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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE MAGISTER

EN CIENCIAS DE LA INGENIERIA, MENCION MATEMATICAS APLICADAS
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POR: MATIAS IGNACIO MORENO BUSTAMANTE

FECHA: 2022

PROF. GUIA: HANNE VAN DEN BOSCH

EXISTENCIA Y ESTABILIDAD DE ESTADOS ESTACIONARIOS DEL
SISTEMA DE VLASOV-POISSON CON UNA DENSIDAD DE MASA
CENTRAL

Estudiamos un modelo Newtoniano que nos permite describir algunos fenémenos en
dindmica estelar. Este modelo es descrito por una ecuacién en derivadas parciales cono-
cida como la ecuacion de Viasov o la ecuacion de Liouville, cuyas soluciones describen la
evolucion temporal de un sistema de particulas libre de colisiones en el plano de fase, sujeto
a un potencial gravitacional autointeractuante.

Este trabajo estd dividido en dos partes. En la primera parte, estudiamos el sistema
de Vlasov-Poisson Plano con un potencial gravitacional externo inducido por una densidad
de masa fija. Este modelo describe algunos objetos extremadamente planos en dinamica de
galaxias. El objetivo de esta parte es el estudio de la existencia y estabilidad de estados
estacionarios del sistema de Vlasov-Poisson Plano en este caso. Resolvemos un problema
variacional para encontrar minimizadores del funcional de Energia-Casimir en un conjunto
de funciones adecuado. El problema de minimizacion es resuelto a través de una reduccion
del problema de optimizacion original (ver [22]), pero en lugar de utilizar un argumento
de concentracion-compacidad, usamos un argumento de simetrizacion, tomando el reorde-
namiento de una sucesion minimizante, y probamos que converge débil a un minimizador en
un espacio LP adecuado, con p > 1. Probamos que este minimizador induce una solucién
para el problema de minimizacién original. El problema de minimizaciéon nos entrega un
resultado de estabilidad no lineal para el estado estacionario en el espacio LP mencionado
antes.

En la segunda parte, mostramos los resultados publicados en [I3|. Probamos el mizing en
el plano de fase para soluciones de la ecuaciéon de Vlasov en sistemas integrables. Bajo una
condicién natural de no-armonicidad, obtenemos convergencia débil para la funcion de dis-
tribucién con ratio ¢t~!. En una dimensién, también estudiamos el caso donde esta condicion
falla en cierta energia, probando que el mixing atin se mantiene pero con un ratio mas lento.
Cuando ocurre esta condicion y las funciones tienen mayor regularidad, la convergencia puede
ir més rapido.
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Abstract

We study a Newtonian model, that allows us to describe some phenomena in stellar dynamics.
This model is described by a partial differential equation known as the Viasov equation or the
Liouville equation, whose solutions describe the temporal evolution of a collisionless particle
system in the phase space, subject to a self-interacting gravitational potential.

This work is divided in two parts. In the first part, we treat the Flat Vlasov-Poisson
system with an external gravitational potential induced by a fixed mass density. This model
describes some extremely flat objects in galactic dynamics. The aim of this part is the study
of the existence and stability of steady states solutions of the Flat Vlasov-Poisson system in
this case. We solve a variational problem to find minimizers for the Casimir-Energy functional
in a suitable set of functions. The minimization problem is solved through a reduction of
the original optimization problem (see [22]), but instead of a concentration-compactness
argument, we use a symmetrization argument, taking the rearrangement of a minimizing
sequence and we prove that it converges weakly to a minimizer in a suitable L? space with
p > 1. We prove that this minimizer induces a solution for the original minimization problem.
The minimization problem give us a non-linear stability result for the steady state solution
in the LP space.

In the second part, we show the results published in [13]. We prove phase-space mixing
for solutions of the Vlasov equation for integrable systems. Under a natural non-harmonicity
condition, we obtain weak convergence of the distribution function with rate t~!. In one
dimension, we also study the case where this condition fails at a certain energy, showing
that mixing still holds but with a slower rate. When the condition holds and functions have
higher regularity, the rate can be faster.
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Introduction

In classical mechanics, if we want to describe the evolution of N particles self-interacting
through some kind of force (e.g. the gravitational force or the electric force), we could model
the dynamics of the particles with a system of N differential equations given by the Newton’s
second law. The trajectory of each particle satisfies the equation

mlxl :Fi(Xl,...,XN), (].)

where i = 1, ..., N, and m;, x; are the mass and position of the particle 7, respectively, and
F; is the net force acting over the particle 7, induced by the presence of the other N — 1
particles. For example, if the force F; acting on the particle ¢, is given by the gravitational
interaction between the particles, equation (1) results in

miX; = —G Z mim,j —————= | % (2)

37
Ji XJ’

where G ~ 6.674 - 10*11[%]“22] is the universal gravitational constant. Given an initial datum
(position and velocity) for each particle, the system described above has a solution. The
biggest problem with this model lies in the fact that in some contexts, the number of particles
N, and therefore the number of the equations in the system is large. Hence, the computational
cost increases until the system of equations is impossible to solve. Since it is impossible to
study adequately the problem for values of N extremely larges through classical mechanics,
we use statistical mechanics as a convenient way to model the particle system, studying the
global behavior instead the dynamics of each particle. Hence, we describe the physical system
through a one-particle distribution function f on the phase space U x V, where U,V C R,
such that

(t,z,0) ERX U XV s f(t,x,v) € RS (3)

where the particle distribution function envolves in time. Therefore, in the same context,
assuming that the mass of the system is finite, and it is a fixed value M > 0, by the mass
conservation we have that in all time ¢

/ /W F(t, 2, v)dvdz, (4)

is the total mass in the section W C U x V of the phase space, at time ¢, and in general
/ f(t, z,v)dvdx = M. (5)
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If we asume there are no collisions between the particles in the system, then the particle
distribution function satisfies the hypothesis of Liouwville’s theorem (see |1, [0]) and therefore,
it is constant along the particles trajectories. By the Newton’s second law

x(s,t,z,v) = v(s,t,x,v)

v(s,t,x,v) = F(s,x(s,t,2,v))
x(t,t,z,v) ==z
v(t,t,z,v) = v,

where

F=-V,U (6)

is a force field induced by the potential U due to the self-interaction. Hence, by Liouville’s
theorem, the total derivative is zero:

d

Ef(&X(S),V(S)) =0,

which implies that
O f(s,x(s),v(s)) +v(s) - Vo f(s,x(s),v(s)) + F - Vo f(s,x(s), v(s)), (7)

where for convenience, we denote x(s) := x(s,t,x,v) and v(s) := v(s,t, z,v). Therefore, we
obtain the following partial differential equation

Ouf +v-Vof — VU -V, f =0. (8)

Equation is called the Viasov equation, also known as the Liouwville equation or the
collisionless Boltzmann equation. This thesis focuses on the analysis of the existence and
stability of steady states solutions of the Vlasov equation in some contexts, where the self-
interaction between the particles is given by the gravitational potential, and furthermore,
these particles are under the influence of an external potential that we will describe in next
chapters on this thesis. It is of general interest to study the stability of these steady states,
because in many physical contexts, the estimation of a initial datum could have an error which
could give us radically different solutions for the same problem. The stability guarantees for
an initial datum, in some sense the solutions do not change for another initial datum nearby
the original. We will prove the stability results for the steady states that it can be obtained
as minimizers for a suitable energy functional.

The Vlasov-Poisson system

If we assume that the force field described in (€]) comes from a gravitational potential gener-
ated by the particles system itself, then the potential U satisfies the Poisson equation

AU(t,x) = 4mps(t, ) 9)

where we denote by py(t, z), the spatial density at point x and time ¢

pf(t,x):/f(t,x,v)dv. (10)
2



We request that the gravitational potential vanishes at infinity, in the sense of

lim U(t,z) = 0. (11)

|z|—o0

The gravitational potential U is a solution for the equations @ and . This solution (the
potential) can be written as a convolution of mass density against the fundamental solution
of the Laplace equation (see [0, Pag 22, Definition])

Uf :To*pf. (12)

In particular, for dimension d = 3 the fundamental solution is given by

1
Tg=——,
-
and the potential Uy can be written as
pr(t y)
Usi(t,z) = — dy. 13
)= [ 720 (13)

The equations , and , together with the equations and , give us the
system known as the Viasov-Poisson system. In [16], the existence and uniqueness of a

classical solution for the Vlasov-Poisson system, given an initial datum f, € C}(R3 x R?) is
proved. We can prove with a brief calculation, that for a non-time depending potential, the
local energy per particle £ : R? x R?* — R defined as

Bz,v) = %W +U(), (14)

is a steady state solution of the Vlasov equation, because V,E(x,v) = V,U(x) and V,E(z,v) =
v, and hence
v-V,U(x) =V, U(x) v=0.

It is customary (see [8, Pag 3|), to search steady state solutions with the form
f=9o(E), (15)

for a suitable function ¢, and therefore, we only need to solve @ to obtain a solution for the
system. A classical example of solutions in the form , are the isotropic polytropes

f(z,v) = (Ey — E(x, v))’i, (16)

where Fy < 0, with —1 < k < 7/2, and a — a, is the positive part of a function. These
functions are spherically symmetric solutions for the Vlasov equation in three dimensions,
with compact support and finite mass. Existence and stability of those solutions was proved
in [27].

It can be shown that if f solves the Vlasov equation, then the total energy of the system
t— g(f<t7 ) )) = Ekm(f(t7 K )) Epot(f(t7 K ))7 (17>

3
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Figure 1: Isotropic polytropes as a function of energy F, for values k = —0.5, k =1, k = 3.
In blue, the values for which ¢(E) = (Ey — E)% is not zero.

is conserved in time. That means
d
CE(f(t2,0)) =0, (18)

for all t € R, z,v € R3. Here, Ej;, and E,y are the kinetic and potential energy of the
system, respectively. That is

Erin(f(t,-,-)) == // %f(t,x,v)dvdx, (19)

t t
Bl 000 5= 5 [ Uttt ntr = — [ [ P20 gy qan)

|z =y

and

However, it can be shown that if f is a steady state solution of the Vlasov equation, then
it cannot be a critical point of the total energy functional £. Indeed, if f; is a steady state
solution of Vlasov equation that induces a potential Uy, then we have

() e = [[ (%5 +U)) (7 = s — -Iv0; - VULl

whose linear part does not vanish, hence fy cannot be a critial point. It is customary to

considerer the functionals in the form
// f(t,x,v))dvdz, (21)



which are called Casimir functionals, are used to have a chance to find stationary solutions
of the Vlasov equation as minimizers of the combined energy functional

Ee(f) = E(f) +C(f)- (22)

Here, @ : [0,00) — [0, 00) will be a sufficiently differentiable function. These functionals are
called Casimir-Energy functionals. In the same way as with the total energy, we can prove
that the Casimir-Energy functional is a conserved quantity. The existence of steady state
solutions of Vlasov-Poisson system which minimizes the Casimir-Energy functional is a well
studied problem (see |10}, 19, 21]).

The Flat Vlasov-Poisson system

Next, we will describe the flat Vlasov-Poisson system defined in [8, [19], which enables to
model extremely flat objects in stellar dynamics. For simplicity, the first assumption that
is made to model a flat stellar object with collisionless kinetic particles, is to suppose that
all galactic matter is concentrated in an infinitesimal thin layer. If z = (z1, 22, x3) and
v = (v1,v9,v3) are the coordinates for position and velocity of particles, we request that the
particles stay concentrated in the (x7,z5)-plane. In order to keep the matter concentrated
there, we need that the particles do not escape outside, then we request that velocities are
restricted to move on the (vq,vg)-plane. Formally, we can write the particle distribution
function f with this restrictions through a Dirac delta, in the sense of distribution as

flt,x,v) = g(t,x1, 2, v1,v2)0(x3)d(v3) (23)
pr(t,) = py(t, 21, 72)5(z3). (24)

In [8], it was shown that f is a solution of the Vlasov equation in R? in the distribution sense
if and only if g solves the Vlasov equation in R?, with the modified force term

Bt 7) = — / ﬁpg(t,gj)d@ (25)

This motives to study the following partial differential equations, named the Flat Viasov-
Poisson system

atf +v- fo - V.U - va =0, (26)
U<t7 l’) = - |;)f£y;|dy7 (27)
‘ l|im U(t,z) = 0. (28)

Remark Note that the Vlasov-Poisson system in dimension two, is not the same that the
Flat Vlasov-Poisson system, because the fundamental solution of Poisson equation in two
dimensions is Y(z) = Cln(|z|) for a suitable constant C' > 0, and therefore, the potential
formula of U in differs of Ty * py. The problem with the Flat Vlasov-Poisson system
resides in the behavior of | - |~! in R? instead of R3.
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In [8], it was shown that for suitable conditions for the function ®, the Casimir-Energy
functional & has a minimizer in some feasible functional space, which is a stationary state
with non-linear stability properties of the Flat Vlasov-Poisson system. In the first chapter of
this thesis, we will describe the same system with an external potential which comes from a
central object described by a fixed spatial density, and we will extend those ideas for this case,
proving the existence of a minimizer for a Casimir-Energy functional which is an stationary
state of the Flat Vlasov-Poisson system with the external potential, and which preserves the
non-linear stability properties of the original case. For this, we will prove the existence using a
rearrangement argument, instead of a Concentration-compactness argument (see [15], 22], §]).

