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METODOLOGÍA PARA LA OPTIMIZACIÓN DE ESTRATEGIAS DE 

MANTENIMIENTO PREVENTIVO ENFOCADO EN PLANTAS 

FOTOVOLTAICAS DE GRAN ESCALA 

En las últimas décadas, la energía solar fotovoltaica ha crecido a ritmos increíblemente 

rápidos en cuanto a posicionamiento global y escalabilidad, sin embargo, actualmente faltan 

mecanismos estandarizados para evaluar las políticas de mantenimiento preventivo. Este 

trabajo propone una metodología para la optimización de políticas de mantenimiento de 

plantas fotovoltaicas de gran escala basado en simulaciones de Monte Carlo y Algoritmo 

Genético. La metodología establece un modelo que depende del uso y no del tiempo, creando 

indicadores de estado de salud en función de la degradación acumulada inducida por factores 

de estrés; estos últimos son producidos por la operación y las variables meteorológicas. El 

objetivo es encontrar el máximo beneficio que equilibre los ingresos esperados de la 

generación y los costes esperados de las inspecciones y el mantenimiento preventivo y 

correctivo. 

Los resultados muestran que el plan óptimo puede producir un mayor beneficio que un 

plan basado en las mejores prácticas; sin embargo, esta mejora es a costa de sub mantener 

algunos elementos y sobre mantener otros. Además, no es rentable aumentar el nivel de 

mantenimiento de por vida para compensar el aumento de las fallas en los últimos años; 

adicionalmente, el plan óptimo puede adaptarse a una periodicidad de mantenimiento fija. 

Algunas divergencias en los resultados mostraron que es necesario incorporar limitaciones 

operativas adicionales, como el inventario, la logística y el cumplimiento de los contratos. 
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METHODOLOGY FOR THE OPTIMIZATION OF PREVENTIVE 

MAINTENANCE STRATEGIES FOCUSED ON LARGE-SCALE SOLAR 

PHOTOVOLTAIC PLANTS 

In recent decades, solar PV has grown at incredibly fast rates in global positioning and 

scalability, yet there is a lack of standardized mechanisms to evaluate preventive 

maintenance policies. This work proposes a methodology for the optimization of large-scale 

PV plants maintenance policies built upon a Monte Carlo simulation and Genetic Algorithm. 

The methodology establishes a model depending on usage rather than time, creating health 

state indicators as a function of cumulative degradation induced by stress factors; the latter 

are produced by the operation and meteorological variables. The objective is to find the 

maximum profit that balances the expected revenue of generation, and expected costs of 

inspections, preventive, and corrective maintenance. 

The results show that the optimal plan can produce a greater profit than a plan based 

on best practices; however, this improvement is at the cost of under-maintaining some 

elements and over-maintaining others. Moreover, it is not cost-effective to increase the level 

of lifetime maintenance to compensate for the increase in failures in recent years; 

additionally, the optimal plan can be adapted to fixed maintenance periodicity. Some 

divergences in the results showed that additional operating constraints such as inventory, 

logistics, and contract fulfillment need to be incorporated. 
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1 Introduction 

1.1 Motivation 

The development of renewable energies (REs) in the last decades especially solar 

photovoltaic (PV) and wind contribution has prompted important changes worldwide, both 

in terms of energy and regulatory policies. On the one hand, renewable energy production 

has increased enormously thanks to its accelerated cost reduction and the attractive 

downward trends presented by entities such as the International Energy Agency (IEA) and 

the International Renewable Energy Agency (IRENA). Renewable energy production has 

not only become competitive but even more profitable in some large-scale applications. 

IRENA states that the global weighted-average LCOE of utility-scale solar PV fell 82% 

between 2010 and 2019 [1], where PV technology had the best learning rate. On the other 

hand, due to both climate change and the beneficial features of REs, global governments 

have created ambitious programs for the renovation of their energy matrixes towards the 

next decades, where REs are obvious protagonists. According to the chilean energy policy, 

at least 70% of electricity production must come from REs by 2050 [2], while in more 

ambitious countries, like Germany and Denmark, 100% must come from REs in the same 

time frame. This has motivated an extensive project portfolio, which has driven entities, like 

IEA and consortiums like Solar Bankability (SB), to participate in studies to evaluate the 

risks and impacts of PV projects from a technical and economic point of view. 

Additionally, there has been a trend towards increasing the size of photovoltaic plants. 

This implies that centralized actions, like the maintenance plan, can significantly reduce the 

energy yield if optimal decisions are not taken, and consequently an important profit 

reduction would be perceived by investors. Along with the above, the advance in inverter 

technology has allowed incorporating new possible connection topologies by means of string 

inverters, multi-string inverters, and micro-inverters, in a market where the dominant 

technology has been central inverter for decades. These new topological options expand the 

possibilities of maintenance schedules because the failure impact can be widely different 

among these inverter technologies [3]. 

It is widely accepted by stakeholders that quality operation and maintenance (O&M) 

services mitigate potential risks, reduce the LCOE, improve the PPA prices, and have a 

positive impact on the return of the investment. Likewise, an effective O&M program 

enhances the likelihood that actual production and costs will approach projected values, 

thereby strengthening confidence in the long-term performance and earning capacity of the 

asset. This concept is reinforced if we consider that the life cycle of a PV project can be 
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divided into four stages: development, construction, O&M, and dismantling or repowering. 

According to Solar Power Europe [4] in their last best practices guidelines (2018), the first 

stage lasts between one and three years; the second normally a few months; the third around 

25-30 years; and the last a few months [4]. Moreover, the IEA and SB report that 

maintenance costs can reach 70% of the total annual operational expenditures (OPEX) [5]. 

It should be noted that the growth of solar PV technology has been accelerated, and given 

the continued growth in the size of large-scale PV plants, construction durations and 

dismantling (which depend on the installed capacity) are also tending to increase. 

Additionally, although it may seem logical to establish the specifications of PV systems, 

topology, installation sites, and requirements in general, there is confusion or lack of clarity 

and knowledge on the part of many asset owners and funding entities regarding the 

minimum requirements to be considered [4]. Currently, solar PV plants mainly incorporate 

only the two most essential types of maintenance, which are preventive and corrective 

maintenance. The current knowledge and technology make possible the arising of new 

maintenance types like predictive maintenance (PdM), which uses condition-based 

information and risk models to predict the future behavior of a facility. Industries like 

aeronautics have studied for decades the optimization of their processes, including 

maintenance, which contrasts strongly with the current PV status. One reason for this 

maintenance development delay is due to no international standards have been created to 

support investor decision-making and risk mitigation. 

With the presented above, we understand that maintenance activities are one of the 

most preponderant factors in the long-term yield and the profitability of PV projects. In 

this context, as the PV technology advances, maintenance strategies must also advance with 

it, otherwise, risk assessment becomes increasingly difficult. Therefore, we consider it 

necessary to develop mechanisms for the evaluation of the impact of maintenance policies 

considering the technical and economic characteristics of PV plants, intending to generate 

an orderly and systematic structure that allows the optimization of the maintenance process. 
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1.2 Research hypothesis 

At present, the maintenance policies in the PV industry have not advanced at the same 

level of technological development observed in recent decades. Given the above, the following 

hypothesis is proposed to provide a useful tool for evaluating and implementing optimal 

preventive maintenance policies: 

“It is possible to generate a maintenance policy evaluation methodology for large-scale solar 

PV plants that maximizes the profit and improves the energy production of a PV plant that 

operates under a maintenance plan based on best practices, subjected to the same conditions, 

and considering uncertainty in meteorological variables and maintenance procedures”. 

It should be clarified that there is no international definition for considering a PV plant 

as large-scale, so, inspired by chilean law [6], large-scale PV plants will be considered to be 

all those that exceed 9 MW of capacity and are directly connected to the transmission 

system (see section 4.2 for more details). Nevertheless, emphasis is placed on the scalability 

of the methodology to any size of solar PV plant without further discussion of what specific 

value is considered large-scale. 

1.3 Objectives 

1.3.1 General objective 

The general objective of the thesis is to generate a methodology to optimize the 

preventive maintenance policy of large-scale solar photovoltaic plants through cumulative 

degradation models based on stress factors induced by operation and meteorological 

variables. 

1.3.2 Specific objectives 

1. Investigate the operation mechanism and failure modes of a large-scale photovoltaic 

plant. 

2. Perform state-of-the-art optimization strategies in photovoltaic plants and compare 

them to other areas. 

3. Formulate mathematical degradation models that allow coupling meteorological and 

energetic variables to form degradation models that allow the application of 

maintenance policies. 

4. Design a preventive maintenance optimization methodology using mathematical 

degradation models. 
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5. Analyze a large-scale solar photovoltaic plant using the proposed methodology and 

provide recommendations based on the results obtained. 

1.4 Structure of the thesis 

This document is organized as follows. Chapter 2 starts with the global context of solar 

photovoltaic energy where are reviewed installed capacities, cost evolution, projections, etc. 

This is followed by a complete characterization of the photovoltaic plant, breaking down its 

components and associated failure modes. Thirdly, it is carried out a review of the state of 

the art in relation to maintenance optimization strategies in solar photovoltaic plants and 

other industries. Chapter 3 presents the proposed methodology, where all the elements and 

criteria adopted are developed in detail. The application of the methodology and the 

pertinent analyses are carried out in Chapter 4, where a large-scale solar photovoltaic plant 

is analyzed. Finally, the relevant conclusions are compiled in Chapter 5, where the 

advantages and disadvantages of the methodology are clearly stated, together with future 

work. 

1.5 Scope of the thesis 

The development of this work is focused on the creation of a methodological proposal 

to optimize the maintenance policies of large-scale solar plants. The objective is that this 

methodology is based on usage and not on time, so degradation models that represent the 

stress factors produced by the climate and the operation of the plant must be created. As 

this work explores a new area, there are no points of comparison, so the methodology is 

based on giving the model the freedom to find the best solution with the least number of 

external factors that can modify the results.  

Therefore, among the simplifications taken is not to consider the auxiliary 

consumptions; that is, the model will focus exclusively on the production and performance 

of the plant and the energy it injects to the system. In addition, it is assumed that there is 

an energy contract that values the energy at a constant price, and the injection and 

retirement of energy are performed at the same node. Penalties for non-compliance with the 

contract, both for energy and maintenance periods, are not considered. Neither are economic, 

structural, or stochastic dependencies between the modeled elements considered. It is part 

of the scope of the thesis to analyze the results incorporating uncertainty in the maintenance 

procedures. Moreover, logistics and inventory are not considered in the modeling. For 

validation of the proposed methodology, actual historical average failure rates and costs are 
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used, while for missing information like maintenance plan, criteria based on best practices 

are used. 

  



 

6 

2 Global context and state of the art 

2.1 Introduction 

To provide the basis for a proper understanding of this thesis, chapter 2 starts by 

presenting the technical, climatic, and economic context regarding the operation and 

maintenance of solar PV plants. It is followed by a general review of the state of the art 

associated with the optimization of preventive maintenance, showing the different 

approaches and applications followed in the literature. Finally, different preventive 

maintenance optimization methodologies in solar PV plants are presented, where the 

findings in the literature are discussed and contrasted with the scope of this thesis. 

2.2 Climate change 

Taking action to reduce the impact of climate change is crucial to combat global 

warming. The consequences of rapidly rising global temperatures will be far-reaching and 

devasting for humans and the environment unless urgent actions are taken globally to curb 

emissions [7]. In this context, for almost three decades, world governments have met every 

year to forge a global response to the climate emergency. Under the 1992 United Nations 

Framework Convention on Climate Change, every country on earth is treaty-bound to 

“avoid dangerous climate change”, and find ways to reduce greenhouse gas emissions globally 

in an equitable way [8]. 

Since the first Conference of Parties (COP1) of Berlin in 1995, two conferences have 

been the most important: Kyoto (COP3) and Paris (COP21). At the COP3 summit, the 

signatory governments of these countries agreed to reduce polluting emissions by 5 % on 

average between 2008 and 2012, taking as reference the 1990 levels. At the COP21 summit, 

two important points can be highlighted. First, the Paris agreement was characterized by 

the consensus of non-binding commitment, and the lack of enforcement mechanisms. It 

recognizes the need for global emissions to reach a ceiling as soon as possible, assuming that 

this task will take more time for developing countries. In addition, it includes the importance 

of achieving a path of reduction of emissions in the medium and long term, consistent with 

a scenario of carbon neutrality in the second half of the century. Second, COP21 limited the 

global increase of the temperatures below 2°C and to try that the rise is not superior to 

1.5°C [9]. 



 

7 

2.3 Renewable energies worldwide 

Implicit in the goals agreed in COPs is the need for a transition to a low-carbon energy 

sector, which accounts for two-thirds of global emissions. Renewable Energy (RE), coupled 

with energy efficiency gains, can provide 90% of the CO2 emissions reductions needed by 

2050 [10]. Additionally, IRENA’s analysis demonstrates that doubling the share of 

renewables in the global energy mix by 2030 is possible with existing technologies, and this, 

combined with improved energy efficiency, would put the world on track to keep global 

warming under 2°C [7]. Also, a key pillar of several countries’ mitigation strategies is the 

decarbonization of the energy sector through renewable energy deployment [7], which in 

combination with cost reduction, has motivated an accelerated development and integration 

of REs.  

2.3.1 Installed capacity 

At the end of 2021, global renewable generation capacity amounted to 3064 GW. Wind 

and solar energy reached 849 GW and 825 GW, respectively. Other renewables included 143 

GW of bioenergy and 16 GW of geothermal, plus 524 MW of marine energy. Renewable 

generation capacity increased by 257 GW (+9.1%) in 2021. Solar energy continued to lead 

capacity expansion, with an increase of 133 GW (+19%), followed by wind energy with 93 

GW (+13%). Hydropower capacity increased by 19 GW (+2%) and bioenergy by 10 GW 

(+8%). Geothermal energy increased by just under 1.6 GW. Solar and wind energy 

continued to dominate renewable capacity expansion, jointly accounting for 88% of all net 

renewable additions in 2021 [11]. Figure 1 shows the evolution in the installed capacity of 

renewable energies in the last decade. 

With the sustained increase in solar capacity worldwide, installed solar capacity has 

now outgrown installed wind power capacity. Expansion in Asia was 76 GW in 2021 

(compared to +77 GW in 2020), with major capacity increases in China (+53.0 GW) and 

India (+10.3 GW). Japan also added 4.4 GW and Republic of Korea expanded solar capacity 

by almost 3.6 GW. Outside Asia, the United States added 19.6 GW of solar capacity in 

2021, Brazil and Germany respectively added 5.2 GW and 4.7 GW, and the Netherlands 

and Spain added more than 3 GW [11]. 

Regarding the renewables forecast, the IEA states that the growth of renewable capacity 

is forecast to accelerate in the next five years, accounting for almost 95% of the increase in 

global power capacity through 2026. They declare that, globally, renewable electricity 

capacity is forecast to increase by over 60% between 2020 and 2026, reaching more than 
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4800 GW, which is equivalent to the current global power capacity of fossil fuels and nuclear 

combined [12]. 

 

Figure 1 Installed capacity of renewable energies worldwide in the last 10 years [13]. 

2.3.2 Renewable generation 

Of all energy sources in the electricity sector, only the use of renewables expanded in 

2020, despite economic disruptions caused by Covid-19. Renewables-based electricity 

generation increased by 7.1% (a record 505 TWh) – almost 20% higher than the average 

annual percentage growth since 2010; solar PV and wind each accounted for about one-third 

of total 2020 renewable electricity generation growth, with hydro representing another 25% 

and bioenergy the remainder. The share of renewables in the global electricity supply reached 

28.6% in 2020, the highest level ever recorded [14]. 

Despite these favorable numbers, renewable power deployment as a whole still needs to 

expand significantly to meet the Net Zero Emissions (NZE) by 2050 Scenario share of more 

than 60% of generation by 2030; yearly generation must increase at an average rate of nearly 

12% during 2021-2030, almost twice as much as in 2011-2020. In fact, record generation 
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growth in 2020 and the expected increase in capacity additions in upcoming years will not 

be sufficient to ensure Net Zero levels. Enlarging annual capacity additions from 134 GW 

in 2020 to 630 GW in 2030 will require considerable effort [14]. 

 

Figure 2 Renewable power generation by technology, historic, and in the Net Zero Scenario 2000-2030 [14]. 

2.3.3 Costs evolution 

Electricity costs from renewables have fallen sharply over the past decade, driven by 

improving technologies, economies of scale, increasingly competitive supply chains, and 

growing developer experience [1]. This trend is projected to continue, smacking renewables 

increasingly competitive with fossil fuels in countries across the world and the least-cost 

option in a growing number of markets. In this framework, renewable technologies now 

represent the most economical solution for new capacity in a growing number of countries 

and regions and are typically the most economical solution for new grid-connected capacity 

where suitable resources are available [15]. 

According to the latest cost data from the IRENA [1], the global weighted-average 

LCOE of utility-scale solar PV fell 85% between 2010 and 2020, while that of concentrating 

solar power (CSP) fell 68%, onshore wind 56%, and offshore wind 48%. Electricity costs 
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from utility-scale solar PV fell 7% year-on-year in 2020, reaching USD 0.057 per kilowatt-

hour (kWh), which is lower than the 13% experienced in 2019. The global weighted-average 

LCOE of the onshore and offshore wind both reached USD 0.039/kWh and USD 0.084/kWh, 

respectively. Costs for CSP - still the least-developed among solar and wind technologies -  

fell 1% to USD 0.108/kWh [1]. Figure 3 shows the cost reduction of global weighted-average 

LCOE from principal utility-scale renewable technologies for 2010 and 2020. Figure 4 shows 

the evolution of total installed costs, capacity factor, and LCOE for solar PV technology 

between 2010 and 2020.  

It should be noted that these values reported are based on global statistics, so the data 

may not coincide for areas of high radiation. Regarding the capacity factor, both systems 

with a fixed structure and tracking devices are considered in the study. It can be appreciated 

that the presence of PV plants in high radiation areas with tracking systems is not 

predominant in the global average; consequently, the global weighted average resembles 

values characteristic of plants with fixed structures in areas without high radiation, as is the 

case in most of Europe. 

 

Figure 3 Global weighted-average levelized cost of electricity from utility-scale renewable power generation 

technologies, 2010 and 2020 [1]. 
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Furthermore, solar and wind power still have impressive “learning rates1” since 2010. For 

the period 2010 to 2020, the LCOE learning rate was 39% for solar PV, 36% for CSP, 36% 

for onshore wind, and 15% for offshore wind.  

 

Figure 4 Global weighted-average total installed costs, capacity factors, and LCOE for solar PV, 2010-2020 [1]. 

2.3.3.1 Operation and maintenance costs for solar PV 

The operation and maintenance (O&M) costs of utility-scale solar PV plants have also 

declined in recent years. These declines have been driven by module efficiency improvements, 

that have reduced the surface area required per MW of capacity. At the same time, 

competitive pressures and improvements in the reliability of the technology have resulted in 

system designs optimized to reduce O&M costs and improved O&M strategies that take 

advantage of a range of innovations - from robotic cleaning to “big data” analysis of 

performance data to identify issues and preventative interventions ahead of failures - to 

drive down O&M costs and reduce downtime [1].  

For the period 2018-2020, O&M cost estimates for utility-scale plants in the United 

States have been reported at between USD 10/kW and USD 18/kW per year. Average 

utility-scale O&M costs in Europe have been recently reported at USD 10/kW per year, 

with historical data for Germany suggesting O&M costs came down 85% between 2005 and 

2017, to USD 9/kW per year. Recently, costs seem to be dominated by preventive 

 

1 The “learning rate” is the percentage reduction in costs that is achieved for every doubling of cumulative 

installed capacity. 
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maintenance and module cleaning, with these making up as much as 75% and 90% of the 

total, depending on the system type and configuration. The rest of the O&M costs can be 

attributed to unscheduled maintenance, land lease costs, and other component replacement 

costs [1] [3] [16].  

2.4 Chilean scenario 

Chile has extraordinary radiation conditions, which could supply all chilean 

consumption with solar energy about 60 times or 20% of global energy consumption [17]. 

According to Climatescope 2019 elaborated by BlombergNEF, Chile is in second place in 

the global ranking of most attractive nations for investment in renewable energies. Chile 

stands out as the only emerging market where the government and utilities have made a 

serious commitment to phase out coal generation [18].  

2.4.1 Installed capacity and generation of renewables 

In Chile, there are three independent electric systems: Sistema Eléctrico Nacional 

(SEN), Sistema Eléctrico de Aysén and Sistema Eléctrico de Magallanes; where the SEN 

account for more than 99% of the total installed capacity of the country. The installed 

capacity of the SEN to March 2022 was 32399 MW, where 12331 MW corresponds to non-

conventional renewable energies2 (NCRE). Solar PV amounts to 20.7% of the total installed 

capacity, wind 12.8%, geothermal 0.2%, CSP 0.3%, and hydropower 27% [19]. Figure 5 

shows the increase in NCRE installed capacity in the last 13 years.  

In concordance with the global climate scenario, chilean regulation established that at 

least 20% of the cumulative annual energy must be generated by NCRE in 2025. In this 

context, to March 2022, the total installed capacity of NCRE reached 38.1%, where 34.5% 

of the cumulative annual energy was generated by NCRE [19]. The development of 

renewable energies, the chilean energy policy and cost reduction have also allowed NCRE 

to have an accelerated penetration in the chilean energy market. 

 

2 The non-conventional renewable energies are defined by chilean regulation as wind, solar, bioenergy, 

geothermal, marine and mini hydropower (less than 20 MW) [91]. 
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Figure 5 Evolution of chilean installed capacity of non-conventional renewable energies, March 2022 [19]. 

2.5 Solar PV plants 

As we observed in previous sections, solar PV is one of the most promising technologies 

to face global warming and support the decarbonizing process. It is the interest of this work 

to understand the processes involved in solar PV maintenance; therefore, the next sub-

sections present the components, topologies, and maintenance associated with solar PV 

plants. 

2.5.1 Components of solar PV plants 

As we know, photovoltaic technology has increased enormously in the last decades with 

a varied number of applications. Its versatility allows solar PV plants to work alone or in 

cooperation with other technologies such as energy storage, wind, fuel cell, hydro turbines, 

and diesel generators [20] (see Figure 6). Since our interest is in large-scale PV plants, we 

will focus on grid-connected PV systems without considering any storage system. A simple 

schematic view of a large-scale PV system is shown in Figure 7, where the basic chain of 

operation is composed of PV panels (or PV modules), a combiner box, an inverter, a 

transformer, and the electrical grid; however, there are other important components present 

in the generation process that can affect the PV performance such as supporting structures 

(fixed or tracked), grounding, wires, switches, breakers, fuses, and the monitoring and 

communicating system. 

For simplicity purposes, we organized the main components of the PV system into five 

categories: generation system, conversion system, transmission system, transformation 

system, and monitoring and communicating system. Each system is organized as follows:  
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➢ Generation system: contains all components that participate directly or indirectly in 

the electric generation (i.e. PV modules, supporting structures and grounding). 

➢ Conversion system: contains the inverters, which convert the energy of PV strings 

from DC to AC. Depending on the topology, the generation and conversion system can 

be just one system (i.e. when using micro-inverters). 

➢ Transmission system: contains the elements that participate in the transmission of 

the AC or DC energy (i.e. AC/DC wiring, combiner box, switches, breakers and fuses); 

this system connects all other systems described. 

➢ Transformation system: contains the LV/MV/HV transformers, which transform 

energy from the low voltage (LV) to medium/high voltage (MV/HV) for the injection 

to the grid. 

➢ Monitoring and communicating system: contains all elements that allow the 

supervision of the PV system (energy and safety) and the communication needed to the 

correct functioning (i.e. sensors for electrical and meteorological monitoring, energy 

measurement for reporting to the authority and energy valuation, communication 

systems, security cameras, and intruder alarms for mitigating risks like theft and 

vandalism). 

 

Figure 6 Applications of the photovoltaic sector (image reconstructed from [20]). 
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Figure 7 Simplified diagram of a grid-connected large-scale PV system (edited from [21]). 

2.5.1.1 Generation system 

 PV panels  

The basis unity of PV panels is the solar cell, which converts solar energy into electrical 

energy. Each panel is constructed with numerous solar cells, which are connected in series, 

and then encapsulated in a special frame. Some known solar cell materials are crystalline 

silicon (c-Si), multi-crystalline silicon (m-Si), and amorphous silicon thin film (a-Si), where 

the first two have dominated the utility market during the last years. [22].  

 Supporting structures 

The supporting structures place the PV panel in the correct orientation for maximizing 

the PV generation. In large-scale applications, it is usually used ground-mounted structures, 

which can be either fixed tilt or track the movement of the sun, either in one axis or two 

axes [3] [23]. 
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 Grounding 

In all electrical systems, grounding is a mechanism for ensuring the safety of the public 

during the installation’s decades-long life. In this period, the basic PV module can produce 

potentially dangerous currents and voltages. Metal enclosures containing electrical 

components may become energized as a result of insulation or mechanical failures. Energized 

metal surfaces, including the metal frames of PV modules, can present electrical shock and 

fire hazards [24]. 

2.5.1.2 Conversion system 

 Inverter 

The inverters are electronic devices that permit the conversion from DC to AC power, 

which can be done through different topologies. Depending on the topology, its participation 

in the PV system can be more or less critical. The main topologies known are the central 

inverter, string inverter, multi-string inverter, and AC module integrated inverter (micro-

inverter) [3] [22]. 

2.5.1.3 Transmission system 

 AC/DC wiring, switches, breakers, and fuses 

These elements are presents in both the AC and DC sides; they permit the correct 

transmission of the energy, and proper handling and protection of the PV system. The 

criticality of AC and DC elements relies on the topology used in the PV system (i.e. if a 

central or multi-string inverter is used, a fault in DC-side wiring is less critical than in AC-

side wiring because less energy is lost). 

 Combiner box 

The combiner box joins the output of multiple strings of the PV modules with the 

inverter; its principal purpose is to protect the inverter from the DC side. Therefore, a 

combiner box usually contains overcurrent protection devices, disconnectors, and surge 

protective devices; depending on the application, combiners can be equipped with monitoring 

devices to measure current, voltage, and temperature [25]. 

2.5.1.4 Transformation system 

 Transformer 

In large-scale PV plants, two types of transformers are used. The first one (Tn) raises 

the voltage from the PV inverters to the range of 13.8–46 kV. The second one (T-HV) has 
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two functions: (i) to provide galvanic isolation for the PV plant from the electrical grid and 

(ii) to raise the voltage from the PV plant to the electrical grid voltage [22]. 

