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JACQUELINE GRACE ARRIAGADA FERNÁNDEZ
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SANTIAGO DE CHILE
2022



RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE DOCTOR EN SISTEMAS DE INGENIERÍA
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FORMULACIÓN DE NUEVOS MODELOS DE COMPORTAMIENTO DE PASAJEROS
DE TRANSPORTE PÚBLICO USANDO DATOS DE TRANSACCIONES DE PAGO

Los sistemas de transporte público son fundamentales para reducir la congestión y la contam-
inación atmosférica en las ciudades de todo el mundo. Por ello, entender las preferencias de
los pasajeros de transporte público es esencial para mejorar, promover y evaluar las poĺıticas
públicas en este ámbito. Los modelos de elección de rutas son utilizados para entender las
preferencias de los pasajeros, y por tanto, para mejorar el diseño de los sistemas de transporte.
En este contexto, uno de los mayores desaf́ıos es representar el comportamiento de elección
de ruta de los pasajeros de forma realista y recoger, integrar y procesar datos que puedan
apoyar el desarrollo de poĺıticas públicas informadas.

En la última década, varios estudios de elección de rutas de transporte público han utilizado
tarjetas inteligentes y datos de GPS para obtener las elecciones de ruta de los pasajeros y
una gran cantidad de información sobre los viajes, como por ejemplo: el tiempo de viaje y el
número de transbordos. Una de las principales ventajas de los datos pasivos de transporte
es la cantidad de datos recogidos y la exactitud de la información de movilidad. Aunque
muchos estudios han intentado representar de forma realista el comportamiento de elección
de rutas de los pasajeros, todav́ıa quedan muchos desaf́ıos por resolver. El objetivo general
de esta tesis doctoral es formular un nuevo marco de modelación de transporte público
que permita una comprensión más realista del comportamiento y las percepciones de los
pasajeros de un sistema de transporte público multimodal a gran escala y con disponibilidad
de datos pasivos. Esto se traduce en las siguientes contribuciones principales de esta tesis:
i) desarrollar y aplicar métodos que capturen la heterogeneidad de la estrategia de elección
de ruta entre los pasajeros; ii) proponer y aplicar una metodoloǵıa para evaluar diferentes
enfoques para abordar el problema del conjunto de consideración en los modelos de elección
de ruta de transporte público; iii) proponer y aplicar un método para incorporar el proceso
de aprendizaje de los pasajeros en un modelo de elección de ruta mediante el uso de datos de
tarjetas inteligentes; iv) proponer y aplicar un método para evaluar el efecto de incentivos
económicos y mensajes de cooperación para motivar a los pasajeros de transporte público a
compartir información sobre las condiciones del sistema de transporte público utilizando una
aplicación crowdsourcing.

Esta tesis muestra que datos pasivos de transporte público pueden utilizarse para com-
prender las preferencias de los pasajeros mediante la estimación de modelos de elección de
rutas y que los datos recogidos a partir de tecnoloǵıas crowdsourcing pueden utilizarse para
complementar los datos pasivos de transporte. Por último, los resultados de esta tesis ayudan
a las autoridades de transporte a confiar en el uso de modelos de elección de ruta generados con
datos pasivos de transporte y tecnoloǵıas de crowdsourcing para recoger datos de movilidad.
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FORMULATION OF NEW MODELS OF PASSENGER BEHAVIOR IN PUBLIC
TRANSPORT USING FARE COLLECTION DATA

Public transport systems are key for reducing congestion and air pollution in cities worldwide.
Therefore, understanding public transport passengers’ preferences is essential to improve,
promote, and assess public policies in this area. Route choice models are widely used to
understand the public transport passengers’ preferences and, therefore, to improve the public
transport design. In this context, one of the greatest challenges is to represent public transport
passengers’ route choice behaviour in a realistic manner and to collect, integrate and process
data that can support the development of informed public transport policies.

In the last decade, several public transport route choice studies have used smart cards and
GPS data to obtain passengers’ route choices and a large amount of information about trips,
such as the in-vehicle travel time, out-of-vehicle travel time, and the number of transfers. One
of the principal benefits of passive transport data, such as smart card data, is the amount of
data collected and the accuracy of information about the choices made by public transport
users. Even though many studies have tried to represent passengers’ route choice behavior
realistically, still many challenges remain on this subject. Thus, the general aim of this
doctoral thesis is to formulate a new public transport modeling framework that allow for a
more realistic understanding of public passengers’ behavior and perceptions in the context of a
large-scale multimodal public transport system and the availability of passive data. Based on
a review of state-of-the-art research about studies that have used smart card data to estimate
public transport route choice models different research gaps were identified. This results in
the following main thesis’ contributions: i) develop and apply methods that capture route
choice strategy heterogeneity across passengers using smart card data; ii) propose and apply
a methodology to assess different feasible approaches to address the consideration set problem
in public transport route choice models; iii) propose and apply a method to incorporate the
day-to-day learning process of passengers into a route choice model by using smart-card data;
iv) propose and apply a method to evaluate the effect of economic incentives and cooperation
messages to encourage public transport passengers to share information about public transport
system conditions using a crowdsourcing app.

This thesis shows that passive public transportation data can be used to understand
passenger preferences by estimating route choice models. However, the lack of some travel
information still limits route choice passengers’ behavior analysis using only passive transport
data. In this line of analysis, this thesis proposes that data collected from transport-oriented
crowdsourcing technologies can be used to complement some of the missing information in
the passive transport data. Finally, the results of this thesis help transportation policymakers
be confident in using route choice models generated with passive public transportation data
and crowdsourcing technologies to collect mobility data.
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Chapter 1

Introduction

1.1 Data in public transport passenger behavior mod-
eling

Understanding the behavior and perception of public transport (PT) passengers is of great
importance, as it allows transportation authorities to design or improve the system according
to the needs and preferences of users. In this area of study, data from stated and revealed
preference surveys has been widely used by researchers to model the behavior and perception
of users of PT systems.

In stated preference (SP) surveys, people must respond to questions regarding hypothetical
situations which may or may not be associated with a real experience. This data collection
methodology has the advantage of being relatively inexpensive; however, it introduces hy-
pothetical bias, since the user does not face an actual experience. Some authors who have
used SP data to understand traveler behavior and/or traveler perceptions are Khattak et al.
(1996); Dell’Olio et al. (2011); Grison et al. (2017); Vrtic & Axhausen (2002).

On the other hand, revealed preference (RP) surveys have the advantage of reflecting
true information about the choices of users in real situations; however, traditional RP
surveys involve recording data in the field at prohibitively high costs making it impractical to
implement in large samples. Some authors who have used traditional RP data to understand
traveler behavior and/or traveler perceptions are Eluru et al. (2012); Anderson et al. (2017);
Z. Guo & Wilson (2011); Hoogendoorn-Lanser & Van Nes (2004); Raveau et al. (2011).

In the last decade, several authors have dealt with traditional RP data collection problems
using smart card (SC) data (Schmöcker et al., 2013; Jánoš́ıková et al., 2014; Kim et al., 2020;
Nassir et al., 2018; Rui, 2016; Yap et al., 2020). SC data is available in cities that have
introduced automated fare collection (AFC) systems for the PT system. The main purpose of
SC is to collect PT revenue; however, as an additional benefit, they register a large quantity
of very detailed data about the choices made by PT users at significantly lower costs and
with few practical limitations, unprecedented granularity, and scalability (Pelletier et al.,
2011). In summary, some analyses about passenger behavior on public transportation that

1



previously required data from traditional RP surveys can now be performed using SC data,
which overcome the shortcomings of traditional RP surveys in many aspects.

One of the principal benefits of SC data is the amount of data collected. SC data provides
far more data at the spatial and temporal levels than traditional RP surveys (Bagchi &
White, 2005). SC data allows the researcher to very accurately observe the time and location
of boarding, the number of passenger using the PT system, and their movements, in a
continuously dynamic way. To illustrate this, we compared SC data from five weekdays in
April 2015 from the PT system of Santiago with RP data collected via a traditional Origin-
Destination survey (EOD 2012) carried out in Santiago between July and November 2012.
Focusing on peak morning hours (6:30-8:30), the EOD 2012 recorded 5,299 trip observations,
while the SC database recorded 2.7 million valid trip observations1. In relative terms, the
valid trip observations using SC data represent an increase of 509.5%. It is important to note
that the evaluated EOD is the most recent and available one in Santiago, and this is from 10
years ago. On the other hand, any week of a year can be evaluated with SC data, which gives
more availability and continuous trip information.

Figure 1.1 shows the number of observed trips initiated every 15 minutes using the SC
data, while Figure 1.2 shows the same information based on observed trips obtained from
the EOD 2012 survey. These figures reveal a better resolution of the trips collected in the
SC database, which opens a door to new and diverse studies that allow us to more precisely
understand the behavior of passengers in public transportation.

Figure 1.1: Observed trips with smart card data

Figure 1.2: Observed trips with traditional EOD data

1SC database recorded 3.6 million trips, of which 2.7 million can be considered valid trip observations,
since they can be processed to estimate the alighting time and alighting stop with the methodology developed
by Munizaga & Palma (2012).
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However, Bagchi & White (2005) indicate that SC data is a complement to traditional
survey methods and not a replacement, since it provides fragmented information regarding
passenger travel behavior. This type of data lacks sociodemographic information, trip purpose,
identifications of transfer versus activities, quality of service perceived by users, among others.
One of the greatest challenges at present is to develop methodologies to complete missing
and relevant information in order to make SC data a more useful source of information for
planners, operators and researchers. In this line, some authors have worked in the following
lines:

• Combination of SC data with data obtained from travel surveys (Kusakabe & Asakura,
2014; Long & Thill, 2015).

• Estimation of alighting time and stop for each transaction (T. Li et al., 2018; Zhao et
al., 2007; Cui, 2006; Trépanier et al., 2007; Munizaga & Palma, 2012; Polson & Sokolov,
2017; Nam et al., 2017; YU & YANG, 2006), since in some PT systems, the passenger
is only required to tap-in, while tap-out is not required or available.

• Identification of transfers and activities in order to group trip stages into a complete
trip (Munizaga & Palma, 2012; Seaborn et al., 2009; Devillaine et al., 2012; Gordon et
al., 2013; Nassir et al., 2015).

• Identification of trip purpose, which is mainly based on activity duration limit and
activity location (Kusakabe & Asakura, 2014; Devillaine et al., 2012; Lee & Hickman,
2014).

• Identification of area of residence, based on repetitive observations of the first transaction
of the day (Amaya et al., 2017)

The efforts made by several authors to fill the information missing in SC transaction data
present ways to include valuable information to understand PT passenger behavior, evaluate
traditional travel behavior models, and formulate new models of passenger behavior. This
research contributes to this area of study by building more realistic and accurate models of
PT passenger behavior using SC data from Santiago (Chile), which is a city with a very large
transit network. In doing it so, this research also addresses technical challenges on how to
construct information for analysis of trips, such as the identification of origin/destinations
zones of each trip, the identification of different attractive and available alternative routes
to travel between a certain origin and destination, and the inference of the attributes of the
alternative routes.

1.2 Previous studies of public transport passenger be-
havior using SC data

The data sources generated by AFC in PT systems, and the efforts of researchers to fill
information missing from this type of data, have caused an improvement in data quantity
and quality, creating the possibility to analyze passengers behavior at different levels of
aggregation. PT literature has reported a wide range of studies that use SC data to aggregate
the behavior of passengers at both spatial and temporal levels. For example, several authors
have used SC data to build origin-destination (OD) matrices (Zhao et al., 2007; Trépanier et
al., 2007; Seaborn et al., 2009; Wang et al., 2011; Nassir et al., 2011; Munizaga & Palma, 2012;
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Gordon et al., 2013; Alsger et al., 2016; Yap et al., 2018), which consist of aggregating all
journeys by OD zone. A group of studies, mainly using data mining techniques, has focused
on day-to-day variability of passengers travel patterns to classify passengers considering the
spatial and temporal regularity of their trips (Morency et al., 2007; Espinoza et al., 2017;
Ma et al., 2017). Other studies have generated methodologies to evaluate the operation of
PT systems, at a spatial and temporal level, such as level of crowding, average travel time,
number of trip stages, number of transfers, leakage of users, among others (Núñez et al., 2015;
Gschwender et al., 2016; Chapleau et al., 2011).

One of the main contributions of the introduction of SC data is the possibility of modeling
the passengers’ behavior on a disaggregated level by identifying the behavior of each individual.
With respect to the disaggregated level (routes or trajectories used by individuals), there are
some authors who have used railroad or Metro system data from SC transactions to infer
the chosen route by passengers using shortest path algorithms (Kusakabe et al., 2010; Van
Der Hurk et al., 2015) or probabilistic models (Zhao et al., 2017). Others studies have focused
on the variability of chosen PT routes. Tao et al. (2014) used a day of SC data from the PT
bus system in Brisbane, Australia and the coefficient of variation of trajectories in a given
origin-destination pair to find that the chosen routes by passengers are more dispersed during
the day than in the morning. Unlike Tao et al. (2014), Kurauchi et al. (2014) analyzed the
variability in the routes chosen by individuals, and not by a given origin-destination pair.
To do so, they used SC data from the PT system in London, and an n-step Markov model,
where each state represents the service selected on the evaluated day and in days prior to the
evaluation. They found that only 17% of passengers in London use the same transit line every
morning (considering 4 days of evaluation). However, if they consider common lines, the
variability in the chosen routes decrease, indicating that much of the variation in the route
choice is due to common lines that could be part of the users’ strategy. On the other hand,
J. Kim et al. (2017) used six months of SC data from the Brisbane, Australia PT system to
analyze the regularity with which users use different routes. This study used the metric called
the “Stickiness Index” to quantify the range of preference, from users who always select the
same route (high “Stickiness Index”) to users whose chosen route selections are more varied
(low “Stickiness Index”). J. Kim et al. (2017) analyzed the variability in route choice given
an origin-destination pair and the route variability per individual.

It should be noted that the studies mentioned in the previous paragraph evaluate the
variability in passenger route choices, but not the variability of the consideration set, which is
the set of routes considered attractive to passengers. From the review here, very few studies
have focused their analysis on the variability of the set of attractive routes or the consideration
set. One of these studies is Nassir et al. (2017), which used SC data from the Queensland,
Australia PT system and a statistical algorithm to infer the set of attractive routes based on
a given OD pair.

Understanding the preferences of passengers on public transportation is essential for
transportation authorities to design or improve the PT system according to the needs and
preferences of users. One of the most-used models to understand traveler preferences is the
route choice model. Specifically, route choice models allow transportation authorities to
evaluate transportation planning performance, assess new transport policies, and predict
travel behavior in new transport contexts. However, most of the literature regarding route
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choice models has been focused on private transport systems rather than PT systems due to
the paucity of historical observed route choice data. SC data allows for filling this gap because
it is longitudinal data. Using SC data, it is possible to observe the historical travel choices of
PT passengers and answer questions related to patterns or habits of travelers, which require
multiple observations of the same individual. The main contribution of the introduction of
SC data is the possibility of modeling the passengers’ route choice behavior more realistically.
Some authors have developed route choice models using SC data (Schmöcker et al., 2013;
Nassir et al., 2018; Jánoš́ıková et al., 2014; Kim et al., 2020; Yap et al., 2020; Rui, 2016) to
evaluate the passengers’ perception about some important trip attributes (in-vehicle travel
time, transfer walking time, waiting time, number of transfer, and crowding level).

Schmöcker et al. (2013) developed a discrete choice model for selecting a hyperpath, which
is a set of paths that could be optimal to reach a destination from a given origin. The
approach considers two levels. The first level represents the choice of consideration set using
a Multinomial Logit (MNL) model that incorporates travel time, waiting time, number of
transfers, and size of the consideration set. The second level represents the choice of transit
line, based on the assumption that the user takes the first transit line that arrives at the stop
(a deterministic choice). To test the model, Schmöcker et al. (2013) used SC data from a bus
operator in a Japanese city and estimated the proposed model using three origin-destination
pairs with direct routes. They found that the route choice behavior varies among different
groups of passengers. Elderly people dislike waiting time more than other age groups, and
people use smaller, more restrained consideration sets compared with the set proposed by the
model. Finally, they indicate that the likelihood function is non-concave, so the parameters
they obtained vary depending on the starting point.

Unlike the model proposed by Schmöcker et al. (2013), which possesses a combinatorial
nature of conformation of possible consideration sets, which is a disadvantage in dense
transportation systems, Nassir et al. (2018) propose a methodology to calibrate a route choice
model with SC data using arc enumeration; i.e., using recursive formulas that represent the
boarding, alighting, and transfer utilities at each arc along the route. The utility functions
are represented by the attributes travel time, waiting time, and walking distance in transfers.
The choices of taking a transit line, alighting at a stop, and transferring are modeled using a
MNL model. The benefit of this methodology is that, by avoiding the explicit enumeration of
routes, it does not generate a large computational cost. This model was applied to two origin-
destination pairs in PT SC data from Brisbane, Australia. They found that the attraction of
direct routes is very similar to the observed percentage of users using them. However, the
percentage of users using routes with transfers is higher than the result estimated by the
model. This could be explained because the model could estimate some quick activities as
transfers.

Jánoš́ıková et al. (2014) estimated a MNL model with SC data from a city in Slovakia
to represent PT route choice. The studied transit network was relatively small, with eight
trolleybus and 10 transit lines. For the model, they defined the consideration set as the routes
observed in the SC data, and used the variables in-vehicle travel time, transfer walking time,
number of transfers, and transit line headway as attributes of the model’s utility function.
Following the same line of research, Kim et al. (2020) also applied a MNL model, adding new
variables, such as travel time reliability and path circuit index, using SC data of the Seoul
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Metropolitan Area. This is a very large multimodal transit network with 405 transit lines and
12 Metro-rail lines. Both studies found that all variables are significant with the expected
sign, showing that the route choice and the values of attribute coefficients can be inferred
from SC data in both small- and large-scale transit networks.

Previous studies have used the basic MNL model, which assumes independence of alter-
natives, implying that the correlation due to overlapping route segments is ignored. Some
authors have dealt with this problem using the analytical approach of Path Size Logit (PSL)
models, which account for the correlation by adding a deterministic term that reduces the
utility function of overlapped routes (Yap et al., 2020; Rui, 2016). Yap et al. (2020) used SC
data from The Hague in the Netherlands, which has 12 tram lines and eight bus lines, to
evaluate the influence of crowding on passengers’ travel experience. On the other hand, Rui
(2016) developed a path size route choice model using SC data from Singapore and, in contrast
to the previous authors, implemented six practical consideration set generation approaches:
the labeling approach, the link elimination approach, the K shortest paths approach, the
simulation approach, the branch and bound approach, and the nested labeling and Link
elimination approach.

1.3 Analytical framework and research gaps for the
analysis of passengers’ route choice behavior using
passive transport data

To understand PT passengers’ travel behavior in a realistic way, it is necessary to obtain
large amounts of information and estimate a route choice model to reflect how passengers
perceive different trip attributes. From the literature review of state-of-the-art research about
PT passenger behavior using SC data, this thesis identifies and proposes a framework to
measure the PT passengers’ perceptions using passive data in five steps. This analytical
framework is shown in Figure 1.3, where prior to the first step, passive transport data must
be processed. This processing data process aims to infer the destination associated with
each transaction, in systems where passengers must only tap-in (e.g. Trépanier et al., 2007;
Munizaga & Palma, 2012), determine which transactions form one trip (e.g. Seaborn et al.,
2009; Gordon et al., 2013), and remove incomplete transactions due to system errors or when
some missing information is impossible to infer. As a first step, trip origins and destinations
must be identified from the SC data. It is important to note that the SC data does not provide
information regarding the actual origin and destination of trips; instead, it provides the first
stop or station of the trip, which can be understood as the origin, and the last stop or station
of the trip, which can be understood as the destination. While some authors have worked
with stop-to-stop pairs to represent trip origins and destinations (Rui, 2016; Jánoš́ıková et al.,
2014; Schmöcker et al., 2013), others have aggregated stops and stations within walkable and
transferable distances into one representative node (Kim et al., 2020; Yap et al., 2020). In
this way, passengers departing from or arriving at different stops that belong to the same
representative node should be considered as trips with the same origin-destination zone.

Once the OD pairs have been identified, the second step is to define the alternative routes.
Public transport studies using passive data to understand passengers’ perceptions define a
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route as the unique sequence of boarding locations (stop or zone), alighting locations (stop or
zone), and intermediate lines or a combination of lines. The group of studies that do consider
specific lines between stops or zones build the consideration set of passengers with itineraries,
where all lines belonging to a set of relevant alternatives are regarded as different options
(Jánoš́ıková et al., 2014). On the other hand, most studies that work with combinations of
lines between stops or zones consider that alternative routes which share the same geographical
path as a single alternative (e.g. Yap et al., 2020; Kim et al., 2020).

After defining alternative routes, the third step is to obtain the attribute values for each
route alternative. Combining AVL, GTFS and SC data, it is possible to estimate important
trip attributes, such as in-vehicle travel time, transfer walking time, waiting time, number of
transfers, and crowding level (Rui, 2016; Yap et al., 2020; Kim et al., 2020; Jánoš́ıková et
al., 2014). Once alighting stops and trip sequences are observed or inferred, the in-vehicle
travel time for each trip can be obtained from AVL data. The number of transfers can be
directly obtained from the sequence of trips, transfer walking time can be inferred assuming a
standard walking speed, and waiting time can be inferred assuming a specific distribution
(S. Guo et al., 2011; Ingvardson et al., 2018).

The fourth step to measure PT passengers’ perceptions using passive data is to identify
the consideration set for each OD pair identified in step 1. The consideration set generation
process is complex, since there usually are countless feasible alternative routes in a transport
network, especially in a dense multimodal network (C. G. Prato, 2009). Additionally, evidence
suggests that the number of route alternatives known and considered by the passenger is
substantially smaller than the total number of available alternatives (Hoogendoorn-Lanser &
Van Nes, 2004). Two ways of identifying the consideration set in practice can be distinguished
in the applied literature: it can be built using an algorithm or heuristic that emulates how
individuals may build their own consideration set (C. G. Prato, 2009), or it can be imputed
using historical data. Most of the studies using SC data to measure the PT passengers’
perceptions have imputed the consideration set from historical SC data (Yap et al., 2020;
Kim et al., 2020; Jánoš́ıková et al., 2014), while one study has built it using an algorithm or
heuristic that emulates how individuals may build their own consideration set (Rui, 2016).

The last step, after identifying the consideration set, is to determine the PT passengers’
perception of trip attributes. For this, most studies using SC data to understand PT passengers’
route choice behavior use the MNL discrete choice model (Schmöcker et al., 2013; Nassir et
al., 2018; Jánoš́ıková et al., 2014; Kim et al., 2020), while a small number of studies have
developed models that capture the correlation between routes (Yap et al., 2020; Rui, 2016).
To the best of our knowledge, no study has captured heterogeneity between passengers. It is
worth noting that most of these studies were applied to relatively small-scale transit networks
(Schmöcker et al., 2013; Nassir et al., 2018; Yap et al., 2020; Jánoš́ıková et al., 2014).
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Step 1: Identification of trip origins and destinations
Zone-to-zone OD or stop-to-stop OD

Step 2: Definition of an alternative route
Aggregated or disaggregated alternative routes

Step 3: Inference of attributes for each alternative route
In-vehicle travel time - out-of-vehicle travel time - number of transfers

Step 4: Construction of the consideration set for each OD pair
Observed chosen routes or heuristic approach

Step 5: Definition of perception of trip attributes
Route choice model

Public transport passive data (AFC - AVL - GTFS)

Figure 1.3: Framework to measure the PT passengers’ perceptions using passive data

Based on the literature review of state-of-the-art research about PT passenger behavior
using SC data and the analytical framework in Figure 1.3, the following research gaps can be
identified:

1. As the literature suggests, passengers can adopt different strategies to choose a route
to reach a destination (Raveau & Muñoz, 2014; Spiess & Florian, 1989). This aspect
is particularly important for the second step in Figure 1.3, where the definition of an
alternative route depends on the assumption of the passengers’ route choice strategy.
However, to the best of our knowledge, there are no studies on PT passengers’ route
choices that use real, observed data to evaluate which type(s) of strategies are con-
sidered by PT passengers nor studies that consider this heterogeneity within a single
model. Some models assume that all passengers choose disaggregated alternative routes
(itineraries), while others assume that all passengers choose aggregated alternative routes
(geographical aggregation). This gap generates a sub-optimal standard of analysis where
PT authorities do not consider the heterogeneity between passengers; therefore, the
transport policies may not consider the needs and preferences of all PT passengers.

2. Route choice modeling requires identifying the consideration set (step 4 in Figure 1.3),
which is unknown to the researcher when working with RP data. Route choice literature
presents different practical approaches to build the consideration set. Most studies
using SC data have used the historical approach, which is based on intuition, while
other studies have used different heuristic approaches to emulate the passenger behavior
(C. G. Prato, 2009). To the best of our knowledge, no comprehensive assessment of
consideration set generation approaches has been carried out in a PT context on public
transport. Furthermore, little is known about the impact of the composition of the
consideration set in the case of public transport route choice modeling. This gap is
essential for transportation authorities as a comprehensive assessment of consideration
set generation methods allows them to identify which approach would generate less bias
in the estimation results of a route choice model and could help to understand passenger
preferences better. In summary, identifying the consideration set generation method
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with the best performance allows PT authorities to improve the system design more
efficiently.

3. The route decision process usually involves an evaluation of different route attributes.
This process is particularly important for step 3 in Figure 1.3, where researchers should
consider that some route attributes can be fixed over time, such as the number of
transfers; however, there are other attributes that represent uncertainties in the trip
process, such as waiting time and in-vehicle travel time, among others. Information
about these uncertain attributes can come from past travel experiences between the
same OD pair (reinforcement learning) or from the description of travel information
(cognitive learning). Most studies about transport route choice consider travel time and
travel time variability (if considered) as static attributes; therefore, they assume that
all travelers at all time points possess the same knowledge regarding the travel time
distribution, ignoring the relation between choices and past experiences.
SC data has the potential to provide the historical PT passengers’ behavior, allowing
observation of the chosen alternative route and the variability of route attributes.
Particularly, it is possible to observe the travel time experienced by each individual
when they travel in the system. Although SC data provides the opportunity to use
real data, we have not been able to find any study that considers how to include the
relationship between choices, past experiences, and descriptive information to capture
passengers’ learning processes. Understanding the learning process of PT passengers is
especially important for transport policies which are oriented toward delivering travel
information. Suppose transport policymakers do not understand how passengers learn
from descriptive and experienced travel information; in that case, they may not be
assertive in implementing communication channels to explain travel information to
passengers to improve their experience in the system.

4. Although passive PT data sources, such as SC and AVL data, provide highly accu-
rate travel and mobility information, they still present the substantial challenge of
incorporating information that cannot yet be recorded passively. Among this missing
information is data to characterize PT passengers, such as socioeconomic data, and trip
attributes relevant for modeling the behavior of passengers, such as trip origin, trip
destination, and transport infrastructure quality (both vehicles and stops). This missing
information could be used in step 3 of Figure 1.3 to infer alternative route attributes or
traveler characteristics. In addition, due to this lack of information, PT authorities may
ignore relevant characteristics of the passengers and infrastructure problems which could
guide the authorities’ effort to improve the passengers’ experience in the transportation
system.

1.4 Research Objective, Questions and Scope

1.4.1 Research objective
Public transportation is recognized as an efficient transport mode since it reduces both

congestion and air pollution. For this reason, encouraging people to use the PT system instead
of traveling by private vehicle is the principal challenge for PT authorities and researchers. To
this end, route choice models play a fundamental role in understanding passengers’ behavior
and perceptions. This information is usually used to improve the PT system design, thereby
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increasing the attractiveness of public transportation. For decades, PT authorities have used
SP or RP traditional surveys to develop PT route choice models, which can be expensive and
impractical for ensuring representativeness in a large-scale PT system. SC data provides a
solution to these problems by representing the passenger choices in a more realistic manner
at a low cost to the researcher. Although some studies have used SC data to estimate PT
route choice models, a review of state-of-the-art research shows there are several research gaps
that must be addressed. The main purposes of this thesis are: (i) to formulate a new public
transport framework modeling that allow for a more realistic understanding of PT passengers’
behavior and perceptions in the context of a large-scale multimodal public transport system;
(ii) to propose methods to capture the current missing important information in the passive
transport data.

1.4.2 Research questions
This thesis presents the following four research questions to address the main objective of

this study.

1. Do public transport passengers use different route choice strategies?

The first research question is focused on the second level of Figure 1.3 and aims to fill
research gap 1 by recognizing that there are different ways to model the passengers’ route
choice strategy. In particular, almost all route choice models use consideration sets composed
of itineraries, while PT assignment models for strategic analysis mostly use a version of the
common lines approach. We postulate that these modeling ways are correct but for different
passengers, and therefore heterogeneity exists in the route choice strategy between users.
Therefore, we propose the classification of possible route choice behavioral strategies in two
groups: disaggregated strategies, where alternatives correspond to itineraries and common
lines are not considered, and aggregated strategies, where common lines are considered as
part of the same alternative. The purpose is to verify if there is heterogeneity in the route
choice strategy, both between users and across different contexts.

2. How do different consideration set generation practical approaches impact
estimation and prediction in a PT route choice model?

The second research question is focused on the consideration set generation process (step
4 in Figure 1.3), which is a substantial challenge for route choice modelers. The aim is to
address research gap 2 by assessing different practical approaches, in order to verify if the
method most often used by studies utilizing SC data, which we call the Historical/Cohort
approach (in which the consideration set is constructed with observed choices), outperforms
other typical practical approaches.

3. How can public transport passengers’ past experiences be integrated into a
route choice model to incorporate the uncertain nature of in-vehicle travel time
in the public transport system?

The third research question aims to improve the representation of passengers’ perceptions
of uncertainty attributes (steps 3 and 5 in Figure 1.3) and relates to research gap 3. The
research question focuses on the relationship between the past experiences of passengers and
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their current choices. It considers that the PT route choice context is a choice decision under
uncertaint conditions, where passengers commonly use information from prior experiences,
and therefore that the perception of some attributes (e.g. in-vehicle travel time) can vary
across time. This learning process is especially important in new PT contexts, such as the
implementation of a new bus service or Metro line.

4. How can passengers be encouraged to provide mobility and transport infor-
mation through crowdsourced mobile public transport applications?

