
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE
CLASSIFICATION WITH QUALITY-REDUCED EXAMPLES

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN
COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

PABLO FELIPE TORRES GUTIÉRREZ

PROFESOR GUÍA:
AIDAN HOGAN

MIEMBROS DE LA COMISIÓN:
JUAN MANUEL BARRIOS NÚÑEZ

FELIPE BRAVO MÁRQUEZ
PABLO ROMÁN ASENJO

Este trabajo ha sido parcialmente financiado por:
IMFD

SANTIAGO DE CHILE
2022

ENTRENAMIENTO DE REDES NEURONALES CONVOLUCIONALES
PARA CLASIFICACIÓN DE IMÁGENES CON EJEMPLOS CON CALIDAD

REDUCIDA

En tareas de Visión por Computadora, las Redes Neuronales Profundas pueden superar
a los clasificadores humanos en la tarea de Clasificación de Imágenes. Por lo general, se
entrenan los clasificadores con imágenes de entrenamiento y conjuntos de validación sin per-
turbaciones en su calidad. En este contexto, queremos estudiar el comportamiento de las
Redes Neuronales al entrenarlas con imágenes con calidad reducida.

Estudios previos han reducido la información necesaria de una imagen para obtener una
clasificación correcta utilizando Redes Neuronales, minimizando la entropía o peso de una
imagen mediante reducciones de su calidad. La entropía es aproximada con el peso de la
imagen en disco, la que depende del tipo de compresión utilizada para la imagen. Esta
compresión, si es sin pérdida, tiene como valor mínimo posible la entropía de Shannon.

Las reducciones de calidad antes mencionadas son la aplicación de una transformación a
una imagen que disminuye su calidad, por ejemplo recortar la imagen, disminuir su resolución
o su cantidad de colores. Este tipo de imágenes plantea un desafío a las Redes Neuronales,
pues al tener menor información, puede llevar a una clasificación incorrecta. Al ser entrenada
una red neuronal con este tipo de reducciones, podría mejorar su rendimiento sobre imágenes
con reducciones de calidad, mejorando así su rendimiento sobre imágenes con distorsiones.
En este trabajo proponemos metodologías de entrenamiento para Redes Neuronales en las
que se aplican reducciones de calidad para generar imágenes con las que será entrenada la
red neuronal.

Evaluamos nuestra propuesta de metodología de entrenamiento sobre el conjunto de imá-
genes ImageNet y HumaNet (subconjunto que posee imágenes con reducciones de calidad).
Los experimentos evalúan el rendimiento y su progresión. Los resultados obtenidos muestran
que nuestra metodología puede, en algunos casos, mejorar el rendimiento de las Redes Neu-
ronales en conjuntos de imágenes reducidas y mantener un rendimiento similar al baseline en
conjuntos de imágenes sin reducción. Además, las Redes Neuronales entrenadas con nuestra
metodología logran clasificar correctamente imágenes con menos calidad.

La principal conclusión es que al entrenar las Redes Neuronales con imágenes con reduc-
ciones de calidad, el rendimiento sobre conjuntos con calidad reducida muestra una mejora
en algunas arquitecturas de clasificación, en particular el aumento de 71.6% a 72.2% en ac-
curacy de EfficientNet, con respecto a nuestro baseline en el conjunto ImageNet. El trabajo
futuro considera la construcción de conjuntos de imágenes con reducciones de calidad, el
estudio de este método como forma de compresión y la realización de experimentos con otras
heurísticas.

i

TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE
CLASSIFICATION WITH QUALITY-REDUCED EXAMPLES

In Computer Vision tasks, Deep Neural Networks may surpass humans classifiers in the
Image Classification task. These classifiers based on Deep Neural Networks are typically
trained assuming ideal conditions for training images and validation sets, namely, images
without loss of quality. In this context we want to study the behavior of Neural Networks
when trained over reduced-quality images.

Previous works have reduced the necessary information of an image for obtaining a correct
classification using Neural Networks by applying quality reductions. The information is
approximated as the size in disk of the image, which depends on how the image is compressed.
This compression, if it is a lossless compression, has the Shannon entropy as its minimum
possible value.

The aforementioned quality reductions are the application of a transformation on an image
which decreases its quality, for example, to slice an image, to decrease its resolution or its
amount of colors. These reduced types of images present a challenge to Neural Networks,
where less information can result in an incorrect classification. On the other hand, these types
of reductions, applied during training of a Neural Network, may improve its performance over
quality-reduced images, thus improving its performance for distorted images. In this work we
propose training methodologies for Neural Networks in which quality reductions are applied
to generate reduced images that will be used to train the classifier.

We evaluate our proposed training methodologies over datasets of images: ImageNet and
HumaNet (which is a subset of ImageNet that also contains quality-reduced images). Exper-
iments evaluate the performance of the classifiers as they are trained. The obtained results
show that our methodology, in some cases, improves the performance of Neural Networks
on images with quality reductions while keeping a similar performance with respect to the
baseline in images without quality reductions.

Our principal conclusion is that training Neural Networks with quality-reduced images
shows an improvement over both quality-reduced and full-quality datasets in some classifica-
tion architectures, in particular, the accuracy improves from 71.6% to 72.2% for EfficientNet
with respect to our baseline (training only with full quality images) considering the ImageNet
dataset. Future work includes making novel datasets with quality-reduced images, the study
of this method as a form of compression and experiments with other heuristics.

ii

A la voluntad de crear,
soñar,

avanzar,
y ser feliz

iii

Agradecimientos

Un sueño que se convirtió en motivación, un camino y también, un desafío. Quiero agrade-
cer a mi Papá Patricio, a mi Mamá Catherine y a mi Hermano Cristóbal por sus distintas
formas de apoyarme en este sueño.

Agradezco a mi Tío Luis, Tía Pilar, Tía Myriam, Primos Nacho y Javi, por haberme
acogido como si fuese uno más de la Familia, al haber llegado a la capital. Agradezco a
mi Profesora de Inglés Miss Carolina Guajardo y Profesor de Física Sergio Neira por su
motivación, enseñanzas y consejos.

Agradezco al Profesor Sergio Ochoa por el aprendizaje durante el tiempo que fue cliente de
mi equipo de Ingeniería de Software II y por sus consejos con respecto al mundo académico.
Agradezco a la Profesora Andrea Rodríguez Silva por haber confiado en mí para ser parte
del equipo docente en el curso de Herramientas para el Trabajo en Equipo. Ambos cursos
han sido muy útiles para mi formación y me alegra haber podido compartir con ustedes.

Agradezco a mi Maestro y Profesor Guía: Aidan Hogan, su apoyo durante este desafío ha
sido constante y en cada reunión he logrado aprender sobre la metodología y técnicas para
realizar investigación en Ciencias de la Computación. También le agradezco por los cursos
electivos que dictó pues aprendí herramientas que permiten hacer realidad la tecnología del
futuro.

Agradezco a mi Hermano, mi Padawan: Cristóbal Torres Gutiérrez. Hermano gracias por
el apoyo durante el desarrollo de la Tesis; me alegra haber compartido y discutido formas de
llevar a cabo los problemas; la ayuda para comprender algoritmos y metodologías. De verdad
sentí como si fuesemos un gran equipo y me alegra mucho que hayas escogido también este
apasionante mundo de la tecnología como profesión.

Agradezco a los Profesores con quienes discutí durante el desarrollo de la Tesis: Jorge
Pérez y José Manuel Saavedra, gracias por su aporte. Agradezco a Pablo Pizarro por su
template de Latex y su ayuda para comprender sus funcionalidades. Agradezco al Profesor
Adolfo Carrasco por sus consejos y técnicas de presentación. Agradezco a los integrantes
de mi comisión: Juan Manuel Barrios, Felipe Bravo y Pablo Román por sus comentarios
y aportes. Agradezco a quienes conocí durante mis estudios, a las nuevas amistades, sus
historias y su apoyo.

Durante la carrera he aprendido mucho más de lo que creía inicialmente, nuevas áreas
como el Desarrollo de Software, la Inteligencia Computacional, la Seguridad Computacional,
la Investigación en Ciencias de la Computación y también el Desarrollo de Videojuegos. Estoy
agradecido de haber tomado el desafío de estudiar en Beauchef.

iv

Table of Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Hypothesis . 2
1.3. Objectives . 2

1.3.1. General Objectives . 2
1.3.2. Specific Objectives . 2

1.4. Problem . 2
1.5. Contribution . 3
1.6. Methodology . 3

1.6.1. Related Work Survey . 3
1.6.2. Design and Implementation of Algorithms 3
1.6.3. Experimentation . 4
1.6.4. Technologies . 4

1.7. Summary of Results . 4
1.8. Work Structure . 4

2. Background 6
2.1. Digital Image Processing . 6

2.1.1. RGB Model . 6
2.1.2. Pixel . 6
2.1.3. Raster graphics . 7
2.1.4. Resolution . 7
2.1.5. Compression . 7

2.1.5.1. Lossy Compression . 7
2.1.5.2. Lossless Compression . 7

2.1.6. Digital Image . 7
2.1.7. Spatial Filtering . 8

2.1.7.1. Correlation Filtering . 8
2.1.7.2. Convolution Filtering . 8

2.2. Probability and Statistics . 9
2.2.1. Probability Axioms . 9
2.2.2. Random Variable . 9
2.2.3. Probability Distribution . 9

2.2.3.1. Normal Distribution . 9
2.2.4. Statistical Inference . 9
2.2.5. Maximum Likelihood Estimation . 9
2.2.6. Loss Function . 10

v

2.3. Information Theory . 10
2.3.1. Entropy . 10
2.3.2. Kullback–Leibler Divergence . 10

2.4. Optimization Methods . 11
2.4.1. Stochastic Gradient Descent . 11
2.4.2. Powell’s Method . 11

2.5. Machine Learning . 12
2.5.1. Supervised Learning . 12
2.5.2. Performance Metrics . 12

2.6. Neural Networks . 12
2.6.1. Neural Network Training . 13

2.6.1.1. Forward . 13
2.6.1.1.1 Activation Functions . 13

2.6.1.2. Softmax . 13
2.6.1.3. Backward . 14

2.6.1.3.1 Backpropagation . 14
2.6.1.3.2 Loss function . 14
2.6.1.3.3 Optimizer . 14

2.6.2. Regularization Methods . 14
2.6.2.1. Weight Decay . 14
2.6.2.2. Early Stopping . 15
2.6.2.3. Data Augmentation . 15

2.6.3. Hardware and Libraries . 15
2.6.3.1. GPU . 15
2.6.3.2. Pytorch . 15

2.7. Image Classification . 15
2.7.1. Dataset . 16
2.7.2. Training Methodologies . 16

2.7.2.1. Generative Adversarial Networks 16
2.7.2.2. Masked Autoencoders . 16

2.7.3. Convolutional Neural Network . 17

3. Related Work 19
3.1. Image Classification . 19
3.2. Data Augmentation Techniques . 19
3.3. Robustness of Image Classification . 20
3.4. Laconic Image Classification . 20

4. Proposal 22
4.1. Image Quality Reductions . 22

4.1.1. Mathematical Framework . 22
4.1.2. Image Reductions . 23

4.1.2.1. Atomic Reductions . 23
4.1.2.2. Quantization . 23
4.1.2.3. Downsampling . 24
4.1.2.4. Crop . 24
4.1.2.5. Combined . 25

vi

4.1.3. Composed Reductions . 25
4.1.3.1. Slice . 25
4.1.3.2. Combined . 26

4.2. Training Methodologies . 26
4.2.1. Standard Methodology . 27
4.2.2. Fixed Reduction Methodology . 27
4.2.3. Linear Reduction Methodology . 27
4.2.4. Adaptive Reduction Methodology . 28

4.3. Linear and Adaptive Variants . 30
4.3.1. Paired Epochs . 30
4.3.2. Paired Rounds . 31

5. Experimental Design 33
5.1. Training with Quality-Reduced Examples . 33
5.2. Experimental Setting . 33

5.2.1. Hardware . 33
5.2.2. Datasets . 34
5.2.3. Neural Networks . 35

5.2.3.1. SqueezeNet . 35
5.2.3.2. ResNet . 35
5.2.3.3. EfficientNet . 35
5.2.3.4. Network Hyperparameters 35
5.2.3.5. Adjustment . 36

5.3. Training Methodologies Tested . 36
5.3.1. Exploratory Analysis . 36
5.3.2. Start Point . 36
5.3.3. Baseline . 36
5.3.4. Fixed Reductions . 37
5.3.5. Linear Reductions . 37
5.3.6. Adaptive Reductions . 37

5.4. MEPIs Calculation . 37

6. Results 38
6.1. HumaNet . 38

6.1.1. Start Point . 38
6.1.2. Fixed Reduction . 40
6.1.3. Linear Reduction . 41

6.1.3.1. Paired Epochs . 41
6.1.3.2. Paired Rounds . 43

6.1.4. Adaptive Reduction . 45
6.1.4.1. Paired Epochs . 45
6.1.4.2. Paired Rounds . 47

6.1.5. Test Results . 49
6.1.6. Entropy Proportion . 50

6.2. ImageNet . 52
6.2.1. Training Methodology Tested . 53
6.2.2. Entropy Proportion . 54

vii

7. Conclusions 56
7.1. Summary . 56
7.2. Review of Hypothesis . 56
7.3. Review of Objectives . 57
7.4. Challenges and Limitations . 57
7.5. Future Work . 58

Bibliography 59

ANNEXES 61
A. Methodologies Comparison . 61

A.1. SqueezeNet . 61
A.2. ResNet . 64
A.3. EfficientNet . 67

B. Performance and Significance . 70
C. ImageNet Entropy-Ratio Central Tendency Measures 71

viii

List of Tables

5.1. Datasets description. 34
5.2. Neural Networks hyperparameters. LR: Learning Rate, WD: Weight Decay . . 36
6.1. Start Point results for accuracy. 38
6.2. Baseline results for accuracy. ET: Epochs Trained, BRE: Best Result Epoch . 49
6.3. Significant Test Results versus Baseline. 50
6.4. EfficientNet Entropy Ratio Significance versus Start Point. 52
6.5. EfficientNet Entropy Ratio Significance Comparison versus Baseline. 52
6.6. EfficientNet results on ImageNet with significance versus Baseline. 54
B.1. SqueezeNet results on HumaNet. 70
B.2. ResNet results on HumaNet. 70
B.3. EfficientNet results on HumaNet. 71
C.1. Central Tendency Measures of ImageNet Entropy-Ratio. 71

ix

List of Figures

2.1. Matrix representation of a digital image. Source ‘Educative.io’. 8
2.2. Neural Network with two hidden layers. Source ‘Wikimedia Commons’. . . . 13
2.3. Masked Autoencoder pre-training pipeline. Source ‘Masked Autoencoders Are

Scalable Vision Learners’ [24] . 17
2.4. Convolutional Layer Source ‘Mathworks’. 18
4.1. Application of Quantization Reduction with a α factor of 0.02. Source ‘Pixabay’. 23
4.2. Application of Downsampling Reduction with an α factor of 0.15. Source ‘Pix-

abay’. 24
4.3. Application of Crop Reduction with a α factor of 0.30. Source ‘Pixabay’. . . . 25
4.4. Combined Reduction Atomic Reduction Application with parameter α = 0.15.

