =
0,∀k ∈ {1, . . . , K},∀t. This setting allows the encoder to still access the observation-
flux information of the light-curves, but without any meaningful information of the
observation-time.

2. Case H = 0: by recalling eq. (2.86), the self-attention mechanism, in the MHSelfAttn
layers, is bypassed by imposing ci,j = 0⃗. Therefore, in this case, the encoder only can
access to the information of the last observation-flux and the last observation-time of
the light-curves, as the last observation is still modulated by the TimeFiLM.

3. Case M = 0; H = 0: in this extreme case, the encoder can only access to the last
observation-flux information from the light-curves, but without the last observation-
time information.

Table C.4 shows the results associated with the aforementioned architecture settings.
Note that, in all settings, the achieved performance is notably lower w.r.t. the BRF baseline
performance, suggesting that the temporal modulation and the attention mechanism are
required and critical components for the TimeModAttn model.

The use of a fully invariant temporal modulation in the encoder (M = 0) is detrimental
for the performance because the irregular cadence (temporal information), from the light-
curves, are completely lost for the encoder. Nevertheless, a degree of classification can still
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Table C.4: Late-classification performances for the BRF baseline and several ablation case stu-
dies for the attention-based models (TimeModAttn) using 100-day multi-band light-curves.
Both, the serial (S-{}) and parallel (P-{}) encoders are reported (mean±std from 5-fold
cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

BRF (fmode=all; training-set=[r]) .527±.030 .687±.052 .525±.039 .866±.020 .602±.051

Serial models

S-TimeModAttn (M=0; H=0; εt=6/24) .291±.046 .333±.043 .194±.052 .575±.034 .305±.020

S-TimeModAttn (M=0; H=8; εt=6/24) .410±.027 .561±.058 .386±.024 .787±.036 .480±.032

S-TimeModAttn (M=12; H=0; εt=6/24) .337±.014 .379±.042 .307±.016 .698±.028 .365±.018

Parallel models

P-TimeModAttn (M=0; H=0; εt=6/24) .304±.015 .328±.063 .163±.018 .571±.037 .294±.015

P-TimeModAttn (M=0; H=4; εt=6/24) .401±.018 .547±.042 .375±.021 .773±.029 .469±.032

P-TimeModAttn (M=12; H=0; εt=6/24) .366±.021 .453±.050 .326±.024 .724±.017 .383±.017

be achieved as the encoder can access to the observation-flux information from the comple-
te light-curves. In fact, the attention mechanism could learn to compute flexible statistics
from the observation-flux distribution even if no temporal information is available. For exam-
ple, the attention mechanism could learn to compute the mean and standard deviation of
the observation-flux distribution, weighted sums to ignore the SN-extinction region, getting
information about the SN-peak by paying attention to the maximum observation-fluxes, etc.

On the other hand, the bypass of the attention mechanism in the encoder (H = 0) results
in a even worst classification performance as only the information of the last observation is
available for the encoder. This confirms that the use of the attention mechanism is required
to capture time dependencies from the light-curves and, therefore, meaningful information
from the astronomical event. Note that a degree of classification can still be achieved even
in this case.

To further study the aforementioned phenomenon, Fig. C.13 shows the confusion matrices
for the TimeModAttn model. For both encoders, serial and parallel, a high TP percentage
is achieved for the SNIa class. This could be explained by observing the joint distribution in
Fig. C.14, where a large number of SNIa instances are clustered together in a common and
sparse region due to the high variability of the time duration of their light-curves, w.r.t. other
classes. Therefore, a Deep Learning model could be able to trace an hyperplane separation
to correctly discriminate a large number of SNIa instances.

As expected, the combination of both cases (M = 0; H = 0) produces a model that
achieved the worst classification performance. This could be explained as the information
obtained from the light-curves, and handled by the encoder, is minimal and insufficient to
correctly characterized the light-curves and, therefore, to solve the classification task. As an
extra note, the worst possible performance (completely random classification) can be achieved
by also inducing xi,j ← 0⃗⊙xi,j in the input vector of the modulation operation, which results
in a dummy encoder.