The fourth question is focused on the third level of Figure 1.3 and seeks to address research
gap 4 in order to complement and improve the process of measuring trip attributes and
passengers’ characteristics using passive transport data. Based on the high level of penetration
of smartphones worldwide, in this study, we argue that crowd-sourced mobile public transport
applications can be an important channel to obtain mobility information to complement
passive transport data. However, a high participation level is essential, and therefore, it is
important to motivate travelers to share information. In this context, this research question
focuses on showing that both low-cost economic incentives and cooperative messages can
encourage crowd-sourcing mobile application users to report PT information.

1.4.3 Research scope
Based on the formulated research purpose and research questions, this thesis focuses on

understanding the route choice behavior of PT passengers in Santiago, Chile. Santiago is
the capital of Chile and has a population of over 7 million inhabitants. The public transport
system serves roughly 50% of motorized trips, and it is operated by headway scheduling;
therefore, lines do not have fixed time schedules. The fare system is almost fully integrated,
with a flat fare between urban buses, Metro, and some rail services, allowing up to three trip
legs within a two-hours time window. In a typical week, 3 million passengers use the system
to make 25.5 million trips. The network includes 7 metro lines, more than 300 bi-directional
transit lines, and one rail service.

In particular, to estimate route choice models, we use observations from passengers traveling
during morning peak periods (6:30-8:30 AM) on weekdays who stay in their destination
locations for at least two hours. These restrictions are aimed at capturing trips to regular
activities such as working or studying. This means that other time periods, such as the
afternoon peak period, and other types of trip purposes, such as shopping, are not the focus
of this research.

Since the analysis for this thesis was carried out using the Santiago, Chile public transport
network, this research considers Metro lines, bus lines, and one rail line. This means that
while multimodal transport modes are considered, other modes of transport, such as bicycles
or scooters, are not the focus of this research.

The contributions of this thesis increase our knowledge of the route choice behavior of
PT passengers. These findings can be extended to those PT systems that operate similarly
to the PT system in Santiago, which is operated by headway scheduling (lines do not have
fixed-time schedules). It is important to note that passengers’ route choice behavior in other
contexts, e.g., when passengers travel in a schedule-based transit network, exceeds the scope
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of the present thesis.

1.4.4 Basic definitions
The following list provides a formal definition for nine terms that we frequently use.

• Node: it can be a bus stop or a Metro/train station.
• Trajectory: a spatial sequence of a public transport vehicle position.
• Transit line/ line: a group of public transport vehicles that operate between an initial

node and a final node within the transit network. All vehicles on the same line travel
within the network by always following the same sequence of network links and nodes.
Each transit line provides a public transportation service defined by a sequence of stops,
trajectory, and vehicle frequency.

• Route/ alternative route: a path that a passenger can follow within the transit network
to travel between an origin and a destination zone. It can be identified by a sequence of
nodes, with the first being located in the origin zone of the trip, the final being located
in the destination zone of the trip, and where all intermediate nodes represent transfer
points.

• Route section: a portion of a route between two consecutive initial, final and transfer
nodes. Each route section is associated with a transit line or a group of transit lines.

• Itinerary/ disaggregated alternative: a route defined by a specific sequence of initial-
transfer-final nodes with one specific line between each pair of consecutive nodes.

• Aggregated alternative: a route defined by a specific sequence of initial-transfer-final
nodes with a group of common lines between each pair of consecutive nodes, aggregated
into a single alternative.

• Common lines: the set of transit lines that altogether minimize the total expected travel
time between two nodes in a network; i.e., if the passenger takes the first bus from this
set of lines, the summation of the expected waiting time and the in-vehicle travel time
will be minimal.

• Transfer: the movement of a passenger from one public transport vehicle to another.

1.5 Research Contribution

1.5.1 Scientific contribution
1. Unveiling route choice strategy heterogeneity from smart card data in a

large-scale public transport network

This research offers theoretical, methodological, and empirical contributions. From a
theoretical perspective, this study proposes a classification of route choice behavioral strate-
gies as either aggregated or disaggregated, depending on whether passengers do or do not
(respectively) consider common lines as part of the same alternative. In addition, this study
integrates theories from PT assignment models (which usually use the aggregated strategy
approach) and PT route choice models (which usually use the disaggregated strategy approach)
into a single framework for route choice modeling. From a methodological perspective, we
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developed an indicator function to validate whether heterogeneity exists in the route choice
strategy between users and across contexts. Then we proposed a methodology based on
the integrated discrete choice and latent class approach to study the heterogeneity of route
choice strategies using smart card data. This approach involves estimating path-size logit
models built with alternatives taken from disaggregated and aggregated strategies and a
latent class model built from a combination of both approaches. Finally, this study makes an
empirical contribution by applying the proposed methodology in Santiago, Chile, where we
found evidence of heterogeneity, suggesting a need to rethink the modeling approaches often
used in the field.

2. Assessing feasible approaches for building the consideration set in public
transport route choice modeling using smart card data

The contributions of this study are theoretical, methodological, and empirical. From a
knowledge perspective, this research contributes to understanding the effect of consideration set
composition in a PT route choice model. We have shown that the Historical/Cohort approach,
which can be obtained directly from SC data (avoiding the need to use assumptions), allows for
a better representation of PT passengers’ behavior than practical methods traditionally used to
generate the consideration set. Additionally, we revisit the explanation of Guevara (2022) about
theoretical conditions under which the Historical/Cohort approach would recover population
parameters. From a methodological perspective, this research proposes a methodology to
assess different feasible approaches to address the consideration set problem in PT route
choice models. This methodology is based on the estimation and prediction performance of
different route choice models integrating different consideration set generation approaches.
Finally, we present an empirical contribution, applying the proposed methodology with real
observed data obtained from the PT payment system of Santiago, Chile.

3. Evaluating the role of experience in the route choice context using smart
card data in a large-scale public transport network

This study offers methodological and empirical contributions. From a methodological
perspective, this research proposes a method to incorporate the day-to-day learning processes
of passengers into a PT route choice model. This methodology is based on integrating discrete
choice and instance-based learning theories. The instance-based learning theory captures the
recency of experiences in the human memory and is based on the power law of forgetting. The
instances-based learning model we have applied has been previously used in route choice models
in private transport and in simulated or laboratory data. Therefore, this study also offers
testing of a proposed methodology in a new context, namely the public transportation system.
Additionally, we present an empirical contribution, applying the proposed methodology to
a case study consisting of 12 weeks of revealed preferences constructed from SC data from
Santiago, Chile, coming from a subset of individuals that faced the opening of a new Metro
line in the PT system. Finally, this research contributes to understanding the learning process
of PT passengers in a new context of the PT system.

4. The effect of economic incentives and cooperation messages on user partici-
pation in crowdsourced public transport technologies

This study offers methodological and empirical contributions. This study shows that
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transport-oriented crowdsourcing applications provide an opportunity to improve SC data
quality by providing missing information. We show that an economic incentive and a
cooperation message (less effectively) encourage PT passengers to share mobility information.
This research also offers a methodological contribution as it uses a large randomized field
experiment providing internal and ecological validity. In this context, we examined the effect
of economic incentives (a lottery for free trips) and cooperation messages (asking users to help
the community) to encourage passengers to share information about bus stop conditions using
a crowdsourcing app. We estimated a zero-inflated negative binomial model to examine users’
contribution levels and a logit model to examine the effect of each experimental condition on
the participation rate. Finally, we present an empirical contribution by applying the proposed
methodology to a transport-oriented crowdsourcing mobile application for users in Santiago,
Chile.

1.5.2 Societal contribution
The studies of this thesis show that SC data can be used to understand passenger preferences,

and it is possible to focus the use of traditional mobility surveys on capturing only those
variables/aspects which are not captured by SC data. It is important to note that this study
shows that SC data can be applied to the two stages of a PT route choice model and that there
is no need to execute algorithms or heuristics, which can be computationally expensive in a
large-scale transit network such as Santiago’s transit network. Consequently, this work helps
PT authorities (regulators and operators) confidently use route choice models generated with
passive public transport data in transport policy contexts to understand the most relevant
trip attributes to passengers. In summary, this thesis helps PT authorities reduce monetary
and time costs to obtain information on passengers’ route choice behavior and improve the
PT system design to make the travel experience of PT passengers better.

The findings of this research can be used to suggest some guidelines for public transport
models that can help steer decisions regarding where to implement new transit routes and
how to improve existing ones. Some important guidelines to improve the travel experience of
PT passengers are: implementing lines with an overlap in high-demand sectors will effectively
allow passengers to reduce their waiting time, identifying OD pairs that require transfers can
focus planning efforts to reduce the number of onerous transfers, and high-demand transfer
points should be carefully designed to avoid walking.

Also, this study finds that descriptive information about routes is essential at the beginning
of a new PT context, such as a new Metro line. Therefore, trip information should be enforced
in these situations. Delivery of travel information allows PT authorities to improve PT
passengers’ travel experience when there is a change in the design of the PT system.

Finally, this study suggests that PT authorities should complement passive data sources
with data collected from transport-oriented crowdsourcing applications. This type of data
allows PT authorities to improve the PT design, particularly the PT infrastructure (such
as bus stops), and therefore improve the travel experience of PT passengers. Additionally,
mobility data collected from community-oriented passenger information technologies reduce
the monetary and time costs of processes related to obtaining some mobility information,
particularly physical inspections to monitor PT infrastructure.
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1.6 Outline
This research is divided into four parts. Chapter 2 evaluates the route choice strategies

of public transport users and estimates a Multiple Indicator Solution (MIS) latent class
model that captures heterogeneity between passengers. Chapter 3 evaluates the performance
of different approaches to generate the consideration set for public transport route choice
models. Chapter 4 captures passengers’ learning processes in the context of a new Metro
line, combining an Instance-Based Learning model with a PT route choice model. Chapter 5
examines the use of incentives to encourage crowdsourcing public transport application users
to share information about the status of the transport system. Finally, chapter 6 presents
the main conclusions from this thesis, together with implications for PT authorities and
recommendations for future research.
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Chapter 2

Unveiling route choice strategy
heterogeneity from smart card data in
a large-scale public transport network

This chapter is the first component of this thesis, which aims to answering the the first
research question (see Section 1.4.2): Are public transport passengers using different route
choice strategies?. This study contribution begin by proposing the classification of possible
route choice behavioral strategies in two groups: disaggregated strategies and aggregated
strategies. In the former, the alternatives correspond to itineraries, which are fixed sequences
of stops and PT lines. In the latter, common line alternatives are considered, which are
combinations of itineraries defined under given criteria. Almost all route choice models use
consideration sets composed only of itineraries, while PT assignment models for strategic
analysis mostly use a version of the common lines approach. We postulate that this dichotomy
is inappropriate and that, instead, heterogeneity exists in the route choice strategy, both
between users and across contexts. With the aim of verifying this hypothesis, we first propose
an indicator function constructed as the difference between expected and observed trips for a
given behavioral assumption. We apply then the indicator to a case study based on SC data
from the city of Santiago, Chile, from which we find evidence of heterogeneity. We identify
individuals that follow either an aggregated or a disaggregated strategy, as well as others
who seem to be using a combination of both strategies. We further analyze the heterogeneity
hypothesis using an integrated discrete choice and latent class approach, which we apply to
the same case study. This approach involves estimating PSL models built with alternatives
from disaggregated and aggregated strategies, as well as a latent class model built from a
combination of both. It also addresses methodological challenges related to the definition of
the consideration set and the correction of endogeneity. Results confirm the heterogeneity
hypothesis, suggesting that 51.2% of passengers use a disaggregated strategy for route choice,
while the rest use an aggregated one. We also find that travelers in the class considering
aggregated alternatives appear to prefer bus over metro, while travelers in the class considering
disaggregated alternatives appear to prefer metro over bus. The fact that waiting time is
relatively more burdensome for travelers who consider the aggregated strategy class is in line
with these travelers’ preference for common lines. Walking time and bus crowding are more
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burdensome for passengers who consider the disaggregated strategy class, in line with their
observed modal preferences.

This chapter was published in the following article:

Arriagada, J., Munizaga, M. A., Guevara, C. A., & Prato, C. (2022). Unveiling route
choice strategy heterogeneity from smart card data in a large-scale public transport network.
Transportation Research Part C: Emerging Technologies, 134, 103467.
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2.1 Introduction
Modeling the route choices of passengers in PT systems is a well-known complex problem,

which is relevant to the improvement of PT network planning, design, and assessment. In
this area, two modeling approaches can be distinguished, depending on whether the analysis
focuses on route choice behavior modeling, or PT assignment models for strategic analysis.

Most studies on PT passengers’ route choice behavior have used the MNL discrete choice
model (Grison et al., 2017; Z. Guo, 2011; Jánoš́ıková et al., 2014; Nassir et al., 2018; Raveau
& Muñoz, 2014; Raveau et al., 2014, 2011; Vrtic & Axhausen, 2002; Kim et al., 2020), with
consideration sets composed of itineraries, where all lines belonging to a set of relevant
alternatives are regarded as different options. The use of the MNL model for this problem
implies that the correlation due to overlapping route segments is ignored, as MNL assumes
independence of alternatives. To address this limitation, the analytical approach of PSL models
have often been adopted, which accounts for the correlation by adding a deterministic term
that reduces the utility of overlapped alternatives (Anderson et al., 2017; Bovy & Hoogendoorn-
Lanser, 2005; de Grange et al., 2012; Hoogendoorn-Lanser et al., 2005; O. A. Nielsen et al.,
2021; Tan et al., 2015; Yap et al., 2020). In this study, we call this approach the disaggregated
strategy.

Transit assignment models make use of the concept of common lines and hyperpaths
(Chriqui & Robillard, 1975; Cominetti & Correa, 2001; De Cea & Fernández, 1993; Nguyen &
Pallottino, 1988; Spiess & Florian, 1989). The common lines problem was originally described
by Chriqui & Robillard (1975) as the strategy of identifying a subset of PT lines that minimizes
the total expected travel time. According to this principle, passengers will take the first line
of the common lines set that arrives at the bus stop. Chriqui & Robillard (1975) defined the
common lines set in a portion of the route between two stops. Later, the definition of common
lines is extended to a network with the name of shortest hyperpath by Nguyen & Pallottino
(1988), where the first line that arrives to the stop defines the possible following characteristic

17



of the route, e.g., the number of transfers. The common line and the hyperpath approaches
have been successfully implemented for public transit assignment models for strategic analysis
in software packages such as EMME/2 (INRO, 1996) and ESTRAUS (De Cea et al., 2003).
We call this approach aggregated strategy.

The dichotomy between the disaggregated and aggregated approaches to, seemingly, the
same problem seems inappropriate. For example, one possible implication of the concept of
common lines for the modeling of discrete choices is that common lines may be perceived as
part of the same alternative for passengers that face a route choice decision. However, to
the best of our knowledge, only two studies have explicitly considered common lines between
consecutive stops as part of the same alternative in a discrete choice framework. The first is
Raveau & Muñoz (2014), who developed a MNL model using common lines as part of the same
route alternative, and the second is Schmöcker et al. (2013), who developed a bi-level route
choice model using hyperpaths as the consideration set. On the other hand, Kim et al. (2020)
and Tan et al. (2015) use a similar idea that considers that overlapping sections between two
consecutive stops of lines are regarded as one alternative. Their approach captures partially
the common lines principle as it does not include those common lines that do not overlap
their routes.

There is no theoretical or empirical justification for not using common lines in route
choice behavior modeling. Raveau & Muñoz (2014) asked a sample of PT users to self-
report the route choice strategies that they use, finding that some passengers stated choosing
between itineraries, but others declared using common line or hyperpath strategies. In this
study, we confirm and deepen the empirical findings by Raveau & Muñoz (2014) by using
a novel methodology that makes use of massive revealed preference data gathered from SC,
circumventing the problem of response bias that is inherent in self-reported data. The analysis
is performed by estimating three types of models: i) a PSL model with the consideration set
composed of itineraries; ii) a PSL model with the consideration set composed of common
lines as part of the same alternative; and iii) a latent class model with consideration sets for
two types of passengers: those who use itineraries and those who use common lines as part
of the same alternative. We then use the results of these models to answer three research
questions: Are PT passengers using different route choice strategies? Is it possible to capture
heterogeneity in route choice strategy by using latent class models estimated from SC data?
Can different behavioral parameters be captured?

Regarding the availability of data to observe route choice in PT, in recent years some studies
have generated data by observing the transactions registered in automatic fare collection
systems through SC. If the card ID is available, panel data with multiple choice situations
can be built from SC transactions. Unlike traditional data obtained from surveys, this type
of passive data has negligible costs and allows the collection of large volumes of personal
travel data over long periods of time (Bagchi & White, 2005). These advantages make SC
data attractive for route choice studies. Previous studies that use SC data for route choice
modeling include the estimation of stop-to-stop route choice models in different types of
networks: i) a railway or metro network (Kusakabe et al., 2010; Van Der Hurk et al., 2015;
Zhao et al., 2017); ii) a bus network, using a reduced number of origin-destination pairs
(Nassir et al., 2018; Schmöcker et al., 2013) and iii) a large scale multimodal transit network
(Jánoš́ıková et al., 2014; Tan et al., 2015; Yap et al., 2020; Kim et al., 2020). The current
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study provides a new case study, using SC data to observe the route choice of passengers in a
large-scale multimodal network with more than 20,000 origin-destination pairs.

From the SC data, it is possible to obtain a large amount of information about a trip,
such as the travel time in-vehicle, travel time out-of-vehicle, and the number of transfers.
Additionally, combining AVL data, SC data, and GTFS data, it is possible to estimate the
walking time in transfers and the waiting times at the beginning of the trips and the transfer
points. Most studies that use SC data in route choice modeling assume that users maximize
a utility function consisting of, mainly, the in-vehicle travel time, out-of-vehicle travel time,
number of transfers, and an error term (Schmöcker et al., 2013; Jánoš́ıková et al., 2014; Tan
et al., 2015; Yap et al., 2020; Kim et al., 2020). The error component plays an important role
in the route choice of passengers since it allows to explain the variation of the chosen route
through the passengers, even when they follow the same strategy. This is because the error
term captures the non-added attributes such as the level of crowding, the type of buses, the
preference for traveling with other users, availability of seats, induvial characteristic, among
others.

The remainder of this section is organized as follows. The next section presents a literature
review on route choice strategy. An analysis of the observed passengers’ travel behavior
for the current case study follows. Then, the study discusses the proposed methods used.
The model estimation results are then introduced. The last section draws conclusions and
discusses policy and research implications.

2.2 Problem description
Every day, commuters and other travelers face the problem of selecting a route to arrive at

a destination from a certain origin. To represent this choice, deterministic and probabilistic
modeling approaches can be used. The deterministic approach is based on the minimum cost
function, while the probabilistic approach incorporates unknown effects by adding an error
term to the cost or utility function.

In the group of deterministic route choice models, the most common is the shortest-path
heuristic (Gallo & Pallottino, 1988), where individuals are assumed to choose the itinerary
with the lowest cost from the origin to destination. In the more complex hyperpath approach
(Nguyen & Pallottino, 1988), passengers are assumed to consider a set of alternative routes
that minimizes the total expected travel time and use the first line (from that set) that arrives
at the bus stop.

Probabilistic modeling approaches are based on the Random Utility Maximization (RUM)
framework, which has been widely used for representing route and mode choice behavior in the
transport area (McFadden, 2000). The utility of each alternative is defined as depending on
the valuation of a set of attributes through a set of coefficients that adjust to the perception
of users, and a random component that represents the heterogeneity of preferences across
individuals and additional factors unknown to the analyst.

C. G. Prato (2009) states that the major challenges in route choice modeling are the
generation of a choice set of alternative routes and the estimation of discrete choice models.
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The first challenge is to identify the actual choice set considered by passengers, which is
unknown to the researcher. The number of alternative routes is usually large and increases
in a combinatorial dimension in large-scale networks. Therefore, identifying realistic choice
sets is not a trivial task. The second challenge is to represent the actual behavior of travelers
while appropriately considering the correlation between alternatives that share links and stops,
and to estimate the coefficients of the different attributes using real data. As mentioned
in the introduction, most literature on PT passengers’ route choice behavior has used the
MNL model (Grison et al., 2017; Z. Guo, 2011; Jánoš́ıková et al., 2014; Nassir et al., 2018;
Raveau & Muñoz, 2014; Raveau et al., 2014, 2011; Vrtic & Axhausen, 2002; Kim et al., 2020).
Only a handful of studies have actually considered similarity across routes via a Path Size
logit (Anderson et al., 2017; Bovy & Hoogendoorn-Lanser, 2005; de Grange et al., 2012;
Hoogendoorn-Lanser et al., 2005; O. A. Nielsen et al., 2021; Tan et al., 2015; Yap et al., 2020),
possibly because of the complexity as well as the unimodality that reduces significantly the
similarity across alternatives (especially for studies focusing only on rail or metro modes of
PT).

2.2.1 Route Choice Strategy
The literature suggests that passengers can adopt different strategies to choose a route

to reach a destination (Raveau & Muñoz, 2014; Spiess & Florian, 1989). As we will see, the
strategies can be used in both probabilistic and deterministic approaches.

We propose to classify the strategies in two types: (i) a disaggregated strategy, where
passengers choose a specific sequence of initial-transfer-final stops while considering specific
lines between them (itineraries); and (ii) an aggregated strategy, where passengers choose
a specific sequence of initial-transfer-final stops while aggregating the common lines (i.e., a
set of lines that minimizes the total expected travel time) of each route section into a single
alternative.

A graphical representation of a simple network that will help us to illustrate the two
strategies is provided in Figure 2.1, where six transit lines operate to serve one origin-
destination (OD) pair with one transfer stop (T). The transit lines are shown in different
colors with their respective frequencies [buses/hour] and travel time [min].

Figure 2.1: Example of the route choice problem
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A disaggregated strategy in Figure 2.1 would be: “Take the blue line from stop O to stop
T, transfer to the red line and alight at stop D”. As can be seen, there are five itineraries
or disaggregated alternatives for reaching destination D from origin O, which are described
in Table 2.1. For each bus line, if the headway follows an exponential distribution, the
waiting time is calculated as 60 minutes divided by the corresponding frequency. In-bus travel
times are shown in Figure 2.1. The itinerary O-green line-D minimizes the total travel time;
therefore, in a deterministic approach, passengers will choose this alternative. In contrast, in
a stochastic approach each itinerary has a non-zero probability of being chosen because of
non-observed considerations represented by the error term in the utility function.

Table 2.1: Route alternatives using a disaggregated strategy

Disaggregated alternative In-bus travel
time [min]

Expected waiting
time [min]

Total travel
time [min]

O-Orange line-T-Red line-D 16 18 34
O-Yellow line-T-Red line-D 15.5 18 33.5
O-Blue line-T-Red line-D 15 18 33

O-Green line-D 25 6 31
O-Purple line-D 45 12 57

An aggregated strategy for the problem in Figure 2.1 would be: “Take the next bus from
either the orange, yellow, or blue lines from stop O to stop T, transfer to the red line and
alight at stop D”. As can be seen in Table 2.2, there are three aggregated alternatives in this
network. The first route is O-orange/yellow/blue line-T-red line-D, where in the first stage
there are three common lines, and passengers take the first line that arrives at stop O. The
waiting time of the first stage is 60 minutes divided by the summation of the frequencies of
the common lines (15 b/h); in the second stage, it is 60 minutes divided by the frequency of
the red line (10 b/h), resulting in a total waiting time of 10 minutes. The in-bus travel time
in the first stage is calculated as a weighted average of the line frequencies (5.5 min); in the
second stage, it is 10 minutes, as shown in Figure 2.1. For the second and third alternatives,
the waiting time and in-bus travel time are calculated in the same way as the disaggregated
alternatives. It can be noticed that the alternatives that connect stops O and D, are not
aggregated into a single alternative, because the green line and the purple are not common
lines for this OD pair. The lines that do not belong to the common lines set are part of the
consideration set, but they are aggregated into a different alternative to the common lines
alternative.

As the first alternative has the lowest total travel time, in a deterministic approach all
passengers will choose that option, and a proportion of 5/15 of passengers will be assigned to
the orange line, 5/15 of passengers will be assigned to the yellow line, and 5/15 of passengers
will be assigned to the blue line. In contrast, in a stochastic approach, each route has a
non-zero probability of being chosen because of non-observed considerations represented by
the error term in the utility function. Therefore, if the probability of choosing route 1 is p1,
the probability of taking each line (orange, yellow, or blue) is p1 ∗ 5/15.
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Table 2.2: Route alternatives using an aggregated strategy

Aggregated alternative In-bus travel
time [min]

Expected waiting
time [min]

Total travel
time [min]

O-Orange/Yellow/Blue line-T-Red line-D 15.5 10 25.5
O-Green line-D 25 6 31
O-Purple line-D 45 12 57

In general, discrete route choice models in the literature have used a probabilistic dis-
aggregated strategy approach. On the other hand, transit assignment models have used a
deterministic aggregated strategy approach. To the best of our knowledge, only Raveau &
Muñoz (2014) and Schmöcker et al. (2013) have considered aggregated alternatives within a
probabilistic route choice model.

The hyperpath strategy can be seen as an extension of the aggregated strategy. Raveau &
Muñoz (2014) found that only 4% of passengers followed the hyperpath strategy, evidencing a
low usage frequency of this strategy. Consequently, the hyperpath strategy is not included in
this work.

2.3 Data description and analysis
The analysis for this study was carried out using the Santiago, Chile multimodal PT

network, known as Transantiago. Santiago is the capital of Chile and has a population of
over 7 million inhabitants. The PT system serves roughly 50% of motorized trips and it is
operated by headway scheduling; therefore, lines do not have fixed-time schedules. The fare
system is almost fully integrated, with a flat fare between urban buses, Metro, and some rail
services, allowing up to three trip legs within a two-hour time window. In a typical week, 3
million passengers use the system to make 25.5 million trips. The network includes 7 metro
lines, more than 300 bi-directional transit lines, and one rail service. In this work, we use
observations from frequent passengers that travel during morning peak periods (6:30-8:30
AM) on weekdays. Specifically, we select users that travel 15 days or more on the PT system
during May 2018, and that stay in the destination locations for at least two hours. In this
way, we try to capture trips to regular activities such as work or study. The morning peak
period is the most congested, more than 700 thousand trips per day can be observed, and
hence an interesting travel period from a behavioral and planning perspective.

Very detailed demand information was obtained from the automatic fare collection (AFC)
system in Transantiago (Gschwender et al., 2016). The SC bip! is the only accepted payment
method. Passengers must validate when boarding a bus or entering a Metro station. No
alighting validation is required for bus or Metro trips. Around 27% of passengers evade fare
payment on buses. Bus stops with particularly high demand have an off-vehicle payment
system called zona paga (payment zone), where passengers validate when they enter the bus
stop area and then board any bus without further validation. The data is already processed to
estimate the boarding and alighting position for all validations and the trips (stages) associated
with an origin-destination journey using the Munizaga & Palma (2012) methodology.

Additionally, in the Santiago PT system, all buses are equipped with GPS devices that
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record the time and position every 30 seconds and we have used those data (AVL data) to
obtain the observed frequency on transit lines.

2.3.1 Common lines analysis
To determine if passengers are using common lines, we identified, for each OD pair, all route

sections of the routes registered in the trips database. For those route sections, we identified
the list of transit lines passing through and then applied the greedy heuristic (Chriqui &
Robillard, 1975) to identify the set of common lines for each route section.

The optimization problem to find common lines is shown in Equation 2.1, where the first
term of this equation corresponds to the waiting time and the second term corresponds to the
average of the in-vehicle travel times. Spiess & Florian (1989) explain that the waiting time
parameter can take a value of 1, when assuming an exponential distribution of interarrival
times of vehicles, or a value of 0.5 when assuming constant headways of vehicles. In this
study, we use the waiting time parameter equal to 1 because previous studies have found
irregular headways in the vehicles of the PT system of Santiago (Arriagada et al., 2019;
Godachevich & Tirachini, 2021), and because the exponential distribution has been found to
fit real waiting time data well (S. Guo et al., 2011). Specifically, in Equation 2.1, it is assumed
that buses arrive following a Poisson distribution with arrival rates being the sum of the
observed frequency of lines, fl being the observed frequency of line l, tl being the in-vehicle
travel time of line l, L being the number of lines serving the evaluated route section, and xl
taking value 1 when line l belongs to the common lines set and taking value 0 in other cases.
Therefore, the optimal strategy for a user would be to take the first bus from this set of lines
that arrives at the stop. In summary, the process to identify the common line set considers an
evaluation of waiting time and in-vehicle travel time to classify a line as attractive (belongs
to the common line set) or non-attractive. Therefore, common lines may or may not overlap
in their trajectory, there are cases without overlap, with partial overlap, or with 100% overlap
between lines that belong to the common line set.

min 1∑
l∈L fl

+
∑
l∈L

fltlxl∑
j∈L fjxj

(2.1)

Following this approach, we found 45,089 route sections with at least one trip. Among
these, we analyzed 30,385 pairs, avoiding those with extra-vehicle payment systems (zona
paga) and Metro stations, where the specific trajectory used is unknown because of the way
in which it is inferred from the SC data (Munizaga & Palma, 2012). For 95.8% of the route
sections, all transit lines passing through were common lines and concentrated 468,275 of the
observed trips. In the remaining 4.2% of route sections, which included 44,612 trips, some
lines did not belong to the common lines set; in those cases, 79.9% of the trips were made
using a line from the common lines set and 20.1% took buses from lines that did not belong
to the common lines set.

There are many reasons why a user would not follow the common lines strategy and end up
considering instead a seemingly “slower” line for a trip. This could result from the omission
of variables that are relevant for the user, such as (i) level of crowding, (ii) seat availability,
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(iii) the type of bus, as some lines may have newer buses or buses with air-conditioned or
more comfortable seats, (iv) the bus operator, as some of them are more reliable. It could
also result from behavioral conditions, such as (v) that the waiting time disutility can be
higher than travel time disutility, (vi) or group behavior when passengers consider the utility
of another passenger as part of the decision process. Any of these, or a combination of them,
can make users prefer a slower line. We use the traditional version of the common lines
approach that considers the summation of waiting and travel time, not assigning different
weights to them. Possible extensions are left for further research, including the way in which
the common lines set is built, that could consider a different valuation of travel time and
waiting time, or incorporate other attributes.

As an illustrative example, we analyzed two route sections in the system in greater detail:
one with common lines only (Figure 2.5), and another with two non-common lines (Figure 2.3).
We compared the observed trip distributions with the expected trip distributions. For the
expected trip distribution we assume that (i) passengers would board the first line belonging
to the common lines set that arrived at the bus stop, and (ii) they would not board the lines
that did not belong to the common lines set. The expected number of trips in a pair of stops
or in a route section r along transit line l is expressed in Equation 2.2, where OTr is the
observed total number of trips in route section r and Plr is the probability of boarding line l
to travel along the route section r. Plr is shown in Equation 2.3, where Lr is the number of
common lines serving route section r.