Source ‘Pixabay’. 25
4.5. Application of Slice Reduction with parameters a = 0.80, b = 0.80, c = 0.60, d =

0.90. Source ‘Pixabay’. 26
4.6. Application of Composed Combined Reduction with parameters k = 0.05, s =

0.25, a = 0.90, b = 0.70, c = 0.90, d = 0.80. Source ‘Pixabay’. 26
4.7. Linear Reduction Methodology Pipeline. 28
4.8. Application of Adaptive Reduction with step of 0.1 considering four Slice di-

mensions. 29
4.9. Adaptive Methodology Pipeline. 30
5.1. Example of the HumaNet test images with MEPIs computed by humans . . . 35
6.1. Start Point evolution of baseline . 39
6.2. Obtained results for Fixed Reduction Experiment. The columns indicate the

reduction dimension in which the Neural Network was trained. 40
6.3. Performance evolution of SqueezeNet during training: HumaNet validation and

test sets, linear reduction, paired epochs. 41
6.4. Performance evolution of ResNet during training: HumaNet validation and test

sets, linear reduction, paired epochs. 42
6.5. Performance evolution of EfficientNet during training: HumaNet validation and

test sets, linear reduction, paired epochs. 42
6.6. Performance evolution of SqueezeNet during training: HumaNet validation and

test sets, linear reduction, paired rounds. 43
6.7. Performance evolution of ResNet during training: HumaNet validation and test

sets, linear reduction, paired rounds. 44
6.8. Performance evolution of EfficientNet during training: HumaNet validation and

test sets, linear reduction, paired rounds. 44
6.9. Performance evolution of SqueezeNet during training: HumaNet validation and

test sets, adaptive reduction, paired epochs. 46

x

https://www.educative.io/edpresso/how-to-use-scikit-image-thresholding-methods-in-python
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_english.png
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html

6.10. Performance evolution of ResNet during training: HumaNet validation and test
sets, adaptive reduction, paired epochs. 46

6.11. Performance evolution of EfficientNet during training: HumaNet validation and
test sets, adaptive reduction, paired epochs. 47

6.12. Performance evolution of SqueezeNet during training HumaNet: validation and
test sets, adaptive reduction, paired rounds. 48

6.13. Performance evolution of ResNet during training HumaNet: validation and test
sets, adaptive reduction, paired rounds. 48

6.14. Performance evolution of EfficientNet during training HumaNet: validation and
test sets, adaptive reduction, paired rounds. 49

6.15. Entropy Quotient of SqueezeNet’s Performance. 50
6.16. Entropy Quotient of ResNet’s Performance. 51
6.17. Entropy Quotient of EfficientNet’s Performance. 51
6.18. Start Point of EfficientNet-B3 on ImageNet. 53
6.19. Performance evolution of EfficientNet during training ImageNet validation set,

linear reduction, paired rounds and baseline. 54
6.20. Entropy Quotient of EfficientNet’s trained on full ImageNet. 55
A.1. Performance progression of each methodology on the Validation dataset of SqueezeNet.

. 61
A.2. Performance progression of each methodology on the Combined dataset of SqueezeNet.

. 62
A.3. Performance progression of each methodology on the Crop dataset of SqueezeNet.

. 62
A.4. Performance progression of each methodology on the Color dataset of SqueezeNet.

. 63
A.5. Performance progression of each methodology on the Resolution dataset of

SqueezeNet. 63
A.6. Performance progression of each methodology on the Validation dataset of ResNet.

. 64
A.7. Performance progression of each methodology on the Combined dataset of ResNet.

. 65
A.8. Performance progression of each methodology on the Crop dataset of ResNet. 65
A.9. Performance progression of each methodology on the Color dataset of ResNet. 66
A.10. Performance progression of each methodology on the Resolution dataset of

ResNet. 66
A.11. Performance progression of each methodology on the Validation dataset of Effi-

cientNet. 67
A.12. Performance progression of each methodology on the Combined dataset of Effi-

cientNet. 68
A.13. Performance progression of each methodology on the Crop dataset of Efficient-

Net. 68
A.14. Performance progression of each methodology on the Color dataset of Efficient-

Net. 69
A.15. Performance progression of each methodology on the Resolution dataset of Ef-

ficientNet. 69

xi

Chapter 1

Introduction

1.1. Motivation
Deep Neural Networks are powerful Machine Learning classifiers that achieve excellent re-
sults in many research areas, such as visual oriented tasks (Computer Vision) and text-
oriented tasks (Natural Language Processing). This learning power has been improved by
large amounts of data (e.g. pictures, videos, audio, text).

In the Computer Vision field a task of interest is Image Classification whose goal is to
assign classes to unseen images based on what they depict, being an important component
for applications such as medical imaging, self-driving cars, biometric recognition (e.g face,
fingerprints) and many others. Deep Neural Networks, in particular Convolutional Neural
Networks, have led to major advances in the area. In 2012 Krizhevsky et al. [1] popularized
the use of convolutions and the power of GPUs to design and train Deep Neural Networks,
proposing AlexNet. Architectures such as VGG [2], InceptionNet [3] and ResNet [4] increased
the number of layers of the Neural Networks, and succeeded in outperforming AlexNet [1].
SqueezeNet [5] focused on reducing the number of parameters, but preserving the perfor-
mance of AlexNet. EfficientNet [6] improved performance and also reduced the number of
parameters with respect to state-of-the-art Convolutional Neural Networks through balancing
depth, width and resolution of the model.

Works in this field have compared the robustness of these algorithms with human vision in
the classification of distorted images. Gerihos et al. [7], Dodge and Karam [8] and Carrasco
et al. [9] show that humans outperform studied Deep Neural Networks. Carrasco et al. [9]
introduces the concept of quality reductions, which consist of transformations applied to an
image or matrix to reduce its quality, such as downsampling, quantization and slice. The
extent of a reduction can be measured by an appropriate entropy measure, for example,
the size of the reduced image on disk. This work also introduces the definition of Minimal-
Entropy Positive Image (MEPI), where for a given image, the entropy is minimized subject
to a correct classification by the Deep Neural Network.

In order to further increase the diversity and volume of labeled examples available for
learning, as well as the robustness of Deep Neural Networks, Data Augmentation techniques
can also be applied. These techniques have been used to prevent overfitting in Krizhevsky
et al.’s architecture [1] (AlexNet), mitigate class imbalance problems in the work of Chawla
et al. [10] and also to improve the robustness of the network using adversarial perturbations
in the work by Moosavi-Dezfooli et al. [11]. In particular, robustness against distortions has
been achieved by Gerihos et al. [7] showing that the performance of Deep Neural Networks

1

can improve, but with a tradeoff in terms of the generalization of the model when adding
new distortions to the images.

However, to date, the literature has tended to focus on using a particular change in the
data in order to augment the training set independently of the classifier, rather than studying
the effect of different changes for a given classifier. This moves us to a key question: can we
improve the performance of a given classifier further by reducing the information (or quality)
present in the training examples?

This work will focus on the analysis of the performance of a state of the art Deep Neural
Network. The training will consist of a full size image which will be reduced during training
in order to obtain a minimal reduced image such that the classifier yields a correct answer,
and then use it to train the Neural Network, applying this process recursively to improve the
performance of the Neural Network.

1.2. Hypothesis
Our hypothesis is that the classification performance of images (from the ImageNet dataset)
of a Convolutional Neural Network trained on a reduced entropy dataset is better, in terms
of accuracy, than when it is trained on a dataset without reductions, in two cases:

• With respect to a test set of complete images (without reductions).
• With respect to a test set of images with reductions.

1.3. Objectives
1.3.1. General Objectives
Design a training process that reduces the quality of input labeled examples in order to
improve the performance of state-of-the-art Deep Neural Networks for Image Classification
on both full quality images and reduced-quality images (or ascertain why this approach does
not work).

1.3.2. Specific Objectives
• Specific Objective 1: Establish a baseline considering an image dataset, Convolutional

Neural Networks and accuracy as an evaluation metric.
• Specific Objective 2: Design and implement a training methodology for a quality-reduced

input.
• Specific Objective 3: Compare the results of the baseline of state-of-the-art Neural Net-

works (trained on full-quality images) with respect to performance trained on reduced-
quality images using the aforementioned methodology. The comparison should include
both full-quality and reduced-quality test sets of images.

1.4. Problem
The problem we want to address is the robustness of the performance of Convolutional Neural
Networks for Image Classification under image distortions, which may be due to poor weather

2

conditions, poor lighting conditions, poor focus, partially obscured objects (e.g., people wear-
ing masks), etc. Distorted images used as input to systems that implement Computer Vision
algorithms may yield an incorrect answer. We also believe that the methodology proposed
here can improve Image Classification for full-quality images, leading to more accurate re-
sults.

1.5. Contribution
Previous works [7–9] comparing the classification performance of humans and Computer Vi-
sion algorithms on distorted images observe that humans outperform such algorithms. To
improve the robustness of these algorithms we will train Convolutional Neural Networks with
quality-reduced images using specialized training methodologies that consider the feedback
from the model for improving its robustness and performance. While other works have con-
sidered specific Training Methodologies [1, 7], or Data Augmentation [10–13] techniques for
training Neural Networks, to the best of our knowledge, these works have primarily focused
on adding specific, independent types of noise, distortion or quality-reductions to images.
Such works typically do not use feedback from the classifier during training in order to select
the level of distortion, reduction, etc. In our framework, following the work of Carrasco et
al. [9], we design a training methodology that unifies different types of quality reductions
under the common framework of entropy (estimated as compressed file-size). Carrasco et
al. [9] used these reductions to compare human and algorithmic performance, but used Con-
volutional Neural Networks trained on full-quality images only. Basing our framework on
entropy allows us to combine, for example, crop, resolution reduction, color reduction, etc.,
where the level of reduction is guided by the resulting file-size of the image independently of
the type (or combination) of reduction applied. The reduction of training images is further
guided by the current performance of the classifier. Thus, for example, our methodology can
produce an image for training that combines partial crop, partial resolution reduction and
partial color reduction, such that the image is at the limit of what the classifier can classify
correctly (in terms of quality/entropy). We hypothesize that this will lead to improved per-
formance for Image Classification using Convolutional Neural Networks on both full-quality
and reduced-quality images.

1.6. Methodology
1.6.1. Related Work Survey
In the first phase of this project, we will study state-of-the-art Convolutional Neural Network
architectures, Data Augmentation techniques, entropy measures, and training methodologies
for the Image Classification task.

1.6.2. Design and Implementation of Algorithms
The next step will be to design an algorithm for training a Deep Neural Network over a large
dataset of images, while applying quality reductions on the input, which will be used for
training.

3

1.6.3. Experimentation
The Neural Network, considering the quality reductions on the input images and their re-
duction parameters, will be compared with a baseline’s (the same Neural Network trained
with images without quality reductions) performance metrics.

1.6.4. Technologies
The algorithms will be implemented in Python, using Google’s Colab service and, for massive
data training, an external cluster will be used. The Neural Networks will be implemented in
Pytorch.

1.7. Summary of Results
In this work we studied the effect of training Convolutional Deep Neural Networks with
quality-reduced images on the performance of Image Classification. Performance was mea-
sured in accuracy and entropy-ratio (as Carrasco et al. [9] defined) compared with our base-
lines. We obtained an improvement from 71.6% to 72.2% in accuracy with respect to the
baseline with the EfficientNet architecture on the ImageNet dataset. Other architectures did
not show improvement. In the subset of ImageNet (HumaNet) we performed experiments
of our Training Methodologies. We saw an improvement of the performance in the quality-
reduced datasets depending on the methodology and quality-reduced images used as input.
For example, considering EfficientNet, we obtained an improvement in accuracy from 31.0%
to 47.7% over images reduced by crop when training likewise over images reduced by crop
(and not only full-quality images).

1.8. Work Structure
The present work has the following chapters:

• In Chapter 2 we describe the key theoretical concepts relevant to this work. This chap-
ter first provides an overview of Digital Image Processing, specifically how images are
interpreted by the computer and the application of filters over them. We also dis-
cuss Probability, Statistics, Information Theory and Optimization Methods for training
Neural Networks. Then, we provide an overview of Machine Learning and we describe
the training process of Deep Neural Networks as a subset of current Machine Learning
algorithms.

• In Chapter 3, we discuss works related to Data Augmentation, the work of Carrasco et
al [9] that forms the basis of the theoretical framework of this work, an overview of the
Image Classification task, and the performance achieved for this task by Deep Neural
Networks.

• In Chapter 4, we give an overview of the proposed training methodology of Neural
Networks with quality-reduced examples. This chapter includes the justification of the
method, an explanation of the training pipeline, the implemented quality reductions,
and the description of each module involved in the training.

4

• In Chapter 5, we explain the experiments run in this work. We present the research
questions, the description and justification of the Neural Networks architectures and
datasets used, the baseline we compare our results with, and the metrics used to quantify
the performance of each methodology.

• In Chapter 6, we present the obtained results of the experiments run. We also provide
a discussion and analysis of the results.

• In Chapter 7 we conclude our work, discussing the limitations and future work for this
proposed methodology.

5

Chapter 2

Background

In this chapter, we introduce some concepts that are foundation to our work. In Section 2.1
we introduce key concepts to understand how images are interpreted by computers and the
transformations applied to them (to later understand the application of quality reductions).
In Section 2.2 and Section 2.3 we offer a refresher on Probability and Statistics and In-
formation Theory, introducing two key concepts for choosing the loss function used in the
training process of Deep Neural Networks: Maximum Likelihood Estimation method and
Kullback-Leibler Divergence. In Section 2.4 we discuss the optimization methods used in the
training process of Deep Neural Networks and Powell’s Method used in the work of Carrasco
et al. [9]. In Section 2.5 we present an introduction to Machine Learning. We then explain
Neural Networks and their training process in Section 2.6. Finally in Section 2.7 we intro-
duce the Image Classification Task, Training Methodologies and the Convolutional Neural
Network Architecture.

2.1. Digital Image Processing
In this subsection we present how digital images can be interpreted, manipulated and rep-
resented by computers; their unit expression known as a pixel; the color representation in
the convention model known as RGB; the concept of image compression; the image format
provided by the ImageNet and HumaNet datasets; and finally, computational applications
over images.

2.1.1. RGB Model
The RGB model is an additive color model in which each letter represents Red, Green
and Blue, respectively, as the primary colors of light. These colors, added together, can
reproduce a broad composition of colors. For example the combination of all three colors in
equal intensity makes the color white.

2.1.2. Pixel
In digital imaging the pixel is the smallest addressable element in a raster image; this implies
that it is the smallest controllable element of a picture represented on a display device. The
intensity of each pixel is variable (for example, by regulating the intensity of a red light
represented by a pixel).

In terms of the RGB color model, each pixel has a discrete finite value representing

6

its intensity, which can take values between 0 and 255 (minimum and maximum intensity,
respectively). In a three-channel model, where each channel represents one color of the RGB
color model, the combination of each one at maximum intensity (represented as (255, 255,
255)) makes the color white.

2.1.3. Raster graphics
Raster graphics is a mechanism that represents a two-dimensional image as a rectangular
matrix or grid of square pixels viewable via a computer display. It is characterized by the
width and height of the image in pixels and by the number of bits per pixel.

2.1.4. Resolution
In digital imaging, resolution is equivalent to the total count of pixels. The convention is to
describe the pixel resolution with two positive integer numbers: the first is the number of
columns and the second the number of rows if we represent the image as a matrix. These
numbers define the dimension or size of the image.

2.1.5. Compression
Image compression is a type of data compression which is applied to digital images; it reduces
the cost of storage or transmission. There are two types of image compression: lossy and
lossless.

2.1.5.1. Lossy Compression

Lossy compression uses inexact approximations to represent the compressed content that may
discard some data. The JPEG image format is an example of this type of compression based
on the discrete cosine transform method [14]. Well-designed lossy compression methods can
reduce file sizes significantly before degradation is noticeable by the end-user.

2.1.5.2. Lossless Compression

Lossless compression allows the original image to be completely reconstructed from the com-
pressed data. This type of compression is used in cases where it is important that the original
and the decompressed image be identical. An example of image extension that is compressed
using this method is PNG.

2.1.6. Digital Image
A digital image is an image composed of pixels, each with finite, discrete quantities of numeric
representation for its intensity or gray level, which maps to a plane with an x-axis and a y-
axis. When the RGB color system is applied the image is represented by a three dimensional
matrix in which the first and second dimension represents a pixel and the third dimension
the channels that capture each color of the RGB color system (Red, Green and Blue).

7

Figure 2.1: Matrix representation of a digital image. Source ‘Educative.io’.

2.1.7. Spatial Filtering
Spatial filtering is a technique used to modify or improve an image. For example it can
emphasize certain regions of an image (e.g. edges) or erase other entities (e.g. certain
colors). Its application requires an image, a region of an image I(x, y) and an operation
made in that region. The operation is performed by a mask known as a kernel.