2.5.1.5 Monitoring and communicating system 

The main purposes of a monitoring and communicating system are to measure the 

energy yield, provide the information requested by the authority, assess the PV system 

performance, and quickly identify design flaws or malfunctions. Many large PV systems use 

analytical monitoring to prevent economic losses due to operational problems [26]. Besides, 

the monitoring system can include safety aspects (i.e. security cameras, intruder alarms, 

etc.) to protect the facility against theft and vandalism [3]. 

2.5.2 Topologies for PV plants 

As shown in Figure 7, in a solar farm, a large number of PV panels are connected 

hierarchically; meaning that multiple PV panels are connected into a PV string, and multiple 

PV strings are connected together to a combiner box [21]. The number of PV panels 

connected into a PV string and the number of strings connected into a combiner box can 

change depending on the inverter design, which defines the topology used.  

In PV plants, there are four basic topologies [3] [22]: (i) central inverter, (ii) string 

inverter, (iii) multi-string inverter and (iv) AC module integrated inverter (micro-inverter). 

Topologies (i), (ii) and (iii) are commonly used in large-scale applications; (iv) is still in 

development. The correct choice of the topology according to the power output, location, 

reliability, cost, and efficiency is quite important because the power produced by the 

different topologies is affected by solar radiation and the shading effect [22]. A simple 

illustration of the mentioned topologies is shown in Figure 8. 

The central inverter topology (see a 2-string central inverter in Figure 8.a) interconnects 

several thousands of PV panels to one inverter through combiner boxes. The disposition of 

these PV panels is clustered into PV arrays. Each array has hundreds of PV strings 

connected in parallel, and each string has hundreds of PV panels connected in series. Finally, 

the combiner boxes gather the arrays and connect them to the inverter input. The string 

inverter topology (see Figure 8.b) connects one PV string with one inverter; it usually 

includes a DC-DC converter for the MPPT of the system and does not need combiner boxes. 

The multi-string inverter topology (see Figure 8.c), as in the last point, connects one PV 

string to a DC-DC converter; but then, 4 or 5 DC-DC converters are connected to one 

inverter, which may or may not be closed to the DC-DC converter. The AC module 

integrated inverter topology (see Figure 8.d) has one inverter per each PV panel [22]. The 
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typical electrical characteristics related to the technology of the four kinds of inverters are 

shown in Table 1. 

 

Figure 8 PV inverter topologies. (a) central inverter, (b) string inverter, (c) multi-string inverter, and (d) AC module 

integrated inverter (edited from [22]). 

 

Table 1 Typical electrical characteristics of PV inverter topologies [22]. 

Inverter topology P [kW] Vin MPPT DC [V] Vout AC [V] f (Hz] 

Central 100 - 1500 400 - 1000 270 - 400 50, 60 

String 0.4 - 5 200 - 500 110 - 230 50, 60 

Multi-string 2 - 303 200 - 800 270 - 400 50, 60 

Module integrated 0.06 - 0.4 20 - 100 110 - 230 50, 60 

 

3 In 2022, there are already inverters reaching 100 kW. 
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2.5.3 Failure modes of PV plants 

Regardless of the degree of sophistication of a system, all systems fail at some time. The 

failure modes and frequency of failures transform maintenance operations into a problem 

specific to each area of study. A thorough understanding of the failure modes of a system 

can make the difference between an adequate maintenance program or an ineffective one. 

More specifically, the optimal maintenance plan for one system may be quite inefficient in 

another. 

The study of failure modes in PV plants has received much attention in recent decades, 

where PV panels and the inverter have been clear protagonists. The following is a general 

review of the main failure modes present in solar PV plants focused on their impact on the 

generation. For a more comprehensive understanding, please refer to the references cited 

below. The structure adopted is the same as defined in 2.5.1. 

2.5.3.1 Generation system failure modes 

 PV panels 

Photovoltaic panels are probably the most studied elements in the entire generation 

chain. Numerous studies address the physics to the reliability of the panels, providing a 

complete characterization of this element. Our interest is to understand the failure 

mechanisms of photovoltaic panels and their impact on power generation. According to the 

literature [27] [28] [29] [30], the most characteristic and significant failure modes are listed 

below: 

 

1. Delamination 

2. Discoloration 

3. Busbar/Frame corrosion 

4. Cell cracks and Broken glass 

5. Hot spots 

6. Defective by-pass diode 

7. Bubble formation 

8. Potential induced degradation (PID) 

9. Weld ribbons failure 

10. Snail tracks 

11. Broken interconnections and weld 

ribbons

Failures in photovoltaic panels can be caused by environmental factors, human 

intervention, factory defects, aging, etc. In general, a panel failure is not considered critical 

because of the large number of panels involved, and this causes minimal energy losses in the 

short term; moreover, the repair is simple and fast. In this context, hot spots, PID, and by-

pass diode faults produce the highest performance losses in this time frame. All other failure 

modes generally lead to accelerated aging in the long term. For a more specific review, please 

refer to [27] [28] [29] [30]. 
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 Supporting structures 

Supporting structures are the least failed elements in the entire system; they have 

especially low failure rates and generally do not have a major impact on PV generation. 

Supporting structures can have structural, mechanical, control, or electrical failures. Among 

the most reported failures are the following [31] [32]:  

1. Wind damage 

2. Tracker failure 

3. Misalignment (ground instability) 

4. Structural torsion 

5. Control system 

6. Corrosion 

7. Oil leakage (tracker) 

8. Broken structure

As mentioned above, supporting structure failures have a low impact on the generation 

and repair is simple and quick in most cases; although failures can be aggravated by 

improper design. These failure modes are caused by factors such as dust, humidity, solar 

exposure, etc. The most common and short-term failures are usually in the mechanical and 

control area; such as tracker failures and control systems. Long-term failures mostly affect 

the structural part, producing structural torsion, structure breakage, corrosion, etc. 

 Grounding 

Grounding is a fundamental element in any electrical system. In the photovoltaic 

system, a properly installed grounding system provides stability and a correct reference for 

the operation of the electronic equipment, including the inverter, and also protects the 

operators from abnormal operating conditions. Faults associated with grounding are mainly 

due to improper installation or design. These can cause corrosion problems, neutral currents, 

instability conditions of the neutral reference, safety problems, among others. Corrosion can 

be considered a long-term failure, however, under certain conditions, corrosion can appear 

even within a year [33]. The remaining failure modes are due to improper installation or 

external factors (such as phase-to-ground fault) and can occur at any time; their 

identification is mainly limited to the detection capability of the operators. 

2.5.3.2 Conversion system failure modes 

 Inverter 

The inverter is among the most studied and characterized elements of the entire 

photovoltaic system since it is also used in systems like wind power and other power 

electronics applications. The more complex an element, the more forms it can fail. A long 

list of failure modes evidences this in the researches and reports found in the literature [31] 
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[32] [34] [35] [36] [37] [38]. In this sense, a fairly representative classification of the inverter 

failure modes is presented in [38], shown below (complemented with the literature found): 

1. Power semiconductors Module  

a. IGBT 

i. Thermal runaway 

ii. Ceramic substrate to base plate solder fatigue 

iii. Emitter wire bond fatigue  

iv. Partial discharge in insulation gel 

b. Freewheeling diodes  

i. Static high voltage breakdown 

ii. Rising leakage current 

iii. Snappy recovery 

iv. Reverse recovery dynamic avalanche 

v. High power dissipation 

2. DC link capacitator 

a. Aging 

b. Overvoltage 

c. Overheating 

d. Humidity 

e. Radiation 

f. vibration 

3. AC/DC contactor 

a. Fails to open or open late 

b. Open by mistake 

c. High resistance contactor 

d. Fails to close 

4. Cooling systems 

a. Mechanical 

i. Cage damage 

ii. Bearing failures 

iii. Lubrication deterioration 

iv. Pollution 

b. Electrical 

i. Cracks on printed circuit board the fan 

ii. Wiring errors 

iii. Electrical overstress 

5. Printed circuit board (PCB) 

a. Delamination between PCB’s layers (due to overheating, soldering repairs) 
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b. Cracks in the boards 

c. Ion immigration (due to high humidity and electrical potential) 

d. Component soldering 

6. Control software 

a. Launch failure 

b. Loss of monitoring data 

c. Grounding issues 

d. Firmware issues 

e. Maximum power point tracker failure 

f. Communication failure 

 

Of this extensive list, failures associated with control, pollution, electric protection 

systems, and human intervention are the most common and short-term. The rest of the 

failure modes appear as the elements age and fatigue due to operation and environmental 

factors. It should be noted that inverter parts can be replaced to a greater or lesser 

magnitude depending on the type of inverter and the maintenance strategy. The two most 

common maintenance strategies are total replacement at the end of the inverter's lifetime 

and reconditioning to extend the inverter's lifetime to the total project period. Each project 

decides the path to follow and consequently its most appropriate maintenance plan. 

2.5.3.3 Transmisión system failure modes 

 Combiner box, AC/DC wiring, switches, breakers, and fuses 

Transmission system failures can be divided mainly into two categories: DC side and 

AC side. Failures on the AC side produce higher generation losses as they carry several 

times the power of the DC side (depending on the plant configuration); however, a failure 

on the DC side is not negligible at all. In most cases, the failure is significant but its repair 

is quick and simple. Among the main failure modes of the transmission system are the 

following [32] [34] [39]: 

1. Improper installation 

2. Wrong/absent cables connection 

3. Broken/burned connectors 

4. Damaged/corroded cables 

5. Broken, missing or corroded cover 

6. Broken cable ties 

7. Conduit failure 

8. Wrong connection, isolation and/or 

setting of strings 

9. UV aging 

10. Cables undersized 

11. Wrong wiring  

12. Theft cables 

13. Animal intervention 

14. Vandalism 
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15. Strong wind 

16. Pulled cables 

17. Insulation failure 

 

 Of these failure modes, operational failures such as burned connectors are 

difficult to predict and can occur throughout the life of the project, but since they are 

quick and simple to repair, good inventory management is sufficient. Environmental factors 

and human intervention are the major contributors to failures in this system, where 

weather affects long-term failures, while humans can induce failures at any time. 

2.5.3.4 Transformation system failure modes 

 Transformer 

Transformers are another well-known element used in all electrical systems. A failure 

at this level can already represent a considerable loss and it depends on the maintenance 

contract the response times depending on the failure rate of the plant and the severity of 

failures [4]. The transformer failures mode can be mainly categorized into mechanical, 

electrical, and thermal failures. Among the main failure modes are the following [32] [34] 

[40] [41]: 

1. Connection problems 

2. Overheating 

3. Oxidized or degraded parts 

4. Broken parts 

5. Improper/inadequate installation 

6. Broken transformer 

7. Wrong transformer configuration 

8. Soiling 

9. Open/short circuit 

10. Insulation failure 

11. Manufacturing defects 

12. Overloading 

13. Line surge 

14. Improper maintenance 

15. Lightening 

16. Sabotage 

17. Moisture 

18. Oil contamination 

 

From the presented failure modes, insulation and line surge failures are the most 

preponderant [40], where these failures can be caused by electrical, mechanical, or thermal 

stress. These failures are within the long term and are mainly due to operation and aging. 

The human factor, besides being capable of inducing failures, can accelerate aging when 

maintenance is defective or insufficient and when the transformer is operated under overload. 

These bad practices can also aggravate failures produced by environmental factors, such as 

oxidation and soiling.  
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2.5.3.5 Monitoring and communicating system failure modes 

In general, monitoring and communication system failures are of low occurrence and 

can be easily resolved.  Often the reason for a failure is unknown and in many cases, it is 

resolved by simply rebooting the system. The main failures occur in the servers, 

communication with the PV plant, software, presence of animals, problems with the service 

provider, Power Plant Control (PPC), among others. In many cases the problem is external, 

but it directly affects the PV plant, so the problem must be solved by the responsible parties 

within the contractual framework [4] [26] [31]. 

2.5.4 PV plants maintenance based on current best practices 

As a natural consequence of age or exposure to environmental factors, industrial systems 

are affected by degradation, which leads to system failures; a system is said to fail when it 

is no longer capable of delivering the designed outputs. These failures could generate safety 

and quality issues, equipment damage, and unexpected machine unavailability; some failures 

can be catastrophic in the sense that they can result in serious economic losses, affect human 

lives, and do serious damage to the environment. The degradation can be controlled, and 

the likelihood of catastrophic failures reduced through maintenance actions [42] [43]. Overall, 

maintenance can be described as a combination of all technical and administrative actions 

including supervision and actions intended to retain or restore the system into a state in 

which the system can perform a required function [44]. 

As the plant becomes older, operation and maintenance (O&M) become more and more 

important for improving the performance of the plant. An effective O&M program will 

enhance the likelihood that a system will perform at or above its projected production rate 

and cost over time. It, therefore, reinforces confidence in the long-term performance and 

revenue capacity of an asset [32].  

Currently, it is widely acknowledged by all stakeholders that high-quality O&M services 

mitigate potential risks, improve the LCOE and Power Purchase agreement (PPA) prices, 

and positively impact the return on investment. This can be highlighted if one considers the 

lifecycle of a PV project which can be broken down into the 4 phases below. The O&M 

phase is by far the longest [4]: 

➢ Development (typically 1 - 3 years) 

➢ Construction (a few months) 

➢ Operation & Maintenance (typically 20 - 35 years) 

➢ Dismantling or repowering (a few months) 
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It is worth mentioning that the information mentiond above is based on European statistics 

from the last version of Solar Power Europe Best Practices guidelines (2018), which are still 

changing from year to year as PV technology and projects evolve, and as more global 

experience is gathered; thus, these amounts have been changing to date. For instance, given 

the increasing size of solar plants, the construction period may be longer than 1 year; the 

lifetime may be reduced in the presence of highly demanding desert environments; and the 

economic and ecological effects of decommissioning a PV plant may impact project lifetime 

and costs more than expected, as empirical evidence for large-scale projects is still lacking. 

Therefore, increasing the quality of O&M services is important, and in contrast, neglecting 

O&M is risky. The PV industry - a “young” industry that evolves also in the services 

segment - offers a wide range of practices and approaches. Although this is partly logical, 

reflecting the specificities of each system, topologies, installation sites, and country 

requirements, there is a confusion or lack of clarity and knowledge of many Asset Owners 

and funding authorities (investors or/and banks) of what the minimum requirements should 

be. 

A reason for this lack of clarity is due to O&M practices and approaches, historically, 

have not been standardized, and instead, they were implemented in various proprietary 

methods. This approach can increase the cost to projects and portfolios, as well as raise the 

perception of risk from investors [3]; current standardization still does not fill in the gaps or 

clarify the requirements and their implementation. Consequently, although several technical 

international standards can be followed in maintenance, in operations, which also covers 

planning, scheduling, and administrative tasks, there are many shortcomings [4]. 

2.5.4.1 Components of PV maintenance 

The O&M for any profitable project is planned to earn sufficient returns over the 

investment. Consequently, the proper management (O&M) of the assets incorporated into 

the existing infrastructure, for the operational continuity of the photovoltaic plant, results 

in an efficient use of the economic resources [23].  

In general terms, all kinds of maintenance actions are related to corrective and 

preventive maintenance [45]. For example, when a component fails, independent of the 

maintenance policy used, it is necessary to make corrective actions to replace or restore the 

component to an acceptable operating condition; condition-based maintenance uses continue 

monitoring for analyzing the system in real-time status and activating alarms to announce 

that preventive maintenance is required; predictive maintenance utilizes historical data and 

the information generated with condition-based maintenance for learning the behavior of a 

system and elaborating prognostics useful for establishing the correct time to realize 
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preventive maintenance. Thus, the main components of a maintenance plan are corrective 

maintenance (CM), preventive maintenance (PM), condition-based maintenance (CBM), 

and predictive maintenance (PdM). In the next sub-sections, it is given a detailed description 

of maintenance types focused on PV plants. 

 Corrective maintenance 

Corrective maintenance is the most elemental maintenance, which was the natural 

protocol for the first industries. It covers the activities performed by the maintenance team 

to restore a failed PV solar plant, equipment, or component to a status where it can perform 

the required function. The CM takes place after a failure detection either by remote 

monitoring and supervision or during regular inspections and specific measurement activities 

[4]. While a system is down or when output is reduced, lost revenue accrues; however, only 

if there is an opportunity to repair more efficiently shortly, repairs should be delayed [3]. 

According to Solar Power Europe [4], corrective maintenance includes three activities: 

➢ Fault diagnosis: also called troubleshooting to identify fault cause and localization. 

➢ Temporary repair: to restore the required function of a faulty item for a limited time, 

until a repair is carried out. 

➢ Repair: to restore the required function permanently. 

Also, corrective maintenance can be divided into three levels of intervention: 

➢ 1st level: intervention to restore the functionality of a device without the need for 

substituting a component. 

➢ 2nd level: intervention to restore the functionality of a device that requires the 

substitution of a component. 

➢ 3rd level: intervention to restore device functionality with a necessity to intervene on 

the software of the device. 

Corrective maintenance requires man-hours to identify, analyze, and fix the fault, or 

rectify the failure. The cost of the activity varies depending on the nature of the fault or 

failure and the quality of the preventive maintenance program. Effective corrective 

maintenance requires good detection capabilities, starting with the monitoring system that 

detects the error and can supply plant production and condition data that aid in 

troubleshooting the problem. A “smart monitoring” system can be especially effective in this 

way. The speed with which the personnel rectifies the problem is a function of the tools at 

their disposal [5]. 
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One of the most difficult tasks of the corrective maintenance is the spare parts 

management because it is an inherent and substantial part of O&M that should ensure the 

spare parts are available promptly for CM to minimize the downtime4 of (a part of) a solar 

PV plant while minimizing the costs of spare parts storage [4]. 

 Preventive Maintenance 

Preventive Maintenance activities are the core element of the maintenance services to 

a PV plant. It comprises regular visual and physical inspections, as well as verification 

activities conducted with specific frequencies of all key components, which are necessary to 

comply with the operating manuals and recommendations issued by the Original Equipment 

Manufacturers (OEM); PM must also maintain the equipment and component warranties 

in place and reduce the probability of failure or degradation. This maintenance is carried 

out at predetermined intervals or according to prescribed OEM and O&M manuals [4]. Also, 

PM ought to be balanced by financial cost to the project; therefore, the goal is to manage 

the optimum balance between the cost of scheduled maintenance, yield, and cash flow 

through the life of the system [3].  

One major O&M issue is related directly to improper maintenance protocols, either from 

the perspective of maintenance frequency or the maintenance procedure itself. In general, 

the maintenance works should follow the PV component manufacturer guidelines. A failure 

to do so could cause not only damage to the component but is also likely to result in the 

voiding of the manufacturer's warranty [5]. 

Preventive maintenance protocols depend on system size, design, complexity, and 

environment [3]. Meteorological conditions that affect the maintenance include humidity, 

high thermal gradients, snow, pollen, effects of animals, high-UV radiation, marine 

environments, high-speed winds, industrial pollution, soiling due to agriculture or building 

construction, among others [23]. Some typical activities that PM includes are visual 

inspections, housekeeping of components, cleaning PV panels, vegetation control, wires 

tightening, adjusting parameters, re-calibration of sensors, and replacement of defective 

components [5]. The larger the PV plants become, the higher the impact of preventive 

maintenance in O&M costs and energy yield. Hence, it is useful to have advanced tools for 

monitoring and predicting the PV plant’s performance. 

 

4 Downtime: time when the PV system cannot provide power to the load, expressed either in hours per year 

or as a percentage.  



 

28 

 Condition-based maintenance and predictive maintenance 

Condition-based maintenance is the practice of using real-time information from data 

loggers to schedule preventive measures such as cleaning or to head off corrective 

maintenance problems by anticipating failures or catching them early. Because the measures 

triggered by conditions are the same as preventive and corrective measures, they are not 

listed separately. Rather, condition-based maintenance affects when these measures occur, 

with the promise of lowering the frequency of preventive measures and reducing the impacts 

and costs of corrective measures [3, 37] [23]. In recent decades, research on CBM has been 

rapidly growing due to the rapid development of computer-based monitoring technologies. 

Research studies have proven that CBM can be effective in improving equipment reliability 

at reduced costs if it is planned properly [45]. 

Predictive Maintenance is a special service provided by O&M contractors who follow 

best practices principles. It is defined as a CBM carried out following a forecast derived from 

the analysis and evaluation of the significant parameters of the degradation of the item 

(according to EN 13306). In this context, it is necessary to acquire “intelligent” equipment 

set with sufficient sensors, and an appropriate monitoring software system that should be 

able to provide basic trending and comparison (timewise or between components and even 

between PV sites) functionality [4]. 

The operations team of the O&M contractor does predictive maintenance through 

continuous or regular monitoring, supervision, forecast, and performance data analysis (e.g. 

historical performance and anomalies) of the PV plant (at the DC array, transformer, 

inverter, combiner box, or/and string level). This can identify subtle trends that would 

otherwise go unnoticed until the next circuit testing or thermal imaging inspection and that 

indicate upcoming component or system failures or underperformance [4]. In general, 

predictive maintenance does not avoid preventive maintenance; though, to avoid 

unnecessary costs, it can extend the PM period and establish when maintenance can be done 

without generating a worse condition. 

Big data analytics permit the handling of the analysis from observation of collected 

information to fault detection, fault diagnosis, and optimization through recommendations 

issued from the advanced monitoring system. Today different approaches are proposed, 

whereas classic artificial intelligence (AI) proposes an advanced diagnostic through 

knowledge-based models, unsupervised and supervised learning methods offer different 

approaches (e.g. neural networks) using statistical approaches [4]. 

Both the CM and PM are the basis of any PV plant maintenance program; however, 

predictive maintenance is still a tool in development in the PV area. In studies made for 
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consortiums like Solar Bankability and entities like IEA, no PV plant surveyed had 

predictive maintenance implemented [5] [46]. Nevertheless, predictive maintenance is 

becoming more relevant in large-scale PV plants. 

2.6 Maintenance optimization 

Maintenance is a topic present in all types of deteriorating systems, independent of the 

discipline. Over the last few decades, the maintenance of systems has become more and more 

complex. One reason for this is that systems consist of many components that depend on 

each other. Interactions between components complicate the modeling and optimization of 

maintenance; however, interactions also offer the opportunity to group maintenance which 

may save costs [42]. Nowadays, manufacturing industries are aiming for higher operation 

efficiency, effectively, and economically to survive in the fiercely competitive global 

economy.  

Proper maintenance has been drawing more and more attention in contributing 

industries towards prolonging the system’s effective operational lifetime and also improves 

the reliability and availability of the system to ensure the delivery of high-quality products 

to customers on time [44]. This leads to more preventive maintenance actions that are also 

better aligned with other business functions, such as production scheduling and spare parts 

control [43]. 

Maintenance of deteriorating systems and replacement problems have been studied 

extensively in many fields, especially in mechanical, electrical, aerospace, and civil 

engineering. In addition to several books on operation research, there is a vast amount of 

papers related to maintenance [47]. Also, there exists a high variety of approaches depending 

on the specific topic tackled, and various reviews have been made to give a general overview 

of maintenance optimization. The reviews made in [42], [43], [44], [47], [48], [49], [50] and 

[51], provide us with a multidisciplinary approach based on academic literature. Although 

there are some differences among the authors in classifying optimization models, the main 

purpose of this section is to give an overview and not to discuss the correct classification. In 

this case, we have adopted the approach given in [44]. The next sub-sections give a general 

sight of maintenance optimization referencing to some representative works. 

2.6.1 Model definition for maintenance optimization 

In [44] the authors give a general definition of what elements maintenance optimization 

models usually include. In this context, they first define optimization as finding a balanced 

maintenance solution that closes to the objective under certain criteria by using the preferred 
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approach. Second, they state that a model in maintenance policy optimization aspects is a 

description of a process to model, analyze, and determine the optimal maintenance policy 

under predetermined maintenance objectives and criteria. Following the above, models used 

to derive optimal maintenance policy generally cover four main aspects: 

➢ A description of the system being maintained. 

➢ A model on how the system deteriorates and the consequences thereof. 

➢ A description of the available information on the system and the available response 

options. 

➢ An objective function and an analytical framework (or tools) according to which the 

optimal maintenance policy is to be derived. 

In the general framework developed by Wang [52], he details more specific inputs: 

maintenance policies, system configuration, maintenance effectiveness, maintenance costs, 

optimization criteria, modeling tools, planning horizon, dependence, and system information. 

2.6.2 System configuration and information 

When describing a system, different configurations are possible: single-unit, multi-unit, 

series, parallel, k-out-of-n, standby, etc. A single-unit system consists of either one 

component or multiple components. By contrast, multiple or multi-unit systems consist of 

several system units with several components. Furthermore, the elements of each system 

state are arranged mechanically into two configurations, namely the serial and the parallel. 

In a serial configuration, the entire system fails if any one of the system’s components fails. 

By contrast, for a parallel configuration, the entire system works as long as not all the 

systems or components fail [50]. A k-out-of-n system is a system composed of n elements, 

which functions if at least k components function. If k=1, then it is a parallel system; if k=n, 

then it is a series system [42]. In literature, several optimization models have been developed 

for each type of system configuration. The review papers [43], [44], and [51] all address 

single-unit, multi-unit, and k-out-of-n systems.  

Describing the function and importance of the technical system is necessary to 

understand the working principle and determine the criticality and system configuration of 

the equipment at hand. Analyzing data without knowing the underlying mechanisms can 

lead to wrong decisions, which stresses the importance of having the proper system 

information [51]. A proper system information will reveal dependencies between components 

(when present) of a multi-component system. If there no exists dependence between 

components, then the problem reduces to an optimal policy for each component. 
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Traditionally, three types of dependence between components are distinguished: economic, 

structural, and stochastic dependence [43] [51].  

2.6.2.1 Economic dependence 

Economic dependence exists when the cost of maintaining or inspecting multiple units 

simultaneously is different from the cost of maintaining or inspecting these units separately 

(e.g. due to a fixed setup cost) [43]. In [42] authors extend this definition to positive and 

negative economic dependence.  

Positive economic dependence implies that costs can be saved when several components 

are jointly instead of separately maintained; economies of scale and downtime opportunity 

can promote positive economic dependence. “Economies of scale” is often used to indicate 

that combining maintenance activities is cheaper than performing maintenance on 

components separately. The work developed in [53] considers a condition-based maintenance 

policy for a two-unit deteriorating system under a stochastic process, with economic 

dependence and non-periodic inspections; here, joint maintenance of components saves costs. 

In [54] the authors develop a model of a condition-based maintenance policy for a two-

component system with both stochastic and economic dependencies.  

Downtime of a system is an opportunity to combine preventive and corrective 

maintenance. This is especially true for series systems, where a single failure results in a 

system breakdown. Group maintenance policies and opportunistic maintenance policies are 

given in [52]. In [55] is developed opportunistic maintenance approaches for an entire wind 

farm considering imperfect maintenance. The authors propose three opportunistic 

maintenance optimization models, where preventive maintenance is considered perfect, 

imperfect, and two-level action, respectively. 