ETlr = PlrOTr (2.2)

Plr = fl∑
i∈Lr

fi
(2.3)

In the first route section, shown in Figure 2.5, the origin bus stop is connected to a Metro
station by three common lines (348, H08, and H03) with in-vehicle travel times between
11.7 and 12.8 minutes and waiting times between 13 and 14.2 minutes. Table 2.3 shows
the observed distribution and the expected distribution of trips among the three common
lines. The expected distribution according to the common lines theory is not significantly
different from the observed distribution (Pearson’s chi-squared test), so in this example,
we can conclude that passengers took lines according to the common lines principle. An
implication of this finding is the possibility that passengers consider common lines as part of
the same alternative since they take the first line that arrives at the stop.

In the case of the route section shown in Figure 2.3 that has two lines, the origin bus stop
is the first stop for two transit lines and is located in a suburban area. The only options to
reach a Metro station are the local bus line (B18) or the express bus line (B18e). The optimal
strategy is to wait for the express line (B18e), therefore line B18e belongs to the common
lines set while B18 does not. According to the common lines model, all users should take
the express line. However, Table 2.3 shows the observed distribution of trips, where 95.2%
of trips are made with the express line and 4.8% are made with the local line. The 4.8% of
trips made with the slower travel option were made by one passenger, who traveled in the
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analyzed OD pair 15 times, taking the local route 9 times and the express route 6 times. A
possible explanation for this seemingly odd behavior might be any of the reasons explained
above. This simple example suggests that lines that do not belong to the common lines set
according to the model can still be attractive to some passengers.

Figure 2.2: Trajectory of the three common lines (348, H08 and H03)

Figure 2.3: Trajectory of the two non-common lines (B18e, express bus line and B18, normal
bus line)
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Table 2.3: Statistics of lines in specific cases of common lines and non-common lines

Case Line Travel time Expected
waiting time

Observed
trips

Expected
trips

Common lines
348 13.3 min 12.8 min 40 (26.0%) 49 (31.8%)
H08 13 min 12.7 min 47 (30.5%) 49.4 (32.1%)
H03 14.2 min 11.3 min 67 (43.5%) 55.6 (36.1%)

Non-common lines B18 35.8 min 12.2 min 9 (4.8%) 0 (0%)
B18e 17.5 min 7.8 min 179 (95.2%) 188 (100%)

In order to capture the behavior of passengers regarding the use of common lines within
the database as a whole, we propose a disaggregated line usage indicator qn. This indicator is
based on the difference between the expected number of trips (proportional to the observed
frequency of the common lines and equal to zero for transit lines not belonging to the common
lines set) and the observed trips in a route section.

The disaggregated line usage indicator is shown in Equation 2.4, which has the purpose
to identify if the number of trips made by user n follows the common lines principle. The
first level of the equation sums overall route sections visited by the user and the second level
sums over each common line belonging to the route section to compare the observed trips and
expected trips in each common line. In Equation 2.4, Rn is the number of the route section
visited by passenger n, Lr is the number of common lines serving route section r, and πlrn
is defined in Equation 2.5. The elements in Equation 2.5 are: the expected number of trips
for user n on line l along the route section r (ETlrn) and the observed number of trips for
user n on line l along route section r (OTlrn). The disaggregated line usage indicator takes a
value of 1 when all trips are concentrated in one of the common lines, or when they are made
in some of the non-common lines. It takes a value of 0 when the number of expected trips
matches the number of observed trips. The number of observed trips is obtained from SC
data, and the number of expected trips is calculated with Equation 2.3.

qn =
Rn∑
r=1

Lr∑
l=1

πlrn∑Rn
r=1 Lr

(2.4)

πlrn = |ETlrn −OTlrn|
max(ETlrn, OTlrn) (2.5)

Using real data, we calculated qn for the users that traveled in route sections that do not
begin in a zona paga or in a Metro station. We analyzed 28,896 cards (each corresponding to
an individual user) and, as can be seen in Figure 2.4, 20.9% of them showed a value of qn
equal to or less than 0.1, which means that their observed behavior is consistent with boarding
the first bus of the common lines that arrive at the stop. Around 5% of them showed a value
of 1.0, which means that they take one specific bus line, even when there are other common
lines available. In summary, the analysis qn shows that some users use common lines, others
use a subset of common lines, and others do not use common lines.

26



With this analysis, we have provided empirical evidence that passengers show heterogeneity
in their route choice behavior. This finding has significant implications for route choice models,
since these should incorporate heterogeneity across passengers in the use of alternative choice
strategies.

Figure 2.4: Distribution of disaggregated line usage indicator

2.4 Assessment of discrete choice modeling approaches
In this section, we study the research hypothesis by developing random utility maximization

(RUM) models that incorporate disaggregated and aggregated route choice strategies.

2.4.1 Consideration set construction
The first challenge in the formulation and estimation of a PT route discrete choice model

from SC data corresponds to the construction of the consideration set. For the consideration
sets, we first defined the origin and destination locations, which we considered as the areas
within a 100-meter radius of the origin and destination stops of the trip. It is important to
note that a sensitivity analysis was performed to define the radius of the origin and destination
zones and we found that 100-meter radius zones generated the most consistent results in the
models. In particular, larger radius zones generated unexpected results in the vehicle travel
time coefficient. For each OD pair, we constructed the consideration set by combining all
available and observed routes used by every passenger traveling within the defined origin and
destination areas in the study period (6:30 to 8:30). It means that for each OD pair the same
consideration set is used for all passengers.

The consideration set was built depending on the behavioral assumption of the respective
model. As was explained before, we considered two possible approaches: (i) an aggregated
strategy that implies aggregating the common lines set in a single alternative and taking the
first bus that arrives at a stop and (ii) a disaggregated strategy that implies choosing only
one line in each route section.

Figure 2.1 illustrates an hypothetical OD pair, Table 2.1 shows the consideration set that
would be built under a disaggregated strategy, and Table 2.2 shows the consideration set that
would be built under an aggregated strategy. It is shown that if we construct the consideration
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set with aggregated alternatives, there are three possible routes. For route section O-T the
orange line, yellow line and grey line belong to the common lines set, so they are part of
the same alternative, and therefore there is only one alternative in the sequence O-T-D. For
segment O-D there are two non-common lines, and therefore two alternatives. If we construct
the consideration set with disaggregated alternatives, there are five possible routes in the
consideration set.

2.4.2 Route choice modeling
As mentioned in the introduction, most route choice models assume that one strategy

applies to all passengers within the network. However, this is not consistent with what we
observe in the data, since the analysis using the disaggregated line usage indicator, in section
2.3.1, indicates passengers present different route choice strategies, some of them consider
common lines and take the first incoming bus and others prefer to wait for a specific transit
line. Therefore, our suggestion is to consider heterogeneity in the strategies used by passengers
within route choice models. A latent class model (Walker, 2001) is appropriate for this route
choice model because it incorporates different underlying behavioral rules. In our case, these
behavioral rules dictate different ways of identifying the choice set.

The latent class model has two components: a class membership model and a class choice
model. In our context, there are two classes: passengers who consider common lines, and
therefore use an aggregated strategy (class 1), and passengers who do not consider common
lines, and therefore use a disaggregated strategy (class 2). The membership probability is
modeled using a binary logit model, where the deterministic utility function vn is interpreted
as the propensity of passenger n to belong to the disaggregated strategy class. The propensity
of the aggregated strategy class is fixed to zero for normalization purposes. The representation
of the propensity function depends on a constant and on the dispersion γn of transit lines
used by the passenger, as shown in Equation 2.6. The dispersion can be measured with
indicators based on the chi-square test, the Kolmogorov-Smirnov test, the Gini coefficient,
and the statistical inference algorithm proposed by Nassir et al. (2017). In this study, we
use the Gini coefficient (Glasser, 1962), which varies between 0 and 1. The value 0 means
that the passenger made the same number of trips on each transit line that belongs to the
common lines set, and the value 1 means that the passenger made all his/her trips on one line.
Passengers with a Gini coefficient equal to zero have a higher probability of using common
lines as a route choice strategy. The Gini coefficient is shown in Equation 2.7, where Rn is the
number of route sections visited by passenger n, Lr is the number of common lines serving
route section r, OTlrn is the observed number of trips for user n on line l along route section r,
and µrn is defined in Equation 2.8. The probability Λn(CL) of belonging to class 2 is shown
in Equation 2.9, and the probability that passenger n selects alternative i is presented in
Equation 2.12, which is expressed using the total probability theorem.

vn = βCL + βγγn (2.6)

γn =
∑Rn
r=1

1
2µrnLr(Lr−1)

∑Lr
l=1

∑Lr
j=1 |OTlrn −OTjrn|

Rn

(2.7)
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µrn = 1
Lr

Lr∑
l=1

OTlrn (2.8)

Λn(CL) = exp(vn)
exp(vn) + 1) (2.9)

Since we do not know if a passenger uses common lines due to the latent nature of the
behavior (i.e., it is not observed), we try to approximate this behavior through the indicator
γn, which cannot be put directly into the systematic utility function because it would result
in endogeneity due to the correlation between γn and the error term (Guevara, 2015). This
problem can be solved with the latent class approach (Guevara, 2015). However, it requires
formulating a structural equation and resolving the problem through maximum simulated
likelihood, which is a memory-intensive process and requires more time than any other part
of the algorithm that is already computationally very expensive. To avoid this problem, we
address the endogeneity problem using the Multiple Indicator Solution (MIS) method that
was adapted to discrete choice models by Guevara & Polanco (2016).

The MIS method is proposed as an accessible way to address endogeneity when it is
difficult to gather traditional instruments, but two (or more) indicators of the omitted variable
causing the endogeneity are available. In that case, it can be shown (see Guevara & Polanco
(2016)) that the problem will be solved if the researcher adds one of the indicators as an
auxiliary variable of the model and uses the other indicators as instruments for applying the
Control Function method. The intuition behind the MIS method is that by including the first
indicator as an auxiliary variable one eliminates the endogeneity produced by the omitted
attribute, but in turn, causes a different type of endogeneity resulting from the use of an
improper proxy. In this modified model, the only remaining source of endogeneity resides in a
measurement error for the included indicator, which can be solved using the other indicators
as instruments in a Control Function application.

The MIS method is applied using the disaggregated line usage indicator qn (Equation
2.4) as the instrument, and the Gini coefficient as the indicator, in two stages. The first
comprises an OLS regression of the Gini coefficient on its instrument, the disaggregated line
usage indicator qn (Equation 2.10). The second stage consists of adding δn, the residual of
Equation 2.10, to the propensity equation to correct for endogeneity, as shown in Equation
2.11. Finally, the choice model is estimated using the choice probability shown in Equation
2.12 but using the systematic propensity vn shown in Equation 2.11.

γn = βintercept + βqqn −− > δn (2.10)

vn = βCL + βγγn + βδδn (2.11)

Pn(i) = P (i|CL)(1− Λn(CL)) + P (i|CL)Λn(CL) (2.12)
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Given the consideration set Cn for passenger n, we adopt a RUM framework, where we
associate a utility for each route alternative and choose the route with the highest utility
value. The utility has two components: the random component, which is assumed to be
Gumbel distributed; and the deterministic component, which is specified in Equation 3.1.

Vi =
∑
m

βttmttmi +
∑
c

βtctci +
∑
s

βtrstrsi + βPSCPSCi + βCRCRiBUSi (2.13)

In this equation, i represents the alternative route, m is the PT mode (m ∈ bus,metro),
ttmi is on board travel time, it is included in the sum over all modes of the alternative i, tci is
other time components (c ∈ {initial waiting time (IWT), transfer waiting time (TWT), and
transfer walking time(TWaT)}, it is included in the sum over all components times of the
alternative i, trsi represents the penalties for different transfer types (s ∈ {bus to bus (BB),
Metro to bus (MB), bus to Metro (BM)}, it is included in the sum over all transfer types
of the alternative i, BUSi is a binary variable that takes a value of 1 when the alternative
contains the bus mode, and CRi is the level of crowding at line-stops that are used within
the alternative. PSCi is the path size correction term to capture the correlation due to
overlapping between alternative routes.

The level of crowding of a line in a route section is calculated as the number of passengers
inside of buses divided by the capacity of the buses. The level of crowding in an alternative
route is the average of the crowding of each route section that belongs to that alternative.

Path size correction introduces a negative factor (PSCi) that decreases the deterministic
utility of alternative routes that have correlation with other routes. We have used the
expression according to Bovy et al. (2008) in Equation 2.14, where Lr is the length of the
route section r, Li is the length of route i, ζi is the set of route sections belonging to route i,
and δrk is the route section-route incidence number, which takes a value of 1 if route k uses
route section r and a value of 0 otherwise.

PSCi =
∑
r∈ζi

Lr
Li

ln 1∑
k∈Cp

δrk
(2.14)

The waiting time included in tci in Equation 3.1 is obtained assuming an exponential
distribution as one divided by the observed frequency of the line (or sum of frequencies, in
the case of common lines). The exponential distribution (or the gamma, which is the sum of
exponentials) has been widely used for modeling waiting time in transportation systems (e.g.
Nguyen & Pallottino, 1988; Raveau & Muñoz, 2014; Schmöcker et al., 2013). In aggregated
alternatives, the time components and level of crowding per route section are a weighted
average (based on frequency) of the values corresponding to the transit lines that conform
each route section.

Because of the Gumbel distribution of the error term, the probability of passenger n
choosing itinerary i given consideration set C is expressed as a PSL model (Bovy et al., 2008).
Equation 2.15 presents the probability of choosing itinerary i in the case of a passenger who
does not use common lines and Equation 2.16 presents the probability of choosing itinerary i

30



in the case of a passenger who uses common lines, where V(j(i)) is the systematic utility of the
aggregate alternative route j which contains itinerary i, ζi is the set of route sections that
belong to alternative route i, Lr is the set of common lines that belong to route section r,
and f(l(i),r) is the observed frequency of transit line l which passes through route section r
and is part of itinerary i.

In the last case, it is necessary to multiply the probability of choosing the aggregated
alternative with the probability that the line, in each route section, arrives first at the stop.
As an example, if we want to know the probability of choosing itinerary alternative O-orange
line-T-red line-D in Figure 2.1, and the passenger uses common lines, we should multiply the
probability of choosing aggregated alternative O-orange/yellow/blue line-T-red line-D by the
probability that the orange line arrives first at stop O, which is proportional to its observed
frequency.

P (i|CL) = expVi∑
k∈C expVk

(2.15)

P (i|CL) = expV(j(i))∑
k∈C expVk

∏
r∈ζj(i)

f(l(i),r)∑
k∈Lr

fk,r
(2.16)

The closed-form logit formula of the PSL allows for a simple estimation of the fixed
coefficients by maximizing the likelihood function.

2.4.3 Consideration sets results
The alternative routes were generated using historical choices for each OD pair. As

explained in previous sections, we worked with two types of alternatives: disaggregated
alternatives were used to construct consideration sets without common lines, and aggregated
alternatives were used to construct choice sets with common lines. We worked with OD
pairs that featured between 2 and 10 disaggregate alternatives; OD pairs with fewer or more
disaggregate alternatives were discarded. Using this filter, we obtained 20,871 OD pairs
with an average of 3.45 available alternatives within the consideration set with disaggregated
options, and 1.38 available alternatives with aggregated options.

The overlap between alternative routes was evaluated at the stop level, which means that
the alternatives that used the same route sections and transport mode were considered as
correlated elements. It is important to note that for both, disaggregated and aggregated
alternatives, the Path Size correction term was obtained with the same procedure, described
in equation 2.14. In order to compare the correlation of each link with other alternative
routes, we derived transit line trajectories from GTFS data (for Metro, we did not know
the trajectory used by passengers, so we assumed that passengers took the route with the
lowest travel time). The Path Size correction term (PSCi) takes a value of 0 when there is
no overlap between the evaluated alternative and others, and the value decreases as the level
of route correlation increases; that is, the smaller the PSCi value, the higher the correlation
of route i. Choice sets without common lines have a mean PSCi of -0.85 and choice sets
with common lines have a mean PSCi of -0.16. The lower value (more negative) in PSCi for
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disaggregated alternatives is expected because the conformation of alternatives with common
lines captures a part of correlation which is considered by PSCi in disaggregated alternatives.

2.4.4 Model estimates
PSL models and latent class models were estimated with a sample of 150,430 observations,

which corresponds to trips made during 15 workdays during the morning peak period (between
6:30 and 8:30 AM). The PSL was estimated in two cases, with aggregated and disaggregated
alternatives routes. The latent class models were estimated with the MIS approach correcting
for endogeneity and the two types of choice sets.

The specification of the deterministic utility function considers in-vehicle travel time for
bus and Metro, waiting time at the beginning of the trip and during transfers, walking time
during transfers, transfer penalties for bus to bus, bus to Metro, and Metro to bus, and
the level of bus crowding. Metro to Metro transfers cannot be incorporated into the model
because the information about the route that the passenger used inside the Metro network is
not available. Table 2.4 shows the minimum, mean, and maximum values for each attribute
considered in the models. Aggregated alternatives present lower values for waiting time
because common lines are considered as part of the same alternative.

Table 2.4: Statistics of attributes used in PSL and latent class models

Attribute Disaggregated alternatives Aggregated alternatives

Min Mean Max Min Mean Max

Travel time in bus 0 16.55 89.53 0 16.55 90.26
Travel time in metro 0 17.68 72.73 0 17.68 72.73
Initial waiting time 1.7 8.33 17.47 0.81 4.18 17.46

Transfer waiting time 0 2.90 17.5 0 2.38 17.40
Transfer walking time 0 0.78 9.79 0 0.82 9.79

Transfer bus-bus 0 0.08 2 0 0.08 2
Transfer Metro-bus 0 0.05 1 0 0.05 1
Transfer bus-Metro 0 0.62 1 0 0.62 1

Total transfer 0 0.75 2 0 0.75 2
Bus crowding level 0 0.21 1.2 0 0.21 0.95

Table 2.5 shows the estimated parameters and rates of substitution for PSL models using
the consideration set with disaggregated and aggregated alternatives. The parameters are
statistically significant and with the expected sign, except for the term PSC, which is not
statistically significant in the aggregated alternatives model and is statistically significant but
with the unexpected sign in the disaggregated alternatives model. Given that PSC belongs
to the interval (−∞, 0] and implies a reduction in the systematic utility of correlated routes,
we expect a positive sign in the coefficient. The rates of substitution suggest that transfers
represent between 11.5 and 16 minutes of Travel Time in Bus (TTB), a 10% increase in
crowding level represents 1.3 minutes of TTB, travel time in Metro is more burdensome than
travel time in bus, and initial waiting time, transfer waiting time and transfer walking time
are more burdensome than travel time in bus.
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Table 2.5: PSL estimates (t tests) and rates of substitution in case of disaggregate alternatives
and aggregate alternatives

Parameters Model estimates Rates of substitution

Disaggregated
alternatives

Aggregated
alternatives

Disaggregated
alternatives

Aggregated
alternatives

Travel time in bus -0.063 (-43.8) -0.062 (-37.2) 1 1
Travel time in metro -0.067 (-34.5) -0.070 (-32.6) 1.06 (3.3) 1.13 (6.4)
Initial waiting time -0.098 (-82.0) -0.139 (-57.8) 1.56 (13.9) 2.24 (16.4)

Transfer waiting time -0.082 (-24.2) -0.080 (-11.3) 1.30 (5.0) 1.29 (2.4)
Transfer walking time -0.309 (-44.6) -0.091 (-9.3) 4.91 (27.0) 1.47 (2.9)

Transfer bus-bus -1.017 (-19.3) -0.727 (-12.1) 16.14 (16.2) 11.73 (10.3)
Transfer bus-Metro -0.732 (-18.6) -0.673 (-15.0) 11.62 (16.6) 10.84 (13.4)
Transfer Metro-bus -0.948 (-6.7) -1.000 (-6.8) 15.05 (6.2) 16.13 (6.3)
Bus crowding level -0.807 (-17.6) -0.711 (-7.7) 12.81 (15.0) 11.47 (7.1)

PSC -0.132 (-4.6) 0.071 (1.3)
N° observations 150,430 150,430
Log-likelihood -157050.3 -35978

Adjusted rho-square 0.044 0.083
All columns show t-values between parentheses. t-tests are against zero for the model estimates and against
one for the rates of substitution. For the rate of substitution, we followed the procedure proposed by Daly et

al. (2012).

We estimated a simple latent class model using Equation 2.6 for the propensity of the
disaggregated strategy, which adds the Gini coefficient to the utility specification. The results
of this model showed unexpected results, such as a positive sign for the walking transfer time
coefficient and transfer bus to bus coefficient in the class aggregate alternatives. These biased
parameters can be explained because of the endogeneity, given that the Gini coefficient is
correlated with the error term of the propensity function. For this reason, we applied the MIS
method including the Gini coefficient in the membership model and disaggregated line usage
indicator as the instrument, as described in Equation 2.11. This model, shown in Table 2.6, is
better than the endogenous model, since the coefficient of walking transfer time variable and
transfer bus to bus variable have a negative sign. The fit of the MIS model is slightly better
than that of the simple latent class model. This allows us to conclude that the combination
of the Gini coefficient with the disaggregated line usage indicator provides more information
than the latent class model without any indicator or with the Gini coefficient alone.

We tested the application of the MIS method including the disaggregated line usage
indicator in the membership model and the Gini coefficient as the instrument; however, it
obtained a non-statistically significant coefficient for the disaggregated line usage indicator,
which can be explained because the Gini indicator presents poorer performance than the
disaggregated line usage indicator (Guevara et al., 2020).

The rates of substitution in the MIS latent Class model (Table 2.6) confirm some findings
within the PSL models, but there are also important differences between them. In contrast
to the PSL models, we found the following results in the MIS latent Class model: both the
initial waiting time and the transfer waiting time are perceived as less unpleasant than TTB
for the disaggregated alternatives class, increasing the difference in perception of waiting
time between both classes of passengers, given that individuals of the aggregated class find
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initial and transfer waiting times more unpleasant than TTB; bus-to-bus transfers are more
unpleasant for passengers belonging to the aggregated alternative class; and bus-to-Metro
transfers are more unpleasant for passengers belonging to the disaggregated alternative class.

The most unpleasant transfer for the disaggregated strategy class is Metro-to-bus, which
represents 15.9 minutes of TTB, while for the aggregated strategy class the most unpleasant
is bus-to-bus, representing 18.9 minutes of TTB. With respect to the bus crowding level
variable, a 10% level of bus occupation represents 1.2 minutes of TTB for the class without
common lines, and 0.9 minutes for the common lines class. On the other hand, waiting time
at the beginning of the trip and during transfers is more burdensome for passengers who
use aggregated alternatives, which is to be expected, as people consider common lines with
the purpose of decreasing waiting time. Bus crowding levels and walking during transfers
are more burdensome for passengers who use disaggregated alternatives; therefore, we can
suggest that these passengers may not be using all common lines because they try to avoid
walking and crowding situations. The membership class model parameters have the expected
signs and are statistically significant, showing the heterogeneous route choice strategies of
passengers.

The adjusted rho-square of the models varies between 0.03 and 0.08. It should be reminded
that rho-square in discrete choice models does not have a direct interpretation as explanatory
power. It has been shown, e.g., by Bohara et al. (2007), it is possible to accept a model
with a rho-square value of around 0.05. To confirm the validity of our models we performed
a likelihood ratio test that rejected the null hypothesis that the coefficients are equal to 0,
which shows that there is a gain in estimating the decisions of passengers using the proposed
models.
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Table 2.6: Multiple Indicators Solution latent class estimates (t tests) and rates of substitution
in case of disaggregate alternatives and aggregate alternatives

Model estimates Rates of substitution

Parameters Disaggregated
alternatives

Aggregated
alternatives

Disaggregated
alternatives

Aggregated
alternatives

Travel time in bus -0.085 (-42.7) -0.05 (-19.1) 1 1
Travel time in Metro -0.081 (-30.0) -0.056 (-16.9) 0.95 (-2.1) 1.1 (3.4)
Initial waiting time -0.041 (-24.6) -0.099 (-29.9) 0.5 (-22.6) 2 (7.7)

Transfer waiting time -0.043 (-9.0) -0.058 (-6.3) 0.5 (-8.6) 1.2 (0.8)
Transfer walking time -0.396 (-39.6) -0.08 (-5.8) 4.7 (25.1) 1.6 (2.1)

Transfer bus-bus -0.974 (-12.0) -0.944 (-11.5) 11.5 (10.3) 18.9 (9.1)
Transfer bus-Metro -0.938 (-14.0) -0.722 (-12.1) 11 (12.6) 14.4 (10.4)
Transfer Metro-bus -1.349 (-6.8) -0.85 (-3.4) 15.9 (6.3) 17 (3.2)
Bus crowding level -1.016 (-15.8) -0.472 (-3.9) 12 (14.0) 9.4 (3.5)

PSC -0.339 (-7.5) 0.189 (2.6)
Membership class

Constant disaggregated strategy -19.25 (-7.4)
Gini indicator 50.22 (7.5)

Residual -108.3 (-7.4)
N° observations 150,418
Log-likelihood -155825.7

Adjusted rho-square 0.031
All columns show t-values between parentheses. t-tests are against zero for the model estimates and against
one for the rates of substitution. For the rate of substitution, we followed the procedure proposed by Daly et

al. (2012).

2.5 Discussion
This section is devoted to the analysis of PS and MIS latent class models parameters with

the purpose of understanding route choice behavior in a multimodal large-scale network.

2.5.1 Travel time
The negative coefficients of travel time variables show a disutility of travel time for

passengers. In the models, we estimate travel time by mode to understand the sensitivity
of travel time for individuals per mode. The results in both path size logit models indicate
that passengers find travel time in Metro to be more burdensome. This is not surprising, as
in Santiago, the Metro offers high frequency and reliable service (stable headways) but the
crowding levels inside the cars are significant, reaching up to seven passengers per square
meter during peak hours, making even short trips uncomfortable. The opposite was found
by Eluru et al. (2012) in Montreal, and by Anderson et al. (2017) in Copenhagen, where
the unobserved factors are different. In those cases, the Metro network, besides having a
high frequency and stable operations, provides protection from extreme weather conditions,
especially during winter. Therefore, users prefer to travel underground.

Furthermore, the latent class models indicate that there are differences between the two
classes of passengers in terms of how they perceive travel time in bus and Metro. Passengers
who choose disaggregated alternatives find travel time in bus slightly more unpleasant than
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travel time in a Metro, while passengers who choose aggregated alternatives find travel time
in Metro slightly more unpleasant than travel time in a bus. A possible explanation for this
difference in the effect of travel time is related to the physical discomfort in Metro. There is a
need for future research to examine this difference in detail.

2.5.2 Waiting time
The models indicate that alternative routes with lower waiting times are preferred. In

the models we estimated sensitivity to waiting time at the beginning of the trip as well as
at any transfer stages. The results in all models (except the disaggregated alternatives in
the MIS latent class model) indicate that passengers find waiting time at the beginning of
the trip to be more onerous than waiting time during transfers. Few studies have reported
this difference in the perceived waiting time, which can be explained because individuals feel
particularly anxious to start the trip, while during transfers, this anxiety decreases since the
trip has already began.

Differences in waiting time perception are shown in the MIS latent class model, where
passengers that choose aggregated alternatives find the waiting time more onerous than
passengers who choose itineraries. This is expected, as passengers use common lines to
decrease their waiting time. On the other hand, surprisingly, the initial waiting time is found
to be less onerous than the in-vehicle time for disaggregated strategy class. It might be the
case that users who care less about waiting time, are more willing to wait for a specific bus
line of their preference (disaggregated strategy), which reflects in a smaller coefficient for
waiting time than in-vehicle travel time. Likewise, it might be the case that users who use
disaggregated alternatives are keener to use mobile transport applications that provide bus
arrival time that allow them to further reduce their waiting time because they can arrive at the
bus stop just in time to take the bus. As the model calculates the waiting time as a function
of the observed frequency, yielding the same value for all users, the waiting time for the users
who use mobile transport applications might be overestimated. If they are concentrated in
disaggregate alternatives class, this may bias our results for that class, reflecting in a smaller
coefficient for waiting time than in-vehicle travel time.

2.5.3 Walking time
Routes with lower walking time during transfers are preferred. All models show that

walking time is more onerous than travel time in bus, and the MIS latent class model indicates
that individuals from different classes show a substantial difference in the effect of the walking
time variable. For passengers who choose itineraries, walking time is more unpleasant than it
is to passengers in the other class, which can explain why those passengers prefer a specific
itinerary instead of all lines that belong to the common lines set.

2.5.4 Transfer
The alternatives used in this work involve transfers. When there is a potential waiting time

and walking time for each transfer, we incorporated the influence of transfers on alternative
routes in multiple ways: transfers per mode, transfer waiting time, and transfer walking
time. As expected, alternatives with fewer transfers, lower waiting times, and lower walking
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time per transfer are preferred. As can be seen in the MIS latent class models, both types
of passengers, from the disaggregated and aggregated strategy class, prefer the bus-metro
transfer to other types of transfers (bus-bus, metro-bus). This can be explained because the
metro is more regular than the buses, and then all passengers prefer to transfer to a more
regular service. On the other hand, the most disliked type of transfer for passengers who
choose disaggregated alternatives is Metro-to-bus; for passengers who use common lines, the
most disliked type of transfer is bus-to-bus. The largest difference between classes occurs in
the bus-to-bus transfer that jumps from 11.5 min in the disaggregated strategy class to 18.9
min for the aggregated strategy class. We speculate that this may occur because bus-to-bus
transfers are prone to a larger uncertainty, which generates an extra difficulty to plan a trip
when this type of transfer is considered as an alternative, especially in the case of passengers
that plan a trip using aggregated strategy. This may result in a larger bus-to-bus transfer
penalty for that class. This must be further analyzed with additional information.

2.5.5 Path Size Term
In the PSL model with disaggregated alternatives, as with the disaggregated alternatives

class in the MIS latent class model, the results showed that the path size correlation has a
negative sign, which is not expected. Nevertheless, Anderson et al. (2017) obtained the same
result for the correlation term, explaining this phenomenon as the fact that passengers prefer
more opportunities to reach their destination from their point of origin. In this study, the
correlation term was positive, as expected, in the aggregated alternatives.

It should be noted that the negative value for the path size is not uncommon in the
literature about PT traveler’s route choice. In fact, although the path size is supposed
to correct for overlapping routes by reducing the utilities of overlapping routes, negative
estimates for path-size terms have been found (Anderson et al., 2017; de Grange et al., 2012),
most likely because of the additional utility of travelers having more opportunities to reach
their destination from their origin, or because travelers might value the availability of a large
number of en-route alternative options over the uniqueness of the route (Anderson et al.,
2017). A very recent study (O. A. Nielsen et al., 2021) has even found non-significance of
the path size estimate once transfer related variables were inserted explicitly in the utility
function, suggesting that the inclusion of those variables captures the similarity explicitly.