Phase-space mixing

Another interesting thing that we can study describing matter as a collisionless kinetic gas, is
to study some macroscopic observables properties, through its microscopic average behavior
over the phase space. As we mentioned in the introduction of the present text, the idea
is to study the asymptotic average of these observables, and to find conditions to reach an
equilibrium state. It is easy to prove that the Vlasov equation can be written as

atf =V, U- Vv.f —v- v:cf = {Hv f}a (29)
where H is the Hamiltonian of the system, which it is given by
Lo
H(z,v) = 5\1}] + U(z),

and {-,-} is the Poisson’s bracket. In some contexts, we can rewrite the equation ([29)
changing the canonical coordinates system conveniently. As the Poisson’s bracket definition
is the same for every canonical coordinates (g, k), then we can write

d
atf:Z(maf 87—[8f)' (50)
k=1

If the motion of a single particle in this system is integrable, we can write using action-
angle variables (see Appendix [A.49), taking ¢ = (¢1,...,qq) € T?, and k = (ki,...,kq) € K C
R?, where K is a suitable open set, obtaining an equation in the form

f(t,q, k) +w(k)-Vf(t,q,k)=0. (31)

In [26, 25], we can find some examples where we can write the dynamic of the system
into the form (31). In classical mechanics, this occurs for instance in a potential well in
one space-dimension or for spherically symmetric potentials in dimensions 2 and 3. But also
in a relativistic context, geodesic motion in the Kerr family of space-times is integrable and
Liouville’s equation (or the collisionless Boltzmann equation) can be written in the form (31)).
If the system is anharmonic, in the sense that points with nearby energies move at different
angular speeds w(k), regular initial distributions will eventually stretch out to thin filaments
that cover the region of phase space allowed by the conservation laws. This phenomenon is
called phase-space mixing.



Figure 2: Snapshots at times ¢ = 10km and ¢t = 2km, for k from 0 to 7, of the evolution
of a Gaussian initial condition, in a perturbed harmonic oscillator with Hamiltonian H =
p?/2 + 2%/2 + ex* with ¢ = 0.2, approximate at first order in perturbation theory

The main problem here is the study of the asymptotic behavior of the phase space aver-
ages. In a physical context, macroscopic observables are obtained averaging the microscopic
observable over each particle in the phase space, so we can study if the macroscopic observable
reach an equilibrium state, studying the following limit

t—o00

i [ [ o)t 0)dvde =t [ [(609)(a. b5t q. dad (32)

where 7 is the action-angle coordinates transformation (see Appendix . Phase-space
mixing say us that the limit above exists and it is the average of the observable quantity over
a non-time depending particle distribution function, and it occurs for all observable ¢. In
other words, it is a kind of weak convergence of t — f(t,-,-) over all test functions ¢. The
key of this part consist of writing the equation in action-angle coordinates, and study the
mixing over T¢ x K as the limit of the second equality on . For integrable systems, this
change of coordinates is possible and transforms Vlasov equation in a transport equation in

the form of .



The second part of this thesis are the results published in [13]. Using a vector field method,
we proved the phase-space mixing for solutions of Vlasov equation for integrable systems,
and we studied the rate of convergence for the limit above.



Chapter 1

Flat Vlasov-Poisson system with central
mass density

We study the flat Vlasov-Poisson system as described in the introduction, with the addition of
an external gravitational potential created by a fixed mass density. The main problem of this
chapter is to search steady states solutions for this system as minimizers of Casimir-Energy
functional, and to study non-linear stability properties.

1.1 Equations with the external potential

In this context, as the same way in the original case, we consider the Vlasov-Poisson system
in R3 with the following potential

t exr
|z —y| |z =y
Here, the second term in the equality (1.1)) is the external potential of the system which

comes from the central mass density. Similarly to Flat Vlasov-Poisson system, to keep the
matter concentrated in a flat thin layer, we have that the distribution f is written as

f(t,x,v) = g(t, x1, e, v1,v2)0(x3)0(v3), (1.2)
pf(t7 I) = p!](tv T, x2)5(x3),
Peat(T) = Ve (X1, 22)0(23), (1.4)

where pe,; is the spatial mass density from the external potential. Therefore, as in [§], the
distribution f defined as in ([1.2)) is solution of the Vlasov equation in the sense of distributions
if and only if g is solution of the Vlasov equation with the force term

[ E [ E—f
F(t,z) = /|j_g|3pg(t,y)dy /|i;—g]|3 et (Y)Y, (1.5)

where 7 and the integrals are over R?. Therefore, we define the flat Vlasov-Poisson system
with the external potential as follows.



Definition 1.1 (Flat Vlasov-Poisson system with central mass density) Let pe, € L (R?)
be a function with compact support. We define the Flat Vlasov-Poisson system with a central
mass density, as the following system of partial differential equations

Of +v-Vof =V, U-V,f=0, (1.6)

__ ol [ penly)
Ult,z) = — |x—y|dy |x—y|d (1.7)
|1|1rn U(t,x) =0, (1.8)
/ f(t,z,v)dvdx = M, (1.9)

where M > 0 is the total mass of the system, z,v € R? and t € [0, 00).

Observe that the central mass density described by pe.:, generates a gravitational field
that induces potential energy over the particle system described by the solutions f of the
system above. Therefore, we have that

Definition 1.2 (Potential energy induced by central mass density) Let peys the spatial mass
density defined in and f the particle function distribution of the system. We define the
potential energy induced by pers over the flat particle system as

E;m(f( ’ 7)) = /Uext( )pf t fE de - // pert’:l: i)f t y dxdy, (110)

where

Usoe() = — fx“_(i//)’ dy, (1.11)

1s the gravitational potential induced by per:. Hence, we define the potential energy of this
system as

t—= EPOt(f<t7 K )) E;at(f( )) + E;ot(f(t7 K ))7 (1'12)

where E;ot is the potential energy associated to self-interaction defined in .

Therefore, the energy system is defined as

g(f) = Ekm(f) +Epot(f)7 (113)

where the potential energy of the system is defined above. The main goal of this chapter is
to prove analogous results of [§] about existence and stability, for the Flat Vlasov-Poisson
system with a central mass density. Hence, we will assume some suitable properties for the
function @, such that the Energy-Casimir functional

Ee(f) =E(f)+C),
has a minimizer over the following set of functions
Fi= { £ € LURY | Bun(r) + 00 < o, [[ £ =21}, (1.14)

where M > 0 is the total mass of the system, which is fixed. Then we make the following
assumptions for the function ®:

10



(a) ® € C'([0,00)) is strictly convex,
(b) @'(0) = @(0) =0,
(c) ®(f) z fHHY* for f >0 big,

where k € (0,1) is a fixed parameter. Here for convenience, we adopt the next notation: if
x,y € R, we denote
5 Ys

when there is a constant C' > 0 such that < Cy, and we denote by z ~ y whenever x < y
and y < x. Under these assumptions, we have the following assertion:

Proposition 1.3 If the function ® satisfies (a), (b) y (c), then it is a non-negative function
and its derivative @' is a bijection from [0,00) to [0, 00).

Proor. As ® is a C! strictly convex function on [0, 00), we have that
O(x) > 0(y) + ¥'(y)(z — y), (1.15)

for all z,y € [0,00) with  # y. Hence, for x > 0, by the inequality we have that
®(x) > 0, and as ®(0) = 0, then P is a non-negative function. In the other way, inverting
roles of x and y we conclude that

0> (®'(y) — ¢'(2))(x —y), (1.16)
so if x # y, then ®'(y) — ®’(z) cannot be 0, then ® is an injective map. Finally, if y > 0, for

the inequality [I.15] we have that
'(y) > ¢(y)/y. (1.17)

Property (c) implies that ®(y)/y — oo when y — oo, and therefore ®'(y) — oo when
y — 0o. As @ is C, we have that if ¢ > 0, there exists y, € [0,00) such that ®'(y,) = ¢. As
®’'(0) = 0, we have that ®’ is a surjective function. Therefore @’ is a bijective function, as
we wanted to show. O]

We will prove that we can construct a minimizer of the Casimir-Energy functional over
the feasible set [I.24] which is a steady state of the Flat Vlasov-Poisson system with a central
mass density, and we will give some non-linear stability properties. The following theorems
are the main results of this chapter.

Theorem 1.4 Let & : [0,00) — [0,00) be a function which satisfies the properties (a), (b),
and (c), mentioned above, and suppose that pe, € L*3(R?) is stricly symmetric decreasing.
Let n =Fk+ 1€ (1,2). Then there exists some Ey < 0 such that

fo=(®) " (Eo — E)XEe>E (1.18)

is a minimizer of E¢ in Far. Moreover, if ® € C2([0,00)), ' > 0, and pe,r € L¥™(R?), then
fo s a stationary solution of Flat Vlasov-Poisson system with a central mass density. Here

1
E(SL’,’U) = §|U‘2 + U() + ert-

11



is the local energy per particle.

Theorem 1.5 Let fy be a minimizer for E in Fuy obtained from Theorem[1.4] and we suppose
that it is unique, and let py := pys,. Define

d(fh f2> = gc(fl) - 5C<f2> - E;Ot(pfl - pf2)7 (1'19)

and let some arbitrary € > 0. Then there exists some § > 0 such that for every solution of the
Flat Vlasov-Poisson system with central mass density t — f(t), with f(0) € CH(R*) N Fyr, if

d(£(0), fo) + Epor(ps0) — po) < 6, (1.20)

then
d(f(t), fo) + Epou(ps) — p0) < &, (1.21)

for every t > 0.

1.2 A reduction for the variational problem

In the same way as in [§], we solve a reduction of the original optimization problem. This
reduction is defined over a suitable space of densities p, and then we will connect the solution
for this reduced optimization problem with the original, constructing a solution using the
Euler-Lagrange equation for the reduced solution. Since we search steady state solutions of
the system, we have that

t— f(t,z,v),

and
t— pe(t,x),

are time-independent flows, so henceforth we omit the time dependence in the notation. The
idea is to prove that for M > 0, the Casimir-Energy functional & has a minimizer over the
following feasible set

Fim { £ € LURY | Bunth) + 0(0) < o0, [[ £ =21}, (122)

For this, in the same way as [8], we study the following reduced variational problem,
consisting in to search minimizers for the functional

Ep) = [ Wlpl@)do + Bpu(p). (1.23)
over the set
Fi = {p € L'Y3(R*) N LL(R?) | /\Il(p(x))da: < oo,/,o(:c)d:c = M} : (1.24)
where the function ¥ is defined through the following variational problem
U(r):= inf Z(g), (1.25)
gegr

12



where the functional Z is given by

[0]”

7(9) 1= [ 5-glo) + Blo(e))de, (1.26)

over the feasible set

6. = {a€ L) | 29) < . [ gfoyio =r}. (127

The main goal is to minimize the Casimir-Energy functional over all functions f(z,v)
such that its spatial density is some fixed p, and after that, to minimize it over p. We state
the following lemma, whose demonstration can be found in [§]. The main idea for proving
this lemma comes from the Legendre Transform of a function f:

(A = sup(\x + f(x)). (1.28)

TSI

Lemma 1.6 Let & and V be defined as above, and extending both functions to +oo on
(—00,0). Then we have the following assertions:

(a) ¥ e CH[0,00)), is strictly convex and ¥(0) = ¥'(0) = 0.

(b) Let k>0 andn=Fk+1. Then

(i) If ®(f) ~ f1*YE for all f >0, then W(p) =~ p'*V/" for p >0
(ii) T ®(f) 2 /% for big f > 0, then W(p) 2 9" for big p > 0.

