
Received August 24, 2021, accepted September 3, 2021, date of publication September 9, 2021,
date of current version September 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111175

Two-Level Genetic Algorithm for Evolving
Convolutional Neural Networks
for Pattern Recognition
DANIEL A. MONTECINO 1, CLAUDIO A. PEREZ 1, (Senior Member, IEEE),
AND KEVIN W. BOWYER 2, (Life Fellow, IEEE)
1Department of Electrical Engineering and Advanced Mining Technology Center, Universidad de Chile, Santiago 8370451, Chile
2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Corresponding author: Claudio A. Perez (clperez@ing.uchile.cl)

This work was supported in part by Agencia Nacional de Investigación y Desarrollo (ANID) under Grant FONDECYT 1191610,
and Project AFB180004, and in part by the Department of Electrical Engineering, and the Advanced Mining Technology Center,
Universidad de Chile.

ABSTRACT The aim of Neuroevolution is to find neural networks and convolutional neural network (CNN)
architectures automatically through evolutionary algorithms. A crucial problem in neuroevolution is search
time, since multiple CNNs must be trained during evolution. This problem has led to fitness acceleration
approaches, generating a trade-off between time and fitness fidelity. Also, since search spaces for this
problem usually include only a few parameters, this increases the human bias in the search. In this work,
we propose a novel two-level genetic algorithm (GA) for addressing the fidelity-time trade-off problem
for the fitness computation in CNNs. The first level evaluates many individuals quickly, and the second
evaluates only those with the best results more finely. We also propose a search space with few restrictions,
and an encoding with unexpressed genes to facilitate the crossover operation. This search space allows CNN
architectures to have any sizes, shapes, and skip-connections among nodes. The two-level GA was applied
to the pattern recognition problem on seven datasets, fiveMNIST-Variants, Fashion-MNIST, and CIFAR-10,
achieving significantly better results than all those previously published. Our results show an improvement
of 39.89% (4.2% error reduction) on the most complex dataset of MNIST (MRDBI), and on average 30.52%
(1.35% error reduction) on all the five datasets. Furthermore, we show that our algorithm performed as well
as precise-training GA, but took only the time of a fast-training GA. These results can be relevant and useful
not only for image classification problems but also for GA-related problems.

INDEX TERMS Convolutional neural network, automatic architecture design, deep learning, genetic
algorithms, neuroevolution, image classification.

I. INTRODUCTION
Neural networks (NNs) and convolutional networks (CNNs)
have been inspired, since their beginnings, by mammal brain
structures including those of the visual system [1]–[5]. These
networks were designed to learn from examples, with the
learning process strongly depending on the architecture of the
network [6]–[8].

Finding optimum architectures for a given task is still an
open problem, even for researchers with experience in Deep
Learning (DL) [9]–[11]. In 1979, Fukushima introduced

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

the Neocognitron [12] which was one of the first CNNs
that modeled the structures of the visual system and was
successfully applied to pattern recognition using space
invariance [13], [14]. In 1998, LeCun introduced CNNs for
the problem of handwritten digit recognition [15]. Since
then, many new architectures have been created by modi-
fying the existing ones to achieve better results in various
tasks. For instance, in 2012 Krizhevky et al. created
AlexNet [16], which was the first CNN to win the
ILSVR [17] competition. In 2014, Szegedy et al. designed
GoogleNet [18]. Later, CNNs had success in improving face
recognition, with DeepFace (97.35% on LFW) [19] and
FaceNet (99.63% on LFW) [20]. Then, He et al. developed

126856 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2492-2563
https://orcid.org/0000-0002-5484-4159
https://orcid.org/0000-0002-7562-4390
https://orcid.org/0000-0002-0945-2674


D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

ResNet [21]. Subsequently, Huang et al., developed
DenseNet [22], and more recently, Han et al. developed the
PyramidNet [23]. More details are provided in section II-B.

One important fact is that the mammalian visual cor-
tex evolved gradually over millions of years to per-
form complex pattern recognition tasks with outstanding
precision [24], [25]. The simple and elegant idea of evolution
is also applicable to CNNs, in developing better architec-
tures that best fit each problem. Evolving neural networks
is called Neuroevolution, and it has been a widely addressed
issue [2], [8], [26]–[30].

Neuroevolution is a sub-topic of Neural Architecture
Search (NAS), which consists of searching CNN and
NN architectures automatically, using various methods such
as Reinforcement Learning (RL), Gradient based Optimiza-
tion (GD), Bayesian Optimization (BO), and evolutionary
methods [27], [31]. Neuroevolution could strongly impact
the development of future technologies based on DL in two
ways. The first is allowing DL researchers to find better
CNN architectures for specific tasks, thus having to spend
less time and effort searching for them. The second is that
Neuroevolution allows nonexperts to find near optimumCNN
models. Neuroevolution could be used by researchers from
other fields without requiring advanced expertise in DL.
For instance, neuroevolution has been applied successfully
to medical images [32]–[36], speech recognition [37]–[39],
emotion recognition [40], [41], scene classification [42],
among others [43]–[51].

One of the first studies in Neuroevolution was done by
Miller et al. [52] who used a Genetic Algorithm (GA) to
simultaneously evolve the architecture and weights of a neu-
ral network, which was called Topology and Weight Evolv-
ing Artificial Neural Networks (TWEANNs). Then, Stanley
and Miikkulainen developed NEAT [28], another TWEANN
algorithm, that allowed species to evolve separately to keep
variability in the population. However, the encoding did
not admit large architectures. To overcome this problem,
Stanley et al. encoded the neural network indirectly in [53],
so few parameters could code larger NNs through decoding
rules.

Another pioneering work was performed using GAs to
design biologically inspired receptive fields [24], [54], [55]
into CNNs based on Fukushima’s Neocognitron Model [56].
It was shown that biologically inspired receptive fields
improved the recognition capacity of the CNN in the prob-
lems of face recognition and handwritten digit recogni-
tion [24]. Another contribution was showing that a genetic
algorithm could find many improved solutions for the bank
of receptive fields in the first layers of the CNN compared to
standard fully connected NNs [24].

TWEANN algorithms can only evolve NNs, since CNNs
have significantly more weights, and therefore, it was not
possible to include them in the codification of the model.
To overcome this limitation, new solutions used GAs to seek
only the network architecture, and the weights were deter-
mined by training using backpropagation. Thus, networks

were trained with a training set, and the accuracy achieved
in a validation set was used to compute the fitness. Evolv-
ing CNNs became possible through this methodology.
Real et al. [29], and Liu et al. [10] were among the first
to develop this evolution scheme. Both achieved state-of-
the-art results using simple evolutionary algorithms with only
mutations.

The search time inGA-basedNASmethods, and, therefore,
in Neuroevolution methods, is mainly caused by a combina-
tion of two factors. First, they are population-based methods;
thus, they must evaluate many individuals to converge, and
second, there is training time required to train each CNN.

The training time of a single CNN could be long depending
on the dataset size, and the size of the network. Also, since
GAs are population based, many individuals are evaluated.
All individuals in the population are trained from scratch
in GA based NAS methods. Therefore, the training time is
multiplied by the number of individuals in the evolution [8].

Therefore, some studies proposed fitness approximation
techniques to reduce the CNN training time, followed by the
evolution time. The approximation techniques [27] included
training the models with fewer epochs [2], [10], [29], [57],
with fewer data [58], with lower resolution images [59], with
fewer cells and feature maps in the evolved models [30],
or even combining them as in [60].

However, Zela et al. [61] stated that, ‘‘. . . short training
exerts on both architectural choices and hyper-parameters,
resulting in a poor correlation between the performance after
short and long training periods.’’ Therefore, even if these
approximations reduce the training time, they also reduce the
fitness fidelity, and can generate an error in the population
ranking [27], [61]. Consequently, the GA searches for the
best model that fits the restriction, but which is not neces-
sarily the best model for the global problem. This gener-
ates a fidelity-time trade-off problem in fitness calculation,
since the more reliable the fitness—and hence the ranking—,
the more time is required to compute it, and the longer the
evolution time.

Previous publications that used a fitness approximation
approach did not quantify the impact on the test error perfor-
mance [2], [30], [62]–[64], i.e., the trade-off problem between
computational time and fitness fidelity was underestimated
or neglected. This underestimation could be due to the great
computational cost required for running GA experiments
without approximations, but it could also be due to limited
knowledge on the effect of using fitness approximations.
Therefore, the decline in performance produced exclusively
by the use of these approximations is neither known nor
quantified.

In this work, we aim to address the fidelity-time trade-off
problem by proposing a novel GA with two levels (2LGA).
The 2LGA reduces the adverse effects of using fitness
approximation techniques, for example, by training with
fewer epochs. One level serves to evaluate many CNN net-
works rapidly, while the second makes more precise evalu-
ations to improve fitness fidelity. At the first level (1L) of

VOLUME 9, 2021 126857



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

the 2LGA, the fitness of the CNNmodels is approximated by
training each CNNwith fewer epochs. In contrast, the second
level (2L) has only the best individuals of the first level,
and the fitness is computed more precisely by training the
CNN models with more epochs. Also, both levels generate
offspring (as it is shown in Fig. 1), but the offspring of
the second level, which is more reliable, move to the first level
of the next generation to provide feedback from individuals
who are reliably the best. The idea of using a 2LGA is that at
the first level, the ranking can have failures, changing the real
order of the population. Therefore, selecting the best CNN
models, and ordering them most reliably, reduces the error
produced at the top of the ranking, and only re-evaluates a
fraction of the population.

FIGURE 1. Reproduction and combination process of GA levels. First,
each level generates its offspring in (a). Then, in (b), the second-level
offspring replace part of the first-level offspring, and then the best
individuals of the first level take the place of the second-level offspring.
Finally, at each level, the offspring replace the worst individuals in (c).

The authors in [60] and [65] used a population that was
sampled to train the individuals with higher fitness with more
epochs. A single GA was used with three groups in which
each group had different training epochs according to their
fitness. However, genetic operators were applied only once
to generate the complete population before sampling. Also,
the crossover operator, which is a fundamental element for the
exploitation in the GA, was not implemented, and structural
parameters were not optimized by the GA.