Negative economic dependence between components occurs when maintaining 

components simultaneously is more expensive than maintaining components individually; 

that is, the shortage of resources. Some reasons to produce that are manpower restrictions, 

safety requirements, redundancy or production-loss, maintenance facility, and spare parts 

[42] [49]. For example, maintenance results in a peak in manpower needs; there are often 

restrictions on the usage of equipment when executing maintenance activities 

simultaneously; maintenance of components in systems in which some kind of redundancy 

is available may not be beneficial. In [56] a model for preventive maintenance scheduling of 

power plants including wind farms is given; a restriction of manpower is also included. 
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2.6.2.2 Structural dependence 

Structural dependence occurs when an intervention of a component requires that other 

components be intervened (either replaced or dismantled) at the same time. In other words, 

structural dependence between components indicates that they cannot be maintained 

independently. Recently, the resource dependence was introduced in [48]. The authors 

explain that resource dependence arises for example when several components are connected 

through a shared, limited set of spares. As a consequence, maintenance optimization is 

required on the system level rather than on the component level. Moreover, they extend the 

definition of structural dependence by further classifying this into technical and performance 

dependence. 

A system is considered technically dependent when intervention activities for certain 

components are restricted by those of other components; the negligence of this dependence 

inevitably results in an infeasible maintenance strategy. Performance dependence is applied 

when an intervention activity, deterioration, and failure of a component affects the 

performance of other components and the overall system [49]. According to [52], this 

dependence is also referred to as system configuration. An example of structural dependence 

is developed in [57], where authors use selective maintenance on multi-state systems. Here, 

each component can be in one of multiple working levels and several maintenance actions 

are possible to a component in a maintenance break. 

2.6.2.3 Stochastic dependence 

According to [42], stochastic dependence, also referred to as failure interaction or 

probabilistic dependence, implies that the state of components can influence the state of the 

other components. Here, the state can be given by the age, the failure rate, state of failure, 

or any other condition measure. They mention three different types of failure interactions 

in a two-component system. 

Type I failure interaction implies that the failure of a component can induce a failure 

of the other component with a given probability. This means that there are two types of 

failures: natural and induced. The natural failures are modeled by random variables and the 

induced failures are characterized by the given probabilities. Type II failure interaction 

establishes that the failure of component 2 can induce a failure of component 1 with a given 

probability, whereas every failure of component 1 acts as a shock to component 2, without 

inducing an instantaneous failure, but affecting its failure rate. Type III failure interaction 

states that the failure of each component affects the failure rates of the other component, 

i.e. every failure of one of the components acts as a shock to the other component [42]. 
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Generally, when considering stochastic dependence in the literature, the maintenance 

policies considered are focused on opportunistic nature since the failure of the components 

represent prejudicial for the rest of the components. For example, in [58] is developed a 

dynamic opportunistic condition-based maintenance strategy for multi-component systems. 

The strategy is based on real-time predictions of the remaining useful life under the 

simultaneous consideration of economic and stochastic dependence. Authors in [59] deal with 

the problem of maintenance optimization of a two-component system with stochastic 

dependence when components are heterogeneous regarding their degradation model. 

Components are dependent in such a way that the lifetime parameters of components subject 

to shocks depend on the degradation level of the gradually deteriorating component. 

2.6.3 Classification of maintenance policy optimization model 

The following classification is given in [44], which adopts the certainty theory to 

characterize the maintenance policy optimization model. Here, the model is classified in 

terms of the degree of certainty: certainty, risk, and uncertainty. This classification has a 

direct relation to the quantity of information available. Figure 9 shows the certainty theory 

continuum. 

 

Figure 9 Certainty theory continuum [44]. 

2.6.3.1 Certainty category 

In the presence of certainty, there is only one state of nature for each strategy. That is, 

perfect knowledge is assumed and the probability of a specific state of nature is one. It is 

generally simple and does not require complicated optimization procedures. A graphical 

based model uses graphs or figures to denote the optimal maintenance policy according to 

the value of a predetermined criteria. In [60] is used fuzzy maintenance and decision-making 

grid to specify what maintenance action must be done on the system based on the 

equipment's criticality and reliability properties. The graphical model is simple but may be 

less accurate because it is considered limited criteria. For example, in [61] downtime and 
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failure frequency were the only two criteria involved. In practical terms, a policy must 

consider several different aspects like safety and environmental problems. Moreover, the 

possibility to have complete information in the optimization process is quite low. 

2.6.3.2 Risk category 

When risk is present in models, the states of nature are known and can be described 

stochastically through the probability of failure of the components as a function of time. 

Typical models under risk category are mathematical, simulation, and artificial intelligence. 

The mathematical model is the most used optimization model in the literature. It is 

consisting of an abstract model that describes a system through mathematical language. It 

is likely to predict the possible condition including the system itself and variables that 

influence the system by using the stochastic principle; thus, the optimization process can be 

conducted along with the predicted information. One of the methods used in mathematical 

models is the proportional hazard method (PHM). When using PHM it is possible to model 

system variables, external factors that included environmental conditions and working 

conditions, and age of the system. In the real environment, it is usually difficult to specify 

the quality of maintenance precisely and the failure times of system always affected by 

different covariates; in this context, PHM uses the proportional age reduction factor to the 

baseline of hazard rate or to operation time. One example can be found in [62] where authors 

model the reparable system reliability with various indicators included accumulated 

operating time and state of a system depending on its age and degree of repair; The 

indicators may be used as covariates in a proportional intensity model (PIM), or as reduction 

factors in a virtual age process model. 

The simulation model is a computable method for running an abstract model over time, 

where the model can be implemented using computational techniques such as mathematical 

formalism that used different algorithms. It is useful for observing the behavior of a complex 

system when obtaining a solution based on a mathematical method is infeasible. One of the 

most popular methods for calculating optimal policies is Monte Carlo simulation. Researches 

adopting Monte Carlo simulation in the maintenance optimization usually focus on 

identifying the cost-effectiveness maintenance policy. In [63] the authors develop meta-

heuristics for the specific problem in conjunction with an evolutionary particle swarm (PSO) 

algorithm; they incorporate Monte Carlo simulation to study the problem of balance between 

preventive and corrective maintenance as a multi-objective optimization problem. 

Between the various definitions for artificial intelligence (AI), the most relevant is: AI 

is a field in science and engineering concerned with the computational understanding of 

what is commonly called intelligent behavior and with the creation of artifacts that exhibit 
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such behavior. Among the AI methods, genetic algorithm (GA) is the most popular 

optimization method adopted in the maintenance policy optimization area. GA is well-

known due to its robust search capabilities that help reduce the computational complexity 

of large optimization problems. Among the topics where GA has been implemented 

successfully is industrial engineering, including maintenance optimization, where its 

potential for resolution complex systems has attracted the attention of researchers. An 

example of the use of GA is given in [64], where authors proposed RAM+C (reliability, 

availability, maintenance and cost) models to address the effect of human and material 

resources.  

 Modeling deterioration 

The modeling of the deterioration process of components and systems is truly important 

for obtaining the basic information on which all decisions about when to perform 

maintenance or inspection are made [51]. Understanding deterioration mechanisms, which 

is key in defining a maintenance program, requires modeling the time-dependent changes of 

the structural properties and its uncertain nature [47]; consequently, this deterioration 

process description should match as close as possible with the real deterioration of the 

system. 

A deterioration process can be modeled with a discrete or continuous state space. Models 

with a discrete state space have a countable, generally finite number of states; that is, when 

modeling with discrete state space, two (functioning or failed), three (functioning, defective, 

failed), or more states can be used. The deterioration in models with a continuous state 

space level can take any value within a particular interval [43]. The deterioration process is 

frequently divided into progressive and shock based. In progressive deterioration, the 

structure’s performance degrades gradually and slowly over time. Shock-based degradation 

damage accumulates as a result of successive shocks (e.g., effect of earthquakes) [47]. 

Models that assume discrete-state deterioration are usually modeled by Markov 

processes. This is commonly used when precise measurements of the degradation states of 

the system cannot be obtained, and sometimes, it is a technical requirement since there is 

no need to work on every discrete value individually – from an engineering practice 

viewpoint. Instead, the degradation states are categorized into several deterioration levels 

[45]. In [65] the authors consider systems that deteriorate stochastically and exhibit multi-

state failures and model their state evolution using Markov chains and directed graphs. 

Although Markov processes are used regularly to model deteriorating components, this 

approach also has some disadvantages. The analytical resolution is difficult in complex cases, 

the classification of states is arbitrary, and the transition probabilities are difficult to 
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estimate and may not be elaborate enough in complex cases. A more realistic approach is to 

model deterioration by a stochastic continuous state process, though this has the 

disadvantage of mathematical complexity when modeling complex systems. 

Continuous state processes, for example, have been widely implemented in CBM since 

more conditions or health information can be obtained through sensors that monitor the 

deterioration process. Some of the most common approaches use Wiener, Gamma, and 

Inverse Gaussian process. The Wiener process is appropriate in describing a degradation 

that shows increment or decrement of deterioration over time (non-monotonic), while the 

Gamma process is more suitable in modeling monotonically increasing (or decreasing) 

degradation. Gamma process has a monotonic degradation path and has been studied 

extensively in CBM models for continuously deteriorating systems [45]. 

The Inverse Gaussian process is a limiting compound Poisson process that is suitable 

for modeling heterogeneous degradation of systems deteriorating in a random environment, 

i.e. it is flexible in incorporating random effects and covariates that account for 

heterogeneities. Similar to the Gamma process, the Inverse Gaussian process is also suitable 

in modeling monotonic degradation but is more flexible in incorporating random effects 

compared to the Gamma process [45]. Also, the degradation process can be modeled with 

random proportional changes in time, as in [66]. The authors develop a continuously 

monitored deteriorating systems by using Monte Carlo simulation to find the optimal 

degradation threshold for performing preventive maintenance. 

2.6.3.3 Uncertainty category 

In the presence of uncertainty, future conditions and their corresponding probabilities 

are unknown; therefore, the necessary information must be determined based on judgment 

and utilization via subjective probabilities. We can subdivide this category into three sub-

categories: heuristic, criticality, and multi-criteria. 

Heuristic is a “rule-of-thumb”-based problem-solving approach that uses logic, 

experience, and knowledge derived from observation. When an exhaustive search is 

infeasible, the heuristic-based model can speed up the process of finding a satisfactory 

solution. In this context, a common tool used is a decision tree, which is a friendly tool for 

supporting decisions. Also, the justification of decisions usually is made according to the 

knowledge and experience of experts. For example, in [67] is carried out a study on selecting 

the optimal maintenance policy with the aid of a decision tree. In the selection process using 

the decision tree, two types of questions - technical and economic - would be sequentially 

asked for each proposed maintenance policy. 
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Hazard usually means the potential to cause harm either tangible or intangible. Papers 

under this approach emphasizes mainly in solving failures effectively rather than just 

focusing on economic aspect; the main concern is on improving maintenance quality in terms 

of safety, as well as reliability without drastically increasing the cost by assigning 

maintenance policy. Due to growing awareness on hazard and safety issues either human or 

environmental has brought about the rising of development on the hazard-based model in 

determining the optimal maintenance policy especially in heavy industry or high-risk 

industry. Some main approaches in the literature are failure mode, effect, and criticality 

analysis (FMECA); multi-criterion classification of critical equipment (MCCE); risk matrix; 

fault tree analysis; root cause analysis. In [68] authors applied FMECA to a fossil-fired power 

station for effectively preventing failures and finding the optimal policy. 

Multi-criteria decision making (MCDM) is also one of the popular methods adopted in 

the maintenance policy optimization models. The |advantage of the MCDM is that it can 

include the multiple, usually conflicting, objectives into the decision-making process; 

therefore, it is useful in maintenance policy optimizations for conflicting objectives such as 

maximizing availability at the lowest cost. There are three main steps in adopting any kind 

of MCDM. The initial step of implementation is to determine the relevant criteria and 

alternatives, followed by attaching numerical measures to the relative importance (i.e. 

weight) of the criteria and the impacts (i.e., relative performance) of the alternatives on 

these criteria. Finally, process the numerical values to determine the ranking of each 

alternative, in this case, the optimal maintenance policy. Several MCDM method has been 

proposed in the literature such as analytic hierarchy process (AHP), weighted sum method 

(WSM), elimination and choice translating reality (ELECTRE), a technique for order 

preference by similarity to ideal solution (TOPSIS), among others. Among the developed 

MCDM methods, AHP is the most widely used in the maintenance selection. An 

implementation of AHP has been suggested [69] to measure the health, safety, environmental 

awareness, as well as costs issues in selecting a maintenance policy. Validation of the 

methodology was carried out in a case study on the oil and gas industry. 

2.6.4 Maintenance effectiveness 

The maintenance effectiveness is an important factor that must be considered in the 

optimization process. Maintenance effectiveness is the degree to which the operating 

conditions of an item are restored after a maintenance action is performed [51]. The main 

purpose of the O&M operators is to restore a component to an improved definite state; 

however, the human error cannot be neglected, especially in large-scale applications. Some 

common causes of human error are bad setting, damage during maintenance, replacement 

with failed or damaged parts, perform maintenance out of the established schedule, perform 
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maintenance with damage equipment, bad calibration, prognosis error, bad decisions based 

on wrong prognosis, among others [47] [70]. An overview of the different possible degrees of 

restoration is given below [47] [51]: 

➢ Perfect repair or perfect maintenance: the operating condition of the system is 

restored to an as-good-as-new state, which means that the lifetime distribution, 

degradation level, and failure rate are the same as for a new component. 

➢ Minimal repair or minimal maintenance: the failure rate of the system is restored 

to the one the system had before the maintenance action was performed, which is referred 

to as-bad-as-old state. 

➢ Imperfect repair or imperfect maintenance: the operating condition of the system 

is restored to somewhere between as-good-as-new and as-bad-as-old state. 

➢ Worse repair or worse maintenance: the system failure rate or actual age of the 

system increases by performing a maintenance action, but the system does not break 

down. 

➢ Worst repair or worst maintenance: the system will certainly fail by performing a 

maintenance action. 

2.6.5 Maintenance policies 

As we have seen, there are a vast number of maintenance models inspired by the high 

variety of systems’ characteristics. Ideally, a specific system should have a personalized-

suitable maintenance model and policy to obtain better outputs. Given the large number of 

approaches in maintenance policies as well, Wang [52] summarizes, classifies, and compares 

various existing maintenance policies for both single-unit and multi-unit systems. 

According to Wang, maintenance can be categorized into two major classes: corrective 

(CM) and preventive maintenance (PM). CM means all actions performed as a result of a 

failure, to restore an item to a specified condition. PM means all actions performed in an 

attempt to retain an item in a specified condition by providing systematic inspection, 

detection, and prevention of incipient failures.  

Thousands of maintenance and replacement models have been created; however, all 

these models can fall into some categories of maintenance policies: age replacement policy, 

random age replacement policy, block replacement policy, periodic preventive maintenance 

policy, failure limit policy, sequential preventive maintenance policy, repair cost limit policy, 

repair time limit policy, repair number counting policy, reference time policy, mixed-age 

policy, preparedness maintenance policy, group maintenance policy, opportunistic 
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maintenance policy, etc. [52]. A brief description (based on [52]) of the most used policies 

for both single-unit and multi-unit systems is given below. 

2.6.5.1 Single-unit systems policies 

 Age-dependent PM policy 

This is one of the most common and popular maintenance policies. Under this policy, a 

unit is always replaced (or maintained) at its age T or failure, whichever occurs first, where 

T is a constant. Depend on the approach, both PM and CM can be perfect, imperfect, 

minimal or worse. Some variations were made as a better understanding of minimal and 

imperfect maintenance emerged. For example, a random-age-dependent maintenance policy 

is used when a unit has a variable work cycle so that a fixed T is impractical; under this 

policy, T is a random variable and, consequently, the policy would have to be a random 

one, taking advantage of any free time available to perform maintenance. Other results and 

extensions like T-N policy, periodic replacement with minimal repair at failure, repair 

replacement policy, and mixed-age PM policy can be found in [52]. 

 Periodic PM policy 

In the periodic PM policy, a unit is preventively maintained at fixed time intervals kT 

(k = 1,2,…) independent of the failure history of the unit, and repaired at intervening failures 

where T is a constant. In some early research, the block replacement policy was examined 

in which a unit is replaced at prearranged times kT (k = 1,2,…) and at its failures. The block 

replacement policy derives its name from the commonly employed practice of replacing a 

block or group of units in a system at prescribed times kT (k = 1,2,…) independent of the 

failure history of the system and is often used for multi-unit systems. 

 Failure limit policy 

Under the failure limit policy, PM is performed only when the failure rate or other 

reliability indices of a unit reach a predetermined level and intervening failures are corrected 

by repairs. This PM policy makes a unit work at or above the minimum acceptable level of 

reliability; for example, a maintenance cost policy where PM is performed whenever a unit 

reaches the predetermined maximum failure rate, and failures are corrected by minimal 

repair. An interesting approach is developed by [71], where authors investigate a failure limit 

policy in which replacement policies are based on measurements of some increasing state 

variable, e.g., wear, accumulate damage or accumulated stress; the proneness to failure of 

an active unit is described by an increasing state-dependent failure rate function. The 

optimal replacement rule in terms of average long-run maintenance cost rate is shown to be 
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a failure limit rule, i.e., it is optimal to replace either at failure or when the state variable 

has reached some threshold value, whichever occurs first. 

 Sequential PM policy 

Unlike the periodic PM policy, a unit is preventively maintained at unequal time 

intervals under the sequential PM policy. Usually, the time intervals become shorter and 

shorter as time passes, considering that most units need more frequent maintenance with 

increased ages. Under sequential PM, the next PM interval is selected to minimize the 

expected expenditure during the remaining time. Thus, this policy does not specify at the 

beginning of the original period each future PM interval; rather, after each PM, it specifies 

only the next PM interval. 

 Repair limit policy 

When a unit fails, the repair cost is estimated and repair is undertaken if the estimated 

cost is less than a predetermined limit; otherwise, the unit is replaced. This is called the 

repair cost limit policy in the literature. A disadvantage of the repair cost limit policy is 

that the replacement or repair decision depends only on the cost of a single repair. An 

extension of this policy is the repair time policy, where a unit is repair at failure under a 

condition: if the repair is not completed within a specified time T, it is replaced by a new 

one; otherwise, the repaired unit is put into operation again; T is called repair time limit. 

 Repair number counting and reference policy 

In the repair number policy, a unit is replaced at the kth failure. The first (k-1) failures 

are removed by minimal repair. Upon replacement, the process repeats. The policy decision 

variable is k. Later, this policy is extended by introducing another policy variable T critical 

reference time which is a positive number. Under this extended policy, all failures before the 

kth failure are corrected only with minimal repair. If the kth failure occurs before an 

accumulated operating time T, it is corrected by minimal repair and the next failure induces 

replacement. But if the kth failure occurs after T, it induces replacement of the unit.  

2.6.5.2 Multi-unit systems policies 

 Group maintenance policy 

The main topic that addresses this policy is the clustering of the elements that should 

be maintained after a failure depending on which dependencies exist among them. In this 

category, there are three main types of policies. The first policy, referred to as a T-age group 

replacement policy, calls for a group replacement when the system is of age T. A second 

policy, referred to as an m-failure group replacement policy, calls for a system inspection 
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after m failures have occurred. The third policy combines the advantages of the m-failure 

and T-age policies. This policy, referred to as an (m, T) group replacement policy, calls for 

a group replacement when the system is of age T, or when m failures have occurred, 

whichever comes first. 

 Opportunistic maintenance policy 

When exists economic dependence in multi-systems, it is possible to do PM to non-

failed components at a reduced additional cost while failed components are being 

maintained. When exists failure dependence or correlated failures, upon a component failure 

the other component, as well as the failed one, may be also maintained o replaced by a new 

one if its age exceeds a predetermined control limit L. An extension of this is such a policy: 

both units are replaced either when one of them fails and the age of the other unit exceeds 

the critical control limit L, or when any of them reaches a predetermined critical age S. A 

unit is replaced at age T or at failure, whichever occurs first. 

2.6.6 Maintenance optimization criteria 

Optimization is always performed by minimizing or maximizing an objective function. 

In most of the maintenance optimization models, the objective function only takes into 

account one criterion (e.g., cost, availability, reliability). Although most of the works develop 

a single-objective optimization, in practical terms, a multi-objective optimization should be 

more suitable [51]. Despite the vast analysis of the researchers in maintenance topics like 

optimization models, maintenance policy optimization, or deterioration models, there is a 

lack of studies focused on the correct choice of the maintenance optimization criteria; it is 

evident that a wrong criteria optimization results in wrong outputs. Different opinions about 

the most important criteria for maintenance optimization are recommended in the literature, 

where the choice is regarding the specific phenomena of the real case. The following list [51] 

contain all possible maintenance optimization criteria found in literature and some 

additional added by authors: 

➢ Maintenance costs (discounted)  ➢ Logistics 

➢ Maintenance quality  ➢ Output quantity 

➢ Personnel management  ➢ Output quality 

➢ Availability ➢ Environmental impact 

➢ Reliability ➢ Overall equipment effectiveness  

➢ Maintainability ➢ Number of maintenance interventions  

➢ Inventory of spare parts  ➢ Capital replacement decisions  

➢ Safe/risk ➢ Life-cycle optimization  
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It is important to note that each element in the list represent the main topic; thus, 

additional related sub-elements can be incorporated. Also, to better model a system, some 

of the criteria listed can be mixed as a function of the problem addressed.  

2.7 Solar PV maintenance optimization 

The pronounced worldwide growth of solar photovoltaics is beginning to steer greater 

industry attention towards operation and maintenance planning and execution strategies. 

Lately, there is merit in the industry to more comprehensively incorporating O&M strategies 

into PV system planning, design, and asset management activities to increase lifecycle PV. 

It is becoming more apparent to the participants of the PV sector, that increasing the 

reliability is the most effective way to reduce the LCOE of PV technology [34] [72]. In 

contrast, although plenty of research has been done in the literature regarding maintenance 

optimization, there is a lack of works in PV maintenance optimization; besides, most of the 

works focused on individual elements of PV plants and not to tackle the complete system. 

On the other hand, the PV industry bases its maintenance schedules on best practices and 

heuristics, and practitioners tend to not share the policies. In this context, PV maintenance 

topics have been addressed by literature through reliability and fault analysis in simple 

components or sub-systems, with considerable attention to PV panels [34] (in monofacial 

and bifacial), where some authors make suggestions and improvements in maintenance.  

For example, in [73] and [74] authors develop an FMECA analysis methodology to 

classify the occurrence, the severity, and the impact of all possible mechanisms on the PV 

system. Their principal focus is to characterize PV failure modes to improve reliability and 

maintainability of PV panels. In [75] is studied how the degradation of individual 

components affects the state of the PV inverter to effectively replace marginal components 

with more reliable ones, increase the lifetime and efficiency of the inverter and decrease the 

cost per watt. In [76] authors focuses on how to ensure high reliability and long service life 

of photovoltaic PV inverters in the design phase; also, they discuss maintainability for long-

term reliability of the PV inverter. Zini et. al. [77] present a method for assessing the 

reliability of large-scale grid-connected photovoltaic systems using fault tree and probability 

analysis to compute the reliability equation. They conclude that the only likely way to figure 

out faults occurring in PV modules and string protections is to use automatic monitoring 

and diagnostic systems to capture reduced power output from small defaults which can 

result, if not detected, in potential sources of serious economic losses; also, periodical 

verification and policies of preventive substitution of string protections (if present) and 

inverters can greatly improve energy conversion output.  
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Another focus has been on the detection and mitigation of faults. In this respect, various 

works in condition-based and predictive PV maintenance, and condition monitoring have 

been developed. In [78], Ventura and Tina introduce a new indicator for on-line monitoring 

and fault detection of inverters that compares the inverter's efficiency and detects anomalies 

even when the overall PV system efficiency is in acceptable values. In [79] authors adapt 

reliability models to incorporate monitoring data on operating PV assets, as well as 

information on their environmental conditions, in their calculations. The main purpose is to 

predict failure modes and forecast energy to assist maintenance based on an artificial neural 

network (ANN) model; with this tool, they can improve the on-line diagnosis and potential 

asset degradation prediction. Riley and Johnson [80] develop a novel model-based 

prognostics and health and management (PHM) system to monitor the health of a PV 

system, measure degradation, and indicate maintenance schedules. Their method is based 

on ANN which eliminates the need for a priori information by teaching the algorithm “good” 

performance behavior based on the initial performance of the array. Similar works can be 

found in [81] and [82]; in the first, authors apply convolutional neural networks (CNN) for 

monitoring the operation of PV panels based on the power curves of the neighboring panels 

and predict accurately the power curve of a functioning power; in the second, authors present 

a solution for fault prediction based on data collected from supervisory control and data 

acquisition (SCADA) system. Prediction is offered at two-level: generic fault prediction and 

specific fault class prediction, using two different modules based on machine learning. 

Results demonstrate that the proposed methodology effectively anticipates high-frequency 

inverter failures up to almost 7 days in advance, with sensitivity up to 95% and specificity 

of almost 80% and guarantees early detection for unpredictable failures.  

Until now in this section, works reviewed present useful tools for enhancing the 

performance and maintainability of PV systems; however, none of them establish periodicity 

or policies of maintenance and they only assert their models’ suitability for maintenance 

assistance. Regarding PV soiling, there is vast literature addressing this topic from the point 

of view of characterization and evaluation of PV soiling performance; several reviews are 

available in the literature [83] [84] [85] [86] [87] [88] [89] [90] [91]. Also, some works tackle 

maintenance through cleaning schedule optimization. 

In this context, papers estimate optimal cleaning intervals using different methods. For 

example, authors in [92], [93] and [94] develop mathematical approaches based on a linear-

solar-irradiation model fitted with real data and cleaning costs; In [94] authors extend the 

optimization to various tilt angles and bifacial PV modules. Other researchers [95] [96] 

utilized particle swarm optimization (PSO) in non-linear empirical models to minimize the 

cleaning interval. In [95] authors also incorporate the effect of installation azimuth angle 

and make a comparison of PSO with analytical method, where PSO performance is shown 
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more efficiently. In [96] the focus is on daily and monthly soiling ratio variations and its 

influence in energy loss; it is revealed the non-uniformity and meteorological dependence of 

soiling. Another approach [97] uses mixed-integer linear programming and simulation for 

evaluating different cleaning strategies in bifacial PV modules and finding the optimum 

cleaning schedule. Some other interesting approaches are given in [98] and [99]; in first one, 

authors develop ANN and extreme learning machine (ELM) models to estimate system 

conversion efficiency based on experimental data to determine an optimal cleaning 

frequency; the second one is similar but the comparison is between multivariate linear 

regression (MLR) and ANN models. 