1.2.1 The Euler-Lagrange equation for the original and reduced
variational problem

Solving the reduced variational problem for £, has a motivation which lies in the following
result. The next theorem makes a connection between the solution of the reduction and the
original problem. This theorem is a modified version of [§, Teo 2.3] for the potential defined

in [I.7

Theorem 1.7 Let p,: be the spatial density defined in (10). We have the following asser-
tions:

(a) For all functions f € Fy, we have that

Ee(f) = &lpy) (1.29)

with equality if f is a minimizer of E¢ over Fyy.

13



(b) Let py be a minimizer of E; over Fy; and let U := Uy+Uey, where Uy is the gravitational
potential induced by py and U.yy is the gravitational potential induced by pey. Suppose
also that py 1s spherically symmetric and nonincreasing. Then there exist a Lagrange
multiplier Ey < 0 such that almost everywhere we have

po = (W) (Eo — U)xge>0, (1.30)
and the function fo defined as
fo = (®)"H(Eo — E)Xpo>5, (1.31)

where E(z,v) = 3|v|* + U(x), is a minimizer of & en Fyy.

First, we will prove the next result, which allow us to conclude that if f is a minimizer,
then we have the equality in [1.29|

Proposition 1.8 If f € Fy is such that if ®'(f) = Ey — E almost everywhere over the
points such that f >0, and Ey — E <0 when f =0, then E(f) = E(py).

Proor. Since @ is a convex function, for g € G,,(») we have that almost everywhere in z € R?

2(9) 2 2(7(e.) + [ (Gl + #1000} (o) - f(a, o)

We separate the range of integration as

[ (3o + @00 t006) = sl eto =1+ 1

where

L= (G UE)) 6 - s )i

and

2
For the first one, since ®'(f(z,v)) = Ey — E(z,v) a.e. whenever f > 0,

1= /{ » (310 + (a0 ) (0(0) = 0

L= (B Uso) | (9(0) = fa0))e

{f>0}
= (Fy —Us(x v) — f(x,v))dv — v) — f(z,v))dv
By~ Uy ([ t0t0) = st 0o [ (o) = st )
— (Uy(x) — Eo) /{ R OE

where the last equality comes from the fact that g € G, (»). For the second integral, using
the fact that ®'(0) = 0, we have that

1
L= [ SlPgl)
{r=0}

14



and therefore

L +1,= /{f 0}(E($,v) — Ep)g(v)dv,

and as g € L} (R?), and Ey—E < 0 when f = 0 a.e., then [1+1, > 0. Hence Z(g) > Z(f(x, "))
and as v — f(x,v) € G,,(»), Wwe have that

U(ps(x)) = mf I()>Z(f($w))> inf  Z(g) = ¥(ps()),

9€G, ¢ 9€9, ¢ ()

and therefore
o) = o) + [ Vo)

. m@»+/iU@AMx

= Epot(pr) + Erin(f) +C(f)
=&(f)

as we wanted to prove. O

Proor. (a) Let f € Fy, then for all z € R?, the function v — f(z,v) belongs to L% (R?).
Moreover, if we had that

P o) + 0o = o

then
Ekm(f)JrC(f):/ |“|2f (z,v dvdm—l—// ))dvdz
:/( P ¢ 0) + o(f, ))dv) dz

and it contradicts that f € Fj;. Hence f(z,-) € G,, (), and therefore
V(py(x)) < Z(f(x,0)),
Thus
o) = [ Wos(a)ds + Eplpr)

S/ﬂﬂwmw+%ﬂm
=& (f).

We can prove that if fy is a minimizer of the functional &, then f, satisfies the hy-
pothesis of and therefore we have the equality on [1.29

15



(b) Let py a minimizer of £ in Fj;, and let ¢ € C°(R?) such that supp(yp) is strictly
contained in supp(pg). If we define

d:= inf po(x),

z€supp(p)

then 0 > 0. As we have that pg is spherically symmetric and nonincreasing, then we

can find \s > 0 such that
0
Ao sup ()] < 5.
x€supp(p)

Thus we have that py 4+ A > 0 on supp(po), for every A € I, := (—As, As). This allow
us to construct a function 7 : I, — R as

§(N) = &lpo + Ap),

which is well defined. Note that since py is a minimizer of &£;, £ has a minimum in
A = 0, therefore exists a Lagrange multiplier £y € R such that

£(0) = B - % </(,00(ac) + Ap(2))da — M) _ /EO - o) da.

For the right-hand-side, we compute

which implies that
/ (W (po(2)) + U(z) — Eo)p(z)d =0,

where ¢ is an arbitrary element of C>°(R?) with supp(yp) C supp(pg). Hence we have
almost everywhere on supp(pg), that

‘I’I(Po) =Fky—U,

and Fy < U almost everywhere on R? \ supp(pg). Since ¥’ is non negative and a
bijective map, we have the Euler-Lagrange equation for the minimizer:

Po = (‘Ifl)fl(Eo —U)XE,>U,

where U = Uy + U,yy. On the other hand, we can prove that if fy is defined as in [I.31],
then py = py,, therefore for an arbitrary f € Fj;, we have that

Ee(f) = E(pr) = Ec(po) = Ec(ps,) = Eclfo)

i.e. fo minimizes & over F);. A brief calculation gives us that when Ey > U

/ Fol, v)dv = [E (@)~ By
= (V) (Eo —U) = (¥) " (Ey - U)
= po,

and both sides are zero where Ey < U, and since U(x) — 0 when |z| — oo we conclude
that Ey < 0. Here we denoted by U* the Legendre transform of the function W.

]
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1.3 The reduced variational problem

As we saw in the last section, Theorem allows us to build a minimizer for the original
problem, by solving the reduced problem and writing the Euler-Lagrange equation for the
reduction. In this section we will prove the existence of a minimizer for reduced problem,
using an argument based on rearrangements of minimizing sequences. As we saw in Lemma
[1.6] the following assertions for the function ¥ hold

(a) ¥ € C([0,00)) is strictly convex.
(b) ¥'(0) = ¥(0) = 0.
(c) U(p) Z p***/™ for big p > 0.

Here, we have that n,n’ € (0,2) are fixed suitable parameters. Hence, we want to solve the
following variational problem

L= inf E(p) = inf (Epot(p)—I— / W(p(ac))dac) (1.32)

PEF ), PEF Y,
over the feasible set defined in ((1.24]).

The following theorem that we will prove, give conditions which implies directly the result

of Theorem [1L.41

Theorem 1.9 Assume that pe,, € LY3(R?) is strictly symmetric decreasing. Under the
assumptions (a),(b), and (c) on the function ¥ mentioned above, there is py € F}; such that
is a solution for the reduced variational problem[1.39, and therefore, the function

Jo = ()" (Eo — E)XEo>E (1.33)

is a minimazer of & in Fyr, where E(z,v) = 5|v|* + U(x) and Ey < 0 is the Lagrange
multiplier associated to Fuler-Lagrange equation of pg.

1.3.1 Weak convergence of minimizing sequences and a candidate
for minimizer

The main idea for the proof is to take a minimizing sequence for the variational problem,
and proving that it converges weakly in a suitable LP(IR?) space, hoping that the weak limit
is a minimizer and an element of the feasible set. In [I3], the reduced problem for Flat
Vlasov-Poisson system was solved using a concentration compactness argument (see [15])
and the general ideas for this method can be reviewed in [22]. In this thesis we used a
symmetrization argument, taking the rearrangement of the minimizing sequence to obtain
nonincreasing spherically symmetries, to keep the density concentrated in a finite region,
avoiding the spatial translations and splitting.

17



Before proceeding with the proof of Theorem we will prove some useful previous
results.

Lemma 1.10 If p € LY3(R?), then the gravitational potential U, is an element of L*(R?)
which is the dual space of L*3(R?).

Proor. By the weak version of Young’s inequality (see|A.48)) with p =4/3, ¢ =2 and r =4
we have that
1
<) et
4 | ) | w,2

By Theorem [A.24] is easy to see that 1/|-| € L2 (R?), where the result is direct, and by
the fact that 3/4 + 1/4 = 1, we have that L*(R?) can be identified with the dual space of
L*3(R?). In particular, the Coulomb energy defined as

_ 1 [[r)oly)
o) = 2// e Haaay, (1.34)

is an inner product in L*/3(R?). O

10, = ] .

* —_—
|

The next is to prove that the reduced variational problem is well defined, in the sense
that the Casimir-Energy functional is bounded below over the feasible set, and therefore the
infimum does not “escape”. We have the following lemma:

Lemma 1.11 Under the assumptions (a), (b), and (c) for the function ¥, we have that
Iy > —o0.

Proor. Let p € F};. We have that

& o) = [ W(plo)ds + Epylp) + Esulp)

We must prove that this expression is bounded from below, uniformly in p. For this, we will
find bounds for both terms separately. By Hardy-Littlewood-Sobolev inequality (see [A.47))
with A=1,n=2,p=r=4/3,as p, pest € L4/3(]R2) we have that

- Ello) / / S iy S ol (1)

pezt
pot // dxdy < ||Pe;ct||4/3||p||4/3 ||p||4/3 (1.36)

By Riesz-Thorin Interpolation Lemma (see Appendix [A.45) with pp = 4/3, po =1y p1 =
1+ 1/n, we have that

=P i
pllazs <Ml ® Nollidiym S lolldym: (1.37)
By the assumption (c) for the function ¥, we have that there exist § > 0 such that for every
p > &, we have W(p) > Cp'*Y/" for some suitable constant C' > 0. Hence, if we define

18



{p>d}:={x eR?: p(x) > &}, we have that

/p(x)1+1/"dx:/ p(:z:)1+1/"dx+/ p(x) " dx (1.38)
{p>3}

R2\{p>5}

< C/\I/(p(x))da:—i-dl/"/p(:c)dx (1.39)
< / U (p(x))dz + 1. (1.40)

Therefore, by the last bound we have

nm2@=(/meWwyws(/wwwmeaﬂ, (1.41)

and moreover

HME@:(/mmHmems(/wwmm@wzﬁ. (1.2

Here we used the fact that for all @ > 0 and 0 < n < 2, we have the inequalities
(1+a)* <(1+a)*<14av2

The first of them is directly true, while the second one comes from the fact that the function
a v+ 1+ a"? — (1 +a)"? is increasing in [0,00) with 0 ++ 0. Therefore, combining the
inequalities above, we have the following bounds for the potential energies

bl n/2
- Bhul) S ol o175 5 ([ oteas) 41 (1.4)

ntl n/2
—@AMSQMWﬁ%ﬁﬁwé(/Mmmw> il (1.44)

Hence, we have the next inequality for the reduced energy functional

%@z/ﬁwmm%«(/wwwmﬁm—o, (1.45)

where C' > 0 is a suitable constant. If we consider the function ¢ : R — R defined as
g(z) = —C2"? 42— C, since 0 < n < 2, it is easy to verify that ¢”(z) > 0 and the equation
¢'(z) = 0 has a solution, and therefore g has a global minimum over R*. Hence, we have in

[L39) that

E5(p) = glaw) > inf g(x) > —o0,

zeR
where
Ty 1= /\P(p(m))dm
Thus we have inmediatly that I,; > —oco as we wanted to prove. O

A corollary of above lemma is the following, which allow us to find a candidate to a
minimizer of reduced variational problem
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Corollary 1.12 All minimizing sequences (p;)ien in Fyy of E:, and their rearrangements
(see Appendiz , are bounded in L'™/"(R?) and L*3(R?). In particular, each of them
has a subsequence that converges weakly in these spaces.

Remark We will see later that it will be convenient to take the rearrangement of a mini-
mizing sequence, to obtain symmetry properties of the elements of the sequence.

Proor. Since L'*1/"(R?) and L*/3(R?) are reflexive spaces, the unit ball in each spaces is
weak-sequentially compact (see Appendix , thus it is sufficient to prove that every min-
imizing sequence is bounded in these spaces, to extract some weakly convergent subsequences.
Let (p;)ien be a minimizing sequence of reduced variational problem, i.e.

lim & (p;) = I
1—00

In particular, £;(p;) is bounded in R. By (|1.45)), we have that

%@»z/@@@»&@—c(/wmwmﬁ?j—C, (1.46)

for a suitable constant C' > 0. If [4)(p;)dz is not bounded, as 0 < n < 2, the right side of
(1.46) goes to co when i — oo, and it contradicting that £ (p;) is bounded. Hence [ (p;)dx
is bounded, and since

[o@rris s 1+ [ woio)a,

ntl
the boundedness result in L'*1/"(R?) is direct, and as [|pifss < lpill, {1/, We have the

~

sequence is also bounded in L*/3 (R?). In particular, as the rearrangement preserves the norm

(see Appendix[A.28)), we have that ||p;[l111/n = |10} l141/n and ||pillass = [|9}]l4/3, and therefore
we conclude that the rearrangement sequence is bounded in each spaces and thus, it has a
weakly convergent subsequence of the rearrangements of initial sequence which converges in
each spaces.

