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MODELAMIENTO DE LOS PROCESOS PRODUCTIVOS SOLARES DE PEQUEÑA 
ESCALA Y SU INTEGRACIÓN EN EL SISTEMA DE GESTIÓN DE ENERGÍA PARA UNA 

MICRO-RED 
 

El uso productivo de la energía, especialmente de fuentes de energías limpias, mejora el desarrollo 
socioeconómico de las comunidades urbanas y rurales. Por lo tanto, la energía solar puede incluirse 
en los procesos productivos tradicionales realizados por las comunidades locales. Así, este nuevo 
tipo de procesos se definen como pequeños procesos productivos solares (SPSPs). El consumo 
eléctrico de los SPSP puede estar influenciado por variables climáticas externas. Además, los 
SPSPs suelen tener cargas dependientes de la tensión. Consecuentemente, el comportamiento 
eléctrico de estos SPSPs es complejo; por lo tanto, modelar su comportamiento es desafiante, ya 
que influye en el desempeño de la operación de una micro-red. Este trabajo propone una 
metodología para modelar y representar el complejo comportamiento eléctrico de los SPSPs a 
través de un modelo de carga ZIP multi-zona extendido (EMZ-ZIP).  Este modelo captura la 
dependencia del voltaje y la influencia de las variables climáticas externas, y puede integrarse 
adecuadamente en un sistema de gestión de la energía (EMS). Los resultados muestran que la 
metodología propuesta i) captura adecuadamente la dependencia del voltaje de las cargas de los 
SPSPs, ii) captura la influencia que las variables climáticas externas pueden tener en el 
comportamiento energético de los SPSPs, iii) tiene un mejor desempeño en la estimación de los 
parámetros del modelo de carga propuesto, y iv) mejora el desempeño técnico-económico de la 
micro-red cuando el EMZ-ZIP se integra en el EMS. 

  



ii 
 

RESUMEN DE LA TESIS PARA OPTAR 
AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA 
POR: DANNY ALEXANDER ESPÍN SARZOSA 
FECHA: 2022 
PROFESOR GUÍA: DR. RODRIGO PALMA BEHNKE 

 
 
MODELING OF SMALL PRODUCTIVE SOLAR PROCESSES AND THEIR INTEGRATION 

INTO AN ENERGY MANAGEMENT SYSTEM FOR A MICROGRID 
The productive use of energy, especially from clean energy sources, improves the socio-economic 
development of urban and rural communities. Hence, solar energy can be included in the traditional 
productive processes performed by local communities. Thus, these this new kind of processes are 
defined as small productive solar processes (SPSPs). The electricity consumption of the SPSPs 
may be influenced by external weather variables. Furthermore, SPSPs generally have voltage-
dependent loads. Consequently, the electrical behavior of such SPSPs is complex; hence, modeling 
their complicated behavior is challenging, as it influences the performance of microgrid operation. 
This work proposes a methodology to model and represent the complex electrical behavior of the 
SPSPs through an extended multi-zone ZIP load model (EMZ-ZIP).  This model captures the 
voltage-dependency and the influence of external weather variables, and it can be properly 
integrated into an energy management system (EMS). The results show that the proposed 
methodology i) better captures the voltage-dependence of SPSPs loads, ii) captures the influence 
that external weather variables may have on the energetic behavior of the SPSPs, iii) has a better 
performance estimating the parameters of the proposed load model, and iv) improves the technical-
economic performance of the microgrid when the EMZ-ZIP is embedded in the EMS. 
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1 Introduction 

1.1 Research Motivation 

The Sustainable Development Goals (SDGs) promoted by the United Nations were conceived 
with the aim of working to eradicate poverty, to protect the planet and to improve the quality of 
life of people around the world. Thus, in 2015, the member countries of the United Nations 
approved the 17 goals for sustainable development [1]. Particularly, goal Nº 7 focuses on access to 
affordable and nonpolluting energy. Such energy is key in the different activities that occur 
worldwide for example for industry, transportation, commerce, domestic activities, etc. [1]. 
Therefore, It is important to promote universal access to energy from renewable sources to create 
sustainable, inclusive, and resilient communities [1]. 
 

 
In this context, Chile, through its energy policy projected to 2050 based on 4 pillars, included 

energy as a driver of development and environmentally compatible energy [2]. Thus, Chile has 
recognized the importance of renewable energies, especially the solar energy potential in the 
northern part of the country [3]. Consequently, several large-scale solar projects, both photovoltaic 
and solar thermal, have been developed [4] and continue being developed [5]. Alternatively, at the 
small-scale level, recently the Solar Energy Research Center (SERC-Chile), has recently proposed 
the development and massive adoption of small-scale solar energy solutions for creating human 
capital and to promote the sustainable development of urban and rural communities in the region 
of Arica and Parinacota [6]. 

 
 
In addition, developments based on decentralized energy systems (DES) suggest a new vision 

on how energy is produced, delivered, and consumed [7]. DES are mainly based on non-
conventional renewable energy (NCRE) technologies such as distributed generation (DG), 
electromobility, cogeneration, virtual generators, microgrids (MGs), smart grids, among others; 
they provide a clean and resilient option to achieve sustainable development goals [7]. 
Additionally, several NCRE technologies, mainly solar photovoltaic, have reached grid parity, i.e., 
they have reached competitive costs compared to traditional electricity systems [8].  

 
  
Because of the reasons mentioned above, DES are increasingly being integrated into the 

conventional electricity system to take advantage of their benefits, among others, the ability to offer 
zero to low carbon emissions, to compensate for large capital investments for grid upgrades, to 
provide local energy independence and grid security, and to motivate cohesion and social capital. 
Therefore, it is expected that the conventional electrical system (see Figure 1.1(a)) will continue to 
evolve as by including DG and specific cases of MGs (see Figure 1.1(b)). 
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Figure 1.1 (a) Conventional electrical system, (b) current electrical system that includes DG and 

some specific cases of on-grid MGs and off-grid MGs 
 

In this context, the advantages of MGs both on-grid and off-grid have caused them to be 
deployed in several parts of the world and an increasing trend is expected for their adoption in 
electrical systems in the future, as can be seen in Figure 1.2.  
 

 
Figure 1.2 Evolution and projection of investments and installed capacity of MGs worldwide [9] 

 
MGs will include more and more varied electrical loads, from small local applications to 

complex structures that will integrate different types of activities (domestic, industrial processes, 
etc.). In this sense, the operation of MGs will be more challenging, therefore, it is necessary to 
consider an energy management system (EMS) to ensure a cost-efficient and safe operation of 
MGs.  
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EMSs require adequate estimation tools to fulfill their purpose, i.e., generation and demand 

estimation. However, when having a combination of conventional electrical loads, production 
processes, etc., the modeling of the electrical demand, as reviewed in Section 1.2, will be an 
increasingly challenging task. Moreover, due to the alluded grid parity, future MGs will include 
technologies based mainly on solar energy [8] and it will lead to a massive adoption of different 
types of small productive solar processes (SPSPs) as it will be covered in Section 2.1, each one 
with its own characteristics and operation logic since it is a type of DES. This future scenario is 
exemplified in Figure 1.3. Generally speaking, SPSPs can be defined as small manufacturing 
industries that aim to increase income and productivity of people in, primarily rural communities. 