2.5.6 Membership model of the latent class model
Using the Bayesian estimator of class membership in the MIS latent class model, we

determined that 51.2% of passengers belong to the disaggregated strategy class1 and 48.8%
of passengers belong to the aggregated strategy class. Figure 5 shows a histogram for the
predicted probabilities of belonging to both latent classes. It can be seen that around 41% of
individuals have a probability higher than 0.98 of belonging to disaggregated strategy class
and other 38% have a probability higher than 0.98 of belonging to aggregated strategy class,
which means that there is a similar proportion of passengers that wait for specifics transit

1This value is higher than the value reported for passengers in London. Kurauchi et al. (2014) found that
only 17% of passengers in London use the same transit line every morning (considering 4 days of evaluation).
However, if they consider common lines, the variability in the chosen routes decrease, indicating that much of
the variation in the route choice is due to common lines that could be part of the users’ strategy.
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lines and that consider common lines as part of the same alternatives.

In order to understand if the distance of the trip generates an effect in the route choice
strategy of passengers, we calculated the probability of class membership separately for those
passengers who make short trips (10 km or less of Euclidean distance) and who make long
trips (more than 10 km of Euclidean distance). The results of this analysis do not show
evidence that trip distance influences the choice of the route choice strategy. In this line,
further work needs to be done to establish whether some characteristics of the OD pairs affect
the route choice strategy of passengers. One example is the level of overlapping between
alternative routes, which can allow distinguishing users who consider complex aggregated
strategies (common lines with a small level of overlapping) versus users who consider less
complex aggregated strategies (common lines with a high level of overlapping).

Figure 2.5: Histogram for the estimated class membership probabilities for the MIS latent
class model with Gini coefficient as the indicator and disaggregated line usage index as the
instrument. N=18,466

2.6 Conclusions
This study uses SC data from Santiago, Chile to evaluate the route choice strategies

of PT system users. We identified two types of strategies in the existing literature: (i) a
disaggregated strategy and (ii) an aggregated strategy.

To analyze the use of common lines (aggregated strategy), we used an indicator based on
the difference between the number of expected and observed trips for each passenger within
lines that connect the route sections used by the passenger to make trips. The results of this
analysis showed evidence for heterogeneity within route choice strategies. Some passengers
use common lines in each stage of their trip, while others use one specific line, even when
there is more than one common line between their origin and destination. Another group is
not well-defined, because it uses a subset of common lines, as defined by Chriqui & Robillard
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(1975).

Because our data showed that a proportion of passengers uses common lines in each stage
of their trip, we estimated three RUM models: a PSL model with disaggregated alternatives
or itineraries, which assumes that all passengers use a disaggregated strategy; a PSL model
with aggregated alternatives, which assumes that all passengers use an aggregated strategy;
and a MIS latent class model, which takes in consideration the endogeneity problem. The MIS
latent class model contains two classes, disaggregated alternatives and aggregated alternatives,
assuming that some passengers use common lines in trip stages and other passengers use a
disaggregated strategy. One of the more significant empirical findings to emerge from this
study is that passengers present differences in their travel behavior when they choose a route
to arrive to the destination: some consider common lines, while others wait for a specific line.

It is interesting to note that both groups of passengers have differences in their perceptions
of some route attributes. The MIS latent class model contributes to our understanding of
those differences, which would not be possible to obtain with a simple multinomial logit model
or with a PSL model. With the MIS latent class model, we see that passengers using the
aggregated alternatives strategy prefer to travel in bus rather than Metro, while passengers in
using the disaggregated strategy have no preference for one transport mode over the other.
Waiting time is more burdensome for passengers who use common lines, lending support to
why they consider more than one line as part of the same alternative. Walking time and bus
crowding is more burdensome for passengers who use disaggregated alternatives, suggesting
that they prefer specific lines in order to avoid walking and/or crowding. With the estimation
of the membership class parameters in the latent class model we found that the percentage of
passengers that use itineraries as route alternatives is similar to the percentage of passengers
who use common lines. We speculate that a high proportion of passengers use disaggregated
strategy because a proportion of them do not know which transit lines belong to the common
line set or they use real-time information to reduce their waiting time choosing the transit line
that they prefer. This suggests that in order to reduce waiting times and improve passenger
perception of PT, it may be important that transport authorities make real-time information
channels available, allowing users to know which common line alternatives allow them to
reach their destination.

In this study, we use observations from frequent passengers that travel during morning
peak periods for at least 15 times during a month, and that stay in the destination locations
for at least two hours. In this way, we try to capture trips to regular activities such as work
or study. A natural progression of this work is to analyze the route choice strategies using
data from less frequent users, who probably do not know the transport network as well and,
we speculate, may use more disaggregated strategies than aggregated strategies. In other
words, future research is required to determine if the frequency of PT use affects the route
choice strategy of passengers. Other interesting extensions of this work would be to analyze
other periods of the day, such as the afternoon peak period and off-peak hours, where one
would expect that passengers have different preferences. We speculate that, for those periods,
the disutility of the waiting time and travel time might be smaller since users do not have a
tight schedule to reach their destination, as it happens in morning peak hours with trips to
work or study.
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Since the PT system in Santiago operates by headway scheduling, without fixed-time
schedules, the analysis of route choice strategy undertaken here has extended our knowledge
of route choice behavior of passengers that travel in frequency-based transit networks. In this
context, it is important to address the common lines problem, because users face a choice
between multiple transit lines from one stop to the next transfer station, and some of them
prefer to board the first bus that arrives to minimize the total expected travel time. Several
questions remain to be answered about the route choice strategy used by passengers that
travel in other contexts. For example, passengers that travel in a schedule-based transit
network, where users can optimize their trips by planning their arrival time to the bus stop.
This can also be the case when users have real-time information about buses’ arrival times.
These contexts allow passengers to save waiting time (if the transit lines are punctual or the
online information is accurate) while choosing their preferred lines. We might expect that in
these cases, people may tend to use more the disaggregated strategy.

Another possible line of research is related to the improvement of the process of constructing
common lines by considering different valuations for travel and waiting times, and/or by
the incorporation of other attributes. An intuitive first step toward this effort could be
to use for that the attributes’ valuation that resulted from the choice modelling process.
That approach would imply building an iterative process of uncertain convergence and huge
computational costs but, more importantly, theoretical and empirical evidence suggests against
it. Swait & Ben-Akiva (1987) show that it would be inappropriate to assume that attribute
valuation obtained from the choice modeling stage is the same as those regarding the choice
set formation, which is the role played by the common lines in our framework. Instead, if
one would want to modify the valuation of the attributes of the common lines approach, the
correct way to address it would have to be built within the framework of a classic four stages
transportation model in which the PT assignment is affected by the car assignment, and the
overall impact of the proposed changes is accounted for. The type and amount of data, as
well as the computational burden needed to address such problem, exceeds the scope of the
present research.

Further research should focus on the revision of the assumption of the exponential distribu-
tion that is used for the waiting time. Although it has been found to fit real data well (S. Guo
et al., 2011), recent efforts of improvement in this line have been explored in recent literature,
including, among other things, mixing distributions (see e.g. Ingvardson et al., 2018), and
loglogistic, gamma, and erlang distributions (Q. Li et al., 2015). It should be borne in mind
that using those distributions may significantly complicate the problem by requiring, e.g., a
complete enumeration of transfers and stops, although some approaches to that problem have
been proposed in recent literature (Q. Li et al., 2015).

Finally, the findings of our research can be used to suggest some guidelines for PT models
that can help steer decisions regarding where to implement new routes and how to improve
existing ones. Firstly, given that a percentage of passengers use common lines, implementing
lines with overlap in high-demand sectors will effectively allow passengers to reduce their
waiting time. Secondly, as the model showed that bus-to-bus and Metro-to-bus transfers are
more unpleasant than bus-to-Metro transfers, identifying OD pairs that required transfers
would focus planning efforts to reduce the number of onerous transfers. Thirdly, given that our
models show that transfers requiring walking generate larger disutility levels for passengers,
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high-demand transfer points should be carefully designed to avoid this problem.
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Chapter 3

Assessing feasible approaches for
building the consideration set in
public transport route choice
modeling using smart card data

This chapter is the second component of this thesis, which aims to answering the sec-
ond research question (see Section 1.3.2): How do different consideration set generation
practical approaches impact the estimation and predictions in a PT route choice model?.
This study contribution is to propose and apply a methodology to assess different feasible
approaches to address the consideration set problem in PT route choice models, both from
a theoretical perspective and using four weeks of revealed preferences constructed from SC
data from Santiago, Chile. The approaches under study are K-shortest paths, Labeling,
Link elimination, Link penalty, Simulation, Combined (mix of all previous approaches), and
the Historical/Cohort method. The first six methods emulate heuristics that individuals
may use for building the consideration set, while the seventh is originally based on intuition
but can also be fully justified from a theoretical viewpoint by reinterpreting the theorem of
estimation and sampling of alternatives. For the empirical assessment, the first three weeks
of SC data are used for estimation and to assess the fit and behavioral coherence attained
with the feasible approaches under study. The fourth week of data is used for out-of-sample
prediction analysis. The analysis shows that the Historical/Cohort method outperforms all
other feasible approaches analyzed in all measures considered. This strong empirical evidence
supporting the Historical/Cohort approach is in line with the theoretical results supporting
it and suggests the convenience of using this approach, whenever feasible, beyond the PT
route choice context. However, theoretical and practical challenges remain to be addressed,
especially regarding its applicability in forecasting.

This chapter is under review in the following article:

Arriagada, J., Guevara, C. A., & Munizaga, M. A. (2022). Assessing feasible approaches for
building the consideration set in public transport route choice modeling using smart card
data. Transportation Research Part C: Emerging Technologies (under review).
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3.1 Introduction
To properly estimate and forecast with discrete choice models, it is crucial to identify the

set of alternatives that were truly considered by an individual when making a choice. The
problem is exacerbated when the number of alternatives is excessively large, as is the case in
route choice models, but it is always an issue in any choice situation. The composition of the
consideration set assumed by the researcher may importantly impact the model estimates and
the predicted choice probabilities (Bliemer & Bovy, 2008; C. Prato & Bekhor, 2007), since
a wrong assumption implies a potentially severe misspecification. Although various feasible
approaches have been proposed to build consideration sets for route choice modelling, to
date, no comprehensive assessment of these approaches has been possible because of data and
methodological limitations. Furthermore, little is known about the impacts of the composition
of the consideration set in the case of PT route choice modeling. This study contributes to
close this gap by proposing and applying a methodology to assess seven feasible approaches to
address the consideration set problem in PT route choice models, using four weeks of revealed
preferences constructed from SC data from Santiago, Chile.

The methods proposed to address the consideration set problem can be broadly classified
in two categories. The first uses a single-stage approach to model the consideration and
the choice, while the second uses a two-stage approach. In the first category, all available
alternatives are implicitly considered in the utility function, but some alternatives are penalized
when attributes violate certain parameters, up to a point in which they cannot be chosen
(Castro et al., 2013; Mart́ınez et al., 2009). These methods require identifying all possible
alternatives, which is feasible in scenarios with a small number of alternatives, but becomes
infeasible for larger choice-sets, such as those involved in route choice modeling. Because of
this, and because evidence has shown that the consideration set and the choice from considered
alternatives involve distinct mental processes, it has been suggested that it is preferable to
explicitly model the consideration and the choice stages separately (C. G. Prato, 2009).

There is a vast literature that discusses the identification of the consideration set prior
to the route choice model. Three types of literature within this realm can be distinguished.
The first group corresponds to theoretical contributions related to discrete choice models that
explicitly include the construction of the consideration set in their analysis. The seminal
work in this regard corresponds to Manski (1977), who proposes an approach where the
consideration set is treated as a latent variable. Even though Manski (1977)’s approach
theoretically solves the issue, in practical terms, it has two problems. The first is that is
unclear how to appropriately define a practical function for the probability of considering
a given latent set. The second is that the method involves enormous computing costs to
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enumerate all the combinations of possible consideration sets, an almost impossible task in
the case of route choices in dense transit networks. To solve these practical problems, Swait &
Ben-Akiva (1987) and Ben-Akiva & Boccara (1995) propose using individual characteristics
(e.g., income or driver’s license ownership) or restrictions (e.g., distance) to develop expressions
for the consideration-set probability, and to consider simplifying assumptions to reduce the
number of potential latent sets. This approach, although intuitively appealing, is still an
ad-hoc solution to the problem. Furthermore, although this approach may be feasible for
choice-sets with a reduced number of alternatives, it quickly becomes infeasible for problems
involving many options, such as route choice models.

A second group of studies separating the consideration set problem from the choice stage
are empirical contributions, mainly in marketing, that investigate the size of the consideration
set and the factors that may influence alternative consideration (Brown & Wildt, 1992; Hauser,
2014). Similarly, in transportation, Hoogendoorn-Lanser & Van Nes (2004) contrast the
consideration set stated by the individual with an “objective set” that was built by first
enumerating all feasible alternatives within a space-time window and then reducing the set
using a branch and bound algorithm based on logical constraints. The authors conclude
that, while the number of alternatives available to the travelers may be very large, the set of
alternatives perceived is substantially smaller and even fewer alternatives are finally considered.
In this regard, Villalobos Zaid (2018) show results that suggest that using stated preferences
to collect information on the consideration set may be prone to severe hypothetical bias,
reflected in the fact that the size of the consideration set gathered from such tools depends
systematically on the experimental setting.

A third group of studies, mainly focused on route choice modeling, aims to develop practical
methods for generating the consideration set. A practical, or feasible, method is usually an
algorithm or heuristic that tries to reproduce or emulate the behavior that individuals may
follow when building their consideration set. Our research effort falls within this category, with
an emphasis on the PT case, for which we have extensive revealed preferences observations
constructed from SC data.

The existing literature on PT users’ route preferences has applied both stated preference
(SP) data and revealed preference (RP) data. The studies that have used SP data (e.g. Eluru
et al., 2012; Grison et al., 2017; Vrtic & Axhausen, 2002) obtain the information from a survey
that asks people to choose a route from a set of alternatives in a hypothetical route choice
situation, which may or may not be based on a real trip situation. This methodology to
obtain the data has the advantages of being relatively inexpensive and allowing the researcher
to know the true consideration set faced by the respondent, but it introduces hypothetical
bias, since the user does not experience an actual trip.

On the other hand, the use of RP data has the advantage of reflecting true information
about the users’ choices in real situations, but, in this case, the researcher does not know the
true consideration set, and data collection costs are higher. PT route choice studies that work
with RP data may use traditional travel survey methods to capture choices and attributes,
but these are not only expensive but also impractical for large samples (Z. Guo, 2011; Z. Guo
& Wilson, 2011; Raveau et al., 2011, 2014; Raveau & Muñoz, 2014; Ton et al., 2020; Vrtic &
Axhausen, 2002). Recently, some authors have dealt with this problem using SC data. The
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main purpose of SCs is to collect PT fares but, as a side benefit, they also collect a large
quantity of very detailed data regarding the choices made by PT users at significantly lower
costs when compared with traditional survey methods, with few practical limitations, and
with unprecedented granularity and scalability (Pelletier et al., 2011).

In the context of PT route choice studies that use RP data, the consideration set generation
process is a complex task, since, usually, there are countless feasible alternative routes in a
transport network, especially in a dense multimodal one. Two ways to identify the consideration
set in practice can be distinguished in the applied literature: build it using an algorithm or
heuristic that emulates how individuals may build the consideration set, or impute it from
historical data. Most of the heuristics used to build feasible consideration sets in practice
are based on iterating some type of deterministic shortest path (C. G. Prato, 2009). Some
typical heuristic approaches are the K-shortest path, Labeling (Ben-Akiva et al., 1984), Link
elimination, Link penalty, Stochastic path methods, and combination of previous methods.
On the other hand, in the last decade to tackle the consideration set problem has been to
impute it from historical data, i.e., previous choices made in a similar situation (Yap et al.,
2020; Kim et al., 2020; Jánoš́ıková et al., 2014; Raveau et al., 2011, 2014). We denominate
this method as the Historical/Cohort approach, which can be formally defined as building a
practical consideration set from some collection of all observed choices made by the traveler
in some timeframe prior to the instance under analysis, or the collection of observed choices
of other users in the same cohort in cross-section data. Our research implements and assesses
six typical heuristic approaches, together with the Historical/Cohort approach, which has
become feasible with the advent of SC data.

Beyond the consideration set problem, which is the focus of this research, another important
challenge in PT route choice modeling is the high level of correlation between route alternatives
that share various links (e.g. C. G. Prato, 2009), which alters the choice probabilities of
overlapping routes. Therefore, route choice models must properly represent the correlation
structure among alternative routes. Most studies of PT passenger route choice behavior have
used the Multinomial Logit (MNL) discrete choice model (Schmöcker et al., 2013; Nassir
et al., 2018; Jánoš́ıková et al., 2014; Kim et al., 2020; Grison et al., 2017; Z. Guo, 2011;
Raveau et al., 2011, 2014; Raveau & Muñoz, 2014; Vrtic & Axhausen, 2002), which assumes
independence of alternatives, and therefore ignores the correlation problem due to overlapping
route segments. To address this limitation, the analytical Path Size Logit (PSL) approach has
been proposed, which accounts for correlation by adding a deterministic term that reduces
the utility of overlapped alternatives (Yap et al., 2020; Rui, 2016; Anderson et al., 2017;
Bovy & Hoogendoorn-Lanser, 2005; de Grange et al., 2012; Hoogendoorn-Lanser et al., 2005;
O. A. Nielsen et al., 2021). Our research implements both types of models, the basic MNL
model and the PSL model.

In this study we assess the relative performance of seven feasible approaches to address
the consideration set problem for PT route choice modeling using revealed preferences data.
The revealed preference data is built using three weeks of SC transaction data, representing
the actual route choice behavior of passengers who used Santiago, Chile’s dense PT network.
For the analysis, we use two specifications, the multinomial logit model and the path size
logit model. We first evaluate the impact of different consideration set generation approaches
by assessing the plausibility of the model estimates and the in-sample fit attained by each
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approach using different statistics and criteria. We conclude by studying the out-of-sample
prediction performance attained by each method using the fourth week of data.

The remainder of this chapter is organized as follows. Section 2 presents a formal demon-
stration of why the Historical/Cohort approach can be used to obtain consistent estimators of
the model parameters. Section 3 describes the case study, the Santiago, Chile transit network.
Section 4 discusses the proposed methods used for the consideration set and route choice
models. Section 5 introduces the estimation and prediction results. Section 5 concludes and
discusses policy and research implications.

3.2 On The Theoretical support for feasible approaches
to building the consideration set

Despite the increasing sophistication of feasible approaches to building the consideration
set, methods that are based on repeatedly varying some type of deterministic shortest path
are just heuristics that attempt to emulate a supposed consideration behavior. There is no
theoretical support for them beyond the assumption that the individual’s choices are rational,
according to the researcher. Whenever the true consideration behavior varies from the rational
behavior assumed by the researcher, the practical results may be poor. Therefore, empirical
assessment of any of proposed method under a common framework is critical; however, it has
been scarcely applied. Villalobos & Guevara (2021) presented Monte Carlo evidence along
these lines. In the next section, we present, for the first time, a contribution along these lines
using real PT route choice information extracted from SC data.

The only feasible consideration set approach for which a formal theoretical support has
been given recently corresponds to variations of what we call the Historical/Cohort approach,
which builds the consideration set from past choices made by the same individual, or from the
choices of other individuals in the same context. Crawford et al. (2021) provide a theorem
that justifies achieving consistency when considering what they call ”sufficient sets” (our
Historical/Cohort approach) by reinterpreting McFadden (1978) result for the estimation and
sampling of alternatives. However, the result obtained by Crawford et al. (2021) is inaccurate
regarding one important detail. It is sustained on the premise that this consistency would be
achieved if any subset of the true consideration set were used for estimation, but McFadden
(1978) shows that, in general, a sampling correction depending on the sampling protocol
is needed. Following Guevara (2022), we derive the required sampling correction when the
consideration set is constructed from past choices and formalize the conditions under which
such a correction would satisfy the uniform condition property and thus can be ignored when
constructing practical estimators.

Consider a Random Utility Model (RUM) setting in which the utility Uin that an individual
n receives from alternative i can be written as the sum of a systematic part Vin and a random
error term εin as shown in Equation 3.1, where Vin depends on attributes xin and population
parameters β∗.

Uin = Vin + εin = Vin(xin, β∗) + εin (3.1)
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Then, if εin is distributed iid Extreme Value (0, µ), the probability that n will choose
alternative i will correspond to the Logit model shown in Equation 3.2, where Cn is the
true consideration set of Jn elements from which individual n selects one alternative. The
scale µ in Equation 3.2 is not identifiable and is thus usually normalized to equal 1 to grant
identification.

Pn(i) = eµVin∑
j∈Cn

eµVjn
(3.2)

Consider that the true consideration set Cn is latent to the researcher, but that she can
observe the R choices that occurred in past instances. These observations could correspond
to choices made by the same individual n or, assuming group homogeneity, choices made by
diverse individuals who faced the same choice situation. In practice, this type of data can be
gathered, for example, from a series of supermarket purchases or, in the case of a commuting
mode or route, from a series of passive data records across weekdays. In cross-sectional data,
this information may be obtained by observing trips that shared an OD pair, period, trip
purpose, income group, household composition, etc. As is described in the next section, in
the case study considered in this study, based on passive SC data, we consider that a cohort
corresponds to trips taken between the same OD pair, defined at a zonal level based on the
boarding and alighting bus stops, and period of the day, within the previous three weeks
of available data. As was explained before, we denominate this practical choice-set as the
Historical/Cohort consideration set. Since the number of previous choices within the previous
three weeks may differ by OD pair, formally R shall depend on the OD pair but, for notational
simplicity, we will avoid adding an OD subscript.

The researcher is interested in modeling the choice occurring at the instance R+1. To
do so, she builds a practical consideration set that includes all the alternatives that were
observed in the previous R instances, plus the alternative chosen at instance R+1, if it was
not already included. We assume the invariability of attributes and choice sets across the
R+1 instances. This implies that neither the xin nor the consideration set change across time.
Regarding the internal validity of the assumption of invariability of attributes, this could
reasonably hold for the PT system in a normal context, but may be more questionable when
there is a disruption to the system, resulting in a loss of stability (Yap et al., 2017; Malandri
et al., 2018). The assumption of the invariability of the consideration set may most likely
hold in practice for habitual choices, like commuting using PT or when buying staple goods
in the supermarket. These invariability assumptions may become more questionable when
using past cohort choices instead of one individual’s own historical choices. The degree of
external validity of these assumptions may only be tested in the field using real data. This is
one of the purposes of our case study.

Under these assumptions, the key towards demonstrating the consistency of the Histori-
cal/Cohort approach lies in noting that the R previous choices could be understood as draws
with replacement from the true consideration set, with a sampling protocol defined by the
choice probability.

Formally, the problem originally tackled by McFadden (1978) was that the true consider-
ation set Cn was too large to be processed in practice by the researcher, which was solved
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by building a reduced practical set Dn ⊆ Cn for estimation, using some known sampling
protocol conditional upon the chosen alternative. Formally, π(Dn|j) corresponds to the
conditional probability that the researcher would sample the set Dn, given that alternative j
was chosen by individual n. Under this setting McFadden (1978) showed that by maximizing
a pseudo-loglikelihood using the choice probabilities shown in Equation 3.3, one can obtain
consistent estimators of the model parameters.

Pn(i|Dn) = eVin+lnπ(Dn|i)∑
j∈Cn

eVjn+lnπ(Dn|j) (3.3)

The merit of the model depicted in Equation 3.3 is that it only depends on the alternatives
of the reduced set Dn, reducing a problem of possibly millions of alternatives to just a few
dozen. The resulting model has a closed form that corresponds to a simple Logit model with
a correction term by alternative lnπ(Dn|j) that only depends on the sampling protocol. This
result holds thanks to the IIA property of the Logit model but was extended to more flexible
models like GEV (MEV), RRM, and Logit Mixture by Guevara et al. (2016); Guevara &
Ben-Akiva (2013a,b), respectively.

Despite the simplicity of Equation 3.3, it cannot be directly used to solve the consideration
set problem using Historical/Cohort choices because the correction term lnπ(Dn|j) depends
on the choice probability, which is obviously unknown to the researcher. However, in some
cases, when the “uniform condition”1, as McFadden (1978) called it, holds, the sampling
correction lnπ(Dn|j) cancels out across alternatives and can therefore be ignored. This occurs,
for example, when the protocol used to build Dn corresponds to drawing the chosen alternative
and then adding a given number of nonchosen alternatives randomly drawn from Cn. If we can
prove under which circumstances the uniform condition also holds for the Historical/Cohort
approach, the problem will be solved.

As stated before, the Historical/Cohort approach to the consideration set problem can be
seen as a problem of estimation with importance sampling of alternatives with replacement, a
feature that was studied by Ben-Akiva & Lerman (1985) and revisited by Ben-Akiva (1989).
Using the results from Ben-Akiva (1989), which assumes the multinomial distribution for the
probability π(Dn|j), it can be shown that, for the Historical/Cohort approach, the sampling
correction π(Dn|j) corresponds to the expression shown in Equation 3.4, where zj is the
number of times alternative j was chosen in the R + 1 instances.

π(Dn|i) = zi
Pn(i)

R!∏
j∈Dn

Pn(j)zj
= zi
Pn(i)KD ≈

zi
zi/R

KD = RKD (3.4)

The demonstration continues by first noting that the term KD that does not change across
alternatives and that, as the number of instances R grows, the choice probability Pn(i) will
become closer to ni/R, resulting in the sampling correction approximating RKD, a term that
does not depend upon the alternative. Since the sampling correction in Equation 3.4 enters

1Uniform condition: the probability of sampling the set Dn given i is the same to the probability of
sampling the set Dn given j, for all i and j ∈ Dn.
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the choice probability shown in Equation 3.3, this means that the correction cancels out and
can simply be ignored in the likelihood. Based on this demonstration, it can be affirmed that,
under the invariability assumption, the Historical/Cohort approach can obtain the same or
better performance estimation and prediction results than other heuristic methods commonly
used to identify the consideration set. The case study presented in the next section is aimed
at studying this hypothesis.

3.3 Case study: data sources and research methodol-
ogy

In this section we describe the implementation of the case study, which consists of i)
describing the available data set, ii) defining the urban modeling network, iii) applying seven
consideration set generation techniques to the Santiago, Chile urban network; iv) estimating
the route choice models using the consideration sets generated in (ii), and (v) evaluating the
model performance for the different consideration sets.

3.3.1 Route choice data from smart cards in Santiago, Chile

The analysis for this study was carried out using the Santiago, Chile multimodal PT
network, known as Transantiago. Santiago is the capital of Chile and has a population of
over seven million inhabitants. The PT system serves roughly 50% of motorized trips and is
operated by headway scheduling; therefore, lines do not have timetables . The fare system is
fully integrated, with an almost flat fare between urban buses, Metro, and one rail service ,
allowing up to three trip legs within a two-hour time window. In a typical week, three million
cards (passengers) use the system to take 25.5 million trips. The network includes seven
Metro lines, more than 300 bi-directional transit lines, and one rail service. In this study, we
use observations from passengers that travel during morning peak periods (6:30-8:30 AM) on
weekdays. Specifically, we select users that remain at their destination locations for at least
two hours. In this way, we aim to capture regular activity-based trips, such as work or study.
The morning peak period is the most congested - more than 700 thousand trips per day can
be observed - and is therefore the most interesting travel period from a planning perspective.

Very detailed demand information is available from the automatic fare collection (AFC)
system in Transantiago (Gschwender et al., 2016). The SC bip! is the only accepted payment
method, and passengers must validate when boarding a bus or entering a Metro station. The
data is already processed to estimate the boarding and alighting position for all validations
and the trip legs (stages) associated with each observed origin-destination journey, using the
Munizaga & Palma (2012) methodology.

We selected trips taken in the PT system during May 2018. Specifically, we use three
weeks (15 weekdays) to estimate the models and the fourth week (5 weekdays) to evaluate
the prediction accuracy of the models.
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3.3.2 Network representation

To represent the urban transit network, we use the network representation proposed by
Cepeda et al. (2006); Spiess & Florian (1989), which is a frequency-based network formulation,
through a direct graph G = (N,A), where N represents the nodes of the network and A
represents the arcs of the network. This representation contains two subsets of nodes. The
stop nodes, which are used to represent bus stops, Metro stations, and train stations; the line
nodes, which are used to represent transit lines (bus, Metro, or train). All nodes that represent
the same transit line are connected by an on-board arc. When a transit line, represented by
a line-node A, serves a bus stop, represented by a stop-node B, both nodes, A and B, are
connected by a boarding arc and an alighting arc. When two stop nodes are separated by a
walkable distance (100 m), they are connected by a walking arc. Additionally, each arc a ∈ A
is characterized by ta, which is a nonnegative travel time and fa, which is a nonnegative
frequency. This frequency is used to estimate the waiting time, and it is assumed that the
arrivals of the different transit lines are independent and exponentially distributed. This
assumption has been adopted by several authors (Cepeda et al., 2006; Spiess & Florian, 1989),
since the exponential distribution (or the gamma, which is the sum of exponentials) has been
found to fit real data well (S. Guo et al., 2011). Alighting, walking, and on-board arcs do not
have waiting time, and they are assigned infinite frequencies.

Therefore, waiting time for the boarding links is obtained assuming a Poisson process,
yielding an average value of one over the observed frequency of the transit line. The observed
frequency is obtained from Automatic Vehicle Location (AVL) data. In-vehicle travel time
for the on-board links is obtained from a combination of AVL and General Transit Feed
Specification (GTFS) data. For a link that involves a transit line with frequent headways,
the process considers all dispatches along the transit line and takes an average of the travel
time for the link. The travel time of the link per expedition is obtained from AVL data,
and if it is not available, it is obtained from GTFS data. Since AVL data is not available
for the Metro or the train, the travel time for their links is obtained from the operational
parameters provided by the service operator. The walking time for walking links is obtained
assuming that passengers walk at a speed of 4 km/hour, which is a standard value within
transportation studies, and considers the Manhattan distance between nodes, since some
studies have found that it is a better substitute for the network distance than the Euclidean
distance (Mora-Garcia et al., 2018; Tien et al., 2011). The total network used in this study
contains 46,583 nodes and 117,816 links.