Another important line of research in neuroevolution is
the search space [8], [27]. A good search space facili-
tates the search for architectures, even for Random Search
(RS) [10], [66]–[68]. Therefore, a good search space is
essential for taking advantage of GAs. Some authors use
a search space with fixed-length codification [69], [70];
thus, all the networks have the same number of layers or
operations. These spaces restrict GAs, especially in prob-
lems where larger, or smaller, networks may be better

solutions. By contrast, using spaces with variable-length
networks, as in [2], [9]–[11], [29], [71], [72] makes cod-
ing difficult, especially for performing crossovers between
individuals. For this reason, in some of these implementa-
tions, the authors only use mutation operations [10], [29].
However, avoiding crossover operations in GAs results
in limited exploitation of the search-space [2], [11].
A variable-length scheme, and a crossover operation were
proposed by Sun et al. [2] and by Johnson et al. [64].
However, these schemes do not consider skip-connections
in the architectures, a fundamental element that prevents the
vanishing-gradient problem [22], [73].

Previous work includes defining parameters for each oper-
ation, such as the kernel size in the convolution [62], [66].
Some of the studies considered operations with dif-
ferent parameter values, such as the convolution size
(e.g. 3× 3, 1× 1). For example, Zoph et al. [66] adopted this
methodology to create the widely used NASNet-space. How-
ever, one operation for each parameter may not be practical
if there are many possible alternatives, such as in the number
of convolution filters.

To reduce previous restrictions, we propose a flexible
search space allowing variable-length architectures. Our
search space includes skip-connections between operations,
parameters of these operations, and hyper-parameters of the
network (see Table 1). In this way, the GA has greater free-
dom to seek solutions reducing human bias. Furthermore,
we propose a new coding, with mutation and crossover,
through genes that are not expressed in the decoded CNN.
Also, as in PiramydNet [23], we propose a decoding method
that increases the number of filters as a function of the
depth.

TABLE 1. Overview of the encoded information in the proposed search
space.

The main contributions of our work are the following:
(1) A novel 2LGA addressing the fidelity-time trade-off prob-
lem for the fitness computation in CNNs. The 2LGA reduces
the adverse consequences of using fitness approximation
techniques, such as training with fewer epochs. Any GA that
uses approximations for fitness computation would benefit
from the 2LGA, sacrificing a fraction of time, but increasing

126858 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

its performance significantly. (2) A novel search space
that reduces the parameter restrictions, and a codification
that allows the 2LGA to perform any crossover operation
among CNN architectures to generate new individuals for
the next generation. (3) Application of the 2LGA and the
proposed search space to the MNIST-Variants, the Fashion-
MNIST, and the CIFAR-10 datasets, reaching significantly
better results than those previously published. (4) On the
MNIST-Variants dataset, we show that the 2LGA effectively
reduces the adverse aspects of fitness approximation tech-
niques, by reaching the performance of an ordinary GA that
fully trains CNNs, but taking a slightly longer time than one
that approximates fitness.

II. BACKGROUND
A. GENETIC ALGORITHMS
Genetic algorithms are widely used [74], [75] in optimization
and search problems, and they are inspired by evolution
and natural selection processes [76]. GAs take advantage of
bioinspired genetic operators, for selection, crossover, and
mutation, to obtain high-quality solutions [76]. The main
elements of the GA procedures are initialization, fitness eval-
uation, population operators (mutation and crossover), and
selection [8]. In this paper, we use the concept of repro-
duction to encompass the processes of selection, mutation,
and crossover. As some authors state, GAs are appropriate
for searching CNN architecture problems since GAs are
gradient-free and insensitive to local minima [2], [11], [77].
Furthermore, GAs have good global search capability [75],
while gradient descent optimization methods could converge
to a local minimum in cases of non-convex surfaces [78].
Moreover, GAs can even handle problems when an explicit
or exact objective function is not available [77], which is the
case with the CNNs architecture search problem.

B. HAND-DESIGNED CONVOLUTIONAL NETWORK
ARCHITECTURES
In 1998, LeCun introduced convolutional networks for
the problem of handwritten-digit recognition [15]. The
architecture proposed by LeCun consisted of 3 convolu-
tional layers with less than 20 feature maps. Subsequently,
Krizhevky et al. used the concepts developed by LeCun to
develop AlexNet [16] but increased the convolutional layers,
the feature maps, and kernel sizes. The authors also intro-
duced the ReLU activation function and Maxpool layers.
Later, Szegedy et al. designed GoogleNet [18], a network
with parallel convolutions with different kernel sizes. They
also increased the depth of the network (number of layers),
and its width (feature maps).

At that point, an increase in the depth of the networks
proved to have better results, but larger networkswere not fea-
sible to train due to the vanishing gradient problem [79], [80].
To avoid this difficulty, He et al. developed a residual block
that connects the input and the output of a block by adding
them [21]. They could then train networks of 151 layers,

avoiding the vanishing gradient problem. Subsequently,
Huang et al., (2017) extended the concept of skip connection,
and developed a Dense block, which connects the outputs of
each layer to every subsequent layer [22].

Recently, Han et al. developed PyramidNet [23], which
gradually increases the feature map dimension with a
linear (1) or exponential (2) function of the depth as
follows:

Dk =

{
16 if k = 1
bDk−1 + α

N c if 2 ≤ k ≤ N + 1
(1)

Dk =

{
16 if k = 1

bDk−1 · α
1
N c if 2 ≤ k ≤ N + 1

(2)

where Dk is the number of feature maps of the k-th residual
unit, N is the total number of residual units, and α is a growth
factor.

In addition, they proposed a residual unit with an
identity-mapping shortcut, and since the branches of the
residual unit have different feature map dimensions, they
applied zero-padding at the channel axis to match the features
in this dimension.

Although handcrafted CNN architectures have improved
greatly, the process has taken years and enormous effort.
Therefore, designing architectures automatically could speed
up the development of DL research.

The proposed search space includes concepts such as the
number of feature maps, activation function, network size,
and gradual expansion, among others. Therefore, the results
of previous research on CNN architectures serve as a base for
our search space. The proposed search space allows the GA
to find a combination and interconnections of elements that
will yield improved results.

C. NAS METHODS
Various search strategies are used to explore the space of
CNN architectures, such as Reinforcement Learning, Gradi-
ent Descent methods, Bayesian Optimization, and evolution-
ary methods [8], [27], [31].

In the RL approach, a controller samples CNNs from the
search space seeking to optimize a reward. The controller’s
feedback is a reward to improve decision making, and choose
an increasingly better model. The reward is computed by
training the sampled model from scratch, and computing its
validation accuracy [81], [82]. A pioneer in RL methods was
Zoph and Le [81], who used a recurrent neural network as
a controller, and the policy gradient algorithm to train this
controller. Other approaches, such as MetaQNN [82], train
the controller using Q-learning with an e-greedy exploration
strategy, and experience replay. However, RLmethods tend to
requiremore computational resources than evolutionary algo-
rithms [11], [83]. For example, Zoph et al. needed 28 days
and 800 GPUs [81], while MetaQNN required ten days and
10 GPUs [82].

The GD-based methods model CNN architectures
using continuous variables to optimize the search using

VOLUME 9, 2021 126859



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

gradient descent. A super graph or super network is built that
has a predetermined number of nodes, but each node contains
all the available operations [31], [84]. The objective is to
find a subgraph with the optimal connections between node
operations. One of the most well-known GD-based methods
is DARTS (Differentiable Architecture Search) [84], in which
a set of alpha variables weights every possible connection
between operations. Network weights and alpha weights are
optimized during training. Although this approach reduces
the search time, building a super graph requires expertise [8],
and a GPU with enough memory. Also, the size of the super
graph grows linearly with the number of operations [31], and
is, therefore, not so suitable for including multiple operations
in the search, or for including parameters for each operation.
GA methods are preferable when a smaller GPU is available;
when the search space is complex and has many parameters
to optimize.

Bayesian Optimization [85] is an optimization method that
does not require explicit knowledge of the objective func-
tion, similar to GAs, and it is, therefore, widely used for
hyperparameter optimization. The most common approach of
BO-based methods applied to NAS is to model the validation
accuracy of CNNs as Gaussian processes [86], [87]. How-
ever, BO methods cannot effectively handle variable-length
encodings and time scales cubicallywith the number of obser-
vations [31].

Evolutionary Computation (EC) is population-based
search and is frequently used as an optimization method.
EC is based on the mechanisms of biological evolution [8].
Genetic Algorithms, Differential Evolution (DE), and Par-
ticle Swarm Optimization (PSO) are among the EC meth-
ods [8]. Some EC methods for NAS are PsoCNN [62],
and IPPSO [9], which use a PSO approach to optimize
the architecture of CNNs. DECNN [63] and evoCNN [2]
are also NAS methods, that use DE and GAs, respectively.
HGAPSO [57] is a hybrid two-level method that combines
PSO and GA to search for the optimal CNNs. One level
encodes and optimizes the parameters of the CNN, and the
other level optimizes the connections between layers. The
latter differs from our proposal since our method has the same
coding at both levels, and the difference between levels is in
the fitness computation.

1) NAS BENCHMARK DATASETS
We use seven datasets for testing our method (see Fig. 2).
The first five datasets are MNIST-Basic (MB), MNIST
with rotated digits (MRD), MNIST with random noise
as background (MRB), MNIST with background images
(MBI), and MNIST with rotated digits with background
images (MRDBI). They compose the MNIST-Variants
(MNIST-V) datasets. MNIST-V are datasets created by
Larochelle et al. [88], that are modified versions of the
original MNIST. MNIST-V datasets are considerably more
challenging than the original MNIST, since alterations make
the classification more difficult, and they have only 20% of
the training images of the original MNIST, with five times

FIGURE 2. Examples of images of the six datasets. From top to bottom,
the datasets are, Basic MNIST (MB), MNIST with random backgrounds
(MRB), MNIST with background images (MBI), MNIST with rotated digits
(MRD), MNIST with rotated digits and background images (MRDBI),
fashion MNIST, and CIFAR-10.

more test images (see Table 2). The sixth dataset is Fashion-
MNIST [89]. This dataset contains 70,000 grayscale images
of fashion products, 60,000 for training, and 10,000 for test-
ing. The images are of size 28 × 28, and are divided into
10 categories. The seventh dataset is the CIFAR-10 [90],
which has size 32 × 32 color images (3 channels) of com-
mon objects. CIFAR-10 has 50,000 training images and
10,000 test images.