Finally, it is worth mentioning that these types of ablation studies, usually called «sanity
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Figure C.13: Confusion matrices for the SNe classification task using 100-day multi-band
light-curves when bypassing the attention mechanism (H = 0) (mean±std from 5-fold cross-
validation). The corresponding b-Recall and b-F1score metrics are given on the top of each
matrix. (a) S-TimeModAttn model. (b) P-TimeModAttn model.
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Figure C.14: The joint distribution of the last observation-time versus the last observation-
flux (from the original dataset D). Note that the observations associated with empty single-
band light-curves (L(b)

i = 0) are removed. Green border (a) corresponds to the band g. Red
border (b) corresponds to the band r.

checks», can be really useful when testing and validating different code implementations in
complex pipelines and models. Moreover, we highly encourage software developers to per-
form these types of tests whenever possible in order to periodically check for a healthy code
implementation.
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C.6.2. TimeModRNN and CatTimeAttn Models

In this section, additional model settings are implemented and studied. First, we study
the effect of using the temporal modulation (TimeFiLM) along with RNNs. Recalling the
proposed TimeModAttn described in section §3.4, a new architecture setting is used (Time-
ModRNN) as follows: the number of NL HMSelfAttn’s layers of the encoder are replaced
with a number of NL RNN’s layers (e.g., GRU, LSTM).

Second, we compare the use of the temporal modulation (TimeFiLM) w.r.t. the use of a
Temporal Encoding (TE) to induce the temporal information in the TimeModAttn model.
A new architecture setting is used (CatTimeAttn), where two changes are implemented: 1)
The temporal modulation is completely removed (or bypassed) from the encoder. 2) The
encoder input vector xi,j, used in the TimeModAttn model, is re-defined in order to include
the values of a juxtaposed TE: xi,j ← cat[xi,j, ti,j], where the TE vector is defined as follows:

ti,j = fTE(ti,j) =


sin (ω1ti,j + ϕ1)
cos (ω1ti,j + ϕ1)

...
sin
(
ωK/2ti,j + ϕK/2

)
cos
(
ωK/2ti,j + ϕK/2

)

 , ωk =
2π

Tk

, (C.1)

where the TE vector has K dimensions with K/2 different periods {Tk}K/2
k=1 and phases

{ϕk}K/2
k=1 . For the sake of a fair comparison, we initialize the TE by using the same set-

ting’s rule of periods and phases used for the Fourier decomposition shown in section §3.4.3.1
(TimeFiLM). Note that the dimensions of the TE (K) follows the proportion K = 2M , where
M is the number of harmonics used in the Fourier decomposition.

Table C.5 shows the late-classification performance results obtained for both, the Ti-
meModRNN model and the CatTimeAttn model. In addition, table C.6 shows the early-
classification performance results.

C.6.2.1. TimeModRNN Model Discussion

From the reported experiments, we observe that the TimeModRNN models achieved
higher performances that the RNN baselines for both, the late-classification and early-
classification. This suggests that the use of the time modulation (TimeFiLM) results in a
better representation of the irregular cadence for the encoder, enhancing the overall perfor-
mance w.r.t. the use of the time difference information. As previously discussed in section
§C.4, this phenomenon could be related with the use of a dual representation of the time
information: time modulation in the encoder and time difference in the decoder.

In fact, we hypothesize that the reconstruction scenario for the RNN baselines is peculiar
as the encoder directly includes the time difference information ∆t in the input vector, which
is the same information used also for the decoder as the input vector (or highly related in
the serial encoder case). This redundant information used for both, the encoder and decoder,
could facilitate the situation where the encoder is learning the mapping of pairs {∆t, x},
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Table C.5: Late-classification performances for the BRF baseline, RNN baselines, and
attention-based models (TimeModAttn) using 100-day multi-band light-curves. Several extra
settings are shown, e.g., TimeModRNN, CatTimeAttn. Both, the serial (S-{}) and parallel
(P-{}) encoders are reported along with several pre-training and data-augmentation schemes
(mean±std from 5-fold cross-validation).

Model b-Precision b-Recall b-F1score b-AUCROC b-AUCPR

BRF (fmode=all; training-set=[r]) .527±.030 .687±.052 .525±.039 .866±.020 .602±.051

Serial Models

S-RNN+∆t (cell=GRU) .545±.034 .706±.070 .556±.045 .879±.034 .610±.066

S-RNN+∆t (cell=LSTM) .550±.031 .711±.070 .558±.040 .887±.033 .621±.070

S-TimeModRNN+∆t (cell=GRU) .581±.033 .737±.061 .596±.045 .898±.026 .651±.058

S-TimeModRNN+∆t (cell=LSTM) .581±.024 .749±.047 .597±.037 .900±.024 .643±.057

S-TimeCatAttn (TE=24; H=8) .577±.021 .745±.046 .581±.035 .905±.023 .647±.064

S-TimeModAttn (M=12; H=8; εt=6/24) .588±.023 .759±.040 .596±.033 .910±.020 .671±.056