2.1.7.1. Correlation Filtering

We define the linear filtering for a given image IM×N and a kernel WKy×Kx by the following
mathematical expression:

G(y, x) =
ry∑

v=−ry

rx∑
v=−rx

I(y + v, x + u)W (v, u) (2.1)

As an example we consider the following image I with the kernel W (we make the assump-
tion that outer bounds operations are completed by zeroes), where we compute the resulting
image G = I

⊗
W :

I =

1 2 3
4 5 6
7 8 9

 , W =

0 0 0
0 1 1
0 0 0

 , G = I
⊗

W =

3 5 3
9 11 6
15 17 9

 (2.2)

2.1.7.2. Convolution Filtering

We define the convolution filtering for a given image IM×N and a kernel WKy×Kx by the
following mathematical expression:

G(y, x) =
ry∑

v=−ry

rx∑
v=−rx

I(y − v, x − u)W (v, u) (2.3)

It is similar to linear filtering, but the kernel is reflected with respect to the center as
observed by the sign of v and u.

8

https://www.educative.io/edpresso/how-to-use-scikit-image-thresholding-methods-in-python

2.2. Probability and Statistics
Probability theory represents uncertain statements and quantifies this uncertainty. In Ma-
chine Learning probability is applied to understand how algorithms should make decisions
and to analyze their behavior theoretically. In this subsection we present key concepts relat-
ing to probability and statistics that are applied in the learning process of Neural Networks.

2.2.1. Probability Axioms
A probability P is a function of real values defined over Ω that satisfies the following axioms:

• Axiom 1: For any event E ⊆ Ω, 0 ≤ P(E) ≤ 1.
• Axiom 2: The probability of the sample space Ω is 1.
• Axiom 3: Let E1, ..., Ek ∈ Ω be disjoint sets: P(⋃k

i=1 Ei) = ∑k
i P(Ei) holds.

2.2.2. Random Variable
A random variable is a function X : Ω → R which maps any event of e ∈ Ω to a real value
X(e). For example we can model the toss of a coin with outcomes tail (T) and heads (H) and
define X(e) as the number of heads in a sequence of tosses; for example, if e = HHHTHTTH,
then X(e) = 5, because in the sequence we have five values of H.

2.2.3. Probability Distribution
A probability distribution is a function that gives the probability of occurrence of different
possible outcomes for an event. Its description depends on whether the described variable is
discrete or continuous.

2.2.3.1. Normal Distribution

The normal distribution is a continuous distribution and its mathematical expression repre-
sents µ as the mean or expectation of the distribution and σ is its standard deviation; it has
the following expression:

fx(µ, σ) = 1√
2πσ

e− 1
2

(x−µ)2

σ2 (2.4)

2.2.4. Statistical Inference
Statistical inference is the process of drawing conclusions from samples of a population. Its
goal is to infer the distribution that generates the observed data. The models that assume a
distribution can be described by a set of parameters θ = (θ1, ..., θk) and are called parametric
models. There are two approaches for making inferences: frequentist and Bayesian inference.
For example in the case of a set of coin tosses the probability of success p is a parameter that
can be inferred by a p̂ estimated parameter.

2.2.5. Maximum Likelihood Estimation
Maximum Likelihood Estimation is a method which estimates the parameters of an assumed
probability distribution, given some observed data. This estimation is achieved by maximiz-

9

ing a likelihood function so that, under the assumed probability distribution, the observed
data is most probable.

In the following equation Ln is the likelihood equation in which f is a known probability
distribution, Xi are independent and identically distributed random variables, and its proba-
bility density function is f(x; θ). This function is maximized to get the parameters that best
fit the data.

arg max
θ

Ln(θ) = arg max
θ

n∏
i=1

f(Xi; θ) (2.5)

One property of this estimator is consistency. This means that if the data were generated
by f(x; θ) and with a large number of observations n, it is possible to find the value θ0 with
arbitrary precision. Mathematically it means that the estimator converges in probability to
the true value of the distribution θ̂ → θ0.

2.2.6. Loss Function
A loss function or cost function is a mathematical function that maps values of one or
more variables to a real number that represents the cost of a certain event. In statistics a
loss function is typically used for parameter estimation, and the event in question is some
function of the difference between estimated (or predicted) values and true values for an
instance of data. An optimization problem seeks to minimize a loss function.

2.3. Information Theory
Information Theory is the study of quantification, storage and communication of digital infor-
mation which, in the presence of uncertainty, allows us to quantify the amount of uncertainty
in a distribution of probability.

2.3.1. Entropy
Considering a group of symbols and the discrete density function of each symbol, with a
probability pi for an event i the Shannon entropy H, in units of bits (if we consider a base
two for the communication compression), has the following mathematical expression:

H = −
∑

i

pi × log2(pi) (2.6)

Considering a discrete random variable X, this expression indicates the amount of neces-
sary bits to represent X when only its distribution is known.

2.3.2. Kullback–Leibler Divergence
Defined by Kullback and Leibler [15], the divergence of information, also known as relative
entropy, measures the extent to which two probability distributions Q and P , defined on the
same probability space X , are different, taking P as the reference probability distribution.
It is interpreted as the excess of information content (a basic quantity derived from the
probability of a particular event occurring from a random variable) from using Q as the
model when the actual distribution is P . This divergence has the following mathematical
expression:

10

Dkl(P, Q) =
∑
x∈X

P (x) log
(

1
Q(x)

)
−
∑
x∈X

P (x) log
(

1
P (x)

)
(2.7)

2.4. Optimization Methods
Optimization methods are applied to get the best possible solution to a given mathematical
problem, which may be the maximum or minimal solutions for the parameters in study. In
Deep Learning, optimization methods are crucial for finding the best parameters of the Neural
Network. Such methods were also used by Carrasco et al. [9] for finding the parameters that
minimize the entropy of a given image while yielding a correct classification, i.e., for finding
the Minimal Entropy Positive Image.

2.4.1. Stochastic Gradient Descent
Stochastic Gradient Descent is a method for optimizing an objective function through iter-
ations of an approximation of the gradient. This method reduces the high computational
complexity of high-dimensional optimization problems in order to achieve faster iterations
with the trade-off of a lower convergence rate.

The parameters or weights of the model are updated for a given function Q(w) in which
each observation i is associated with its summand function Qi(w) computing the gradient
∇Qi(w) of each one and multiplying with a factor η known, in the Machine Learning termi-
nology, as learning rate. The iterations made are represented by the following expression:

wi+1 := wi − η∇Q(wi) (2.8)

This method also has improvements and extensions for making the learning rate adaptive,
for addressing high divergence (if the learning rate has a high value) and for addressing low
convergence (if the learning rate has a low value). Some examples of these extensions are
Momentum, RMSProp [16] (Root Mean Square Propagation) and ADAM [17] (Adaptive
Moment Estimation).

2.4.2. Powell’s Method
Powell’s method [18] is an algorithm for finding a local minimum of a function without the
condition of the function being differentiable, because it does not compute derivatives during
the search. It proceeds as follows:

Let us consider a starting point x0 ∈ Rn and a list of N search vectors S := {s1, ..., sN}.
The algorithm proceeds to minimize the objective function by a bi-directional search along
each search vector si ∈ S. Then, the bi-directional search produces the following vectors
S ′ :=

{
x0, x0 + α1s1, ..., x0 +∑N

i=1 αisi

}
, where every αi is obtained by the bi-directional

search along si. Then, the new position obtained is defined as x1 := x0 + s′
i = x0 +∑N

i=1 αisi

with s′
i ∈ S ′, and s′

i added to the list of search vectors S. Next, the search vector that
contributed the most for the direction of s′

i is erased from that list, and its position of
the list is defined as id = arg maxN

i |αi||si|, thus the updated search vector set is: S :=
{s1, ..., sid−1,��sid

, sid+1, ..., sN , s′
i}. The algorithm continues until the maximum number of

iterations is reached.

11

2.5. Machine Learning
Machine Learning proposes a set of computer algorithms, which improve automatically
through experience or training. In the Image Classification task, state of the art models
are Deep Neural Networks, which have been more popular in recent years due to advances in
GPU hardware technology and the wider availability of data. We now describe these concepts
in more detail, as relevant for this thesis.

2.5.1. Supervised Learning
Supervised Learning is the task of learning a function that maps an input to an output value
or vector. The function is inferred from labeled training data and then evaluated in test data.
It is called supervised because the process of learning or inferring the mapping function is
actively supervised by the algorithm as it receives feedback of the results that the current
mapping outputs.

2.5.2. Performance Metrics
A performance metric is a value that qualifies or judges the performance of a Machine Learn-
ing model. A simple metric to use is classification accuracy, which is defined as the number
of correct predictions divided by the total number of predictions.

2.6. Neural Networks
A Neural Network is a Machine Learning model inspired by biological neural networks com-
posed of neurons that communicate via specialized connections called synapses between neu-
ron dendrites. A simple artificial Neural Network model receives an input in its input layer
in the form of a vector; then it processes the data and the results obtained by the hidden
layers, operations are committed in the output layer. Every layer has a minimal unit, called
a neuron, which simulates a biological one.

Each neuron receives a signal from the previous layer that is weighted by a weight value
which represents the intensity of the connection between neurons. Then the activation of the
neuron depends on whether or not the sum of the signal received is superior to a threshold
called bias. Nevertheless, the model cannot solve complex problems this way, because it is
equivalent to a linear model, so a non-linear activation function is typically added to allow
non-linear classifications. In Figure 2.2 we show a representation of a Neural Network with
two hidden layers.

Due to better hardware (GPUs) and the birth of other Neural Network architectures,
nowadays the number of hidden layers have increased and this increase led to Deep Neural
Networks.

In this subsection we describe the process of training a Deep Neural Network and the
regularization methods applied in this process.

12

Figure 2.2: Neural Network with two hidden layers. Source ‘Wikimedia
Commons’.

2.6.1. Neural Network Training
The phases of Neural Network Training can be divided in two: the forward and the backward
process. In the former, the Neural Network, given an input, provides results of a certain
classification and the latter corrects and adjusts the network parameters according to the
loss function and the optimization method for the training process. These processes will be
discussed in the next subsection with its components.

2.6.1.1. Forward

In this step the input vector is processed by the network with its internal operations (in the
hidden layers) until it reaches the output layer. Then the classification result is the argument
of the maximum value of the output vector (i.e., its index in the output vector).

For training, the softmax function is applied to the output vector to associate the vector
to a probability distribution of the results (this probability notion allows us to compute a
maximum likelihood estimation of the data given the parameters). This value is then passed
to the loss function which compares the real result with the predicted result in the loss
function to then, in the backward process, update the weights of the Neural Network.

2.6.1.1.1. Activation Functions
An activation function is a mathematical function that defines the output of a node of the
Neural Network that will be passed to the next layer. For the Neural Network to represent
a wide variety of functions it is necessary to use a non-linear activation function. If this
property suffices the Neural Network can become a universal function approximator.

Some examples of these activation functions are RELU (Rectified Linear Unit), Sigmoid
and ELU (Exponential Linear Unit).

2.6.1.2. Softmax

Softmax is a mathematical function which takes as input a vector v ∈ RK and then it
normalizes it into a probability distribution of K values in the interval (0, 1) proportional to
the exponential of the vector values; this function is interpreted as a “smooth argmax”. Each
output value is obtained by the following expression:

13

https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_english.png
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_english.png

evi∑K
j=1 evj

(2.9)

2.6.1.3. Backward

In the backward process we compute the derivatives of each weight according to the results
obtained during the forward process using the backpropagation algorithm. Then we update
each weight of the Neural Network using the optimization function.

2.6.1.3.1. Backpropagation
The backpropagation algorithm computes the gradient of the loss function with respect to
each weight of the Neural Network by the chain rule. It uses dynamic programming to pre-
calculate the expression of the derivative, which is then computed iteratively from the last
layer calculating the gradient of each weight.

2.6.1.3.2. Loss function
The loss function is the function from which the derivatives are computed to update the
parameters by minimizing the loss; thus, it defines an objective to evaluate the model. Cross-
entropy Loss is often used for classification tasks, defined as it follows:

L := − 1
N

N∑
i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (2.10)

Where N is the number of samples, yi is the known class label, and ŷi is the probability
of each class label predicted by the model.

Minimizing this loss function is equivalent to maximizing the likelihood of the parame-
ters, so it has the same properties as the maximum likelihood estimator, which was defined in
Section 2.2.5. This minimization is also equivalent to minimizing the Kullback-Leibler Diver-
gence for obtaining the parameters for the probability distribution, defined in Section 2.2.5.

2.6.1.3.3. Optimizer
An optimizer is a method used to update the weights of a Neural Network, minimizing the
loss function according to the derivatives computed on the backpropagation algorithm step.
For a given model and its parameters it updates them according to Section 2.4.1.

2.6.2. Regularization Methods
Regularization methods are techniques for improving the generalization (i.e., the ability of
the model to adapt to previously unseen data) of the Neural Network model. Some of the
described techniques are compared and discussed by Bengio [19].

2.6.2.1. Weight Decay

Weight decay is a regularization technique that adds a penalty term to the cost function of
a Neural Network training; its effect is to shrink the weight’s values during the backward
process. This helps the Neural Network to prevent overfitting (which is when the model
cannot generalize to unseen data).

14

2.6.2.2. Early Stopping

Early stopping is a regularization technique used to avoid overfitting during training. This
method provides rules to guide how many iterations can be run without performance im-
provement before the learning algorithm begins to over-fit. The number of epochs defined
to wait before stopping the training process early is defined as patience. This value is a
hyperparameter and different works use different values of it, for example, Wei et al. [20] use
a value of 3.

2.6.2.3. Data Augmentation

Data Augmentation is a regularization technique, which increases the amount of data by
adding modifications to existing data (e.g. images or text); thus it creates synthetic data
from the original or existing data.

2.6.3. Hardware and Libraries
In this subsection we introduce the hardware that has allowed Deep Neural Networks to
achieve results efficiently (in terms of time). We also introduce a library for the Python
Programming Language, which allows us to communicate and work with this hardware.

2.6.3.1. GPU

A Graphic Processing Unit is a processing hardware unit, similar to the CPU, but oriented to
floating point operations, such as often needed for graphics processing. The main difference
between GPU and CPU is the amount of cores a GPU has, where the higher number of cores
in a GPU enables high levels of parallelism for computations such as matrix operations. This
makes the use of GPU effective for the development of Neural Network models in which
matrix operations are made frequently.

Two of the most used Deep Learning libraries, such as TensorFlow and Pytorch, use the
GPU’s functionalities to improve the performance of Deep Neural Network models. The
GPU’s API depends on the hardware, and in the case of an Nvidia GPU, it uses the CUDA
API to leverage its functionality in the aforementioned libraries.

2.6.3.2. Pytorch

Pytorch is an open source Machine Learning library based on the Torch library available in
the Python programming language. Among the advantages of this library is the capacity to
process a large volume of data and its ability to use the GPU for tensor computing, which
improves speed during the evaluation and training of a model.

2.7. Image Classification
Image Classification has been a key task in Computer Vision, which has been important
for learning how human vision works and how to apply it for recognition of images using
computer algorithms. In order to standardize the study of this task, the ImageNet Dataset
was proposed [21], which has one thousand object classes, including dogs, cats, trucks, ships,
etc. This dataset provides a common collection of images to test and compare the different
algorithms available for Image Classification.

In the classification algorithms, high-level features are important to classify images, and

15

these features can be extracted manually [22] or automatically by the algorithm. Most
modern classification algorithms apply an automatic extraction of features.

With the results of AlexNet in 2012 [1], the Convolutional Neural Network architecture,
and different training methodologies over it, leading to continuously improving results on
this task in terms of the accuracy metric.

In this subsection we describe the ImageNet dataset and the HumaNet dataset, the Con-
volutional Neural Network architecture and training methodologies applied for this task.

2.7.1. Dataset
ImageNet is a dataset, which maps objects to different images, organized according to the
WordNet (large lexical database of English) hierarchy. ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [21] was an annual challenge (until 2017) that sought to evaluate
algorithms for the tasks of image detection and classification. This dataset is still available
for measuring and comparing the performance of the developed algorithms on this image
task.

HumaNet [9] is a subset of images of ImageNet that serves as a benchmark of the robustness
of image classifiers with respect to incomplete information (i.e., with respect to a full quality
image).

2.7.2. Training Methodologies
In Image Classification, new Deep Neural Network architectures have been made to improve
performance in this task, but also new training methodologies have been developed on these
architectures. Here we describe methodologies that have been used in this computer vision
task.

2.7.2.1. Generative Adversarial Networks

This methodology trains a Deep Neural Network as a generative model, i.e., a model which
generates images that improve during training to the point of being indistinguishable from
the real images. This is done by having two models: one which generates images and the
second, which discriminates if it is a real or a generated image. These models are called
generator and discriminator respectively.