TABLE 2. Overview of the datasets used to evaluate neuroevolution
methods and to assess our proposed 2LGA method.

III. THE PROPOSED METHOD
We propose a 2LGA to balance fitness fidelity and computa-
tional time. In the proposed method, a GA is applied on both
levels, and therefore each level has a population and genetic
operators. On the first level, individuals have shorter training
to reduce the search time, whereas, on the second level,
the best individuals of the 1L are instructed more precisely
by training them longer.

We used existing and widely used techniques (such as tour-
nament selection, CNN training procedures, Gaussian Muta-
tion, and integer mutation, among others) in some parts of
our method since these are used in many GAs [8]. We, there-
fore, referenced them to complete the description of our
method, and to make it reproducible. However, the contribu-
tions of our work, described in section I, are independent of
them.

126860 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

A. TWO-LEVEL GENETIC ALGORITHM
The algorithm starts by initializing the population of the
1L randomly, and then evaluating this population with a
limited number of training epochs (short training). Subse-
quently, the GA selects the parents through tournament selec-
tion, which consists of randomly sampling K individuals
from the population, and selecting the one with the best
fitness [74]–[76]. Several tournaments are implemented to
generate the next parent population. Then the GA generates
offspring through crossover and mutations. Finally, the algo-
rithm replaces part of the initial population with the offspring.
This level evolves as a common GA until the 2L is generated.

To save computation time, the 2L of the GA is evaluated
only every Q generations. When the 2L is generated for the
first time, the best N individuals of the 1L are selected, and
N becomes the population size of the 2L. Then, the fitness
of the selected individuals is computed using a larger number
of training epochs (long training). In subsequent generations,
when the 2L is evaluated, both levels perform reproduction,
as is shown in Fig. 1. Since both levels generate their off-
spring, the offspring of the 2L randomly replaces part of the
1L offspring. Every Q generation, the best m(< N ) individu-
als of the 1L become the 2L offspring. Genetic replacement
is performed on both levels, where the worst individuals are
replaced.

We place the 2L offspring in the 1L, instead of in the 2L,
for two reasons: to provide feedback to the 1L about the
2L population, and to limit the 2L to the best of the 1L.
In this way, individuals are accurately evaluated if they prove
to be good candidates in the 1L, and not because they are
offspring of good parents. In generations where the 2L is
not evaluated, between Q generations, the 1L evolves as a
common GA, with selection, reproduction, and replacement.
Evolution ends when amaximum time or amaximum number
of generations is reached as in [11], [57], [63], [83], [91], [92].

B. SEARCH SPACE AND ENCODING
It has been stated that a good search space allows search
algorithms to find good solutions easily, even for random
searches [10], [66]–[68]. Also, coding is essential for GAs
to allow exploration of the search space.

Several works have proposed ways of coding the architec-
ture of CNN networks [2], [11], [57], [62], [63], [69], [70],
[83]. Coding can be variable-length or fixed-length and can
code the entire network, or just one cell which is stacked to
build the network. In this work, we adopted a coding method
that belongs to the variable-length cell category [10], [11],
[30], [57], [62], [63], [93]. We, however, propose a novel
encoding, which will be explained in the section III-B4, that
contains genes that may not be expressed, as can happen with
real genes.

1) CNN ARCHITECTURE
In our cell coding scheme, shown in Fig. 3, the chromosome
of an individual is a variable-length list of nodes. Each node

FIGURE 3. Representation of the chromosome of an individual. The
chromosome has information about structural parameters, training
hyper-parameters, and parameters concerning each node.

has information about its operation, its joining method for
inputs, and its input connections.

Each node defines the operation that it is using, as is
shown in Table 1, ‘‘Operation’’ in ‘‘Node parameters’’. And
each node encodes the parameters for all operations, e.g.,
the activation function in convolutions, and defines its joining
method for inputs as concatenation, or sum. The joining
method for nodes with only one input, and information on
unused operations is not expressed. By using unexpressed
genes, performing crossover is direct, even if the nodes have
different operations.

Input connections of a node can be with any of the previ-
ous nodes on the chromosome list, including the input node
(shown as a green rectangle in Fig. 4). As a restriction, the
k-th node has at least one input, and a maximum of k inputs
when all the previous nodes are connected. In Fig. 4, node 2
(k=2) has 2 connections, one from node 0 (input node), and
another from node 1. The connections are expressed as arrays
of 0s and 1s, as shown in Fig. 4, in which a 1-value in the
k-th position means a connection with the k-th node. In the
example in Fig. 4, node 4 (k=4) has an array of (0, 1, 0, 1),
in which 1-values appear in indexes 1 and 3. Therefore,
the node has a connection with nodes 1 and 3.

The number of cells per block, and the number of blocks
in the CNN network are defined as follows: Usually, these
parameters are defined manually in Neuroevolution algo-
rithms, but we include them within the coding, so that the
numbers of cells and blocks are also optimized by the 2LGA.
Also, it is common to apply the first convolution, called the
stem, before building the cells.

In the same way, the number of stem filters is usually
defined manually, but we also include this number as a
parameter in the 2LGA. These parameters, the stem size,
the number of blocks and number of cells, control the size of
the network, and we therefore call them structural parameters
(see Table 1). Besides these structural parameters, we design

VOLUME 9, 2021 126861



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

FIGURE 4. Example of connection coding. The inputs are coded for each
node in an array, as is shown with red arrows. For each array coding that
the node inputs, the k-th value indicates the presence (value 1) or
absence (value 0) of connection with the k node. Node i may have a
minimum of one, and a maximum of i input connections.

each CNN network with a gradual increase in the number
of filters, as in PiramyNet [23]. We can then define the
growth rate (parameter γ ) that determines the increase in
feature maps at the output of a block, with respect to its input
feature maps. The number of output feature maps of a block
is therefore given by (3):

Fout(blocki) = γ · Fin(blocki) (3)

where, Fout(·) and Fin(·) are functions that represent the num-
ber of output and input feature maps of their argument.

Given the growth rate, each node that performs a convolu-
tion has a defined number of output feature maps (4). We also
include the growth rate parameter in the coding:

Fout(nodek) = F0 · (γ Nblocks )k/N (4)

where nodek is the k-th node, F0 is the stem size (initial
number of feature maps), Nblocks is the number of blocks of
the network, and N is the total number of operations of the
net. Note that γ Nblocks is the total growth of the network with
respect to the stem size.

With the configuration described, all convolutions have a
defined number of output feature maps, that depend on the
growth rate factor γ , the number of cells, and the number
of blocks. For the purpose of adding flexibility in defining
the shape of the network, we added a second multiplicative
factor fk in the coding for each node, which can be in the
range between 0.1 and 1.2 (see Table 1). Then, the number of
output feature maps of a node is computed using (5):

Fout(nodek) = fk · F0 · (γ Nblocks)k/N (5)

The shape of the network therefore depends on the number
of cells, the number of blocks, the stem size, the growth rate,
and each multiplier factor fk .

It is worth noting that convolution layers are composed
of a Batch-Normalization [94] and the Convolution. Also,
to join operations of different depths (feature maps), a 1 × 1
convolution is used to project tensors with fewer feature maps
to have the same feature maps as the biggest one.

2) HYPER-PARAMETERS
Since the optimal training parameters depend on each net-
work architecture, we code them in the 2LGA. Therefore,
the 2LGA will look for both the best architecture and its
training parameters, thus avoiding optimizing an architecture
for a set of training parameters. As a CNN network training
method, we adopt a schedule learning rate with warmup [95]
and linear decay, similar to [96]. The warmup implemented
increases linearly from zero to a maximum learning rate
during the first W epochs. Our GA therefore encodes the
maximum learning rate and the number of warmup epochs
as a proportion of the total epochs T. For instance, if ω
is the proportion, the number of warmup epochs is given
by (6):

W = ω · T (6)

3) MUTATION OPERATION
We implemented two types of mutations: one that mod-
ifies the number of nodes (size mutation), and another
that modifies the node parameters, (node mutation). Size
mutation operates by either adding a new node, or by remov-
ing an existing one. For node mutation, all the informa-
tion coded in the node can mutate (see Fig. 3). The node
parameters are shown in Table 1, and the parameters are
available for all operations. If the parameter to mutate is
qualitative, a random value is chosen from a set of possible
options. Mutation methods for real and integer values are
Gaussian and integer values, respectively. These rules for
mutation are also applied to structural and hyper-parameter
mutations.

Adding a new node, as is shown in Fig. 5, is performed
by choosing one node randomly from the existing ones in
the node list shown in Fig. 3. Then, the selected node is
duplicated, and the new node with mutations in its parameters
is placed just before the original one. The inputs from the
original node are transferred to those of the new node, and the
output from the new node becomes the input to the original
one. This process is shown and explained in Fig. 5. An exam-
ple of removing a node is shown in Fig. 6, for a node with
only one input and one output. The removed node is replaced
with a connection from the previous node output to the next
node input. If there are no nodes with these characteristics,
a random connection of any node is removed, as long as there
are still connections available.

4) CROSSOVER OPERATION
Two types of crossover operations between two different
individuals occur simultaneously. The first one is combining
two nodes, and the second, combining two lists of nodes.
All the nodes have the same type of information, such as
operation type, convolution parameters, andMaxpool param-
eters, as is shown in Fig. 3. Therefore, performing crossover
between two nodes of two individuals can be accomplished
by combining parameters, one by one, from the two nodes.
In this crossover, the parameters of the operations are

126862 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

FIGURE 5. Node addition scheme in the mutation process. First (a),
a node is chosen at random (red node A). Then in (b), it is duplicated,
mutated (A’), and added right before the original. The original node keeps
its outputs, while the new node acquires the inputs from the original
node.

FIGURE 6. Node removing scheme in the mutation process. As in (a),
when there are nodes available to remove (e.g. nodes B and D), one of
them is selected randomly (node B marked in red). Then, in (b), it is
removed and replaced with a connection (dotted line). When nodes are
not available to remove as in (c), a detachable connection (green line) is
selected randomly. The selected connection (dotted green line) is
removed, resulting in (d).

recombined. In this way, the node keeps the informa-
tion of unexpressed operations and the next generation
inherits that information. Therefore, the information of all
the operations evolves and is not lost by mutation or
crossover.