Now, we just need to prove that the weak limit is the same. For this, let py and p;
the weak limits of (p;)iey in L'*V/"(R?) and L*3(R?), respectively, and take any Lebesgue
measurable set A. Then we have that poXxanp(,r) and piXxanso,r) converge pointwise to
poXxa and p; x4 whenever R — oo, respectively, and both are dominated by py and p; which
are integrable. Since Xanp(o,r) is an element of every LP(R?) with 1 < p < oo, by weak
convergence we have that if ¢ — oo, then

/pi(x)XAﬂB(O,R)(fL')dx — /Po($)XAmB(0,R)(90)dﬂ7 = /P1XAmB(o,R)($)d$

and taking R — oo, by the Dominated Convergence Theorem we have that

[ mieraters = [ o)t

for each Lebesgue measurable set A, and therefore py — p; = 0 a.e. and thus

lpo = p1lli+1/n = 0.
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Now we will prove that the rearrangement of the minimizing sequence is also a minimizing
sequence of the functional &; in F7j,.

Lemma 1.13 If (pi)icr s a minimizing sequence of E; in Fpy, then (pf)ien 1S a minimizing
sequence as well.

ProoF. Since the rearrangement preserves norms, ||p;||1 = ||pf||1, which implies that

/pf(x)dx =M, (1.47)

and as ¥ is nonnegative and convex such that ¥(0) = 0, by the Nonnexpansivity of Rear-
rangment (see Appendix [A.29)), we have that

/\I/(p;‘(a;))da; < /\I/(pz(x))dx < 00. (1.48)

By (1.47) and ([1.48]) we have that pf € F},, for all i € N, and thus

I < €60) = [ Wlpila))dn + Bpul)

By Riesz Rearrangement Inequality (see Appendix [A.30)), we have that

pz p’L 1 *
(0 = ddy> // d:vdy—Eo
o) =3 [ 55 o )

MOTEOVET, as Pey 1S strictly symmetric decreasing, by the simplest rearrangement inequality
(see Appendix |A.28) and as ||pest|l2 = ||p%]|2, we have that p..: = p&,, and therefore

LB (p) = //”“ d@—/ﬁmmwmmm: LB (00),

|z — yl
and hence
E;m(ﬁ;'k) + E;ot(p;k) < Epot(pi) + Egot(pi)‘

Thus, when 7 — oo we have that
I < E5(p7) < E5(p1) = I

which implies that
lim & (p}) = In

1—00

as we wanted. O

Remark Based on Corollary and Lemma [1.13] we can assume that the minimizing
sequence also is spherically symmetric nonincreasing, thus we will assume it without loss of
generality. As (p;)ien is weakly-sequentially compact, passing through subsequences we can
assume there is some py such that p; — po on L'*/"(R?) and L*/3(R?).

Although the weak convergence usually could not give us enough information about the
weak limit pg, in this case we have the following result, which tell us that the weak convergence
implies strong convergence of the potential energy.
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Lemma 1.14 Let (p;)ien be the rearrangement of a minimizing sequence. Then

Epot(pi) = Epot(p0), (1.49)

where pq is the weak limit of the minimizing sequence on L'*1/"(R?).

Proor. Recall that

Epot(Pi> = E;mt(loi) + E;mt(loi)J (1-50)
and
Boalp) = [ Uela)pi(w)ie (1.51)

Since Ueyr = U,,,, With pey € L*3(R?), by Lemma we have that U.,; € L*(R?) =
(L*3(R?))* and by weak convergence of the minimizing sequence in L*/3(R?) (see [1.12)) we
have that £ .(p;) = E5..(po). It is enough to show that

Ep}ot( ) - Epot( ) (152)
Define o; := p; — po — 0 in L'*Y/"(R?) and note that if D is the Coulomb energy defined in

[1.34], then
D

Pi — Po, Pi — pO)

E, . (03) (
D(pi, pi) — 2D(pi; po) + D(po; po)
D(

pis pi) — D(po, po) — 2D(pi, po) + 2D(po, po)
(p’L> E;ot(po) - 2D(Ui7 pU)?

= FE,

then, it is enough to prove that Egot(ai) — 0, because by weak convergence we have that

D(oi, po) — 0. Let Ry > 0 and separate the integral in E,,(0;) in two parts, one of them
inside, and the other outside of the strip |z — y| < R;. Thus

// Ullcc —y| i W= /Ayml UZI(;)— y(l i W //xyml %d do (159)

We denote by I, I, these two integrals, and we will try to find small bounds for them. First,
as o; € L'Y"(R?) and 1/|-| € LOY/2(B(0, Ry)), by Holder’s inequality (see Appendix
A.44) and Young’s inequality (see Appendix [A.46]), and the fact that (0;);ey is bounded in

LY*1/n(R?), we have that
I, = // oi(x)oi( XB ©.8)(7 y)dxdy
|z —y|

o (2

XB(0,Ry)
|-
XB(0,R1)

< oillisi/n ||oi *

n+1

< ”‘7i||1+1/n

(n+1)/2
XB(0,R1)

~ ‘

(n+1)/2
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Therefore, we note that

XB(0,R1) ot 2y (3-n)/2
s A1 —n
H | . ‘ H(”Jrl)/2 = (/(; /0 r(n+1)/2 Td?"d@) = CRl

for a suitable constant C' > 0. Here the last term goes to 0 when R; — 0 because 0 < n < 2,

and thus for R; small enough, I; < ¢, for an arbitrary ¢ > 0. For the second integral, we
define

UR2 = {(x,y) € R4 : |:L‘| Z RQ \ |y| 2 R2}

Hence, we have that

b:// 1@_Qd@+// 7% W) 4y, (1.54)
lz—y|>R1NUR, | —y| |lz—y|>RiNUg, |$—?/|

If we call Iy, Iy these two integrals, by Hardy-Littlewood-Sobolev inequality (see Appendix
A.47)) we have

</ W(xaw( 2) + x50y () drdy

’Jl Haz ‘Uz )loi(y)]
0,Rz) (7)dxdy + XB(0,Ro)e (y)dxdy
/ Ix—yl ) |z =yl -
S HUiXB(o,Rz)CH4/3H<fi!|4/3-
n41l
As in the proof of Lemma|l.11} we have that ||o;|[4/s < [|oil|,{,, and as o; converges weakly

to 0 in L'T/"(R?) and therefore it is bounded in that space, then this inequality implies that
o; is also bounded in L*/3(R?). Hence, by Minkowski’s inequality we have

XB(0,R2)|l473 + [[P0X B(0,R2)e]4/3-

As p; is symmetric nonincreasing, then pointwise on x € R?, the function p; is dominated by
the average over a ball centered in the origin and radius |z|, i.e.

1
) S BTy O S

1 3/4
ST
( B(0,Ry)¢ $|8/3
00 3/4
< </ r18/3dr)
Ry

1

R,>.

Therefore,

HpiXB(O,Rz)C

AN

On the other hand, in the same way as before, we have that

||POXB 0,R2)° ||1+1/n;

||PoXB(0,R2)
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and as p; — po in L'*/"(R?), then by weakly lower semicontinuity of norm (see Appendix

A.8)), we have that

HpOXB(O,Rz)C 1+1/n S 1iz.fgj>§f ||piXB(0,R2)CH1+1/m

in a similar way as before, we can calculate

1 n+1
lpixBO,R) l141/m S (/ —dx)
( 2) / B(O’R2)C ’$‘2+2/n

N ( / ) r”/ndr> o
Ry

2

T ntt
Ry, ™,

N

and therefore ,
i SRy

1P0X B(0.R2)el[141/n < lim inf 1 PiX B(0,Rs)e

and thus
n+1 _ 1
2

HpOXB(O,Rz)CH4/3 N HPOXB(O,R2)cH1i1/n SR,
Hence, we have that
_1
1] S Ry? — 0,

when Ry — oo. Finally, we have that

g;,\T)o;\Y
Iyo = // MXB(O,RQ)(x)XB(O,R2)<y)dxdy
o—yzR1 1T =Y

_ / 03(2) i) d,

where we defined

b
he() = Yo (@) / W) o.mn ().
w—y>R: 1T — Y

Now, for each € R? we denote by ¢, to the function defined as

. XB(O,Rz) (y)

02 (y) = iz — g XRQ\B(O,R1)<x - ),

so that
he(2) = X80, () / 0¥ ea(y)dy.

We will prove that ¢, € L"*(R?). Indeed, we have that

n XB(0,R (il?) 1
loallitt = [ T2y e o,y (@ — y)dy < =7 B0, Ry)| < 0.
|.1Z y| + R1

Thus, as 0; — 0 in L'*Y/"(R?), we have that h;(x) — 0, for all z € R?, and as |h;(z)
XB(0,ry)(x) € L"TH(R?), then by the Dominated Convergence Theorem, we have that h; —
en L""1(R?). Then, by Hélder’s inequality we have that

S
0

Ly < |loillisr/mllPillnss S il < e,
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for all 7 big enough. Therefore, when Ry — oo, for Ry and 7 big enough

//O-Z dIdy—[l+121+122<28
Il’—yl

which implies that £}, (o;) — 0. Thus
Epoi(pi) = Epoi(po) = Epoi(04) +2D(04, po) — 0,

as we wanted to prove.

1.3.2 Existence of a minimizer for the reduced variational problem

The convergence of potential energies proved above, give us a strong evidence that the weak
limit po in L'*1/"(R?) of rearranged minimizing sequence is our best candidate to a minimizer
of the functional &;. In fact, we will prove this assertion, and for this, we must prove that
Et(po) is at most the infimum over the feasible space, and py is an element of this set.
We will proceed with the proof of Theorem [I.9, which gives us the existence for a solution
of variational reduced problem, and in consequence, a solution for the original variational
problem, as we wanted.

Proor or TueoreM [LAl Let (p;)ien C Fj; be the rearranged minimizing sequence for £;. By
Corollary [1.12] there exists py such that p; — py in L'*Y/"(R?). For R > 0 we have that
XBo,r) € L"(R?), therefore by weak convergence we have that

M= [p@arz [ p@)= [xaonn@d— [ g
B(0,R) B(0,R)

thus, when R — oo, we have that

/Po(x)dx < M,

and interpolating in the same way as in (1.37)), and along with the above, we can prove that
po € L1 (R?) N L*3(R?), and by Lemma We have that E,.(p;) = Epot(po). By Mazur’s
Lemma (see Appendix , there is a family of nonnegative and finite sequences (B),)nen;,
B, :={a} : k =n,...,N,} such that



converges strongly to py in L'™/"(R?), and thus, there is a subsequence (py,);en Which
converges pointwise almost everywhere to py. As the map p — U(p) is strictly convex, we
have that the map p — [ U(p)dz is convex, and therefore

N
/\Il(ﬁnj)dx = Z a,’ /\I/(pk)dx < sup /\I/(pk)dx,
k=mn;

k>n;

else, by Fatou’s Lemma and using the fact that ¥ € C'([0, 00)), we have that

/\I/(po)dac = /liminf\Il(ﬁnj)dx

Jj—o0

Sliminf/\ll(ﬁnj)dx

J]—00

< lim | W(p,,)dx

Jj—00

< limsup/\lf(pk)dx,

k—o0

and therefore, as E,:(po) = limsup E,u(p;), and as (p;)ien is a minimizing sequence of &£ in

1—00
Fys, we have that

Ee(po) < limSUP/‘I’(m)dm + limsup E,ot(pi) = Iy

1—00 1—>00

Hence &;(po) < I and thus we only must prove that pg is an element of the feasible set, i.e.
po € F},. For this, recall that

£ (po) > /\Il(po(:c))d:c (1 e </\I/(p0(:c))d:c> H) _c. (1.55)

If [U(po(x))dx = oo, this implies in the inequality above, that

Sg(p0> = 00,

which is a contradiction. Thus, it is enough to prove that
/ po(x)dx = M.
We will proceed by contradiction. Assume that
0< M= /po(a:)da: <M,
and consider pg := Xp(o,r)Po, Where R > 0 is such that
M = /pR(x)dx < M" < M, (1.56)
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and define
I3, = inf &°(p) = inf (/ U(p(z))dx + E;Ot(p)) :

PEF s PEF

In [8, Lema 3.4. (a)| it was proved that 19, < 0 for every M > 0, and the assertion |8, Lema
3.4. (b)] of this lemma implies that M + I3, is nonincreasing in M. Since pr(z) — po(z)
pointwise when R — oo and is a function dominated by py € L**'/"(R?), by the Dominated
Convergence Theorem, pr — po in L'™/"(R?) and in particular pr — po in this space. As ¥
is strictly convex and W' is a bijection over [0, 00), then is strictly increasing and thus

[ viontads < [ wipa)as.