Parallel Models

P-RNN+∆t (cell=GRU) .547±.030 .697±.070 .552±.041 .879±.031 .610±.055

P-RNN+∆t (cell=LSTM) .541±.022 .704±.061 .540±.032 .876±.029 .606±.051

P-TimeModRNN+∆t (cell=GRU) .578±.033 .734±.063 .589±.049 .894±.028 .650±.067

P-TimeModRNN+∆t (cell=LSTM) .580±.026 .741±.058 .592±.042 .897±.025 .646±.056

P-TimeCatAttn (TE=24; H=4) .567±.025 .738±.054 .575±.043 .898±.024 .657±.059

P-TimeModAttn (M=12; H=4; εt=6/24) .580±.020 .753±.044 .594±.035 .911±.017 .689±.047

Table C.6: Early-classification performances for the RNN baselines and attention-based mo-
dels (TimeModAttn). The moving threshold-day Curve Average (mtdCA) is used (‡). Several
extra settings are shown, e.g., TimeModRNN, CatTimeAttn. Both, the serial (S-{}) and pa-
rallel (P-{}) encoders are reported along with several pre-training and data-augmentation
schemes (mean±std from 5-fold cross-validation).

Model b-Precision‡ b-Recall‡ b-F1score‡ b-AUCROC‡ b-AUCPR‡

Serial Models

S-RNN+∆t (cell=GRU) .481±.030 .577±.044 .454±.031 .792±.024 .520±.039

S-RNN+∆t (cell=LSTM) .480±.023 .590±.036 .457±.027 .804±.026 .527±.043

S-TimeModRNN+∆t (cell=GRU) .515±.027 .595±.036 .492±.031 .813±.021 .551±.043

S-TimeModRNN+∆t (cell=LSTM) .512±.023 .601±.025 .491±.026 .815±.023 .555±.046

S-TimeCatAttn (TE=24; H=8) .513±.018 .618±.025 .484±.022 .834±.016 .562±.038

S-TimeModAttn (M=12; H=8; εt=6/24) .522±.022 .630±.026 .495±.020 .841±.016 .580±.040

Parallel Models

P-RNN+∆t (cell=GRU) .485±.023 .580±.041 .462±.028 .795±.026 .524±.040

P-RNN+∆t (cell=LSTM) .476±.018 .586±.036 .451±.024 .795±.025 .516±.034

P-TimeModRNN+∆t (cell=GRU) .509±.026 .597±.035 .490±.029 .810±.021 .550±.047

P-TimeModRNN+∆t (cell=LSTM) .513±.021 .601±.033 .490±.025 .814±.022 .550±.043

P-TimeCatAttn (TE=24; H=4) .501±.019 .604±.034 .482±.026 .822±.019 .561±.038

P-TimeModAttn (M=12; H=4; εt=6/24) .514±.018 .621±.027 .499±.019 .841±.015 .587±.029

where x is the observation level, to a representation that can be directly decoded by using
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the same values ∆t handled by the decoder. therefore, the model could use the values ∆t
as pseudo sequential index information instead of the desired meaningful irregular cadence
information to compute the relevant time dependencies, learning a function f(∆t, x) = z
with the encoder and, then, learning the inverse function f−1 with the decoder to recover the
original observation level x by using both values: ∆t and z.

Given the described phenomenon and recalling that the most relevant term in the pre-
processing optimization is the reconstruction term, our conjecture is that the representation
vector generated with the encoder could include automatic features only relevant for the
reconstruction task, entangling the representation for the classification task. This could fi-
nally lead to a sub-optimal performance in the classification for architectures based on RNN
autoencoder models that use ∆t as the irregular cadence information.

Finally, note that the performance results, observed for the TimeModRNN model, are
still lower than the results obtained for the TimeModAttn model. As discussed in section
§4.1.5.2, this effect could be explained because, in contrast to the attention-based models,
the RNN models lack the capability to directly access any observation of the light-curve
(except the current observation). This seems to be especially important when processing SN
light-curves, where the very first observations could be highly informative for this type of
transient event. Note that the RNN baselines may have difficulties to properly capture the
information from early observations as the maximum path length could be too large and
composed of uninformative observations from the SN-extinction region, especially in long-
duration SN light-curves.

C.6.2.2. CatTimeAttn Model Discussion

From the reported experiments, we observe that the CatTimeAttn models achieved lo-
wer performances that the TimeModAttn model for both, the late-classification and early-
classification. Note that, in the late-classification scenario, the CatTimeAttn can be highly
competitive w.r.t. the TimeModAttn model. In contrast, in the early-classification scenario,
the performance difference is larger, suggesting that the TimeModAttn model is a suitable
alternative for the early-classification scenario.