The objective of this training methodology is to improve the generator such that the
discriminator does not distinguish between a real and a generated image; for this reason the
approach is called adversarial. This architecture can be used to synthesize new data and use
it in a data augmentation process [13, 23].

2.7.2.2. Masked Autoencoders

This methodology works by reconstructing masked fragments of an image, so the objective of
the model is to learn the fragments that best suit the proposed image with less information.
This way the model learns how to yield a correct prediction with less information. This
methodology uses the transformer architecture as its backbone (i.e., Neural Network that
extracts features).

In Figure 2.3 we show the Masked Autoencoder architecture pre-training pipeline. The
input image has a subset of image patches, which are randomly masked out. The encoder
receives the subset of visible patches of the image; then the encoded patches and the masked
tokens (gray squares) are passed through the decoder reconstructing the input image. For

16

recognition tasks the input is a full-quality image (in this work such images are called uncor-
rupted images) and the decoder is discarded.

Figure 2.3: Masked Autoencoder pre-training pipeline. Source ‘Masked
Autoencoders Are Scalable Vision Learners’ [24]

2.7.3. Convolutional Neural Network
Convolutional Neural Networks are a Neural Network architecture, which have greatly im-
proved performance on Computer Vision tasks.

The input of the convolutional layer, in the case of the Image Classification task, is a set
of the matrix representations of the images stacked in a single tensor called a batch. The
dimensions of the input is a tensor of the given dimensions: B × C × H × W , which are
respectively batch size (amount of images), channels, height and width of each image. Then
a convolutional filter is applied to the tensor producing the feature map of the image, whose
dimensions depend on the amount of kernels, padding (extra pixels around the boundary of
the input image) and stride (number of rows and columns traversed per slide of the kernel).

The following layer is the pooling layer, which reduces the dimension of the data through
the combination of the output of neuron clusters in one layer to a single neuron in the next
layer. Common pooling operations are: max pooling (takes the maximum value of a region)
and average pooling (takes the mean of a region).

Finally the processed data obtained through these operations are connected to a fully
connected layer, which takes high level features of the image so it can classify it, learning
what feature maps get the best performance for the classification task.

In terms of parameters, given R kernels with dimension Ky × Kx and an image of C
channels, the number of trainable parameters are C × Ky × Kx × R + R in a convolutional
layer. A possible interpretation of this process may be that the network learns the best filters
to apply with the objective to classify the given images.

In Figure 2.4 we can see the flow of the data from the input image (left) to the output
layer (right), passing through convolutional layers, pooling layers and finally a fully connected
layer from which the classifier predicts the class of the image.

17

Figure 2.4: Convolutional Layer Source ‘Mathworks’.

18

https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html

Chapter 3

Related Work

With an overview of general concepts relevant to this theis, we now discuss in more detail
works that are most closely related to this thesis: Data Augmentation techniques and training
methodologies for the Image Classification task. The works described in this section form a
starting point for the research and development of our work.

3.1. Image Classification
For visual recognition tasks, Convolutional Deep Neural Networks achieve excellent perfor-
mance. The architectures described here focus on the Image Classification task, which con-
sists of assigning a label to an image or photograph, for example, to classify a handwritten
digit.

The work of Krizhevsky et al. [1] describes a methodology for training with a large dataset
(such as ImageNet) on a Convolutional Neural Network, considering the effects of Data
Augmentation on the performance of the classifier. The proposed architecture (AlexNet)
achieved a top-5 error of 15.3% in 2012, popularizing the use of Convolutional architectures
for Deep Neural Networks. It also describes services, which can be used for data labeling,
such as Amazon Mechanical Turk.

Today, there are Convolutional Deep Neural Networks architectures, which use more layers
in their constructions surpassing AlexNet, such as Squeeze-and-Excitation Networks proposed
by Hu et al. [25]. This work introduces a building block for Neural Networks that captures
channel relationships and dynamically re-calibrates channel-wise feature responses by explic-
itly modeling inter-dependencies between channels. These blocks can be stacked together to
form Neural Network architectures that generalize effectively across different datasets; for
example, using these blocks in a Residual Network (ResNet) architecture on the ImageNet
dataset achieves a single-crop top-5 validation error of 6.62% (this architecture is called
SE-ResNet-50 [25]).

3.2. Data Augmentation Techniques
Shorten and Khoshgoftaar [12] provide a survey that summarizes the techniques for Data Aug-
mentation when training Deep Neural Networks and briefly describe regularization methods
on Neural Networks. These techniques are solutions to the problem of overfitting in Deep
Learning models due to limited data. Their survey groups the techniques in two classes:
Basic Image Manipulation and Deep Learning Approaches. The former considers geometric

19

(e.g. flip, rotate, crop) and photometric (e.g. jittering, random color manipulation, edge en-
hancement) transformations. The latter considers the use of GANs (Generative Adversarial
Networks), Neural Style Transfer, and meta-learning algorithms.

One of the techniques that the survey describes in the second category is the use of
adversarial examples that lead state-of-the-art classifiers to give misclassifications where they
find the minimum possible noise injection needed to cause such errors (Moosavi-Dezfool et
al. [11]). This work is based on an iterative linearization of the classifier to generate minimal
perturbations that are sufficient to yield an incorrect classification.

3.3. Robustness of Image Classification
The study of the robustness of Deep Neural Networks in the context of the Image Classifi-
cation task with respect to the application of distortions on the input image is a key field of
study for our work. Hendrycks and Dietterich [26] study the impact of the performance of
Deep Neural Networks considering synthetic distortions such as Gaussian noise, zoom blur,
rotations, greyscale, pixel noise, etc. Taori et al. [27] study robustness on classifiers consid-
ering natural distortions such as lighting conditions, compositions of the scene, the type of
the objects, etc.

Comparative works between Deep Neural Networks and humans identifying distorted im-
ages have been done to study robustness of these classifiers. Gerihos et al. [7], Dodge and
Karam [8] and Carrasco et al. [9] show that humans outperform studied Deep Neural Net-
works on synthetically distorted images. Gerihos et al. [7] also train the model with images
including distortions, showing that the classification of Deep Neural Networks can improve,
but with a tradeoff in terms of the generalization of the model when adding new distortions
to the images.

3.4. Laconic Image Classification
Laconic Image Classification is a theoretical framework for understanding and comparing clas-
sification results based on the principle of computing and analyzing minimal entropy positive
inputs [9]: inputs with minimal information with respect to yielding correct classification
results. This framework has been used to compare the performance of humans and Deep
Learning models in the classification of distorted images, in particular, quality-reductions
that yielded less entropy in terms of image size.

A Minimal-Entropy Positive Image (MEPI): is an image I ′ that has been reduced, in terms
of entropy (with operations called reductions such as crop, downsampling or quantization),
from an original image I (without reductions), such that a given classifier C (for example a
Neural Network) applied to the image I ′ gives a correct answer, and for another reduction
over I ′ the classification yields to incorrect answer.

In other words, for a given machine classifier C, an original image I, a reduction operation
Ri ∈ {crop, downsampling, quantization}, a ground truth label for a given image denoted
as λ(I), reduced images I ′ and I ′′, such that I R1−→ I1

R2−→ · · · Rn−1−−−→ In−1
Rn−→ In, recalling

In−1 as I ′ and In as I ′′, the following condition is satisfied for a MEPI I ′: C(I ′) = λ(I)
(classifier C evaluated on the image I ′ is correct) and C(I ′′) ̸= λ(I) (it is no longer correct
upon further reduction).

For the case of human classifiers, the MEPIs were obtained with a survey made in a

20

web application, in which each participant had to choose between 20 available classes to
distinguish a proposed image. The image started from a quality-reduced image. The web
application had an option for decreasing the intensity of the reduction, thus improving the
quality of the image. When the user felt able to classify the image, they were asked to guess.
If they guessed incorrectly, the image was discarded. If they guessed correctly, the image was
kept as a MEPI. The difference in obtaining these images between Neural Network models
and humans is that in the former the approach was top-down (more quality to less quality)
and the latter bottom-up (less quality to more quality).

The final comparison between human and machine classifiers was made obtaining the
MEPIs of a subset of ImageNet for each classifier (humans and Neural Network models).
Each classifier was evaluated with the MEPIs of the other classifiers obtaining the precision
of the classification. These evaluations led to the conclusion that human classifiers were
more robust to image distortions compared to the machine models. The obtained MEPIs are
available on the internet and the subset was called HumaNet1.

In this work, we re-use the reductions defined by Carrasco et al. [9]. We made some
slight modifications for our Training Methodologies in order to consider quality-reductions as
ratios rather than absolute values (with 0 meaning completely reduced and 1 no reduction).
In Section 4 we cover the changes made to the quality-reductions of Carrasco et al. [9] and
we also show examples for each quality-reduction.

1 Laconic Image Classification Website: https://aidanhogan.com/laconic

21

Chapter 4

Proposal

In this chapter the main components of our proposed training methodology are described.
First, we provide key definitions for the quality reductions used in this work; afterwards we
provide a general overview of the training methodologies proposed.

4.1. Image Quality Reductions
To create labeled examples of images with reduced information for training, quality reductions
were implemented using tensor operations provided by Pytorch. These reductions are applied
over an image I, in its tensor representation of dimension C×H×W (which represent number
of channels, height and width respectively) and can be applied to a batch of size B of such
images. These image quality reductions are based on Carrasco et al’s [9] work using Pytorch
tensor operations. We presently provide the mathematical definitions proposed by Carrasco’s
work, which defines the reduction operations more generally over a matrix A ∈ Nm×n.

The design of these quality reductions allows us to reduce the size of the images in terms
of bytes in a monotonic way, where the entropy of the image is approximated in terms of the
byte size of the image after applying lossless compression.

Each reduction requires one or more parameters, which denote the extent of the reduction
of the entropy of the image. With more intense quality reduction (as defined here), the image
typically requires less size to store in a losslessly-compressed format.

4.1.1. Mathematical Framework
The mathematical framework of the reductions is herein defined over matrices of non-negative
integers, but it generalizes to real numbers and other domains. Given an m × n matrix A,
we denote by aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) the element in the ith row and jth column of A. We
now define each reduction based on Carrasco et al’s [9] quality reductions (we modify some
minor details to more easily present our framework later):

• Quantization: A↓Q(k) is defined as the nearest value m × n quantised matrix of A with
factor 0 ≤ k ≤ 1, such that a′

ij := round(round(kaij)/k) for all a′
ij in A↓Q(k).

• Downsampling: A↓D(s) is defined as the p × q (p ≤ m, q ≤ n) downsampled matrix of
A with scaling factor s such that 0 < s ≤ 1, ⌊sm⌋ = p, ⌊sn⌋ = q, and p < m or q < n.

• Slice: A↓S(a,b,c,d) is defined as the (contiguous) p × q submatrix such that A↓S(a,b,c,d) =
(Aij)ām<i≤m−b̄m;c̄n<j≤n−d̄n where a, b, c, d belong in the interval (0, 1) and ā = 1 − a,

22

b̄ = 1 − b, c̄ = 1 − c, d̄ = 1 − d (ā + b̄ < 1, c̄ + d̄ < 1, p = round((1 − (ā + b̄))m), q =
round((1 − (c̄ + d̄))n); in other words, the first ām rows, the last b̄m rows, the first c̄n
columns, the last d̄n columns are removed from A.2

For composed reductions, we represent the combination of these reductions as a vector
θ⃗ = (k, s, a, b, c, d), where k is the quantization parameter, s the downsampling parameter,
and a, b, c, d are the slice parameters in four directions.

4.1.2. Image Reductions
The reductions discussed in Section 4.1 are defined for an arbitrary matrix. Here we provide
an overview of the quality reductions, implemented specifically over an image I of dimensions
C × H × W producing an image I ′ with the same dimensions in a deterministic way, having
a reduction vector α⃗ (input reduction value) whose dimension depends on the reduction. We
will use α⃗ to compute a parameter vector θ⃗, which provides the parameters for reducing
the image. We define atomic and composed reductions and provide examples for the given
reductions.

4.1.2.1. Atomic Reductions

The following reductions are considered atomic reductions because they are applied to an
image in only one dimension per step or with the same parameter per dimension, thus one
parameter α will be applied.

4.1.2.2. Quantization

This quality reduction establishes the amount of colors that a pixel can take in RGB scale.
Given an image I, with 2553 available intensities per channel, and a reduction factor α ∈
(0, 1], I↓Q(α) leaves round(255k) intensities per channel. This restriction reduces the possible
colors of a given image to a total of (round(255α))3. Its mapped parameter vector is θ⃗ =
(α, 1, 1, 1, 1, 1).

Figure 4.1: Application of Quantization Reduction with a α factor of 0.02.
Source ‘Pixabay’.

2 We use ā, b̄, c̄ and d̄, to follow the intuition that higher valued parameters keep more entropy, and lower
values reduce entropy more. Thus when a = 1, no rows are removed from the top.

23

4.1.2.3. Downsampling

Downsampling reduces the resolution of the image by resizing the image to a factor of its
original resolution without applying a process of anti-aliasing (thus keeping the original image
features) and then scaling it back to its original size for keeping compatibility with the Neural
Network input. The image resize is made using the torchvision built-in transformation resize.
For a given image I and a scaling factor α ∈ (0, 1], the application of the quality reduction
downsampling produces I↓D(α) with dimensions ⌊αH⌋×⌊αW ⌋. Its mapped parameter vector
is θ⃗ = (1, α, 1, 1, 1, 1).

Figure 4.2: Application of Downsampling Reduction with an α factor of
0.15. Source ‘Pixabay’.

4.1.2.4. Crop

This quality reduction applies a centered crop slice considering as a reduction factor the
proportion of remaining area from the image, taking as reference the full image area; we
denote the reduction of the area α as the remaining proportion area with respect to the
full image, thus its range is in the interval (0, 1]. The output image has the same height
and width as the input image and is an inner rectangle of unknown dimensions u, v with
the same center as the image. Then HWα = uv and the horizontal and vertical distance
p, q respectively between the rectangles gives us the relations W = u + 2p and H = v + 2q.
Also, considering the proportion of the cropped rectangle is the same as the original image
we have H

W
= u

v
, then solving the equations for u and v we obtain the displacement values

p = V (1+
√

α)
2 and q = H(1+

√
α)

2 from which we define the slice parameters for the reduction
a, b, c, d as 1+

√
α

2 . Then, its mapped parameter vector, obtained from the reduction parameter,
is θ⃗ = (1, 1, 1+

√
α

2 , 1+
√

α
2 , 1+

√
α

2 , 1+
√

α
2), and 1+

√
α

2 ∈ (0, 1]. The cropped area is replaced by a
gray value in RGB ((128, 128, 128))3.

3 Gray value was used as the arithmetic mean between completely black and completely white for making
reductions fairly, as the algorithm detected black as sea and white as lighted environment

24

Figure 4.3: Application of Crop Reduction with a α factor of 0.30. Source
‘Pixabay’.

4.1.2.5. Combined

This quality reduction applies the same reduction factor in all dimensions, considering for
Slice reduction the percentage of the remaining area of the image as its parameter to make
a center crop. This quality reduction methodology is used when a fixed reduction is applied.
It receives as an input the reduction parameter α, which is then mapped to the following
parameter vector θ⃗ = (α, α, 1+

√
α

2 , 1+
√

α
2 , 1+

√
α

2 , 1+
√

α
2).

Figure 4.4: Combined Reduction Atomic Reduction Application with pa-
rameter α = 0.15. Source ‘Pixabay’.

4.1.3. Composed Reductions
The following reductions are considered composed reductions because they can be applied to
an image with independent parameters in each dimension. In these reductions we consider a
reduction vector α⃗ which is then mapped to a parameter vector θ⃗.

4.1.3.1. Slice

This quality reduction has four types of applications depending on the direction of the slice:
from top to bottom and bottom to top are applied vertically (over rows) and left to right
and right to left are applied horizontally (over columns). Each one replaces the values of the
tensor, depending on its direction, to a gray value in the three channels of the sliced pixels.
Its reduction vector α⃗ = (a, b, c, d) is mapped to θ⃗ = (1, 1, a, b, c, d).

25

Figure 4.5: Application of Slice Reduction with parameters a = 0.80, b =
0.80, c = 0.60, d = 0.90. Source ‘Pixabay’.