If we take the rearrangement of pg, as ¥ is convex and ¥(0) = 0, by nonexpansivity of
rearrangements (see Appendix [A.28) together with the inequality above we have that

[ viortands < [ wipa)as.
Hence, by Lemma [1.14] we have that E,q(p5) — Epet(po). Let € > 0 such that
[](\)4—M” < —¢€ (157)

and take R big enough such that E,u(p%) — Epot(po) < 5. Then

o) = [ WE(a)ds + Byl (159
< /\I/(po(m))dx + Epot(po) + g (1.59)
= &(p) + 5. (1.60)

By (1.56]), we have that 6 :== M — M' > M — M"” > 0 and we can take ¢ € Fj such that
supp(p) C B(0, R') with R" > 0 and such that

7,0 ]([S) [](3/[—M”
&P <5 <=5 (1.61)

In this way, if a € R? is such that |a| = R + R/, then
[ vionta) + oo - apdr < [ Wi+ [ Weto - a)is
— [ Wi + [ Ve,
and in the other hand

—D(pr + ¢(- — a), pr + (- — a)) < =D(pgr, pr) — D(p, »),

and
_D(pe:vhﬁ}(% + QO( - CL)) S _D(IOEIU IBE)
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Thus, by (1.57)), (1.60) and (1.61)) we have that

EL(P + (- — ) < E(pR) + &7 (9)

e IV ..,
<55(PO)+§+ M2M
< &:(po)

:IM7

and as the rearrangement preserves the L!'(R?) norm, then p} € Fh, and ¢ € F}, then
05 + ¢(- —a) € Fy;, which is a contradiction. Hence

[ miayiz =

and therefore py € Fj, which implies that is a minimizer of &; over the feasible set, i.e.
a solution of the reduced variational problem. Hence, by Theorem [I.7] we have that the
function fy which satisfies the following identity

fo= ()" (Eo— E)XEy>E:

is a minimizer of the Casimir-Energy functional. O

Remark We have the following observations.

a) Note that the rearrangement argument also works for the original case of Flat Vlasov-
Poisson system, putting pe,; = 0 € L*/3(R?).

b) As in the proof of Lemma [1.13) we can prove that if py is the solution of the reduced
variational problem, then the rearrangement of py is also a solution. Hence, we can
assume that pg is spherically symmetric and nonincreasing.

c¢) In the proof of py € F},, we assumed that pg is almost everywhere zero. This assertion
is true. Indeed, as I, < 0, then there exist p € F}, such that Sg’o(p) < 0, then

E¢(po) < & (p) + Epor(p) <0,

thus py cannot be almost everywhere zero.

1.4 Regularity

In the same way as in the Vlasov-Poisson system, the idea is to construct solutions which are
functions of the energy E. The problem for the Flat Vlasov-Poisson system, is that even E
is not directly a steady state of the Vlasov equation. That is, for f = E to be a solution of

v Vof = VU - Vof =0, (1.62)

U = Uy + U,y needs to be sufficiently regular to make sense of the second term. First of all,
we have the following result
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Lemma 1.15 Assume also that pe,; € LY(R?), where q = ]%, 1 <p < 2. Let py the solution
of the reduced variational problem, then Uy and therefore U are continuous.

ProOF. Since pg, pest € LY3(R?), U = Uy + Ueey € L*(R?), and by the equation ¥'(py) =
Eo— U a.e. on supp(pg) = {Ey — U > 0} we can conclude that ¥'(py) € L*(R?). Recall that

V(p) z ptHHm,
for big p > 0. Thus, by the convexity of ¥ we have that

v
w(p) > Tz
p

where the last inequality holds for all p > ¢, for some § > 0 fixed. Thus we have that

/Po(x)4/nd$ :/ /?o(x)4/ndiv+/ po(x)"/"dx
{po>4} {po<d}

S / ' (po()) dx + / po(z)*"dx
{po>6} {po<d}

S/V%@WM+L

and therefore py € L*"(R?). It is easy to prove that if n € (1,2), then 1/| - |xpor) €
LY™(R?)* = Lﬁ(RQ) and 1/] - |xpo,re € LY3(R?)* = LY(R?) for every R > 0. Hence, by
[A.21] we have that

1 1 1
Uy = m * P = WXB(O’R) * po + WXB(O,R)C * Pos

is continuous. Finally, as pe,; € LY3(R?) N L9(R?), we have that

1 1 1
—Uezt = ﬁ * Pext = mXB(O,R) * Pext + WXB(O,R)C * Pext)

and the argument is the same as above, just note that 1/| - |xp,r) € L*(R?). O

For the solution of variational problem
fo= ()" (Eo — E) Xk

we need more regularity for ®. In particular, we need to differentiate the inverse of the first
derivative. For this, it is enough to have ® € C?%([0,00)) and ®” > 0, and thus, if we could
prove more regularity for the potential U, then fy will be a steady state solution of Flat
Vlasov-Poisson with the external potential. Another way to investigate the regularity of the
potential comes from to the study of its Fourier Transform (see Appendix ?7). Note that

since d = 2, then
1

|- |
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Since po € LY™(R?)NL'(R?), interpolating we can conclude that py € L?(R?) and therefore by
Plancherel’s Theorem (see Appendix [A.39)), we have that F(py) € L2(R?). If py € L*(R?),
as before we have F(pe.;) and hence F(po.) € L*(R?). Then we have that |-|F(U) € L*(R?),
and in particular we have that (1+ |- |)F(U) € L} .(R?), which implies that U € H}. (R?).

loc loc
Since we are in two dimensions, this is not enough to embed this space to obtain more

regularity. The main idea to overcome this problem comes from the Riesz Transform (see
Appendix [A.41]), and more general, from the following result.

Theorem 1.16 The operator T defined as
I (1.64)
maps elements of W*P(R?) into WHHLP(R?).

Proor. If f € WHP(R?), then we need to prove that DY(Tf) € LP(R?) for every multiindex
« with |a| = k + 1. Note that DT f) = D?(9;(T'f)) where 3 is a multiindex with || = k
and DP f € LP(R?). Then

F(Ry(D"f))(x) = —i%f(Dﬁf)(x)-

Recall that
FDf)(x) = iPaeal? F(f)(2),

where 3; and (3, are the components of the multiindex 3. Thus

FR,(D? ) ) = —i7alkal (mjﬂf)(x)i)

||
~ iBafha (i, F(TF) ()
~ ilmxkafjf(aj(Tf))@)
~ F(DP(9,Tf))(x).

Therefore, by Theorem [A.43] we have
DT H)llp = ID7O;T )l S UD" £l

which implies the desires result. O

For our main problem, we need the following lemma.

Lemma 1.17 If ® € C?([0,00)) and ®" > 0 in [0,00), then (¥')~! € C'([0, 00)).

Proor. Note that since ®(r) = 400 on (—o0,0), for A > 0

‘ ‘ [0]”
TH(\) = il P WL
/N 2
[v[<V2X
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Recall that

d e e B
—\Il/l)\:—\I/*A:—/ o — —— | dv.
FOI0 = i = g5 [ e (h= B )
Since
2 V2Xx 2
i/ o (2PN gy —op . 4 o (A=) rar
dA |v\<\/ﬁ 2 dA 0 2
1 V22X 7,,2
~ —2)\@* (0) +/ (@)1 <)\ — 3) rdr
\% 0
V2X r2
~ (@)1 ()\ - §> rdr,
we have
L = @0 [ @)y (=2
A RVO)) 0 2
V22X

12

V2X

~

(@) ()\ = g) rdr

rdr

J
J

which implies the desired result.

o (@7 (-5

]

Next we prove the following theorem, which allows us to say that fy (from ((1.31])) inside
on the support of py is locally an steady state solution of Flat Vlasov-Poisson with a central
mass density.

Theorem 1.18 Suppose that ® € C?([0,00)), " > 0, and peyy € LY"(R?). Then U €
CH1=3(Q), for every bounded set Q@ C R? with C' boundary, and therefore

fo= ()" (Ey— E)XEy>E:

18 an steady state solution of Flat Vlasov-Poisson system with a central mass density in 2.

Proor. By Theorem , SINCe Poext = Po + Peat € LY"(R?) = WO4/™(R?), we have
Tpoent = U € WH/M(R?).
Denote by V the weak gradient. Thus from we have
Voo = —((¥)7) (Bo — U)+) VU,

By Lemma and Lemma [L.17, ((9")~Y)'((Ey — U)4) is bounded a.e., and therefore we
have py € W14/"(R?). Again by Theorem |1.16{we can conclude that U € W2%/"(R?). Hence,

by Sobolev Inequalities (see Appendix [A.37)), we can conclude that
UecCchH

n

3(9).
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for every bounded set 2 C R? with C! boundary. Provided of the regularity of U in every
bounded set Q of S with C! boundary, and the regularity of ®, f;, is an steady state solution
of the Vlasov equation in €2, with is the required result. n

Remark We observe that since py is continuous, spherically symmetric and nonincreasing,
the support of py is a closed ball B(0, Ry) for some Ry > 0. Then we can take Q = B(0, R) C
R? with R > Ry, where Theorem[.18 holds. Outside of B(0, R) C R?\supp(po) the function
1/] - | is C', and therefore U preserves this regularity. Hence, we can replace open and
bounded sets in the hypotesis of Theorem with R2.

1.5 Stability of the minimizer

With the existence of a minimizer for the variational problem proved, in the same way as [§],
we will prove that a similar result of stability, now for the case of flat Vlasov-Poisson with
central mass density. Before that, we will prove some useful results. We expanded over the
minimizer f, given by and we have that

Ec(f) = Ec(fo) = d(f, fo) = Epo(ps — pro), (1.65)
where

d(f, fo) = // O(fo) + E(f — fo)] dvde, (1.66)

and in this case ] 1
E(z,v) = §]v|2 +U(z) = 5]1}]2 + Up(z) + Ueai()
is the energy defined in [I.7] Thus, as ® is strictly convex, we have that

A(f.fo) / / B (o) (f — fo) + E(f — fo)] dvda
= // [@'(fo) + (E — Eo)] (f — fo)dvdx

with d(f, fo) = 0 if and only if f = fo. We have the following lemma.

Lemma 1.19 Let (fi)ien a minimizing sequence for & en Fyr. Then py, is a minimizing
sequence for E; in Fy.

Proor. It is clear from that
Ee(fi) = Epy) = inf E:(p).

pEFT,
If po is the minimizer for £; obtained from reduced problem and f; is the minimizer for &

induced by py from Theorem as po = pys, we have that E;(py,) = E¢(po). By Theorem
1.7, we have that

Ee(fi) = fIEI]lEfM Ee(f) = Ec(fo) = E(po) = pg}f& & (p),
as we wanted to prove. O
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Lemma 1.20 Let (f;)ien a minimizing sequence for E in Fyr. Then it is bounded in
Li+1/k (RY). In particular the sequence is weakly-sequentially compact in that space.

Proor. In the same way as (1.40]), using the fact that f1*'/% < &(f) for every big enough f,
we can prove that

/‘M%MHWMM5cwHJ.

where we recall that C is the Casimir functional defined in ([21))

C(f) = // B( fi(x, v))dvdz.

In the same way as in the proof of the bounds (|1.43]) and ([1.44)) in|1.12| we can prove that
—Epot (i) = = Epot(ps) S Cf)*? +1,

and hence we have that

Ec(fi) = Exin(fi) + Epat(fi) + C(f3)
>C(fi)—C-C(fi)"* -C

—c(f) (1-crepit) -c

for a suitable constant C' > 0. Therefore, if the Casimir functional C(f;) is not bounded,
then &¢(f;) — oo, which is a contradiction, because (f;);en is minimizing sequence for &.
Hence C(f;) is bounded, and therefore, so is (f;)ien in LH/F(R?). As LY/F(RY) is a reflexive
space, by Banach-Aloglu Theorem (see Appendix , we can find a subsequence which is

weakly-sequentially compact in that space. O

We know that by Lemma proved above, if (f;);en is @ minimizing sequence for &
in Fy, then py, is minimizing sequence for £; in Fj;, and passing through subsequence, we
already saw that converges weakly to a minimizer py for the reduced functional. We have
the following result:

Lemma 1.21 Let (f;)ien a minimizing sequence for Ec in Fyr and let fo the minimizer
obtained from theorem induced by po, and we suppose that is unique. Then passing
through subsequence, we have that py, — po in L1+1/”(R2), and passing through subsequence,
fz‘ — f() en L1+1/k<R4>.