Concerning to preventive maintenance optimization, the following three papers address 

this topic in a distinct form. In [100] authors tackles the optimization of a stand-alone hybrid 

photovoltaic-batteries-hydrogen (PV-hydrogen) system, using an evolutionary algorithm. 

They state two optimization problems: the first one consists in the obtention of the optimal 

number, distribution, and disposition of the PV panels in the facility; the second one 

addresses the same problem but scheduling a maintenance visit per year. Although the 

authors optimize the size considering preventive maintenance, they do not optimize 

frequency or policy of PM at all; besides, the system studied is a stand-alone power system 

for feeding a remote telecommunications facility, so that it is a small system. Villarini et al. 

[34] present a complete and new assessment of reliability centered maintenance carried out 

using an FMEA approach to photovoltaic systems. The analysis is extended to include the 

whole PV system, without limiting the focus to issues of a single component as presented in 

previous studies. The authors develop a complete characterization of failure modes based on 

the opinions of technicians who are experts in the functioning of a PV system and suggest 

numerous improvements in preventive maintenance. Although this work is concerning to 

PM, it focuses principally on mitigation risks and optimization of PM procedures, not policy; 

also, this approach is highly dependent on the researcher’s criteria. The most allusive paper 

in preventive maintenance optimization is done by Baklouti et al. [101]. Here, authors 

develop a PM strategy for a solar system composed of solar panels functioning as a series 

system; the strategy suggests systematically replacing n panels with their respective wiring 

system every time units T over a finite operating period H. Authors model and minimize 

the expected total maintenance cost over a finite operating time horizon H for a different 

combination of input parameters; the model is based on the reliability theory and is solved 

analytically. This is the first version of the work, so that the model proposed develops a 

basic modeling. For example, the system considered includes only series PV modules; the 

system is considered in a failed state whenever its efficiency drops below a predefined 

threshold; only perfect maintenance is considered.  
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2.8 Discussion 

In general terms, it is evident that a vast number of works have addressed maintenance 

optimization from different approaches and purposes; however, there are still some 

challenges that have not been tackled and that are necessary to resolve. A latent problem 

is the evident gap between industry and academics. On the one hand, the academia has 

developed hundreds of works addressing maintenance optimization. On the other hand, 

maintenance policy managers and engineers often make decisions heuristically in the 

industry based on their experience and common sense due to the difficulties in finding models 

that suit the practical realistic issues of actual projects [47]. Several authors [43] [44] [50] 

[51] agree that the gap between theory and practice is due to two main reasons: 

➢ Models complexity: Most of approaches and methods in maintenance optimization 

tend to develop complex mathematical models. Industry has management time, 

resources, and knowledge (specific academic knowledge) limitations that difficult the 

adaptation of the models to their specific business context; this can lead to the industry 

disinterest [44] [51]. 

➢ Academy focus: In literature, many works are written for mathematical purposes only 

and case studies are often only used to demonstrate the applicability of a developed 

model, rather than finding an optimal solution to a specific problem of interest to a 

practitioner. In general, case studies are not well presented, although maintenance is 

something that should be done in practice and not in theory. A clear example of this is 

that most of the works focus on single-unit systems, which is an unrealistic scenario in 

practice. There exist many that are theoretically advanced in determining optimal 

maintenance policies, but these are limited to very specific problems, and few are applied 

to solve real-life problems [43] [44] [51] [102].  

Another limitation of academic models is that most of the models focus on only one 

optimization criterion (mostly focus on variable costs and reliability), making multi-

objective optimization models an underexplored area of maintenance optimization; single-

objective optimization can be attractive for modeling, yet this approach does not capture 

all important aspects of a real-life situation [44] [51]. Moreover, the formulation of 

optimization problems including choosing the objective function, decision variables, and 

constraints is rarely discussed in the literature; also, there are poor analysis of the elements 

surrounding maintenance operations and their effect on the desired output. 

Further, modeling multi-unit systems is a better approach for a real-life situation; 

however, the complexity of the problem increases, and alternatives methodologies are 

required; for instance, commonly used methodologies in multi-unit systems are simulation 
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to compare various (heuristic) policies, simulation-based optimization, genetic algorithms, 

and heuristic algorithms specified by the authors [43]. In this context, simulation delivers 

an advantage over mathematical approaches because many maintenance policies are not 

analytically traceable. Furthermore, it allows experimentation and a better understanding 

of complex systems [102].  

Comparing the risk category models with uncertainty category models, the latter 

involved less complex algebraic formulation. It tends to adopt logic thinking-based 

approaches rather than using complicated algebraic formulation to perform probability 

analysis. Despite this kind of model is capable of providing more reliable analysis, it is still 

facing difficulties in collecting quality data because these models tend to utilize experience 

and knowledge which is not well documented [44]. 

Regarding PV maintenance optimization, the concerning works are even more scarce. 

Although there are plenty of works related to reliability, soiling, failure modes, and 

performance of PV systems, literature has studied the phenomena separately and only a few 

works address maintenance optimization. In fact, we could not find an approach that 

encompasses the complete PV plant to calculate the optimal preventive maintenance policy. 

Thus, considering the accelerated increase of photovoltaics in the industry, we observe an 

inherent necessity of developing new strategies for addressing the optimization of PV 

preventive maintenance to a real-life case. In this regard, Horenbeek et al. [51] state an 

interesting noteworthy concept: Maintenance optimization should not start with developing 

a maintenance model and trying to fit an application to it, but it should start with an 

application and try to fit a maintenance optimization model to it. This is the central idea 

that we aim to apply in the present thesis. 
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3 Proposed methodology 

3.1 Introduction 

This chapter begins with a complete general presentation of the proposed methodology, 

explaining in global terms the type of methodology, the elements that compose it, the 

modeling mechanism, modeled variables, and optimization criteria. After that, all the 

elements that compose the methodology are explained and developed graphically, together 

with the mathematical expressions and the level of detail modeled. Finally, the complete 

mathematical optimization model is presented, explicitly defining the decision variables and 

their scope in the model. 

3.2 Presentation and definition of the methodology 

The proposed methodology represents an empirical model for large-scale preventive 

maintenance optimization. In this context, our approach models the degradation phenomena 

occurring in the elements of PV plants by representing health state (HS) curves and stress 

factors (SF); i.e., degradation is modeled as a function of usage, not time. Thus, the 

degradation suffered by an element due to SF is represented by an HS curve as a function 

of duty cycles (expressed with the variable k), where the HS curve is defined in the range 

[0,1], and the duty cycle (k) is defined as the cumulative work performed in a 24-hour day5. 

In an ideal case, the HS is equal to 1 at k = 0; after that, the HS decreases with degradation 

caused by each new duty cycle. 

As an element is affected by stress factors, the health state drops, and then a failure 

may occur. The maintenance policy sets thresholds on the value of HS curves at which 

inspections and preventive maintenance are performed in order to avoid failures. Once the 

maintenance has been performed, the health state is restored to the theoretical value of 1; 

however, due to maintenance error, this value is randomly varied by a value less than 1. 

The determination of the optimal preventive maintenance policy is carried out through 

Monte Carlo simulation and Genetic Algorithm, where the decision variables are inspection 

spacing (in duty cycles), inspection threshold (in the range [0,1]), and preventive 

maintenance threshold (in the range [0,1]), for each element modeled. The objective function 

 

5 A 24-hour cycle is assumed because solar radiation, wind speed and ambient temperature have daily cycles 

that are reasonably comparable to a duty cycles. 
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is the expected profit composed of the difference between the expected energy revenue and 

the total expected maintenance cost. Figure 10 shows a general scheme for the entire 

proposed methodology, and the following sub-sections show its full breakdown. 

This methodology integrates the different elements present in a solar PV plant into a single 

model, modeling the phenomenology of the elements by employing health state curves. In 

the literature, these curves have been used to model simple and independent elements, so it 

is of interest to this thesis to evaluate the behavior and robustness of the methodology when 

integrating several health state curves in a single problem. 

Assumptions and considerations: This methodology contemplates a multi-unit 

configuration. The PV plant information available is collected through inspections and the 

monitoring system. There is no economic, structural, or stochastic dependence between the 

modeled elements of the PV plant. All activities performed by the human team are subject 

to procedural errors, which directly impact the different health states. Auxiliary 

consumption is not considered in the economic and energy balance. Full availability of spare 

parts is assumed. The logistics required to carry out the different types of maintenance are 

not modeled. 
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Figure 10 General scheme of the proposed methodology. 
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3.3 Characterization of the PV system 

3.3.1 System breakdown 

As described in section 2.5.1 and following the same characterization, we organize the 

main components of the PV system into 5 categories: generation system, conversion system, 

transmission system, transformation system, and monitoring and communicating system. 

From these sub-systems, we identified 8 principal elements that could be modeled: PV 

panels, supporting structures, grounding, inverter, wiring, transformer, sensors, and 

communicating system. Figure 11 shows a schematic with the breakdown of the 

“representative system”; the latter can be understood as a subsystem containing all elements 

of the power plant upstream of the LV/MV transformer (from the PV module arrays to the 

LV/MV transformer itself), which works as a minimum representative system, that if 

replicated n times could achieve the desired power output. 

Of these 8 main elements, grounding is not modeled as an individual element, rather 

the faults caused by grounding are considered as part of the failure modes of other elements 

such as PV panels and inverters. Also, the sensors and the communication system are not 

considered within the methodology because they do not belong to the direct generation chain 

and a stress-based model might not be suitable. The remaining elements have their own 

degradation model. 

 

Figure 11 Representative solar PV plant breakdown. 
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3.4 Methodology breakdown 

3.4.1 Monte Carlo Simulation 

The proposed methodology incorporates two main sources of uncertainty: meteorological 

variables and maintenance error. In the first case, weather conditions induce degradation 

and aging in the components, which are affected to a greater or lesser extent by the 

stochastic behavior of the meteorological variables. In the second case, human error together 

with component failures also behaves as stochastic elements. In addition, Monte Carlo is a 

robust method for evaluating multiple scenarios, which allows obtaining a general 

approximation of all possible solutions. Therefore, the stochastic nature of the proposed 

methodology leads us to use Monte Carlo simulation as a consistent alternative for solving 

our high complexity stochastic problem. 

The Monte Carlo method consists of creating a mathematical model that simulates a 

real system to which a large number of random samples of the model are applied, and which 

produces a large number of random samples of the model results. The method is based on 

running the model many times, as in random sampling. For each sample, random variants 

are generated for each input variable. Since each input is random, the results are random 

[103]. By generating numerous simulations, the results may converge to a known distribution 

depending on the nature of the model representing the developed phenomenon. 

In the proposal, the simulated model corresponds to the performance of the PV plant 

when random weather variables are applied to the input; each sample of random weather 

variables and maintenance policy thresholds represents a possible scenario. Within each 

realization, the methodology defines different items involved in the performance of the PV 

plant. These items are referred to as "work items", which are described below. 

3.4.2 Work items 

For producing a possible scenario, the methodology is designed using independent work 

items that operate sequentially. These items are as follows: Random meteorological 

sampling, degradation models, and calculation of key indicators. As each item is 

independent, it can be refined and improved without changing the methodology. 

3.4.2.1 Random meteorological sampling 

The purpose of this work item is to generate the meteorological random variables that 

will serve as input variables for the Monte Carlo simulation. The meteorological variables 
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modeled are solar irradiance, wind speed, and ambient temperature. These variables are 

established based on the degradation models described in section 3.4.2.2.  

The first thing is to find a function that correctly represents the data, for which there 

are different methods and strategies to generate data fits depending on the nature of the 

data and the purpose of use. There are parametric and non-parametric fits. When the 

distribution of a data set does not fit any known parametric function, it is necessary to use 

nonparametric methods, which can describe any distribution and are not limited to known 

functions. The second is sampling the data maintaining daily and seasonal correlation 

conditions. In this regard, there is sufficient literature that allows us to find the most 

appropriate model. It is not the purpose of this thesis to find the best way to fit and sample 

the data, rather, we are more interested in finding a fast method with acceptable results; 

further work can improve the accuracy of this section. 

For practical purposes and computational speed, we propose a simplified empirical 

method of a random sampling of meteorological variables that allows running multiple 

samples maintaining daily and seasonal correlations within the available computational time 

and enough accuracy. The proposed method is based on sampling the data using normal 

distributions having as mean a moving central vector 𝜇𝑖⃑⃑  ⃑ and standard deviation 𝜎𝑖 obtained 

from the monthly variability. For each hour of the day, the three variables are sampled 

together following three different Gaussians (taking advantage of highly optimized Python 

libraries) with the mean the central vector, and the given standard deviation. Each variable 

has a central vector of 8760 data obtained from a typical year, which allows preserving the 

daily and seasonal correlation between the variables (since all three variables are sampled 

at the same time following the central vector). The standard deviation is calculated for each 

hour of the day in every month as the difference between the extreme values divided by 6; 

this assumes 3 standard deviations with 99.6% of the data within the distribution, therefore, 

the data belong to the interval 𝜇𝑖⃑⃑  ⃑ ± 3𝜎𝑖. Figure 12 to Figure 14 show the three variables for 

a typical meteorological year compared to the variables sampled; these are normalized so 

they represent probability density functions. For more details on the reasons for the choice 

of this empirical method, see Annexed A. 
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Figure 12 Histogram for sampled solar irradiance vs. typical year solar irradiance. 

 

 

Figure 13 Histogram for sampled wind speed vs. typical year wind speed. 
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Figure 14 Histogram for sampled ambient temperature vs. typical year ambient temperature. 

3.4.2.2 Degradation models 

The proposed degradation models are a graphical and mathematical illustration of 

device life, depicted in health state (HS) curves. It represents a stochastic and usage-based 

model. This approach is based on the cumulative degradation caused by stress factors in a 

duty cycle k, where the degradation in each duty cycle is added to the degradation of the 

previous cycle k - 1. A duty cycle is conveniently defined as the work performed on a 24-

hour day given the natural cyclical characteristics of the meteorological variables. This 

cumulative degradation causes the HS, initially equal to 1 (ideally) and defined in the range 

[0,1], to decrease progressively over the duty cycles forming a naturally decreasing curve. In 

conclusion, the HS curve proposed is a mathematical abstraction that represents graphically 

the evolution of the life of an element throughout its useful life. This allows us to generate 

cycles to estimate maintenance intervals; it also represents the inverse of degradation. 

Degradation curves can behave in several forms depending on the variables modeled 

and the characteristics of the elements. Sometimes, degradation presents a characteristic 

curve type inherent to a certain phenomenon. For instance, several degradation models for 

solar panels as a function of failure modes are presented in [28] [104] [105]. These models 

generate characteristic curves as a function of the modeled physical variables; Figure 15 and 

Figure 16 show an example of the degradation characteristic curves for different specific 

failure modes modeled in the literature. However, we are not modeling specific phenomena, 

but rather, a set of phenomena per element. Therefore, we can assume a joint degradation 

characteristic curve type, which is fitted by historical failure rate data. This simplification 

is necessary because it is extremely complex to model a complete PV plant in detail using 

analytical methods and extremely computationally expensive using simulation-based 
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methods. This is important because it defines the mathematical expression of the 

degradation model and how the stress factor is defined to produce degradation. 

 

Figure 15 Photovoltaic panel power degradation 

curve based on Pan’s model considering corrosion 

and discoloration as failure modes [28]. 

 

 

Figure 16 UV stress degradation curve as a function of  

the variation of the short-circuit current of the 

photovoltaic panel [28]. 

To create the degradation of a new duty cycle, the previous HS is affected by a stress 

factor (SF), which is defined for each particular element in section 3.4.2.2.1; a stress factor 

can be constructed based on electrical o meteorological parameters. Additionally, as the 

work cycles progress, the HS is further limited by an aging curve, which causes the HS to 

be restored to a lower value after maintenance. Finally, in general, the proposed degradation 

models are based on the original health state curve, which is affected by the stress factor 

and the aging curve. A graphical example of a generic degradation model is shown in Figure 

17.  

 

Figure 17 Health-State curve for a generic element. 
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The cyclic patterns observed in the HS in Figure 17 relate to the moments when the 

HS is restored to its initial value after preventive (programmed) or corrective (by failure) 

maintenance. This is an explanatory example; however, for each element, there are some 

variations. The formal definitions of the equations and the specific degradation models for 

each element are presented in section 3.4.2.2.1. 

 Types of degradation models 

As mentioned above, we assume a joint curve type for estimating the HS. This curve is 

a decreasing sigmoidal type, which is obtained in general form employing (1), 

𝐻𝑘 = 𝐻𝑘−1 ∙ (1 − 𝛼𝑘)
𝑘 (1) 

where 𝐻𝑘 is the current health state at cycle 𝑘, 𝐻𝑘−1 is the previous health state at cycle 

𝑘 − 1, and 𝛼 is the element stress factor. This expression produces the curve in Figure 18. 

 

Figure 18 Type of generic curve for health state. 

This type of curve is assumed for all modeled elements, except for soiling, which is a 

special case (see 3.4.2.2.1.1.2.). Equation (1) makes it possible to generate the curve in Figure 

18 for all cases where the stress factor represents a small portion of daily degradation 

(modeling based on meteorological or electrical variables). A variation of this equation occurs 

when the stress factor depends directly on the duty cycles and not on external variables (see 

the case of supporting structures and transformers). In this case, the health state curve is 

calculated through equation (2), resulting in the same type of curve as in Figure 18. The 

detailed modeling for each element is shown below. 
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𝐻𝑘 = 𝐻𝑘−1 ∙ 𝛼𝑘 (2) 

3.4.2.2.1.1 PV panels degradation model 

3.4.2.2.1.1.1 Degradation due to physical stress 

There is extensive literature where the degradation of photovoltaic panels is modeled 

and evaluated [27] [28] [105] [106] [107] [108] [109] [110] [111] [112]. Since our interest is in 

modeling joint degradation, we must formulate an expression consistent with the proposed 

methodology. In this respect, experience has shown that the performance of a PV plant can 

vary considerably depending on the area in which it is located, and consequently its lifetime; 

here are some examples in the literature [113] [114] [115]. If we assume that climatic 

conditions directly affect PV degradation, then it is logical to propose a model based on 

these variables. In this regard, Sandia [116] [117] has developed for decades a simple model 

that relates solar irradiance, wind speed, and ambient temperature to cell temperature. 

Equations (3) and (4) are used to calculate the PV module and cell temperature, 

respectively. It should be noted that this modeling can be made as complex as desired (see 

some examples in [118]), but in terms of availability of information, Sandia's model is 

satisfactory; furthermore, Sandia acknowledges that the model originally developed was 

unnecessarily complex. 

𝑇𝑚 = 𝐺 ∙ (𝑒𝑎+𝑏∙𝑣) + 𝑇𝑎 (3) 

𝑇𝑐 = 𝑇𝑚 +
𝐺

𝐺𝑆𝑇𝐶
∙ ∆𝑇 

(4) 

In equation (3), 𝑇𝑚 is the module temperature [°C], 𝐺 is the incident radiation [w/m2], 

𝑎 and 𝑏 are parameterized statistical constants, 𝑣 is the wind speed [m/s], and 𝑇𝑎 is the 

ambient temperature [°C]. In equation (4), 𝑇𝑐 is the PV cell temperature [°C]; 𝐺𝑘 is the 

incident radiation [w/m2]; 𝐺𝑆𝑇𝐶 is the reference radiation in standard test condicionts STC 

(1000 [w/m2]); and ∆𝑇 is the temperature difference between the module and the cell at 1000 

[w/m2]. 

With these expressions, it is possible to calculate the cell temperature at any time. On 

the other hand, we know from the manufacturer's specifications that the PV module is 

designed to operate at a nominal temperature. By putting these two elements together, we 

can create a stress factor that relates the average cell temperature over a cycle to the nominal 

temperature. Thus, expression (5) shows the stress factor in cycle 𝑘 of PV panels due to 

meteorological variables. 
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𝛼1𝑘
=

1

365 ∙ 𝑎𝑓1
∙ [

𝑇𝑐𝑘

𝑇𝑁𝑂𝐶𝑇
] (5) 

Here 𝛼1𝑘
 is the PV panel stress factor at cycle 𝑘, 𝑇𝑐𝑘

 is the average cell temperature at cycle 

𝑘 for the daylight hours [°C], 𝑇𝑁𝑂𝐶𝑇 is the nominal cell operating temperature [°C], and 𝑎𝑓1 

is an adjustment factor. The adjustment factor of this expression permits modifying the 

degradation rate of the elements to calibrate the curve according to the reported failure 

rates; this factor is present in all the elements. Although 𝑎𝑓1 can take any positive value, 

the equation (5) is normalized annually to give a practical and intuitive sense. 

The aging curve in Figure 17 applies to all elements and is calculated as shown in 

equation (6),  

𝛿𝑖𝑘 = 1 − 𝑒
𝑓𝑖⋅(𝑘−(365⋅𝑓𝑦−

𝑙𝑛(1−𝑓𝑣)
𝑓𝑖 ))

 (6) 

where 𝛿𝑖𝑘 is the aging state in cycle 𝑘 for element 𝑖, 𝑓𝑖 is the shape factor 𝑖 of the curve for 

PV panels, 𝑘 is the cycle evaluated, 𝑓𝑦 is the final year of the project's life for which the 

curve is projected, and 𝑓𝑣 is the final value that the curve will have in year 𝑓𝑦 (in the range 

[0,1]). This expression allows maintaining a different type of aging curve for each element if 

desired, but for this thesis, we will assume for all elements 𝑓𝑦 = 25 years, 𝑓𝑣 = 0.8, and 

𝑓𝑖 = 0.01. With these parameters, a curve like the one in Figure 17 is obtained. 

Finally, the health state of the PV panels due to meteorological variables in cycle 𝑘 

(𝐻1𝑘

𝑀𝑉) is obtained by the expression (7), where 𝐻1𝑘
 is calculated by means of the expression 

(8), which follows the general form shown in (1). 

𝐻1𝑘

𝑀𝑉 = 𝐻1𝑘
∙ 𝛿1𝑘

 
(7) 

𝐻1𝑘
= 𝐻1𝑘−1

∙ (1 − 𝛼1𝑘
)
𝑘
 (8) 

It should be noted that the factors of the expression (7) are independent of each other and 

must be calculated separately. 

3.4.2.2.1.1.2 Degradation due to soiling 

Soiling is another highly studied topic in the literature due to its high incidence on PV 

plant performance; numerous reviews provide a complete characterization of soiling (see 2.7, 
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paragraph four). Several factors influence soiling deposition according to the literature; Jamil 

et al. [119] summarize them in wind speed, tilt angle and orientation, dust properties 

(chemical, biological, electrostatic, size, shape, and weight), glazing characteristics, site 

characteristics (local vegetation, pedestrian and vehicular traffic, air pollution), ambient 

temperature and humidity. Researchers, in their attempt to model soiling, have developed 

different methods based on regression models, neural networks, empirical models, among 

others (see 2.7, paragraph five), which use various meteorological variables to model dust 

deposition. These models are highly dependent on the data of the geographical location, so 

they must be adjusted for each study area. 

There is no consensus on which model is more suitable to model soiling, so based on the 

methodological proposal, we propose a simplified model that allows us to construct a 

characteristic health state curve. Our argument is based on the main parameter affected by 

soiling that reduces plant performance: transmittance; the more dust deposition, the less 

light the solar panel receives. For this special case, the HS curve assumed is not the one 

presented in Figure 18, since this indicator will be treated slightly differently in our model.  

In this case, we will take the concept of the soiling ratio (SR). This value is defined as 

the ratio between the power generated with soiling and the power with a clean panel. This 

ratio varies in a decreasing exponential form as the dust concentration density increases 

[120] [121] (see Figure 19 and Figure 20). Although in some works a linear behavior of the 

soiling is observed [92] [95] [97] [98] [99] [122], a linear approximation is valid for the 

beginning of the curve where the dust concentration density is low; the literature shows that 

with periodic cleanings (natural or scheduled), the SR remains in the linear zone. However, 

we will use the exponential curve as a reference for more general modeling.  
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Figure 19 Normalized efficiency vs dust concentration 

density [120]. 

 

 

Figure 20 Soiling Ratio measurements over 12 months 

in chilean cities (from sea level up to 2500 m.s.n.m) 

[121]. 

That said, the model that allows us to calculate the stress factor due to soiling is given 

by the equation (9), 

𝛼2𝑘
=

1

365 ∙ 𝑎𝑓2
∙ [

𝑣𝑘

𝑣𝑚
] 

(9) 

where 𝛼2𝑘
 is the stress factor due to soiling, 𝑣𝑘 is the average wind speed in cycle 𝑘 [m/s], 

𝑣𝑚 is the annual average wind speed [m/s], and 𝑎𝑓2 is the adjustment factor of soiling. This 

expression establishes a direct relationship between wind speed and the level of dust 

deposition (except for storms and abnormal weather conditions). Then, to obtain the 

decreasing exponential health state curve, a variant of equation (1) will be used, from which 

the exponent 𝑘 is removed. With this, the health state for soiling in cycle 𝑘 (𝐻2𝑘

𝑆 ) can be 

calculated by the expression (10), generating the curve in Figure 21.  

𝐻2𝑘

𝑆 = 𝐻2𝑘−1
∙ (1 − 𝛼2𝑘

) 
(10) 

Since this HS is constructed based on the SR and is normalized in the range [0,1], the 

same behavior is obtained, therefore the HS of the soiling will be weighted by the power 

generated by the PV panel. This means that the maximum power of the solar panel 𝑃𝑚𝑎𝑥 

at the output is given by 𝑃𝑚𝑎𝑥 ⋅ 𝐻2𝑘

𝑆 . This is the only case in which the health state represents 

a real operating condition because it relates to a single phenomenon. 



 

61 

 

Figure 21 Health state for soiling. 

3.4.2.2.1.2 Wiring degradation model 

The wiring of a PV plant is essential to ensure power transmission. Its operation is quite 

intuitive and suggests a model based on the level of utilization. This can be achieved by 

modeling the stress factor through power transmission. Thus, we propose that the stress 

factor of the wiring is as shown in equation (11), which is a function of the DC power 

transported. This equation has a variation for the AC side, which is shown in equation (12). 