3.3.3 Seven approaches for generating the consideration set

For the consideration sets, we first define the origin and destination location of each journey,
which we consider as the area within a 100-meter radius of the corresponding origin and
destination stops. An alternative path is characterized by the boarding stops, the transit lines
used in each stage of the journey, and the alighting stop of the last stage of the journey.

We randomly selected 258 OD pairs to evaluate. For each OD pair, we construct the
consideration set by using seven different techniques: the Labeling approach, Link elimination
approach, Link penalty approach, K-shortest path approach, Simulation approach, Combined
approach, and Historical/Cohort approach.
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The Labeling approach is based on the behavioral assumption that users consider different
objectives to select the considered route alternatives. Each label corresponds to a different
objective function for which a given path is optimal (Ben-Akiva et al., 1984). In this study,
this approach is applied using six different cost functions. Labels 1 through 3 use only one
variable (path attribute) in the cost function while labels 4 through 6 are built by weighting
multiple variables. Label 1 generates the route with the minimum in-vehicle travel time
between the origin and destination zones. Label 2 generates the route with the minimum
waiting time between the origin and destination zones. Label 3 generates the route with
the minimum number of transfers between the origin and destination zones. Label 4’s cost
function adds in-vehicle travel time, waiting time, and walking transfer time, assuming the
same weight for each of them. Label 5 penalizes waiting time by a factor of 1.6 and walking
transfer time by a factor of 3, using values obtained from Arriagada et al. (2022). Label 6
uses the same penalization from label 5 for waiting time and walking transfer time and adds
a penalization of 13 minutes to bus-to-bus, Metro-to-bus, and bus-to-Metro transfers, using
values obtained from Arriagada et al. (2022).

The Link elimination approach repetitively searches for the minimum cost path after
removing a link from the optimal path. This approach follows the stages: (a) identifying the
generalized minimum cost path, (b) eliminating the link from the generalized minimum cost
path that is closest to the origin and has not been removed previously, and (c) identifying the
generalized minimum cost path. We followed the procedure used by Rui (2016). When all
links along the first generalized minimum cost path have been eliminated, the iteration will
move to the next generated path. The procedure ends when there are no remaining paths that
reach the destination or where the maximum number of alternative paths (N) is reached. In
this study, we use N=20 since the maximum size of observed paths from SC data is 18. The
cost function includes in-vehicle travel time, waiting time, walking time, and transfer penalty.

The Link penalty approach also repetitively searches for the minimum cost path, but unlike
the previous method, it imposes a penalty on the cost of all links that form the optimal path,
instead of removing a link. This approach follows the stages: (a) identifying the generalized
minimum cost path, (b) penalizing the generalized minimum cost path links by a factor of
1.05, and (c) identifying the generalized minimum cost path. We followed the procedure used
by C. Prato & Bekhor (2007). The procedure ends when a maximum number of alternative
paths (N) is reached. In this study, we use N=20 since the maximum size of observed paths
from SC data is 18. The cost function includes in-vehicle travel time, waiting time, walking
time, and transfer penalty.

The K-shortest path approach consists of the identification of the best K paths according
to the link cost function. The behavioral assumption behind this approach is that passengers
choose from a limited-size consideration set, avoiding costly alternatives. In this study we use
the algorithm proposed by Yen (1971) and K is set to 20, since the maximum size of observed
paths from SC data is 18. The cost consists of in-vehicle travel time, waiting time, walking
time, and transfer penalty.

The Simulation approach searches for the minimum cost path for each random draw of
link cost functions from a truncated normal distribution with the mean equal to the original
cost of the link and the standard deviation equal to 20% of the original value. 50 draws
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of randomized cost functions were performed for each OD pair. The cost function includes
in-vehicle travel time, waiting time, walking time, and transfer penalty.

The Combined approach builds the consideration set mixing the alternatives found in the
Labeling approach, the Link elimination approach, the Link penalty approach, the K-shortest
path approach, and the Simulation approach.

The Historical/Cohort approach consists of identifying all alternatives recorded and ob-
served for each OD pair in the past by any traveler during the study period (in our case, SC
data observations from 6:30 to 8:30 on weekdays). Each alternative is characterized by the
stops and transit lines used by the passengers that traveled between the OD pair. The premise
of this approach is that all travelers for the same OD pair might share the same consideration
set and thus, the historical choices made by the individuals from the same cohort (OD pair)
would necessarily belong to the true consideration set. This approach has been used by Yap
et al. (2020); Kim et al. (2020); Jánoš́ıková et al. (2014).

All approaches, except the Historical/Cohort approach, require the specification of a transit
network and can generate alternative paths that contain walking stages at the beginning
and/or end of a trip. As this type of path cannot be observed in the SC data, we specified for
all six heuristic approaches that the first link could not be walking. The same consideration
set was used for all passengers between an OD pair.

3.3.4 Specification of route choice models
In this study, we use two types of RUM models, the MNL discrete choice model, and the

PSL model. The MNL model is the basic model, which has been used for most studies of
PT passenger route choice behavior (Kim et al., 2020; Ton et al., 2020; Nassir et al., 2018;
Grison et al., 2017; Jánoš́ıková et al., 2014; Raveau et al., 2011, 2014; Raveau & Muñoz,
2014; Schmöcker et al., 2013; Z. Guo, 2011; Vrtic & Axhausen, 2002). Since route choice
models present a correlation between alternatives due to overlapping route segments, it
is necessary to correct the MNL model, which assumes the independence of alternatives.
To address this problem, the analytical approach of PSL models have often been adopted,
which account for the correlation by adding a deterministic term that reduces the utility of
overlapped alternatives (Arriagada et al., 2022; Yap et al., 2020; Rui, 2016; Anderson et al.,
2017; Bovy & Hoogendoorn-Lanser, 2005; de Grange et al., 2012; Hoogendoorn-Lanser et al.,
2005; O. A. Nielsen et al., 2021).

The deterministic component of the MNL model is specified in Equation 3.5, where i
represents the alternative route, TTi is in-vehicle travel time, IWTi is the initial waiting
time, TWTi is the transfer waiting time, TWalTi is the transfer walking time, and TRi is
the number of transfers between vehicles. The PSL model is presented in Equation 3.6, which
contains all attributes introduced in the MNL model and adds the path size correction (PSCi)
term to capture the correlation due to overlapping between alternative routes. Path size
correction introduces a negative factor that decreases the deterministic utility of alternative
routes that have correlation with other routes. We have used the expression according to Bovy
et al. (2008) in Equation 3.7, where Lr is the length of the route section r, Li is the length
of route i, ζi is the set of route sections belonging to route i, and δrk is the section-route
incidence number, which takes a value of 1 if route k uses route section r and a value of 0
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otherwise.

Vi = βTTTTi + βTWTTWTi + βTWalTTWalTi + βTRTRi (3.5)

Vi = βTTTTi + βTWTTWTi + βTWalTTWalTi + βTRTRi + βPSCPSCi (3.6)

PSCi =
∑
r∈ζi

Lr
Li

ln 1∑
k∈C δrk

(3.7)

Because of the Gumbel distribution of the error term, the probability of passenger n
choosing an alternative i given consideration set C is expressed as in Equation 3.2. The closed-
form logit formula of the Logit model allows for simple estimation of the fixed coefficients by
maximizing the likelihood function.

3.3.5 Evaluation of methods
The purpose of the evaluation process is to analyze the performance of the different

consideration set generation approaches both qualitatively and quantitatively. Since the route
choice models constructed with different consideration set generation approaches are not
comparable between each other using statistics with likelihood, we use the cross-validation
method, which consists of evaluating the prediction performance of the models for a part of
the data set that was not used for model estimation. In our case, the cross-section units are
periods of time, since the set of observations are split into two subsamples, the first subsample
being a period to estimate the models and the second subsample being a period to evaluate
the predictive capacity of the models. In the validation sample, we use the First Preference
Recovery (FPR) index, which is the proportion of observations that use the route alternative
with the highest chosen probability and the Average Likelihood (AL), which is shown in
Equation 3.8. In this equation, λn(i) = 1 if path i is chosen by observation n (0 otherwise),
N is the number of observations, Cn is the consideration set of observation n, and Pn(i) is
the calculated probability of observation n choosing path i.

AL =
∑N
n=1

∑
i∈Cn

Pn(i) ∗ λn(i)
N

(3.8)

3.4 Results

3.4.1 Consideration set generation approaches
The objective of a consideration set generation approach is to emulate the actual behavior

of passengers and obtain the maximum percentage of observations for which a path generation
approach reproduces the actual behavior. In this study, we use three coverage indicators. The
first indicator is Trip Coverage (TP), which is the percentage of trips in which the chosen
alternative is included in the generated consideration set. Equation 3.9 shows the formulation
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for TP, where P is the set of OD pairs, OB is the set of alternatives recorded by the SC
database for the OD pair p, CS refers to a specific consideration set generation approach, CSp
is the set of alternatives generated by the consideration set generation approach CS for the
OD pair p, Tap is the number of trips taken in alternative a in the OD pair p, and δa,CS takes
value 1 if alternative a belongs to the set of alternatives generated by the consideration set
approach CS for the OD pair p. It represents the percentage of trips that can be modeled with
each approach and indicates the effectiveness of the consideration set approach. The second
indicator is Efficient Coverage (EC), which is the percentage of the generated alternatives
actually observed in the SC data (Rui, 2016). Equation 3.10 shows the formulation for EC,
where γa,OBp takes value 1 if the alternative a belongs to the set of alternatives recorded in
the SC database for the OD pair p. This indicates the efficiency level of the consideration set
approach to produce the paths used by passengers and to avoid producing unused paths. The
third indicator is Passenger Path Coverage (PPC), which is the percentage of observed paths
included in the generated consideration set (Rui, 2016). Equation 3.11 shows the formulation
for PPC, which indicates the comprehensiveness level of the generated consideration set
regarding the observed alternatives. Trip coverage is the most important indicator since it
affects the second stage of a route choice model. Table 3.1 shows the three coverage indicators
for each consideration set generation approach in the estimation sample and in the prediction
sample. As the Historical/Cohort approach is built using the observed paths in the estimation
sample; therefore, in this period, its coverage indicators are equal to 1. However, in the
prediction sample, the observed paths can be different from the estimation paths, so coverage
indicators may vary.

TPCS =
∑
p∈P

∑
a∈OBp

Tapδa,CSp∑
p∈P

∑
a∈OBp

Tap
(3.9)

ECCS =
∑
p∈P

∑
a∈CSp

γa,OBp∑
p∈P

∑
a∈CSp

1 (3.10)

PPCCS =
∑
p∈P

∑
a∈OBp

δa,CSp∑
p∈P

∑
a∈OBp

1 (3.11)

Table 3.1: Performance of each consideration set generation approach

Consideration set
generation approach

Estimation sample Prediction sample
TP EC PPC TP EC PPC

Historical/Cohort 1 1 1 0.99 0.81 0.95
K-shortest paths 0.78 0.44 0.68 0.78 0.43 0.74
Labeling 0.72 0.53 0.63 0.72 0.53 0.67
Link elimination 0.79 0.33 0.69 0.79 0.32 0.74
Link penalty 0.85 0.14 0.78 0.85 0.13 0.82
Simulation 0.67 0.31 0.55 0.67 0.32 0.60
Combined 0.85 0.08 0.79 0.86 0.07 0.83

TC: Trip Coverage, EC: Efficient Coverage, PPC: Passenger Path Coverage.
These indicators were constructed using 15,594 observed trips in the SC database.
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As Table 3.1 shows, the Historical/Cohort approach obtains the highest coverage indicators
among all heuristics in the prediction sample. The Labeling approach obtained the highest
efficient coverage (EC) results out of the six heuristic approaches, which means that it
generates the most paths that are actually used by passengers. This finding was also reported
by (Rui, 2016). Regarding the alternatives that were observed in the trip database but were
not chosen by the Labeling approach, in general, these paths have costs similar to those
generated by the labels that minimize total travel time; however, they are not captured by any
label. The generated alternatives used by passengers are captured mainly by the label that
minimizes total travel time, while the label that minimizes in-vehicle travel time generates
paths with many transfers, and the labels that minimize waiting time and the number of
transfers generate alternatives with long in-vehicle travel times.

Contrary to the Labeling approach, the Combined approach obtained the lowest EC results,
which means that it generates more paths not used by passengers than any other approach
included in the analysis. However, excluding the Historical/Cohort approach, the Combined
approach most effectively produced the observed alternatives, since it obtained the highest
TC and PPC results.

The Simulation approach obtained the poorest TP and PPC results, even though the
number of draws (50) was higher than the K value for the K-shortest path approach and the
N value for the link elimination and link penalty approaches. The low level of the passenger
path coverage and trip coverage means that the Simulation approach generated paths with
the lowest coverage of observed paths. These problems occur because many unattractive
paths are generated, specifically with more transfers than the observed paths.

To evaluate the composition of the choice set, Figure 3.1 shows a boxplot that illustrates
the number of alternative paths generated by each consideration set approach. The Labeling
approach generated 4.2 alternative paths on average, which is similar to the number of path
sets generated by the Historical/Cohort approach (3.8 alternative paths on average). The
K-shortest path, Link elimination, Link penalty, and Simulation approaches generated a
larger consideration set, on average, than the Historical/Cohort approach. One explanation
for this is that these approaches include explicit constraints on the maximum number of
alternative paths, which is set to 20 for the deterministic methods (K-shortest path, Link
elimination, Link penalty) and 50 for the stochastic method (Simulation). Only the Link
penalty approach always generates 20 path alternatives for each OD pair, as this method
finds a different alternative for each iteration. The Combined approach generated the largest
consideration set, which is to be expected, since it jointly considers the different alternatives
from the five heuristics.
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Figure 3.1: Distribution of alternative paths per consideration set approach

For each consideration set approach, we calculated the average of each attribute that
characterized the alternatives for each OD pair. In Table 3.2, we show the mean and standard
deviation of the average of path attributes for each generated consideration set approach. We
use the Path Size (PSC) Term presented in Equation (7) to evaluate the capacity of each
approach to generate diverse paths. A PSC term equal to zero means that the generated
alternative paths included in the consideration set are not overlapped (the alternatives are all
different). A more negative PSC term means that the generated alternative paths included
in the consideration set have a higher degree of overlap (the alternatives are more similar).
The results in Table 3.2 show that the Combined approach generated the highest degree of
overlap between alternatives. This is because, since the Combined approach includes more
alternatives, there is a higher probability that they share links. Without considering the
Combined approach, the Simulation and Link penalty approaches generate the most heavily
overlapped alternative paths, while the Historical/Cohort, Labeling, and Link elimination
approaches generate the most diverse alternative paths.

Analyzing the number of transfers for each approach, the Historical/Cohort approach
generates the fewest transfers on average, followed by the K-shortest path approach. Therefore,
the K-shortest path approach generates fewer irrelevant path alternatives, on average, than the
other heuristic approaches. The waiting time shows similar results, where the waiting times
generated by the K-shortest path approach are quite similar to those of the Historical/Cohort
approach. The Labeling approach generates paths with longer waiting times and walking
transfer times, on average. This is expected, since the Labeling approach applies some labels
that do not take waiting and walking transfer times into consideration. Regarding in-vehicle
travel time, the K-shortest path approach and the Simulation approach obtained the results
closest to the Historical/Cohort approach, while the Link penalty approach produced routes
with the longest in-vehicle travel times.
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Table 3.2: Statistics of alternatives path attributes for each consideration set approach

Consideration set
approach

Size Path Size # of transfers Waiting time In-vehicle
travel time

Walking time
in transfer

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Historical 3.8 2.5 -1.2 0.7 0.8 0.9 7.7 3.3 25.5 13.4 1.0 1.4
K-shortest paths 10.0 7.7 -2.2 1.1 1.2 0.7 8.5 3.0 24.4 13.1 0.6 0.7
Labeling 4.2 2.8 -1.7 0.7 2.4 2.1 22.8 24.2 27.2 17.0 1.2 1.4
Link elimination 8.7 4.5 -1.7 0.6 1.5 0.9 14.1 12.0 29.1 16.4 1.1 0.8
Link penalty 20 0 -2.6 0.4 1.7 0.7 12.4 3.3 29.9 15.1 1.1 0.6
Simulation 9.5 6.4 -2.3 1.0 2.1 1.7 14.5 7.9 25.6 14.6 1.1 0.7
Combined 38.0 9.1 -3.4 0.5 2.1 0.9 15.7 5.7 29.4 15.3 1.2 1.1

3.4.2 Route choice models

MNL models and PSL models were estimated using a sample of 15,594 observations, which
correspond to trips taken during the 15 business days comprising the first three weeks of data.
Both types of logit models were estimated using the Historical/Cohort, K-shortest paths,
Labeling, Link elimination, Link penalty, Simulation, and Combined approaches.

The specification of the deterministic utility function considers in-vehicle travel time,
waiting time at the beginning of the trip and during transfers, walking time during transfers,
and the transfer penalty, which considers bus-to-bus, bus-to-Metro, and Metro-to-bus transfers.
Metro-to-Metro transfers cannot be incorporated into the model because the route that the
passenger uses inside the Metro network cannot be observed from the data.

Table 3.3 shows the estimated parameters for the MNL models for each consideration set
generation approach. The model that uses the Historical/Cohort reported parameters that are
all are statistically significant (at the accepted 5% threshold) with the expected sign. These
results are similar to the models that use a heuristic approach (Labeling, Link elimination,
Link penalty, Simulation, K-shortest paths, and Combined approaches), where the parameters
are statistically significant and with the expected sign, with the exception of the transfer
walking time parameter, which had a positive sign for all six heuristic approaches.

Table 3.4 show the estimated parameters for the PSL models for each consideration set
generation approach. The PSC term is statistically significant in all models. Given that PSC
lies within the interval (-,0] and implies a reduction in the systematic utility of correlated
routes, the positive sign in the coefficient obtained for all models is expected. All models
maintain the results shown in Table 3.3, in terms of statistical significance and the sign of the
parameters.

Comparing the results of the MNL models and the PSL models, the PSL models present
better model fit in all cases. Consequently, the inclusion of the PSC term in the specification
of the models allows for greater explanatory power compared to the MNL models. In summary,
these results show that, all consideration set approaches can represent the perception of
passengers with respect to the alternative path attributes, except for the transfer walking
time attribute, which obtained an unexpected sign for heuristic approaches.
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3.5 Discussion

This section analyzes the PSL model parameters to understand the differences between
each evaluated consideration set approach.

The negative coefficients of the travel time and waiting time variables show a disutility of
travel time for passengers. All models indicate that alternative routes with shorter in-vehicle
travel time and waiting times are preferred. In the models, we estimated sensitivity to waiting
time at the beginning of the trip as well as at any transfer stages. Table 3.5 shows that the
results of the rates of substitution of initial waiting time with respect to in-vehicle travel time
vary between 1 and 1.4. Focusing on transfer waiting time, the rates of substitution obtained
with most of the consideration set approaches are around 2, which is in line with the PT
route choice literature (Nassir et al., 2018; Rui, 2016; Raveau & Muñoz, 2014). However, the
Link elimination approach and the K-shortest paths approach generate a rate of substitution
of transfer waiting time value close to 3.

The disutility of the walking transfer time variable can only be represented by the model
that uses the Historical/Cohort approach, which generates a rate of substitution of around
1.2 (see Table 3.5). This attribute cannot be evaluated for the other approaches, since their
models generate a positive parameter. The trade-offs between in-vehicle travel time and
transfer walking time obtained with the Historical/Cohort approach are in line with some
studies that have reported a value between 1 and 2 (Jánoš́ıková et al., 2014; Nassir et al.,
2018). (Raveau & Muñoz, 2014) reported a value of around 3 minutes for this trade-off; the
model that uses the Historical/Cohort approach is closest to this value.

The negative coefficient of the transfer variable shows a disutility of the number of transfers
for passengers. All models indicate that passengers prefer alternative routes with the lowest
number of transfers. As shown in Table 3.5, the results of the rates of substitution of the
number of transfers with respect to in-vehicle travel time vary between 13 and 54 minutes.
The smallest value is reported by the model that uses the Historical/Cohort approach and
the highest value is reported by the model that uses the Simulation approach. Previous
studies have shown that one transfer is perceived by a typical passenger as equivalent to a
number that varies between 3.6 min and 16 min of in-vehicle time (Z. Guo & Wilson, 2011;
Nassir et al., 2018; Raveau & Muñoz, 2014; Rui, 2016). Therefore, the model that uses the
Historical/Cohort approach seems to best represent the perception of passengers regarding
transfers.

For a prediction analysis, the trip dataset is split into two parts. The parameters obtained
from the estimation are used to predict the paths chosen in the second part of the dataset,
which corresponds to 4,685 weekday observations from the fourth week of data. We use
the First Preference Recovery (FPR) and the Average Loglikelihood (AL) to evaluate the
performance of each consideration set approach. Table 3.6 shows the FPR and AL values
for the models constructed with each consideration set approach. The Historical/Cohort
approach resulted in the best prediction performance.

In summary, the results of this study suggest that the Historical/Cohort approach obtained
the highest level of prediction accuracy, and it is the only approach that returns, for all
attributes evaluated in this study, similar rates of substitution reported in the PT route choice
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modelling literature.
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3.6 Conclusions

Modeling route choice behavior requires the identification of non-chosen paths considered
attractive by travelers to reach a destination. This set of alternatives is call the consideration
set and is usually unknown to researchers working with revealed preference data. Most PT
route choice studies that work with this type of data have identified the consideration set
through ad-hoc heuristics, such as shortest path algorithms (Rui, 2016) or using historical data
(Jánoš́ıková et al., 2014; Kim et al., 2020). We use a variation of the historical data approach,
which we term the Historical/Cohort approach, to impute the past observed choices made by
the traveler, or by other users in the same cohort in cross section data, as the consideration set.
In this study, we first present the theoretical conditions under which the Historical/Cohort
approach would recover the population parameters. We then use a case study to assess the
performance of different consideration set generation approaches, which are commonly used
in the transport route choice literature, in terms of estimation and prediction. The results
show that the Historical/Cohort approach surpasses the other methods with regards to all
statistics considered.

The proof of the Historical/Cohort approach is based on an adaptation of the theorem of
sampling of alternatives (McFadden, 1978), in which prior choices are understood as draws
from the true consideration set, and the sampling correction cancels out when there are many
observations and invariability conditions hold. In this context, we hypothesize that route
choice models that use the Historical/Cohort approach to identify the consideration set obtain
the same or better results than any other consideration set generation approach.

To evaluate this research hypothesis, we use data from the PT system in Santiago, Chile
to estimate route choice models with different consideration set generation approaches: the
Historical/Cohort approach and six approaches based on shortest path heuristics: the Labeling,
Link elimination, Link penalty, K-shortest paths, Simulation, and Combination (of all prior)
approaches. To do so, we split the database in two parts, the first corresponding to three weeks
of weekday data and the second corresponding to weekday data from the fourth week. Using
the first part of the database, we estimated two RUM models using each consideration set
generation approach: a MNL model, which is the basic and most used model to represent route
choice in PT systems, and a PSL model, which captures correlation due to overlapping between
alternative paths. The results show that all PSL models obtained a better fit than the MNL
models. Focusing on the PSL models, the estimated parameters suggest that all consideration
set generation approaches can well-represent the perception of passengers for all attributes,
except for the transfer walking time, which is well-represented only by the Historical/Cohort
approach. Regarding the rates of substitution with respect to in-vehicle travel time, the
Historical/Cohort approach is the only model that returns values previously reported in the
PT literature for all attributes. The only attribute for which all consideration set generation
approaches returned a rate of substitution reported in previous studies was the initial waiting
time. For other attributes, one or more heuristic approaches reported non-expected values.
The evidence from this analysis supports the idea that the Historical/Cohort approach to
identify the consideration set accurately estimates the population parameters. In addition,
the comparison of prediction accuracy across different consideration set generation approaches
suggests that the Historical/Cohort approach estimates models with better predictive abilities
with respect to the choices of passengers in the prediction sample.
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This research shows theoretically and practically that SC data can be used to generate more
realistic models of passenger behaviour. In this sense, SC data can be used to estimate route
choice models using the Historical/Cohort approach to identify the consideration set, and can
also provide empirical information to estimate the values of path attributes. Therefore, it is
not necessary to use heuristics, which are generally computationally expensive, to emulate
the passengers’ consideration set.

Finally, this study benefits decision-makers at large-scale transport systems by providing
a methodology to understand passenger perception and behaviour without using expensive
survey-oriented resources.
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Chapter 4

Evaluating the role of experience in a
route choice context using smart card
data in a large-scale public transport
network

This chapter is the third component of this thesis, which aims to answer the third research
question (see Section 1.4.2): How can the past experiences of PT passengers be integrated
into a route choice model to incorporate the uncertain nature of in-vehicle travel time within
the PT system? This study contributes by applying a passengers learning model to asses
the relationship between past experiences and current route choices in the context of the
beginning of operations of a new Metro line in the PT system. To do so, we used three months
of revealed preferences constructed from smart-card data from Santiago, Chile, the first of
which corresponds to the period right before the opening of the new Metro line, and the later
two after that event. The learning model applied is an instance-based learning (IBL) model
(Tang et al., 2017), which allows the researcher to represent the perceived in-vehicle travel
time considering the recency of experiences and that the passenger’s memory decreases with
the power law of forgetting. For empirical assessment, smart-card data from one month prior
to and two months after the launch of a new Metro line are used to calculate the perception
of in-vehicle travel time. Two months of smart-card data after the launch of the new Metro
line are used to estimate and assess the fit and behavioral coherence attained with the model
using the perceived in-vehicle travel time of each passenger and with the model using the
mean in-vehicle travel time (baseline model). The analysis shows that the route choice model
considering the passengers’ learning process outperforms the baseline model when estimated
using data from five weeks after the new Metro line was opened. This empirical evidence
supports the idea that passengers use knowledge from their past experiences to make a route
choice when they have gained some experience in the new PT system context.

This chapter is currently a working paper
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4.1 Introduction

Every time they make a trip, PT passengers have to decide which route to take to reach
their destination from their origin. To achieve this, passengers consider a specific set of
available and attractive routes, called the consideration set, and then choose a travel route.
Traditional discrete choice models based on the RUM principle consider that, somehow, the
individuals have perfect information about the attributes of the alternatives, an assumption
that is questionable, especially when the attributes vary. In reality, the route-choice decision
making process is more complex: it is a dynamic process that usually involves an evaluation
of different route attributes, which can be fixed over time, such as the number of transfers, or
uncertain, such as wait time and in-vehicle travel time, among others. These uncertainties
come from unpredictable incidents or special events along the travel route. The information
about the route’s attributes can come from passengers’ past travel experiences in the same
origin-destination (OD) pair (reinforcement learning) or from descriptive travel information
(cognitive learning).

When passengers consider descriptive travel information (pre-trip or en route) to choose
a route, they are following a decision type called deciding from description. In this type of
decision, the outcomes are specified to the decision-maker before they decide upon a certain
alternative (Rakow & Newell, 2010). A purely description-based route choice context is very
rare, except when a person arrives for the first time in a new city, does not have any previous
experience in the PT system, and looks for travel information to obtain first-time knowledge
about available routes. Route choice is a typical case of decision from experience, where a
traveler makes a choice, carries out that choice, gains experience, forms an updated perception
of the chosen route, and makes a choice again based on prior experience. In summary, a
decision from experience requires passengers to explore an environment and learn the outcomes
associated with different options (Rakow & Newell, 2010), and plays an important role in
addressing the issue of understanding passengers’ route-choice behavior.

Temporally variant and situation-dependent route attributes, such as in-vehicle travel time
and wait time, explain the importance of including the passenger learning process in route
choice models. Several PT route-choice models have been estimated considering cross-sectional
data, which does not allow for the inclusion of passengers’ route attribute learning processes
(Kim et al., 2020; Z. Guo, 2011; Raveau et al., 2011, 2014; Raveau & Muñoz, 2014; Anderson
et al., 2017; O. A. Nielsen et al., 2021). Other studies have estimated PT route-choice models
using longitudinal data (Schmöcker et al., 2013; Yap et al., 2020; Nassir et al., 2018; Jánoš́ıková
et al., 2014). Although this type of data allows the researcher to incorporate the relationship
between passengers’ past experiences and their current choice, they ignore the individuality
of the relationship, not accounting for the uncertainty in the route attributes, and instead
considering them as static and assuming that all passengers have the same knowledge of
the travel time distribution. The current study fills this gap by incorporating passengers’
perceived travel time, which can vary across time and passengers, into a PT route choice
learning model.

Many studies of the learning process in private transport literature can be found. Some
are theoretical studies that propose models using an average or a weighted-average approach
of previous time periods to infer the perceived travel time (Horowitz, 1984; Cascetta &
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Cantarella, 1991) and others have estimated route-choice models that capture the travelers’
learning process using laboratory experimental or simulated data (Bogers et al., 2007; Lu et
al., 2014; Mahmassani & Liu, 1999). Ben-Elia & Avineri (2015) offers a detailed literature
review of studies on the behavioral response to different types of travel information, such
as experiential information, descriptive information, and prescriptive information. Up to
present, far too little attention has been paid to analyze the effect of travelers’ learning
processes on route choice models using real world data. The reason for this is that real panel
data on the learning process is virtually impossible to collect with traditional methods. The
current research provides a case study with revealed preference panel data collected from
smart-card usage, where we estimate a route choice model considering the learning process
of PT passengers. This type of data is not only real, granular and massive, but can also be
applied to study the impact on route choices of all sorts of events that occurred in the past
and, therefore, constitutes a new unrivaled source for behavioral analysis.

Most studies of travelers’ learning and choice behaviors under uncertain conditions assume
”recency”, that the effect of previous experience decreases at an exponential rate, where more
recent experiences have a greater impact on the travelers’ memory. Therefore, the updated
perceived travel time on day t is a convex combination of the perceived travel time on day t−1
and the latest experienced travel time (Lu et al., 2014; Cascetta & Cantarella, 1991; Bogers
et al., 2007). However, behavioral decision making literature has suggested that the human
memory decreases following a power function instead of at an exponential rate (Lejarraga et
al., 2012). Following this theory, Tang et al. (2017) proposed and applied an Instance Based
Learning (IBL) model in a route choice model, which captures the recency effects and the
power law of forgetting present in travelers’ day-to-day learning processes. They applied this
model to an experimental data set collected in an hypothetical private route choice laboratory
experiment, showing that the IBL model achieves a better fit than a baseline learning model.
Our research extends the study of Tang et al. (2017), implementing the IBL model in a PT
route choice model using RP data inferred from SC transactions.