Although all the nodes have the same information type,
nodes in different positions, such as nodes 1 and 3 in Fig. 4,
have input coding arrays of different sizes. As a consequence,
we combine only nodes in the same relative position. For
combining two lists of nodes, they are aligned, and the nodes
in the same relative position are combined, as is shown
in Fig. 7. Since the two lists can be of different sizes, as in
the example shown in Fig. 7, the remaining nodes of the
largest list are attached to the resulting chromosome, with a
probability of 0.5.

Structural parameters and hyper-parameters from Table 1
are also combined. If the parameter has a qualitative value,
one of each is selected randomly. If the parameter is numeric,
crossover is performed according to (7) [97]:

valcross = b · val1 + (1− b) · val2 (7)

FIGURE 7. An example of crossover between chromosomes of different
lengths. The chromosomes at the left are combined node by node,
including their structural parameters and hyper-parameters. Then,
the remaining nodes of the largest chromosome are attached to
the new one, with a probability of 0.5.

where val1 and val2 are the numerical values to perform
crossover, valcross is the new value, and b is a random value
between 0 and 1. If the values are integers, valcross is rounded
to the nearest integer number.

5) FITNESS CALCULATION
For the fitness computation, each CNNmodel is trained from
scratch with the training set. At each training epoch, the error
rate is computed in the validation set (val-error-rate), and it
is saved in a history vector. Once the training ends, the min-
imum error rate of the last 30% of the epochs is used in the
fitness. In addition, training time in seconds is measured, and
a temporal component is included in determining the fitness
value. The fitness value is obtained by (8).

Fitness = valerror +
log(Ttime/Nepochs)

1000
(8)

where valerror is the error calculated in the validation set, and
Ttime is the total training time. The temporal component in
the fitness function was introduced to prevent the 2LGA from
searching for networks with large training times. The average
epoch time is used by dividing the total training time by the
number of epochs Nepochs. We use the logarithm to avoid
over-penalizing larger networks. The factor 1/1000 was used
to assign the temporal component an order of magnitude less
than the error rate.

To train CNN models, we use SGD and Adam optimizer,
with a schedule learning rate with warmup and linear decay,
as in [57], [62], [93]. Therefore, in the first W warmup
epochs, the learning rate increases linearly from zero to a
maximum value. Then, the LR decays linearly from the
maximum value to zero. Both the value of the maximum
learning rate, andW are encoded, so that they change for each
individual in the 2LGA population.

We use label smoothing of 0.1 as regularization [98] and
we do not use data augmentation (DA) in the evolution. As in
previous work, once the GA finishes, the individual with
the best fitness is trained from scratch with the training and
validation set, and with more epochs than those used for

VOLUME 9, 2021 126863



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

the fitness computation [11], [57], [83], [93]. The accuracy
achieved in the test set is reported for each experiment. In the
Fashion-MNIST experiments, we also train the winner indi-
vidual of the evolutionwith simpleDA. This DA is commonly
used for this dataset and consists of random flip (RF) and
random crop (RC) [16].

IV. EXPERIMENT DESIGN
Although the proposed method can be applied to a variety
of problems, such as regression or detection, we chose image
classification because it has beenwidely tackled by neuroevo-
lutionary algorithms [2], [10], [11], [30], [62], [83].

To evaluate our 2LGA, we performed three groups of
experiments. In the first group, we compared the per-
formance of our method with other evolutionary algo-
rithms in seven image classification problems (MNIST-V,
Fashion-MNIST, and CIFAR-10). We compared our results
to those of state-of-the-art (SOTA) studies on the same
datasets. We compared them with PsoCNN [62], IPPSO [9],
HGAPSO [57], DECNN [63], and EvoCNN [2] for
MNIST-V; with REMNET [99], DeepSwarm [100],
EvoCNN [2], PsoCNN [62], with some hand designed CNNs
for Fashion-MNIST; and with Johnson [64], SOBA [71],
CNN-GA [83], HGAPSO [57], and AE-CNN [101] for
CIFAR-10.

For the MNIST-V, Fashion-MNIST, and CIFAR-10 data-
sets, we compared our method with other Evolutionary NAS
algorithms, and for Fashion-MNIST, we also included the
best handcrafted methods. Most handcrafted methods use a
simple DA technique composed of RF and RC.We, therefore,
make two different comparisons: using RF and RC, and with-
out using any DA. For CIFAR-10, we chose the SOTA results
extracted from [8] that use the common DA techniques for
this dataset (padding 4 pixels, RC, and RF). Other methods
include more elaborated training techniques and data aug-
mentation methods [5], [30], [72], [102].

In the second group of experiments we compared our
2LGAwith two ordinary GAs (O-GAs). In this way, we could
highlight the benefits of using 2LGAs in terms of time and
accuracy. The third group of experiments consists of evaluat-
ing our search space by comparing the search using Random
Search algorithms, and GAs.

In the next section, we describe the experiments performed,
the parameters used for the 2LGA, and the training parame-
ters for each model.

A. ORDINARY GENETIC ALGORITHMS AND RANDOM
SEARCH
We compared the proposed 2LGA with two ordinary GAs.
The first O-GA gives short training to all the models, serving
as a lower bound for the 2LGA in terms of evolution time.
The second O-GA has a long training for all the models,
and therefore is a reference for the accuracy the 2LGA could
achieve. In both O-GA experiments the same search space is
used as in the 2LGA. Also, except for training epochs and
population size, all the parameters in the 2LGA and O-GAs

were the same. Additionally, we set the population size of the
O-GAs to evaluate the same number of networks as the 2LGA
during the complete evolution.

We also performed two Random Search experiments.
As our 2LGA conducts training using two different epochs,
we performed one RS for each of them; that is, one RS that
gives a short training to all the models, and another that trains
them longer. In addition, to have a fair comparison with our
GA algorithm, we ran RS experiments until they reached the
maximum evolution time of the 2LGA experiments applied
to the same dataset. RS optimizes the same fitness (8) as
the GAs.

In the RS we performed the following procedure to gener-
ate new individuals: First, we selected the number of nodes
of the cell randomly. The possible number of nodes was
between 1 and 7. Here, the upper bound 7 was selected as
the mean number of nodes from all the winners of evolutions
on the same dataset, plus one. Second, for each node, we ran-
domly selected node parameters, convolution parameters, and
maxpool parameters. We sampled the parameters uniformly
within the bounds in Table 1. Third, for each node in the
i-th position, we generated random connections, making
sure that all nodes had at least one input and one out-
put. Then, we randomly selected structural parameters and
hyper-parameters from Table 1.

The experiments for O-GAs and RS were performed on
the MRDBI dataset because it is the most difficult among the
MNIST-V sets. We ran each experiment five times, and we
reported the mean and lowest error and performed statistical
tests to compare the results as in [57], [63], [103]–[105].

B. PARAMETER SETTING
For the first level of our 2LGA, we chose genetic parameters
commonly used in previous publications [11], [83]. We set
the population size, and the number of generations to 20,
the crossover probability to 0.9, the mutation probability
to 0.1, and the percentage of elitism to 25% [30].

For the 2L, we used a population with eight individuals,
which is smaller than that for the 1L, and a percentage
of elitism of 50%. The K value for tournament selection
of the first and second levels is 25% of each population
(5 and 2, respectively). Additionally, the 2L was evaluated
every three generations (Q=3), and it was also evaluated at
the end of the evolution, before obtaining the best individual
of the population.

The search space parameters —or its boundaries— are
shown in Table 1. To initialize the population, we set the
maximum number of operations (or nodes) to five. Never-
theless, individuals can mutate and increase their size during
evolution.

Training parameters were set as follows: we used 80% of
the training set for training, and 20% for validation; the batch
size was 128; the numbers of epochs of the first and sec-
ond level were 18 and 54, respectively. The optimizer was
Adam [106], and the schedule learning rate is described in
Section III-B5. The individuals were trained with the training

126864 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

set, and the error in the validation set was used to compute
the fitness. The best individual of the evolution was retrained
with the train and validation sets for 90 epochs, and the error
rate in the test set is reported as in [2], [57], [62], [63]. For
CIFAR-10, the number of epochs were 36 and 108 for 1L and
2L, respectively, and 600 for testing. For better comparison,
we did not use label smoothing, and we removed the temporal
component of (8). All other parameters were unchanged.

V. RESULTS
In this section, we present the results of the experiments
described of our proposed 2LGA. We compare the 2LGA
results to the best of those previously published using the
same datasets. In addition, we show the results of the
comparison of our 2LGA with O-GAs and with
RS algorithms. As in previously published studies, [2], [57],
[62], [63], all the results presented in this section were
achieved in the test set, which is only used to evaluate the
evolution-winning individual. Also, all the experiments were
performed five times; we report the best and the mean values
here.

A. RESULTS ON BENCHMARK DATASET EXPERIMENTS
Weassessed our 2LGAon theMNIST-V and Fashion-MNIST
datasets. Table 3 shows the results (% error) on MNIST-V
subsets: MB, MRB, MBI, MRD, and MRDBI. As can be
seen on Table 3, our 2LGA achieved significantly better
results than those previously published. Specifically, our
2LGA achieved an improvement of 17.57% (0.13% error
reduction) on theMB subset, 24.58% (0.44% error reduction)
on the MRB subset, 33.68% (0.64% error reduction) on the
MBI subset, 36.87% (1.32% error reduction) on the MRD
subset, and 39.89% (4.2% error reduction) on the MRDBI
subset. It is worth noting that the greatest improvement,
39.89% (4.2% error reduction), was achieved on the most
difficult dataset, MRDBI.

TABLE 3. Comparison of test errors among the 2LGA and the previously
published best results in MNIST-variants (lower is better).