𝛼3𝐷𝐶𝑘
=

1

365 ∙ 𝑎𝑓3𝐷𝐶
∙ [

𝐸𝐷𝐶𝑘

𝐸𝐷𝐶0
] (11) 

𝛼3𝐴𝐶𝑘
=

1

365 ∙ 𝑎𝑓3𝐴𝐶
∙ [

𝐸𝐴𝐶𝑘

𝐸𝐴𝐶0
] (12) 

In equation (11), 𝛼3𝐷𝐶𝑘
 is the stress factor at cycle 𝑘 for the DC side, 𝐸𝐷𝐶𝑘

 is the DC 

energy produced at cycle 𝑘 [MWh], 𝐸𝐷𝐶0 is the DC energy at rated power of the PV plant 

[MWh], and 𝑎𝑓3𝐷𝐶 is the adjustment factor; 𝐸𝐷𝐶𝑘
 can be estimated using equation (13) by 

calculating the sum of the 𝑃𝐷𝐶𝑡
 in cycle 𝑘, where 𝑡 are the hours of the day; 𝐸𝐷𝐶0 is the DC 

energy at rated power of the PV plant in cycle k; 𝑃𝐷𝐶𝑡
 can be calculated by (15). 

𝐸𝐷𝐶𝑘
= ∑𝑃𝐷𝐶𝑡

24

𝑡=1

 (13) 
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The same reasoning is maintained in equation (12); 𝛼3𝐴𝐶𝑘
 is the stress factor at cycle 𝑘 

for the AC side, 𝐸𝐴𝐶𝑘
 is the AC energy produced at cycle 𝑘 [MWh], 𝐸𝐴𝐶0 is the AC energy 

at rated power of the PV plant [MWh], and 𝑎𝑓3𝐴𝐶 is the adjustment factor. 𝐸𝐴𝐶𝑘
 can be 

estimated using equation (14) by calculating the sum of the 𝑃𝐴𝐶𝑡
 in cycle 𝑘, where 𝑡 are the 

hours of the day; 𝐸𝐴𝐶0 is the AC energy at rated power and rated inverter efficiency of PV 

plant in cycle 𝑘. 𝑃𝐴𝐶𝑡
 is calculated by (20), defined in 3.4.2.2.1.3 below. 

𝐸𝐴𝐶𝑘
= ∑𝑃𝐴𝐶𝑡

24

𝑡=1

 
(14) 

𝑃𝐷𝐶𝑡
=

𝐺𝑡

𝐺𝑆𝑇𝐶
∙ 𝑃𝐷𝐶0 ∙ (1 + 𝛾 ⋅ (𝑇𝑐𝑡

− 𝑇𝑆𝑇𝐶)) (15) 

Equation (15) is used in the “Explorador Solar” [123] and comes from the PVWatts 

[124] software developed by NREL, where 𝑃𝐷𝐶 is the rated DC power produced by the PV 

plant, 𝐺𝑡 is the solar irradiance in hour 𝑡 [w/m2], 𝐺𝑆𝑇𝐶 is the solar irradiance under Standard 

Test Conditions (STC) [w/m2], 𝑃𝐷𝐶0 is the rated power of the PV plant [MW], 𝛾 is the cell 

temperature coefficient for maximum power [%/°C], 𝑇𝑐𝑡
 is the temperature of the PV cell in 

hour 𝑡 [°C], and 𝑇𝑆𝑇𝐶 is the rated operating temperature of the PV cell [°C]. The calculation 

of 𝐺𝑡 changes as a function of irradiance, which is defined in the expression (16). 

𝐺𝑡 = {
0.008 ∙ 𝐺𝑡

2𝑖𝑓𝐺𝑡 < 125[𝑤/𝑚2]

𝐺𝑡𝑖𝑓𝐺𝑡 ≥ 125[𝑤/𝑚2]
 (16) 

Finally, equation (17) shows the health state of the wiring at cycle 𝑘 (𝐻3𝑘

𝑊) in general form, 

which follows the type shown in Figure 18, and where 𝐻3𝑘
 is calculated by the expression 

(18). The aging curve 𝛿3𝑘
 is calculated by the expression (6). 

𝐻3𝑘

𝑊 = 𝐻3𝑘
∙ 𝛿3𝑘

 
(17) 

𝐻3𝑘
= 𝐻3𝑘−1

∙ (1 − 𝛼3𝑘
)
𝑘
 (18) 

3.4.2.2.1.3 Inverter degradation model 

Inverters are the most common failure element in the entire PV plant. For this reason, 

literature has made great efforts to understand and model their phenomena. The literature 
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has studied the inverter mainly from the point of view of the reliability of its main elements. 

Inverter degradation is associated with the nature of these components, most of which are 

electronic. In this scenario, the degradation of the inverter is mainly due to the aging of its 

components, which results in increased failure rates throughout its useful life. It should be 

noted that the large majority of failure modes are due to control problems and component 

failure (see 2.5.3.2.1), for which the form of repair is the spare replacement or simple software 

reset. In this sense, we propose a simplified stress factor model based on the energy produced, 

which is a measure of inverter utilization. Equation (19) describes the stress factor of the 

inverter, 

𝛼4𝑘
=

1

365 ∙ 𝑎𝑓4
∙ [

𝐸𝐴𝐶𝑘

𝐸𝜂𝑛𝑜𝑚

] 
(19) 

where 𝛼4𝑘
 is the inverter stress factor at cycle 𝑘, 𝐸𝐴𝐶𝑘

 is the AC energy produced at cycle 

𝑘  [MWh], 𝐸𝜂𝑛𝑜𝑚
 is the AC energy at rated inverter efficiency [MWh], and 𝑎𝑓4 is the 

adjustment factor; 𝐸𝐴𝐶𝑘
 can be estimated from the expression (14). Equation (20) is used in 

the “Explorador Solar” [123] and is inspired by the PVWatts software [124], which is 

estimated by calculating the sum of the 𝑃𝐴𝐶𝑡
 in cycle 𝑘; 𝑃𝐷𝐶𝑡

 can be calculated from the 

expression (15). The inverter efficiency is given by the expression (21), which is used in 

PVWatts software [124] and has been obtained statistically from a large set of inverters. 

𝑃𝐴𝐶𝑡
= {

𝜂 ⋅ 𝑃𝐷𝐶𝑡𝑖𝑓𝑃𝐷𝐶𝑡
< 𝑃𝐷𝐶0

𝜂𝑛𝑜𝑚 ⋅ 𝑃𝐷𝐶0𝑖𝑓𝑃𝐷𝐶𝑡
≥ 𝑃𝐷𝐶0

 
(20) 

𝜂 =
𝜂𝑛𝑜𝑚

0.9637
⋅ (−0.0162 ⋅

𝑃𝐷𝐶𝑡

𝑃𝐷𝐶0
− 0.0059 ⋅

𝑃𝐷𝐶0

𝑃𝐷𝐶𝑡

+ 0.9858) 
(21) 

In equations (20) and (21), 𝜂 is the inverter efficiency as a function of 𝑃𝐷𝐶𝑡
 and 𝜂𝑛𝑜𝑚 is the 

inverter rated efficiency. This allows us to construct a health state curve following the 

guidelines set in this work. Equation (22) shows the health state of the inverter at cycle 𝑘 

(𝐻4𝑘

𝑖𝑛𝑣), which follows the form shown in Figure 18, and where 𝐻4𝑘
 is calculated by the 

expression (23). The aging curve 𝛿4𝑘
 is calculated by the expression (6). 

𝐻4𝑘

𝑖𝑛𝑣 = 𝐻4𝑘
∙ 𝛿4𝑘

 
(22) 
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𝐻4𝑘
= 𝐻4𝑘−1

∙ (1 − 𝛼4𝑘
)
𝑘
 (23) 

3.4.2.2.1.4 K-based degradation model for other components 

For elements that have low failure rates and can maintain a good performance with an 

adequate maintenance plan, a model based exclusively on duty cycles is proposed. This 

model is inspired by elements such as the support structures and the transformer since they 

satisfy the characteristics just mentioned. On the one hand, support structures tend to fail 

few times, and when they do, their impact on generation is quite low. On the other hand, 

transformers are present in all electrical systems, so they are well studied and maintenance 

protocols are well known. Thus, the stress factor based on duty cycles is given by the 

equation (24),  

𝛼𝑖𝑘 = 1 − (𝑚𝑖 ∙ 𝑘) 
(24) 

where, 𝛼𝑖𝑘 is the stress factor for element 𝑖 in cycle 𝑘, 𝑚𝑖 is the slope of element 𝑖, and 𝑘 is 

the duty cycle. In this case, 𝑖 refers to the supporting structures and the transformer. 

Finally, equation (25) shows the health state based on duty cycles at cycle 𝑘 (𝐻𝑖𝑘
𝑘−𝑏𝑎𝑠𝑒𝑑), 

which follows the type shown in Figure 18. In this case, no aging curve is applied, since 

failure rates are low and the effect is negligible. 

𝐻𝑖𝑘
𝑘−𝑏𝑎𝑠𝑒𝑑 = 𝐻𝑖𝑘−1

∙ 𝛼𝑖𝑘 (25) 

 Failure simulation 

The health state 𝐻𝑘 decreases as degradation increases; degradation can also be defined 

as the complement 𝐻𝑘
′ = 1 − 𝐻𝑘. As degradation increase, the probability of element failure 

increases. At each duty cycle, there is a probability of failure that is calculated using the 

generalized logistic function or Richards’ curve [125], shown in (26). This curve was initially 

developed to be used in population growth to provide empirical fits; however, given its great 

flexibility, its use has been extended to other areas such as economics, social media, neural 

networks, among others.  

𝑌(𝑡) = 𝐴 +
𝐾 − 𝐴

(𝐶 + 𝑄𝑒−𝐵(𝑡−𝑀))1 𝑣⁄
 

(26) 
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This equation allows generating a very versatile and flexible sigmoid curve. For this 

thesis, we will call it the failure probability curve (FPC). In our case, we are interested in 

generating a soft transition of the failure probability of the elements instead of imposing a 

rigid threshold for which the element fails if it exceeds this value. This transforms the 

problem into a stochastic problem, which adds uncertainty and variability, in addition to 

meteorological variability. Thus, an element can fail at any cycle depending on its 

probability of failure; moreover, an element can degrade and fail due to different failure 

modes, which have different durations and impacts on generation (see Annexed B). For our 

purposes, equation (26) is modified according to our parameters, resulting in equation (27), 

𝑃𝐹𝐶(𝐻𝑘) =
𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛

1 + 𝑒−𝐵∙((1−𝐻𝑘))−𝑀)
+ 𝐻𝑚𝑖𝑛 (27) 

where 𝐹𝑃𝐶(𝐻𝑘) is the probability of failure as a function of health state 𝐻𝑘, 𝐻𝑚𝑎𝑥 is the 

superior asymptote, 𝐻𝑚𝑖𝑛  is the inferior asymptote, 𝐵 is the growth rate, and 𝑀 is the 

maximum growth value when 𝑄 = 𝑣 = 1 . The parameters 𝐶 , 𝑄 , and 𝑣  take value 1. 

Equation (28) shows the final form of the FPC for 𝐻𝑚𝑎𝑥 = 1, 𝐻𝑚𝑖𝑛 = 0, 𝐵 = 30, and 

𝑀 = 0.5. The 𝐵 and 𝑀 values were arbitrarily chosen to achieve the shape of Figure 22. 

𝑃𝐹𝐶(𝐻𝑘) =
1

1 + 𝑒−30∙((1−𝐻𝑘))−0.5)
 (28) 

 

Figure 22 Sigmoid curve of failure probability for an element as a function of degradation. 

Once an element fails, the energy associated with that element may decrease for a 

certain period. In this case, the energy generated is penalized proportionally by the failure 
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factor (𝐹𝐹𝑖𝑗), which is a factor in the range of [0,1] for element 𝑖 and failure mode 𝑗 that 

directly affects the generation associated with a fault. We show the energy penalization in 

the equation (29), where 𝐹𝐹𝑖𝑗 can be calculated with equation (30). 

𝐸𝑘 = 𝐸𝑟𝑒𝑓𝑘
∙ 𝐹𝐹𝑖𝑗𝑘

 
(29) 

𝐹𝐹𝑖𝑗𝑘
= 1 − 𝐹𝐼𝑖𝑗𝑘

∙ 𝐹𝑇𝐹𝑖𝑗 (30) 

In equations (29) and (30), 𝐸𝑘 is the energy generated in cycle 𝑘, 𝐸𝑟𝑒𝑓𝑘
 is the reference 

energy in cycle 𝑘 (see 3.4.2.2.3), 𝐹𝐹𝑖𝑗𝑘
 is the failure factor of element 𝑖 in cycle 𝑘, 𝐹𝐼𝑖𝑗 is the 

failure impact of the element 𝑖 with failure mode 𝑗 in cycle 𝑘, and 𝐹𝑇𝐹𝑖𝑗 is the fault time 

factor of the element 𝑖 with failure mode 𝑗. We define failure impact (𝐹𝐼𝑖𝑗) as the ratio of 

failed energy to the total energy associated with that element, and failure time factor (𝐹𝑇𝐹𝑖𝑗) 

as the proportion of failure duration (𝐹𝐷𝑖𝑗 in hours) compared to the total hours of the 

cycles associated with the failure; a failure may last more than one cycle, so in this case, the 

value of 𝐹𝑇𝐹𝑖𝑗 takes value 1 until the number of hours of the failure is completed in the 

respective number of cycles. Both parameters are normalized to the range [0,1]. The values 

of 𝐹𝐼𝑖𝑗𝑘
 and 𝐹𝑇𝐹𝑖𝑗 depend on the failed element and the nature of the failure. For more 

details on the failure modes considered for the modeling, see Annexed B. 

 Energy linkage 

The assumptions stated in 3 establish that the elements modeled through the health 

state curves are technically independent. This means that a technical failure in element A 

cannot induce a technical failure in element B, even if they are in the same series branch; 

for example, a technical failure in the inverter does not induce a technical failure in the 

supporting structures. This is justified by the fact that all elements are physically 

independent and are not part of a complete system as could be the elements of a motor. 

However, there is an electrical dependency in all the elements, which could induce electrical 

faults in each other; for example, a ground fault on the inverter. Nevertheless, this type of 

failure is attributable to external factors and is not modeled, while within the PV plant, 

some protections electrically separate the elements, isolating sections in case of failure. 

Thus, the only connection between the elements is the transmission of energy. This 

means that as a result of a technical failure in A, the transmitted energy does not reach B, 

therefore the whole series branch and upstream elements are affected energetically. This is 

done simply.  
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First, before the Monte Carlo simulation, 𝑛 reference energy vectors 𝐸𝑟𝑒𝑓 are defined as 

a function of the 𝑛 modeled PV panel degradation; for instance, assuming an installation 

that has two inverters of three strings, there would be six reference energy vectors; each 

string has its own reference vector. These represent the ideal generation of the panels, with 

no failures (aging is still considered). The sum of all the 𝐸𝑟𝑒𝑓 vectors result in the total 

reference energy (𝐸𝑇𝑟𝑒𝑓), equivalent to the energy that would ideally be injected into the 

system if there were no failures. 

Once the 𝐸𝑟𝑒𝑓  vectors are defined, maintenance policies and fault simulations are 

applied within the Monte Carlo cycle. These possible scenarios will cause the real generation 

to be lower than the ideal 𝐸𝑟𝑒𝑓𝑘
. Thus, we define the lost energy for element 𝑖 and failure 

mode 𝑗 in cycle 𝑘 (𝐿𝐸𝑖𝑗𝑘
), which is calculated by the equation (31). 

𝐿𝐸𝑖𝑗𝑘
= 𝐸𝑟𝑒𝑓𝑘

− 𝐸𝑟𝑒𝑓𝑘
⋅ 𝐹𝐹𝑖𝑗𝑘

 
(31) 

This expression is applied to all modeled elements, which makes it possible to calculate 

the energy lost by all PV plant elements. Thus, equation (32) shows the total energy lost, 

𝑇𝐿𝐸𝑘 = ∑ ∑ 𝐿𝐸𝑖𝑗𝑘

𝑁𝐹𝑀𝑖

𝑗=1

𝑁𝐸

𝑖=1

 (32) 

where 𝑇𝐿𝐸𝑘 is de total energy lost due to all elements in cycle 𝑘, 𝑁𝐸 is the number of 

modeled elements, and 𝑁𝐹𝑀𝑖 is the number of failure modes of element 𝑖.  

 Maintenance policy 

To establish the maintenance policy to be used, three types of maintenance are modeled: 

inspections, preventive maintenance, and corrective maintenance; actually, inspections are 

part of preventive maintenance, however, we separate them for academic purposes. First, 

we divide the PFC into two parts: no maintenance zone and maintenance zone (see Figure 

23). No maintenance zone represents the range of the health state where the probability of 

failure is approximately zero; otherwise, it corresponds to the maintenance zone. The limit 

between these two zones is named maintenance limit (ML); an element can fail at any cycle 

once it crosses the ML. Once the element has failed, corrective maintenance is performed. 
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Figure 23 Health state and PFC in maintenance policy. 

3.4.2.2.4.1 Inspection modeling 

Inspections are modeled with a threshold 𝐼𝑖  in the health state (represented by the red 

line in Figure 24), defined by the policy (decision variable). When the health state falls 

below Ii an inspection is carried out. During an inspection, the operator can or cannot find 

a defective status of a certain component with a given detection probability (DP); in the 

absence of precise information, we arbitrarily define DP with value 0,5. Defective status is 

understood as a status that cannot affect the operation (no corrective maintenance is 

needed) but represents a potential of failure.  

 We define arbitrarily for this thesis the potential of failure (PF), which is a random 

value in the range [0,1]. If the operator finds a defective status and PF is less than 0.5, 

palliative maintenance is carried out (see Figure 24); in our case, palliative maintenance 

means that the health state is set at the maintenance limit (where the probability of failure 

is approximately zero and starts to grow significantly with each new cycle). In other words, 

not expensive maintenance is carried out while the period of preventive maintenance arrives; 

the cost of palliative maintenance is equivalent to a simple inspection. Some examples of 

palliative maintenance can be minor adjustments, the re-setting configuration of some 

components, correct alarms, retighten connectors, some minor cleaning, etc. If the operator 

finds a defective status and PF is equal to or more than 0.5, preventive maintenance is 

carried out.  

This approach intends to incorporate the diverse cases present in operation. 

Additionally, once the first inspection is carried out, the number of cycles to the next 

inspections is modeled with another decision variable 𝑇𝐼𝑖. That is, once the health state falls 
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below 𝐼𝑖, the variable 𝑇𝐼𝑖 indicates how frequently the next inspection should be performed, 

as long as the health state remains below 𝐼𝑖. 

 

Figure 24 Health state after palliative maintenance due to an inspection. 

3.4.2.2.4.2 Preventive maintenance modeling 

Preventive maintenance is modeled with a threshold 𝑃𝑀𝑖 , in the health state 

(represented by the green line in Figure 25), defined by the policy (decision variable). When 

the health state falls below 𝑃𝑀𝑖, preventive maintenance is carried out. This means that the 

health state is set with value one (ideally); recall that the health state is affected by the 

aging curve. The cost of preventive maintenance is higher than inspection costs because 

additional costs are incurred for repair of elements, spare parts, cleaning, etc. 

 

Figure 25 Health state after preventive maintenance. 
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3.4.2.2.4.3 Corrective maintenance modeling 

When degradation rises and enters into the maintenance zone, the probability of failure 

increases gradually. If the operator does not find a defective status and no preventive 

maintenance is carried out, the system eventually will fail. When this occurs, the health 

state is set in value zero meanwhile corrective maintenance eliminates the failure, as shown 

in Figure 26.  

 

Figure 26 Health state after corrective maintenance. 

The health state will remain at zero for the number of cycles the fault lasts, after which 

it will be restored to value 1 (ideally). Failures can occur as long as the health state of an 

item is above the preventive maintenance threshold and below the inspection threshold. 

Outside this range, the probability of failure is negligible (over inspection threshold) or 

preventive maintenance has already been performed. 

3.4.2.2.4.4 Error in inspections and maintenance 

Whether in inspections, preventive or corrective maintenance, the chance that the 

inspection or maintenance will not be effective is considered. When inspection or 

maintenance is performed, there may be errors due to human mistakes, defective or degraded 

spare parts, or other factors. This does not allow the health state to return to its ideal values 

(1 in the case of preventive maintenance). Therefore, the health state may be restored to 

value 1, less than 1, the same as before maintenance, worse than before maintenance, or it 

may even fail due to maintenance. 

To incorporate this effect, the ideal value of health state restoration is multiplied by a 

random variable with beta distribution (𝛼 = 30 , 𝛽 =4), as shown in Figure 27; the 



 

71 

parameters 𝛼  and 𝛽  of this distribution were chosen on the assumption that perfect 

maintenance cannot always be performed, but high levels of maintenance effectiveness are 

highly expected. Thus, if palliative maintenance is performed, the health state is fixed at 

the maintenance limit affected by the random sample. If preventive or corrective 

maintenance is performed, that random sample is multiplied by 1. 

 

Figure 27 Beta distribution for random variable sampling in health state restoration error. 

3.4.2.3 Key indicators and optimization criteria 

There is flexibility about the optimization criteria and the key indicators needed to find 

an optimal point. In our case, we are interested in a slightly more realistic view, so based 

on economic criteria, the logical option is to minimize maintenance costs.  

In this sense, lowering the thresholds of our decision variables implies lower maintenance 

periodicity and an increase in failures, which directly affects the performance of the PV 

plant through energy penalties. Therefore, given that the only technical constraints of our 

model are the upper and lower bounds of the decision variables, the balance between 

maintenance costs and economic revenues from energy sales seems to be the most 

appropriate criterion.  

Thus, by maximizing the net profit (energy sales revenue minus maintenance costs), a 

trade-off between maintenance level and energy yield of the PV plant can be found. It should 

be noted that in our approach, we are not considering contractual requirements of minimum 

uptime or other criteria; we are only relying on economic criteria.   
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3.4.3 Optimization problem definition 

Once the methodology has been broken down, the formal definition of the optimization 

problem is shown in equation (33), where the profit is maximized as a function of the decision 

variables 𝑥 , 

max {∑(𝑅(𝑥 )𝑘 − 𝑀𝐶(𝑥 )𝑘)

𝑇𝐶

𝑘=1

} ; 𝑥 = [𝑥1, 𝑥2, … , 𝑥19] (33) 

                          subject to 
1 ≤ 𝑥𝑟 ≤ 365;∀𝑟; 𝑟 = 1,2,3, … ,6 

0 ≤ 𝑥𝑠 ≤ 1; ∀𝑠; 𝑠 = 7,8,9, … ,19 
𝑥𝑟 ∈ ℕ; 𝑥𝑠 ∈ ℝ 

 

with: 
𝑥1 = IT1: Threshold associated with spacing between PV panel inspections 𝐻1𝑘

𝑀𝑉 [cycles] 

𝑥2 = IT3𝐷𝐶 ∶ Threshold associated with spacing between DC wiring inspections 𝐻3𝐷𝐶𝑘

𝑊  [cycles] 

𝑥3 = IT3AC: Threshold associated with spacing between AC wiring inspections 𝐻3𝐴𝐶𝑘

𝑊  [cycles] 

𝑥4 = IT4: Threshold associated with spacing between inverter inspections 𝐻4𝑘

𝑖𝑛𝑣 [cycles] 

𝑥5 = IT𝑆𝑆: Threshold associated with spacing between supporting structures inspections 𝐻𝑆𝑆𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 [cycles] 

𝑥6 = ITT: Threshold associated with spacing between transformer inspections 𝐻𝑇𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 [cycles] 

𝑥7 = I1: Threshold associated with PV panel inspections 𝐻1𝑘

𝑀𝑉 ∈ [0,1] 

𝑥8 = I3𝐷𝐶: Threshold associated with DC wiring inspections 𝐻3𝐷𝐶𝑘

𝑊  ∈ [0,1] 

𝑥9 = I3𝐴𝐶: Threshold associated with AC wiring inspections 𝐻3𝐴𝐶𝑘

𝑊  ∈ [0,1] 

𝑥10 = I4: Threshold associated with inverter inspections 𝐻4𝑘

𝑖𝑛𝑣 ∈ [0,1] 

𝑥11 = I𝑆𝑆: Threshold associated with supporting structures inspections 𝐻𝑆𝑆𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 ∈ [0,1] 

𝑥12 = I𝑇: Threshold associated with transformer inspections 𝐻𝑇𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 ∈ [0,1] 

𝑥13 = PM1: Threshold associated with PV panel preventive maintenance 𝐻1𝑘

𝑀𝑉 ∈ [0,1] 

𝑥14 = PM2: Threshold associated with PV panel cleaning 𝐻2𝑘

𝑆  ∈ [0,1] 

𝑥15 = PM3𝐷𝐶: Threshold associated with DC wiring preventive maintenance 𝐻3𝐷𝐶𝑘

𝑊  ∈ [0,1] 

𝑥16 = PM3𝐴𝐶: Threshold associated with DC wiring preventive maintenance 𝐻3𝐴𝐶𝑘

𝑊  ∈ [0,1] 

𝑥17 = PM4: Threshold associated with inverter preventive maintenance 𝐻4𝑘

𝑖𝑛𝑣 ∈ [0,1] 

𝑥18 = PM𝑆𝑆: Threshold associated with supporting structures preventive maintenance 𝐻𝑆𝑆𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 ∈ [0,1] 

𝑥19 = PM𝑇: Threshold associated with transformer preventive maintenance 𝐻𝑇𝑘

𝑘−𝑏𝑎𝑠𝑒𝑑 ∈ [0,1] 

where 𝑅(𝑥 )𝑘 is the expected revenue from energy sales in cycle 𝑘 [USD], 𝑀𝐶(𝑥 )𝑘 is the 

expected total maintenance costs in cycle 𝑘 [USD], and 𝑇𝐶 are the total simulated cycles. 

𝑅(𝑥 )𝑘 and 𝑀𝐶(𝑥 )𝑘 can be calculated by equations (34) and (35), respectively,  

𝑅(𝑥 )𝑘 = 𝑃𝑃𝐴 ⋅ 𝐸(𝑥 )𝑘 (34) 
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𝑀𝐶(𝑥 )𝑘 = 𝐼𝐶(𝑥 )𝑘 + 𝑃𝑀𝐶(𝑥 )𝑘 + 𝐶𝑀𝐶(𝑥 )𝑘 (35) 

where 𝑃𝑃𝐴 is the power purchase agreement [USD/MWh], 𝐸(𝑥 )𝑘 is the expected energy 

generated in cycle 𝑘  [MWh], 𝐼𝐶(𝑥 )𝑘  is the expected inspection costs in cycle 𝑘  [USD], 

𝑃𝑀𝐶(𝑥 )𝑘 is the expected preventive maintenance costs in cycle 𝑘 [USD], and 𝐶𝑀𝐶(𝑥 )𝑘 is 

the expected corrective maintenance costs in cycle 𝑘 [USD]. 𝐸(𝑥 )𝑘 can be calculated by the 

expression (36), 

𝐸(𝑥 )𝑘 =
1

𝑁𝑀𝐼
⋅ ∑ (𝐸𝑇𝑟𝑒𝑓𝑘𝑚

− 𝑇𝐿𝐸(𝑥 )𝑘𝑚
)

𝑁𝑀𝐼

𝑚=1

 (36) 

where 𝐸𝑟𝑒𝑓𝑘𝑚
 is the total reference energy in cycle 𝑘 in iteration 𝑚, 𝑇𝐿𝐸(𝑥 )𝑘 is the total lost 

energy in cycle 𝑘 in iteration 𝑚, and 𝑁𝑀𝐼 is the total iterations of Monte Carlo simulation. 