4.1.3.2. Combined

This quality reduction applies the reduction factor independently, for each reduction dimen-
sion per reduction step. Its reduction vector α⃗ = (k, s, a, b, c, d) is mapped to the same
parameter vector θ⃗.

Figure 4.6: Application of Composed Combined Reduction with parameters
k = 0.05, s = 0.25, a = 0.90, b = 0.70, c = 0.90, d = 0.80. Source ‘Pixabay’.

4.2. Training Methodologies
The proposed training methodology pipeline is separated in distinct phases, which adds
an Image Reducer module to the conventional training methodology; this module can re-
ceive feedback from the Neural Network classifier though a Controller Module, resulting in
an architecture that changes depending on the current state of the training process. This
methodology involves training the Neural Network with reduced images, simulating images
with low quality in the described dimensions (i.e., Slice, Quantization and Downsampling)
for achieving, according to our hypothesis, better performance over images with low quality
or with loss of information. With this objective, we develop a module, which reduces the
training image with this low quality condition, receiving feedback from the training process
or the Neural Network depending on the type of methodology applied.

In this section we describe and justify the specific training methodologies used in this
work in an incremental way; differences between methodologies depend on how they receive
feedback from the Neural Network for obtaining the reduced image.

26

4.2.1. Standard Methodology
The Standard Methodology trains with images of full quality (without applying reductions
to the images) during training. It passes the batch of the images and its labels directly
(denoted as (image_batch, label_batch)) to the Neural Network in training mode and the
metrics are processed in the Controller Module to check whether to stop or continue the
current training, depending on the patience parameter that indicates the number of epochs
to wait for a performance improvement, applying an early-stopping strategy to reduce the
number of epochs necessary for training (this strategy is described in Section 2.6.2.2).

4.2.2. Fixed Reduction Methodology
This methodology trains with images using a quality reduction with a reduction vector α⃗
that does not change between epochs, with the objective to build a quality-reduced image
batch. This is achieved by passing a batch with its labels to the Image Reducer module, which
reduces the images in the batch according to a reduction vector α⃗, producing a reduced batch
(denoted as image_batch′) which is then passed to the Neural Network to train with. Note
that the reduction vector α⃗ also indicates whether or not to reduce the image (no reductions
are applied if their values are 1).

The fixed methodology thus generalizes the standard methodology where the reductions
are applied once over the training images in a preprocessing step, and is intended primarily as
a baseline. The training stops when the Controller Module detects there are no increments
in the accuracy of the validation set in a given patience number of epochs.

4.2.3. Linear Reduction Methodology
Since using a fixed value of the reduction vector α⃗ for all epochs may oversimplify the train-
ing by using a single batch of images with the same level of reduction at each phase, we
proposed to linearly adjust the values of α⃗ between epochs per a step hyperparameter, with
the objective of generating images with different levels of quality reductions. We expect
this methodology may improve the performance of the Neural Network being trained since
it receives different images in the process, ranging from full quality to low quality images.
Thus the Linear Reduction Methodology trains with images with an atomic quality reduction,
and with a single α parameter provided by the Controller Module that may change between
epochs.

This methodology uses feedback from the validation set measure given by the Neural
Network to adjust the current value of α, which depends on the current training measures
and is adjusted by the Controller Module. The Controller Module also allows us to decide
the amount of rounds and epochs for which a current value of α should be applied, and
therefore allows us to test different variants on how to apply this reduction factor; we have
considered alternating the value of α⃗ between its current value and the value of one (full
quality images) to mix the classic and reduced epochs (i.e., training over full-quality and
then reduced images), and to use the same value until, in a patience number of epochs, the
performance does not improve, finishing a round with a classic epoch; these training variants
will be explained in Section 4.3. A diagram of this Training Methodology can be seen in
Figure 4.7.

27

(image_batch, label_batch) Neural Network

end condition

Controller

(predicted_labels)

(image_batch', label_batch)Image Reducer(image_batch, label_batch, alpha)

(validation_image_batch, validation_label_batch)

Training Images

Validation Images

Figure 4.7: Linear Reduction Methodology Pipeline.

4.2.4. Adaptive Reduction Methodology
Using the Linear Reduction Methodology, the same factor of reduction is applied over all
dimensions. However, in the case of slice, we may rather wish, for example, to crop more
from the left than the right if the object of interest is centered towards the right of the
image. While we could linearly reduce the image in individual dimensions, or in combinations
of dimensions, this would lead to a large search space, and also could end up training the
Neural Network with images that do not actually depict the object that is labeled. We thus
consider a methodology where we can guide the application of the quality reduction in each
dimension separately by receiving direct feedback from the Neural Network.

The Adaptive Reduction Methodology precomputes a reduction vector α⃗ using feedback
from the Neural Network from the previous epoch in the Parameter Generator module. This
is done by switching the Neural Network to evaluation mode and classifying the batch of im-
ages with the applied reduction, which depends on the value of generate that also indicates
to the Parameter Generator module whether or not to update or fix the obtained reduction
vector; if the classification is correct, it continues reducing per a step hyperparameter, oth-
erwise it stops reducing. The goal is to produce a training image reduced to the threshold of
the current performance of the Neural Network, which is received by the Controller module
with a metrics parameter, while also avoiding reductions that completely remove informa-
tion about the labeled object from the image (e.g., slicing too far in a particular direction).
Unlike in the Linear Reduction Methodology, the individual values for α⃗ may be different for
different dimensions.

With the obtained parameters vector we pass them to the Image Reducer module with the
image_batch to reduce them according to the reduction parameters obtained from the last
round of Neural Network feedback. A diagram of this methodology can be seen in Figure 4.9.
We describe the generation of the reduction vector in the Code 4.14.

Source Code 4.1: Adaptive Reduction Parameter Generator
1 def get_reduction_parameters(reduction_dimensions: list(bool), step: float):
2 # Initialize mask of reduction applications
3 m_alpha = [0,0,0,0,0,0]
4

5 # Neural Network in Evaluation Mode
6 net.eval()
7

8 # While the tensor is not null
9 while image not null:

4 The pseudocode shows how the parameters are obtained for one image; in a batch it is applied for each
image.

28

10 # Check each applicable reduction dimension
11 for r in range(where(reduction_dimensions)[1]):
12 # Copies the current reduction vector
13 current_m_alpha = m_alpha.clone()
14 # If is allowed to reduced in that dimension
15 if reduced[r]:
16 current_m_alpha[r]+=1
17 reduced_image = reduce(image, ones(len(reduction_dimensions))-

↪→ current_m_alpha*step)
18 correct = net(reduced_image)
19 # If the classification is correct
20 if correct: m_alpha[r]+=1
21 # Otherwise, the algorithm will no longer reduce in that dimension
22 else: reduced[i] = False
23

24 # Return the reduction parameters obtained
25 return ones(len(reduction_dimensions))-m_alpha*step

As an example of an application of this reduction we provide Figure 4.8, which starts
with a full-quality image over which each reduction is applied sequentially. For each cor-
rect classification of the Neural Network we preserve that reduction for the next iteration,
combining all reductions for which a correct classification is received. If a classification is
incorrect we do not apply the reduction and we do not continue in that reduction dimension
in the next iteration. In the next iteration, we have a new candidate reduced image from
which the next reductions are applied. When no dimension can continue being reduced we
stop the algorithm and provide the reduction vector α⃗ as the final reduced image achieved
by the current state of the Neural Network.

Figure 4.8: Application of Adaptive Reduction with step of 0.1 considering
four Slice dimensions.

29

(image_batch, label_batch) Neural Network

end condition

Controller

(predicted_labels)

(image_batch', label_batch, generate)Image Reducer

(validation_image_batch, validation_label_batch)

(image_batch, label_batch, alpha, generate)

Parameter Generator
(image_batch, label_batch, step, metrics, generate)

Training Images

Validation Images

Figure 4.9: Adaptive Methodology Pipeline.

4.3. Linear and Adaptive Variants
In the Linear and Adaptive Reduction methodologies, the reduction parameters are changed
between epochs. A natural idea is to start training with full quality images, and then train
with increasingly reduced images. However, it is common in classical training methodologies
to run several epochs for a given set of images. This leaves the question of when to change the
reduction parameters. For example, after reducing images, we could run multiple training
epochs with the same images, or we could run one epoch per reduction and apply this
process several times. We now propose two variants of these methodologies that differ in
how reduction parameters change over the epochs, which are now grouped into higher-level
rounds.

4.3.1. Paired Epochs
In this variant, we apply rounds of one classic and one reduced epoch in which we use the
current value of α⃗, until the patience value is reached. This interleaving of classic and reduced
epochs is inspired by preliminary experiments in which we found that classifier performance
increases sharply after a classical epoch is applied with full quality images (we will see this
behavior in Chapter 6). If the current accuracy of the validation set is surpassed we make
a checkpoint. If the patience number is reached without hitting a checkpoint, we load the
last checkpoint and continue with the next parameters of α⃗ subtracting a step value from the
current value. If after a patience number of rounds with different values of α⃗ the validation
accuracy did not improve, we stop the training.

This method skips the values of α⃗ rounds that do not improve performance, leaving only
the rounds that improved the accuracy of validation as part of the final training.

Source Code 4.2: Paired Epochs Algorithm
1 def paired_epochs(mask_reduction_dimensions: list(int), step: float, patience: int,

↪→ best_checkpoint=None, validation_accuracy=0.0):
2

3 # Initialization
4 pairs_passed = 0
5 rounds_passed = 0
6 alpha_multiplier = 1.0
7 performance_measures = PerformanceLog()
8

30

9 while rounds_passed < patience:
10

11 last_validation_accuracy = validation_accuracy
12 alpha_multiplier = alpha_multiplier - step
13 alpha = mask_reduction_dimensions*alpha_multiplier
14

15 while pairs_passed < patience:
16 if pairs_passed == patience: break
17 # Reduced epoch
18 reduced_state = net.train(alpha)
19 # Classic epoch
20 classic_state = net.train(ones(len(alpha)))
21 # Update performance measures
22 performance_measures.update(reduced_state.get_performance_measures(),

↪→ classic_state.get_performance_measures())
23 # Obtain best results of the pair
24 current_validation_accuracy = max(current_reduced_validation_accuracy,

↪→ current_classic_validation_accuracy)
25 best_state = get_best_state(current_validation_accuracy)
26 pairs_passed += 1
27 # Check if validation accuracy is improved
28 if current_validation_accuracy > validation_accuracy:
29 validation_accuracy = current_validation_accuracy
30 best_checkpoint = save_checkpoint(best_state)
31 pairs_passed = 0
32 rounds_passed += 1
33 if last_validation_accuracy != validation_accuracy: rounds_passed = 0
34 else: load_checkpoint(net, best_checkpoint)
35

36 return performance_measures

4.3.2. Paired Rounds
In this methodology we set two patience parameters for the Early Stopping sub-module;
the first is local with respect to the round’s validation accuracy and the second is global
with respect to the training process validation accuracy. As we are doing two early stopping
processes in this methodology we proceed to distinguish them as local and global patience
parameters respectively (in this work, they are set to the same value).

We apply reduced epochs with the same value of α⃗ until the local patience parameter
is reached. Then we do classic epochs until the same amount of local patience is reached.
This ends a single round, and the training continues with the next value of α⃗. If in any
moment of the training the value of global validation accuracy is greater than the local
validation accuracy, we make a checkpoint and we reset the global counter of rounds without
improvement. If after a round the validation accuracy does not improve we load the last
checkpoint and learning rate to skip the current value of α⃗, and update it at the start of
the next cycle by subtracting step. If after global patience rounds the global value of the
validation accuracy did not improve we stop the training.

Source Code 4.3: Paired Rounds Algorithm

31

1 def paired_rounds(mask_reduction_dimensions: list(int), step: float, patience: int,
↪→ best_checkpoint=None, validation_accuracy=0.0):

2

3 # Initialization
4 rounds_passed = 0
5 classic_epochs_passed = 0
6 reduced_epochs_passed = 0
7 alpha_multiplier = 1.0
8 performance_measures = PerformanceLog()
9

10 while rounds_passed < patience:
11

12 last_validation_accuracy = validation_accuracy
13 alpha_multiplier = alpha_multiplier - step
14 alpha = mask_reduction_dimensions*alpha_multiplier
15 local_validation_accuracy = 0.0
16

17 while reduced_epochs_passed < patience:
18 reduced_state = net.train(alpha)
19 performance_measures.update(reduced_state.get_performance_measures())
20 reduced_epochs_passed += 1
21 if reduced_state.validation_accuracy() > local_validation_accuracy:
22 local_validation_accuracy = reduced_state.validation_accuracy()
23 reduced_epochs_passed = 0
24 if reduced_state.validation_accuracy() > validation_accuracy:
25 rounds_passed = 0
26 reduced_epochs_passed = 0
27 validation_accuracy = reduced_state.validation_accuracy()
28 best_checkpoint = save_checkpoint(reduced_state)
29

30 while classic_epochs_passed < patience:
31 classic_state = net.train(alpha)
32 performance_measures.update(classic_state.get_performance_measures())
33 classic_epochs_passed += 1
34 if classic_state.validation_accuracy() > local_validation_accuracy:
35 local_validation_accuracy = classic_state.validation_accuracy()
36 classic_epochs_passed = 0
37 if classic_state.validation_accuracy() > validation_accuracy:
38 rounds_passed = 0
39 classic_epochs_passed = 0
40 validation_accuracy = classic_state.validation_accuracy()
41 best_checkpoint = save_checkpoint(classic_state)
42

43 # Performance did not improve
44 if last_validation_accuracy == validation_accuracy:
45 rounds_passed += 1
46 load_checkpoint(net, best_checkpoint)
47 # Reset counter
48 else: rounds_passed = 0
49

50 return performance_measures

32

Chapter 5

Experimental Design

In this chapter we detail the research questions and the experimental design of this work.
The architecture’s implementation, experiments and dataset mapping can be found in our
GitHub repository.5.

5.1. Training with Quality-Reduced Examples
The task of Image Classification has improved in recent years with new convolutional ar-
chitectures and methodologies over these architectures, but how to classify images in more
challenging conditions (e.g., low resolution, a sliced image, presence of noise) remains an
open problem in relation to the performance of these classifiers.

With the objective of addressing this problem, we study the performance of an approach
that integrates classic epochs and reduced epochs during training for improving Image Clas-
sification in both standard conditions (over full-quality images) and challenging conditions
(over reduced images). The research questions we propose in this work are the following:

Q1 Which training methodology is better in terms of the accuracy of Image Classification
(considering both full-quality and reduced images)?

Q2 Do the proposed training methodologies using reduced images reduce the calculated
entropy quotient (defined in Chapter 3.4) compared to the baseline of training (only)
over full quality images?

5.2. Experimental Setting
In this section we describe the setting for the experiments in terms of hardware, datasets and
Neural Networks used.

5.2.1. Hardware
The experiments were performed on a computer with an 8 core AMD Ryzen 7 1800X CPU,
a 64 bit architecture, 94 GBs of RAM, and an Nvidia RTX3090 GPU with 24 GB of G6X
memory. The operating system is Linux with the Arch distribution. The Neural Network
models are provided by the Pytorch Python Library, version 1.9.0+cu111 and Nvidia CUDA
version 11.5.
5 GitHub Repository: https://github.com/pabtorres/quality-reduced-training

33

5.2.2. Datasets
We use training, validation and test datasets based on ImageNet [21]. Given that ImageNet
does not explicitly provide the labels of the testing dataset, a total of 25, 000 images were
picked at random from the training set to be used as a validation set and the provided
validation dataset was used as a test dataset, as is often done in the literature [6].

Given the prohibitive costs of training models over the full ImageNet dataset, we also
define a smaller subset on which we run initial experiments over numerous configurations.
We build a “HumaNet” subset from ImageNet restricted to the 20 classes defined by Carrasco
et al. [9]. To have a balanced number of images per class, which reside at different levels of
the ImageNet hierarchy, we apply subsampling of these images, with respect to the number
of images in the class with fewest images, distributing the super-classes with more classes
evenly in the obtained sets for the training and validation sets which both are full-quality
images. Using the same classes as HumaNet further allows us to use the test set of reduced
images computed by human users, made available by Carrasco et al. [9] as we now describe.

Table 5.1: Datasets description.