Table 4 shows the results on the Fashion-MNIST dataset
for our 2LGA and for those published previously. Among
the previously published results, the first five methods are

TABLE 4. Comparison of test error of the 2LGA with previously published
results in Fashion-mnist.

hand-crafted CNNs, and the next four are from evolutive
algorithms. The first two, REMNet and evoCNN, use genetic
algorithms, whereas DeepSwarm and psoCNN use Particle
Swarm Optimization algorithms. The evolutive methods do
not use any kind of DA, but the nonevolutionary approaches
do. Thus, we present results of our 2LGA without any DA in
the second column, and with RF and RC DA in the third col-
umn. Therefore, Table 4 shows methods with the same train-
ing conditions so that the results could be comparable. Other
DA techniques were not used for this comparison. As can be
seen on Table 4, our 2LGA also achieved better results than
those published previously. Specifically, our 2LGA achieved
an improvement of 12.98% (0.71% error reduction) with no
DA, and 0.87% (0.04% error reduction) with RF+RC. Also,
Table 4 shows that previously published evolutive methods
reached lower error rates than handcrafted methods if no
DA was used. Conversely if DA was used (RF+RC), previ-
ously published hand-crafted methods reached lower error
rates than evolutive methods of competitors. However, our
2LGA achieved the lowest test error.

In Table 5 we show the results from the CIFAR-10 experi-
ments. Competitors in Table 5 used common DA techniques.
As can be seen, our method achieves the SOTA results on this
dataset.

We also performed a comparison with the results from
DARTS [84], as it is one of the most relevant GD-based NAS
methods, and the implementation is available online. The
implementation of DARTS provides the training procedure,
with several additional methods for data augmentation and
training techniques including cutout [111], auxiliary-tower,
schedule-drop-path, and long training for 600 epochs [84].
We, therefore, performed two experiments to be able to com-
pare our results to those of DARTS:We (a) trained our 2LGA

VOLUME 9, 2021 126865



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

TABLE 5. Comparison of test errors (%) among the 2LGA and the
previously published best results in CIFAR-10 (lower is better).

and DARTS models with long training, i.e., 600 epochs, with
no data augmentation and no additional training techniques,
and (b) trained the 2LGA model with data augmentation,
and additional training techniques, including long training.
We finally compared the results of the two experiments (a-b)
with those computed/published regarding DARTS [84].

In experiment (a), with long training, no data augmen-
tation, and no additional training techniques, the DARTS
model achieved a 4.83% error in the test set of CIFAR-
10, while our 2LGA model reached an error of 3.95%
on the same dataset. Therefore, our 2LGA model achieves
0.88 less test error (an 18% improvement) compared to
DARTS. In experiment (b), with data augmentation and
additional training techniques, our 2LGA model achieved a
2.68% test error, while the result for DARTS was 2.76%
test error [84] (an 2.9% improvement). Furthermore, the best
results using DARTS were obtained after the search when the
researchers increased themodel size (number of cells and fea-
ture maps) [84]. One of the advantages of the 2LGA is that the
results are obtained automatically without intervention by the
researchers.

B. RESULTS ON ORDINARY GENETIC ALGORITHMS AND
RANDOM SEARCH EXPERIMENTS
Table 6 and Fig. 8 show the main results of O-GA exper-
iments, using two different numbers of training epochs.
As can be seen, the O-GA that gives the population short
training with 18 epochs (O-GA+18eps) achieves the worst
mean error, but the results are reached in the shortest time.
In contrast, the O-GA that trains the population longer with
54 epochs (O-GA+54eps), achieves the same results as our
2LGA, surpassing the state-of-the-art shown on Table 3.
But the O-GA+54eps requires 3 times more time than our
2LGA method.

TABLE 6. Comparison of 2LGA with two ordinary genetic algorithms
(O-GAs) and with two random search (RS) algorithms.

FIGURE 8. Box-plots of test error (a) and evolution time (b) for the O-GA
experiments. Each experiment was repeated 5 times on the MRDBI
dataset.

Further, statistical tests were performed with these exper-
iments using the ANOVA test to determine if differences
among test-error results and evolution times were statistically
significant. We used the Tukey HSD test [112] to verify
which results were statistically different. The ANOVA test
applied to the test-error results yielded an F-value= 8.37 and
p-value = 0.005 (<0.05), and for evolution time,
F-value= 73.6 and p-value= 1.8e-7. Thus, it was determined
that there are significant differences among group results in
both test error and evolution time.

For the Tukey HSD test, we compared the test-error and
evolution times of the experiments. The Tukey HSD results
are shown on Table 7 and Table 8 for test-error and evolu-
tion time, respectively. The Tukey HSD results in test errors
(Table 7) show that the 2LGA error is significantly different
from the error of the O-GA+18eps, but it is the same as
the error of the O-GA+54eps. Conversely, the Tukey HSD
results in evolution time (Table 8) indicate that the result
reached by the 2LGA is significantly different from that
of the O-GA+54eps, but it is not different from that of
the O-GA+18eps.

TABLE 7. Tukey hsd test results of test error with two ordinary genetic
algorithms (O-GA) and a 2LGA.

TABLE 8. Tukey hsd test results from evolution time among two O-GA
and a two-level genetic algorithm.

Therefore, the 2LGA achieves the same performance as a
GA with 54 epochs but taking only a similar time to that of
the O-GA with 18 epochs.

We also performed two RS experiments, one by using
18 epochs, and the second using 54. The experiments were

126866 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

stopped when they reached the maximum evolution time of
our 2LGA.

The results are shown on the last two rows of Table 6.
RS achieved a SOTA on the MRDBI dataset, by achieving
an improvement of 33.1% (3.5 error reduction) with respect
to the best previously published result on the HGAPSO
(see Table 3) when models were trained with 54 epochs.
A 22.8% improvement (2.4 error reduction) was reached
when the model was trained with 18 epochs. Since RS is
one of the simplest search algorithms, the improvement
achieved is primarily due to the proposed search space.
Also, RS+54 gets better results than the O-GA+18 epochs.
This suggests that precise training is a key to achieving good
results, and also supports the hypothesis that RS is a diffi-
cult baseline to overcome, despite being one of the simplest
search algorithms [10], [66]–[68]. On Table 6, we show the
mean fitness of the winners for each method. The fitness is
greater than that estimated with the mean test error because,
when testing, models are customarily trained using both
the training and validation partition of the data sets, and
with more epochs (90 epochs) [11], [57], [83], [93]. Also,
methods with short training (O-GA+18 and RS+18) tend to
have greater validation error. As expected, O-GA+18 out-
performs RS+18, and O-GA+54 (and 2LGA) outperforms
RS+54 since GA methods are designed to optimize the
fitness.

C. ANALYSIS OF THE SELECTION OF THE BEST
INDIVIDUALS
In this section, we compare the rankings made by the 2LGA
and that achieved by an O-GA with long training of all indi-
viduals, on the same population. For this purpose, we gave
a long training to the individuals for each generation of the
1L that had been given short training during the evolution
of the 2LGA. Then, we computed Kendall’s rank correla-
tion coefficient [113], as in [67], [114], between the ranking
of the short-trained 1L and the ranking of the long-trained 1L.
Fig. 9 shows how the ranking changes when using our
proposed 2LGA instead of using an O-GA with long
training.

In Fig. 9 lines that connect points indicate the change in the
position of the individual after long training. For example,
the individual that is in the first position when it is given
short training becomes the eighth individual when it is trained
longer, while the best long-trained individual is the seventh
short-trained individual. We repeated this computation con-
sidering only the N best individuals of the 1L, i.e., those that
form the 2L. An example is shown in Fig. 10, where the best
8 of the 1L are rearranged in the 2L. In addition, we computed
the percentage of individuals that were correctly selected to
form the 2L (green connections in Fig. 9). We computed the
average of these indices throughout all the generations in
which the 2L is evaluated. This experiment was repeated five
times, using five independent runs of 2LGA.

The results are presented on Table 9 and show that both
the correlation among the rankings with short and long

FIGURE 9. Change in the ranking of the entire 1L population when it
receives short training (left column) and when given long training (right
column). In this example, five of the 8 top individuals (62.5%) are
selected correctly (green lines) to compose the 2L.

FIGURE 10. Change in the ranking of the top-8 of 1L population when it
receives short training (left column) and when given long training
(right column).

TABLE 9. Results of the selection of best-individuals. each value is the
average of all evaluated generations, and of 5 independent evolutions.

training, and the percentage of well-classified top-N individ-
uals are positives. This explains why the 18 epoch O-GA
can find good solutions. However, the ranking between the
top-N of the short-trained 1L and the long-trained one is
close to zero, which, as in [114], indicates that a short
training is not appropriate for ranking networks of similar
performance.

These results explain the effectiveness of the 2LGA
which takes advantage of the positive correlation between
long and short training to select a part of the best net-
works. Then, the low correlation at the top of the 1L is
fixed by re-training and rearranging the top-N individuals.

VOLUME 9, 2021 126867



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

Thanks to this, the 2LGA can significantly outperform a
short-training O-GA.

VI. ANALYSIS
The proposed search space is large and flexible, allowing
CNNs to have any kind of architecture (skip connections,
shape, and size), and to encode the internal parameters of each
operation. These features make the search space sparser, and
thus the sampled architectures tend to be different. This spar-
sity is beneficial for the search when evaluating the models
with few epochs. According to the work reported in [114],
the more different the architectures are, the fewer epochs are
needed to rank them. Therefore, when evaluating the search
space with only a few epochs, as in O-GA+18, and RS+18,
shown on Table 6, the results are included in the state-of-the-
art. However, as evolution progresses, the models tend to be
more similar. Therefore, evaluating the models for a longer
time benefits the search, achieving the best results as in 2LGA
and O-GA+54 on Table 6.
On the other hand, the proposed 2LGA takes advantage of

both a precise and an approximated training. First, the 2LGA
exploits the speed of short training taking an evolution time
similar to that of a common GA with short training. Second,
the 2LGA exploits long training to improve ranking fidelity.
As a result, the 2LGA achieves the same performance as if all
models were trained precisely but in a significantly shorter
time. The 2LGA achieves better results than an O-GA with
short training because the difference in the ranking between
short-trained networks and fully trained ones is considerably
large. The 2LGA achieves the same results as the O-GA with
long training because the O-GA trains unpromising models
unnecessarily, and 2LGA with long training trains only the
most promising ones.

Using the 2LGA reduces the adverse effects of using fit-
ness approximation techniques, such as short training. The
method, therefore, allows the GA to find architectures that
achieve a lower test error with a small increase in search
time. Furthermore, using a second level is complementary
and compatible with other GAs that use fitness approxima-
tion techniques, so any GA that incorporates this method
would improve its performance, sacrificing only a fraction of
time.