Expected total inspection costs (𝐼𝐶(𝑥 )𝑘) can be calculated using equation (37), 

𝐼𝐶(𝑥 )𝑘 =
1

𝑁𝑀𝐼
⋅ ∑ (𝑃𝐷𝐶0𝑠

⋅ 103 ⋅ ∑(𝐼𝑉(𝑥 )𝑖𝑘𝑚
⋅ 𝑎𝑖)

𝑁𝐸

𝑖=1

)

𝑁𝑀𝐼

𝑚=1

 ; 𝐼𝑉(𝑥 )𝑖𝑘𝑚
 ∈  {0,1} (37) 

𝑃𝑀𝐶(𝑥 )𝑘 =
1

𝑁𝑀𝐼
⋅ ∑ (𝑃𝐷𝐶0𝑠

⋅ 103 ⋅ ∑(𝑃𝑀𝑉(𝑥 )𝑖𝑘𝑚
⋅ 𝑏𝑖)

𝑁𝐸

𝑖=1

)

𝑁𝑀𝐼

𝑚=1

 ; 𝑃𝑀𝑉(𝑥 )𝑖𝑘𝑚
 ∈  {0,1} (38) 

𝐶𝑀𝐶(𝑥 )𝑘 =
1

𝑁𝑀𝐼
⋅ ∑ (𝑃𝐷𝐶0𝑠

⋅ 103 ⋅ ∑(𝐶𝑀𝑉(𝑥 )𝑖𝑘𝑚
⋅ 𝑐𝑖)

𝑁𝐸

𝑖=1

)

𝑁𝑀𝐼

𝑚=1

 ; 𝐶𝑀𝑉(𝑥 )𝑖𝑘𝑚
 ∈  {0,1} (39) 

where  𝐼𝑉(𝑥 )𝑖𝑘𝑚
 is a binary vector of inspections for element 𝑖 in cycle k in iteration 𝑚, 𝑎𝑖 

is the average annual cost of inspections for element 𝑖 [USD/kW-year/inspection], and 𝑃𝐷𝐶0𝑠
 

is the rated power of the PV plant per string [MW]. The binary vector 𝐼𝑉(𝑥 )𝑖𝑘𝑚
 is a vector 

of zeros initially, to which a 1 is placed at position 𝑘 each time an inspection is performed; 

the sum of 𝐼𝑉(𝑥 )𝑖𝑘𝑚
 results in the number of whole-plant inspections performed on element 

𝑖 for all cycles in iteration 𝑚. The same is done for expected preventive (𝑃𝑀𝐶(𝑥 )𝑘) and 

corrective (𝐶𝑀𝐶(𝑥 )𝑘) maintenance costs, in equations (38) and (39), respectively, where 

𝑃𝑀𝑉(𝑥 )𝑖𝑘𝑚
 is a binary vector of preventive maintenance, 𝑏𝑘 is the average annual cost of 

preventive maintenance for element [USD/kW-year], 𝐶𝑀𝑉(𝑥 )𝑖𝑘𝑚
 is a binary vector of 
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corrective maintenance, and 𝑐𝑘  is the average annual cost of corrective maintenance 

[USD/kW-year]. 

3.4.4 Optimization process 

The proposed methodology has three determining characteristics when choosing an 

optimization algorithm: it is represented by a non-derivable function, it is highly non-linear 

and it is multidimensional. The health state indicators are built based on the previous state 

of an element, so that a simple linear model depending on the previous state, generates an 

exponential form; also, the multidimensionality of the problem presupposes a 

multioptimality condition. This characteristic makes the model highly nonlinear, which 

added to the high dimensionality of the modeled independent elements, turns infeasible the 

resolution by traditional methods. 

As a result of the above, it is necessary to use an optimizer according to our 

requirements. In this sense, considering the nature of our model, evolutionary algorithms 

represent an intuitive choice. Genetic algorithms (GA) are one of the best known and most 

widely used heuristic methods available, with great versatility and adaptability to all types 

of high complexity problems. It is not the aim of this thesis to discuss the best algorithm 

for this type of problem, thus, based on literature, genetic algorithms fully satisfy our 

requirements. For a deeper and more specific understanding of GA, see [126]. 

Genetic algorithms, as well as all evolutionary algorithms, are based on natural 

phenomena. In this regard, GA simulates the natural selection of species, where only species 

capable of adapting can survive, reproduce and form a new generation. This algorithm is 

based on 4 main elements: individual, population, crossover, and mutation. 

In practical terms, the individual, also called a gene, is an array containing the decision 

variables of the problem. For our case, considering that for each element we have modeled 

inspections, spacing between inspections, and preventive maintenance, our individual 

contains 19 decision variables.  

The population is a set of N individuals. There must be an initial population, which is 

usually generated randomly. To achieve this, uniformly distributed random samples of the 

variables within each individual are generated, keeping within the limits of each variable. 

This generates the initial base for moving to the next step. 

To perform the crossover, it is first necessary to select the individuals. There are several 

methods to do so, among which the most commonly used are the traditional, ranking, 
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tournament, and elitism; each of them has particular characteristics, which must be chosen 

appropriately according to the type of problem modeled. In our case, we will use the 

tournament for selection without considering elitism since we presuppose a problem with 

numerous local optima, so the selection process must go through as much variety as possible 

to avoid premature convergence. Then, the crossover is performed. To do so, two individuals 

(parents) are chosen, from which variables are swapped among them. The number of 

swapped variables and the positions are simulated randomly with probability 𝑃𝑐. This results 

in two new individuals (offspring) that will be added to the population of a new generation. 

In this form, the offspring inherit the characteristics of their parents. 

Finally, the mutation is applied to the new generation. This is performed to provide 

variability to the evolution and to prevent the algorithm from converging prematurely. The 

mode of mutation varies according to whether the GA is modeled in binary or real variables. 

In our case, the modeling is in real variables, so the mutation is performed by adding to the 

mutated variables of each individual a positive or negative random sample from a uniform 

distribution. The number and position of the mutated variables of each individual are 

randomly simulated with a probability 𝑃𝑚. In this form, a search beyond the characteristics 

inherited by the parents is stimulated. 

It is important to note that the genetic algorithm must be tuned specifically for each 

problem, where population size, crossover probability, and mutation probability are highly 

sensitive to the performance of the algorithm. Although there is no universal rule for fitting 

the genetic algorithm, there are approximation methods that suggest values within certain 

ranges [127]; however, the fit is unique to each problem. Not choosing the right parameters 

of the genetic algorithm can lead to convergence problems, premature convergence, over-

utilization of computational resources, etc. 

3.4.5 Model calibration 

3.4.5.1 Calibration of health state curves 

The calibration of the proposed methodology follows an iterative process. The 

adjustment factors 𝑎𝑓𝑖for stress factors 𝛼𝑖 modify the health state curves to decay slower 

or faster (see Figure 28). In this way, an element can fail more or fewer times in the same 

number of cycles.  

To fit each curve, the health indicators for each element 𝑖 are simulated and the average 

number of failures per year is calculated based on a typical maintenance plan. This plan 

should ideally be the maintenance plan of the plant to be evaluated; however, as this 

information is difficult to obtain, we assume a maintenance plan based on best practices 
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(see section 2.5.4). Then, the 𝑎𝑓𝑖 factors are modified to increase or decrease the average 

annual failure rate according to literature and industry reports [31] [36] [76] [77] [128] [129] 

[130]. To achieve a reliable and consistent fit, it is necessary to use the same number of 

iterations used in the Monte Carlo simulation. 

 

Figure 28 Health state for different values of 𝑎𝑓𝑖. 

3.4.5.2 Calibration of maintenance costs 

In the same manner that health state curves are calibrated using annual average failure 

rates, costs are calibrated using annual average maintenance costs found in the literature 

and industry reports [3] [16] [131] [132] [133], and based on the maintenance plan of the 

plant being evaluated; here we also assume a maintenance plan based on best practices.  

To achieve this, once the health state curves have already been calibrated, the values 

𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 of equations (37), (38), and (39), respectively, are adjusted so that the value 

of 𝐼𝐶(𝑥 )𝑘, 𝑃𝑀𝐶(𝑥 )𝑘, and 𝐶𝑀𝐶(𝑥 )𝑘 are in the desired order. Note that these values represent 

the total costs of all simulated cycles, so for obtaining the average annual costs, they should 

be divided by 𝑇𝐶 365⁄  when calibrating, which is the number of equivalent simulated years; 

𝑇𝐶 is the total cycles simulated; here it is also necessary to use the same number of iterations 

used in the Monte Carlo simulation. 
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4 Case study 

4.1 Introduction 

In this chapter, the proposed methodology is validated by applying it to a large-scale 

case. For this purpose, the parameters of the modeled solar PV plant, its health state curves, 

energy price, maintenance costs, and calibration variables are presented. Subsequently, the 

analysis of the results is performed by contrasting 2 cases: the base case (based on best 

practices) and the optimized case (the result of the optimization problem). 

4.2 Case study selection criteria 

The proposed methodology is validated through the application of a large-scale system. 

To accomplish this, we have to choose a real solar plant of the Chilean electrical system. 

The choice of this plant follows the reasoning presented below.  

Chilean law [6] establishes the figure of small resources of distributed generation 

(PMGD for its acronym in Spanish) as those solar photovoltaic installations of up to 9 MW, 

connected to the distribution or transmission system; therefore, for this thesis, plants directly 

connected to the transmission system larger than 9 MW will be considered large scale solar 

plants. This definition is relevant just for this work since there is a lack of international 

standards for the maintenance of large-scale solar plants. It is important to mention that 

the emphasis is on the scalability of the methodology for large-scale plants, since definitions 

of "large-scale" may vary depending on each country's regulations. 

Additionally, sufficient information must be available to calibrate our model. The 

information we have comes primarily from two sources: the benchmarking study of solar PV 

plants in Chile [31] and the CEN6 [134]; the missing information is supplemented with 

literature. The CEN provides public information concerning PV plant equipment, topologies, 

and power generation. The benchmarking study, conducted in 2017, provides valuable 

technical and operational information of 8 large-scale PV plants, reaching 42% of installed 

capacity in the country at the date of the study; the central focus of the study was on the 

collection of information concerning types and failure rates. In summary, the plant to be 

 

6 The CEN is entity in charge of coordinating the installations of the chilean electric system (National 

Electric Coordinator, CEN for its Spanish acronym [136]). 
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chosen must be of more than 9 MW capacity and must have sufficient information to 

calibrate our model. 

4.3 Diego de Almagro PV solar plant modeling 

Following the criteria described above, the chosen solar PV plant is called Solar Diego 

de Almagro, located 3 km northeast of Diego de Almagro, Atacama region. It is a 32 MW 

plant owned by Enel Green Power. It was commissioned on December 11, 2014, having 

about 2 years of operation at the time of the benchmarking study [31]. According to [134], 

its annual net generation has varied between 46.12 GWh and 73.94 GWh from 2015 to 2020. 

This PV plant is composed of 49 1-string central inverters and 23 medium voltage 

transformers (MT), where each transformer groups 2 or 3 inverters; see Annexed C to 

visualize the topology. In practice, solar plants can combine more than one type of element, 

among the most important of which are inverters and photovoltaic panels. The chosen plant 

also has these variants, thus for simplicity, we use only the most common and representative 

type of element in the installation. All MT transformers belonging to the collector system 

raise the generation voltage from 0.38 [kV] to the nominal voltage of the PV plant, which 

is 10.5 [kV] [135]. Table 2 shows all the technical information gathered from [31], [134], and 

[135] required for model calibration. See Annexed D for the corresponding datasheets. 

Table 2 Technical parameters of the photovoltaic system. 

 Parameter Value Description 

P
V

 p
a
n
e
l 

Model Sharp NA-E125L5  

Type Frameless thin film  

𝑃𝑚𝑎𝑥 125 Wp Maximum power output 

𝑃max_𝑒𝑛𝑑 125⋅0.8 Wp Maximum power output in year 25 

𝛾 -0.24 %/°C Temperature coefficient of Pmax 

𝑇𝑟𝑒𝑓 25 °C Reference temperature at STC7 

𝑇𝑁𝑂𝐶𝑇
8 46 °C Nominal temperature of the photovoltaic cell 

I n v e rt e r Model SOLEIL 660HV-TL  

 

7 STC: Standard test conditions: irradiance 1000 W/m2, AM 1.5, cell temperature 25 °C.  
8 NOCT: Module operating temperatura at 800 W/m2 irradiance, air temperature 20 °C, wind speed 1 m/s.  
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 Parameter Value Description 

Type Central 1 string central inverter 

𝑃𝑖𝑛𝑣 0.66 MW Inverter rated power 

𝜂𝑛𝑜𝑚 0.972 Inverter euro-efficiency9 

4.3.1 Health State curves 

To perform the calibration of the health state curves, we use the failure rates shown in 

Table 3. Failure rates were decided based on the average values given in [31]; we have 

decided to use this study as a reference since, although it is not the most representative in 

contrast to the literature, it is the one that provides the most complete information. In this 

sense, there may be variations concerning the data reported in the literature mainly due to 

2 factors: the short operation time of the PV plant and the “average” effect. Since the 

benchmarking study has confidentiality clauses, it is not possible to extract the data directly 

from the chosen plant, for this reason, we had to use the average data. Although this may 

distort the data if we want to have results that are close to reality, they are used only as a 

reference and is not an obstacle to further analysis; besides, the data are in an acceptable 

range for literature reports. 

Table 3 Total average failure rates for model calibration. 

Average failure rate for the… Value [failure/year] 

PV panels due to meteorological variables 56 

DC wiring 13 

AC wiring 16 

Supporting structures 8 

Inverter 78 

Transformers 12 

 

9 Euro-efficiency [139] is a weighted operating efficiency over a yearly power distribution used to characterize 

inverter operation based on an efficiency profile as a function of operating power. It is a more realistic 

measure of operation since inverters do not always operate at maximum efficiency; it is referenced to the 

middle-Europe climate; there exist also the CEC-efficiency, designed for more demanding climates, but not 

all manufacturers provide this value. 
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Thus, following the proposed methodology, the adjustment factors and slopes for the 

degradation models that produce the failure rates in Table 3, assuming a maintenance plan 

based on best practices, are presented in Table 4. The aging curve is assumed to be the same 

for all elements, where 𝑓𝑖 = 0.01, 𝑓𝑦 = 20 (except for PV panels, which is 25), and 𝑓𝑣 = 0.8. 

Table 4 Adjustment factors and slopes for the degradation model of the simulated element. 

Adjustment factor for the degradation model of the… Symbol Value 

PV panels due to meteorological variables 𝑎𝑓1 147 

Soiling 𝑎𝑓2 15.85 

DC wiring 𝑎𝑓3𝐷𝐶 4760 

AC wiring 𝑎𝑓3𝐴𝐶 440 

Inverter 𝑎𝑓4 22 

Slope for the degradation model of the…   

Supporting structures 𝑚𝑆𝑆 3 ⋅ 10−8 

Transformers 𝑚𝑇 14 ⋅ 10−7 

4.3.2 Prices and costs 

The costs defined below are inspired by industry reports. Ideally, the defined costs must 

agree with the distributions described in 2.3.3.1, which estimate that the costs of inspections 

and preventive maintenance can vary between 70% and 90% of the total costs. In our case, 

given that the PV power plants described in [31] are young and the data provided 

contemplate the first years of operation, the failure rates are still above the average reported 

in the literature, so when adjusting the model, there will be an over-dimensioning of the 

failures. Considering this, we have decided that the inspection and preventive maintenance 

costs represent 55% of the total costs based on a best-practice maintenance plan according 

to the higher level of existing failures. This is only an adjustment criterion, which will be 

the basis of reference for further analysis. 

4.3.2.1 Purchase Power Agreement  

We assumed the existence of a Purchase Power Agreement (PPA) that values the 

energy at 50 USD/MWh, where energy is injected and retired at the same node. In this way, 

transmission losses are not included in the economic balance. This is done only for practical 

purposes as it is not our interest to model transmission losses. The PPA value is arbitrarily 

chosen from the range of existing contracts. 



 

81 

4.3.2.2 Inspection costs 

 The cost of inspections is inspired by [131], where a range between 1.4 - 5 USD/kW-

year is specified for electrical inspections and 0.2 - 3 USD/kW-year for general site 

maintenance; these values are based on a yearly inspection and are also consistent with 

[132]. These ranges depend, among other factors, on the portion of the PV plant contracted 

for these services. In our case, we approach the lower limit since we assume that 100% of 

the plant will be inspected. Hence, we have defined the average annual cost per inspection 

for all elements as 1.510 USD/kW-year/inspection.  

4.3.2.3 Preventive maintenance costs 

Preventive maintenance costs are highly variable as they depend on factors such as 

maintenance plan, plant age, spare parts availability, type of technology used, among others. 

Therefore, inspired by [131] and [132], we have arbitrarily defined the average annual cost 

per preventive maintenance for all elements as 20 USD/kW-year/maintenance. The cost of 

cleaning the PV panels per occasion has been set at USD 1.6 USD/kW-year/cleaning. 

4.3.2.4 Corrective maintenance costs 

Industry and best practice reports indicate statistics on annual preventive maintenance 

costs, but there is not much information on corrective maintenance; however, there are ratios 

that are statistically true in practice as indicated in the second paragraph of 2.3.3.1. 

Therefore, we have arbitrarily defined the average annual cost per corrective maintenance 

for all elements as 50 USD/kW-year/maintenance. This value follows the reasoning that 

when a failure occurs, it triggers additional costs to the costs of preventive maintenance, 

which is usually much more economically invasive. 

4.4 Computational simulation 

4.4.1 Simulation on a high-performance computer 

Since the methodology is based on simulation, the computational requirements of our 

model are quite elevated, so a laptop is not enough to obtain results in reasonable times. 

This requires us to apply for resources in the National Laboratory for High Performance 

Computing (NLHPC), where we were assigned an initial account with 88 cores and 50000 

 

10 When calibrating the model, it is necessary to define a number of reference years (it could be 10 for 

example), so all costs must be divided by the number of reference years used to calibrate; this is done for 

mathematical consistency since the model is implemented based on total cycles, not annual cycles. 
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computational hours. These resources are a fundamental limitation when adjusting the 

genetic algorithm since we must be as efficient as possible. 

Additionally, given the architecture of our code, we cannot share memory between 

nodes, so to use the 88 available nodes, it is only possible to perform simulations one node 

(“general” partition) at a time in parallel and independent; for more information about the 

NLHPC, see 4.4.1.1. Due to this technical limitation, we have decided to divide the 

assessment horizon into 2 periods: the first one covers the first 10 years and the second one 

the second 10 years; this results in a total evaluation period of 20 years for the PV plant. 

4.4.1.1 National Laboratory for High Performance Computing (NLHPC) 

The NLHPC is the most powerful national high performance computing center in Chile 

and one of the most powerful in South America. It is at the service of the national scientific 

community, the Chilean Government, and the industry that requires high performance 

computing services. The NLHPC is a high performance computing infrastructure based on 

a distributed memory architecture. It consists of two clusters, Guacolda and Leftraru, which 

together have 5236 computing cores distributed in 192 nodes. The computational resources 

of the NLHPC are distributed in "partitions" (as shown in Table 5) with the SLURM 

resource manager.  

Table 5 Distribution of the NLHPC partitions. 

Node name Node Quantity Cores per node RAM per node GPUs 

general sn[001-048] 48 44 192 Gb 0 

largemem fn[001-009] 9 44 768 Gb 0 

gpus gn[001-002] 2 44 192 Gb 2 

slims cn[001-128] 128 20 48 Gb 0 

slims cnf[001-004] 4 20 64 Gb 0 

debug leftraru[1-4] 4 20 64 Gb 0 

4.4.2 Genetic algorithm tuning 

Based on the guidelines and recommendations described in 3.4.4, we have adjusted the 

parameters of the genetic algorithm specifically for our case. We have decided to set the 

crossover probability 𝑃𝑐 to the typical value of 0.5. Regarding population size, after several 

tests with a fictitious small system and with the large-scale case study, we defined it at 100 

individuals (considering 1000 Monte Carlo iterations); this value is justified since, at higher 
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values, the performance improvement grows marginally; for lower values, the dependence of 

the results to the initial population intensifies. Moreover, the model works better with a 

larger number of individuals and fewer generations than in the opposite case. 

For testing population size, the probability of mutation 𝑃𝑚 was set to a typical value of 

0.01; however, by increasing the mutation probability it was possible to find better results 

but with a higher number of generations. To improve this, since we are aiming to maximize 

the search in the least number of generations due to resources limitations, we have decided 

to assign a variable mutation probability as a function of the number of iterations, being 

higher at the beginning and asymptotically decreasing to the value 0.01 at generation 10.  

Thus, in the first generations, the probability of mutation is high, and consequently, the 

search is more exhaustive; whereas as the generations progress, the probability of mutation 

is stable at 0.01. This allows us to adjust our model to the available computational resources 

by balancing good results and performance. 

4.5 Results for the large-scale problem 

4.5.1 Performance of the genetic algorithm 

The genetic algorithm (GA) optimization was performed on the "general" partition of 

the NLHPC, using 44 cores per node in each period, running both periods simultaneously 

on different nodes. The maximum number of allowed generations was defined as 20, while 

the minimum was defined as 10. In addition, an early stopping criterion was implemented 

if the change of the best individual of the last 4 generations was not greater than 0.01%. 

The execution time for the first period was 10 days, 11 hours, and 50 minutes, evaluating a 

total of 20 generations; while the second period was executed in 9 days, 22 hours, and 16 

minutes, activating the early stop at generation 19.  

Figure 29 shows the evolution of the profit (blue line) for all individuals throughout the 

first period simulation along with the error (orange line) and a simple moving average (SMA, 

in red line) over the error; similar is shown for the second period in Figure 30. In these 

figures, it can be seen how the largest search is performed in the first half of both simulations, 

where the variation of the best individual is in the range of 0.1% and 0.2% between 

generations 10 and 20. From generation 10 onwards, the error improves marginally, so it is 

feasible to limit the number of maximum generations of the GA between 12 and 15, obtaining 

an improvement in computation times of about 25% to 40% without compromising the 

quality of the results.  
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Figure 29 Evolution of profit and error for all individuals evaluated in the first period (1-10 years). 

 

Figure 30 Evolution of profit and error for all individuals evaluated in the second period (11-20 years). 

This behavior is consistent with the variable mutation probability defined above in 

4.4.2. In this sense, if necessary, the number of generations at which the mutation probability 

stabilizes at 0.01 (defined above in generation 10) could be increased to provide a larger 

search space. 
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4.5.2 Overall results and costs analysis 

4.5.2.1 Base case 

The base case is the reference case, which represents the scenario in which the PV plant 

is maintained using a maintenance plan based on best practices (see Table 6), with fixed 

periodicity, and with the costs and failure rates adjusted as mentioned in 4.3. In this case, 

the simulated profit and cost distribution for the first 10 years are presented in Table 7, 

where it is shown the expected values resulting from 1000 Monte Carlo iterations for the 

settings described in Table 2, Table 3, and Table 4; equally, the results for years 11 to 20 

are shown in Table 8. 

Table 6 Maintenance plan based on best practices. 

Element 
Inspection 

per year 

Preventive 

Maintenance per year 

PV panels 2 1 

Cleaning - 3 

Supporting structures 2 1 

DC wiring 2 1 

Inverter 12 2 

AC wiring 2 1 

Transformer 1 Every 5 years 

 

Table 7 Total expected profit and cost distribution for years 1 to 10 for the base case. 

Description Value Weighting 

Installed capacity [MW] 32  

Total energy generated [GWh] 698.8  

Profit [MMUSD] 21.35  

Revenue [MMUSD] 34.88  

Inspection costs [MMUSD] 0.98 7.2% of total costs 

Preventive maintenance costs [MMUSD] 6.59 48.5% of total costs 

Corrective maintenance costs [MMUSD] 6.02 44.3% of total costs 

Total maintenance costs [MMUSD] 13.59  
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Table 8 Total expected profit and cost distribution for years 11 to 20 for the base case. 

Description Value Weighting 

Installed capacity [MW] 32  

Total energy generated [GWh] 632.8  

Profit [MMUSD] 12.98  

Revenue [MMUSD] 31.64  

Inspection costs [MMUSD] 0.98 5.3% of total costs 

Preventive maintenance costs [MMUSD] 6.59 35.3% of total costs 

Corrective maintenance costs [MMUSD] 11.09 59.4% of total costs 

Total maintenance costs [MMUSD] 18.66  

When comparing Table 7 with Table 8, it is evident that performance is reduced at the 

end of life (second period), with less energy being produced (9.4% less) due to aging and 

increased failures; also, corrective maintenance (CM) costs increase. In the first period, the 

average annual capacity factor is 24.9%, while in the second period it is 22.6%.  

It is important to note that, in addition to aging and the bathtub curve effect, the 

maintenance plan is fixed throughout the useful life, since best practices only generally 

recommend an annual maintenance plan, but it is not optimized for any type or age of PV 

plants. In this sense, each PV plant goes through a learning process, where the maintenance 

plan is adjusted year by year to obtain better performance.  

Although only the average failure rates of the Diego de Almagro plant are known, and 

the maintenance plan is confidential information, the year-to-year increase in actual plant 

generation is likely due to the reduction of failure rates in the early years (bathtub curve) 

along with the adjustment of the maintenance plan to the specific conditions of the PV 

plant; hence, following the concept of the previous paragraph, it can be seen in the base case 

how a maintenance plan based on best practices is insufficient since the CM costs were 

increased in the second period instead of preventive maintenance (PM) costs.  

A simple solution for this case under this modeling could be the implementation of 

several standardized plans based on best practices depending on the age of the PV plant; 

however, only general recommendations appear in the manuals and any necessary 

adjustments are the responsibility of the operator. 
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Table 9 Annual energy produced by the Diego de Almagro PV solar plant between 2015 and 2020 [134]. 