Dataset Training Images Validation Images Test Images
ImageNet 1, 281, 167 25, 000 50, 000
HumaNet 25, 000 500 1000

HumaNet also provides testing datasets with reduced images; these evaluation datasets
are: Color, Combined, Crop and Resolution, each one having a total of 300 images and the
Complete HumaNet dataset with 1000 images. These test sets were generated by Carrasco
et al. [9] via a bottom-up approximation of a Human MEPI, starting with a void image and
allowing a user to increase the image quality in each step until they can correctly guess the
class of the image (in which case the image is included in the set) or they guess incorrectly
(in which case the image is excluded and a new void image is loaded). We also provide a
HumaNet test based on the ImageNet test set with 50 images per class. In Figure 5.1 we
provide an example of the different reduction dimensions of the MEPIs obtained from human
users.

34

(a) Original (b) Color (c) Resolution (d) Crop

(e) Combined

Figure 5.1: Example of the HumaNet test images with MEPIs computed
by humans

5.2.3. Neural Networks
In this subsection we briefly describe and justify the Neural Networks chosen. Also we provide
the hyper-parameters used, which were obtained from each Neural Network paper, and how
we adjusted the neural networks to classify 20 classes.

5.2.3.1. SqueezeNet

SqueezeNet is a Convolutional Neural Networks that achieves similar performance results
as AlexNet, but with 2% of the number of parameters, facilitating the deployment of this
classifier on devices with low memory. It was proposed at the end of 2016 by Iandola et al.
[5].

5.2.3.2. ResNet

Residual Neural Network is a Deep Neural Network proposed in 2016 by He et al. [4], which
achieved, in its ResNet-152 variant, state-of-the-art performance on ImageNet, as a model
which did not use extra training data.

5.2.3.3. EfficientNet

EfficientNet is a Convolutional Deep Neural Network proposed in mid 2019 by Tan et al. [6],
which achieved, in its EfficientNetB7 variant, state-of-the-art performance on ImageNet.
This model has been used in different methodologies and variants, also achieving state-of-
the-art performance on the ImageNet dataset even in 2021. As EfficientNetB7 consumes
more resources than those available to us we used EfficientNetB3 in our experiments, which
is a more lightweight version of EfficientNetB7.

5.2.3.4. Network Hyperparameters

In Table 5.2 we provide the hyperparameters based on those proposed by the authors of each
Neural Network and availability in the Pytorch library. For EfficientNet in ImageNet we used

35

a learning rate of 0.00001 to avoid divergence of the loss function.

Table 5.2: Neural Networks hyperparameters. LR: Learning Rate, WD:
Weight Decay

Model Optimizer LR Momentum WD Scheduler Step Size Gamma
ResNet SGD 0.1000 0.9 0.00010 StepLR 10 0.10

SqueezeNet SGD 0.0010 0.9 0.00020 StepLR 10 0.10
EfficientNet RMSProp 0.0001 0.9 0.00001 StepLR 3 0.97

5.2.3.5. Adjustment

The aforementioned Neural Networks assume 1000 classes. For the purposes of HumaNet,
with 20 classes, in every Neural Network we added a fully connected layer, from its original
1000 classes to 20, reducing the available labels to the ones studied by Carrasco et al. [9].

5.3. Training Methodologies Tested
We propose a series of incremental experiments to answer our research questions starting
from a baseline with no reductions, and then experimenting with a fixed reduction in all
epochs. Based on the obtained results we propose the experiments mentioned in Section 4.3
in which we combine classic and reduced epochs.

Because of the size of the full dataset of ImageNet and the cost of training models for it,
a baseline and one methodology (the best overall) will be tested based on the results for the
HumaNet subset.

5.3.1. Exploratory Analysis
Initially we compared the performance of training over full-quality images versus reduced-
quality images seeing a peek in performance for epochs training with full-quality images
that directly followed various epochs training with reduced-quality images (we will see this
behavior in more detail in Chapter 6); thus, in the final training methodologies tested, we
include alternatives that interleave full-quality and reduced-quality epochs.

We also tested with fixed values of α⃗ across training epochs. We then add a step value
that adjusts α⃗ at the start of the cycle, where the Neural Network training discards values
that do not improve performance. The smaller the value of step, the more fine-grained the
adjustments, but the higher the cost of training given that reductions are applied more slowly.

5.3.2. Start Point
In order to have a start point for our methodologies, we ran classic epochs with the same pa-
tience value of 3 for the early stopping process over the validation dataset for each Neural Net-
work (for more information about the patience hyperparameter, we refer to Section 2.6.2.2).

5.3.3. Baseline
As the number of epochs needed for each methodology to terminate in each Neural Network
model would be different, we established a baseline with the maximum number of epochs
achieved by each model in our methodology. The baseline thus uses at least as many epochs
as the methodologies to which we compare.

36

5.3.4. Fixed Reductions
We start using only one reduction over all images with a fixed value of α⃗ for all reduction
dimensions and epochs. We continue training until the patience parameter is reached in the
early stopping process. This methodology is equivalent to the baseline, but where images are
reduced once prior to training.

5.3.5. Linear Reductions
All other methodologies take the model produced by the starting point. We use a step
parameter of 0.125 that will update the reduction vector and a patience parameter of 3. We
tested our methodology with the paired epochs and paired rounds variants.

5.3.6. Adaptive Reductions
We again consider the best checkpoint of the baseline as our starting point. We use a step
parameter of 0.125 that will be used in the generation of the reduced images and a patience
parameter of 3. We tested our methodology with the paired epochs and paired rounds
variants.

5.4. MEPIs Calculation
To calculate the entropy reduction ratio, we computed the Minimal Entropy Positive Images
appling the same process as Carrasco et al. [9] to minimize the size in bytes of the images
using quality reductions defined in Section 4.1.

The process of obtaining an exact Minimal Entropy Positive Image of a multi-variable
reduction (i.e., slice and combined) using a brute force algorithm has a high algorithmic cost,
thus Carrasco et al. [9] proposed to use Powell’s Algorithm for optimizing the application of
the reductions subject to minimizing the entropy measured as the size of the image as a lossless
compression, particularly the PNG format, searching for the Monotonic Minimal Entropy
Positive Image because of the monotonic behavior of the application of the quality reductions.
As a starting point that accelerates the search we considered the following reduction vector
α⃗ = (k, s, a, b, c, d) = (0.1, 0.95, 0.925, 0.925, 0.925, 0.925). As greater downsampling and slice
reductions produce more impact in the image pixels we considered a lower reduction on those
dimensions as a starting point. Note that Powell’s Algorithm can search by increasing or
decreasing parameters, so if the full image is classified correctly, but the image with the
starting point reduction is not, the search algorithm can also increase the parameters to
improve the quality of the image.

37

Chapter 6

Results

In this chapter we provide the results obtained for the experiments for both datasets, and
then we discuss these results, answering the research questions of this work.

6.1. HumaNet
In this section we provide the results obtained on the HumaNet dataset.

6.1.1. Start Point
Table 6.1 features the results achieved for the start point of each Neural Network in each
evaluation dataset in terms of accuracy. The start point involves running classical epochs
of training over the full quality images until the patience parameter (which is 3) is reached
through early stopping. These results represent the best validation accuracy and we also
provide the epoch in which that result was obtained. The results in the datasets Color,
Combined, Crop, Resolution and Test are the results obtained in the epoch that achieved the
best validation accuracy (e.g. for EfficientNet-B3 the shown Color accuracy was obtained
in epoch 19). In Figure 6.1 we show the evolution of the accuracy in the aforementioned
datasets and the best validation accuracy is highlighted with a vertical line to also show the
obtained performance on those epochs in the other datasets.

Table 6.1: Start Point results for accuracy.

Model Validation Color Combined Crop Resolution Test Achieved Epoch
SqueezeNet 39.8 26.6 27.3 18.3 35.3 39.0 21
ResNet-152 61.6 42.3 35.3 24.0 53.6 60.4 11

EfficientNet-B3 68.0 30.0 24.3 27.6 38.3 69.7 19

38

(a) Start Point performance: SqueezeNet

(b) Start Point performance: ResNet-152

(c) Start Point performance: EfficientNet-B3

Figure 6.1: Start Point evolution of baseline

39

We can observe that the performance of the start point for a given dataset depends on the
Neural Network. For example, the best results for Resolution are seen for ResNet-152, while
the best results for Crop are seen for EfficientNet-B3. This suggests that different Neural
Networks might be sensitive to different types of information. In the following sub-sections,
these results will be used for comparing our training methodologies.

6.1.2. Fixed Reduction
In Figure 6.2 we show the obtained accuracy using the fixed reduction methodology for
training in each evaluation dataset taking the model from the epoch which achieved the best
validation accuracy for each α value used. The values of α used were from 0.125 to 1.000 in
steps of 0.125. When α = 1.000 the results correspond to the validation accuracy of the start
point (i.e., training without reductions). In each column we provide the name of the applied
quality reduction during training.

Figure 6.2: Obtained results for Fixed Reduction Experiment. The columns
indicate the reduction dimension in which the Neural Network was trained.

In this experiment we can see a trend in the results in terms of the application of the
reduction. If α is lower, performance decays; if α is higher (closer to a full-quality image) the
performance is better. With these results we noted that training only with reduced epochs
did not improve accuracy. These initial results inspired us to propose the linear and adaptive
approaches that combine classic and reduced epochs.

Comparing the trend of the curves for each reduction type, we can observe that Quanti-
zation is less sensitive to the value of α. We can deduce from the definition of this reduction
and the values used that the color reduction does not have a big impact on classification
in the range]0.375, 1.000] as can be seen in the curve of the Color evaluation dataset, even
though images having 37.5% intensities per channel leave only 5.3% of the original colors at

40

α = 0.375; as Carrasco et al. [9] observed, Neural Networks used for the Image Classification
task are not as sensitive to color changes as they are to changes in other dimensions.

6.1.3. Linear Reduction
As a fixed value of α shows a drop in validation accuracy, we now present the results of
experiments that change the value of α between epochs following a linear reduction. We
provide the obtained results for the variants Paired Epochs and Paired Rounds.

6.1.3.1. Paired Epochs

As the reduced epochs lowered the performance, but the Neural Network has learned from the
reduced images, we try to combine both classic epochs and reduced epochs for improving the
performance of Image Classification. In this variant, we apply a classic epoch immediately
after each reduced epoch. In Figures 6.3, 6.4, 6.5 we show the performance evolution of
the evaluation datasets in terms of the accuracy of each Neural Network in every reduction
dimension considering paired epochs. We also highlight with a vertical line the starting point
of the reduced methodology (i.e., the point where the start point ends).

Figure 6.3: Performance evolution of SqueezeNet during training: HumaNet
validation and test sets, linear reduction, paired epochs.

41

Figure 6.4: Performance evolution of ResNet during training: HumaNet
validation and test sets, linear reduction, paired epochs.

Figure 6.5: Performance evolution of EfficientNet during training: Hu-
maNet validation and test sets, linear reduction, paired epochs.

From the obtained results we see that the methodology performs more epochs when the

42

evaluation accuracy increases, and as an implication, more α values are tested. This implies
that reductions closer to 0 are applied and it produces a drop in performance in the reduced
epochs and an increase in the classic epochs producing a periodical “sawtooth” effect. After
applying a reduced epoch, the classic epoch that follows sometimes manages to boost accuracy
beyond the start point.

The results of SqueezeNet and EfficientNet-B3 improved with respect to the start point,
but ResNet-152 did not, so different Neural Networks exhibit different performance using
this methodology.

The best results obtained were by the Neural Network EfficientNet-B3 and reduction
dimension quantization with a validation accuracy of 70.2%.

6.1.3.2. Paired Rounds

Considering that a sequence of a reduced epoch and a classic epoch may be restrictive, we
consider that the Neural Network indicates, in terms of performance, the amount of epochs to
apply of each type. Thus instead of pairing reduced and classic epochs, we will pair reduced
and classic rounds of multiple epochs (the number of epochs in each round is decided by
early stopping). In Figures 6.6, 6.7, 6.8 we show the performance evolution of the evaluation
datasets in terms of the accuracy of each Neural Network in every reduction dimension. We
also highlight with a vertical line the starting point of the reduced methodology (i.e., the
point where the start point ends).

Figure 6.6: Performance evolution of SqueezeNet during training: HumaNet
validation and test sets, linear reduction, paired rounds.

43

Figure 6.7: Performance evolution of ResNet during training: HumaNet
validation and test sets, linear reduction, paired rounds.

Figure 6.8: Performance evolution of EfficientNet during training: Hu-
maNet validation and test sets, linear reduction, paired rounds.

From the obtained results we see that some reduction dimensions have more training

44

epochs, thus more values of α to train with the reduced epochs. Also, from the amount of
reduced epochs in every round, we observe a similar number of these epochs because of the
decay of the performance. In terms of classic epochs the methodology can adapt the needed
amount in each round so it varies in different rounds. This gives rise to a more square wave
evolution in performance, where low plateaus correspond to a round of reduced epochs, and
high plateaus correspond to a round of classic epochs. The magnitude sometimes increases
as alpha decreases (leading to lower troughs). Again the classic epochs that follow a reduced
round sometimes exceed the start point accuracy.

We can also observe that different reduction dimensions have different performance in
terms of the epochs and values of α applied. In particular, we notice that ResNet is less
sensitive to reduced epochs.

The best results obtained were by the Neural Network EfficientNet-B3 and reduction
dimension crop and resolution with the same validation accuracy of 72.6%.

6.1.4. Adaptive Reduction
In our final methodology, rather than using a fixed or linearly decreasing value for α across
all dimensions, we use an adaptive approach where the Neural Network from the previous
epoch is used to decide the extent of the reduction in each dimension separately, creating
a training image at the limit of the current Neural Network performance. We provide the
result obtained for the variants Paired Epochs and Paired Rounds.

6.1.4.1. Paired Epochs

In Figures 6.9, 6.10, 6.11 we show the performance evolution of the evaluation datasets in
terms of the accuracy of each Neural Network in every reduction dimension. We also highlight
with a vertical line the starting point of the reduced methodology (i.e., the point where the
start point ends).

45

Figure 6.9: Performance evolution of SqueezeNet during training: HumaNet
validation and test sets, adaptive reduction, paired epochs.

Figure 6.10: Performance evolution of ResNet during training: HumaNet
validation and test sets, adaptive reduction, paired epochs.

46

Figure 6.11: Performance evolution of EfficientNet during training: Hu-
maNet validation and test sets, adaptive reduction, paired epochs.

From the obtained results, there is a difference in terms of the trained epochs depending on
the quality reduction dimension (e.g. in the case of EfficientNet-B3 the combined reduction
achieved more epochs). Notice that the other reductions in the adaptive methodology are a
subset of the combined reduction dimension because it can express all the combinations from
its reduction vector.

We can also see the periodical “sawtooth” effect whose amplitude is more stable, in terms
of the increase and decrease of the performance, compared to the Linear methodology. We
further see that the effects of the methodology vary between the different Neural Networks,
with EfficientNet again showing more sensitivity to reduced epochs.

The best results obtained were by the Neural Network EfficientNet-B3 and reduction
dimension combined with a validation accuracy of 71.4%.

6.1.4.2. Paired Rounds

In Figures 6.12, 6.13, 6.14 we show the performance evolution of the evaluation datasets in
terms of the accuracy of each Neural Network in every reduction dimension again considering
the adaptive methodology, but this time under the paired rounds variant. We also highlight
with a vertical line the starting point of the reduced methodology (i.e., the point where the
start point ends).

47

Figure 6.12: Performance evolution of SqueezeNet during training Hu-
maNet: validation and test sets, adaptive reduction, paired rounds.

Figure 6.13: Performance evolution of ResNet during training HumaNet:
validation and test sets, adaptive reduction, paired rounds.

48

Figure 6.14: Performance evolution of EfficientNet during training Hu-
maNet: validation and test sets, adaptive reduction, paired rounds.

From the obtained results we can observe a periodicity in terms of the drop of performance
of the validation accuracy whose magnitude is more stable in terms of the increase and
decrease of the performance. Also the best results obtained were by the Neural Network
EfficientNet-B3 and reduction dimension crop with a validation accuracy of 75%.