We hypothesize that the simple concatenation of the input vector and the TE vector could
be detrimental because the time information is over-represented in the new resulting input
vector of the encoder. If almost all the components of the input vector are related with time
information (and just few of them with the brightness and/or bands information) then the
model should use extra capacity just to discriminate which components of the input are as-
sociated with the, arguably, most important information: the observation-flux (brightness)12.
Additionally, a risk of overfitting may exist related with this over-representation of the time
information. In fact, we hypothesize that this detrimental phenomenon could be worsened if
a higher number of TE dimensions is used.

Alternatively, the simple concatenation for the input vector may produce a non-normalized
vector, which could be detrimental for the model optimization using GD-based algorithms.

12Note that the results in section §C.6.1 suggest this conjecture.
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For example, the scale range of the values related with the observation-flux components, in
the new input vector, might be lower (attenuated) than the values related with the time in-
formation (TE vector), biasing the optimization process towards the time information. Note
that the two aforementioned effects may not apply for the proposed time modulation as the
observation-flux is well-represented when it is modulated using the time information. In any
case, more experiments should be performed following this line of research.

It is worth mentioning that the proposed time modulation (TimeFiLM) allows us to ac-
cess an extra layer of interpretability for the SN event, exploring the time regions with higher
or lower variability (section §4.1.5.3). In any case, the interpretability of the TE approach
could be further explored with other type of experiments. For example, the Time2Vec (Ka-
zemi et al., 2019) TE encoding could be used when processing light-curves of periodic stars,
searching for correlations between the final learned period values and the intrinsic periods
observed in the light-curve dataset.

C.6.3. Number of MHSelfAttn’s Layers in the Encoder

In this section we study the effect of adding more MHSelfAttn’s layers in the encoder
of the TimeModAttn model. The main motivation for this analysis is to check for possible
variations in the results of the proposed interpretability experiments.

For this, we increase the number of MHSelfAttn’s layers in the encoder from NL = 1 to
NL = 2. Note that, in the case of a single layer (NL = 1), the query vector from the last
MHSelfAttn’s layer (the single MHSelfAttn’s layer in the encoder) can exclusively access to
information from the last observation of the light-curves. In contrast, in the case of NL = 2,
the query vector from the last MHSelfAttn’s layer can access to information obtained from the
complete light-curves because the first MHSelfAttn’s layer can sequentially pre-process the
information by using all the observations of the light-curves. Hence, the following questions
arise: ¿Can the information handled by the last MHSelfAttn’s layer query vector influence
the general behavior of the attention mechanism? In particular ¿Is there a change in the
overall and previous reported attention scores and temporal modulation behavior w.r.t. the
case of a single layer?

When using NL = 2, Fig. C.15 shows the statistics for the high attention scores extracted
from the last layer of the encoder. Fig. C.16 shows the temporal modulation variability.
In general, the results obtained from these interpretability experiments remain unchanged
w.r.t. the results obtained when using NL = 1, suggesting that the use of more MHSelfAttn’s
layers does not heavily affect the general behavior of the attention scores or the temporal
modulation. Arguably, when using NL = 2, a moderately less sparse high attention score
distribution can be observed, where the distribution is slightly even more collapsed to the
early observation-days.
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Figure C.15: Attention-based statistics for the P-TimeModAttn model after pre-training
using NL = 2. In the top row (plots (a.0) and (b.0) corresponding to the g and r band,
respectively), the joint distribution is shown for both local SN-features, the SN-local-slope
and the SN-peak-distance. In the bottom row (plots (a.1) and (b.1)), the conditional joint
distribution is shown using a threshold for normalized attention scores of s̄th = .75. This
allows highlighting the regions with higher attention scores. Visual guides, for zero SN-local-
slope and zero SN-peak-distance, are shown as black lines. Green borders (plots (a.0) and
(a.1)) correspond to the band g. Red borders (plots (b.0) and (b.1)) correspond to the band
r.

153



0.0

0.5

1.0

1.5

2.0

2.5

va
ria

bi
lit

y

×10 3 (a. 0) Scale variability time-function; band=g
variability time-function (one model run)
median variability time-function (median of all model runs)
SN-peak time (empirical dataset median)
post SN last observation-time region (empirical dataset median)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×10 3 (b. 0) Scale variability time-function; band=r
variability time-function (one model run)
median variability time-function (median of all model runs)
SN-peak time (empirical dataset median)
post SN last observation-time region (empirical dataset median)

20 40 60 80 100
time [days]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

va
ria

bi
lit

y

×10 3 (a. 1) Bias variability time-function; band=g
variability time-function (one model run)
median variability time-function (median of all model runs)
SN-peak time (empirical dataset median)
post SN last observation-time region (empirical dataset median)