 
Figure 1.3 Future electrical system including several types of DES and some SPSPs 

  
Consequently, MGs will not only consist of conventional electrical loads but also productive 

processes, with high levels of difficulty in their modeling since it requires capturing their complex 
electrical behavior. In this sense, it is challenging to achieve a complete understanding of each one 
of the processes. This is because the behavior of the processes is influenced by external weather 
variables, besides the production process of the SPSPs will be carried out inside facilities, mainly 
private, and to have a complete of the processes would require multiple measurement devices or 
control systems that in practice are not very feasible. Currently, the cost factor and private 
information are the main barrier. 

 
 
In summary, the difficulty in fully understanding the electrical behavior and characteristics of 

small productive solar processes will lead to the appearance of new types of complexities that will 
cause the operation of MGs to face great challenges. It is the particular case of modeling and 
estimation of demand, since such estimation must meet certain criteria such as simplicity, and 
speed, among others. Further, as will be seen below, currently no methodologies propose 
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approaches to model the electrical consumption of small productive solar processes within MGs, 
so that they can be incorporated into EMSs to be operated efficiently. 

1.2 Problem Statement 

Electricity demand representation plays a key role in the operation of the MG. This is because the 
EMS makes decisions based on the expected electrical demand and available energy from 
distributed energy resources (DER), generally of NCRE type [10]. However, due to the diverse 
nature of conventional electrical loads and the appearance of new types of consumptions, i.e., 
SPSPs, the representation of electrical loads is a challenging task.  
 
 

Regarding small productive processes, there are several works in the literature that consider this 
type of processes in MGs. For example, in [11], an EMS that manages the operation of a MG and 
considers a small copper mining process is proposed. In [12], the scheduling of units in a rural MG 
that includes residential loads, and an agricultural production process is presented. The authors in 
[13] present the design of the operation of a MG based mainly on solar energy to supply electric 
power in aquaculture processes for communities in southern Bangladesh. In [14], an EMS approach 
is proposed for a MG containing several DG units, residential loads, and production processes. In 
[15], the authors present an EMS to promote self-consumption in productive processes. 
Furthermore, they highlight the important feature that a typical industrial process contains electrical 
loads that are sensitive to voltage variations. However, in all the works mentioned above, the 
electrical loads of the productive processes are represented as constant power (CP), i.e., they do 
not consider the effect of voltage. 

 
 
Concerning the representation of electricity consumption in MGs, one way to do this is to take 

advantage of the information available at the measurement points. From these measurement points, 
aggregated electricity consumption is obtained. Therefore, by combining the data measured at 
different points of the consumption centers in the network, it is possible to develop load 
representations that can be used by EMS to perform the economic operation of MG. For this 
purpose, the specialized literature presents different modeling approaches [16], [17].  

 
 
Among available modeling approaches, those based on artificial intelligence (AI) [18]–[23], and 

those based on statistical models (e.g., ARMA, ARIMA, SARIMA models, among others) [24], 
[25] stand out. In both cases, the information collected from the measurement points is used to train 
the load representation models that are then used to calculate the expected electrical demand for 
the EMS. However, because the AI and statistical-based alternatives focus primarily on 
representing the aggregate power consumption profile, they generally do not directly consider the 
effect of voltage and external weather variables.  The former is important to consider because, 
according to [15] production processes generally contain electrical loads sensitive to voltage 
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variations. In this sense, artificial neural networks (ANNs) may be used to represent complex loads 
considering the effect of external weather variables [26] and voltage variations. Nevertheless, it 
should be noted that this approach belongs to the black-box approaches [27], [28]; thus, its 
interpretability has been a challenging task [28]–[31]. Moreover, the ANN approach is useful when 
the model structure is hard to be mathematically represented and for systems that have already been 
developed [16].  

 
 
The literature suggests using ZIP [16], [32]–[34] and exponential models [16], [35] as appealing 

alternatives to represent the electric loads considering the voltage effect. On the one hand, the 
exponential model proposes the representation of the electrical load based on the dependence of 
electrical consumption on voltage and an exponent representing the electrical consumption 
characteristic [36]. Alternatively, as it is widely known, the acronym ZIP refers to the 
characteristics of constant impedance "Z", constant current "I" and constant power "P" that all 
electrical loads exhibit [16], [37]. The ZIP model can represent the active and reactive power of a 
given electrical load as a function of either voltage, frequency, or both. 

 
 
Recently, there has been a growing trend in the adoption of complex loads in electrical systems, 

such as electronic loads [38], electric vehicles [39], among others. These complex loads are 
generally connected to electrical networks through power converters. Consequently, to integrate 
the effects of such complex loads that are generally connected to electrical systems through power 
converters, ZIP models have been zoned (multi-zone) because conventional ZIP models did not 
adequately represent complex loads [38], [39]. In general, multi-zone models, combined with ZIP 
models developed for residential, commercial, and industrial loads [33], [34], are able to determine 
more accurately the behavior of electrical loads in power systems. 

 
 
Despite the efforts made in describing the new characteristics of loads in power and distribution 

systems [38], [39], little attention has been paid to represent and analyze loads in MGs even more 
with the incorporation of complex electrical loads, i.e., SPSPs. Moreover, although there are recent 
studies of the incorporation of productive processes in MGs and this has been a trend in recent 
years [40], in most cases the effect of voltage on loads is not considered. Therefore, there is still a 
challenge in developing methodologies that allow better representation of the new complex 
consumption, that also consider the influence of voltage and that can be efficiently integrated in 
the EMSs for the operation of MGs. It is worth mentioning that, phase unbalances and disturbances 
are relevant and impactful in MGs [41]; however, the analysis of these types of conditions and the 
frequency dependence of the loads are beyond the scope of this work. 

 
 
Based on the above, and considering Chile's pioneering experience in the development of  the 

SPSPs [6], the interest of this work is focused on providing a methodology to develop sophisticated 
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mathematical models capable of capturing the complex behavior of  the SPSPs electrical 
consumption and their sensitivity to voltage variations. Furthermore, these models can be 
efficiently incorporated into the EMS so that they can be coordinated with other electrical loads 
and energy sources present in a MG. 

1.3 Hypotheses 
Based on the aforementioned context and motivation, the hypotheses related with this work are: 
 

1. SPSPs loads are sensitivity to voltage variations and can be modeled with sufficient 
accuracy for the purpose of energy management, without detailed information about their 
facilities, i.e., measurements of each equipment inside their processes. 
  

2. The technical-economic performance of MG's EMS depends critically on the ability to 
model load consumption with high degree of complexity when SPSPs are considered as an 
integral part of such EMS's consumption. 

1.4 Objectives 

1.4.1 General Objective 
The main objective of this thesis is: 
 
To provide a model and a consumption estimation tool capable of representing and integrating the 
complex electrical behavior of the SPSPs into an EMS to enhance the technical-economic 
performance of future MGs. 