We selected one CNN architecture that achieved the best
results in test error to show in this section. The selected
architecture is the best of the experiments performed on the
MRDBI dataset which is the same dataset used for compar-
isons with ordinary GA, and with Random Search. The best
architecture found by the 2LGA for this dataset, achieved
a test error of 6.33%, with an evolution time of 6.9 hrs.
By contrast, the best architecture found by the common GA
that only uses short training achieved 7.12% test error for
the same dataset, and its evolution took 6.3 hours. Thus,
the 2LGA achieved 1.21% (an improvement of 17%) less
test error in just 0.6 of an additional hour. On the other hand,
the best architecture found by the common GA that only uses
long training, achieved 6.45% test error, and its evolution

FIGURE 11. Best architecture found by the 2LGA for the MRDBI dataset.

took 21.2 hours, i.e., the 2LGA took 14.3 fewer hours, and
achieved 0.12% less test error (an improvement of 1.9%). The
best architecture found by the 2LGA is shown in Fig. 11.
This figure contains the cell structure and the global structure.
This architecture is composed of 2 blocks, 2 cells per block,
with each block having 4 convolutions.

Regarding the time and fidelity balance, it is important
to explain that the 2LGA combines two types of training:
short training and long training. Each training type has its
fidelity, and its training time, both defined by the num-
ber of epochs. The greater the number of training epochs,
the greater the fidelity, but the training time is also longer. If a
GA uses only short training, as is common in the previous
research [2], [30], [62]–[64], the low fidelity of the fit-
ness will affect the overall performance of the GA. There-
fore, the GA will have a higher test error than if it had
used long training. Experiencing greater error when using
short training occurs because the GA cannot rank individ-
uals reliably according to their fitness. This is the trade-off
between computational time and fitness fidelity. The 2LGA
introduces long training to reduce the adverse consequences
caused by the low fidelity of short training. Therefore,
the balance is at a global level, at the GA level. Although
the evolution time increases by just a fraction of the total
time, the GA finds architectures that achieve lower test
error.

VII. CONCLUSION
In this work we proposed a novel 2LGA for addressing the
fidelity-time trade-off problem for the fitness computation in
CNNs. In the 2LGA, the fitness is computed for all individu-
als with lower fidelity to save time. Then, the fitness for the
best individuals that compose the second level is computed
with higher fidelity. Since only a fraction of the population
composes the second level, there is just a small increase in
evolution time. However, as most of the best individuals are in
the second level, the fitness is computed with high fidelity of
only promising individuals. Therefore, there is a considerable
gain in accuracy.

Our proposal includes a novel search space that reduces
the parameter restrictions, and a codification that allows

126868 VOLUME 9, 2021



D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

the 2LGA to perform any crossover operation among CNN
architectures to generate new individuals for the next gener-
ation. This search space allows CNN architectures to have
any size, shape, and skip-connections among nodes. Besides
the structural components, the search space is composed
of nodes, which can have any operation, such as convolu-
tion or maxpooling, and each operation has its own param-
eters (kernel size, activation function, etc.). In addition,
we designed a variable-length encoding scheme with muta-
tion and crossover on this complex search space. To improve
the crossover operation among nodes, we encoded the param-
eters of all possible operations on each node, but only one is
expressed, as in real genes. In this way, performing crossover
between individuals is direct, as all the individuals have the
same coded parameters.

The application of the proposed 2LGA to the pattern
recognition problems of the MNIST-V dataset, and the
Fashion-MNIST dataset, achieved significantly better results
than all those that had been published previously. Our 2LGA
achieved an improvement on the error reduction relative to
previously published results of: 17.57% on the MB subset,
24.58% on the MRB subset, 33.68% on the MBI subset,
36.87% on the MRD subset, and 39.89% on the MRDBI
subset. It is worth noting that the highest improvement in
error reduction, of 39.89%, was achieved on the most dif-
ficult dataset, the MRDBI. On the Fashion-MNIST dataset
our 2LGA resulted in an improvement in error reduction
of 12.98% with no DA, and 0.87% with RF+RC DA.

We also show that 2LGA outperforms O-GAs on the
MNIST-Variants dataset with short training and achieves the
same results as those of O-GAs with long training, but while
reducing the evolution time by nearly 66%.

To evaluate the search space, we carried out experiments
with one of the simplest search algorithms, RS. The results
showed that our search space helped the RS method to out-
perform even the best results published previously; those
that used more sophisticated search algorithms than RS. This
methodology may be extended to other areas besides image
classification.

Finally, the designed 2LGA method receives a dataset as
input and returns a fully trained CNN. To use this system,
the user does not need to have profound DL knowledge, or to
expend effort in tuning parameters. Therefore, the system
could be useful for DL researchers in finding competitive
CNNs with little effort, and it could help researchers without
DL knowledge from other fields to incorporate CNN models
in their research.

REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:

A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Evolving deep convolutional
neural networks for image classification,’’ IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 394–407, Apr. 2020.

[3] G. Zhong, W. Jiao, W. Gao, and K. Huang, ‘‘Automatic design of deep
networks with neural blocks,’’ Cognit. Comput., vol. 12, no. 1, pp. 1–12,
Jan. 2020.

[4] D. H. Hubel and T. N.Wiesel, ‘‘Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,’’ J. Physiol., vol. 160,
no. 1, pp. 106–154, 1962.

[5] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, and Y. Xu, ‘‘EENA: Efficient
evolution of neural architecture,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Oct. 2019, pp. 1891–1899.

[6] A. Baldominos, Y. Saez, and P. Isasi, ‘‘On the automated, evolutionary
design of neural networks: Past, present, and future,’’ Neural Comput.
Appl., vol. 32, pp. 519–545, Mar. 2019.

[7] S. Litzinger, A. Klos, and W. Schiffmann, ‘‘Compute-efficient neural
network architecture optimization by a genetic algorithm,’’ in Proc. 28th
Int. Conf. Artif. Neural Netw. Munich, Germany: Springer, Sep. 2019,
pp. 387–392, doi: 10.1007/978-3-030-30484-3_32.

[8] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. Chen Tan, ‘‘A survey
on evolutionary neural architecture search,’’ 2020, arXiv:2008.10937.
[Online]. Available: http://arxiv.org/abs/2008.10937

[9] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2018,
pp. 1–8.

[10] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
‘‘Hierarchical representations for efficient architecture search,’’ in Proc.
6th Int. Conf. Learn. Represent. (ICLR). Vancouver, BC, Canada: Open-
Review.net, Apr./May 2018. [Online]. Available: https://openreview.net/
forum?id=BJQRKzbA- and https://dblp.org/rec/conf/iclr/LiuSVFK18.bib

[11] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Automatically evolving
CNN architectures based on blocks,’’ 2018, arXiv:1810.11875. [Online].
Available: http://arxiv.org/abs/1810.11875

[12] K. Fukushima, ‘‘Neural network model for a mechanism of pattern recog-
nition unaffected by shift in position-Neocognitron,’’ IEICE Tech. Rep.,
A, vol. 62, no. 10, pp. 658–665, 1979.

[13] K. Fukushima, ‘‘Neocognitron: A hierarchical neural network capable
of visual pattern recognition,’’ Neural Netw., vol. 1, no. 2, pp. 119–130,
1988.

[14] K. Fukushima, S. Miyake, and T. Ito, ‘‘Neocognitron: A neural network
model for a mechanism of visual pattern recognition,’’ IEEE Trans. Syst.,
Man, Cybern., vol. SMC-13, no. 5, pp. 826–834, Sep. 1983.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, ‘‘ImageNet large scale visual recognition challenge,’’ Int.
J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[19] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, ‘‘DeepFace: Closing the
gap to human-level performance in face verification,’’ inProc. IEEEConf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1701–1708.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[23] D. Han, J. Kim, and J. Kim, ‘‘Deep pyramidal residual networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6307–6315.

[24] C. A. Perez, C. A. Salinas, P. A. Estevez, and P. M. Valenzuela, ‘‘Genetic
design of biologically inspired receptive fields for neural pattern recog-
nition,’’ IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 33, no. 2,
pp. 258–270, Apr. 2003.

[25] B. A. Olshausen and D. J. Field, ‘‘Sparse coding with an overcomplete
basis set: A strategy employed by V1?’’ Vis. Res., vol. 37, no. 23,
pp. 3311–3325, 1997.

VOLUME 9, 2021 126869

http://dx.doi.org/10.1007/978-3-030-30484-3_32


D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

[26] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, ‘‘Designing
neural networks through neuroevolution,’’ Nature Mach. Intell., vol. 1,
pp. 24–35, Jan. 2019.

[27] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search:
A survey,’’ J. Mach. Learn. Res., vol. 20, p. 55, Jan. 2019. [Online].
Available: http://jmlr.org/papers/v20/18-598.html

[28] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[29] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
and A. Kurakin, ‘‘Large-scale evolution of image classifiers,’’ in Proc.
34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 2902–2911.

[30] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ inProc. AAAI Conf. Artif. Intell.,
Jul. 2019, vol. 33, no. 1, pp. 4780–4789.

[31] X. He, K. Zhao, and X. Chu, ‘‘AutoML: A survey of the state-of-the-art,’’
Knowl.-Based Syst., vol. 212, Jan. 2021, Art. no. 106622.

[32] R. Tsukada, L. Zou, and H. Iba, Evolving Deep Neural Networks for
X-Ray Based Detection of Dangerous Objects. Singapore: Springer, 2020,
pp. 325–355.

[33] M. B. Calisto and S. K. Lai-Yuen, ‘‘AdaEn-Net: An ensemble of adaptive
2D–3D fully convolutional networks for medical image segmentation,’’
Neural Netw., vol. 126, pp. 76–94, Jun. 2020.

[34] G. Li, W. Zhou, W. Chen, F. Sun, Y. Fu, F. Gong, and H. Zhang, ‘‘Study
on the detection of pulmonary nodules in CT images based on deep
learning,’’ IEEE Access, vol. 8, pp. 67300–67309, 2020.

[35] T. Hassanzadeh, D. Essam, and R. Sarker, ‘‘An evolutionary DenseRes
deep convolutional neural network for medical image segmentation,’’
IEEE Access, vol. 8, pp. 212298–212314, 2020.