Year Energy [GWh] 

2015 46.1 

2016 50.8 

2017 58.9 

2018 67.6 

2019 71.7 

2020 73.9 

Naturally, the cost distribution is also different in the two periods. In the first period, 

inspection and PM costs represent 55.7% of total maintenance costs; in the second, this 

value decreases to 40.6% due to the almost doubling of CM costs. In broad terms, profit 

decreased by 39.2%, revenue decreased by 9.2% and total maintenance costs increased by 

37.3%. The computation time for both periods was approximately 1 hour and 8 minutes on 

a traditional 4-core laptop with 8 logical processors (1000 iterations per period). 

4.5.2.2 Optimal maintenance plan 

Optimization shows that the optimal maintenance plan produces 16.2% more energy in 

the first period and 18% more in the second period, compared to the base case (see Table 

10 and Table 11); this reveals that despite over dimensioning the failure rates, the model 

can find the maintenance plan that balances costs and generates better performance; this 

reinforces the idea that the maintenance plan based on best practices is only a basic reference 

guide, but that it must be adjusted according to the characteristics of each PV plant. The 

increase in energy production is mainly explained by the decrease in failures, which rapidly 

reduces CM costs; a 74.2% reduction for the first period and a 78.4% reduction for the 

second period, compared to the base case.  

Remarkably, inspection and PM costs represent 78.3% of total maintenance costs in the 

first period; in the second period, this value drops to 76.2%. These values are in perfect 

agreement with the cost distributions reported in the literature (see 2.3.3.1, last paragraph), 

suggesting that the model delivers reasonable and applicable results in a real case. 

Additionally, we can see that the inspections and PM costs are at the lower limit of the 

range reported in the literature, which could be explained by the high failure rates of the 

plant, which forces CM to take a greater share.  
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Compared the first period to the base case, profit increased by 56.8%, revenue increased 

by 16.4% and total maintenance costs decreased by 47.5%. Compared the second period to 

the base case, profit increased by 109.7%, revenue increased by 18% and total maintenance 

costs decreased by 45.9%. Comparing the first and second periods for the optimal 

maintenance plan, we have that profit decreased by 18.7%, revenue decreased by 8.1% and 

total maintenance costs increased by 41.5%. Table 12 summarizes the percentage variations 

between the base case and the optimal case, taking the base case as a reference. Table 13 

shows a comparison between the first and second periods for the base and the optimal case. 

Table 14 shows the cost distribution comparison for the first and second periods. 

Table 10 Total expected profit and cost distribution for years 1 to 10 for the optimal plan. 

Description Value Weighting 

Installed capacity [MW] 32  

Total energy generated [GWh] 812.2  

Profit [MMUSD] 33.47  

Revenue [MMUSD] 40.61  

Inspection costs [MMUSD] 0.24 3.4% of total costs 

Preventive maintenance costs [MMUSD] 5.34 74.9% of total costs 

Corrective maintenance costs [MMUSD] 1.55 21.7% of total costs 

Total maintenance costs [MMUSD] 7.13  

 

Table 11 Total expected profit and cost distribution for years 11 to 20 for the optimal plan. 

Description Value Weighting 

Installed capacity [MW] 32  

Total energy generated [GWh] 746.5  

Profit [MMUSD] 27.22  

Revenue [MMUSD] 37.32  

Inspection costs [MMUSD] 0 0% of total costs 

Preventive maintenance costs [MMUSD] 7.69 76.2% of total costs 

Corrective maintenance costs [MMUSD] 2.4 23.8% of total costs 

Total maintenance costs [MMUSD] 10.09  
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Table 12 Comparison between the base case and the optimal maintenance plan. 

 Period 1 (1-10) optimal Period 2 (11-20) optimal 

Profit Revenue Total costs Profit Revenue Total costs 

P
e
ri

o
d
 1

 
(1

-1
0
) 

 
b
a
se

 c
a
se

 Profit +56.8% - - - - - 

Revenue - +16.4% - - - - 

Total 

costs 

- - -47.5% - - - 

P
e
ri

o
d
 2

 
(1

1
-2

0
) 

b
a
se

 c
a
se

 Profit - - - +109.7% - - 

Revenue - - - - +18% - 

Total 

costs 

- - - - - -45.9% 

 

Table 13 Comparison between the first and second periods for the base case and the optimal case. 

Case 
Period 1 (1-10) Period 2 (11-20) 

Profit Revenue Total costs Profit Revenue Total costs 

Base case - - - -39.2% -9.2% +37.3% 

Optimal - - - -18.7% -8.1% +41.5% 

 

Table 14 Cost distribution comparison between the first and second periods for the base and the optimal case. 

Case 

Period 1 (1-10) Period 2 (11-20) 

Inspection 

costs 

PM 

costs 

CM 

costs 
Energy 

Inspection 

costs 

PM 

costs 

CM 

costs 
Energy 

Base 

case 
- - - - 0% 0% +84% -9.4% 

Optimal - - - - -100% +44% +54.8% -8% 

From Table 12, it can be seen that the optimal maintenance plan generates a better 

profit in both periods due to improved energy production, increased revenue, and decreased 

CM costs. In addition, it is observed that the profit of the second period is much more 

effective in the optimal plan even though the decrease in costs in both periods was reduced 

almost the equivalent. This is explained by examining Table 14, where it is observed that 

the increase in CM costs in the second period is lower in the optimal plan, but PM costs are 

higher (CM costs are higher than PM costs). In this form, a trade-off occurs, where PM is 



 

90 

increased and CM is decreased. This action compensates the total costs producing an 

equivalent reduction in the optimal plan for both periods; in brief, PM improves plant 

performance while reducing failures. 

Table 13 ratifies the fact that the optimal maintenance plan finds a better mix as the 

end-of-life profit was reduced by slightly less than half of what it is reduced in the base case; 

however, total costs can be seen to increase. This is due to what was explained in the 

previous paragraph, since in the second period of the optimal plan, no inspections are carried 

out and only preventive and corrective maintenance are performed, which are more 

expensive than inspections. It is interesting to note that in the second period no inspections 

are performed, which is somewhat counter-intuitive. The analysis of this particularity will 

be made later in 4.5.3. 

4.5.3 Analysis of the optimal maintenance plan 

Since our model was run in two stages, there is an optimal maintenance plan for each 

period; the decision variables found by the optimizer are presented in Table 15. As 

mentioned in the methodology (in 3.4.2.2.4, specifically), the variables of inspections 𝐼𝑖 and 

preventive maintenance 𝑃𝑀𝑖 are limits on the health state for which an inspection or PM is 

triggered, respectively. Variable 𝐼𝑇𝑖 represents the number of cycles between inspections 

once the health state drops below 𝐼𝑖.  

Table 15 Outcome variables for obtaining the optimal maintenance plan. 

Group 

element 
Type Variable Name 

Value  

period 1 

Value  

period 2 

 

PV panels 

Spacing 𝑥1 𝐼𝑇1 (cycles) 157 340  

Inspection 𝑥7 𝐼1  0.26 0.44  

PM 𝑥13 𝑃𝑀1 0.68 0.68  

Soiling Cleaning 𝑥14 𝑃𝑀2 0.81 0.81  

Wiring DC 

Spacing 𝑥2 𝐼𝑇3𝐷𝐶 (cycles) 330 8  

Inspection 𝑥8 𝐼3𝐷𝐶 0.35 0.53  

PM 𝑥15 𝑃𝑀3𝐷𝐶 0.73 0.71  

Wiring AC 

Spacing 𝑥3 𝐼𝑇3𝐴𝐶 (cycles) 276 307  

Inspection 𝑥9 𝐼3𝐴𝐶 0.64 0.19  

PM 𝑥16 𝑃𝑀3𝐴𝐶 0.7 0.69  
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Group 

element 
Type Variable Name 

Value  

period 1 

Value  

period 2 

 

Inverter 

Spacing 𝑥4 𝐼𝑇4 (cycles) 15 36  

Inspection 𝑥10 𝐼4 0.67 0.34  

PM 𝑥17 𝑃𝑀4 0.66 0.66  

Supporting 

Structures 

Spacing 𝑥5 𝐼𝑇𝑆𝑆 (cycles) 2 277  

Inspection 𝑥11 𝐼𝑆𝑆 0.75 0.32  

PM 𝑥18 𝑃𝑀𝑆𝑆 0.22 0.74  

Transformer 

Spacing 𝑥6 𝐼𝑇𝑇 (cycles) 171 349  

Inspection 𝑥12 𝐼𝑇 0.66 0.42  

PM 𝑥19 𝑃𝑀𝑇 0.73 0.65  

It is relevant to mention that the mechanism of inspections is more complex than PM 

because there are decision criteria to be followed by the operator. This is reflected in the 

methodology by the probability of detecting a failure (DP) and the potential of failure (PF), 

which add uncertainty to the problem. In this regard, an inspection can trigger palliative 

maintenance or directly preventive maintenance. In contrast, PM is simple: once the health 

state drops below 𝑃𝑀𝑖, preventive maintenance is performed. 

In this connection, it is pertinent to state that if 𝑃𝑀𝑖  is greater than 𝐼𝑖 , then no 

inspections are executed for element 𝑖. Not so in the opposite case: if 𝐼𝑖 is greater than 𝑃𝑀𝑖, 

then both can coexist; this can be corroborated in the second period of the optimal plan 

where the 𝑃𝑀𝑖 variables of all elements were greater than 𝐼𝑖 (green cells in Table 15), and 

where the inspection costs were 0 (see Table 11). This occurs because an inspection has the 

possibility of triggering PM or not, and in the case of palliative maintenance, the probability 

of failure restarts at the maintenance limit, therefore, mathematically it is possible to 

perform an inspection before a PM. In the opposite case, if PM is performed first, the health 

state is reset to 1 (ideally), so mathematically it is impossible to perform an inspection since 

the probability of failure is in the “no maintenance zone”; however, this is not 100% certain 

because the maintenance error is also modeled, which implies that the health state after PM 

may not simply be 1, but may also take values lower, equal or even worse than the health 

state before PM; but this reasoning explains the trend of the results.  It is important to 

clarify this as we observe some particularities in the results. 
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4.5.3.1 Particular cases of the supporting structures and the inverter 

When comparing the optimal maintenance plan for each period, we noted some 

similarities and differences. First, it is observed that preventive maintenance 𝑃𝑀𝑖  was 

greater than inspections 𝐼𝑖 in all elements in the second period, while in the first period it 

was 5 out of 7. It seems that there is an evident preference for the model to avoid inspections. 

In the two cases where 𝐼𝑖 was greater than 𝑃𝑀𝑖 there are some observations. In the result of 

the supporting structures of the first period, it is clear that the model prefers a high number 

of inspections (every two cycles) rather than performing PM. While it is possible to perform 

PM when the health state reaches a value of 0.22, at this point the probability of failure is 

0.999 (according to 𝑃𝐹𝐶(𝐻𝑘)), so it is almost impossible to perform PM without the element 

having already failed.  

This suggests that it is mathematically possible to carry out an over-inspection plan 

and ensure that the health state of the supporting structures remains stable throughout this 

period (remember that inspections can also trigger PM when necessary); however, in a 

practical sense, this scheme cannot be implemented. Common sense indicates that ideally 

there should be a balance between PM and inspections; however, the trend of the results is 

clear in indicating a preference for PM over inspections. So in this case, the result of the 

supporting structures would be an impractical case and the actual solution should be 

something similar to the case of the second period.  

The second particular case is the inverter. In this case, the optimizer found a trade-off 

between inspections and PM that achieves mathematical stability but is again an impractical 

case; this solution may be a local optimum condition that the optimizer was not able to 

escape from. The latter makes sense if we compare the inverter solution in the second period 

since it is expected that at the end of the useful life the level of maintenance will increase 

given the higher number of failures; however, this does not occur. In the second period, it 

can be seen that 𝑃𝑀4 (0.66) is noticeably higher than 𝐼4 (0.34), where the value of 𝑃𝑀4 

remains constant in both periods; therefore, the most consistent approach is to take the 

solution of the second period as the correct and applicable reference result; this can be tested 

by applying the inverter maintenance plan in period 1. 

The two particular cases mentioned above occur mainly for three reasons. The first is 

because no technical operating constraint is modeled that establishes boundaries between 

maintenance and inspections. Thus, the model is free to choose the operating ranges that 

are mathematically appropriate, but which may lead to impractical cases. To solve this 

problem, constraints can be added to establish minimum spacing between maintenance and 

inspections; however, it is necessary to define these constraints very carefully since they can 
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condition the solution and produce biased results. The best form to do this is by modeling 

logistics and inventory, which requires implementing a higher level of detail and information 

that will have a direct impact on the model's performance. 

The second reason is due to the nature of the problem. This problem presents a 

condition of multiple optima, in which there may be different combinations that are 

mathematically consistent, but practically not (see the case of the supporting structures); 

this reinforces the need to add operational constraints. The third reason is the nature of the 

genetic algorithm. It is known that the GA is quite effective in finding solutions to highly 

complex problems that cannot be solved with traditional optimizers, but this method is not 

free of weaknesses. It is common practice to perform several runs of the same problem to 

find a more consistent solution since this method is sensitive to the initial conditions and 

the tuning made, so the results may vary from one run to another. Unfortunately, given the 

computational cost of our problem and the limited resources, we cannot perform several 

runs and make a more exhaustive analysis of the solutions, so we must prioritize the 

systematic analysis. 

4.5.3.2 Transformer case 

Let us now analyze the case of the transformer maintenance plan. In both the first and 

second periods, inspections are not triggered and only preventive maintenance is performed. 

It is interesting to see how in the second period less preventive maintenance is performed 

than in the first period, being that at the end of the plant life failures increase (see the 

increase of corrective maintenance costs in Table 10). This behavior may be since the 

transformer is modeled in terms of duty cycles, i.e., they depend only on the number of 

cycles elapsed. In addition, it does not have an aging curve since the failure rates are so low 

that the effect of an aging curve is not noticeable; furthermore, the number of transformers 

is low compared to elements such as PV panels.  

In this sense, the model does not observe mathematical differences in the transformer 

between the first period and the second, except for the increase in failures at the end of the 

useful life. That said, it is likely that the GA has only found a better solution in the second 

period, which could be perfectly applicable to the first period. This makes sense if we 

compare the results of the DC and AC wiring, where the 𝑃𝑀𝑖 values are slightly lower in 

the second period; also consider the PV panels and the inverter which remain constant in 

both periods. Also, given the number of transformers and the low failure rate, the impact of 

this element on the overall profit is probably low (even though this element has the most 

critical failures), and could be the reason why this element has the greatest difference in the 

solution of the first period (0.73) and the second period (0.65), being the lower value for the 
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second period. Thus, this case could also be attributed to weaknesses in the genetic algorithm 

mentioned in the previous section and the modeling performed on this element. 

4.5.3.3 Analysis of the decision variables of the methodology 

We previously discussed what happens when inspections are not triggered. Now, let us 

take a further examination of what occurs to the rest of the variables in this scenario. Table 

16 is analogous to Table 15 but includes the best 10 individuals (we order from worst to 

best, from left to right), which represent the best 0.45% of the entire simulation (top 10 

individuals) for the first period; the analogous case for the second period is presented in 

Table 17. In green are marked the variables that are activated; in red are the variables that 

are not activated; we will understand that 𝑃𝑀𝑖 is activated when its value is greater than 

𝐼𝑖; the same applies otherwise. 

These individuals have practically the same profit (0.013% difference in profit between 

the best and the worst of the top 10), but there are substantial differences between them. 

For example, in the case of DC wiring, individual 3 has a variable of inspection spacing 𝐼𝑇3 

equal to 31, while individual 4 has a value of 330. This enormous difference is because the 

variable 𝐼𝑇𝑖  is directly dependent on inspections 𝐼𝑖 , so if 𝐼𝑖  does not activate, then the 

variable 𝐼𝑇𝑖 does not activate either. This causes the inspection variables 𝐼𝑖 and inspection 

spacing 𝐼𝑇𝑖 to be insensitive to the model when 𝑃𝑀𝑖 value is greater than 𝐼𝑖. Taking as an 

example the period with the most homogeneous results (period 2), it can be seen that the 

variation of 𝐼𝑖 and 𝐼𝑇𝑖 is quite elevated considering that these are the 10 best individuals of 

the period over 2000 total individuals. In contrast, the variation of the 𝑃𝑀𝑖 variables are 

practically 0%. In this context, we can remark that the variability of the data is perfectly 

explainable given the modeling and the nature of the optimizer. 

Table 16 Maintenance plan for the top 10 individuals of the first period (1-10 years). 

Name 
Top 10 Individuals   

1 2 3 4 5 6 7 8 9 10 %var  

𝐼𝑇1 (cycles) 157 157 152 157 244 157 157 244 244 157 25%  

𝐼1  0.26 0.23 0.26 0.26 0.21 0.21 0.24 0.20 0.21 0.26 6%  

𝑃𝑀1 0.68 0.68 0.68 0.69 0.68 0.68 0.68 0.68 0.68 0.68 1%  

𝑃𝑀2 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0%  

𝐼𝑇3𝐷𝐶 (cycles) 330 330 31 330 248 248 31 330 26 330 83%  

𝐼3𝐷𝐶 0.32 0.58 0.35 0.34 0.38 0.38 0.45 0.34 0.41 0.35 26%  
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Name 
Top 10 Individuals   

1 2 3 4 5 6 7 8 9 10 %var  

𝑃𝑀3𝐷𝐶 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0%  

𝐼𝑇3𝐴𝐶 (cycles) 276 276 276 280 276 130 276 275 276 276 41%  

𝐼3𝐴𝐶 0.67 0.65 0.65 0.65 0.65 0.65 0.65 0.62 0.64 0.64 5%  

𝑃𝑀3𝐴𝐶 0.70 0.70 0.71 0.70 0.70 0.70 0.70 0.70 0.70 0.70 1%  

𝐼𝑇4 (cycles) 15 16 15 15 15 16 16 10 15 15 2%  

𝐼4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0%  

𝑃𝑀4 0.67 0.67 0.66 0.67 0.67 0.67 0.67 0.67 0.67 0.66 1%  

𝐼𝑇𝑆𝑆 (cycles) 5 4 5 5 5 5 5 5 5 2 1%  

𝐼𝑆𝑆 0.75 0.75 0.71 0.75 0.75 0.75 0.75 0.75 0.72 0.75 4%  

𝑃𝑀𝑆𝑆 0.22 0.22 0.19 0.22 0.19 0.19 0.25 0.22 0.19 0.22 6%  

𝐼𝑇𝑇 (cycles) 290 171 290 171 171 171 290 166 171 171 34%  

𝐼𝑇 0.28 0.28 0.28 0.28 0.28 0.65 0.28 0.28 0.20 0.66 46%  

𝑃𝑀𝑇 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0%  

Table 17 Maintenance plan for the top 10 individuals of the second period (11-20 years). 

Name 
Top 10 Individuals   

1 2 3 4 5 6 7 8 9 10 %var  

𝐼𝑇1 (cycles) 67 46 46 46 71 340 342 75 340 340 81%  

𝐼1  0.44 0.41 0.44 0.49 0.59 0.4 0.44 0.59 0.44 0.44 19%  

𝑃𝑀1 0.68 0.69 0.69 0.69 0.68 0.68 0.69 0.68 0.68 0.68 1%  

𝑃𝑀2 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0%  

𝐼𝑇3𝐷𝐶 (cycles) 122 8 10 8 125 8 125 8 125 8 32%  

𝐼3𝐷𝐶 0.53 0.31 0.49 0.49 0.62 0.43 0.49 0.43 0.53 0.53 31%  

𝑃𝑀3𝐷𝐶 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0%  

𝐼𝑇3𝐴𝐶 (cycles) 226 307 307 303 226 307 225 305 307 307 22%  

𝐼3𝐴𝐶 0.19 0.19 0.19 0.19 0.19 0.19 0.2 0.62 0.19 0.19 43%  
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Name 
Top 10 Individuals   

1 2 3 4 5 6 7 8 9 10 %var  

𝑃𝑀3𝐴𝐶 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0%  

𝐼𝑇4 (cycles) 36 155 36 155 36 36 36 153 40 36 33%  

𝐼4 0.34 0.31 0.33 0.31 0.36 0.31 0.36 0.49 0.44 0.34 18%  

𝑃𝑀4 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0%  

𝐼𝑇𝑆𝑆 (cycles) 277 259 37 261 37 259 40 277 277 277 66%  

𝐼𝑆𝑆 0.26 0.32 0.26 0.32 0.32 0.19 0.59 0.25 0.25 0.32 40%  

𝑃𝑀𝑆𝑆 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0%  

𝐼𝑇𝑇 (cycles) 341 349 347 341 336 347 349 332 341 349 5%  

𝐼𝑇 0.41 0.42 0.41 0.45 0.43 0.42 0.43 0.44 0.38 0.42 7%  

𝑃𝑀𝑇 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0%  

Now, let us extend the analysis to the entire last generation for which we will use box 

plots. These diagrams help us to understand compactly the distribution and dispersion of 

the data. Figure 31 shows an illustrative example with the components of the box plot. The 

box is composed of the data above the 25th percentile (Q1) and below the 75th percentile 

(Q3), i.e., the central 50% (interquartile range). The size of the box will indicate an 

approximation of how dispersed the data are; the larger the box, the greater the dispersion 

of the data, and conversely.  

The line dividing the box corresponds to the median, that is, the central value of the 

data. This gives us an idea about the symmetry of the distribution. If the median is located 

in the center of the box then the distribution is symmetrical and the mean, median, and 

mode coincide (this can be observed in a normal distribution); when the median approaches 

one of the edges of the box, then the data are asymmetrically distributed. 

The continuation of two segments in the box are called whiskers that determine the 

limit for outlier detection. The continuation of two segments in the box are called whiskers 

that determine the limit for outlier detection; data exceeding the whisker limits will be 

referred to as outliers. The whiskers should have a maximum length, which should not 

exceed 150% of the interquartile range.  
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Figure 31 Illustrative example of a box diagram. 

Having mentioned the above, Figure 32 shows a box plot of the last 100 individuals for 

period 1; the analog for period 2 is shown in Figure 33. These figures show all the decision 

variables of the problem, however, the range in which inspection spacing 𝐼𝑇𝑖  moves is 

different (between 1 and 365, left axis) than inspections 𝐼𝑖 and preventive maintenance 𝑃𝑀𝑖 

(0 to 1, right axis), therefore, for a better visualization, they will be displayed separately in 

Figure 34, Figure 35, Figure 36, and Figure 37. 

Analyzing Figure 34, it can be seen that in general terms, almost all 𝑃𝑀𝑖 variables have 

a practically flat box plot, which shows that the optimizer has consistently decided their 

results. The exception to this are the supporting structures, which have a high dispersion 

due to 𝑃𝑀𝑆𝑆  (supporting structures) not being activated, and instead, the inspection 

variable 𝐼𝑆𝑆 is activated. In general, the 𝐼𝑖 variables show greater dispersion of the data, 

where there are not many outliers but they oscillate constantly until the last generation. 

The low dispersion of 𝐼4 (inverter), commented in the previous section, is explained because, 

in the first period, both 𝑃𝑀4 and 𝐼4 took the same value, so both variables are activated. In 

this context, low dispersion is to be expected. 

Similarly, in Figure 35, 𝐼𝑇4  (inverter) and 𝐼𝑇𝑆𝑆  (supporting structures) have a low 

dispersion since they are activated. In general, the bodies of the boxes with the highest 

dispersion are wide, indicating that more than 50% of the central data have variability. In 

the case of the second period, the data are much more homogeneous and consistent. Figure 

36 shows how the boxes of the 𝑃𝑀𝑖 variables are flat with outliers very close to the box 

whiskers. It should be noted that the PV module cleaning variable 𝑃𝑀2 is the one with the 

lowest dispersion of all the variables, both in the first and second periods. This is also seen 

in Table 16 and Table 17, where its value was the same in both periods in all individuals. 

This is because soiling is directly related to the output energy of the plant, therefore, it is 

Outliers 
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one of the most critical variables of the model. The boxes of the 𝐼𝑇𝑖 variables show large 

bodies with short whiskers, which indicates high dispersion mentioned above. 

 

Figure 32 Boxplot of the last 100 individuals in period 1. 

 

Figure 33 Boxplot of the last 100 individuals in period 2. 
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Figure 34 Boxplot of the last 100 individuals in period 1 (𝐼𝑖 and 𝑃𝑀𝑖 only). 

 

Figure 35 Boxplot of the last 100 individuals in period 1 (𝐼𝑇𝑖 only). 
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Figure 36 Boxplot of the last 100 individuals in period 2 (𝐼𝑖 and 𝑃𝑀𝑖 only). 

 

Figure 37 Boxplot of the last 100 individuals in period 2 (𝐼𝑇𝑖 only). 

On the other side, we are interested in knowing the incidence of the variables have on 

profit. For that purpose, Figure 38 shows the Pearson correlation matrix of all the variables 

and the profit for the first period; the analogous case for the second period is shown in 

Figure 39. These matrices show whether there is any degree of correlation between the 

variables themselves, including profit. It is important to mention that as these matrices are 
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constructed with the individuals evaluated by the genetic algorithm, there is a conditioning 

of the data by the searching process. To reduce this effect, the correlation matrices were 

constructed only with the first 100 individuals, which represent the initial population, and 

therefore, the most random and less conditioned values; however, this small sample may not 

be sufficiently representative and still contains biases.  

The data we are most interested in belong to the first line of the figures since they 

directly show the correlation between the variables with profit. We will not analyze the 

correlation between the variables themselves since the methodology does not contemplate 

technical couplings, structural dependencies, or opportunistic maintenance so that modifying 

the maintenance plan of one element cannot technically affect the maintenance plan of 

another. That said, the first observation we can make is quite clear: the variable that has 

the greatest impact on profit is the cleaning of the panels (𝑃𝑀2). This is strongly reflected 

in both periods and ratifies what was previously commented.  

Soiling (𝑀𝑃2) is the most conclusive variable since in general the degree of correlation 

present in all other variables is quite low. In any case, it can be verified, in contrast with 

the box plots, that preventive maintenance of supporting structures 𝑀𝑃𝑆𝑆 and transformer 

𝑀𝑃𝑇 have a low incidence in the model, since the inspection 𝐼𝑆𝑆 was activated in the first 

period, and the transformer has very low failure rates. The second most incident variable is 

preventive maintenance of inverter 𝑀𝑃4, which coincides with being the element that fails 

the most, therefore, by varying the plan an improvement in the profit is perceived. 