1.4.2 Specific Objectives 
To accomplish the general objective of this thesis, other issues related to the analysis shall also be 
addressed as listed below: 

 
1. To develop a mathematical model that represents the complex electrical behavior of SPSPs 

and captures the influence of external weather variables and voltage variations. 
 

2. To evaluate the performance of the proposed model and compare it with other methods for 
representing electricity consumption in MGs. 

 
3. To efficiently integrate the developed model for SPSP behavior into an EMS optimization 

problem. 
 

4. To evaluate the steady-state technical-economic performance of EMS and MG by including 
the developed model. 



7 
 

1.5 Contributions 
This thesis proposes a novel methodology for modeling the SPSPs and integrating them into an 
EMS for the operation of an MG. In this context, the main contributions of this work are listed 
below: 
 
• An approach to determine the zones at which specific devices of the SPSPs may be switched 

on is proposed. This is useful for both significantly decreasing the complexity of the parameter 
identification process, and for properly representing the sensitivity of SPSPs loads to voltage. 

 
• An extended multi-zone ZIP load model (EMZ-ZIP) to represent the complex electrical 

behavior of SPSPs is developed by using a zoning procedure. The EMZ-ZIP considers the 
identified zones, the information of specific devices that belong to the SPSPs, and the voltage 
influence on SPSPs’ load consumption. 

 
• A procedure to identify the EMZ-ZIP load model parameters is proposed. This procedure deals 

with the non-convexity of the bilinear term of the flexible component of the EMZ-ZIP load 
model.  
 

• A procedure to integrate the EMZ-ZIP load model into an EMS approach is proposed. The aim 
of this integration is that the proposed load model is embedded into an EMS formulation and 
that the resulting optimization problem is solved in an efficient way. 

 
The aforementioned contributions are shared with the microgrids scientific community in the 

following published papers: 
 
Journal papers 
 

D. Espín-Sarzosa, R. Palma-Behnke, and F. Valencia, “Integration of Small Productive 
Processes into an Energy Management System for Microgrids”, IEEE Access, vol. 10, pp. 69010-
69030, 2022, doi: 10.1109/ACCESS.2022.3185656. 

 
 
D. Espín-Sarzosa, R. Palma-Behnke, and F. Valencia, “Modeling of Small Productive Processes 

for the Operation of a Microgrid”, Energies, vol. 14, no. 14, p. 4162, Jul. 2021, doi: 
10.3390/en14144162. 

 
 
D. Espín-Sarzosa, R. Palma-Behnke, and O. Núñez-Mata, “Energy Management Systems for 

Microgrids: Main Existing Trends in Centralized Control Architectures”, Energies, vol. 13, no. 3, 
p. 547, Jan. 2020, doi: 10.3390/en13030547. 
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Conference papers 
 

D. Espín-Sarzosa, R. Palma-Behnke, and F. Valencia, “Incorporation of Productive Solar 
Solutions for Communities into Microgrid Energy Management Systems”, ISES Solar World 
Congress, 2019, pp. 1-11, doi: 10.18086/swc.2019.34.01. 
 
 

Additionally, the author contributed to the following publications, that appeared as 
collaborations during the author’s research stay at Institute of Energy Systems, Energy Efficiency 
and Energy Economics (ie3), Technical University Dortmund, Germany: 
 
 

D. Sen Sarma, T. Warendorf, D. Espín-Sarzosa, F. Valencia-Arroyave, C. Rehtanz, J. Myrzik, 
and R. Palma-Behnke, "Multi-objective Energy Management for Modern Distribution Power 
Systems Considering Industrial Flexibility Mechanisms", Sustainable Energy, Grids and 
Networks, June 2022, https://doi.org/10.1016/j.segan.2022.100825. 

 
 
C. Strunck, C. Rehtanz, D. Espín-Sarzosa and R. Palma-Behnke, "Control Possibilities for 

Community Microgrids Considering Small Production Processes and its Benefits to the Whole 
System", 2020 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America 
(T&D LA), 2020, pp. 1-6, doi: 10.1109/TDLA47668.2020.9326150. 

1.6 Thesis Outline 
The remainder of this work is organized as follows. In Chapter 2, the theoretical background of the 
main topics treated in this work is presented. The proposed methodology for modeling the SPSPs, 
the integration into an EMS approach, the implementation aspects, and some feasible extensions 
of the proposed methodology are described in Chapter 3. The case study, the obtained results, their 
analysis, and discussion are presented in Chapter 4. Finally, the conclusions and future work of this 
thesis are discussed in Chapter 5. 
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2 Theoretical Background 

This chapter presents the theoretical background of the main topics treated in this thesis. First, the 
concept and characteristics of the SPSPs are presented in Section 2.1. Second, several aspects and 
characteristics of EMSs for MGs are discussed in Section 2.2. Third, Section 2.3 describes different 
alternatives for representing loads in EMS in the context of MGs. Finally, Section 2.4 summarizes 
the most important concepts that are presented in this chapter and that are key to this thesis.  

2.1 Small Productive Processes and Small Productive Solar Processes 

2.1.1 Small Productive Processes worldwide 
 
To contribute to eradicating poverty aligned with the SDGs, access to electricity primarily from 
clean energy sources is key to achieving SDGs. In this sense, the Human Development Index (HDI) 
has a direct correlation with electricity consumption per capita [42]. Figure 2.1 shows the 
correlation between the HDI and electricity consumption. As can be seen in Figure 2.1, the higher 
the energy consumption, the higher the HDI. For example, countries that have an annual electricity 
consumption per capita between approximately 5,000 to 8,000 (kWh/capita) have high human 
development. In contrast, countries with lower energy consumption have a low HDI. 
 

 
Figure 2.1 Correlation between energy consumption and The Human Development Index [42] 

 
In this context, electricity has an impact on different aspects of society such as productivity, 

growth, and poverty. In [42], the authors present empirical evidence regarding the impact of 
electricity on several development outcomes. More concretely, Table 2.1 provides an overview of 
several studies about the nexus between electricity access and poverty reduction. In Table 2.1, one 
of the most important findings is that the authors in [43] concluded that in a developing country 
such as Tanzania, a 1% increase in the electrification rate may lift around 140,000 people out of 
poverty. 

22
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Table 2.1 Effects of electricity access on poverty [42] 

Source Country
/Region 

Data source/Sample 
size Conclusion 

[44] 
China, 
India, 

Thailand 

China: panel survey data 
of 1,143 households, field 
survey of 624 households 
India: survey of approx. 
2,600 rural households. 
Thailand: survey of 
approx. 1,100 rural and 
urban households. 

China: faster income growth among poor 
people with electrification than the non-
electrified in the province of Shaanxi, no 
positive effect of electricity on poverty levels 
was found. India and Thailand: positive 
impact of electricity access on ownership of 
electric appliances by poor households but not 
on incomes was found. 

[45] Ethiopia Survey of 800 
households. 

No significant effect of electrification on 
changes in household expenditure. 

[43] Tanzania 

Household Budget 
Survey (HBS) of approx. 
22,000 households; 
multi-stage, stratified 
sample. 

1% increase in the electrification rate would 
lift approx. 140,000 people out of poverty. 

[46] India Qualitative survey of 264 
small businesses. 