[36] R. G. Babukarthik, V. A. K. Adiga, G. Sambasivam, D. Chandramo-
han, and J. Amudhavel, ‘‘Prediction of COVID-19 using genetic deep
learning convolutional neural network (GDCNN),’’ IEEE Access, vol. 8,
pp. 177647–177666, 2020.

[37] T. Tanaka, T. Moriya, T. Shinozaki, S. Watanabe, T. Hori, and K. Duh,
‘‘Automated structure discovery and parameter tuning of neural network
languagemodel based on evolution strategy,’’ inProc. IEEE Spoken Lang.
Technol. Workshop (SLT), Dec. 2016, pp. 665–671.

[38] V. Passricha and R. K. Aggarwal, ‘‘PSO-based optimized CNN
for Hindi ASR,’’ Int. J. Speech Technol., vol. 22, pp. 1123–1133,
Oct. 2019.

[39] T. Shinozaki and S. Watanabe, ‘‘Structure discovery of deep neural net-
work based on evolutionary algorithms,’’ inProc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Apr. 2015, pp. 4979–4983.

[40] Z. Gao, Y. Li, Y. Yang, X. Wang, N. Dong, and H.-D. Chiang,
‘‘A GPSO-optimized convolutional neural networks for EEG-based emo-
tion recognition,’’ Neurocomputing, vol. 380, pp. 225–235, Mar. 2020.

[41] C.-C. Chung, W.-T. Lin, R. Zhang, K.-W. Liang, and P.-C. Chang,
‘‘Emotion estimation by joint facial expression and speech tonality using
evolutionary deep learning structures,’’ in Proc. IEEE 8th Global Conf.
Consum. Electron. (GCCE), Oct. 2019, pp. 221–224.

[42] A. Rajagopal, G. P. Joshi, A. Ramachandran, R. T. Subhalakshmi,
M. Khari, S. Jha, K. Shankar, and J. You, ‘‘A deep learning model based
on multi-objective particle swarm optimization for scene classification
in unmanned aerial vehicles,’’ IEEE Access, vol. 8, pp. 135383–135393,
2020.

[43] L. M. Zhang, ‘‘Genetic deep neural networks using different activation
functions for financial data mining,’’ in Proc. IEEE Int. Conf. Big Data
(Big Data), Oct. 2015, pp. 2849–2851.

[44] A. ElSaid, S. Benson, S. Patwardhan, D. Stadem, and T. Desell,
‘‘Evolving recurrent neural networks for time series data prediction of
coal plant parameters,’’ in Applications of Evolutionary Computation,
P. Kaufmann and P. A. Castillo, Eds. Cham, Switzerland: Springer, 2019,
pp. 488–503.

[45] Y.-Y. Hong, J. V. Taylar, and A. C. Fajardo, ‘‘Locational marginal
price forecasting using deep learning network optimized by mapping-
based genetic algorithm,’’ IEEE Access, vol. 8, pp. 91975–91988,
2020.

[46] H. Xie, L. Zhang, and C. P. Lim, ‘‘Evolving CNN-LSTM models for
time series prediction using enhanced grey wolf optimizer,’’ IEEE Access,
vol. 8, pp. 161519–161541, 2020.

[47] S. S. Mostafa, F. Mendonca, A. G. Ravelo-Garcia, G. Julia-Serda, and
F. Morgado-Dias, ‘‘Multi-objective hyperparameter optimization of con-
volutional neural network for obstructive sleep apnea detection,’’ IEEE
Access, vol. 8, pp. 129586–129599, 2020.

[48] Y. Zhang, P. Li, and X. Wang, ‘‘Intrusion detection for IoT based on
improved genetic algorithm and deep belief network,’’ IEEE Access,
vol. 7, pp. 31711–31722, 2019.

[49] S. A. Ali, B. Raza, A. K. Malik, A. R. Shahid, M. Faheem, H. Alquhayz,
and Y. J. Kumar, ‘‘An optimally configured and improved deep belief
network (OCI-DBN) approach for heart disease prediction based on
Ruzzo–Tompa and stacked genetic algorithm,’’ IEEE Access, vol. 8,
pp. 65947–65958, 2020.

[50] H. Chen, F. Miao, and X. Shen, ‘‘Hyperspectral remote sensing image
classification with CNN based on quantum genetic-optimized sparse
representation,’’ IEEE Access, vol. 8, pp. 99900–99909, 2020.

[51] W. Jian, Y. Zhou, and H. Liu, ‘‘Densely connected convolutional network
optimized by genetic algorithm for fingerprint liveness detection,’’ IEEE
Access, vol. 9, pp. 2229–2243, 2021.

[52] G. F. Miller, P. M. Todd, and S. U. Hegde, ‘‘Designing neural networks
using genetic algorithms,’’ in Proc. 3rd Int. Conf. Genetic Algorithms,
vol. 89, 1989, pp. 379–384.

[53] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, ‘‘A hypercube-based
encoding for evolving large-scale neural networks,’’ Artif. Life, vol. 15,
no. 2, pp. 185–212, Apr. 2009.

[54] C. A. Perez, C. A. Salinas, and P. Estevez, ‘‘Designing biologically
inspired receptive fields for neural pattern recognition technology,’’
in Proc. IEEE Int. Conf. Syst., Man Cybern. e-Syst. e-Man Cybern.
Cyberspace, vol. 1, Oct. 2001, pp. 58–63.

[55] C. A. Perez and C. Salinas, ‘‘Genetic selection of biologically inspired
receptive fields for computational vision,’’ inProc. 1st Joint BMES/EMBS
Conf. IEEE Eng. Med. Biol. 21st Annu. Conf. Annu. Fall Meeting Biomed.
Eng. Soc., vol. 2, Oct. 1999, p. 924.

[56] K. Fukushima and S. Miyake, ‘‘Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,’’ in Com-
petition and Cooperation in Neural Nets, S.-I. Amari and M. A. Arbib,
Eds. Berlin, Germany: Springer, 1982, pp. 267–285.

[57] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘A hybrid ga-pso method for
evolving architecture and short connections of deep convolutional neural
networks,’’ in Proc. 16th Pacific Rim Int. Conf. Artif. Intell. Cuvu, Fiji:
Springer, Aug. 2019, pp. 650–663, doi: 10.1007/978-3-030-29894-4_52.

[58] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, ‘‘Fast Bayesian
optimization of machine learning hyperparameters on large datasets,’’ in
Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, A. Singh and J. Zhu,
Eds. Fort Lauderdale, FL, USA: PMLR, Apr. 2017, pp. 528–536.

[59] P. Chrabaszcz, I. Loshchilov, and F. Hutter, ‘‘A downsampled vari-
ant of ImageNet as an alternative to the CIFAR datasets,’’ 2017,
arXiv:1707.08819. [Online]. Available: http://arxiv.org/abs/1707.08819

[60] D. Zhou, X. Zhou, W. Zhang, C. C. Loy, S. Yi, X. Zhang, and
W. Ouyang, ‘‘EcoNAS: Finding proxies for economical neural architec-
ture search,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11393–11401.

[61] A. Zela, A. Klein, S. Falkner, and F. Hutter, ‘‘Towards
automated deep learning: Efficient joint neural architecture and
hyperparameter search,’’ 2018, arXiv:1807.06906. [Online]. Available:
http://arxiv.org/abs/1807.06906

[62] F. E. Fernandes Junior and G. G. Yen, ‘‘Particle swarm optimization
of deep neural networks architectures for image classification,’’ Swarm
Evol. Comput., vol. 49, pp. 62–74, Sep. 2019.

[63] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘A hybrid differential evolution
approach to designing deep convolutional neural networks for image
classification,’’ in Proc. Australas. Joint Conf. Artif. Intell., vol. 11320,
2018, pp. 237–250.

[64] F. Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, and
R. Nanculef, ‘‘Automating configuration of convolutional neural net-
work hyperparameters using genetic algorithm,’’ IEEE Access, vol. 8,
pp. 156139–156152, 2020.

[65] D. R. So, Q. V. Le, and C. Liang, ‘‘The evolved transformer,’’ in Proc.
36th Int. Conf. Mach. Learn. (ICML) (Proceedings of Machine Learning
Research), vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds. Long Beach,
CA, USA: PMLR, Jun. 2019, pp. 5877–5886.

[66] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[67] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, ‘‘Evaluating
the search phase of neural architecture search,’’ 2019, arXiv:1902.08142.
[Online]. Available: http://arxiv.org/abs/1902.08142

126870 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-030-29894-4_52


D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

[68] L. Li and A. Talwalkar, ‘‘Random search and reproducibility for neu-
ral architecture search,’’ in Proc. 35th Uncertainty Artif. Intell. Conf.,
vol. 115, Jul. 2020, pp. 367–377.

[69] L. Xie and A. Yuille, ‘‘Genetic CNN,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1388–1397.

[70] D. Kang and C. W. Ahn, ‘‘Efficient neural network space with genetic
search,’’ in Bio-Inspired Computing: Theories and Applications, L. Pan,
J. Liang, and B. Qu, Eds. Singapore: Springer, 2020, pp. 638–646.

[71] B. Fielding and L. Zhang, ‘‘Evolving image classification architec-
tures with enhanced particle swarm optimisation,’’ IEEE Access, vol. 6,
pp. 68560–68575, 2018.

[72] A. A. Ahmed and S. M. Darwish, ‘‘A meta-heuristic automatic CNN
architecture design approach based on ensemble learning,’’ IEEE Access,
vol. 9, pp. 16975–16987, 2021.

[73] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, ‘‘Deep
networks with stochastic depth,’’ in Computer Vision–(ECCV), B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer,
2016, pp. 646–661.

[74] M. A. A. Albadr, S. Tiun, M. Ayob, F. T. AL-Dhief, K. Omar,
and F. A. Hamzah, ‘‘Optimised genetic algorithm-extreme learning
machine approach for automatic COVID-19 detection,’’ PLoS ONE,
vol. 15, no. 12, Dec. 2020, Art. no. e0242899, doi: 10.1371/journal.
pone.0242899.

[75] M. A. Albadr, S. Tiun, M. Ayob, and F. AL-Dhief, ‘‘Genetic algo-
rithm based on natural selection theory for optimization problems,’’
Symmetry, vol. 12, no. 11, p. 1758, Oct. 2020. [Online]. Available:
https://www.mdpi.com/2073-8994/12/11/1758

[76] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 2020.