Having explained the particularities of the solutions found, we realize that the 

maintenance plans in both periods are more similar than they initially seemed. In fact, it 

makes sense to homologate a single maintenance plan for both periods without losing quality 

in the results given that in both periods the behavior was the same (although intuitively it 

was expected that in the second period the maintenance plan would be more demanding 

given the increase in failures at the end of the plant's useful life). Based on this premise, we 

can draw an important conclusion: it is not profitable to oversize the maintenance plan 

during the useful life to cover the increase in failures at the end; eventually, doing so would 

imply higher costs than simply responding with corrective maintenance.  
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Figure 38 Pearson's linear correlation coefficient for period 1. 

 

Figure 39 Pearson's linear correlation coefficient for period 2. 
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4.5.3.4 Optimal maintenance plan in time format. 

As we stated in 3, our methodology is based on indicators of health state as a function 

of duty cycles. The duty cycle was defined in 24-hour periods given the daily cycles perceived 

in the meteorological variables. In this sense, the method to transform the 19 output 

variables of the model is by evaluating the optimal maintenance plan in a 1000-iteration 

Monte Carlo cycle and writing the cycle number in which inspections and preventive 

maintenance are performed. Table 18 shows the maintenance plan based on best practices 

as a function of the spacing between inspections and preventive maintenance. Table 19 

shows a summary of the number of inspections and preventive maintenance per year for 

period 1; similarly, Table 20 is shown for period 2.  

Strictly defined, the optimal maintenance plan depends on the meteorological variables 

and the accumulated degradation, therefore, the plan is variable; however, when analyzing 

the results, it can be seen that cycles pattern are generated between one maintenance and 

another with differences of a few days. Therefore, the results shown in Table 19 and Table 

20 will be adapted to a fixed periodicity maintenance type for better visualization, and the 

spacings will be defined by the average difference between one and the other maintenance; 

thus, the results presented are the average optimal maintenance plan.  

Table 18 Maintenance plan based on best practices. 

Element Inspection 
Preventive 

Maintenance 

PV panels Every 183 days Every 365 days 

Cleaning - Every 122 days 

Supporting structures Every 183 days Every 365 days 

DC wiring Every 183 days Every 365 days 

Inverter Every 30 days Every 183 days 

AC wiring Every 183 days Every 365 days 

Transformer Every 365 days Every 1825 days 
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Table 19 Average optimal maintenance plan for period 1. 

Element Inspection 
Preventive 

Maintenance 

PV panels 0 Every 183 days 

Cleaning - Every 51 days 

Supporting structures Every 2129 days 0 

DC wiring 0 Every 1202 days 

Inverter Every 93 days Every 93 days 

AC wiring 0 Every 384 days 

Transformer 0 Every 670 days 

 

Table 20 Average optimal maintenance plan for period 2. 

Element Inspection 
Preventive 

Maintenance 

PV panels 0 Every 181 days 

Cleaning - Every 51 days 

Supporting structures 0 Every 2129 days 

DC wiring 0 Every 1262 days 

Inverter 0 Every 90 days 

AC wiring 0 Every 385 days 

Transformer 0 Every 784 days 

When comparing the maintenance plan based on best practices with the optimal plan, 

some similarities and differences can be appreciated. The PV panels are maintained once a 

year and inspected twice a year in the best practices plan. In the optimal plan, it is proposed 

to simply perform preventive maintenance twice a year, avoiding inspections; this is valid 

for the whole useful life. In this form, fewer but more accurate and consistent interventions 

are performed during the year. 

As previously mentioned, the cleaning of the panels is critical, so the frequency of 

cleaning was doubled in the optimal plan; valid for the whole useful life. This allows for 

greater energy production, while increasing costs, however, this increase is offset by the 

decrease in the maintenance of other elements. 
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Supporting structures have the same maintenance periodicity as PV panels in the best 

practice plan; however, in the optimal plan, this is one of the elements that is sub-maintained 

due to its low failure rate and low impact on failures. In the first period, the optimal plan 

states that it should be inspected every 2129 days with a periodicity of 2 days until a 

potential failure is detected and preventive maintenance should be performed. As mentioned 

above, this is not a case applicable in practice, so it is preferable to apply the maintenance 

plan for the second period, which proposes preventive maintenance directly every 2129 days.  

DC wiring is another sub-maintained element in the optimal plan. Best practices 

indicate its maintenance in conjunction with the PV panels and supporting structures, as 

they belong to the same system; however, the optimal plan indicates that preventive 

maintenance is performed in the range of every 1202-1262 days. 

The inverter is another element that showed particular data in period 1. Best practices 

recommend monthly inspections and preventive maintenance twice a year. In the optimal 

case of the first period, preventive maintenance and inspections are established every 93 

days. Evidently, there is a useless redundancy, so the maintenance plan for the second 

period, which establishes only preventive maintenance every 90 days, should be adopted. 

The AC wiring found in the optimal plan is a good match to best practices, but with 

the inspections removed. Instead of inspecting 2 times per year and performing preventive 

maintenance once a year, the optimal plan states only preventive maintenance in the range 

of every 384-385 days. 

Regarding the transformer, best practices suggest an annual inspection and preventive 

maintenance every 1825 days. In this case, the optimal plan finds a trade-off between the 

periodicity of inspections and maintenance. Considering both simulated periods, the optimal 

plan establishes to perform only preventive maintenance in the range of every 670-784 days. 

As can be seen in the results of the case study, the increase in net profit with the 

optimal maintenance plan involved the under-maintenance of several elements. In practice, 

there are often contracts that establish minimum maintenance intervals, minimum 

maintenance requirements to cover manufacturer's warranties, or simply preventive 

measures to extend the useful life of the elements. Since the model does not incorporate 

these factors, two cases can be obtained from the optimal maintenance plan that are not 

applicable in practice; in this sense, the model lacks restrictions that allow more practical 

results to be obtained and that consider factors beyond the purely economic. Incorporating 

these factors with real data represents no minor challenge given that maintenance programs 

are usually handled confidentially, so access to such information is difficult. The latter is 
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not unimportant, since it implies the possibility of adding relevant operating restrictions 

that will directly modify the results.
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5 Conclusions 

The initial hypothesis of this work has been achieved through the methodology 

developed and validated with the results. To achieve this, it was necessary to obtain an 

understanding of the solar PV plant in terms of operation mechanisms and failure modes, 

to find an adequate form of modeling the PV plant.  

Since there are no standards that establish the proper manner to generate a maintenance 

plan, it was necessary to understand the mechanisms that are used in practice and the 

academia to find an optimal maintenance plan and evaluate the feasibility of applying these 

mechanisms to the developed methodology.  

Once the general context was understood, the solar PV plant was mathematically 

characterized using a model based on health state indicators that are generated from the 

accumulated degradation caused by meteorological and operational variables. This model 

allowed the search for the best maintenance plan through Monte Carlo simulation and the 

Genetic Algorithm, for which it was necessary to use the resources of the NHLPC 

supercomputer.  

Finally, the developed methodology could be validated through the application in a 32 

MW solar plant, which allowed analyzing the advantages and weaknesses of the proposed 

model. The following subsections present the conclusions regarding the results in terms of 

costs, technical aspects, and recommendations for future works. 

5.1 Conclusions about costs 

The maintenance plan of a PV power plant is one of the most important elements since 

it is present during the entire service life. Best practices recommendations are an excellent 

starting point, but they are not sufficient as these are general recommendations and the 

performance of a photovoltaic plant can vary considerably depending on its characteristics, 

geographical location, logistics, etc. The results confirm this statement, since the profit found 

in the optimal maintenance plan was 56% and 109% higher than the base case, for the first 

and second periods, respectively; this improvement is mainly associated with a higher energy 

production due to the increased frequency of the panels cleaning along with a decrease in 

failures. 

Inspection and preventive maintenance costs represented 55.7% (given the plant's high 

failure rate) of total costs in the first period, while in the optimal plan these values increased 
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to 78.3% and 76.2% in the first and second periods, respectively. It is noteworthy that the 

optimal plan was able to balance the costs to keep the distribution in the range reported in 

the literature (even though it did not start within the range). This demonstrates that when 

a suitable maintenance plan is found for a PV plant, costs stabilize in the statistically known 

ranges (75% - 90%). Furthermore, being located at the lower limit, it denotes higher 

participation in corrective maintenance, which is consistent with the high failure rate of the 

plant. Therefore, the results reinforce the economic validity of the methodology. 

5.2 Conclusions about technical results 

The results of the variables defining the optimal maintenance plan show a clear trend: 

avoidance of inspections. This is because the mechanism of inspections is more complex and 

uncertain than scheduled preventive maintenance. Inspections involve uncertainty factors 

such as the possibility of detecting a failure, the accuracy of that inference, and the error in 

human intervention. Although inspections are considerably cheaper to perform, the 

optimizer avoids performing them because their execution does not ensure greater 

effectiveness. Therefore, it is more accurate to perform preventive maintenance than 

inspections, keeping human intervention to a minimum. 

The results showed some divergences that allowed us to reach valuable conclusions. 

This is reflected in 3 cases: (a) the optimizer prefers to perform a high level of inspections 

but no preventive maintenance in the first period for supporting structures; (b) it is 

established that inspections and preventive maintenance should be performed on the inverter 

practically at the same time in the first period; (c) the maintenance of the transformer is 

more demanding in the first period than in the second period. 

Case (a) shows that a case is mathematically possible but practically not applicable.  

This is the cost of not including technical operating constraints that discriminate realistic 

operating conditions and rule out those combinations that are not feasible. In addition, this 

case can also be a sub-optimality condition, as it shows how there is mathematical 

consistency in over-inspecting an element but at the same time under-maintaining it. The 

objective is met through cost trade-offs but in an unrealistic form.  

Case (b) is a variation of case (a), where inspections and preventive maintenance are 

performed 1 or 2 days apart; doing this in practice is infeasible. This case is also produced 

by the lack of technical constraints and sub-optimal constraints from which the optimizer 

was not able to escape. 
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Case (c) is a bit counter-intuitive since it is expected that at the end of the PV plant's 

lifetime the maintenance plan will be more demanding, however, the opposite is true. In the 

second period, the maintenance plan is more relaxed, resulting in a maintenance delay of 

more than 3 months. Although in practice this value is not much given that the transformer 

has low failure rates and the number of transformers present in the PV plant does not 

compare to elements such as panels or supporting structures, this seems to be a consequence 

of the sensitivity to the adjustment of the genetic algorithm and the initial conditions. It is 

known that the GA does not always obtain the same results, so it is a good practice to 

perform several simulations and compare results. Unfortunately, since our computational 

resources are limited, we cannot perform more than one run per period. 

On the other part, when we analyzed the top 10 individuals in the simulation, we could 

see that there were high variations in the 𝐼𝑇𝑖 variables (spacings between inspections) for 

individuals with such a similar profit (a maximum variation of 0.013% in profit). This is 

because these variables depend directly on whether the 𝐼𝑖 variables (inspection thresholds) 

are activated. Since in the vast majority of cases the inspections variables 𝐼𝑖  are not 

activated, then the 𝐼𝑖  and 𝐼𝑇𝑖  variables become insensitive to the model. This allows 

rethinking the modeling of the problem as the number of variables could be considerably 

reduced and the model performance improved. 

In general terms, the box plots showed that the variables with the greatest dispersion 

were the 𝐼𝑇𝑖 variables first, followed by the 𝐼𝑖 variables. This high dispersion of the data is 

explained by the insensitivity that occurs in most cases. On the other hand, a low dispersion 

was observed in the 𝑀𝑃 variables, which are mainly the ones that decided the optimal 

maintenance plan. 

Pearson's correlation matrix shows that the variable with the highest preponderance of 

profit is panel cleaning (𝑃𝑀2), as it is a variable that is directly related to the plant's energy 

output. In this sense, the model raises the threshold of this variable as much as it is 

economically feasible to improve energy production. The second most important variable is 

the inverter, which is to be expected since it is the element that fails the most and whose 

impact on failures is critical. Moreover, it is observed that elements such as the supporting 

structures and the transformer have a low impact on the profit. Supporting structures have 

a high number of elements but their impact on failures is low. On the other hand, 

transformer failures are more critical since they transport much more energy, but the effect 

is compensated with their low failure rate compensates. 

Having understood and explained the divergences in the model, it can be seen that the 

maintenance plans in both periods are quite similar. Therefore, it is possible to homologate 
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a single maintenance plan for the entire useful life without losing quality in the results since 

the behavior of the results was the same. Based on this premise, we can draw an important 

conclusion: it is not profitable to oversize the maintenance plan during the useful life to 

cover the increase in failures at the end; eventually, doing so would imply higher costs than 

simply responding with corrective maintenance. This conclusion is valid under the approach 

that the maintenance plan is optimized for the whole lifetime of the plant; however, another 

approach could be to optimize the annual maintenance plan to have a dynamic plan 

throughout the lifetime. In this respect, the maintenance plan could be more demanding at 

the beginning and the end, and less demanding in the middle of the lifetime, following the 

bathtub curve. 

Although our methodology is based on finding a variable maintenance schedule based 

on cumulative degradation, when transferring the results to the time frame it can be 

observed that, effectively, the spacing between one maintenance and another is variable; 

however, repetitive patterns occur given the nature of the meteorological variables. In this 

sense, the optimal maintenance plan is not much different from a fixed spacing maintenance 

plan since the variability of the spacing is low. In this regard, a representation of the optimal 

plan in terms of a fixed spacing plan using the average of the maintenance spacings of each 

element is valid.  

Overall, the optimal maintenance plan produces better values for profit, but compared 

to the best practice plan, under-maintenance occurs in PV panels and DC and AC wiring. 

PV panels cleaning increases the frequency to double, while in the inverter and transformer 

there is a trade-off, where the periodicity of preventive maintenance is between the 

inspections and preventive maintenance periodicity of the best practices-based plan. 

Although the optimal plan produces better profit at the cost of under-maintaining some 

elements, in practice other important factors intervene in the process and can affect the 

results, such as contracts with suppliers and operators, minimum maintenance to keep up 

with warranties, or simply strategies to extend the useful life of the elements; in addition to 

factors such as logistics and inventory. These types of factors must be included in the 

modeling in future work to obtain more reliable results. 

5.3 Future works 

5.3.1 Improving code implementation 

The code was programmed in Python version 3.8.6 with the implementation of 

parallelism through the Multiprocessing library. Python has enormous advantages over other 
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programming languages such as being a high-level language, versatility, strong community, 

libraries, free open source, and low learning curve; however, there are not negligible 

disadvantages that directly affected the development of this work, among which is the 

slowness due to its versatility and dynamism and high memory consumption. Among all the 

mentioned qualities, the disadvantages were enough to make us request access to the 

NLHPC. Future work should consider a thorough evaluation of the most suitable 

programming environment for our problem. 

5.3.2 Adding technical operating constraints 

According to what has been developed in this work, there are technical operating 

constraints that need to be implemented. Among the most obvious ones are the inventory, 

which establishes the availability of spare parts and element replacement; the logistics that 

establishes minimum and maximum periods in which inspections and preventive 

maintenance can be performed; and the opportunistic maintenance that defines maintenance 

protocols for adjacent elements when a system or part of it fails. The aforementioned 

constraints can be addressed as input parameters or can even be incorporated into the 

optimization function. In the case of opportunistic maintenance, it is necessary a solid 

definition of the parallelization mechanism since there must be communication between the 

parallel processes. 

5.3.3 Adding contractual constraints 

In practice, contracts must be complied with, which may result in financial penalties in 

the event of non-compliance. In this sense, it would be pertinent to include compliance with 

minimum maintenance to maintain the guarantee in force and compliance with generation 

contracts (PPA). The approach to implementing these restrictions could be through a 

penalty in the objective function in case of non-compliance with such requirements. In the 

case of generation contracts, it is necessary to incorporate the remuneration of energy 

through energy cost profiles at the injection node to create a balance between sale and 

purchase to the electricity system, and the subsequent sale to the customer. In this sense, it 

is possible to create the scenario of buying energy from the spot market in case of not 

meeting the generation requirements; energy cost profiles at the retirement node should also 

be included, therefore, transmission losses are also incorporated. 

5.3.4 Extend methodology to dynamic evaluation 

Analyze the possibility of modifying the methodology to obtain an annual dynamic 

maintenance plan, such that the maintenance plan is adjusted as failure rates evolve. This 
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could be achieved by performing several sequential optimizations with a shorter evaluation 

period, where the evaluation period is constant but the start and end year changes, so that 

each optimization represents a feasible result for one year (or other defined time frame). The 

objective of this approach is to obtain an appropriate maintenance plan for each stage of 

the PV plant's lifetime. 

5.3.5 Analysis of the PFC sensitivity, beta function, and 

probabilities associated with human error 

In this work, several assumptions had to be made due to the lack of information, among 

which are the assumed values for the PFC and beta function settings, which simulate failures 

and error probabilities. It is pertinent to generate a statistical study with real information 

about the sensitivity of these parameters in the model, to obtain a realistic and adequate 

calibration. 
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Annexed A - Random meteorological sampling 

selection 

There is a major limitation when choosing the method to be used. Since the 

computational cost of the methodology is high, and Monte Carlo simulation and genetic 

algorithms are used, this work must be executed on a high-performance computer (NLHPC), 

which has limited resources. This requires us to privilege computational time over academic 

rigor based on computational speed. Although it is more appropriate to use methods such 

as synthetic series or Kernel-based algorithms, this simplification is necessary to run our 

model within the established limits.  

If we plot the histograms of the three variables for the total data (see Figure 40 to 

Figure 43), we observe different distributions that do not fall into the category of typical 

distributions. This leads us to use more sophisticated non-parametric fitting methods. We 

tested fitting and sampling the data through a Kernel Density Estimator, but the 

computation times exceeded the time available at NLHPC. 

 

Figure 40 Histogram of solar irradiance for all data. 
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Figure 41 Histogram of solar irradiance for all data with zoom for better visualization. 

 

 

Figure 42 Histogram of wind speed for all data. 
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Figure 43 Histogram of ambient temperature for all data. 

On the other hand, if we plot the histograms for a single hour of the day, for all days 

of a month, and all years, we can see that all distributions approximate a normal distribution 

(see Figure 44 to Figure 46); this is valid for any hour of the day in our data. Thus, 

simulating random numbers following normal distributions bounded to the data allows us 

to have a sampler with sufficient accuracy for this thesis.  

It should be noted that in the case of solar irradiance, there is an additional step since 

there are a few low irradiance data that represent cloudy days. These data are simulated 

through a uniform distribution with a weighted probability equal to the cumulative 

probability of such data. 

 

Figure 44 Histogram of solar irradiance at 12:00 for all January months of all years. 
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Figure 45 Histogram of wind speed at 12:00 for all January months of all years. 

 

Figure 46 Histogram of ambient temperature at 12:00 for all January months of all years. 
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Annexed B - Failures modes modeled 

As reviewed in section 2.5.3, there are numerous forms in which PV plant elements can 

fail with varying levels of impact on energy generation; for instance, a panel failure does not 

produce the same power loss as an inverter failure. Therefore, this section describes generally 

the modeled failure modes and their impact on generation loss. The values given in this 

section are inspired by literature and technical reports (see 2.5.3); however, these values 

may be modified for practical reasons for the purposes of this thesis. Also, note that some 

failure modes were weighted in the same way due to a lack of real information. 

PV panels 

In general, panel failures do not represent a serious problem to the PV plant since when 

they fail, generation is affected minimally. The most serious cases are hot spots and PID, 

which can directly affect the by-pass diodes and can lose 33% of the panel generation 

depending on the number of diodes burned (usually there are 3 by-pass diodes in each panel). 

Nevertheless, the loss is still small compared to the total generation. The rest of the faults 

only decrease their generation as time progresses. Therefore, we estimate the 𝐹𝐼1𝑗 in the 

range [0.01;1] and the 𝐹𝐷1𝑗 in the range [0.5;168] hours. The complete table of failure modes 

included in the simulation along with their 𝐹𝐼1𝑗 and 𝐹𝐷1𝑗 are shown in Table 21.  

Table 21 Failure modes modeled for PV panel. 

 
Failure mode 

Min 𝑭𝑫𝟏𝒋 

[hours] 

Max 𝑭𝑫𝟏𝒋 

[hours] 
Min 𝑭𝑰𝟏𝒋 Max 𝑭𝑰𝟏𝒋 

1 Delamination 0.5 168 0.01 1 

2 Discoloration 0.5 168 0.01 1 

3 Corrosion 0.5 168 0.01 1 

4 Cracking 0.5 168 0.01 1 

5 Hot spots 0.5 168 0.33 1 

6 By-pass diode 0.5 168 0.33 1 

7 Bubbles 0.5 168 0.01 1 

8 PID 0.5 168 0.33 1 

9 Weld ribbons 0.5 168 0.01 1 

10 Snail tracks 0.5 168 0.01 1 
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Supporting structures 

Supporting structures tend to fail quite a few times. with tracker and control failures 

being the most frequent. The impact on generation is low in general but has a slightly higher 

priority than PV panels since a failure implies a higher portion of generation. Therefore. we 

estimate the 𝐹𝐼𝑆𝑆𝑗  in the range [0.1;0.5] and the 𝐹𝐷𝑆𝑆𝑗  in the range [0.5;36] hours. The 

complete table of failure modes included in the simulation along with their 𝐹𝐼𝑆𝑆𝑗 and 𝐹𝐷𝑆𝑆𝑗 

are shown in Table 22. 

Table 22 Failure modes modeled for supporting structures. 

 
Failure mode 

Min 𝑭𝑫𝑺𝑺𝒋 

[hours] 

Max 𝑭𝑫𝑺𝑺𝒋 

[hours] 
Min 𝑭𝑰𝑺𝑺𝒋 Max 𝑭𝑰𝑺𝑺𝒋 

1 Wind damage 0.5 36 0.1 0.5 

2 Tracker failure 0.5 12 0.1 0.5 

3 Corrosion 0.5 36 0.1 0.5 

4 Misaligment 0.5 36 0.1 0.5 

5 Oil leakage 0.5 12 0.1 0.5 

6 Broken structure 0.5 36 0.1 0.5 

7 Control 0.5 6 0.1 0.5 

Combiner box. AC/DC wiring. switches. breakers. and fuses 

As with support structures. failures of the transmission system are a higher priority 

than panel failures. but some wiring failures have a greater impact than supporting structure 

failures; for example. a connector failure that results in a branch disconnection has an 𝐹𝐼 

equal to 1. Therefore. we estimate the 𝐹𝐼3𝑗 in the range [0.1;1] and the 𝐹𝐷3𝑗 in the range 

[0.5;4] hours. The complete table of failure modes included in the simulation along with their 

𝐹𝐼3𝑗 and 𝐹𝐷3𝑗 are shown in Table 23. These values apply to both the DC and AC sides. 

Although the faults on the AC side are more important since they carry more energy. the 

impact of each fault is the same; however. since energy is penalized proportionally to the 

amount of energy associated with an element. the impact of an AC side fault is greater than 

that of a DC side fault. 
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Table 23 Failure modes modeled for wiring. 

 
Failure mode 

Min 𝑭𝑫𝟑𝒋 

[hours] 

Max 𝑭𝑫𝟑𝒋 

[hours] 
Min 𝑭𝑰𝟑𝒋 Max 𝑭𝑰𝟑𝒋 

1 
Broken/Burned 

connector 
0.5 4 0.1 0.5 

2 UV aging 0.5 4 0.1 0.5 

3 Conduit failure 0.5 4 0.1 0.5 

4 Vandalism 0.5 4 0.1 1 

5 Disconnection 0.5 4 0.1 1 

6 Animal damage 0.5 4 0.1 0.5 

7 Insulation 0.5 4 0.1 0.5 

8 Cracks and ruptures 0.5 4 0.1 0.5 

Inverter 

As seen in section 2.5.3.2.1. the inverter can fail in several forms. almost all of which 

can be considered critical. Being a power electronics element. it needs very specific conditions 

for its correct operation. Therefore. a failure in any part of the inverter generates a stop of 

the energy conversion in most cases. As the list of failure modes is extensive. we have 

summarized it to the 12 most frequent cases. Therefore. we estimate the 𝐹𝐼4𝑗 in the range 

[0.99;1] and the 𝐹𝐷4𝑗 in the range [0.25;36] hours. The complete table of failure modes 

included in the simulation along with their 𝐹𝐼4𝑗 and 𝐹𝐷4𝑗 are shown in Table 24. 

Table 24 Failure modes modeled for the inverter. 

 Failure mode 
Min 𝑭𝑫𝟒𝒋 

[hours] 

Max 𝑭𝑫𝟒𝒋 

[hours] 

Min 𝑭𝑰𝟒𝒋 Max 𝑭𝑰𝟒𝒋 

1 Pollution 0.25 12 0.99 1 

2 Firmware 0.25 4 0.99 1 

3 Overheating 0.5 12 0.99 1 

4 IGBT failure 0.5 12 0.99 1 

5 PCB failure 0.5 12 0.99 1 

6 
Overvoltage/ 

Overcurrent 
0.5 12 0.99 1 
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 Failure mode 
Min 𝑭𝑫𝟒𝒋 

[hours] 

Max 𝑭𝑫𝟒𝒋 

[hours] 

Min 𝑭𝑰𝟒𝒋 Max 𝑭𝑰𝟒𝒋 

7 Vandalism 0.5 36 0.99 1 

8 Grounding 0.25 12 0.99 1 

9 
AC/DC 

Contactor 
0.5 4 0.99 1 

10 Fuses failure 0.25 4 0.99 1 

11 MPPT failure 0.25 4 0.99 1 

12 
DC link 

Capacitator  
0.5 12 0.99 1 

Transformer 

The transformer is another element that not often fails. but when it does. it generates 

a major generation loss due to a large amount of energy associated with it. From the 

extensive list shown in 2.5.3.4.1. we have summarized the seven most significant and 

recurring failure modes. Therefore. we estimate the 𝐹𝐼𝑇𝑗 in the range [0.99;1] and the 𝐹𝐷𝑇𝑗 

in the range [6;36] hours. The complete table of failure modes included in the simulation 

along with their 𝐹𝐼𝑇𝑗 and 𝐹𝐷𝑇𝑗 are shown in Table 25. 

Table 25 Failure modes modeled for the transformer. 

 
Failure mode 

Min 𝑭𝑫𝑻𝒋 

[hours] 

Max 𝑭𝑫𝑻𝒋 

[hours] 
Min 𝑭𝑰𝑻𝒋 Max 𝑭𝑰𝑻𝒋 

1 Coonection problems 6 24 0.99 1 

2 
Oxidized or 

degradated parts 
6 36 0.99 1 

3 Broken parts 6 36 0.99 1 

4 Insulation failure 6 36 0.99 1 

5 Oil contamination 6 36 0.99 1 

6 Open/Short circuit 6 24 0.99 1 

7 Overheating 6 24 0.99 1 
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Annexed C - Case study topology 
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Annexed D - Datasheets 

PV panel datasheet 
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Inverter datasheet 

 

 