Low uptake of electricity for production of 
goods and services among low-income 
entrepreneurs was found. A substantial share 
of enterprises that have low incomes despite 
productive use of electricity was identified, 
but direction of causality not clear. 

 
Considering that the most important objective of rural electrification is to achieve economic and 

social human development, supporting the productive use of energy (PUE) is generally justified as 
a direct measure for improving the development outcomes of total electricity access [47]. Besides, 
fostering the PUE can enhance the economic and financial sustainability of rural electrification 
programmes and projects [47]. 
 
 

Consequently, the PUE, especially in rural context, has become an important topic in recent 
years because it can contribute to the social and economic development of communities. The 
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) defines the PUE as “agricultural, 
commercial, and industrial activities involving electricity services as a direct input to the 
production of goods or provision of services” [48]. In developing countries, primarily in rural 
locations, typical examples of PUE can be found in agro-processing (e.g., grain milling), different 
manufacturing industries, for instance, carpentry, tailoring, welding, among others [47]. These 
manufacturing industries aim to increase income or productivity of communities’ people. Thus, 
such industries can be defined as small productive processes (SPPs). 
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Because of the potential benefits of the SPPs previously mentioned, several initiatives have been 
deployed worldwide to contribute to the alluded socio-economic development of rural 
communities. In [49], the authors present some examples of the PUE and the resulting SPPs that 
provide economic benefits to rural communities’ people. A brief description of such SPPs and their 
main characteristics are described below. 
 
 

Ice making: This kind of PUE can be useful, particularly in isolated and hot locations. The SPP 
for this activity can include stand-alone freezers (nominal power less than a kW) or large 
commercial ice makers, which may consume tens of kW. The ice produced can be used for several 
purposes, such as preserving food and cooling drinks. Figure 2.2 shows an example of commercial 
ice making to produce ice for businesses. 
 

 
Figure 2.2 Large commercial ice maker [49] 

 
Milling: Rural communities in Africa usually produce flour through milling different products, 

for example, maize, cassava or sorghum. Besides, the husking and shredding of rice are common 
activities in such locations. Because of the lack of electricity in rural areas, milling SPP is 
commonly performed through grinding, pounding by hand or by small mills powered by diesel 
generators. An example of a milling SPP powered by a diesel generator is shown in Figure 2.3. 
Nevertheless, to achieve environmental benefits, electric motor-driven mills can be preferable to 
diesel-driven mills. 
 

 
Figure 2.3 Small milling productive process powered by a diesel generator [49] 
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Carpentry: This kind of activity and other woodworking activities are widely carried out in rural 
locations in Africa and other countries. Carpentry is often performed manually, but carpenters can 
travel to an electrified location or use diesel generators. The electric equipment used in carpentry 
SPPs ranges from small drills to large machines, which have larger power requirements. Figure 2.4 
shows an example of a carpentry workshop. 

 

 
Figure 2.4 Carpentry workshop [49] 

 
Egg incubation: This productive activity may be an attractive business for rural communities 

because of its low up-front investment cost and potentially high returns. The incubation equipment 
requires electricity, and the success of the business depends on the adequate use of such equipment. 
Figure 2.5 shows an example of egg incubation equipment. 

 

 
Figure 2.5 Egg incubation equipment [49] 
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Water treatment and sales: Access to clean water for drinking, cooking, and hygiene is 
important for sustainable development, especially in rural communities. Some water treatment 
methods in rural locations are, for example, chemical treatment, filtration, and reverse osmosis. 
These methods usually use electrical energy to perform the treatment SPP. A water treatment 
system and a system which is filling bottles are shown in Figure 2.6. 
 

 
Figure 2.6 Water treatment system and filling bottles [49] 

 
Other productive uses: The authors in [50] have summarized several SPPs deployed worldwide, 

primarily in developing countries to support the socio-economic growth of communities. Examples 
of such SPPs are food processing, lighting, irrigation, food preparation, cooling, among others. 
Table 2.2 presents an overview of various examples of the SPPs and some aspects of them. 

 
Table 2.2 Overview of several examples of the SPPs deployed worldwide (adapted from [50]) 

Technology Need/Application Country/Region Ownership 
Efficiency 

improvement Lighting Mexico Institution 

Biogas Food processing & 
preparation India Implementing 

organization 
Solar cookers Food preparation Argentina Individual 

Solar PV Lighting Kenya Cooperative 

Micro Hydro Power Lighting Philippines 
Implementing 
organization + 

community 
Efficient pumps Irrigation India Community 

Solar PV Electrification Togo Individual 
Pico hydro Lighting Sri Lanka Community 
Solar PV Lighting East Timor Community 
Solar PV Electrification Thailand Individual 
Biogas Electrification India Community 
Biogas Food processing India Community 
Biogas Food preparation China Community 
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Table 2.2 Overview of several examples of the SPPs deployed worldwide (adapted from [50]) 
(Continued) 

Technology Need/Application Country/Region Ownership 
Biogas Food preparation Guatemala Individual 
Biogas Cooling Pakistan Individual 

Solar cookers Food processing Morocco Institution 
Solar cookers Food preparation Argentina Individual 

Solar PV and wind 
power Irrigation Tanzania Institution 

Efficient lanterns Lighting Sri Lanka Individual 
Biogas Food processing  Latin America Individual/Communities 

Solar oven Food preparation Gambia Implementing 
organization 

Micro hydro power Electrification Brazil Cooperative 
Efficient stoves Food preparation Sierra Leone Individual 

Solar dryer Food conservation Mozambique Cooperative 
Solar PV & micro 

hydro power Electrification Peru Community 

Solar cookers Food preparation Burkina Faso Cooperative 
Biomass gasification Industry India Individual 

Biomass combustion Food processing Burkina Faso Implementing 
organization 

Solar cookers Food preparation Paraguay Individual 

Solar dryer Food conservation Afghanistan Implementing 
organization 

 
Despite the enormous potential of the PUE to improve the socio-economic aspects of rural 

communities, the great majority of rural electrification projects still focus primarily on domestic 
energy use [51]. Therefore, it can be expected that more initiatives will be developed to promote 
PUE in communities. 

2.1.2 Small Productive Solar Processes in Chile 
 
Solar energy is the source of almost all energy that is used in the earth. Plants use solar energy for 
photosynthesis. Then, herbivorous animals indirectly absorb a small amount of the energy 
contained in organic matter by eating plants and vegetables, while carnivores indirectly absorb a 
smaller amount by eating herbivores [52]. Fossil fuels are solar energy stored from a very remote 
geological age. Biomass is organic plant or animal waste. Wind energy uses currents generated 
from hot air and the rotation of the Earth. Hydropower relies on the evaporation of water and its 
subsequent return to Earth in the form of rain to supply rivers, lakes, and reservoirs. In addition, 
waves carry all the energy received from the winds as they travel across the ocean [52]. 
 

As can be seen, solar energy is very versatile and can be transformed into other forms of energy. 
Figure 2.7 presents different forms of solar energy conversion, associated technologies, and their 
end use. As can be seen in Figure 2.7, solar energy conversion ranges from green chemistry to 
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evaporation, resulting in different technologies for harnessing solar energy such as reactors, dryers, 
heaters, PV panels, among others. 