6.1.5. Test Results
Here we provide a summary of the test results in a table considering the performance of
each Neural Network in terms of the accuracy. Noting that methodologies involving reduced
epochs apply many more epochs overall, we introduce a stronger baseline than the start
point. Namely, for our baseline, we run the same number of classic epochs as the maximum
number of epochs seen in any experiment with reduced epochs. This will distinguish whether
or not improved results (if any) are due to applying reduced epochs, or just a higher number
of epochs.

Table 6.2: Baseline results for accuracy. ET: Epochs Trained, BRE: Best
Result Epoch

Model Validation Complete Color Combined Crop Resolution ET BRE
SqueezeNet 40.0 39.1 27.0 27.6 18.3 35.6 110 29
ResNet-152 61.6 60.4 42.3 35.3 24.0 53.6 50 11

EfficientNet-B3 73.4 74.8 33.3 28.0 31.0 45.3 170 143

For the obtained results we performed a significance test for comparing the methodologies
with respect to the baseline using McNemar’s test. We show in this subsection the significant
results; for all the results we refer the reader to Annexed B. The nomenclature for significance

49

is the following: if the p-value is greater than 0.05 it is not significant (ns); if the value is less
than or equal to 0.05 it is represented as *; if it is less than or equal to 0.01 it is represented
as **; if it is less than or equal to 0.001 it is represented as ***; and if it is less than or equal
to 0.0001 it is represented as ****.

Table 6.3: Significant Test Results versus Baseline.

Network Methodology Dimension Validation Complete Color Combined Crop Resolution Significance
EfficientNet Start Point Start Point 68.0 69.7 30.0 24.3 27.7 38.3 ***
EfficientNet Baseline Baseline 73.4 74.8 33.3 28.0 31.0 45.3
EfficientNet Linear-PE Crop 69.4 71.2 34.3 25.7 32.3 40.0 **
EfficientNet Linear-PE Quantization 70.2 66.6 30.7 25.0 30.0 41.7 ***
EfficientNet Linear-PE Resolution 69.0 69.6 30.3 26.0 28.7 39.7 ***
EfficientNet Adaptive-PR Combined 71.2 70.0 32.7 30.0 36.7 43.7 ***
EfficientNet Adaptive-PR Resolution 69.4 69.4 29.7 26.0 30.3 38.7 ***

The complete tables are available in Annexed B and we also provide detailed graphics
which compares the training methodologies for each Neural Network in Annexed A.

6.1.6. Entropy Proportion
In Figures 6.15, 6.16, 6.17 we provide boxplots for the entropy quotients obtained from the
best checkpoints of each methodology. In the columns we have the reduction dimension used
for training and in the rows the reduction dimension used for obtaining the quality-reduced
image according to the MEPIs Calculation described in Section 5.4. We highlight that a
lower score indicates more robust (or laconic [9]) Image Classification, i.e., that the model
successfully classified more images of lower quality.

Figure 6.15: Entropy Quotient of SqueezeNet’s Performance.

50

Figure 6.16: Entropy Quotient of ResNet’s Performance.

Figure 6.17: Entropy Quotient of EfficientNet’s Performance.

From these results we see that some methodologies lower the entropy quotient with respect
to the baseline, yielding a correct classification over lower quality images. This is particularly
true for EfficientNet, though little or no difference is seen for ResNet nor with SqueezeNet.

51

We also provide in Table 6.4 the significant results, obtained comparing the results with
the start point in Table 6.4 and with the baseline in Table 6.5 performing a Wilcoxon signed-
rank test. We use the same significance levels as before. All significant results were for
EfficientNet, and involved a reduction in the entropy ratios.

Table 6.4: EfficientNet Entropy Ratio Significance versus Start Point.

Methodology Training Reduction Applied Reduction Significance
Adaptive-PE Combined Quantization *

Linear-PE Combined Downsampling *
Linear-PE Resolution Crop *

Adaptive-PR Combined Combined *
Adaptive-PR Resolution Combined *

Linear-PR Resolution Quantization *
Linear-PE Combined Combined **
Linear-PE Combined Quantization **

Adaptive-PR Crop Downsampling **
Adaptive-PR Crop Quantization **
Adaptive-PR Resolution Crop **

Linear-PR Combined Crop **
Linear-PR Crop Downsampling **
Linear-PR Crop Quantization **
Linear-PR Resolution Combined **

Adaptive-PE Combined Combined ***
Adaptive-PE Combined Crop ***
Adaptive-PE Combined Downsampling ***
Adaptive-PE Crop Combined ***
Adaptive-PE Crop Crop ***

Linear-PE Combined Crop ***
Adaptive-PR Combined Crop ***
Adaptive-PR Crop Combined ***
Adaptive-PR Crop Crop ***

Linear-PR Crop Combined ***
Linear-PR Crop Crop ***
Linear-PR Resolution Crop ***
Linear-PR Resolution Downsampling ***

Table 6.5: EfficientNet Entropy Ratio Significance Comparison versus Base-
line.

Methodology Training Reduction Applied Reduction Significance
Adaptive-PE Crop Combined *
Adaptive-PE Combined Combined **
Adaptive-PE Crop Crop **
Adaptive-PR Crop Combined **
Adaptive-PE Combined Crop ***
Adaptive-PR Crop Crop ***

6.2. ImageNet
In this section we report the obtained results on the full ImageNet dataset. Given the
costs of training models over the full ImageNet dataset, with experiments taking several
weeks, we choose a single Neural Network and a training methodology, which surpassed the
baseline. The selected methodology was based on the obtained results on HumaNet in terms
of performance, significance and efficiency, in terms of execution time. Specifically, we chose

52

the Paired Rounds, Linear variant, Combined dimension methodology for testing.

6.2.1. Training Methodology Tested
In Figure 6.18 we show the evolution of the accuracy on the validation set for training the
start point model (no image reductions); the best result is highlighted with a vertical line.
To boost the process of obtaining the start point we started the training with the checkpoint
provided by the Pytorch library for the ImageNet dataset.

Figure 6.18: Start Point of EfficientNet-B3 on ImageNet.

In Figure 6.19 we show the evolution of the accuracy of the validation set and the best
result is highlighted with a red vertical line. We also provide a gray vertical dotted line
to indicate the starting point of the baseline and reduced methodology, and a gray vertical
dashed line to indicate the epoch in which the maximum value was achieved in the baseline.
We see that continuing from the start point, both the baseline and the reduced methodology
continue to improve performance as more epochs are applied. The fact that the baseline
improves suggests that a higher patience value might be more suitable for EfficientNet. We
also see clear drops in performance for reduced epochs, which bounce back (often above the
baseline) upon applying the next classical epoch. The best overall result is achieved with the
reduced methodology.

53

Figure 6.19: Performance evolution of EfficientNet during training Ima-
geNet validation set, linear reduction, paired rounds and baseline.

In Table 6.6 we summarize the validation results and test accuracy results obtained for
the methodology on the ImageNet dataset. In the table we can see from the obtained results
that the pattern obtained in HumaNet, in terms of the drop and subsequent increase of the
performance, persists and that the baseline validation result is surpassed by the proposed
methodology.

Table 6.6: EfficientNet results on ImageNet with significance versus Base-
line.

Methodology Validation Test Significance
Start Point 65.804 63.314 ****
Baseline 74.364 71.614
Paired Rounds Linear 75.348 72.200 ***

6.2.2. Entropy Proportion
In Figure 6.20 we report the entropy quotient obtained from the best checkpoint of the chosen
methodology. As can be seen the chosen methodology has a lower ratio in the Combined, Crop
and Quantization reductions, meaning that it can reduce the image size more in the process of
obtaining the MEPI s. Each column of the figure represents the reduction dimension applied
for obtaining the MEPI s. For the Central Tendency Measures of the boxplot we refer the
reader to Annexed C.

54

0.00

0.25

0.50

0.75

1.00

Combined Crop Downsampling Quantization
Applied Reduction

P
ro

po
rt

io
n Methodology

Start Point

Baseline

Paired Rounds − Linear − Combined

Figure 6.20: Entropy Quotient of EfficientNet’s trained on full ImageNet.

55

Chapter 7

Conclusions

We conclude with a summary of our contributions, a review of our hypothesis in light of the
experiments presented in the previous chapter, discussion of challenges and limitations, and
finally, future directions.

7.1. Summary
In this work, we address the Image Classification task whereby, given an image, the classifier
has to predict the class of object depicted by the image. In particular, we proposed a training
methodology for Neural Networks classifiers with the goal of improving performance under
challenging conditions (e.g. low resolution, sliced image, reduction of colors), studying the
performance of the resulting classifier on both complete images (without reductions) and
quality reduced images.

The quality reductions used were downsampling, quantization and crop, and the combina-
tion of these three quality reductions, which were extended from Carrasco et al. [9] to Pytorch.
We trained these quality reductions with two methods for building a quality-reduced image,
Linear and Adaptive; the former used a deterministic increase in the level of the quality
reduction and the latter calculated the level of quality reduction based on feedback from
the Neural Network. The sequence of classic and quality-reduced epochs was determined by
the Paired Epochs and Paired Rounds variants of both methods, where the former applied a
sequence of pairs of classic and quality-reduced epochs until there was no improvement of the
performance over a fixed number of epochs, while the latter applied a sequence of reduced
epochs at a given quality reduction level followed by a sequence of classic epochs, where each
sequence ended when no improvement was seen for a fixed number of epochs.

We evaluated each methodology over three Convolutional Neural Network architectures
and we compared the performance with our baseline in terms of the accuracy achieved in
each dataset and the quality reduction of the predicted classes.

7.2. Review of Hypothesis
According to the results we obtained in our work, we have seen that the performance over
a test set of complete images (without quality reductions) is similar to our methodologies in
terms of accuracy, where no meaningful improvements are seen for SqueezeNet and ResNet.
However, a slight and significant improvement is seen for EfficientNet, in terms of accuracy, in
the HumaNet dataset, increasing from 74.8 to 74.9, when tested over full-quality images (see

56

Table B.3), being an improvement for the best result. With respect to a test set of images with
quality reductions, our methodology outperformed the baseline in some datasets with quality
reductions and this improvement was more notable in the case of EfficientNet: in particular
in Adaptive-PR, for the Crop dimension results on datasets Color, Combined and Crop
outperformed the baseline. Comparing the methodologies we propose, the improvements in
performance were more notable with the Adaptive construction of the reduced images. The
experiments performed validate our hypothesis for the case of EfficientNet architecture, but
not for SqueezeNet nor ResNet.

We tested our Neural Network classifiers trained with our proposed methodology calculat-
ing the Minimal Entropy Positive Image as described in Section 5.4, from which we obtained,
in general, a median entropy ratio lower than the baseline’s median. In the methodology
tested on ImageNet we also see this trend (see Figure 6.20), in particular for the MEPIs
obtained using Crop, there is a similar standard deviation 0.056 and a difference of 0.017
between the median of the entropy ratio between the Baseline and our Methodology. There-
fore, depending on the applied methodology, the reduced entropy quotient may be lower in
some cases.

From the experiments made, we consider that applying quality reductions to training
images may help the Neural Network to train with the most important regions of an image
and thus improve performance, depending on the applied quality reduction.

7.3. Review of Objectives
We choose ImageNet as our image dataset for our study, along with three Convolutional Neu-
ral Networks: SqueezeNet, ResNet and EfficientNet. We established a baseline considering
accuracy and entropy ratios as comparative metrics.

For training Convolutional Neural Networks with quality reductions we designed two algo-
rithms for applying quality reductions during training: Linear and Adaptive. The application
of these reduced quality images were done in two types of sequences interleaving quality re-
duced and full quality batches: Paired Rounds and Paired Epochs.

We improved our results with respect to the baseline in one of the three architectures.
In particular, for the ImageNet dataset and our training methodology over the EfficientNet
architecture, we saw an improvement from 71.6 to 72.2 in terms of accuracy, in the ImageNet
dataset. Thus we think our general objective and specific objectives were accomplished.

7.4. Challenges and Limitations
A challenge we had to face was the fact that without experiments we could not know how
our training methodology would perform, so a purely theoretical approach would not give us
clarity about our training methodology. In this scenario, the different Neural Network archi-
tectures, variants of training methodologies proposed, the dataset sizes and the time needed
to train classifiers of this kind, led us to the challenge of considering the available hardware for
prioritizing our experiments. We partially addressed this challenge by developing a smaller
image dataset, which allowed us to run a broader range of preliminary experiments. However,
even over the smaller dataset, we constantly needed to prioritize the next experiments to run,
which was itself a challenge, as it was difficult to predict beforehand which approaches were
most promising.

We identified a difference between the achieved performance in the different Neural Net-

57

works; thus a limitation of our methodology is that different architectures and hyperpa-
rameters (such as learning rate, weight decay) may affect performance. During training,
the learning rate value evolves, so reduced epochs may have a learning rate with a lower
value if the algorithm decides to make more classic epochs beforehand. Ideally we could
run experiments varying the learning rate, but per the previous discussion, searching over
hyperparameters would have added a prohibitive cost to our experiments.

We also consider that only taking into account the validation accuracy over complete
images as a guide for the current performance of the network during training may limit the
progression of the training versus considering all sets of images, including reduced images.

7.5. Future Work
For future work, we consider tests on other datasets and also to prepare other reduced
datasets to test our methodology. We also think it would be important to weigh each dataset’s
performance to use as a guide for the training progress in order to take into account both
reduced and complete images. For reduced images, we consider that a set of reduced images
may be important to use as a compressed version of the images for training with the essential
features under certain quality reductions. We also consider that it would be of interest to
test our methodology with different hyperparameters (such as learning rate, weight decay
or optimizer), which may have different impact in the process of training depending on the
Neural Network architecture.

During our work we used one Neural Network for improving the performance on both
full-quality and reduced images, having different performance in each methodology for the
same dataset, leaving the question of how to choose the best methodology. One proposal
would be to train a Neural Network which discriminates between a full-quality and a reduced
image and its quality reduction, and to classify it with a more specialized Neural Network
trained with that quality reduction.

58

Bibliography

[1] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
pp. 1097–1105, 2012, https://dl.acm.org/doi/10.5555/2999134.2999257.

[2] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image
recognition.,” 2014, https://arxiv.org/abs/1409.1556.

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A., “Going deeper with convolutions.,” 2014, https:
//arxiv.org/abs/1409.1556.

[4] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recogni-
tion.,” Proceedings of the IEEE conference on computer vision and pattern recognition.,
pp. 770–778, 2016, https://arxiv.org/abs/1512.03385.

[5] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model
size.,” 2016, https://arxiv.org/abs/1602.07360.

[6] Tan, M. and Le, Q., “Efficientnet: Rethinking model scaling for convolutional neural
networks,” International Conference on Machine Learning, pp. 6105–6114, 2019, https:
//arxiv.org/abs/1905.11946.

[7] Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., and Wichmann,
F. A., “Generalisation in humans and deep neural networks.,” 2018, https://arxiv.org/
abs/1808.08750.

[8] Dodge, S. and Karam, L., “A Study and Comparison of Human and Deep Learning
Recognition Performance Under Visual Distortions.,” 2017, https://arxiv.org/abs/1705
.02498.

[9] Carrasco, J., Hogan, A., and Pérez, J., “Laconic Image Classification: Human vs. Ma-
chine Performance,” Proceedings of the 29th ACM International Conference on Informa-
tion & Knowledge Management, 2020, doi:https://dx.doi.org/10.1145/3340531.3411984.

[10] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., “SMOTE: Synthetic
Minority Over-sampling Technique.,” Journal of artificial intelligence research.., vol. 16,
pp. 321–357, 2002, doi:https://dx.doi.org/10.1613/jair.953.

[11] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P., “Deepfool: a simple and accurate
method to fool deep neural networks.,” Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2574–2582, 2016, https://arxiv.org/abs/1511.04599.

[12] Shorten, C. and Khoshgoftaar, T. M., “A survey on image data augmentation for deep
learning.,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019, doi:https://dx.doi.org/1

59

https://dl.acm.org/doi/10.5555/2999134.2999257
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1808.08750
https://arxiv.org/abs/1808.08750
https://arxiv.org/abs/1705.02498
https://arxiv.org/abs/1705.02498
https://dx.doi.org/https://dx.doi.org/10.1145/3340531.3411984
https://dx.doi.org/https://dx.doi.org/10.1613/jair.953
https://arxiv.org/abs/1511.04599
https://dx.doi.org/https://dx.doi.org/10.1186/s40537-019-0197-0

0.1186/s40537-019-0197-0.
[13] Antoniou, A., Storkey, A., and Edwards, H., “Data augmentation generative adversarial

networks.,” 2017, https://arxiv.org/abs/1711.04340.
[14] Ahmed, N., Natarajan, T., and Rao, K. R., “Discrete cosine transform.,” IEEE trans-

actions on Computers., vol. 100, no. 1, pp. 90–93, 1974, doi:https://dx.doi.org/10.1109
/T-C.1974.223784.