20 40 60 80 100
time [days]

0

1

2

3

4

5

6

7

×10 4 (b. 1) Bias variability time-function; band=r
variability time-function (one model run)
median variability time-function (median of all model runs)
SN-peak time (empirical dataset median)
post SN last observation-time region (empirical dataset median)

P-TimeModAttn (M=12; H=4; t=6/24)

Figure C.16: Variability functions for the scale time-function (plots (a.0) and (b.0)) and bias
time-function (plots (a.1) and (b.1)) computed from the temporal modulations learned by
the P-TimeModAttn model after the pre-training process for a time range [0, 100] [days]
(using NL = 2). A high variability can be observed before the SN-peak time. Each model
iteration (total of Nruns) is represented with a black curve. The red curves are computed as
the median curve using all the Nruns model iterations. The SN-peak time is computed as
the median empirical maximum brightness time from the original dataset D. The gray region
starts at the empirical median SN last observation-time computed from the dataset D. Green
borders (plots (a.0) and (a.1)) correspond to the band g. Red borders (plots (b.0) and (b.1))
correspond to the band r.
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Annexed D

Alternative Abstracts

D.1. Extended 250 Words Abstract

The following abstract was used in the submitted paper1:

In astronomical surveys, such as the Zwicky Transient Facility (ZTF), supernovae (SNe)
are relatively uncommon objects compared to other classes of variable events. Along with
this scarcity, the processing of multi-band light-curves is a challenging task due to the highly
irregular cadence, long time gaps, missing-values, low number of observations, etc. These
issues are particularly detrimental for the analysis of transient events with SN-like light-
curves. In this work, we offer three main contributions. First, based on temporal modulation
and attention mechanisms, we propose a Deep Attention model called TimeModAttn to
classify multi-band light-curves of different SN types, avoiding photometric or hand-crafted
feature computations, missing-values assumptions, and explicit imputation and interpolation
methods. Second, we propose a model for the synthetic generation of SN multi-band light-
curves based on the Supernova Parametric Model (SPM). This allows us to increase the
number of samples and the diversity of the cadence. The TimeModAttn model is first pre-
trained using synthetic light-curves in a semi-supervised learning scheme. Then, a fine-tuning
process is performed for domain adaptation. The proposed TimeModAttn model outperfor-
med a Random Forest classifier, increasing the balanced-F1score from ≈ .525 to ≈ .596.
The TimeModAttn model also outperformed other Deep Learning models, based on Recu-
rrent Neural Networks (RNNs), in two scenarios: late-classification and early-classification.
Finally, we conducted interpretability experiments. High attention scores were obtained for
observations earlier than and close to the SN brightness peaks. This phenomenon was also
correlated with an early highly variability of the learned temporal modulation.

1https://arxiv.org/abs/2201.08482v2.
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D.2. Extended 300 Words Abstract

In astronomical surveys, such as the Zwicky Transient Facility (ZTF), supernovae (SNe)
are relatively uncommon objects compared to other classes of variable events. Along with this
scarcity, the processing of multi-band light-curves is a challenging task due to the highly irre-
gular cadence, long time gaps, missing-values, low number of observations, etc. These issues
are particularly detrimental for the analysis of transient events with SN-like light-curves. In
this work, we offer three main contributions. 1) Based on temporal modulation and attention
mechanisms, we propose a Deep Attention model called TimeModAttn to classify multi-band
light-curves of different SN types, avoiding photometric or hand-crafted feature computations,
missing-values assumptions, and explicit imputation and interpolation methods. 2) We pro-
pose a model for the synthetic generation of SN multi-band light-curves based on the Super-
nova Parametric Model (SPM). This allows us to increase the number of samples and the
diversity of the cadence. The TimeModAttn model is first pre-trained using synthetic light-
curves in a semi-supervised learning scheme. Then, a fine-tuning process is performed for
domain adaptation. The proposed TimeModAttn model outperformed other Deep Learning
models, based on Recurrent Neural Networks (RNNs), in two scenarios: late-classification
and early-classification. Additionally, the TimeModAttn model also outperformed a Random
Forest (RF) classifier (trained with real data), increasing the balanced-F1score from ≈ .525 to
≈ .596. When training with synthetic data, the TimeModAttn model still achieves a highly
competitive performance w.r.t. to the RF classifier while still maintaining advantages, such
as the unnecessary costly computation of features from the new generated synthetic SN light-
curves. 3) We conducted interpretability experiments. High attention scores were obtained
for observations earlier than and close to the SN brightness peaks. This phenomenon was
also correlated with an early highly variability of the learned temporal modulation.
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