 
Figure 2.7 Solar energy flow (adapted from [52]) 

 
Regarding the solar potential around the world, very few regions have annual global horizontal 

irradiation (GHI) values above 2,500 kWh/m2, for example, Tucson, Arizona, USA exhibits a value 
around 2,080 kWh/m2 [3]. Accordingly, as can be seen in Figure 2.8, Chile has areas with annual 
GHI values exceeding 2,500 kWh/m2. Consequently, there is a potential in the use of solar 
technologies in Chile as half of the country has a GHI above 1,826 kWh/m2 (see Figure 2.9). 
Furthermore, the Atacama Desert presents great advantageous conditions with 2,556 kWh/m2 
besides its exceptionally clear sky, with an annual average clearness index that at 0.72 is close to 
the world’s maximum of 0.8 [3]. 
 
 

In this context, taking advantage of Chile’s solar potential, its solar history starts in 1872 when 
the world’s first solar water distillation plant was built at Las Salinas in the Province of Antofagasta 
by Carlos Wilson [53]. Then, between 2004 and 2016, there was a flourishing of solar energy in 
the country where several initiatives appeared, motivated primarily by government incentives. For 
example, in 2007, around 3,000 small-scale stand-alone photovoltaic (PV) systems were installed 
and promoted by a program for rural electrification in the northern regions of Chile [54]. In 2008, 
the government established that the energy matrix of the system will have to be composed of 10% 
of renewable energy by 2024, which was updated to be required to reach 20% by 2025 [55]. A 
more detailed of history of solar development in Chile can be found in [52], [56]. 
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Figure 2.8 Map of global horizontal irradiation worldwide [57] 

 

 
Figure 2.9 Map of global horizontal irradiation in Chile [57] 
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Considering the mentioned above, both the solar potential of Chile and the forms of solar energy 
conversion, several solar plants of different technologies (e.g., PV, solar water heater (SWH), 
concentrating solar thermal (CST)) have been installed in the country to supply primarily large 
consumption centers and large-scale industry. Figure 2.10 shows an overview of north-central 
Chile with its solar potential for solar project development, the location of solar projects under 
evaluation or operation, and the location of the main residential and industrial consumption.  

 
 
It is important to note that Figure 2.10 illustrates the state of Chile's solar sector until the end of 

2015. Furthermore, in this year the central-northern part of the country was still divided into two 
electricity subsystems, the Central Interconnected System (SIC) and the Northern Interconnected 
System (SING). In this context, with the interconnection of these two subsystems in 2017, the 
National Electric System (SEN) was created. In addition, the development of solar energy projects 
has had a strong growth in recent years. Therefore, updated statistics regarding solar energy 
projects developed in Chile can be found in [58], [59]. 

 
Figure 2.10 (a) Map of the main (> 3 MW) solar energy plants in operation by 2015, (b) load 

centers in Chile’s SIC and SING, and (c) solar power generation plants (SPGP) larger than 3 MW 
in operation, evaluation and with environmental permit (EP) [56] 

Irradiance <5 kWh/d
Irradiance 6-7 kWh/d
Irradiance >7 kWh/d
SPGP in operation
SPGP with EP
SPGP under evaluation
Transmission lines
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Although Chile has experienced a significant development of large-scale solar energy projects, 
the same level of development has not been seen in small-scale projects (i.e., DES). In fact, there 
are only a few initiatives, for instance, 300 small-scale PV installed in 2007 [54], a 23 kW PV array 
installed in Huatacondo, Chile's first microgrid [60]. Nevertheless, in 2014 through the net-billing 
approach, the regulation for rooftop systems was established. Consequently, the connection of PV 
systems to the distribution system was encouraged, although there was not a large deployment of 
PV systems at the beginning [61]. 

 
 
While there is interest in developing small-scale solar projects in Chile, it has been mainly for 

residential use [62]. In other words, the main objective is not to promote PUE. Nevertheless, there 
are some initiatives that foster the productive use of solar energy at small-scale level [6]. In this 
context, the small productive solar processes (SPSPs) can be defined as small-scale projects that 
use solar energy to add value to the productive activities (i.e., productive use of solar energy) of 
the people in the communities. Moreover, since these types of productive processes are based 
primarily on solar anergy, their behavior may be influenced by external weather variables such as 
solar radiation, ambient temperature, wind speed, relative humidity, calendar day, among others. 

 
 
In Chile in recent years, with the support of governmental institutions and universities, several 

types of SPSPs have been promoted, primarily in the areas of agriculture, aquaculture, and 
livestock. The most common SPSPs in Chile are, for example, solar irrigation water pumping, 
solar-powered greenhouse [63], solar drying, river shrimp farming based on solar energy [6], 
camelid fiber collection and processing using solar energy [64]. The following is a general 
description of the most common SPSPs in Chile, considering their productive purpose, mode of 
operation and the external weather variables that may influence their electrical behavior. 

 
 
Solar irrigation water pumping: This type of project aims to allow farmers to  cultivate water-

intense summer crops, to enhance land use and to increase the adoption of clean energy [65]. In 
conventional irrigation systems in remote locations, water pumping is supplied by a diesel 
generator, which requires expensive fuels and creates air pollution. In contrast, a solar-based (i.e., 
PV) irrigation system uses a sprinkler connected to a solar-powered water pump to reduce both 
water consumption and electricity consumption [66]. Besides, solar-based pumping systems 
present less maintenance cost and do not have fuel cost [67]. The main components of a solar 
irrigation system are: solar panel, converter, transformer, pump, battery and sprinkler [66]. A more 
detailed description of this type of project and its main components can be found in [68]. Some 
examples of the application of this type of SPSP in Chile can be found in [69]. It should be noted 
that solar radiation is the external variable that directly influences the electrical behavior of this 
SPSP because the pumped water flow rate depends on the incident solar radiation and on the size 
of the PV array [66]. 
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Solar-powered greenhouse: The objective of this type of SPSP is to generate electricity using a 

PV system to supply the lighting, and heating/cooling subsystems of the greenhouse to increase 
crop productivity [70]. Traditionally, fossil fuel-based generators are used to feed the electrical 
systems of greenhouses to maintain the internal conditions of the greenhouse (i.e., temperature, 
humidity, etc.)  [71]. However, continuing to use this technology is neither cost-efficient nor 
environmentally friendly; therefore, using solar energy as the main source to supply the greenhouse 
electrical systems is an attractive alternative [72]. In this sense, the Foundation for Agrarian 
Innovation (FIA by its Spanish acronym) has funded several demonstration systems of PV-powered 
greenhouses in Chile [62]. A further description of the operation and components of this type of 
process is presented in [72]. Regarding the external weather variables that may affect this type of 
SPSP, illumination has a direct impact on indoor temperature, relative humidity, soil illumination, 
plant growth, product quality and quantity, water consumption and evapotranspiration [71]. 
Therefore, depending on the level of external lighting, to maintain adequate conditions inside the 
greenhouse, ventilation or heating or artificial lighting will be activated in the greenhouse which 
leads to a variation in the electricity consumption profile. 