[15] Kullback, S. and Leibler, R. A., “On information and sufficiency.,” The annals of mathe-
matical statistics., vol. 22, no. 1, pp. 79–86, 1951, http://www.jstor.org/stable/2236703.

[16] Tieleman, T. and Hinton., G., “Lecture 6.5 - rmsprop: Divide the gradient by a running
average of its recent magnitude.,” 2012, https://www.cs.toronto.edu/~tijmen/csc321/sl
ides/lecture_slides_lec6.pdf.

[17] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization.,” 2014, https:
//arxiv.org/abs/1412.6980.

[18] Powell, M. J. D., “An efficient method for finding the minimum of a function of sev-
eral variables without calculating derivatives.,” The Computer Journal., vol. 7, no. 2,
pp. 155–162, 1964, doi:https://dx.doi.org/10.1093/comjnl/7.2.155.

[19] Bengio, Y., “Practical recommendations for gradient-based training of deep architec-
tures.,” Neural networks: Tricks of the trade., pp. 437–478, 2012, https://arxiv.org/ab
s/1206.5533.

[20] Wei, J. and Zou, K., “Eda: Easy data augmentation techniques for boosting performance
on text classification tasks.,” 2019, https://arxiv.org/abs/1901.11196.

[21] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huan, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L., “Imagenet large scale
visual recognition challenge.,” International journal of computer vision., vol. 115, no. 3,
pp. 211–252, 2016, https://arxiv.org/abs/1409.0575.

[22] O’Hara, S. and Draper, B. A., “Introduction to the bag of features paradigm for image
classification and retrieval.,” 2011, https://arxiv.org/abs/1101.3354.

[23] Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., and Greenspan,
H., “GAN-based synthetic medical image augmentation for increased CNN performance
in liver lesion classification.,” Neurocomputing., vol. 321, pp. 321–331, 2018, https:
//arxiv.org/abs/1803.01229.

[24] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R., “Masked autoencoders
are scalable vision learners.,” 2021, https://arxiv.org/abs/2111.06377.

[25] Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E., “Squeeze-and-Excitation Net-
works,” Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7132–7141, 2018, https://arxiv.org/abs/1709.01507.

[26] Hendrycks, D. and Dietterich, T., “Benchmarking neural network robustness to common
corruptions and perturbations.,” 2019, https://arxiv.org/abs/1903.12261.

[27] Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., and Schmidt, L., “Measuring
robustness to natural distribution shifts in image classification.,” 2020, https://arxiv.or
g/abs/2007.00644.

60

https://dx.doi.org/https://dx.doi.org/10.1186/s40537-019-0197-0
https://dx.doi.org/https://dx.doi.org/10.1186/s40537-019-0197-0
https://arxiv.org/abs/1711.04340
https://dx.doi.org/https://dx.doi.org/10.1109/T-C.1974.223784
https://dx.doi.org/https://dx.doi.org/10.1109/T-C.1974.223784
http://www.jstor.org/stable/2236703
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://dx.doi.org/https://dx.doi.org/10.1093/comjnl/7.2.155
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1101.3354
https://arxiv.org/abs/1803.01229
https://arxiv.org/abs/1803.01229
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/2007.00644
https://arxiv.org/abs/2007.00644

ANNEXES

Annexed A. Methodologies Comparison
In this section we discuss each methodology applied over each dataset. We also provide
graphics in which we distinguish each training methodology’s performance over a dataset
in which each row indicates the reduction applied during training for the methodologies
shown. We also distinguish the shared training we used as a starting point for each training
methodology.

A.1. SqueezeNet

Figure A.1: Performance progression of each methodology on the Validation
dataset of SqueezeNet.

61

Figure A.2: Performance progression of each methodology on the Combined
dataset of SqueezeNet.

Figure A.3: Performance progression of each methodology on the Crop
dataset of SqueezeNet.

62

Figure A.4: Performance progression of each methodology on the Color
dataset of SqueezeNet.

Figure A.5: Performance progression of each methodology on the Resolution
dataset of SqueezeNet.

63

In this Neural Network the obtained results perform similar to the baseline, but Paired
Epochs Linear has better performance than the baseline in the Crop dataset if it is being
trained with Crop and Combined reductions, as can be seen in Figure A.3.

A.2. ResNet

Figure A.6: Performance progression of each methodology on the Validation
dataset of ResNet.

64

Figure A.7: Performance progression of each methodology on the Combined
dataset of ResNet.

Figure A.8: Performance progression of each methodology on the Crop
dataset of ResNet.

65

Figure A.9: Performance progression of each methodology on the Color
dataset of ResNet.

Figure A.10: Performance progression of each methodology on the Resolu-
tion dataset of ResNet.

66

In this Neural Network, no methodology outperformed the accuracy of the baseline, and
thus it did not save any checkpoint, so training ended sooner. Nevertheless, the Paired
Epochs Linear methodology outperformed the baseline in the Combined (Figure A.7) and
Crop (Figure A.8) datasets, when the Neural Network is trained on Combined and Crop
reduced images.

A.3. EfficientNet

Figure A.11: Performance progression of each methodology on the Valida-
tion dataset of EfficientNet.

67

Figure A.12: Performance progression of each methodology on the Com-
bined dataset of EfficientNet.

Figure A.13: Performance progression of each methodology on the Crop
dataset of EfficientNet.

68

Figure A.14: Performance progression of each methodology on the Color
dataset of EfficientNet.

Figure A.15: Performance progression of each methodology on the Resolu-
tion dataset of EfficientNet.

69

In this Neural Network we can observe that the performance on the validation dataset is
similar to the baseline (Figure A.11), but in the reduced datasets (Figures A.12, A.13, A.15)
we can see that our methodology outperforms the baseline performance.

We can also observe that an adaptive methodology, which performs more guided reduc-
tions, may improve the performance for the crop dataset (Figure A.13), when the Neural
Network is trained with Combined and Crop reductions.

Annexed B. Performance and Significance
Here we present the results obtained on each methodology on HumaNet considering its sig-
nificance with respect to the baseline. Please note that in Table B.2 for ResNet, the model
given by the reduced methodologies was precisely the same as the starting point model, and
the baseline model, and thus no significance is reported.

Table B.1: SqueezeNet results on HumaNet.

Methodology Dimension Validation Complete Color Combined Crop Resolution Significance
Adaptive-PE Combined 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PE Crop 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PE Quantization 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PE Resolution 39.8 39.0 26.7 27.3 18.3 35.3 ns

Linear-PE Combined 40.2 39.0 27.3 28.0 18.0 36.0 ns
Linear-PE Crop 40.4 38.7 26.3 28.0 19.7 35.0 ns
Linear-PE Quantization 40.2 39.2 27.0 27.7 18.3 35.7 ns
Linear-PE Resolution 40.2 39.2 27.3 27.7 18.3 36.0 ns

Adaptive-PR Combined 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PR Crop 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PR Quantization 39.8 39.0 26.7 27.3 18.3 35.3 ns
Adaptive-PR Resolution 39.8 39.0 26.7 27.3 18.3 35.3 ns

Linear-PR Combined 40.0 39.2 26.3 27.3 19.7 34.7 ns
Linear-PR Crop 39.8 39.0 26.7 27.3 18.3 35.3 ns
Linear-PR Quantization 40.0 39.1 27.0 27.7 18.3 36.0 ns
Linear-PR Resolution 40.2 39.5 28.0 27.0 18.0 35.7 ns
Start Point Start Point 39.8 39.0 26.7 27.3 18.3 35.3 ns

Table B.2: ResNet results on HumaNet.

Methodology Dimension Validation Complete Color Combined Crop Resolution Significance
Adaptive-PE Combined 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PE Crop 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PE Quantization 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PE Resolution 61.6 60.4 42.3 35.3 24.0 53.7

Linear-PE Combined 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PE Crop 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PE Quantization 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PE Resolution 61.6 60.4 42.3 35.3 24.0 53.7

Adaptive-PR Combined 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PR Crop 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PR Quantization 61.6 60.4 42.3 35.3 24.0 53.7
Adaptive-PR Resolution 61.6 60.4 42.3 35.3 24.0 53.7

Linear-PR Combined 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PR Crop 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PR Quantization 61.6 60.4 42.3 35.3 24.0 53.7
Linear-PR Resolution 61.6 60.4 42.3 35.3 24.0 53.7
Start Point Start Point 61.6 60.4 42.3 35.3 24.0 53.7

70

Table B.3: EfficientNet results on HumaNet.

Methodology Dimension Validation Complete Color Combined Crop Resolution Significance
Adaptive-PE Combined 71.4 73.9 35.3 28.3 42.0 46.3 ns
Adaptive-PE Crop 71.2 72.5 34.0 31.3 39.0 42.0 ns

Linear-PE Combined 69.8 73.4 38.0 27.7 31.3 42.0 ns
Adaptive-PR Crop 75.0 74.9 35.7 34.0 47.7 45.0 ns

Linear-PR Combined 71.4 72.4 34.7 30.7 36.0 46.7 ns
Linear-PR Crop 72.6 74.4 31.7 31.7 39.3 45.3 ns
Linear-PR Resolution 72.6 73.8 31.3 26.3 32.3 54.0 ns
Linear-PE Crop 69.4 71.2 34.3 25.7 32.3 40.0 **
Linear-PE Quantization 70.2 66.6 30.7 25.0 30.0 41.7 ***
Linear-PE Resolution 69.0 69.6 30.3 26.0 28.7 39.7 ***

Adaptive-PR Combined 71.2 70.0 32.7 30.0 36.7 43.7 ***
Adaptive-PR Resolution 69.4 69.4 29.7 26.0 30.3 38.7 ***

Linear-PR Quantization 68.0 69.7 30.0 24.3 27.7 38.3 ***
Adaptive-PE Quantization 68.0 69.7 30.0 24.3 27.7 38.3 ***
Adaptive-PE Resolution 68.0 69.7 30.0 24.3 27.7 38.3 ***
Adaptive-PR Quantization 68.0 69.7 30.0 24.3 27.7 38.3 ***
Start Point Start Point 68.0 69.7 30.0 24.3 27.7 38.3 ***

Annexed C. ImageNet Entropy-Ratio Central Tendency
Measures

In this Annexed we present the Central Tendency Measures obtained in the ImageNet
Entropy-Ratio.

Table C.1: Central Tendency Measures of ImageNet Entropy-Ratio.

Dimension Methodology Median Mean Standard Deviation
Combined Start Point 0.453 0.453 0.061
Combined Baseline 0.372 0.375 0.058
Combined Proposed 0.360 0.364 0.057

Crop Start Point 0.490 0.491 0.058
Crop Baseline 0.410 0.414 0.056
Crop Proposed 0.393 0.394 0.056

Downsampling Start Point 0.891 0.890 0.021
Downsampling Baseline 0.869 0.869 0.022
Downsampling Proposed 0.861 0.860 0.022
Quantization Start Point 0.587 0.586 0.051
Quantization Baseline 0.520 0.523 0.049
Quantization Proposed 0.502 0.503 0.049

71

	Resumen
	Abstract
	Agradecimientos
	Table of Contents
	List of Tables
	List of Figures

	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Objectives
	1.3.1 General Objectives
	1.3.2 Specific Objectives

	1.4 Problem
	1.5 Contribution
	1.6 Methodology
	1.6.1 Related Work Survey
	1.6.2 Design and Implementation of Algorithms
	1.6.3 Experimentation
	1.6.4 Technologies

	1.7 Summary of Results
	1.8 Work Structure

	2 Background
	2.1 Digital Image Processing
	2.1.1 RGB Model
	2.1.2 Pixel
	2.1.3 Raster graphics
	2.1.4 Resolution
	2.1.5 Compression
	2.1.5.1 Lossy Compression
	2.1.5.2 Lossless Compression

	2.1.6 Digital Image
	2.1.7 Spatial Filtering
	2.1.7.1 Correlation Filtering
	2.1.7.2 Convolution Filtering

	2.2 Probability and Statistics
	2.2.1 Probability Axioms
	2.2.2 Random Variable
	2.2.3 Probability Distribution
	2.2.3.1 Normal Distribution

	2.2.4 Statistical Inference
	2.2.5 Maximum Likelihood Estimation
	2.2.6 Loss Function

	2.3 Information Theory
	2.3.1 Entropy
	2.3.2 Kullback–Leibler Divergence

	2.4 Optimization Methods
	2.4.1 Stochastic Gradient Descent
	2.4.2 Powell's Method

	2.5 Machine Learning
	2.5.1 Supervised Learning
	2.5.2 Performance Metrics

	2.6 Neural Networks
	2.6.1 Neural Network Training
	2.6.1.1 Forward
	2.6.1.1.1 Activation Functions

	2.6.1.2 Softmax
	2.6.1.3 Backward
	2.6.1.3.1 Backpropagation
	2.6.1.3.2 Loss function
	2.6.1.3.3 Optimizer

	2.6.2 Regularization Methods
	2.6.2.1 Weight Decay
	2.6.2.2 Early Stopping
	2.6.2.3 Data Augmentation

	2.6.3 Hardware and Libraries
	2.6.3.1 GPU
	2.6.3.2 Pytorch

	2.7 Image Classification
	2.7.1 Dataset
	2.7.2 Training Methodologies
	2.7.2.1 Generative Adversarial Networks
	2.7.2.2 Masked Autoencoders

	2.7.3 Convolutional Neural Network

	3 Related Work
	3.1 Image Classification
	3.2 Data Augmentation Techniques
	3.3 Robustness of Image Classification
	3.4 Laconic Image Classification

	4 Proposal
	4.1 Image Quality Reductions
	4.1.1 Mathematical Framework
	4.1.2 Image Reductions
	4.1.2.1 Atomic Reductions
	4.1.2.2 Quantization
	4.1.2.3 Downsampling
	4.1.2.4 Crop
	4.1.2.5 Combined

	4.1.3 Composed Reductions
	4.1.3.1 Slice
	4.1.3.2 Combined

	4.2 Training Methodologies
	4.2.1 Standard Methodology
	4.2.2 Fixed Reduction Methodology
	4.2.3 Linear Reduction Methodology
	4.2.4 Adaptive Reduction Methodology

	4.3 Linear and Adaptive Variants
	4.3.1 Paired Epochs
	4.3.2 Paired Rounds

	5 Experimental Design
	5.1 Training with Quality-Reduced Examples
	5.2 Experimental Setting
	5.2.1 Hardware
	5.2.2 Datasets
	5.2.3 Neural Networks
	5.2.3.1 SqueezeNet
	5.2.3.2 ResNet
	5.2.3.3 EfficientNet
	5.2.3.4 Network Hyperparameters
	5.2.3.5 Adjustment

	5.3 Training Methodologies Tested
	5.3.1 Exploratory Analysis
	5.3.2 Start Point
	5.3.3 Baseline
	5.3.4 Fixed Reductions
	5.3.5 Linear Reductions
	5.3.6 Adaptive Reductions

	5.4 MEPIs Calculation

	6 Results
	6.1 HumaNet
	6.1.1 Start Point
	6.1.2 Fixed Reduction
	6.1.3 Linear Reduction
	6.1.3.1 Paired Epochs
	6.1.3.2 Paired Rounds

	6.1.4 Adaptive Reduction
	6.1.4.1 Paired Epochs
	6.1.4.2 Paired Rounds

	6.1.5 Test Results
	6.1.6 Entropy Proportion

	6.2 ImageNet
	6.2.1 Training Methodology Tested
	6.2.2 Entropy Proportion

	7 Conclusions
	7.1 Summary
	7.2 Review of Hypothesis
	7.3 Review of Objectives
	7.4 Challenges and Limitations
	7.5 Future Work

	Bibliography
	ANNEXES
	A Methodologies Comparison
	A.1 SqueezeNet
	A.2 ResNet
	A.3 EfficientNet

	B Performance and Significance
	C ImageNet Entropy-Ratio Central Tendency Measures