[77] X. Yao, ‘‘Evolving artificial neural networks,’’ Proc. IEEE, vol. 87, no. 9,
pp. 1423–1447, Sep. 1999.

[78] S. Ruder, ‘‘An overview of gradient descent optimization algo-
rithms,’’ 2016, arXiv:1609.04747. [Online]. Available: http://arxiv.
org/abs/1609.04747

[79] S. Hochreiter, ‘‘Untersuchungen zu dynamischen neuronalen netzen,’’
Ph.D. dissertation, Institut für Informatik, Technische Universität,
Munich, Germany, 1991.

[80] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[81] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforce-
ment learning,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR).
Toulon, France: OpenReview.net, Apr. 2017. [Online]. Available: https://
openreview.net/forum?id=r1Ue8Hcxg and https://dblp.org/rec/conf/iclr/
ZophL17.bib

[82] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural net-
work architectures using reinforcement learning,’’ in Proc. 5th Int. Conf.
Learn. Represent. (ICLR). Toulon, France: OpenReview.net, Apr. 2017.
[Online]. Available: https://openreview.net/forum?id=S1c2cvqee and
https://openreview.net/forum?id=S1c2cvqee

[83] Y. Sun, B. Xue,M. Zhang, G. G. Yen, and J. Lv, ‘‘Automatically designing
CNN architectures using the genetic algorithm for image classification,’’
IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, Sep. 2020.

[84] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable archi-
tecture search,’’ in Proc. 7th Int. Conf. Learn. Represent. (ICLR).
New Orleans, LA, USA: OpenReview.net, May 2019. [Online]. Avail-
able: https://openreview.net/forum?id=S1eYHoC5FX and https://dblp.
org/rec/conf/iclr/LiuSY19.bib

[85] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
‘‘Taking the human out of the loop: A review of Bayesian optimization,’’
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[86] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and
F. Hutter, ‘‘Towards automatically-tuned neural networks,’’ in Proc.
Workshop Autom. Mach. Learn., 2016, pp. 58–65.

[87] M. Wistuba, ‘‘Bayesian optimization combined with successive halv-
ing for neural network architecture optimization,’’ in Proc. AutoML@
PKDD/ECML, 2017, pp. 2–11.

[88] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, ‘‘Exploring
strategies for training deep neural networks,’’ J. Mach. Learn. Res.,
vol. 10, no. 1, pp. 1–40, Jan. 2009.

[89] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747. [Online]. Available: http://arxiv.org/abs/1708.07747

[90] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of
features from tiny images,’’ MIT NYU, Toronto, ON, Canada,
Tech. Rep. TR-2009, 2009. [Online]. Available: Link available:
https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

[91] P. A. Estévez, C. A. Perez, and E. Goles, ‘‘Genetic input selection to a
neural classifier for defect classification of radiata pine boards,’’ Forest
Products J., vol. 53, nos. 7–8, pp. 87–94, 2003.

[92] C. Perez, L. Castillo, L. Cament, P. Estevez, and C. Held, ‘‘Genetic
optimisation of illumination compensation methods in cascade for face
recognition,’’ Electron. Lett., vol. 46, no. 7, pp. 498–500, 2010.

[93] M. Suganuma, S. Shirakawa, and T. Nagao, ‘‘A genetic programming
approach to designing convolutional neural network architectures,’’ in
Proc. 27th Int. Joint Conf. Artif. Intell. (IJCAI), Jul. 2018, pp. 5369–5373.

[94] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. 32nd
Int. Conf. Mach. Learn. (Proceedings of Machine Learning Research),
vol. 37, F. Bach and D. Blei, Eds. Lille, France: PMLR, Jul. 2015,
pp. 448–456.

[95] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, ‘‘Accurate, large minibatch SGD: Train-
ing ImageNet in 1 hour,’’ 2017, arXiv:1706.02677. [Online]. Available:
http://arxiv.org/abs/1706.02677

[96] L. N. Smith and N. Topin, ‘‘Super-convergence: Very fast training of
neural networks using large learning rates,’’ Proc. SPIE, vol. 11006,
pp. 369–386, May 2019.

[97] S. Picek, D. Jakobovic, andM. Golub, ‘‘On the recombination operator in
the real-coded genetic algorithms,’’ in Proc. IEEE Congr. Evol. Comput.,
Jun. 2013, pp. 3103–3110.

[98] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ inProc. IEEEConf. Com-
put. Vis. Pattern Recognit. (CVPR), Los Alamitos, CA, USA, Jun. 2016,
pp. 2818–2826.

[99] G. Kyriakides andK.Margaritis, ‘‘Regularized evolution formacro neural
architecture search,’’ inProc. 16th IFIPWG12.5 Int. Conf. AIAI, vol. 584.
Neos Marmaras, Greece: Springer, 2020, pp. 111–122, doi: 10.1007/978-
3-030-49186-4_10.

[100] E. Byla and W. Pang, ‘‘Deepswarm: Optimising convolutional neural
networks using swarm intelligence,’’ in Advances in Intelligent Sys-
tems and Computing, vol. 1043. Cham, Switzerland: Springer, 2020,
pp. 119–130, doi: 10.1007/978-3-030-29933-0_10.

[101] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Completely automated CNN
architecture design based on blocks,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 4, pp. 1242–1254, Apr. 2020.

[102] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman,
and W. Banzhaf, ‘‘NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,’’ inProc. Genetic Evol. Comput. Conf., 2019,
pp. 419–427.

[103] J. Tapia, C. Perez, and K. Bowyer, ‘‘Gender classification from the same
iris code used for recognition,’’ IEEE Trans. Inf. Forensics Security,
vol. 11, no. 8, pp. 1760–1770, Aug. 2016.

[104] K. Chang, K. Bowyer, and P. Flynn, ‘‘An evaluation of multimodal
2D+3D face biometrics,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 4, pp. 619–624, Apr. 2005.

[105] D. P. Benalcazar, J. E. Zambrano, D. Bastias, C. A. Perez, and
K. W. Bowyer, ‘‘A 3D iris scanner from a single image using convolu-
tional neural networks,’’ IEEE Access, vol. 8, pp. 98584–98599, 2020.

[106] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and
Y. LeCun, Eds. San Diego, CA, USA, May 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980 and https://dblp.org/rec/journals/corr/
KingmaB14.bib

[107] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[108] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ in Proc.
Brit. Mach. Vis. Conf. (BMVC), Sep. 2016, p. 87.

[109] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, ‘‘Random erasing
data augmentation,’’ in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020,
pp. 13001–13008.

[110] A. Nøkland and L. H. Eidnes, ‘‘Training neural networks with local error
signals,’’ in Proc. 36th Int. Conf. Mach. Learn. (Proceedings of Machine
Learning Research), vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds.
Jun. 2019, pp. 4839–4850.

VOLUME 9, 2021 126871

http://dx.doi.org/10.1371/journal.pone.0242899
http://dx.doi.org/10.1371/journal.pone.0242899
http://dx.doi.org/10.1007/978-3-030-49186-4_10
http://dx.doi.org/10.1007/978-3-030-49186-4_10
http://dx.doi.org/10.1007/978-3-030-29933-0_10


D. A. Montecino et al.: Two-Level GA for Evolving CNNs for Pattern Recognition

[111] T. Devries and G. W. Taylor, ‘‘Improved regularization of convolutional
neural networks with cutout,’’ CoRR, vol. abs/1708.04552, 2017.

[112] H. Abdi and L. J. Williams, ‘‘Tukey’s honestly significant difference
(HSD) test,’’ Encyclopedia Res. Des., vol. 3, no. 1, pp. 583–585, 2010.

[113] M. G. Kendall, ‘‘A newmeasure of rank correlation,’’ Biometrika, vol. 30,
pp. 81–93, Jun. 1938.

[114] G. Kyriakides and K. Margaritis, ‘‘The effect of reduced training in
neural architecture search,’’ Neural Comput. Appl., vol. 32, no. 23,
pp. 17321–17332, Dec. 2020.

DANIEL A. MONTECINO was born in Santiago,
Chile, in 1994. He received the B.S. degree (Hons.)
in electrical engineering from the Universidad de
Chile, Santiago, in 2016, where he is currently
pursuing themaster’s degree in electrical engineer-
ing. He is also working as a Research Assistant
with the Department of Electrical Engineering,
Universidad de Chile. His current research inter-
ests include image processing, genetic algorithm,
machine learning, and deep learning.

CLAUDIO A. PEREZ (Senior Member, IEEE)
received the B.S. degree in electrical engineering,
in 1980, the P.E. Title in electrical engineering
and M.S. degree in biomedical engineering from
Universidad de Chile, both in 1985, and the Ph.D.
degree from Ohio State University, in 1991. He
was a Fulbright Student with the Ohio State Uni-
versity, where he received a Presidential Fellow-
ship, in 1990. Hewas a Visiting Scholar with UC at
Berkeley, in 2002, through the Alumni Initiatives

Award Program from Fulbright Foundation. From 2003 to 2006, he was
the Department Chairman and the Director of the Office of Academic and
Research Affairs at the School of Engineering, Universidad de Chile, from
2014 to 2018. He is currently a Professor with the Department of Electrical
Engineering, Universidad de Chile. His research interests include biometrics,
neural network structures, genetic algorithms, and pattern recognition. He is
a Senior Member of the IEEE Systems, Man and Cybernetics and the IEEE-
CIS societies.

KEVIN W. BOWYER (Life Fellow, IEEE) is
currently the Schubmehl-Prein Family Professor
with the Department of Computer Science and
Engineering, University of Notre Dame, and also
works as the Director of the College of Engi-
neering Summer International Programs. His main
research interests include computer vision and
pattern recognition, including biometrics, data
mining, object recognition, and medical image
analysis. He is a fellow of the IEEE, ‘‘for contri-

butions to algorithms for recognizing objects in images’’ and a fellow of
the IAPR, ‘‘for contributions to computer vision, pattern recognition and
biometrics.’’ He received an IEEEComputer Society Technical Achievement
Award ‘‘for pioneering contributions to the science and engineering of bio-
metrics,’’ and received the inaugural IEEE Biometrics Council Meritorious
Service Award. He is serving as the Inaugural Editor-in-Chief for the IEEE
TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE (T-BIOM).

126872 VOLUME 9, 2021