 
 
Solar drying: Traditionally, this type of process is used for food preservation. In this sense, the 

solar drying process consists of taking advantage of solar energy for removing moisture from 
products mainly to inhibit the growth of microorganisms that can damage the food [73]. Besides, 
dehydration reduces the weight and volume of the products, thus reducing transportation and 
storage and helps to store the food at ambient temperature [74]. However, to promote the socio-
economic development of the people in the communities, this type of SPSP adds value to the crops 
produced by the farmers, allowing them to access new markets to sell their products. An example 
of the application of this type of SPSP in the communities of northern Chile can be found in [6]. 
For further details regarding the solar drying process and its equipment see [73], [74].  

 
 
The external weather variables that may influence the drying process are mainly solar radiation, 

temperature and relative humidity [74]. The temperature determines the quality of the dried 
product; therefore, to keep the drying temperature within the permissible ranges, the electrical 
consumption of the process will change depending on the availability of solar radiation and also 
on the ambient temperature. For example, in periods of high solar radiation it would be necessary 
to activate the ventilation in order to prevent the temperature from exceeding the maximum 
allowed. On the contrary, when there is low solar contribution, it would be required to activate the 
heating devices to maintain an adequate drying temperature. In the same way, the relative humidity 
is a driving force in a natural convection system. Thus, a lower relative humidity of the air will 
lead to an increase in the drying rate which can help to reduce the drying time [74]. 
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River shrimp farming based on solar energy: River shrimp (Cryphios caementarius) farming 
has been a productive activity carried out by the inhabitants of northern Chile for several decades 
[75]. To achieve successful farming, the water must have adequate conditions of temperature (from 
17ºC to 27ºC), salinity (from 0 to 21.6 ppt), pH (between 7.5 and 8.0), among others [75]. In 
addition, because arsenic is present in many ecosystems in northern Chile [76], including in rivers, 
it is essential to remove arsenic from the water in which the shrimp will be cultivated to prevent 
poisoning in humans [77]. For this purpose, technological equipment based on solar energy can be 
used to take advantage of the abundant solar radiation of northern Chile and perform arsenic 
removal through a photochemical process [78]. In addition, to maintain suitable water conditions 
(mainly temperature) this SPSP includes pumps to recirculate the water. In this sense, the power 
consumption of this process can vary depending on the ambient temperature and on the solar 
radiation that directly influences the photochemical procedure of arsenic removal. 

 
 
Camelid fiber collection and processing using solar energy: Camelid livestock are mostly 

practiced in the northern part of Chile [79] and this is one of the main economic activities of the 
people in the communities. Once the people shear the camelid fiber, it is taken to a storage center 
for later processing. Generally speaking, fiber processing involves ten stages: categorization and 
classification, opening, scouring (at this stage the fibers are also washed with hot water, usually 
between 48 ºC and 55 ºC), drying, carding, gilling and combing, top finishing, blending, bleaching 
and dyeing, and spinning [80]. In this context, PV technology and solar collectors have been 
integrated into conventional fiber processing. The PV to supply the machinery and the collectors 
to heat the water needed for one of the fiber processing stages. In addition, to achieve a good quality 
fiber it is necessary that it does not contain too much moisture, therefore if the relative humidity of 
the environment increases or decreases, the process will require a higher or lower amount of energy 
for drying. In addition, this SPSP uses hot water from solar collectors, but in the case that the solar 
radiation is not enough to heat the water to an adequate temperature, it will be necessary to activate 
electric heating devices. 
 

 
Taking advantage of the productive use of solar energy, in 2017, through an initiative of SERC-

Chile with the support of the BHP Billinton Foundation, the Ayllu Solar Project was created [6]. 
This project aims to promote the sustainable development of urban and rural communities in the 
Arica and Parinacota region of northern Chile through the productive use of solar energy. In this 
context, the Ayllu Solar project consists of different small-scale projects deployed in various 
locations in such region, for example, the processing of agricultural products with solar energy, 
river shrimp farming, camelid fiber collection and processing center [64], among others [78] as 
seen in Figure 2.11. A more detailed description of the specific objectives and the reference projects 
of the Ayllu project is shown in Annexed B. 
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Figure 2.11 Ayllu Solar small productive solar processes (SPSPs) located in the Arica and 

Parinacota region (adapted from [78]) 

2.2 Microgrids: operation and control 

2.2.1 MG concept 
 
Small electrical systems have been used to provide power mainly in remote communities where 
connecting to the main grid is not feasible due to technical and/or economic difficulties. Fossil fuel-
based generation sources (e.g., diesel) have been the main alternative to supply remote systems for 
several years because of their competitive costs, flexible and continuous operation. However, te 
characteristics of DER (e.g., low operating costs and low to zero emissions) have led them to be 
increasingly considered as alternatives to conventional generation. Nevertheless, the integration of 
DER into electrical systems is a challenging task. 
 
 

The MG concept appeared as an appealing alternative to deal with the challenges to integrating 
DER into electrical systems. The MG concept was first defined in [81], [82] as a self-contained 
electrical power system consisting of DER, such as DG and energy storage systems (ESS), and 
loads (controllable loads in some cases) that are coupled to MG through the point of connection; 
and all of them comprise a single controllable system. Figure 2.12 shows a sample MG with its 
main elements such as DG (e.g., wind turbine, PV, among others) and the possible connections to 
the main grid and other MGs. 
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Figure 2.12 Sample MG with its main elements [83] 

 
Due to their versatility, capabilities and benefits, MGs have been deployed in different parts of 

the world [10], [84], [85],  and in Latin America especially in remote locations that are difficult to 
access where MGs provide electric energy to people in remote communities [86]–[88]. Figure 2.13 
presents some examples of MGs installed in different countries in Latin America such as Chile, 
Ecuador, Argentina, Brazil, among others. 

 
Figure 2.13 Examples of MGs installed in several countries in Latin America [89] 

Main grid

Microturbine

Fuel cell

Diesel generator

Other MGs

PV systemsWind turbines
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Palma-Behnke et al.: Lowering Electricity Access Barriers by Means of Participative Processes Applied to Microgrid Solutions

I. I N T R O D U C T I O N
Nearly 34 million people across the Latin America and

the Caribbean region still do not have access to reliable
electricity, and their communities are often too isolated
for connection to the major grids. Moreover, World Bank
research and additional evidence in the region show that
frequent technical problems reduce the benefits of the
solutions implemented to deal with this challenge [1], [2].
Community participation has been recognized as a pow-
erful tool for the operation and maintenance of systems
that serve the community itself. Although Chile exhibits
a comparatively high electricity coverage, many barri-
ers are still present for the development of sustainable
energy supply solutions exploiting local renewable energy
sources [3]–[5].

In the past years, microgrids have been identified as a
worldwide development trend. The Latin American region
is also part of this evolution. Fig. 1 shows various microgrid
projects identified in the region along with their develop-
ment status.