In this section, we use the case of Line 6 (L6) of the Santiago (Chile) Metro subway system,
which was inaugurated on November 3, 2017. Line 6 has an extension of 15 km (9.3 miles) of
track and its 10 Metro stations serve seven municipalities within Greater Santiago (Pineda &
Lira, 2019). A new Metro line offers a particularly good opportunity to asses the learning
process of PT passengers. A modification to the PT system - such as the addition of a new
bus or Metro line - adds a new alternative route that can be attractive for travelers, requiring
a new reinforcement learning process. Using revealed preference data, we assess the effect
of the new Metro line on passenger behavior and apply an IBL model in a PSL model that
accounts for the correlation among PT routes. The revealed preference data is built using
three months of SC transaction data: one month prior to the opening of the new Metro line
and two months after the opening, representing the actual route choice behavior of passengers
who used the dense PT network in Santiago.

The remainder of this section is organized as follows. Subsection 4.2 describes the case study
- the Santiago, Chile transit network - and presents an analysis of the observed passengers’
behavior. We then discuss the proposed method used and introduce the model estimation
results. The last subsection draws conclusions and discusses policy and research implications.
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4.2 Data description and analysis

4.2.1 Data description

This study was carried out using passive transport data from the multimodal PT network
in Santiago, Chile. This system serves roughly 50% of motorized trips and it is operated by
headway scheduling; therefore, lines do not have fixed time schedules. The fare system is
fully integrated, with an almost flat fare between urban buses, Metro, and one rail service,
allowing up to three trip legs within a two-hour time window. In a typical week, 3 million
passengers use the system to make 25.5 million trips. The network includes 7 Metro lines,
more than 300 bi-directional transit lines, and one rail service.

Very detailed demand information was obtained from the automatic fare collection (AFC)
system in Transantiago (Gschwender et al., 2016). A SC, called bip!, is the only accepted
payment method. Passengers must validate when boarding a bus or entering a Metro station,
but no alighting validation is required for bus or Metro trips. Around 27% of passengers
evade fare payment on buses. Bus stops with particularly high demand have an off-vehicle
payment system called zona paga (payment zone), where passengers validate when they enter
the bus stop area and then board any bus without further validation.

Additionally, in the Santiago PT system, all buses are equipped with GPS devices that
record a timestamp and position data every 30 seconds. We have used this Automatic Vehicle
Location (AVL) data to obtain the observed frequency of transit lines. Combining SC data and
AVL data, the boarding and alighting positions are already estimated for all validations and
trips (stages) associated with an origin-destination journey using the methodology proposed
by Munizaga & Palma (2012). Using this processed data, it is possible to obtain a large
amount of information about a trip, such as the in-vehicle and out-of-vehicle travel time and
the number of transfers.

As explained in Section 4.1, in this study we focus on assessing the learning process of
passengers after the implementation of the Metro Line 6. As can be seen in Figure 4.1, Metro
Line 6 is connected by a transfer station with three other Metro lines, as well as the rail
service and in some sections it serves areas of the city that did not have a direct access
to the Metro system before. This Metro line was a fully new technology for the city at
that time (autonomous trains, air conditioning, platform-edge doors). The analysis of this
chapter considered a group of SC data, which correspond to the SC observations from frequent
passengers who traveled during morning peak periods (6:30-8:30 AM) on weekdays between
origin and destination zones where the new metro line was observed as part of an alternative
route. Specifically, we select users that traveled 20 days or more on the PT system during
October 2017 (the month prior to the opening of L6), November 2017 (the month that L6
opened), and December 2017 (one month after the opening of L6), and who remained in their
destination location for at least two hours. Through this selection, we filter for trips that are
probably made to regular, daily activities such as the workplace or school. The morning peak
period is the most congested period in Santiago (more than 700 thousand trips per day can be
observed during this period), and is therefore an interesting travel period from a behavioral
and planning perspective.
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Figure 4.1: Metro network (blue lines) and the rail service (red line) in Santiago, Chile.

4.2.2 Effect of the new Metro line on mobility within Santiago and
passengers’ behavior

In order to understand the effect of the opening of Metro Line 6 on passengers’ journeys,
we selected those OD pairs where L6 is part of at least one possible alternative route to travel
between them. The identification of these OD pairs was carried out by selecting trips that
used L6 in any of trip stage and identifying their origin and destination zones, which we
considered to be the area within a 100-meter radius of the trip’s origin and destination stops.
Once the origin and destination zones where L6 could be a travel alternative were identified,
the trips observed in these OD zones during the three months of the study were obtained.
Table 4.1, presents the number of observed trips that used L6, and trips that did not use L6,
during October, November, and December 2017. No trips used L6 during October, since it
was not open at that time. In total, we obtained 99,884 observed trips that used L6, and
84,864 observed trips that did not use L6 in the selected OD pairs during the analysis period.
It is important to note that observed trips increased considerably by 157.7% from October to
December.

Figure 4.2 shows, for six specific days, the origins of observed trips that used L6. This
shows that the passengers who used L6 initiated their trips mainly in the southern sections of
the city and that a cluster of more distant origins in the north of the city became present
within two days of the opening of L6 (Nov 9th) but were not present by the last day of
December. This is probably because the passengers in those areas tried the new alternative,
but found it not to be a better alternative than their prior route choices.
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Table 4.1: Number of trips made during October, November, and December 2017 in OD zones
where L6 can be an alternative route.

Month Trips that used L6 Trips that not used L6

October 0 31,694
November 44,505 26,870
December 55,379 26,300

Figure 4.2: Origins of trips that use an alternative including L6

The opening of L6 had a huge impact on travel time savings. In the OD pairs where L6
was observed as an alternative, average travel time (including transfer waiting time, in-vehicle
travel time and transfer walking time) decreased from 48.2 min during October (prior to the
opening of L6) to 35.7 min in December (one month after the opening of L6). This represents
a relative reduction of 25.9%. Figure 4.3 shows the travel time statistics for each week of
data during the three months used in this study. L6 started to operate during the fifth week
of data, and thereafter, travel time of observed travelers began to decrease throughout the
weeks until it reached roughly 35.5 min in the last three weeks of December.
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Figure 4.3: Travel time between OD pairs where L6 is observed as part of an alternative route

A similar analysis by transport mode demonstrates that, in the OD pairs where L6 was
observed as an alternative, Metro travel time decreased from 27.1 min on average during
October to 24.7 min on average in December. In relative terms, this is a reduction of 8.9%.
However, the greatest impact was found for bus travel time, which decreased from 18.0 min
on average during October to 8.9 min on average in December, a relative reduction of 50.6%.
Figure 4.4 shows the bus travel time statistics for each week of data during the evaluated
three months. The bus travel time started to decrease in week five until it reached around
9 min in the last three weeks of December. Three reasons can explain this effect: i) after
introducing the new metro line, trips using only the metro increased by 404.7% (see Table
4.2), thus increasing the number of trips in which the bus travel time equals zero; ii) after
the introduction of the new metro line, trips considering a combination of bus and metro
increased by 74.2% (see Table 4.2). Additionally, this type of trip decreased the average bus
travel time by 21.2%. The fact that the new metro line came to serve some areas of the
city that were not served by any other metro line explains the bus travel time reduction.
Since in these cases, passengers must travel less time by bus to access the metro network; iii)
focusing on those trips made only by bus, we can observe that the average bus travel time
decreased from 41.4 minutes in October to 36.8 minutes in December (see Table 4.3). This
can be explained by the fact that the transportation system accompanied the extension of
the metro network with changes in the trajectory of bus services to connect the new metro
stations more efficiently. These results demonstrate a considerable impact of the new Metro
line regarding travel time savings, especially on bus travel time.

It is also important to note that the between-week variation in observed average travel
time decreases during the last three weeks of December. A pairwise comparison indicates
that the observed average travel times between those weeks are not statistically different (all
ps > 0.5). Therefore, we can hypothesize that after the opening of Line 6, Metro passengers
began to try new travel alternatives before stabilizing their travel behavior during the last
three weeks of December.
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Figure 4.4: Bus travel time between OD pairs where L6 is observed as part of an alternative
route

Table 4.2: Number of trips, per transport mode (only bus, only metro, and metro and bus),
made during October, November, and December 2017 in OD zones where L6 can be an
alternative route.

Month Bus Metro Metro and bus

October 2,471 8,571 20,652
November 2,392 36,726 32,257
December 2,451 43,260 35,968

Table 4.3: Average bus travel time, per transport mode (only bus, and metro and bus), made
during October, November, and December 2017 in OD zones where L6 can be an alternative
route.

Month Bus Metro and bus

October 41.4 22.6
November 38.9 19.5
December 36.8 17.8

Furthermore, in the OD pairs where L6 was observed as an alternative, average total trip
stages decreased from 1.7 in October to 1.5 in December, which represents a relative reduction
of 11.7%. This is an interesting result, as it indicates the potential of a new Metro line to
decrease the number of transfers made by PT passengers. Please note that transfers between
Metro lines are not considered in these statistics.

Out of 12,733 PT passengers observed in the database traveled in the OD pairs where L6
was observed as an alternative (at least two observed trips use the Metro line 6), 60.5% used
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L6 at least once. Out of that 60.5% of all passengers, 47.3% tried the new Metro line within
five days of it opening (see Figure 4.5). Focusing on OD pairs where the route alternative(s)
including L6 involve travel time savings compared with alternatives without L6, out of 4,687
PT passengers observed traveling in those OD pairs, 61.0% used L6 at least once. Out of
that 61.0% of passengers, 42.7% tried the new Metro line within five days of it opening. On
the other hand, focusing on OD pairs where the route alternative(s) including L6 involve
increased travel time or no travel time savings occur, compared with alternatives without
L6, out of 5,253 PT passengers observed traveling in those OD pairs, 15.6% used L6 at least
once. Out of that 15.6% of passengers, 32.8% tried the new Metro line within five days of its
opening. These results show that most passengers that tried the new Metro line traveled in
those OD pairs where using L6 implied a travel time savings, and most passengers tried the
new Metro line during its first week of operation.

Figure 4.5: Number of passengers using the new Metro line for the first time

4.3 Model Specification, Estimation and Results
In this section, we study the passengers’ learning process by developing different discrete

choice models that consider a random utility maximization (RUM) approach incorporating
the perceived travel time of passengers.

4.3.1 Consideration set construction
Building the consideration set is a significant challenge for formulation and estimation

of a PT route discrete choice model from RP data. To build the consideration sets, we
first define the origin and destination locations, which we considered as the areas within
a 100-meter radius of the origin and destination stops of the observed trip. We used the
Historical/Cohort approach to build the consideration set for each OD pair, which corresponds
to all available and observed routes used by every passenger traveling within the defined
origin and destination areas in the study period (6:30 AM to 8:30 AM). This means that, for
each OD pair, the same consideration set was used for all passengers.
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An alternative is defined by the boarding stop, transport mode (bus or Metro), and the
last alighting stop. Combining different transit lines that serve the same route section into
a single transport mode allowed us to consider only those alternative routes that could be
clearly distinguished from each other. For example, if two bus transit lines serve the same
route section, then they were considered as part of the same alternative.

4.3.2 Route choice modeling

As mentioned in the introduction, most route choice models assume the invariability of
path attributes across time, ignoring that route choices are decisions under uncertainties,
which generate an important relationship between past experiences and the current choice of
passengers.

Therefore, we suggest considering PT passengers’ perceptions formed based upon past
experiences. SC data offers the opportunity to observe travelers’ repeated choices, which
allows us to infer the passenger’s perception after each experience. With this purpose in
mind, we adapt the IBL model proposed by Tang et al. (2017) for a route choice model in
a large-scale PT network. The current study considers that the perceived in-vehicle travel
time is the only attribute that evolves over time; other attributes (waiting time, number of
transfers, path size correction term, and bus constant) are assumed to be constant over time.

The IBL model is based on instance-based learning theory, which was proposed to describe
decision making in complex dynamic decision contexts (Lejarraga et al., 2012). In particular,
this theory characterizes learning by storing in memory a sequence of actions-outcomes
(instances) produced by past experiences, which are more active in memory when they are
more recent and frequent (Lejarraga et al., 2012). In a PT route choice context, an instance
is a past experience traveling along a route section using a specific transport mode (bus or
Metro) and its associated outcome, which can be a set of transport mode attributes.

An alternative route is made up of one or more route sections. Therefore, it is necessary
to specify the perceived in-vehicle travel time for each route section. This is because two
different routes could share a route section. In this case, if a passenger travels along one of
the alternatives, the experienced in-vehicle travel time for the route section common to both
alternatives affects the perception of travel time for the non-chosen alternative.

Equation 4.1 shows, for the current day t, the relative weight of the experienced in-vehicle
travel time along route section r for passenger n during a past day t′. The denominator is the
summation of the activation of all the past experiences in the route section r. In particular,
the term (t− t′)−δ measures the recency of the experienced in-vehicle travel time, and captures
the rate of forgetting following a power law. Once the relative weight of the experienced
in-vehicle travel time has been calculated along route section r for the passenger n during
all days prior to t, it is possible to calculate the perceived in-vehicle travel time of route
section r on day t for passenger n using Equation 4.2. This formula is a weighted average
of experienced in-vehicle travel time of all past days when the passenger traveled along the
route section. Finally, the perceived in-vehicle travel time for an alternative route i for the
passenger n on day t is calculated as the sum of the perceived in-vehicle travel times along all
route sections of the alternative, as shown in Equation 4.3.
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Wnr(t, t′) = anr(t′)(t− t′)−δ∑
τ∈Hnr(t)(t− τ)−δ (4.1)

Where:

t: current day
t′: a previous day
δ: decay parameter that captures the rate of forgetting
Hnr(t): the set of all days before day t when the passenger n traveled along the route section
r
anr(t′): a binary indicator equal to 1 if passenger n traveled along the route section r on day
t′, and 0 otherwise

Tnr(t) =
∑

t′∈Hnr(t)
Wnr(t, t′)Xnr(t′) (4.2)

Where:

Xr(t′): experienced travel time along route section r for passenger n on day t′

PTni(t) =
∑
r∈ζi

Tnr(t) (4.3)

Where:

ζi: set of route sections belonging to route i

As an illustrative example, Table 4.4 shows an application of the IBL model using an
observed passenger (smart card id 23145602) in the studied database. During the period of
analysis, this passenger traveled during 5 work days along a specific route section using a
bus transit line. The weight of experienced in-vehicle travel time for each day is calculated
following Equation 4.1, and the perceived in-vehicle travel time for the route section for each
day is calculated using Equation 4.2. Both formulas are calculated in four cases: i) δ = 0, ii)
δ = 0.5, and iii) δ = 2, and iv) δ = 3. The initial perception of the bus transit line is gleaned
with its first use, on November 9, i.e. 12.45 min. On November 16, the passenger had one
past instance experienced, and her perception was 12.45 min for the three values of the rate of
forgetting. On November 20, there were two instances, 12.45 min and 10.22 min, with a rate
of forgetting equal to 0 resulting in an average value (11.33) between two previous experiences,
while the a rate of forgetting equal to 3 resulting in a value (10.32) closer to the last instance.
This situation is also observed on December 11, 18, and 20, where the δ value equal to 2 or 3
obtained the perceived in-vehicle travel time closer to the last experience. These results can
be explained because, as it can be seen in Table 4.5, a smaller δ values translate to higher
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memory activation, where more distant experiences are more relevant, while greater δ values
translate to lower memory activation, where more recent experiences are more relevant.

Table 4.4: Application of the IBL Model in the observed trips during 6 days of a passenger

Perceived in-vehicle travel time
Day Experienced travel time δ = 0 δ = 0.5 δ = 2 δ = 3

09-11-2017 12.45
16-11-2017 10.22 12.45 12.45 12.45 12.45
20-11-2017 11.03 11.33 11.06 10.48 10.32
11-12-2017 9.63 11.23 11.18 11.05 10.99
18-12-2017 9.93 10.83 10.54 9.81 9.68
20-12-2017 11.40 10.65 10.28 9.93 9.93

Table 4.5: Weight of experienced travel time to calculate the perceived travel time on
21-12-2017 of a specific passenger

Weight of experienced travel time
on day 21-12-2017

Day δ = 0 δ = 0.5 δ = 2 δ = 3

09-11-2017 17% 6% 0% 0%
16-11-2017 17% 7% 0% 0%
20-11-2017 17% 7% 0% 0%
11-12-2017 17% 13% 1% 0%
18-12-2017 17% 24% 10% 4%
20-12-2017 17% 42% 89% 96%

A Path Size Logit (PSL) model accounts for correlation between alternatives due to
overlapping route segments (Ben-Akiva & Bierlaire, 1999) and is adopted in this study. The
deterministic component of the model is specified in Equation 4.4, where i represents the
alternative route, n represents the passenger, t the evaluated day, TTi(t) is the in-vehicle
travel time for day t, WTi is the waiting time (including the waiting time at the beginning of
the trip and during transfers), TRi is the number of transfers between vehicles, and PSCi is
the path size correction term.

Vni(t) = βT TTTni(t) + βW TWTi + βT RTRi + βP SPSi (4.4)

We estimated two types of PSL models. A base model assumes that the passenger uses
knowledge about the in-vehicle travel time from descriptive information only, and represents
the in-vehicle travel time with the average in-vehicle travel time of the alternative, obtained
from observed trips prior to the evaluated trip, MEANTi(t), neglecting the learning process.
In contrast, our proposed model represents the in-vehicle travel time with the perceived
in-vehicle travel time of the alternative by the passenger considering the learning process.
This second type of model, called IBL-PSL model, assumes that the passenger has a perceived
in-vehicle travel time when she has tried the alternative route in the past. If she has no
previous experience using the alternative route i, she will look for descriptive information,
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which can be represented with the average in-vehicle travel time, up to the day t, MEANTi(t).
Following this assumption, in-vehicle travel time can vary between days and is calculated
following Equation 4.5. PTni(t) is the perceived in-vehicle travel time, calculated using
Equation 4.3, MEANTi(t) is the average in-vehicle travel time of the alternative, calculated
using all observed trips up to day t with this alternative in the SC database, not only those
performed by individual n. Besides, Dni(t) takes a value of 1 if passenger n ever traveled on
alternative i prior to t and a value of 0 otherwise.

TTni(t) = PTni(t) ∗Dni(t) +MEANTi(t) ∗ (1−Dni(t)) (4.5)

For the path size correction term, we use the expression according to Bovy et al. (2008) in
Equation 4.6, where Lr is the length of route section r, Li is the length of route i, ζi is the
set of route sections belonging to route i, and δrk is the route section-route incidence number,
which takes a value of 1 if route k uses route section r and a value of 0 otherwise.

PSCi =
∑
r∈ζi

Lr
Li

ln 1∑
k∈Cp

δrk
(4.6)

Waiting time is estimated from the observed interval between buses with an assumed
exponential distribution. Therefore, it is calculated as 1 divided by the observed frequency of
the line (or sum of frequencies, in the case of more than one line traveling through the same
route section). The exponential distribution (or the gamma, which is the sum of exponentials)
has been widely used for modeling wait time in transportation systems (e.g. Nguyen &
Pallottino, 1988; Raveau & Muñoz, 2014; Schmöcker et al., 2013).

With a Gumbel distribution assumed of the error term of the utility function, the probability
of passenger n choosing alternative i during day t, given the consideration set C, is expressed
as shown in Equation 4.7. The closed-form of this formula allows for a simple estimation of
the fixed coefficients by maximizing the likelihood function.

Pni(t) = expVni(t)∑
k∈C expVnk(t)

(4.7)

4.3.3 Consideration set results
The alternative routes were generated using the Historical/Cohort approach for each OD

pair. We worked with OD pairs that featured more than one alternative; OD pairs with fewer
alternatives were discarded. Using this filter, we obtained 988 OD pairs with an average of
3.11 available alternatives within the consideration set.

The overlap between alternative routes was evaluated at the stop level, which means that
the alternatives that used the same route sections and transport mode were considered as
correlated elements. It is important to note that the Path Size correction term was obtained
with equation 4.6. In order to compare the correlation of each link with other alternative
routes, we derived transit line trajectories from GTFS data. In the case of Metro, since we do
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not know the trajectory used by passengers, we had to assume that passengers took the route
with the lowest travel time. The Path Size correction term (PSCi) belongs to the interval
(−∞, 0], takes a value of 0 when there is no overlap between the evaluated alternative and
others, and the value decreases as the level of route correlation increases; that is, the smaller
the PSCi value (more negative), the higher the correlation of route i. Choice sets have a
mean PSCi of -0.61.

In order to evaluate how long it takes for passengers to get a stable consideration set after
trying the new Metro line, we define the stability as the point in which the consideration set
Ct of all alternatives used by an individual n up to time t, does not differ to the consideration
set Ct−1 up to time t− 1. It is needed to constraint this analysis to those individuals that
traveled on enough occasions, until reaching some type of stability. For this reason, we first
select only those passengers who traveled 20 times or more within the same OD pair, and
who traveled at least five times prior to the opening of L6. Using this filter, 1,573 passengers
were obtained, and 599 of them tried the new Metro line. To evaluate the composition of the
consideration set across time, for each passenger and OD pair, we defined the following terms:

• Period 0: Last day that the passenger traveled in the transport system prior to the
opening of Metro Line 6.

• Period 1: First day that the passenger traveled in the transport system after the opening
of Metro Line 6.

• Period m: m − th day that the passenger traveled in the transport system after the
opening of Metro Line 6.

For each passenger n, OD pair o, and period p, the observed consideration set consists of
the observed alternatives used by passenger n in period p, and in the last four trips prior to
period p. In this line, for each day, we used the prior four observed trips and the observed
trip during that day. Then, we calculate the indicator Inop for each passenger n, OD pair
o, and period p. This indicator is shown in the Equation 4.8, and takes a value of 1 if the
consideration set in the evaluated period is equal to the consideration set in the previous
period and a value of 0 otherwise.

Inop =
{

1 if Ct = Ct−1
0 otherwise (4.8)

We assume that a passenger obtains a stable consideration set in the first period with
indicator Inop equal to 1, and that this value never changes in periods after the evaluated
period. This process can be represented executing the Algorithm 1 for each passenger n and
OD pair o. If the algorithm returns the value of P , which is the day of the last observed
trip, this means that the passenger could not obtain a stable consideration set within the
study period. Table 4.6 shows an illustrative example with a hypothetical case where a
passenger traveled 5 times prior to the opening of L6 (Days -4, -3, -2, -1, 0) using alternative
A or alternative B. After the opening of L6, the passenger traveled 10 times, and only
used alternative C. Using the algorithm to find the period where the passenger obtained a
stable consideration set, we obtain the period 5, which means that the user defined a stable
consideration set during the first 5 trips after the implementation of the new Metro line.
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As can be seen in Figure 4.6, out of the 599 frequent passengers who used L6, 43.7%
identified a stable consideration set during the first 5 trips after the opening of L6, and 64.9%
did so during the first 10 days of travel after the opening of L6.

Algorithm 1 Stabilization period of consideration set
1: procedure
2: P← Number of periods where the passenger has traveled
3: i ∈ {0, 1, ..., P}
4: i← 1
5: loop:
6: product← ∏P

j=i Inoj
7: if product = 1 then
8: Return i− 1
9: end procedure;

10: else
11: i← i+ 1
12: go to loop.
13: end if
14: end procedure

Table 4.6: Example of a passenger traveling between a specific OD pair prior to and after the
opening of L6

Day Period Observed alternative Observed consideration set Indicator Inop

-4 - A - -
-3 - A - -
-2 - B - -
-1 - B - -
0 0 B {A, B} -
1 1 C {A, B, C} 0
2 2 C {B, C} 0
3 3 C {B, C} 1
4 4 C {B, C} 1
5 5 C {C} 0
6 6 C {C} 1
7 7 C {C} 1
8 8 C {C} 1
9 9 C {C} 1
10 10 C {C} 1
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Figure 4.6: Number of days required for passengers to obtain a stable consideration set, after
trying the new Metro line

4.3.4 Model estimates
PSL models were estimated using observations from 8 weeks: 4 weeks from November and

4 weeks from December. These observations correspond to trips made during 35 weekdays
(exceding holidays, Saturdays, and Sundays) after the opening of Metro Line 6 during the
morning peak period (between 6:30 and 8:30 AM) in November and December 2017. These
trips were made by 1,826 frequent passengers who traveled 20 times or more between the
same OD pairs during October, November, and December. It is important to note that this
research works with trip data from passengers that traveled between origin and destination
zones where the new metro line was observed as a part of an alternative route. The PSL
model was estimated in two cases, using the IBL model to represent the perceived in-vehicle
travel time, which captures the passengers’ learning process, and using the mean in-vehicle
travel time (ignoring the passengers’ learning process). It is important to note that for an
specific trip observation, the perceived in-vehicle travel time and the mean in-vehicle travel
time, for each route alternative in the consideration set, is calculated using all observed trips
(in the same route alternative) prior to the day where the evaluated trip is observed1. For this
purpose, all trip experiences from October, November, and December 2017 are considered.

The specification of the deterministic utility function considers in-vehicle travel time,
including bus and Metro; waiting time, considering the waiting time at the beginning of the
trip and during transfers; and number of transfers, considering bus to bus, bus to Metro,
and Metro to bus transfers. Metro to Metro transfers cannot be incorporated into the model
because the information about the route that the passenger used inside the Metro network is

1It is important to note that when a trip observation has a consideration set with a route alternative that
has not been previously used by any passenger this observation is not used for the estimation of the model,
since in this case the mean in-vehicle travel time with previous observations can not be calculated.
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not available. Table 4.7 shows the mean, standard deviation, minimum, and maximum values
for each attribute considered in the models.

Table 4.7: Statistics of attributes used in PSL models

Attribute Mean Std Min Max

In-vehicle travel time [min] 46.0 17.4 5.4 116.3
Wait time [min] 7.9 4.1 2.1 30.5

Number of transfers 0.9 0.5 0.0 2.0
Path Size term -0.5 0.5 -2.1 0.0

Table 4.8 shows the estimated parameters for the PSL model and IBL-PSL model using
observations from the four weeks of November. The model that uses the perceived in-vehicle
travel time (IBL-PSL model) with data from the week right after the opening of the new
metro line obtained parameters that are all statistically significant (except for the path size
correction term). However, surprisingly, the sign of the rate of forgetting parameter is not
coherent with the instance-based learning theory, which is based on the idea that more recent
experiences are more active in the human memory and consequently the rate of forgetting
parameter should have a positive sign. It might be the case that people tend to increase
exploration in a new context of the PT system, which moved choice behavior toward random
choices (Erev & Barron, 2005), which can be reflected in a non-expected sign for the rate of
forgetting parameter. Likewise, it might be the case that the IBL model does not suit well for
a few instances. During the first week of November, passengers did not have many experiences
in the new metro line, and therefore the IBL model can not well capture the effect of previous
passengers’ experiences on their route choice behavior. For these reasons, The first week right
after the opening of the new metro line was not used for the following behavior analysis.

The other models that uses the perceived in-vehicle travel time (IBL-PSL model) reported
parameters that are all statistically significant (at the habitual 5% threshold) with the
expected sign, with the exception of the rate of forgetting parameter, which is not statistically
significant in the models of the second and third weeks, and the path size correction term
parameter, which is not statistically significant in the models of all weeks evaluated. These
results are similar to the models that use the mean in-vehicle travel time, where the parameters
are statistically significant and with the expected sign, with the exception of the path size
correction term parameter, which is not statistically significant in the PSL models of all
evaluated weeks.

Comparing the results of the IBL-PSL models and the PSL models, they present a
similar model fit for all evaluated weeks of November. In particular, for week 2, the PSL
model presents a slightly better fit than the IBL-PSL model, while for week 4, the IBL-PSL
model presents a slightly better fit than the PSL model. Consequently, the inclusion of the
perceived in-vehicle travel time in the specification of the models does not result in greater
improvement explanatory power compared with models that do not consider the variation in
passengers’ perception of in-vehicle travel time. Considering this result and that the rate of
forgetting parameter is not statistically significantly different from zero during the second
and third evaluated weeks in November, we can argue that during the first weeks after the
implementation of a new Metro line in the PT system, passengers mainly use descriptive
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information, which is represented by the mean in-vehicle travel time, to make a route choice
decision. However, during the last week of November, the rate of forgetting parameter starts
to be statistically significant (at the accepted 5% threshold). Considering this result and
that the IBL-PSL model presents a slightly better fit than the PSL model for this week, we
can argue that during the last week of November passengers start to consider the perceived
in-vehicle travel time to make a route choice decision.

Table 4.9 shows the estimated parameters for the PSL model and IBL-PSL model using
observations from each week in December. The model that uses the perceived in-vehicle travel
time (IBL-PSL model) reported parameters that are statistically significant (at the accepted
5% threshold) with the expected sign, with the exception of the path size correction term
parameter, which is not statistically significant for the model of three first week in December,
and it is statistically significant with a negative sign in the model of week 7. These results
are similar to the models that use the mean in-vehicle travel time, where the parameters
are statistically significant and with the expected sign, with the exception of the path size
correction term parameter, which is statistically significant with a negative sign in the PSL
models of week 7.

Comparing the results of the IBL-PSL models and the PSL models, during all weeks
of December, the IBL-PSL model presents better model fit. Consequently, in this month,
the inclusion of the perceived in-vehicle travel time in the specification of the models does
result in greater explanatory power compared with models that do not consider the variation
in passengers’ perception of in-vehicle travel time. In summary, these results allow us to
hypothesize that during the month after the implementation of a new Metro line in the PT
system, passengers mainly use their perception from past experience to make a route choice
decision.

In summary, these results suggest that during the first weeks of a new context in a PT
system, the passengers’ route choice behavior is different from their route choice behavior
for some weeks afterward, when they start to consider experience-based information to make
route choice decisions. To prove this, we have estimated a constrained model, in which the
parameters of the seven evaluated weeks are forced to be the same, and an unconstrained
model, in which the parameters of the second and third weeks of November can be different
from the parameters of the last five evaluated weeks. The results are shown in Table 4.10,
where the IBL-PSL and PSL models reported similar results to the previous analysis. Then,
using the log-likelihood of the constrained IBL-PSL model and the log-likelihood of the
unconstrained IBL-PSL model, the application of a formal likelihood ratio test largely rejects
the null hypothesis that the models are equal (p− value < 1%). This shows that during the
second and third weeks of November passengers evaluate all their experiences in the same
level of importance for a route choice decision, while for the last five evaluated weeks, more
recent experiences became more relevant for the PT passengers’ route choice decisions.