Proor. By Lemma [1.19] we know that (py,)ien is a minimizing sequence for £f in Fj,, and
by Corollary and uniqueness of f, we have that passing through subsequence, ps, — po
in L'*1/"(R?), where py = py,. By Lemma we have that, passing by subsequence again,
fi = fo en L'V/F(RY). We will prove that py = pj, almost everywhere. For them, let A an
arbitraty Lebesgue measurable set and let R;, Ry, > 0 arbitrary positive numbers. We have
that

/XB(O,Rl)(x)pfO :// XB(D,Rl)(x)XB(O,RQ)(U)fO+// XB(O,Rl)(x)XB(o,Rz)c(U)fo-
A A A
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It is obvious that (z,v) = XB(,r)(T)XB(0.R) (V) is an element of LITV/F(RY)* = LEHI(RY),

and therefore
//XB(o,Rl)( )XB(0,R2) (V) fo = hjﬂ//XB 0.8 (%)X B(0.R2) (V) fi
A YA o0

< lim // XB(0.Ry) () f
1—00 A

= lim XB(O,R1)<x>pfi

1—00 A

= / XB(0,r) () po,
A

where the last equality comes from the fact that z — Y p(,r,)(2) is an element of L' /" (R?)* =
L™ (R?). In the other hand, we have that

- 2
//AXB(O,RU( )XB 0,R2)° ( )f Ri%/ % o(l’,U)d’de

Therefore
2

/XB(o,Rl)(iU)PfO S/XB(O,R1)($)pO+?Ekin(fo)v
A A 2

and thus if Ry, Ry — 400 we have found

[on<[m (1.67)

In the other hand, by weak convergence again we have that

/XB(O,RI)(fE)PoZ/XB(O,RI)(x)Po
A A

= lim inf / XB(0,r)) ()i
A

1—00

= Hrginf (// XB(0,R) (%)X B(0,Rs) (V) fi + // XB(O,R1)(:B)XB(O,RQ)C(U)fi> -
KA o A A

Therefore, we have

hifgglf// XB(0,2:)(T)XB0,Rs) ( // XB(0,71) ()X B(0,Rs) (V )f
S// XB(0,r) (%) fo
A

= /AXB(O,Rl)(x)pﬁy

It is enough to prove that the second term goes to 0. Note that

1—00

liminf// XB(, R1 T)XB (0,R2)° () fi < = 11m1nfEkm(fz)

Rz
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Thus, if Ry, Ry, — 0o, we have that

/pgg/pfo, (1.68)
A A

pO:/p~a
Jm= [ e

and this is for every Lebesgue measurable set A. Hence py = pj, almost everywhere. There-
fore Epot(fo) = Epot(pfo) = Epot(p(]) = Epot<f0>7 and thus

Ec(fo) < Erin(fo) + Epot(fo) + C(fo)
S hlrgglf Ek'm(fz) + Epot(pO) + hm sup C(fz)

11— 00

and therefore

< limsup Eyin(fi) + limsup Epe(py,) + limsup C(f;)

1—00 1—00 1—00

= limsup Ey, (fi) + lim sup Epot(fi) + limsup C( f;)

1—00 1—>00 1—00

— inf E(f).

fe€FM

Since pj = po almost everywhere, we have fo integrates M, and thus is an element of
the feasible set Fjs. Therefore is a minimizer of Casimir-Energy functional, and by the
uniqueness of minimizer we have that fy = fj, as we wanted to prove. n

Next, we will prove the main result from this section, which gives us a notion of stability
for the minimizer found, analogous to the stability result from [§].

Theorem 1.22 Let fy a minimizer for E in Fyr and we suppose that is unique, and let
po = py,- Let € > 0, then there is some d > 0 such that for every solution of flat Viasov-
Poisson system with central mass density t — f(t), with f(0) € CHRY) N Fr, if

d(£(0), fo) = Epor(ps0) = po) <4, (1.69)
then

d(f(t), fo) — E;ot(pf(t) — po) < &, (1.70)
for every t > 0.

Proor. We will proceed by contradiction. If the assertion is not true, then there exists
some g9 > 0, such that for every i € N, there is some ¢; > 0, and a solution f; from flat
Vlasov-Poisson system with central mass density, such that f;(0) € C}(R*) N Fy; with

d(fi(0), fo) = Epor(pri0) = po) < % (1.71)
and
d(fi(t:), fo) = Epor(prie) — P0) = €0 (1.72)

By (L71), we have that &(fi(0)) = &(fo) = d(fi(0), fo) = Epo(psi0) — po) — 0. As the
Casimir-Energy functional & is a conserved quantity, then E:(f;(0)) = E(fi(t:)) — Ec(fo)-
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Then we have that (f;(;))ien is a minimizing sequence for & in Fj;, and therefore passing
through subsequence, we have that (py,,))ien is @ minimizing sequence for £ in Fj,, and as
fo is unique, by Lemma we have that py,¢,) — po in L'1/"(R?). By Corollary [1.12] we
have that E} ,(ps,) — po) — 0, and thus as

pot
Ec(filt:)) — Ec(fo) = d(fit:), fo) — Bt — o)
we have that d(f;(¢;), fo) — 0, which contradicts [L.72]

]

Remark As we mentioned in m the Coulomb energy D is an inner product over L*/3(R?)
which induces a norm in that space, given by

1pllpor = Dlp, p)? = (= Epr ()", (1.73)

and therefore we can replace —E,(+) by || - [|por in Theorem [1.22]

Corollary 1.23 Lete > 0. Under the assumptions from[1.29, and supposing that || f(0)||111/x
| folli+1/k, then there is some § > 0 such that if (1.69)) holds, then

1) = follisaym <e. (1.74)

Proor. As the same way as the proof from the above theorem, if we assume the opposite, we
can build a minimizing sequence (f;(¢;));en such that

1)1y = [1F:O) 11w = [ folliease

By Lemma we have that f;(t;) — fo and also ||fi(ti)|li41/6 — ||foll1+1/%- This im-
plies, using the fact that L'"'/*(R*) is uniformly convex, that || f;(t;) — foll141/x — 0, which
contradicts || fi(t;) — foll1+1/% = €o- O

Remark We have the following observations.

a) Interpolating (see Appendix |A.45)), we have that the result of Corollary is true in
LP(R*) norm, for every 1 < p <1+ 1/k.

b) Remains pending to study the uniqueness of the minimizer for the variational problem,
which is an important hypothesis in the non-linear stability properties proved above.

c) Global existence of classical solutions of Flat Vlasov-Poisson system given an initial da-
tum C!(R?) have not been proved yet. The results of non-linear stability are conditional
to have the existence of this suitable solutions.
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Chapter 2

Mixing in anharmonic potential well

In this chapter, we will show the results which were obtained in a joint work with Hanne Van
Den Bosch and Paola Rioseco [I3]. We will give a proof of phase-space mixing phenomenon
and an estimation for the rate of convergence to equilibrium for integrable systems. Since
we are studying essentially a transport equation in T? rather than R? (equation (31))), the
rate of decay does not improve with dimension. We state our main theorem of this chapter,
where we denote (Dw);; = O;w; the Jacobian matrix of w and

fo(k) = (zi)d o

folq, k)dq (2.1)
the average of f, over T¢.

Theorem 2.1 Let f(t,q, k) be a solution of with initial datum fo € CY(T¢x K). Assume
that ¢ € CH(T? x K) is bounded, and that

w€ C*(K) and det Dw(k) #0, for all k € K, (2.2)

then there exists C', depending on w, fo and ¢ such that

C
1+t

/K /TJf (t,q,k) — folg, k))é(g, k)dgdk| <

Remark The constant C' depends on the initial datum, on the test function ¢, and on the
inverse of the Jacobian matrix Dw. In Propositions [2.4] and [2.8] below, we give more precise
statements that allow to relax the hypotheses and estimate the constant for concrete cases.

2.1 The vector field method

The main tool that we will use throughout this chapter and allows us to facilitate some
calculations, are the d-vector fields

W :=tDw(k)V,+ Vi, (2.3)
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which we can write by components as

d

Wy =1t (Ok,wi(k))0y, + Ok, (2.4)

i=1

where j € {1,...,d}. The usefulness of to define these vector field lies in the fact that the
Liouville operator (29) commutes with each vector field defined in (2.4)).

Proposition 2.2 Let W be the operator defined in (2.3)), and denote by L the Liouville
operator in action-angle variables, defined as

L= 8,5 + w(k)Vq

Then we have LW; = W;L, for all j € {1, ...,d}.

Proor. A brief calculation give us the following equations (in Einstein notation)

Wi L = t0y,wi(k) 0y, + twi(k)O,wi(k)Ds.,, + O, + Or,wi(k)Dy, + wi(k)R .,

qiq1

and
‘CVVJ = 8kjwz(k)8qz + t@k]wz(k)afqz + 8ka + (wiaqi)(tﬁkjwl(k)aql) + wz(k)ﬁgzk]

Then it is easy to see that

twl(k:)ﬁkjwi(k:)GQ

q:iq1

= (wi0y,) (tOk,wi(k)0y),

which implies the desired result. O

One direct but usefull consequence for this property is the fact that if f is a solution of
the Liouville equation, then W} f it is too, for all n € N, and therefore we have the following

property:

Proposition 2.3 Let f be a solution of . Then for sufficiently reqular functions f and
g, we have

1wz amgwanaa = [ [ 17 sl 1aanas

Proor. We can calculate explicitly the solution of as f(t,q, k) = folq — w(k)t,k). In
this way, we have

/ F1(t 4, k)g(k)didg = / ol (q — w(k)t, k)g(k)dkdg

//!fo q, k)g(k)dkdg,

which is the result for n = 0. Using proposition [2.2 we have that W' f is also a solution of
the Liouville equation (31] . for all n € N, and thls implies directly the required result. O
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2.2 The one-dimensional case

In the one-dimensional case, the operator W defined above takes the form
W = W' (k)td, + Ok, (2.5)
and the Liouville’s operator takes the form

L =0+ w(k)o,. (2.6)
We will use propositions [2.2] and [2.3] to obtain time-indepent bounds.

Proposition 2.4 Let f denote the solution to with initial datum fo € L' and fix ¢ € L.
Assume that either f or ¢ have compact support in T? x K. Then, provided all terms on the
right-hand-side are finite

)

a) The hypotheses on f, ¢ and w of Theorem imply directly that the terms in the
upper bound are indeed finite. Since it is sufficient to prove the decay for large values
of t, this proposition implies the one-dimensional case of Theorem [2.1]

¢

— 0k fo JoOk—
w w

f(t,a, k) — fola, k))o(q, /f)dqdk’ < 2% (

1

Remark We have the following observations.

b) The hypothesis on compact support is only needed to ensure the absence of boundary

terms when integrating by parts. It can be weakened by adding the value(s) of {S—fﬁ at
OK to the right-hand-side, provided these values are well-defined.

Proor. Since the proof of we have that

1
= %/Tfo(% k)dq

-5 / fola — w(k)t, k)dg

1
= %/’H‘f(tq’ k)dq

We insert this in the expression that we need to estimate and use the Fundamental Theorem

of Calculus to write
f(t, g, k) = folg, k)¢(q, k)dgdk f(t.a. k) — f(t,d k))o(q, k)dq'dgdk
oL - b L L |
I L) aqf<t,q,k>¢<q,k)d@dq’dqdk‘

8 of(t, 4, k)o(q, )dk‘ dgdq'dgq

_27T

/ 0uF (L, k)la, k)dk\ dida.
T K
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To obtain this inequality, we first use Fubini’s theorem to perform the k-integral before the
others, and then extended the range of ¢ (which requires inserting the absolute value). The
last line is just the observation that the ¢’-dependence has disappeared from the integrand.

We now use W defined in [2.5| to write 9, = (w'(k)t) ™ (W — ;). The first term will have
the required form to apply , and we can integrate by parts (the boundary terms disappear
due to the assumptions on f and ¢) to bring the second term in this form as well. This gives

[ ot it na = [ waeanSESae e [ raano | 268

Inserting this in the bOllIld7 we found
10} k
|: (Q7 ):| ‘ de(jd/{?.