In the case of Chile, a survey carried out in 2013 iden-
tified 79 isolated locations for the potential development
of microgrid projects as a solution for providing rural
electricity access [6]. This survey selected candidates from
a universe of 296 isolated communities without continuous
access to electricity, by applying the following criteria:

1) the number of homes to electrify; 2) the community’s
Human Development Index score; 3) migration patterns;
and 4) the prior existence of an electrification project.
Similar exercises are available for other countries in the
region.

Based on the aforementioned context, microgrid solu-
tions offer a unique option for lowering electricity access
barriers in the Latin American region. However, several
questions arise as follows.

1) How to develop microgrid-based projects that foster
the use of local renewable energies and achieve
improvements in the quality of life of a community
in a lasting manner?

2) How to develop energy solutions in which technolo-
gies are appropriated by the communities?

3) How to develop energy solutions with well-
established resilient sociotechnical systems that
ensure successful energy technology transitions?

The answer to these questions and the pursuit of the
implicit goals can only be achieved if innovative and cost-
effective technological solutions are developed together
with a continuous communication (i.e., meetings, work-
shops, and plenary sessions) between the technical team
of the project and the community [5], [7]. The resulting
microgrid solution needs to be adjusted to the condi-
tions of the local reality, remaining faithful to its cultural,

Fig. 1. Microgrid developments in Latin America (own elaboration based on several sources).

1858 PROCEEDINGS OF THE IEEE | Vol. 107, No. 9, September 2019
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2.2.2 Operation and control of MGs 

Regarding the control and operation of these small electrical systems, MGs can have three 
operating modes: i) on-grid mode, i.e., connected to the main grid through the point of common 
coupling (PCC) as illustrated in Figure 2.14, ii) off-grid mode, i.e., MGs that do not have a PCC, 
and iii) switch from on-grid mode to off-grid mode and vice versa depending on the operating 
conditions in the main grid. The main characteristics of each operating modes are described below. 

 
Figure 2.14 Schematic diagram of a generic multiple-DER MG [90] 

On-grid operating mode [90]: In this mode of operation, the main grid determines the frequency 
of the MG and the voltage at PCC. The main role of the MG in this case is to manage the active 
and reactive power generated by the DER units, and the load consumption. Besides operating in 
on-grid mode, MGs can support the main grid in different manners such as voltage control, 
frequency control, and can provide more flexibility and reliability [91]. 

 
 
Off-grid operating mode [90]: This mode of operation is also known as stand-alone, isolated or 

islanded, in this case the MG operates as an autonomous entity. This operating mode is more 
challenging than the on-grid mode because of the need to maintain the critical demand-supply 
equilibrium. Thus, it requires more accurate load sharing mechanisms to balance sudden active 
power mismatches. Frequency and voltages are controlled by different DER units; thus, the main 
objective is to ensure that all units contribute to supply the load consumption in a predefined way. 

 
 
Transition from on-grid mode to off-grid mode [92]: While MG is operating in on-grid mode, 

the main grid provides the reference of frequency and voltage at PCC. However, if disturbances 
(e.g., blackouts, faults, voltage sag, voltage swell, load switching, among others) occur in the main 
grid, the MG switches to an isolated operation. This capability of the MGs may ensure 
uninterrupted supply to critical loads [93]. Nevertheless, the implementation of MG control 
strategies to enable smooth transition between operating modes, i.e., on-grid/off-grid, is mandatory. 
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An adequate control of MG is required for stable, economically reliable, and efficient operation. 
Thus, the principal tasks of the MG control structure are [94]: 

 
• voltage and frequency regulation for on-grid and off-grid operating modes 
• proper load sharing and DER coordination 
• resynchronization with the main grid 
• power flow control between MG and the main grid 
• optimizing the MG operating cost 

 
The tasks mentioned above have different characteristics and occur in different time scales, thus, 

to fulfill such tasks a hierarchical control strategy is commonly used. The hierarchical control 
scheme consists of three control levels such as primary, secondary, and tertiary. Each of them 
differs in their i) speed response and time frame at which they operate, and ii) infrastructure 
requirements (e.g., communications requirements) [90]. The primary control reacts instantaneously 
when local events occur, while the secondary control responds within a few minutes. Finally, the 
tertiary control operates in the range of several minutes. A brief description of their main features 
is presented below. Figure 2.15 illustrates the three control levels with their respective time scaling. 
 

Primary control: This is the first and the fastest level of control and is also known as local 
control or internal control because it is based on local measurements and does not require 
communication infrastructure between the MG DER. Due to its speed requirements and 
dependence on local measurements, islanding detection, output control and power sharing and 
balance control are considered in this level [90]. Analogous to power system generators, output 
control and power sharing are carried out by the governor, voltage regulator, and the inertia of MG 
synchronous generators. 

 
 
Secondary control: This level of control is also called the MG EMS, and is responsible for the 

reliable, secure, and economical operation of MG in either on-grid or off-grid. Besides, such tasks 
are particularly challenging in stand-alone MGs due to the presence of variable energy sources, 
where the update rate of the unit dispatch command should be high enough to follow the sudden 
changes of load and non-dispatchable generators [90]. One of the objectives of the secondary 
control is to restore the voltage and frequency deviations produced by the action of the primary 
control [90]. Nevertheless, the main objective of the EMS consists of achieving the optimal (or 
near optimal) Unit Commitment (UC) and Economic Dispatch (ED) set points for the available 
DER units in the MG. 

 
 
Tertiary control [90]: This is the highest level of control and sets long term and typically 

“optimal” operating set points according to the requirements of the main grid. In addition to 
establishing the coordination requirements with the main grid (e.g., voltage support, frequency 
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regulation, etc.), the tertiary control is in charge of coordinating the operation of multiple MGs in 
case this type of configuration is considered. The tertiary control can be considered as part of the 
host grid, and not the MG itself [90]. 

 

 
Figure 2.15 Different control level for the MG [95] 

 
It should be noted that both the primary and the tertiary control are beyond the scope of this 

study, however, a more detailed description of them can be found in [10], [90], [95]. However, the 
secondary control (i.e., EMS) is a fundamental part of this work, therefore, it is further described 
in the following section. 

2.2.3 Energy management systems for MGs 

As previously mentioned, EMS is responsible for determining the optimal (near optimal) 
operating set points of dispatchable units in an MG by solving an UC and/or an ED problem [96]. 
For this purpose, the EMS considers different information such as load forecasting, power 
generation available from DER, energy available from storage, weather forecasts, energy prices, 
etc.[40]. Depending on the control architecture, EMSs can be classified into four categories: 
centralized, descentralized, distributed and hybrid [95]. Figure 2.16 shows an overview of the 
different types of EMS control architectures. 

 
 
In centralized control architecture, a central controller makes the decisions and then sends the 

optimal (or near optimal) operating setpoint to the local DER controllers. This central controller 
usually minimizes the total operating cost by preventing the removal of critical loads under any 
possible adverse conditions [95]. With this aim, the central controller used information from the 
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forecasting systems, for example, load consumption, wind speed, solar radiation, etc. Moreover, 
this type of architecture presents a simple structure and in isolated mode, it has acceptable 
reliability [95]. Nevertheless, this control architecture can be more expensive because it requires 
high communication infrastructure. Practical applications of this approach are demonstrated in 
[41], [97]. 