Table 4.10 also shows that using all evaluated weeks, the IBL-PSL model is superior to the
PSL model by type on in-sample, confirming that, the inclusion of the perceived in-vehicle
travel time in the specification of a route choice model results in greater explanatory power
compared with models that do not consider the variation in passengers’ perception of in-vehicle
travel time.
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It is important to note that the negative coefficients of the in-vehicle travel time, initial
waiting time, transfer waiting time and number of transfers parameters indicate that these
attributes are perceived as disutility, which is in line with previous PT route choice studies
(Nassir et al., 2018; Schmöcker et al., 2013; Raveau et al., 2011, 2014; Rui, 2016; Jánoš́ıková
et al., 2014; Z. Guo, 2011). The memory decay parameter (δ) is estimated between 1.3 and
3.6 during the last four evaluated weeks. These values are higher than values reported by
Tang et al. (2017) using experimental data in a car route choice context. This means that PT
passengers present a smaller activation in memory than car drivers. Therefore, more recent
experiences are more relevant for PT passengers’ perception than for car drivers’ perception.

On the other hand, it should be noted that the negative value for the path size is not
uncommon in the literature about PT users’ route choices. In fact, although the path size
is supposed to correct for overlapping routes by reducing the utilities of overlapping routes,
negative estimates for path-size terms have been found (Anderson et al., 2017; de Grange et
al., 2012), most likely because of the additional utility of travelers having more opportunities
to reach their destination from their origin, or because travelers might value the availability
of a large number of en-route alternative options over the uniqueness of the route (Anderson
et al., 2017).
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Table 4.10: Constrained and unconstrained models estimates (t tests)

Constrained model Unconstrained models
Parameters From week 2 to 8 Weeks 2 and 3 Last five weeks

IBL-PSL model PSL model IBL-PSL model PSL model IBL-PSL model PSL model
In-vehicle travel time -0.126(-64.9) -0.12(-61.3) -0.104(-28.8) -0.107(-28.8) -0.135(-58.3) -0.125(-54.2)
Rate of forgetting (δ) 2.379(15.8) 0.247(0.8) 2.587(14.5)

Waiting time -0.103(-35.2) -0.098(-34.5) -0.087(-15.2) -0.085(-15) -0.108(-31.8) -0.103(-31.2)
N° transfers -2.306(-46.8) -2.326(-47.5) -1.99(-20.7) -1.999(-20.8) -2.428(-41.9) -2.438(-42.7)

PSC -0.022(-0.5) -0.061(-1.5) 0.087(1) 0.11(1.3) -0.044(-0.9) -0.114(-2.4)
Bus constant -1.212(-15.4) -1.207(-15.3) -1.425(-9.4) -1.401(-9.3) -1.138(-12.3) -1.147(-12.4)
Log-likelihood -15352.67 -15822.29 -3930.74 -3928.37 -11364.81 -11874.39

Adjusted rho-square 0.507 0.492 0.490 0.491 0.514 0.492
AIC 30717.34 31654.58 7873.49 7866.77 22741.63 23758.79
BIC 30767.27 31696.19 7915.15 7901.49 22789.81 23798.94

N° observations 30380 7666 22714
N° of days 31 9 22

N° of passengers 1826 1482 1823
All columns show t-values between parentheses. AIC = Akaike Information Criterion. BIC = Bayesian
Information Criterion.

4.4 Conclusions

Modeling route choice decisions is a typical example of an experience-based decision making
process, where travelers choose a route alternative, gain experience with the route, and update
their perception of uncertain attributes such as travel time. Even when this learning process
based on past experiences plays an essential role in the understanding of passengers’ behavior,
most PT route choice studies ignore this process and assume that uncertain attributes do
not vary across time. We try to fill this literature gap, using the Instance Based Learning
(IBL) model proposed by Tang et al. (2017) to represent the perceived in-vehicle travel time
of passengers in a large-scale multimodal PT system.

In this study, we use the implementation of Metro Line 6 in the Santiago Metro to asses
passengers’ learning process within a new PT system context. The aim of this study is to
understand passengers’ learning process when they face a new alternative route between
an OD pair where they usually travel. To evaluate this, we used data from the PT system
in Santiago, Chile, from October, November, and December 2017; one month prior to the
launch of Metro Line 6, and two months after it was opened. These observations were used
to calculate route alternative attributes, such as the mean in-vehicle travel time, perceived
in-vehicle travel time, and wait time. Additionally, these observations were used to build
the consideration set following the Historical/Cohort approach for each OD pair. Only
observations from November (after November 3) and December were used in the estimation
process, since we aimed at capturing travelers’ behavior after the opening of the new Metro
line. To do so, we split the database in eight parts: four groups of observations in November
and four groups of observations in December (one group for each week in each month). Using
each week of observations, we analyzed two models: (i) the IBL-PSL model, which considers
the perceived in-vehicle travel time and mean in-vehicle travel time, assuming that passengers
make route choice decisions based on experience information, if they have previously used the
alternative, and descriptive information, if they have not previously used the alternative, and
(ii) the PSL model, which considers in-vehicle travel time as a static attribute and assumes
that passengers make route choice decisions using purely descriptive information.
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The results suggest that both types of models can be used to represent the perception
of passengers for in-vehicle travel time, wait time and number of transfers. The IBL-PSL
model obtained a better fit than the PSL model when examining data from the last week
of November and during all weeks of December. When using data from the second week
after the implementation of Metro Line 6, the PSL model obtained a better fit than the
IBL-PSL model. These results suggest that during the first weeks of a new context in a
PT systems, the passengers mainly use descriptive information to select a route, while some
weeks afterwards, they start to consider experience-based information to make route choice
decisions. In summary, one of the more significant empirical findings to emerge from this
study is that passengers use information from past experiences to select a route alternative
after some initial experiences, and they maintain recent experiences more active in their
memory compared with older experiences.

Finally, we use all evaluated weeks to estimate the IBL-PSL model and the PSL model. The
results confirm that the inclusion of the perceived in-vehicle travel time in the specification of
a route choice model results in greater explanatory power compared with models that do not
consider the variation in passengers’ perception of in-vehicle travel time.

This research provides a new case study, using real world data from the PT system of
Santiago, Chile, to apply the IBL model, which is a travelers’ learning model. Still, many
challenges remain in this line of research, which are discussed below. First, the IBL model can
be applied to the formation of the consideration set. This means that the Historical/Cohort
approach to generate the consideration can be improved by considering the passengers’ learning
process to include or remove some alternatives. Second, the learning model applied in this
research assumes that passengers use only one type of information to make a route choice,
either experience information or descriptive information; however, it is interesting to evaluate
if passengers consider both types of information in the same route choice situation. In this
context, some questions should be answered by future studies, such as what type of real-time
information PT passengers use to select a route. Depending on the answer to this question,
a follow-up question is how descriptive information can be combined with experience-based
knowledge to form the passengers’ perception of travel time.
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Chapter 5

The effect of economic incentives and
cooperation messages on user
participation in crowdsourced public
transport technologies

The main contribution of this chapter is to show that community-oriented passenger
information technologies can be a tool to capture mobility information that is missing in
passive PT data. This study contributes to the fourth research question (see section 1.4.2):
How can passengers be encouraged to provide mobility and transport information through
crowdsourcing applications oriented to PT?. The contribution of this study is to examine the
effect of economic incentives (a lottery for free trips) and cooperation messages (asking users
to help the community) to encourage users to share reports about bus stop conditions using a
crowdsourcing app. We found that offering an economic incentive increased the participation
rate almost three times compared to a control group, which did not receive any message.
This positive effect lasted for several weeks but decreased over time, especially for users who
had not made reports prior to the experiment. This incentive also increased the number of
reports shared by users as well as the coverage of bus stops. Using a cooperation message,
with or without the economic incentive, also increased the participation rate compared to
the control group, but adding a cooperation message decreased the effect of a standalone
economic incentive.

This chapter was published in the following article:

Arriagada, J., Mena, C., Munizaga, M., & Schwartz, D. (2022). The effect of economic
incentives and cooperation messages on user participation in crowdsourced public transport
technologies. Transportation, 1-28.

Author’s contribution

All authors contributed to the formulation of the study goal, methodology, formal analysis,
and the research and investigation process. Jacqueline Arriagada and Claudio Mena
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performed the data collection process and creation of the initial draft. Claudio Mena
and Daniel Schwartz performed the design and implementation of the computer code
for the analysis. The revision and edition of the final draft were performed by Jacqueline
Arriagada, Marcela Munizaga, and Daniel Schwartz.

5.1 Introduction

A key aspect for planning and operating transport systems is the availability of mobility
data, which is essential for network design, operation optimization, coverage assessment, and
service quality, among other essential tasks. For many years, both transport planners and
transport researchers have relied mainly on traditional survey data to collect information about
travel patterns and user perceptions, as well as physical inspections to monitor infrastructure.
However, these methods are generally expensive, and they do not achieve adequate spatiotem-
poral coverage, which requires a significant undertaking. To deal with these disadvantages, in
recent years, there has been an increased interest in new transport data collection methods
based on sources such as GPS devices and smartphone devices (Bonnel & Munizaga, 2018).
In particular, crowdsourcing applications have become a significant data source based on
information shared by users to make transport information available for commuters and
transport system planners (Nandan et al., 2014; Hong et al., 2020; Mondschein, 2015). These
applications typically gather automatic location data to provide bus arrival times (Lau et
al., 2011; Zhou et al., 2012; Steinfeld et al., 2011) and add user-reported information about
the PT system (Steinfeld et al., 2011; Faber & Matthes, 2016). For example, crowdsourcing
mobile applications, such as Moovit, Tiramisu, and Transapp, provide bus arrival times, and
request their users to report bus overcrowding levels and whether buses and bus stops are in
poor condition and in need of repair.

Crowdsourcing applications, which are voluntary participatory information systems, require
a critical mass of users willing to provide information to be useful. However, these applications
generally suffer from low participation rates that sometimes hover close to zero (Ling et al.,
2005). For example, in 2013, Waze, the worldwide car crowdsourcing app, had 50 million users
globally, but only 0.01% sent reports about detours or other traffic information (Weitzenkorn,
2013). This is also a problem for PT crowdsourcing systems, in which planners require
widespread active participation (Zimmerman et al., 2011).

The phenomenon of low participation rates in voluntary information systems was sum-
marized by J. Nielsen (2006), who defined the 90-9-1 rule. This rule states that 90% of
users behave as lurkers –they benefit from the contributions of others, but never contribute
themselves–, 9% contribute occasionally, and 1% actively contribute. This distribution implies
that a very small fraction of users not only generates most of the contributions, but also leads
to a skewed representation of the users. This is problematic for many voluntary information
systems, such as crowdsourcing apps, online communities and online review of products and
services. For example, if a crowdsourcing information system for PT receives user feedback
regarding buses and bus stop conditions, and only a small self-selection of users contribute, it
is probable that large areas of the city will lack information, making the platform less useful
both for users and PT planners.1

1Other examples include Wikipedia, in which only 0.2% of active US visitors are active contributors
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Due to this problem, a handful of crowdsourcing transport applications have tried to
increase participation and contribution rates using elements of gamification, such as avatars
and badges (Faber & Matthes, 2016). Most of this research has been conducted using survey
or lab studies, with very small research samples and with qualitative measures (Hamari et
al., 2014), limiting its application to broader information systems. Other studies have used
“quid pro quo” techniques to limit app usage to those who contribute. For example, Tomasic
et al. (2014) motivated users to share information about bus arrival times and onboard
conditions, such as seat availability, by making such information available only to contributors.
This study found that, despite increasing contribution, a “quid pro quo” approach increased
the likelihood of users abandoning the crowdsourcing app altogether. On the other hand,
simply asking users to contribute did not increase participation rates. In general, research on
transport-oriented crowdsourcing applications has offered little discussion regarding how to
encourage new users to participate in these new data collection technologies.

The current research aims to motivate contribution in a transport crowdsourcing technology
using economic rewards and cooperation messages. First, economic incentives have been used
in many public policy domains in order to motivate socially beneficial behaviors, such as
donating blood (Lacetera et al., 2014) or recycling (Schwartz et al., 2021; Córdova et al.,
2021). In the field of transportation, economic incentives have been used to promote more
sustainable transport modes (Bamberg & Schmidt, 2001; Jakobsson et al., 2002; Rosenfield et
al., 2020; Thøgersen & Møller, 2008), to motivate car drivers to avoid rush hours (Ben-Elia
& Ettema, 2011b,a), and to collect mobility data with traditional surveys (Zumkeller et
al., 2011; Hoogendoorn-Lanser et al., 2015). However, economic incentives have also been
shown to have backfiring effects. For example, Hilton et al. (2014) showed that offering an
economic incentive may reduce preferences for taking the most environmentally friendly mode
of transportation for an intercity trip.2

Second, previous research has also shown that individuals are willing to cooperate with
others even if they could free ride. This has been explained by altruistic preferences, and in
particular by warm-glow altruism; i.e., people have been shown to have altruistic preferences
in order to feel good about themselves (Andreoni, 1990, 1993; Andreoni & Miller, 2002). For
example, contributors to Wikipedia have reported that one of the most relevant reasons to
cooperate is due to altruistic factors (Nov, 2007). In transport, in the context of environmental
problems, previous research has evaluated different ways to promote more sustainable transport
modes by providing information on carbon dioxide emissions (see e.g., Rose & Ampt (2001);
Avineri & Waygood (2013); Waygood & Avineri (2016, 2011)). They seek to increase awareness
about the impact on the environment and others, so people can decide to cooperate through
more sustainable travel decisions.

Our research contributes to the described literature by assessing the use of economic

(J. Nielsen, 2006). In this case, even though few contributors may provide high-quality information, there is
concern about inequality (e.g., gender) (J. Nielsen, 2006; Torres, 2016). Similarly, only a small fraction of
buyers provide an online review despite the fact that online shoppers highly value online reviews of products
from many different consumers (NationMaster, 2019).

2One reason that economic incentives may backfire is the so-called ”crowding-out of intrinsic motivation”,
in which economic incentives reduce the chance of a desired behavioral change by undermining people’s
intrinsic motivation – i.e., their desire to perform a task for its own sake without any economic reward (Frey
& Oberholzer-Gee, 1997; Gneezy & Rustichini, 2000; Schwartz et al., 2015, 2020).
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incentives and cooperation messages to increase participation of users to report bus stop
conditions through a crowdsourcing application, and by doing so, contribute to improving
the PT system. Even though bus stops are part of the trip experience and play a key role in
customer satisfaction and efficient PT operations and maintenance (Eboli & Mazzulla, 2007),
scant research has covered this portion of PT amenities and conditions. More broadly, with
this intervention, we overcome the scarce attention that the use of economic incentives has
received in research involved in collecting data for crowdsourcing information systems, and
how such incentives have been combined with a cooperation message in this domain.3 We also
examine how economic incentives and a cooperation message affect different types of users
to better represent a larger base of PT travellers and the transport network they use. The
study also offers a methodological contribution as it uses a large randomized field experiment
providing internal and ecological validity.

The remainder of this chapter is organized as follows. Section 2 describes the experiment
developed using a public transport-oriented crowdsourcing smartphone app. Section 3 describes
the results. Finally, Section 4 discusses the results and relates them to the existing literature.

5.2 Background information and method

5.2.1 Background information
We collaborated with a widely-used crowdsourcing smartphone application, Transapp

(Arriagada & Munizaga, 2017), based in Santiago (Chile). Santiago is a large and congested
city, with an integrated PT system that serves over 4.5 million trips per day. In a typical
week, 3 million passengers use the system to make 25.5 million trips. Transapp allows users
to easily access real-time information about bus arrival times, driver behavior, overcrowding,
bus conditions, bus stop conditions, and bus bunching, among other factors. This information
is publicly available to all users that have downloaded the application. In addition, the app
allows users to indicate whether certain information is true or false, creating a self-regulated
environment. As of September 2019, Transapp was downloaded 144,917 times since launching
and had 47,320 active users who used the application at least once during September 2019
and accessed the app 719,545 times, mainly to check wait times.

The reporting feature, in which users can share information about buses and bus stops,
requires a critical mass and widespread contribution from users. However, it suffers from the
low participation problem described above. In fact, when studying the contributions of active
users who used the app at least once in the year before this study, only 16.73% sent at least
one report; the remaining 83.27% did not share any reports (i.e., they would be considered
lurkers). Even more, 48.32% of all reports were contributed by only 1% of users, and the
remaining 51.68% of reports were contributed by 15.73% of users, following Nielsen’s Rule
reasonably closely. Since reports are verified by the user community, if more users validate
the veracity of reports, the data is more reliable, and users will consider it so. In addition,
higher rates of user participation can capture a broader set of information both spatially
and temporally, making the data on user experience, system operations, and infrastructure

3The literature on the effect of economic incentives on socially desirable behavior has been mixed, showing
that their effect may depend on how incentives are structured and delivered (Gneezy et al., 2011; Kamenica,
2012; Schwartz et al., 2019).
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status more efficient and complete. For example, users’ reports can detect problems in the
maintenance of bus stops. As a reference, Santiago’s public transport system has more than
11,000 bus stops, making it practically impossible for dedicated inspectors to routinely carry
out a thorough visual inspection of all assets.

5.2.2 Participants
Transapp provided a database that contained all users and reports sent in the app. We

selected all active users during September 2019, considered as those who used the app to at
least look at some information about bus time arrivals, resulting in a database of 46,516 users
4. Then, we classified these users into two categories according to the number of reports they
had shared in the previous two months: “Previous Contributors” and “Previous Lurkers”.
Table 5.1 shows that those users who sent at least one report represented 17.5% of all active
users, and those who never sent a report represented the remaining 82.5%. This classification
was made in order to evaluate if messages and incentives had different effects depending on a
user’s past behavior.

Table 5.1: Classification of users before the campaign

Users Reports sent N Percentage
Previous Contributors 1 or more 8,136 17.5%
Previous Lurkers None 38,380 82.5%
Total - 46,516 100%

5.2.3 Experimental design and procedure
We sent smartphone push notifications inviting users to participate in a three-day campaign

to provide information on bus stops (e.g., if they need repair). We sent out one notification
reminder once a day during the campaign at specific times, using historical data on periods
of high user activity.5 To examine the effect of incentives and messages on participation rates,
we randomly assigned users (N = 46,516) into four experimental conditions using a block
randomization procedure based on users’ previous reporting behavior prior to the experiment,
such that each condition had the exact same proportion of Previous Contributors. The
experimental conditions were: (1) Economic incentive condition, (2) Cooperation message,
(3) Both economic incentive and cooperation message condition, and (4) Control.

For the economic incentive condition, the message indicated that users who shared a report
about bus stop conditions would be participating in a drawing for three-$13.95 reloads on
their PT smart-card.6 In other words, those users who received a message with the economic
incentive and shared a report about a bus stop participated for one of the three rewards

4We used almost the entire database of active users at the time of the experiment, and excluded only a
few hundred users who participated in a pilot test.

5Even though push notifications could be received even if the app was not being used, sending them when
users were more likely to use the app increased the chance that they had some information to share.

6The messages showed the amounts in Chilean pesos (CLP), but we show them here in U.S. dollars (USD)
using the prevailing conversion rate at the time of the experiment.
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distributed as a lottery. The fare structure in Santiago’s public transport system requires
users to use a SC to pay for every trip made in the system (there is no multiple-ride pass
or monthly ticket available). The economic incentive represents 4.81 times the value of the
average SC reload, and allows users to make up to 13 one-way trips in non-peak hours. While
the economic incentive is high for PT users, it is a low expenditure for PT authorities. For
the cooperation message condition, users were reminded that sending reports about bus stops
would help other passengers and contribute to improving the PT system. The third condition
combined the economic incentive and the cooperation message. Users assigned to the control
group did not receive any notification, representing the baseline scenario. If users opened the
push notification, they accessed the message section of the app, which repeated the text from
the push notification and included instructions on how to share a report about a bus stop.
Users could also see the notification and report later on (see Appendix 5.5.1 for all materials
used in the experiment). 7

5.2.4 Empirical strategy

In this section we describe the empirical strategy to evaluate the participation rate and
the level of contribution.

To examine the effect of each experimental condition on the participation rate, we estimate
a logit model for the probability of participating using:

Yi = B0 +
∑
j

Bj ∗Dij + ei (5.1)

where Yi indicates whether user i sent at least one report during the three-day campaign (=1,
0 if the user did not engage), Dij is a dummy variable indicating whether user i was assigned
to condition j ∈ {Economic, Cooperation,Both} (=1, 0 if not). Therefore, all estimates use
the control condition as the baseline. εi is the error term. Because users were randomly
assigned, βj will provide an unbiased estimate of the average treatment effects (Rubin, 1974).
Additionally, we estimated a linear regression model (see Appendix 5.5.3) to facilitate the
interpretation of results.

To examine users’ contribution levels, i.e. the number of reports shared by users, we ran a
zero-inflated negative binomial model. This model is well-suited for data distributions with
an excess of zeros. Its central idea is that participation and report counts are generated by
separate processes. In this case, the excess of zeros is attributable to users who did not receive
or see the notification (e.g., push notifications were not allowed, or were deactivated, on some
phones), and to users who may have automatically disregarded the push notification without
reading it, or saw it but decided not to report. Across conditions, 96% of participants did not
report during the campaign. This model is shown in equations 5.2 and 5.3:

7We oversampled the experimental conditions with an economic incentive based on the results from a pilot
(Appendix 5.5.2 provides information about the sample size and the statistical power analysis).
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Pr(Yi = j) =
 πi + (1− πi)g(yi = 0|µi) if j = 0

(1− πi)g(yi|µi) if j > 0 (5.2)

log(E(yi) = µi) = B0 +
∑
j

Bj ∗Dij + ei (5.3)

where πi is the logistic function, which associates individuals who do not participate with
probability πi, and users who contribute with probability 1 − πi. Therefore, πi can be
interpreted as the probability of observing users not reporting. g(yi) is the negative binomial
distribution, since the assumption is that the report count is generated according to this
distribution with µi as the expected value of the negative binomial component. Its regression
equation is presented in Equation 5.3, where yi indicates the number of reports made
by user i, Dij is a dummy variable indicating whether user i was assigned to condition
j ∈ {Economic, Cooperation,Both} (=1, and 0 if not) and εi is the error term.

5.3 Results

In this section, we show the results of the randomized experiment. In particular, we focus
on the participation rate (both overall and disaggregated by type of user), level of contribution,
and the effect over time.

5.3.1 Participation rate
Figure 5.1 shows the participation rate across groups during the campaign, and the first

column of Table 5.2 shows the results using Equation 5.1. Only 1.34% of users in the control
condition reported (this is the baseline, as these users did not receive any type of message).
The likelihood of reporting substantially increased to 5.26% when users were offered an
economic incentive (OR = 4.10; p < 0.001), which represents a relative increase of 294%.
Similarly, users who were sent a cooperation message or a combined economic incentive
and cooperation message also increased their likelihood of reporting to 2.30% (OR = 1.74;
p < 0.001; a relative increase of 72%) and 4.02% (OR = 3.10; p < 0.001; a relative increase
of 201%), respectively. A pairwise comparison indicates that participation rates between
treatments are all statistically different (all ps < 0.001). This means that there is a detrimental
effect when a cooperation message is included with the economic incentive.8 In comparison, a
demanding “quid pro quo” approach (Tomasic et al., 2014) increased the participation rate in
a transport crowdsourcing app in the US by 3.6 percentage points (a 23% relative increase
from their baseline). In addition, in Transapp, the natural proportion of contributors in the
two weeks previous to the experiment were 1.55% and 1.53%, respectively, a relative reduction
of 1.3% in the number of contributors between the two weeks. Compared with the increase in
the participation rate during the campaign (up to 3.92 percentage points, more than 200% in

8We also found that the percentage of users who uninstalled the app during the campaign was small and
very similar across conditions: economic incentive (0.58%), cooperation message (0.54%), both (0.47%), and
control (0.57%).
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relative terms), this shows that an economic incentive can strongly boost participation rates,
despite being a low-cost tool for the system.

Figure 5.1: Percentage of users that sent a bus stop report during the campaign. Error bars
represent ± 1 standard error.

A similar analysis by user type, shown in the last two columns of Table 5.2, demonstrates
that users who had reported prior to the experiment (Previous Contributors) increased their
participation rate. They increased their participation from 4.4%, in the control group, to
12.3% when they were offered an economic incentive alone (OR = 3.05; p < 0.001), to
10.6% when the message also included the cooperation message (OR = 2.58; p < 0.001). In
relative terms, this is an increase of 180% and 141%, respectively. Previous Contributors’
participation rate was 7.9% when only a cooperation message was used (a relative increase of
80%; OR = 1.87 = 12.1; p < 0.001).

However, the largest relative effect was found for the Previous Lurkers group (those who
had never reported in the app prior to the experiment). For these users, the baseline control
is 0.7%, implying that only a tiny fraction of users would have reported without the campaign.
Users’ participation in the economic incentive condition was 3.8% (OR = 5.65; p < 0.001),
a 447% relative increase. For the both condition, Previous Lurkers’ participation rate was
2.6% (OR = 3.89; p < 0.001), a relative increase of 280%. Finally, the cooperation message
condition had a participation rate for this group of 1.1% (OR = 1.63; p = 0.019)), a relative
increase of 62%. These results demonstrate a small effect of cooperation messaging for
Previous Lurkers, which is consistent with this group’s lack of previous (intrinsic) motivation
to send reports. The results with Previous Lurkers are also notable as they indicate a potential
expansion of the contributor base of the crowdsourcing app. Appendix 5.5.3 shows these
results using a linear probability model.
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Table 5.2: Estimation of the effect of each experimental condition on participation rate using
a logit model

All Previous Contributors Previous Lurkers
Economic incentive 1.411*** 1.115*** 1.731***

(0.112) (0.153) (0.169)
[4.099] [3.049] [5.647]
<0.001 <0.001 <0.001

Cooperation message 0.555*** 0.624*** 0.488*
(0.136) (0.182) (0.210)
[1.741] [1.867] [1.629]
<0.001 <0.001 0.019

Both 1.130*** 0.948*** 1.359***
(0.118) (0.162) (0.177)
[3.095] [2.580] [3.892]
<0.001 <0.001 <0.001

Constant -4.302*** -3.080*** -4.972***
(0.108) (0.145) (0.165)
[0.014] [0.046] [0.007]
<0.001 <0.001 <0.001

P-values for pairwise comparisons
Economic incentive vs
Cooperation message <0.001 <0.001 <0.001

Economic incentive vs Both <0.001 0.058 <0.001
Cooperation message vs Both <0.001 0.014 <0.001
Log-likelihood -7658.923 -2635.653 -4626.176
Observations 46516 8136 38380
+p<0.10, *p<0.05, ** p<0.01, *** p<0.001.

All columns show standard errors between parentheses, p-values in italics, and odd-ratios between brackets.

5.3.2 Level of user contribution
The previous sub-section focused on participation rates (i.e., an extensive margin analysis).

In the following analysis, we examine the number of reports shared by users (i.e., intensive
margin). Figure 5.2 shows the average number of shared reports per user and per day,
conditional on participation. Users who were offered an economic incentive, with or without
a cooperation message, made 19.5% more reports when compared to users in the control
group, from 0.80 to 0.96 daily reports per user (both significant only at the 10% significance
level; d = 0.2 for the both condition)9. This means that in the economic incentive group,
users who reported sent almost three reports, on average, during the campaign. There is
a much smaller difference for users who were sent a cooperation message; they made 0.86
average reports, on average, which represents an increase of 6.7% from the control group, and
is not sizably different from the daily reports shared by the control group (p = 0.54; d = 0.1).

9We excluded outlier observations with an extremely high number of reports – over the 99.5th percentile –
to avoid a strong influence from very few observations. For completeness, in the Appendix 5.5.4, we show an
analysis that includes these observations.
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These results suggest that the economic incentive not only increased the active user base, but
incentivized that user base to interact (i.e., share reports) slightly more frequently. While
all treatments showed a positive effect regarding both extensive and intensive margins, the
economic incentive was the most successful treatment with regards to both margins.

The contribution-level analysis by user type shows that Previous Contributors increased the
number of shared reports conditional on participation. They increased their contribution from
0.82 average daily reports, in the control group, to 1.12 average daily reports when they were
offered an economic incentive with or without the cooperation message, a relative increase
of 36% (p = 0.013 for the economic incentive and p = 0.03 for both, d = 0.4). Previous
Contributors’ contribution level was 0.99 daily average reports when only a cooperation
message was used (a relative increase of 20.6%; p = 0.18; d = 0.3). For the Previous Lurkers
group, there were no sizably significant differences in shared reports compared to the control
group – these were users who started to report for the first time, so it is hard to expect
that their intensive margin was any greater than those in the control group. Overall, these
results indicate that economic incentives, mainly, but also cooperation messaging, increased
the likelihood of participation for all users, with a larger increase for users who never reported
before, and also increased the number of reports shared by those who had experience reporting
with the app.

Figure 5.2: Average number of daily reports shared by users who participated during the
campaign. Error bars represent ± 1 standard error.

The previous analysis must be taken with caution because of the change in participation
likelihood across conditions. In this regard, it is remarkable that even though all treatments
increased participation, they also increased the level of contribution – one may expect that
these new users would report less frequently compared with users in the control group.
Nevertheless, as explained in Section 5.2.4, we use a zero-inflated negative binomial model
to account for the decision to participate and how many reports to share. Table 5.3 shows
the results. The bottom section of the table shows the log-odds of not reporting under each
treatment, using the control group as the baseline. Consistent with the previous analysis,
users are more likely to report under all treatments. Overall, being in the economic incentive
treatment (vs. in the control group) decreases the odds of not participating by a factor of
0.27 (e−1.297), p < 0.001. In other words, the economic incentive increases the participation
rate. The top section of the table shows the effect on the number of reports for those who
share at least one report. Here, the economic incentive and the both treatments increase the
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number of reports compared to the control group. For example, for someone in the economic
incentive condition, the number of reports increases by a factor of 1.34 (e0.293), p = 0.04.
Table 5.3 shows the same analysis for Previous Contributors and Previous Lurkers, with
results consistent with the previous analysis. For robustness, in Appendix 5.5.4 we show the
analysis with alternative specifications (e.g., using a Poisson model or using bus reports as
the outcome variable, which were not part of the campaign and were not expected to affect
participation). The robustness of these analyses is consistent with the previous results.10

Table 5.3: Estimation of the effect of each experimental condition on the level of user
contribution using a zero-inflated negative binomial model

Negative binomial
All Previous Contributors Previous Lurkers

Economic incentive 0.293* 0.461* 0.158
(0.139) (0.182) (0.204)
0.035 0.011 0.439

Cooperation message 0.110 0.286 -0.282
(0.172) (0.210) (0.295)
0.523 0.173 0.338

Both 0.292* 0.458* 0.110
(0.147) (0.192) (0.216)
0.047 0.017 0.611

Constant 0.281+ 0.507** 0.023
(0.145) (0.179) (0.238)
0.053 0.005 0.924

Zero-inflated logit
All Previous Contributors Previous Lurkers

Economic incentive -1.297*** -0.953*** -1.668***
(0.130) (0.176) (0.196)
<0.001 <0.001 <0.001

Cooperation message -0.491** -0.491* -0.634*
(0.158) (0.208) (0.259)
0.002 0.018 0.014

Both -1.015*** -0.785*** -1.316***
(0.137) (0.186) (0.206)
<0.001 <0.001 <0.001

Constant 3.715*** 2.707*** 4.130***
(0.135) (0.172) (0.226)
<0.001 <0.001 <0.001

Lnα 0.170 -0.426** 0.629**
(0.123) (0.147) (0.225)
0.169 0.004 0.005

Log-likelihood -10690.824 -4059.634 -6243.081
Observations 46438 8082 38356
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

All columns show standard errors between parentheses and p-values in italics.