[ LB et [ R [ o S

This can be rewritten in terms of the averages over T to give the required result. O

2.2.1 Localization argument

Even if the condition det Dw # 0 fails at some points, mixing may still hold. For simplicity,
we state this result in the one-dimensional case and for a linearly vanishing w’. We use the
explicit rate of decay and the expression for the upper bound obtained in Proposition
allows for extensions when w’(k) vanishes at some energies in the support of ¢. We use a
simple localization argument to treat the case where w'(k) vanishes linearly.

Theorem 2.5 Fix fy and ¢ of class C', with compact support, and let f denote the corre-

sponding solution to Liouville’s equation. Assume that w € C*(K), and w'(k) # 0 except for
k in the finite set {ky,--- ,kn}, and that w"(k;) # 0. Then, there is C > 0 such that

‘/K/T(f(t,q, k) — fo(k))é(q, k:)‘ dqdk < ﬁ

Proor. Let 0 < & < 1 to be fixed later. We fix a smooth cutoff function x with support in
(—1,1), values in [0, 1], and such that y =1 in [—1/2,1/2]. We define

X’i,& =X )
£

and

Then, we write ¢(q, k) = n-(k)o(q, k) + (1 —n-(k))o(q, k). Note that n.(k)p(q, k) satisfies the



hypotheses of Proposition 2.4, Thus we have

27
< —
ot

Ne

wl

(l90esoll, + Il fodrell,)

o0

+ o (51 ol

Now, we need to extract the e-dependence from the L*-norms. Since w”(k;) # 0, for
some C' > 0 and all € < 1, we have

: €
supp (nal)IflTEupp () Wkl 2 c
This gives us the bounds
[Fl== ll<5
We have obtained
[ [ = Rl o < 5 (2.)

On the other hand,

/K / (f(t . k) — folB))(1 — (k) (s, k)dqdk\ <2 /K (1 - (k) / £(t, 0. k)dgdk
< Cellfol .-

We sum with (2.7), evaluate at some 7' > 1 and pick ¢ = T~/3, to obtain

/K /T (f(T,q,k) — ﬁ)(k))gﬁ(q,]{;)dqdk‘ <CoT VB,

since for small 7', both terms are bounded, which implies the result. O

2.2.2 Improved decay

If the initial condition is more regular, we can improve the estimate on the decay. To this
end, we use the following L!-version of Poincaré’s inequality.

Lemma 2.6 (Poincaré’s inequality) Assume that g : T — R is a periodic function of class
C" and g(x) = 0 for some x € [0,27). Then, for alll € N

/T 19(q)ldg < () / 199 (q)ldg.
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Proor. Without loss of generality, we may assume that x = 0. Then,

/07r 9(q)|dg = /07r /0 g'(r)dr
< [l [ dsar

<n / ¢/ (r)ldr.
0

ds

Treating the contribution to the L!'-norm of the interval [r, 27| analogously, we find that

/T|g(Q)|dq < 7r/Tlg’(q)ldq-

For the case [ > 2, we proceed by induction. By periodicity we have that

/ gV =0,
T

and hence g~V (x) = 0 for some z € T, and we can iterate the argument. O

As a consequence, we can obtain a faster rate of decay for more regular initial data and
observables. For the sake of readability, we assume that the support of ¢ is compact (bounded
away from the boundary of K), though it is possible to relax this to suitable decay of the
functions and their derivatives.

Theorem 2.7 Ford =1 and under the hypotheses of Theorem|2.1], assume that additionally,

W'(k)t e CUK), fo,¢ € CYT x K) for some | > 2. Then there exists C > 0 depending on
w, fo and ¢ such that

‘ | [¢tab - ot k)dqdk' <o

Remark A striking consequence is that mixing is actually super-polynomial when w, fo and
¢ are of class C*.

Proor. As in the proof of Proposition [2.4], we bound

/K /N (t.a. k) = fo(k)@la. k)dqdk‘
<[/

We then use Lemma to insert [ — 1 additional derivatives:

/K /T (f(t,q,k:)—fo(k))¢(Q,k)dqdk‘Swl1 /T /T a. /K F(t, 4, k)b(q, k)dk'dqdq

< plgl! / / /K (”Z,zkf’“)lf(t,a,k>¢<q,k>dk
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In the previous expression, we keep in mind that the operator W only affects the variables
denoted by k and ¢, not ¢. Expanding the product makes appear 2! terms. In order to
integrate by parts, we iterate the identities

[0k, W] = " (k)t0, = (W = 0)

and for any sufficiently regular function g(k),

(W, g(k)] = [0k, (k)] = g' (k).

This allows to obtain an identity of the form

(W ak) Zzgzm |

7=0 m=0

where each of the functions g, (k) is a complicated expression containing powers of (w’)™

and its derivatives up to order [ — (m+j). In each term, we integrate by parts in K to obtain

/K (%@?’“)lﬂt G, k)o(q, k)dk

l l

W’”f<t G, k)0L(gjm (k) (q, k))dk| .

o~
o~

< [02gsmol.e | W75t 0]

7=0 m=0

Finally, we apply to bound

MN

l
1(t,4,%) = Fo(k)la, dqdk’ Ty
j=0
! jl '
= 7 Hﬁi(gj,mﬁb)HooHaleoHl

18:(g5m)||. /T /K WAL, G, k)| dd

0

3
=

)

~
=)

2.3 Higher dimensions

In this section we will show the Phase-Space Mixing decay for the d-dimensional case, with
d > 2. As we defined in , we have that the operators W; commutes with the Liouville’s
operator, for all j € {1,...,d}. If Dw is an invertible matrix, most of the proof goes through
as before. For the sake of completeness, we state Theorem with an explicit bound on the
right-hand-side. To this end, we define the matrix norm

[ Moo = max | M|,
In this way, we have the following proposition
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Proposition 2.8 Let f(t,q,k) be the solution to with initial datum fo € CH(T? x K).
Assume that ¢ € CHT¢ x K), and that

det Dw(k) #0,  forallk € K.

Then, M := (Dw(k))™" is well-defined and

Fta.k <k>>¢<q,k>dqdk\

2 d
i <H|M|oo¢|! Z||akfoH1+Hvk M¢63||00Hf0||>

Proor. As before, we express the left-hand-side as

[ (0.0 = Fokota k)dqdk‘

/w /Td/ f(t,a,k) — f(t.d, k)o(q, k)dkdqdq'| .

27T

Then we write
d qj
f(ta q, k) - f(tv q/7 k) = Z/ aqj'f(t7 a1, qj-1,S, q;+1’ e 7QZI7 k})dS
=174

and we obtain the bound

LG a k) = fok)ola, k‘)dqdk:'

= (Qi)Z/ L /

We now write d,, = t~'[M (W — V},)];. Thus, by using the divergence theorem for the second
term (and using the compact support of ¢ to conclude the absence of boundary terms), we
obtain

/ ot Gyt 5, Qo+ 2 dls K)(a, R)dk| dsdgdy.

‘/ anf<t7q17'"ijhsaqz'-ﬁ-l?"' 7QZ17 k)¢(‘]> k)dk
>~ t/ ‘ tq17' 'Qj—lasacI;'-s—la"' aQZlvk)QS(Q7k)|dk

+ Z/ |f(t7q17 . S?Q;+17 T 7q£l7 k)(vk : M<k)T¢(Q7 k>éj)
K

M|, a
< UMl 5 [y )]
=1 +
Imesraal, g
t

|f(taq17 o 'Qj—1787Q;'+1’ o 7Q¢li7 k)‘ dk.
K
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Inserting this in the previous bound and using we finally obtain

/K /TJf (t,q,k) — fo(k))(q, k)dgdk

ord d _ ) B
< (“’M'wﬂmz 01, all + 1V - M 7065 . HfoHl) |
i=1

2.4 Hamiltonian with Coulomb potential

Finally, we study the Coulomb potential generated by a particle density F. We will use
the notation F for the density in the physical phase space R x R and f = F o N for
the density in action-angle coordinates, where N : T¢ x K +— G C R? x R? denotes the
transformation from action-angle variables to the position and momentum, where G is the
open set of values of position and momenta for which this transformation is well-defined and
invertible. The motivation to consider the Coulomb potential in particular, is to take into
account the gravitational self-interaction (the Vlasov-Poisson system). As in |?], the results
that we prove remain insufficient to treat the nonlinear equation. This is natural, since we
don’t expect in general that f, is a steady state of the Vlasov-Poisson system.

The Coulomb potential (as the gravitational potential defined in Chapter 2) can be written
as the integral of I’ against a test function with a singularity, which can be compensated by
requiring some extra regularity of F'. For a given F' defined in Euclidean space, we define
the Coulomb potential generated by its particle density as the unique solution to

AUp(z) = /]R F(z,v)dv,

with Up(0) = 0 when d = 1, and limy| Up(z) = 0 for d > 2. We will assume that the
system with Hamiltonian H(z,v) = |v|?/2+ U(z) is integrable. Then, we will prove the next
result.

Corollary 2.9 Assume that N is a C*-diffeomorphism, and that the frequencies w(k) satisfy
[2:2). Let Fy € CH(G) N L' (G). Denote by F the solution to Liouville’s equation ([B1)), then

C

lvr =gl < 7

where B
Fy:=(FyoN)oN~".

Proor. For fixed zy € R?, we write T,, for the fundamental solution to Poisson’s equation
in dimension d. In particular,

(T — 20) X[-o0,20] + Max(0, ) ifd=1
Too(z) =< —(2m) ' In(jz — 20|) ifd=2

Ka|z — mo| 742 if d =3,
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for a suitable constant k4. Therefore, we can write

Up(zo) = /]Rd g Yo (2)F(t,z,v)dxdv = /1rd /K%:o(% k)f(t,q,k)dkdg,

where ¢,, = T,, o N. Now, the integral is in a suitable form to apply the arguments in the
proofs of Theorems and [2.8] provided that ¢,, is sufficiently regular. The Coulomb kernel
¢4, belongs to the Sobolev space VVlicl (R? x RY), since the integral of its derivative in a ball
is finite. Outside a sufficiently large ball, the function and its derivatives are bounded. Since
we assume that N is of class C, p,, inherits these properties. Thus, Vip,, € L'+ L>. For
the L*°-part, we can apply Proposition directly, and for the L' part we switch the roles

of f and ¢ in the proof of Proposition [2.8| O
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Conclusion

In the first chapter of this thesis we proved the existence of a minimizer of Casimir-Energy
functional described in [21] and provided of some regularity conditions for the function ®, we
proved that the minimizer is a steady state solution of Flat Vlasov-Poisson system with a
central mass density, system described in Instead of the ideas based in concentration-
compactness, we used a symmetrization argument, taking the rearrangement of minimizing
sequences for the reduced variational problem, which allow to control terms which appears
from the gravitational potential. Also, it was proved an analogous result of [§] about non-
linear stability for the steady state, in suitable LP-norms, provided of uniqueness of the
minimizer of Casimir-Energy functional. It remains an open problem to show the uniqueness
of the minimizer, and the study of the existence of classical solutions of the Flat Vlasov-
Poisson system provided of an initial datum. In the second part we talked about the results
of [13], where we proved the phase-space mixing for solutions to the Liouville equation for
integrable systems, obtaining a rate of convergence in time. In one dimension, we proved
that when the non-harmonicity condition fails at a certain energy, the phase space mixing
still holds but with a slower rate.
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Annexed

The following appendix presents some usefull results, definitions and theorems, which were
used throughout this thesis. More details can be found in [I], 3] ©, @, 12].

Functional Analysis

Uniformly convex spaces

Definition A.1 (Uniformly convex space) Let X be a normed linear space. We say that
X is uniformly convex if there exists a positive function v+ e(r) with e(r) > 0 and
lime(r) = 0, such that for all x,y € B(0,1)

r—0

r+vy
2

H <1-e(lz—yl)

Dual space and reflexive spaces

Definition A.2 (Dual space) Let X a normed linear space. We define the dual space X*
of X, as the linear space of all continuous linear functionals L : X — R.

Theorem A.3 We have that L € X* if and only if, there exists a constant K > 0 such that
|Lz| < K||z||. We have that X* is a Banach space, with the norm:

L
L] o= sup 1221 (A1)
2 el

Definition A.4 (Reflexive space) A normed linear space X is called reflexive, if X es
isomorphic to its bi-dual space (X*)*.

Theorem A.5 FEvery uniformly conver Banach space is reflexive.

20



Weak convergence

Definition A.6 (Weak convergence) Let X a normed linear space, and (x,)nen some se-
quence of elements in X. We have that x, converges weakly to x € X, if for every linear
functional L € X*,

Lz, — Lzx. (A.2)

It 1s denoted by x, — x.