10Compared to the negative binomial model, the Poisson distribution does not assume overdispersion of the
count data. In our case, there is overdispersion as the unconditional mean number of reports is much lower
than its variance for each experimental condition.
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5.3.3 Effect over time
The experiment was conducted during the second week of October 2019. One day after

the campaign ended, a series of massive demonstrations and severe riots known as the “Social
Outburst” (Estallido Social) occurred throughout Chile.11 These events paralyzed the PT
system due to the burning of buses and Metro stations. The system started working again at
partial capacity one week later.12 Because of this force majeure event, we were doubtful about
the lasting impacts of the campaign, given this vast disruption to any habit-forming behavior.
Nevertheless, we examined how participation rates varied over time for several weeks after
the campaign ended. Figure 5.3 presents the percentage of users that reported (participation
rates) in each treatment group over time.

The period analyzed was the three-day campaign-treatment period and the five weeks
after the campaign ended. During the first post-treatment week, many people stayed at home
due to disruptions in the public transportation system associated with the demonstrations
and the declaration of a curfew and state of emergency. In the second post-treatment week,
even though participation rates and levels of user contribution started to decrease after the
campaign, and a major disruption, the participation rate of users in the economic incentive
condition was 39% greater than those in the control condition (a 0.7 percentage points increase
from 1.7%; OR = 1.40; p = 0.001). Afterward, participation rates further decreased, reaching
a level of 1.9% in the fifth week after treatment, which was very similar to the participation
rate of the control group at the same point (1.7%). A similar pattern was observed for the
other experimental condition groups. To examine these differences, we conducted a statistical
analysis using the same model from Section 5.2.4 for each period described below.

Figure 5.3: Participation rates over time. Error bars represent ± 1.96 standard error.

Table 5.5 in Appendix 5.5.5 shows the results obtained from the zero-inflated negative
binomial model for each period: a two-week pre-treatment period (for which we expected

11https://www.ciperchile.cl/2019/10/27/el-reventon-social-en-chile-una-mirada-historica/
12https://www.interior.gob.cl/noticias/2019/10/28/informacion-oficial-del-gobierno-de-chile-con-las-

medidas-para-enfrentar-la-situacion-de-emergencia/
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there to be no effect), the three-day campaign-treatment period, and each of the five weeks
following the campaign. The bottom panel shows the estimation for the zero-inflation portion
of the model, where negative coefficients indicate a decrease in the probability of obtaining
zero reports. This portion of the model indicates that, except for the first particular post-
treatment week, the economic-incentive group’s participation rate was still higher than that
of the control group for three weeks after the campaign ended, with the effect decreasing
until it was not sizably different from zero during the fourth post-treatment week. The other
treatment conditions showed a similar pattern, but their trends were slightly more erratic.
Therefore, despite the disruption during the third week of October, the campaign was able to
change users’ participation behavior for several weeks. The top panel shows the estimation
for the negative binomial portion of the model, where positive coefficients indicate an increase
in the number of reports generated. This non-zero portion of the analysis shows that it was
not possible to observe significant differences in the number of reports shared compared with
users in the control group (conditional on reporting). This result is to be expected, since
people who began to report after receiving the push notification would not be expected to
report frequently, as they did not show an intrinsic motivation to participate prior to the
campaign. In Appendix 5.5.5, we also conduct this analysis for Previous Contributor and
Previous Lurkers. It shows that the positive impact of participation in the post-treatment
periods was more attributable to Previous Lurkers and an increased number of reports for
two weeks after the treatment was driven by Previous Contributors.

5.4 Discussion and conclusions

Crowdsourcing PT applications allow commuters to report PT system conditions along with
their level of satisfaction regarding the service provided. These data collection systems face
three principal challenges: (i) motivate as many users as possible to contribute information,
(ii) motivate users to deliver as much information as possible, and (iii) obtain information
that covers most of the transport network both spatially and temporally. In this context, we
evaluated the effectiveness of economic incentives and cooperation messages to motivate users
to report key information about bus stop conditions.

Our results show that economic incentives and cooperation messaging increased partic-
ipation rates and the number of reports shared by users. The relative increases compared
to the control group were 294% for users who received an economic incentive, 72% for those
who received a cooperation message, and 201% for users who received a combination of both.
The economic incentive condition increased the participation rate most effectively, especially
for users who had not reported prior to the campaign, and also increased the number of
reports conditional on participation.13 Furthermore, we found that offering an economic
incentive helped to encourage lurkers - those users who had not made prior contributions - to
participate, thereby increasing the contributor base, which is one of the most important goals
of crowdsourcing applications in transportation.

The cooperation message had a positive impact on the participation rate compared to not
13Regarding report quality, only a small percentage of reports may be considered dubious (i.e., more users

rejected the report instead of confirming it) out of all the reports made during the campaign: economic
incentive (5.5%), cooperation message (8.4%), both (6.9%), and control (11.8%).
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sending any message (i.e., control group), but its impact was significantly less than offering
an economic incentive. As the crowdsourcing app is inherently a platform based on providing
and receiving contributions, with no economic recompense, the cooperation message most
likely did not change the status quo. In other words, for most people, the cooperation message
probably acted simply as a reminder with a short-lasting effect. Previous research has shown
that when people are reminded of something they are already aware of, behavioral effects are
short-lived (Schwartz et al., 2013). Interestingly, combining the cooperation message with
an economic incentive reduced the participation rate compared to offering only an economic
incentive. This result suggests that some of these users paid more attention to the first
section of the notification (“Help and participate for bip! reloads of $13.95”), reducing their
chance to share a report, or they resisted mixing an emphasized cooperation activity with
an economic (more self-centered) motivation (Heyman & Ariely, 2004). In line with our
results, recent research has found that monetary incentives work better to encourage behavior
when offered without combining them with an emphasis on cooperation (Lacetera et al., 2012;
Niessen-Ruenzi et al., 2014; Lacetera et al., 2014; Schwartz et al., 2021, 2020).

We found that providing an economic incentive can have positive impacts on participation
and contribution for several weeks after a campaign ends. However, the positive effects
rapidly decrease compared to the initial impact. Future research may consider whether a
long-lasting effect is possible in the majority of cases, given that in the case of this experiment,
a major disruption to the PT network occurred one week after the campaign, which may have
dampened the campaign’s lasting impact, or whether using multiple messages for several weeks
can strengthen collaborative habits on crowdsourcing platforms. In addition, even though
a cooperation message had less of an impact than a standalone economic incentive, future
research may examine whether framing the cooperation message as a personal characteristic
(e.g., “those who report help improve the system”) or normalizing the behavior (e.g., “many
people collaborate by sending reports”) can encourage cooperation behavior. The interplay
of economic incentives and altruistic behavior has puzzled researchers in recent decades.
Our research should help deepen the understanding of the role that economic incentives can
play by providing evidence for transport planners, crowdsourcing information managers, and
government authorities to more effectively increase the use of crowdsourcing systems that
benefit the wider community.

Finally, the results of this study suggest that it is possible to enrich current PT databases,
used for the understanding of PT passenger behavior and the evaluation of PT service, using
crowdsourcing applications to provide detailed information about the system. Currently,
passive data, such as Automatic Fare Collection (AFC) data, Automatic Vehicle Location
(AVL) data, and Automatic Passenger Counter (APC) data, are widely used by PT authorities
and researchers to understand the demand and the operation of PT systems (Bagchi & White,
2005; Munizaga & Palma, 2012; Gschwender et al., 2016; Devillaine et al., 2012). Unlike
traditional data obtained from surveys, passive data allows the collection of large volumes of
travel data over long periods of time. However, it lacks relevant user information, such as
information related to infrastructure maintenance, which is essential for improving the PT
system. This study shows that it is possible to encourage transport-oriented crowdsourcing
applications users to share the currently missing information from passive databases using
cost-effective monetary incentives.
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5.5 Appendices

5.5.1 Notifications received by users on their phones

Messages sent to users. From left to right: Economic incentive, Cooperation message and
Both conditions. Users had to press the notification (at the top of the figure) in order to read
the full message.14

Details of the notifications and messages sent to users, translated to English:

14The economic incentive condition had two possible specific messages, which could be seen only if people
opened the economic incentive notification – one with the economic incentive specific message and another
with the both specific message. Because few people likely read the messages in the app, we found no sizable
differences between messages for people who received the economic incentive notification, so we decided to
present the results based on the notifications only.

101



Economic incentive Cooperation message Both

Notification Participate for CLP$10,000
in bip! credits! Help other commuters! Help and participate for

CLP$10,000 in bip! credits!
Campaign: Win by
reporting your bus stop

Campaign: Help by
reporting your bus stop

Campaign: Help and win
by reporting your bus stop

Condition-
specific
message

Participate in this
campaign between [dates]
by sending reports about a
bus stop, and you will be
participating in a draw for
three bip! credits of
CLP$10,000

By participating in this
campaign between [dates]
by sending reports about a
bus stop, you will be helping
to improve other peoples’
trips, as well as the
PT system

Participate in this
campaign between [dates]
by sending reports about a
bus stop, and you will be helping
to improve other peoples’ trips
and the PT system.
You will also be participating
in a draw for three bip! charges
of CLP$10,000

Common
message

Remember that to report a bus stop near your location, you must first click on the bus
stop on the map, and then on the yellow button that will appear at the bottom of the
screen. Thanks for being part of our community.

5.5.2 Sample size

To identify the sample size required for each treatment, we perform a statistical power
analysis based on the results of a pilot. This pilot showed that the cooperation message had
the smallest effect compared to the control (0.8 p.p. from 1.1%). Therefore, we required
approximately 6,000 individuals in each of these experimental conditions to have a 95%
statistical power (we added a few hundred people because some phones may have changed
or not be working). The rest of the sample was evenly distributed to detect differences
between the economic incentive and both conditions, and to be able to split the economic
incentive condition into two additional conditions for people who opened the economic incentive
notification. For the latter, the message section in the app either repeated the text from the
notification (i.e., offering an economic incentive) or also included the text from the cooperation
message. We expected the difference to be small, if detectable, because few people may use
the message section in the app. Therefore, the final sample was 11,164 for each of these three
groups (the Both condition and the two inside the economic incentive one). Consistently,
Table 5.4 shows no significant difference between the texts in the message section for the
economic incentive condition (p > 0.2 for all models).
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Table 5.4: Estimation of the effect of each experimental condition on participation rate using
a logit model

All Previous Contributors Previous Lurkers
Economic incentive 1.446*** 1.134*** 1.778***

(0.116) (0.160) (0.173)
<0.001 <0.001 <0.001

Economic incentive
(adding cooperation text in the app) 1.374*** 1.096*** 1.682***

(0.116) (0.160) (0.174)
<0.001 <0.001 <0.001

Cooperation message 0.555*** 0.624*** 0.488*
(0.136) (0.182) (0.210)
<0.001 <0.001 0.02

Both 1.130*** 0.948*** 1.359***
(0.118) (0.162) (0.177)
<0.001 <0.001 <0.001

Constant -4.302*** -3.080*** -4.972***
(0.108) (0.145) (0.165)
<0.001 <0.001 <0.001

P-values for pairwise comparisons
Economic incentive
(adding cooperation text in the app) 0.231 0.697 0.216

Log-likelihood -7658.204 -2635.577 -4625.409
Observations 46516 8136 38380
+p<0.10, *p<0.05, ** p<0.01, *** p<0.001.

All columns show standard errors between parentheses and p-values in italics.
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5.5.3 Estimation of the effect of each experimental condition on
participation rate using a linear probability model

All Previous
Contributors

Previous
Lurckers

All with
interactions

Economic incentive 0.039*** 0.079*** 0.031*** 0.024***
(0.003) (0.010) (0.003) (0.003)
<0.001 <0.001 <0.001 <0.001

Cooperation message 0.010** 0.035** 0.004 -0.002
(0.003) (0.013) (0.003) (0.004)
0.005 0.005 0.169 0.538

Both 0.027*** 0.062*** 0.019*** 0.013***
(0.003) (0.011) (0.003) (0.003)
<0.001 <0.001 <0.001 <0.001

Contributors-economic incentive 0.085***
(0.003)
<0.001

Contributors-cooperation message 0.068***
(0.006)
<0.001

Contributors-both 0.080***
(0.005)
<0.001

Constant 0.013*** 0.044*** 0.007** 0.013***
(0.002) (0.009) (0.002) (0.002)
<0.001 <0.001 0.002 <0.001

p-values for pairwise comparisons
Economic incentive vs Cooperation message <0.001 <0.001 <0.001 <0.001
Economic incentive vs Both <0.001 0.043 <0.001 <0.001
Cooperation message vs Both <0.001 0.016 <0.001 <0.001
R2 0.006 0.008 0.006 0.027
Observations 46516 8136 38380 46516
+p<0.10, *p<0.05, **p<0.01, ***p<0.001

All columns show standard errors between parentheses and p-values in italics.
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5.5.4 Estimation of the effect of each experimental condition on
the level of user contribution using different models and dif-
ferent analyses

Negative binomial
Without exclusion With Poisson With bus reports

Economic incentive 1.231** 0.235* 0.322
(0.408) (0.112) (0.430)
0.003 0.036 0.453

Cooperation message 0.517+ 0.088 0.685
(0.289) (0.139) (0.693)
0.074 0.523 0.323

Both 1.526* 0.234* 0.226
(0.590) (0.119) (0.639)
0.010 0.048 0.724

Constant -2.43*** 0.752*** 0.108
(0.231) (0.108) (1.039)
<0.001 <0.001 0.916

Zero-inflated
Economic incentive -18.1*** -1.33*** -0.28

(0.348) (0.118) (0.106)
<0.001 <0.001 0.239

Cooperation message -0.63+ -0.50*** 0.106
(0.371) (0.143) (0.164)
0.089 <0.001 0.739

Both -1.21+ -1.05*** 0.164
(0.656) (0.124) (3.695)
0.065 <0.001 0.588

Constant 0.345 4.196*** 3.695
(0.317) (0.113) (1.030)
0.277 <0.001 <0.001

Ln alpha 3.965*** 2.454*
(0.125) (0.037)
<0.001 0.037

alpha 52.751 11.641
(6.637) (13.72)

Log-likelihood -11865.09 -11057.26 -2431.907
Observations 46,516 46,438 46,516
+p<0.10, *p<0.05, **p<0.01, ***p<0.001
All columns show standard errors between parentheses and p-values in italics.
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5.5.5 Estimation of the effect of each experimental condition on
the level of user contribution using a Zero-inflated negative
binomial model
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Chapter 6

Conclusions and future research

6.1 Main findings

The main purpose of this thesis is to contribute to the understanding of PT passengers’
behavior using real-world data. In particular, this research uses SC data from the PT system in
Santiago, Chile, and transport-oriented crowdsourcing application data. Revealed preference
data collected from different transport technologies allows us to obtain day-to-day passengers’
observed choices. This research uses this opportunity to answer four research questions, which
are summarized in this section.

1. Are public transport passengers using different route choice strategies?

Most PT passengers’ route choice modeling literature have used the MNL or PSL discrete
choice model, with consideration sets composed of itineraries, where all lines belonging to
a set of relevant alternatives are regarded as different options. We call this approach the
disaggregated strategy. On the other hand, transit assignment modeling literature use the
common lines principle, which was described by Chriqui & Robillard (1975) as the strategy of
identifying a subset of PT lines that minimized the total expected travel time. According to
this principle, passengers will take the first line of the common-line set that arrives to the bus
stop. We call this approach aggregated strategy. This means that two modeling approaches
can be distinguished, depending on whether the analysis focuses on route choice behavior
modeling, or transit assignment models for strategic analysis.

In chapter 2, we show that this dichotomy between the disaggregated and aggregated
approaches to the same problem is inappropriate and that, instead, heterogeneity exists in
the route choice strategy, both between users and across contexts. We verified this using an
indicator function constructed as the difference between expected and observed trips based on
the assumption that passengers follow the common line principle. We applied this indicator to
a case study based on SC data from the city of Santiago, Chile, from which identify individuals
that follow either an aggregated or a disaggregated strategy, as well as others who seem to be
using a combination of both strategies.

In the same chapter, we analyzed the heterogeneity regarding the PT passengers’ route
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choice strategy behavior using an integrated discrete choice and latent class approach, using SC
data from the city of Santiago, Chile. The analysis was performed by estimating three types
of models: i) a PSL model with the consideration set composed of itineraries (disaggregated
strategy); ii) a PSL model with the consideration set composed of common lines as part of
the same alternative (aggregated strategy); and iii) a MIS latent class model, which takes in
consideration the endogeneity problem and considers two types of consideration sets for two
types of passengers: those who use itineraries and those who use common lines as part of the
same alternative. The estimation of the MIS latent class model confirmed the heterogeneity
strategy route choice behavior between passengers, suggesting that 51.2% of passengers use a
disaggregated strategy for route choice, while the rest use an aggregated one.

The MIS latent class model showed that passengers have differences in their perceptions of
some route attributes. For example, passengers using the aggregated alternatives strategy
prefer to travel by bus rather than Metro, while passengers using the disaggregated strategy
prefer to travel by Metro rather than bus. Waiting time is more burdensome for passengers
who use common lines, which is probably the reason why they consider more than one line
as part of the same alternative. Walking time and bus crowding is more burdensome for
passengers who use disaggregated alternatives, which suggests that they prefer specific lines
in order to avoid walking and/or crowding.

The findings of this research can be used to suggest some guidelines for PT authorities
that can help steer decisions regarding how to improve the design, planning, and operation
of the PT system following the preferences of passengers. Firstly, given that a percentage
of passengers use common lines, implementing lines with an overlap in high-demand sectors
will effectively allow passengers to reduce their waiting time. Also, in order to reduce waiting
times and improve passenger perception of PT, it may be important that transport authorities
make real-time information channels available, allowing users to know which common line
alternatives allow them to reach their destination. Secondly, identifying OD pairs that required
transfers would focus on planning efforts to reduce the number of onerous transfers (bus-to-bus
and Metro-to-bus). Thirdly, given that our models show that transfers requiring walking
generate larger disutility levels for passengers, high-demand transfer points should be carefully
designed or redesigned to avoid this problem.

2. How do different consideration set generation practical approaches impact
estimation and prediction in a PT route choice model?

One of the biggest challenges in PT route choice modeling, estimated with RP data, is to
identify the set of alternatives that were considered by the passengers as attractive alternatives
when they made the route choice decision. This set of alternatives is called the consideration
set and the difficulty of identifying it lies in the fact that there are countless alternative
routes in a transport network, especially in a dense multimodal one. The consideration set
composition can importantly impact the model estimates and model predictions. In the route
choice literature, there are various feasible approaches proposed to build the consideration set.
While some research has been carried out on the impacts of the different consideration set
generation approaches in the model estimates for private transport, no single study exists
which evaluates this issue for PT systems.

Two practical ways to identify the consideration set can be distinguished in the applied
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route choice literature: build it using an algorithm or heuristic that emulates how individuals
may build the consideration set, or impute it from historical data. Most of these heuristics are
based on the assumption that travelers minimize a cost function and therefore they require
the specification of a transit network to iteratively apply some deterministic minimum cost
path search. During the last decade, various authors have imputed the consideration set
using the previous travelers’ route choices. This is called the Historical/Cohort approach in
this study, which allows avoiding the execution of any heuristic that can be computationally
expensive for a large-scale transit network.

In chapter 3, we formally defined the Historical/Cohort approach as the consideration set
built from past choices made by the same individual, or from the choices of other individuals
in the same context (OD pair, period, and trip purpose). Then, following Guevara et al.
(2020), we derived the required sampling correction when the consideration set is constructed
from past choices and formalize the conditions under which a route choice model that uses
the Historical/Cohort approach to generate the consideration set can obtain population
parameters.

In the same chapter, we assessed the relative performance of the Historical/Cohort approach
and six other feasible heuristics approaches: the Labeling approach, Link elimination approach,
Link penalty approach, K-shortest path approach, Simulation approach, and Combined
approach. Using SC transaction data from weekdays and peak morning periods from Santiago,
Chile, we estimated an MNL and a PSL model for each consideration set generation approach.
With three weeks of data, we evaluated the impact of different consideration set generation
approaches by assessing the consistency of the model estimates. Finally, with one week of
data, we studied the out-of-sample prediction performance obtained by each technique.

The results of this analysis (see chapter 3), show that all consideration set generation
approaches allow to well-represent the perception of passengers regarding the waiting time,
in-vehicle travel time, and the number of transfers. However, walking transfer time was well-
represented only by the Historical/Cohort approach with a negative sign, while the models
that used an heuristic approach obtained a non-expected positive sign for this attribute.
Additionally, the prediction performance analysis shows that the Historical/Cohort method
outperforms all other heuristic approaches analyzed. This empirical evidence supports the
theoretical results about the ability of the Historical/Cohort approach to recover population
parameters and suggests the convenience of using this approach, whenever feasible, beyond
the PT route choice context.

This study benefits decision-makers in large-scale transport systems by providing a method-
ology to understand passengers’ perceptions and behavior using passive-transport data and
avoiding heuristics approaches that can be computationally expensive in a large-scale transit
network.

3. How can public transport passengers’ past experiences be integrated into a
route choice model to incorporate the uncertain nature of in-vehicle travel time
in the public transport system?

The route-choice decision process is a dynamic process where passengers have to evaluate
the different route attributes and select just one route alternative from their consideration
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set. There are many uncertainties involved in this decision process since different events and
incidents can occur in the trajectory of a travel route. These uncertainties are more important
in those PT systems that do not consider dedicated lanes for PT vehicles. It makes that some
route attributes are not fixed in time and they vary according to the situation in the PT
system, such as the in-vehicle travel time. In this context, PT passengers evaluate the route
attributes using knowledge from their past experience and from descriptive travel information.
Consequently, the PT passengers’ learning process plays a fundamental role to understand
their route choice behavior.

Most PT route choice studies consider uncertainty route attributes as of static attributes
and that all passengers have the same knowledge of the travel time distribution. Consequently,
they ignore the relationship between passengers’ learning process from their past experiences
and their current choices. In chapter 4, we adressed to fill this research gap by incorporating,
into a PT route choice model, the passengers’ perceived in-vehicle travel time, which can vary
across time. Since a modification to the PT system offers a particularly good opportunity to
assess the learning process of PT passengers, we used the case of a new metro line (line 6) in
Santiago, Chile, which was launched on November 3, 2017.

Using 3 months (one month previous and two months after to the launch of the metro line
6) of SC transaction data from weekdays and peak morning periods, we first analyzed the data
to understand the effect of the new metro line on the total travel time, in the in-vehicle travel
time, and the number of transfers. After that, we estimated two models: the IBL-PSL model,
which combines the perceived in-vehicle travel time with the mean in-vehicle travel time,
assuming that passengers make route choice decisions based on information from experience,
if they have previously used the alternative, and descriptive information if they have not
previously used the alternative, and the baseline model, the PSL model, which considers
in-vehicle travel time as a static attribute and assumes that passengers make route choice
decisions using purely descriptive information.

To represent the perceived in-vehicle travel time in the IBL-PSL model, we used an Instance
Basel Learning (IBL) model proposed by Tang et al. (2017), which captures the recency
effects and the power law of forgetting present in travelers’ day-to-day learning processes.
The results showed that both models can be used to represent the perception of passengers
for in-vehicle travel time, waiting time, and number of transfers. In particular, the parameter
of the rate of forgetting of the IBL-PSL is positive and statistically significant, which is in
line with the IBL theory. Also, results suggest that during the first weeks of a new context in
a PT system, the passengers use mainly descriptive information to select a route, while weeks
afterward, passengers start to consider experience-based information to make route choice
decisions.

The results of the chapter 4 are very useful for PT authorities since they can support the
idea that incrementing the amount of descriptive information is highly recommended at the
beginning of the new context in the PT system to improve the passengers’ trip experience.

4. How can passengers be encouraged to provide mobility and transport infor-
mation through crowdsourced mobile public transport applications?

One of the biggest challenges in PT route choice modeling using passive transport data is
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the lack of some important trip information, such as the access/egress time, trip purposes, and
the state of the vehicles and buses. In this context, the usage of crowdsourcing applications
applied to public transport provides the opportunity not only to give more passengers access
to information about the transport system but also to have better knowledge of passengers’
behavior and perceptions, which can allow complementing the missing data in the currently
passive transport data. However, these crowdsourcing applications, which are voluntary
participatory information systems, require a critical mass of users willing to share transport
information to be useful. Even when some studies have made some effort to increase the users’
participation in crowdsourcing transport applications, mainly using gamification or ”quid
pro quo” techniques, research on which type of incentives allows to encourage new users to
participate in these new data collection technologies is scarce.

We collaborated with Transapp, a widely-used transport-oriented crowdsourcing application
in Santiago, Chile. This app allows users to access real-time travel information and to share
travel information such as driver behavior, overcrowding, bus conditions, and stops conditions.
The reporting feature suffers from the low participation problem. Only 83.27% of active users,
who used the app at least once in the year before this study, did not share any reports (called
in this study lurkers). In chapter 5, we examine the use of economic incentives (a lottery
for free trips) and prosocial messages (asking users to help the community) to encourage
Transapp’s users to share reports about bus stop conditions in order to increase users’ level
of participation and contributions. For that, we conducted a large-scale field experiment in
which users received push notifications, offering an economic incentive, a prosocial message,
both (economic incentive and prosocial message), and there was a control group that did not
receive any message.

To examine the effect of each experimental condition on the participation rate (number of
users who shared at least one report) we estimated a logit model, and to examine the level of
contribution (number of reports shared by users) we estimated a zero-inflated negative binomial
model, which is highly recommended for data distribution with an excess of zeros. The results
show that economic incentives and cooperations messaging increased the participation rate
and the level of contribution. For users in the economic incentive group, the relative increases
of the participation rate compared to the control group were 294%, this value decreased
to 201% when a cooperation message is combined with an economic incentive, and to 72%
for those users who received only a cooperation message. This means that the economic
incentive alone increase the participation rate most effectively. Regarding to the level of user
contribution conditional on participation, users who were offered an economic incentive made
19.5% more reports when compared to users in the control group, while user who were offered
a cooperation message did not show a significant difference with respect to the number of
shared reports by the control group. These results suggest that the economic incentive not
only increased the number of users that share reports, but incentivized that user share reports
more frequently.

Based on this study, we show that it is possible to complement current passive-transport
databases using transport-oriented crowdsourcing applications. Consequently, we recommend
PT authorities to motivate PT passengers, via PT crowdsourcing applications for smartphones,
to gather infrastructure data and service quality of the transport system, taking into account
that while both economic and prosocial incentives are effective, the first will allow gathering
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more mobility data with a small financial cost as a lottery way.

6.2 Recommendations for future research
This thesis uses passive transport data to estimate PT route choice models that allow

answering the first three research questions (section 1.4.2). One of the main purposes of a PT
route choice model is to understand the trip preferences of passengers, which are related to the
attributes of route alternatives and depend on the characteristics of passengers. Consequently,
it is relevant to consider attributes of route alternatives and characteristics of passengers
as inputs in the route choice modeling process. Once we understand travelers’ preferences,
it is possible to understand and predict the PT passengers’ route choice decisions. It is
important to note that after passengers make a route choice decision, they experience a trip
and consequently they update their perception about the route attributes, which can be
essential for the future route choice decision of the passenger. Additionally, passengers can
use descriptive travel information, such as waiting times and/or total travel time, to learn
about the route alternatives attributes.

Most PT route choice studies that use SC data incorporate route alternative attributes
obtained from passive-transport data (mixing AVL, AFC, and GTFS data), however, very
little attention has been paid to the role of PT passengers’ learning process in the route choice
decisions. This research considers different alternative attributes, such as in-vehicle travel
time, out-of-vehicle travel time, and the number of transfers. In chapter 2 and 3, we assume
that all route alternative attributes as of static values, ignoring that passengers can vary their
perception of the route attributes based on their experience. In chapter 4, we incorporate
this issue, proposing a methodology to integrate the PT passengers’ experiences into a PT
route choice modeling. However, further work needs to be done to understand how knowledge
from real-time information affects the route choice behavior of PT passengers and to establish
a methodology to combine PT passengers’ knowledge from experiences and from real-time
information into a PT route choice model.

This research is limited by the lack of passengers’ characteristics information, such as their
socio-demographic information and attitudes, users’ perceptions, and some attributes of the
trips, such as the access and egress time of the trip, which can not be directly estimated
using passive-transport data only. In this line, further research needs to examine more closely
the links between transport-passive data and traditional survey data with the purpose to
establish a methodology that allows complementing both data sources. In chapter 5, we
suggest that a transport-oriented crowdsourcing application can be a channel to collect the
missing information in transport-passive data. We have shown that a small economic incentive
allows motivating users to share transport information, however, several questions remain
to be answered, such as which type of economic incentive obtains a higher level of users’
participation, a small incentive for each contributor or a big incentive as a lottery way between
contributors? and how long is the effect of each type of incentive?.

In chapters 2, 3, and 4, we use observations from frequent passengers that travel during
morning peak periods, and that stay in the destination locations for at least two hours. In this
way, we try to capture trips to regular activities such as work or study. A natural progression
of this thesis is to analyze the PT passengers’ route choices using data from other periods of
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the day, such as the afternoon peak period and off-peak hours, where one would expect that
passengers have different preferences. We speculate that, for those periods, the disutility of
the waiting time and travel time might be smaller since users do not have a tight schedule to
reach their destination, as it happens in the morning peak hours with trips to work or study.

Since the PT system in Santiago operates by headway scheduling, without fixed-time
schedules, the analysis of PT passengers’ route choices undertaken here has extended our
knowledge of the route choice behavior of passengers that travel in frequency-based transit
networks. Several questions remain to be answered about the route choice strategy used by
passengers that travel in other contexts. For example, passengers that travel in a schedule-
based transit network, where users can optimize their trips by planning their arrival time at
the bus stop. These contexts allow passengers to save waiting time (if the transit lines are
punctual or the online information is accurate) while choosing their preferred lines.
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