Theorem A.7 (Uniform boundedness principle) Every sequence weakly convergent in a
normed linear space X is uniformly bounded in norm.

Theorem A.8 (Lower semi-continuity of norm) Let (X, ||-||) a normed linear space, and let
(Tn)nen € X a sequence weakly convergent to x € X. Then

|| < limin [z, (A.3)
n—oo

Theorem A.9 (Mazur’s lemma) Let (X, ||-||) @ Banach space, and (x,)nen € X a sequence
weakly convergent to x € X. Then there exists a sequence (Yn)nen in the convezr hull of
(Zn)nen, which converges strongly to x.

Definition A.10 (Weak sequentially compact set) A set Y C X is said weakly sequen-
tially compact if every sequence in'Y has a subsequence weakly convergent in'Y .

Theorem A.11 (Banach-Alaoglu) The closed unit ball in a Banach space X is weak sequen-
tially compact if and only if X is a reflexive space.

Theorem A.12 Let X an uniformly convex Banach space and (x,)nen a sequence weakly
convergent to x € X and such that

lim sup [z, < [l
n—oo

Then x, converges strongly to x in X.

L? and LP spaces

LP spaces

Let (2,7, 1) a measurable set, and let p € [0, oc]. We have the following definitions.

Definition A.13 (Almost everywhere) We say that some property P in a measurable space
ocurrs almost everywhere, if the set of points for which P does not occur has measure zero.

Definition A.14 (Almost everywhere equality) Let f,g € M. We define the almost every-
where equality class of equivalence (~) as f ~ g if and only if f = g a.e. Hence, the class of
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equivalence is denoted by

[flv={9eM|g~f} (A.4)

Definition A.15 (L? spaces, 1 < p < oo) We define the space LP(S), T, 1), which is denoted
for simplicity by LP(QY), as the quotient space of p-integrable functions quotiented with ~. In
other words

2@ = {11 [ 1Pdu < oo}, (A.5)

The LP spaces are normed linear spaces with the norm

1l = 170 = ( [ 1) " (A6)

Definition A.16 (L*> space) We define the L>(), T, u) space, which is denoted for sim-
plicity by L>(QY), as the quotient space of almost everywhere bounded functions quotiented
with ~. In other words

L=®(Q) :=A{[f]. | Ja € Ry tal que |f] < a a.e.}. (A.7)

The L*> space is a normed linear space with the essential supremum norm

Il = 1 = esssup £ (z) (A8)

Theorem A.17 If1 <p < oo, then LP(QY) is a Banach space, and for 1 < p < oo, LP(Q) is
uniformly convex. In particular L*(Q) is a Hilbert space.

Theorem A.18 We have that L(Q2) is isomorphic to LP(Q)*, where 1/p+1/qg = 1. In
particular, if 1 < p < oo, then LP(QY) is reflexive.

Theorem A.19 (Fatou’s lemma) Let (f,)nen @ sequence of positive measurable functions.
Then

/lim inf f,dr <lim inf/fndx.

Moreover, if every f, is integrable and g is another integrable function, then

a) If iminf, f, is integrable and f, > g for every n € N, then
/lim inf f,dxr <lim inf/fndac.
b) If limsup,, f, is integrable and f, < g for every n € N, then

/ lim sup f,dxr > limsup / fndzx.

Theorem A.20 (Dominated Convergence Theorem) Let (f,)nen @ sequence of integrable
functions such that f, — f pointwise. Suppose that there exists an integrable function g such
that (fn)nen s dominated by g, i.e. |fn| < g. Then f is integrable and

/ fodz — / fdx
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Theorem A.21 (Continuity of convolution) Let f € LP(R?) and g € L4(R), with %%—% =1.
Then the convolution is a continuous function on R?, and for every e > 0, there exists 6. > 0
such that

sup |(f * g)(z)| <e (A.9)

|| >6¢

LP spaces

Definition A.22 (LP spaces) We define L2 (S, T, ), which is denoted for simplicity by
LP (Q), as the quotient space of all measurable functions such that

supal{z € Q: |f(z)| > a}|M? < oo, (A.10)
a>0
that is
LP(Q) == {[f]~ :supal{z € Q: |f(z)| > a}|"? < c0}. (A.11)
a>0

If p> 1, then for ¢ > 1 such that 1/p+1/q = 1, we have that

£ = sup |41 [ |o)ld (A12)
A A

induces a norm in the space LP (Q).

Theorem A.23 We have that LP(Q2) C LP ().

Theorem A.24 Let 0 <\ <d and let p=d/\. If f:=|-|7, then

1l = 5 (8% /). (A13)
Rearrangements
Definitions

Definition A.25 (Vanishing at infinity) Let f : R? — R be a measurable function. It is said
that f vanishes at infinity if the sets

{z e R |f(z)] >t} (A.14)

have finite Lebesgue measure, for all t > 0.

Definition A.26 (Symmetric rearrangement of a set) Let A C R? a Borel set with finite
Lebesgue measure. The symmetric rearrangement of A is defined as the open ball centered
at the origin which volume is the same of A. That is

A* = B(0,r), (A.15)
where r is such that |A| = |B(0,7)| = [ST!r?/d.
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Definition A.27 (Symmetric rearrangement of a function) Let f : R? — R a Borel-
measurable function which vanishes at infinite. The symmetric rearrangement or simply
the rearrangement of f as follows: if f = xa, then f* = xa~, and otherwise

fH(@) = /OOO X1 (T)dL. (A.16)

Proposition A.28 The rearrangements have the following properties

1. f* is a nonnegative function.
2. f* 1s radially symmetric and nonincreasing. That is
(@) < fr(y), silz] =y, (A.17)
with equality if |x| = |y|.
3. If f € LP(RY), then f* € LP(R?) and also it preserves the norm. That is
£l = 11 (A18)

with 1 < p < oc0.

Useful theorems

Theorem A.29 (Non-expansivity of rearrangement) Let ) : R — R a nonnegative convex
function such that Q(0) = 0. Let f and g nonnegative functions in R? which vanishes at
infinity. Then we have that

» Q(f*(x) — g"(x))dr < g Q(f(x) — g(x))du. (A.19)

If also we assume that () is strictly convex, f = f* and f is strictly nonincreasing, then the

equality in [A.19 implies that g = g*.

Theorem A.30 (Riesz’s rearrangement inequality) Let f,g and h three nonnegative func-
tions in R%. Then

[, | r@ata=mrtizay < [ [ page—pimia. (420

Sobolev Spaces

Definitions

Definition A.31 (Hélder continuous functions) Let 2 be an open subset of RY. A function
u:Q — R is said Hélder continuous of exponent 0 < v < 1, if there exists C' > 0 such
that

u(z) — u(y)| < Clz —y|*, (A.21)

for every z,y € Q.
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Definition A.32 (Hélder space) The Hélder space C*(Q) consist of all functions u €
C*(Q) which are Hélder continuous with exponent 0 < v < 1.

Theorem A.33 The Hélder space C*7(Q) is a Banach space, provided with the norm

|u(z) — u(y)]
ul|crv () == E | D%ul| () + sup : (A.22)
H ‘ CF () = | HC(Q) ety ’x _ y’,y

Definition A.34 (Weak Derivative) Suppose u,v € L}, .(Q) and « is a multiindex. We say

loc
that v is the o'"—weak partial derivative of u, written

D%y = v, (A.23)

provided

/Q uD®pdx = (—1) / vodz, (A.24)

Q
for all test functions ¢ € C°(Q).

Definition A.35 (Sobolev Space) Fizx 1 < p < oo and let k be a nonnegative integer. We
define the Sobolev space as

WHhP(Q) = {u € L,.(Q) : D*u € LP(Q) for each multiinder |a| < k}. (A.25)

loc

Theorem A.36 For every k, W*?(Q) is a Banach space, provided the norm

D®ulPd A 1<
la|<k €58 SUDPq |D%ul, if p=o0.
If p= 2, we write H*(Q) = W"2(Q) which is a Hilbert space.

Theorem A.37 (General Sobolev Inequalities) Let Q be a bounded open subset of RY, with
a C' boundary. Assume that u € WHP(Q).

i) If

k< —,

ESRESH

then uw € L(S2), where

|
ST IS

| =
SR

We have in addition the estimate
Jully S llullwer -
i) If
d
k> —,
p
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then u € C'k_[%]_l’w(fl), where

d d e d :
= [5} +1— 0 if p 18 not an integer,
any positive number <1, if ]% 18 an integer.

We have in addition the estimate
||UI|Ck,[g]71,7(Q) S llullwes@)-
Fourier Transform and Riesz Transform

Definition A.38 (Fourier Transform of L'(R?)) If u € LY(R?), we define its Fourier
Transform Fu by

1 A
o —ix-y
(Fu)(y) : o /Rd e Yu(x)de, (A.27)
and its inverse Fourier Transform F 'u by
_ 1 iz
(Fu)(y) == W/Rd e Yu(x)de. (A.28)

Theorem A.39 (Plancharel’s Theorem) Assume u € LY(R?) N L2(R?). Then Fu,F tu €
L*(R?) and
lullz = | Fullz = |7 ull2.

Proposition A.40 (Properties of Fourier Transform) Assume that u,v € L*(R?). Then we
have the following properties

i) Jpautde = [pa FuFvdz.

i) F(Du)(y) = iy - .- ySiFuly) for each multiinder o = (au,...,cq) such that
Dou e L2(RY).

i) If u,v € LY(R?) N L2(RY), then F(u*v) = (21)Y2F (u)F(v).
w) Furthermore u = F~'(F(u))

Definition A.41 (Riesz Transform) The Riesz Transform Rf of a function f € L'(R?)
is defined by Rf = (R1f,..., Rqf), where

I'i(d+1)/2 =Y
Ry =ty [y (A.29)

e—0 |z — yldtt
for every j € {1,...,d}.

Proposition A.42 The Fourier Transform of R;f is given by



Theorem A.43 If1 < p < oo, there are constants Cy,, C} > 0 such that for all f € LP(RY)

1
ol < IR flly < Coll £l (A.30)
p

Useful inequalities

Theorem A.44 (Holder’s inequality) Let p,q,r € [1,00]| such that ]lj —i—é = % Let f €
LP g e L9, then fg € L™ and we have that

gl < W f1lpllglla-

Theorem A.45 (Riesz-Thorin interpolation lemma) Let 0 < py < p1 < co. For 6 € (0,1),
it 1s defined
1 1-6 0

Do Po b1
If f € LPo N LP* | then f € LP and we have that

11l < W F 1o A1l (A.31)
Theorem A.46 (Young’s inequality, strong version) Let p,q,r € [1,00] with p,q < r, such
that
1 1 1
LR (4.3
P 4q r

Let f € LP and g € L9, then fxg € L" and we have that

1f = glle < (I £llsl9lq (A.33)

Theorem A.47 (Hardy-Littlewood-Sobolev inequality) Let p,r > 1 y and 0 < X\ < d with
I/p+Ad+1/r=2. Let f € LP, g € L". Then there exists a constant C > 0, independent
of f,g, such that

[ s@le = s gwdady| <1171l (A34)
Rd JRd
Theorem A.48 (Young's inequality, weak version) Let p,q,r € [1,00] with p,q < r, such
that
1 1 1
-+ -=—-+1 (A.35)
p q T

Let f € LP and g € L, then fxg € L" and we have that there exists a constant C > 0 such
that

Lf*gllr S W flpllgllw.q (A.36)

27



Action-angle variables in R? x R?

Under hypothesis of Liouville’s theorem, over a integrable system of d—degrees of freedom and
d conserved quantities, when the energy level sets C(E) := {(x,v) € R? x R? | H(z,p) = E}
are compact, it can be defined some kind of canonical coordinates

Definition A.49 (Action-angle variables) Let x = (21, ...,x4) and p = (p1, ..., p2) the canon-
1cal coordinates of position and momenta in the phase space. We define the action variable
k= (ki,....kq) € K as

A(H(x,p))

k; =
27

L AM(z,p) = f rudps.

where K is a suitable open set of R? and A is the area function. The canonical variable of
the action variable k is the angle variable q = (q, ..., qq) € T9.

Proposition A.50 The Hamiltonian H depends only on the action coordinates k, i.e.
H(z,p) =H(k,q) = H(k).
The angle variable satisfies the equation

. OH 2
gi = o, w;(k) = TOH(R))

where w; are the frequencies of the periodic motion with pertod T'. The equation implies
that q; is a linear function of time.

o8
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