 
 
In a decentralized control architecture, the energy management problem is solved while a 

highest independence to DER units and loads is provided [90]. All control decisions are primarily 
made locally, nevertheless, this control architecture can still consider the hirarchical control 
scheme. This type of control architecture is highly dependent on the main grid when it operates in 
on-grid mode. Thus, an increase in uneconomical costs can be expected. Consequently, the EMS 
with decentralized architecture operating in either on-grid mode or off-grid mode is not very useful 
or resilient [95]. 

 
 
Due to the particular characteristics of the decentralized architecture, it has been addressed in 

the literature through a multi-agent system (MAS) approach. Generally speaking, a MAS can be 
defined as a system composed of multiple intelligent agents, provided with local information, that 
interact with each other to achieve multiple global and local objectives [90]. A detailed analysis of 
the advantages, drawbacks, control and operational challenges, and challenges in communications 
requirements can be found in [98]. 

 
 
When a distributed architecture is considered, autonomous agents perform control in a 

cooperative manner to meet the objectives of the MG [99]. This type of control architecture is also 
known as communication-based decentralized control [100] where MG’s agents directly 
communicates with each other, which improves scalability because it avoids single-point faults. 
However, this control architecture requires high processing power at each local conroller, thus, an 
increase in the system cost is expected [101]. 

 
 
Given the advantages and disadvantages of control architectures described above, a hybrid EMS 

can deal with the issues of such control architectures, which eventually have to rely on 
communication to some extent [101]. This hybrid control architecture may include several central 
controllers with a distributed topology that is coordinated. In addition, each central controller may 
consider various local controllers that can operate independently [95]. 
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Figure 2.16 Different types of EMS control architectures (adapted from [102]) 

 
The type of MG control architecture designed for the MG depends on DER ownership, MG size, 

available technologies, and communication infrastructures [95]. In this sense, in Chile the most 
commonly used MG control architecture in real implementations is the centralized architecture, 
[60], [97], thus, this is considered in this work. Consequently, a brief overview of the main 
attributes of centralized EMS and its challenges are presented below. Nevertheless, the 
methodological approach presented in this work may be applied in other EMS control architectures. 

 
 
D. Espín-Sarzosa et al. [40] proposed a taxonomy of the main attributes of the centralized EMS 

(see Figure 2.17). Such taxonomy consists of five levels such as control architectures, fields of 
interest, selected topics, main features, and level of complexity (each with its own particular 
characteristics). 

 
 
Based on the taxonomy mentioned above and a revision of a nearly 200 articles addressing the 

topic of centralized EMS for MGs, D. Espín-Sarzosa et al. [40] conducted a cluster analysis to find 
the main trends in EMSs focused on centralized control architectures. The identified clusters are 
presented in Figure 2.18. Each cluster represents a research trend in centralized EMSs. 
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Figure 2.17 Taxonomy of the main attributes of the centralized EMS [40] 

 

 
Figure 2.18 Identified clusters that represent research trends in centralized EMS [40] 

 
Based on the cluster analysis and the identified research trends, some of the distinguished key 

challenges and future research directions are [40]: 
 
• Decentralized energy solutions (i.e., SPPs and SPSPs) will increasingly integrate local RES, 

thus, more complex customers’ behaviors are expected. Consequently, the modeling of this 
type of loads involves new complexities and the need of new simulation strategies that exceeds 
the traditional ZIP model approach or a time series analysis. 

 
• Some obstacles for the researchers to cope with regarding additional modeling challenges that 

occur on a simultaneous basis have been identified, e.g., multiple objective functions, full AC 
network representations, and the application of hybrid solution methods. Each of these 
combinations constitutes new challenges in this research area. 

 
• Most of the reviewed studies hold a high consideration of DC load flow. However, reactive 

power is also an important part of MG and should be considered in energy management to 
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achieve a reliable and secure system. However, this consideration introduces non-linear 
equations that increase formulation complexity and computational burden. Therefore, research 
efforts should focus on developing low complexity and computationally efficient AC load flow 
models. 

 
• There is no evidence of a research cluster where all EMS development challenges were dealt 

with on a simultaneous basis. In fact, research proposals in every cluster are mainly focused 
on the improvement of specific areas, while making some simplifications in others. This is due 
to the complexity of the mathematical problem resulting from trying to consider all EMS 
development challenges. 

2.3 Load representation and modeling in energy management systems 
for MGs 

As mentioned in the previous section, the EMS determines the optimal (near optimal) operating 
setpoints based on expected demand and generation. Thus, to achieve such desired setpoints, 
adequate models for representing load consumption are needed. 
 
 

Regarding load modeling, two broad approaches are aimed at determining model parameters: 
the component-based and the measurement based. The former is based on developing and 
aggregate load model by using information about the composition of each load type and 
characteristics of each load component [103]. While the latter aims to develop load models through 
measurements gathered in situ. The models developed through this approach have a significant 
advantage, i.e., they are more accurate than those developed using the component-based approach 
[103]. 
 
 

As stated above, one way to represent the electrical loads is to use the aggregated consumption 
information available at the measurement points in the MG. Then, the measurements are utilized 
either to estimate model parameters or to train forecasting models. In this sense, there are different 
alternatives in the scientific literature, of which those based on statistical models, AI approaches, 
and physical representation models stand out. Figure 2.19 presents a summary of the different 
approaches to represent electrical consumption in MGs. 
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Figure 2.19 Approaches to represent electrical consumption in MGs  

2.3.1 Statistical approaches 

The statistical approaches are also known as time series models, where the most widely used are 
the Autoregressive Integrated Moving Average (ARIMA) and the Autoregressive Moving Average 
(ARMA), and they were introduced by George Box and Gwilym Jenkins in the 70’s [104]. The 
basic ARMA model comprises an autoregressive model (AR) and a moving average model (MA). 
In addition, the autoregressive model is a linear regression of the current value based on one or 
more previous values [105]. An important feature is that to consider an ARMA model, the time 
series should be stationary. If that is not the case, the stationarity is achieved by differencing a non-
stationary series first, thus leading to a new model called ARIMA [105]. Moreover, to consider the 
seasonality, the seasonal ARIMA or SARIMA can be used. In general, statistical approaches are 
adaptable, can deal with seasonality and with non-stationary [105] and only requires the past value 
of a time series [106]. Nevertheless, such approaches are subjective and require a good 
understanding of the underlying statistics [106]. Finally, to consider the effect of exogenous 
variables (e.g., weather conditions), the autoregressive moving average with exogenous (ARMAX) 
variables has been used [107]. However, this approach can get trapped in a local optimum caused 
by the exogenous variable. Therefore, to face this challenge it is required to combine the ARMAX 
model with other approaches such as particle swarm optimization (PSO) [108]. A more detailed 
description of these statistical approaches can be found in [109]. 

2.3.2 Artificial intelligence approaches 

ANN is an AI approach based on the structure of the human brain. Similar to the human brain, the 
ANN comprises neurons and interactions within multiple layers that emulate biological synapses. 
The wires that connect one neuron to another are known as weights. Generally speaking, there are 
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three main characteristics that define an ANN: i) the architecture of the net (feedforward or 
recurrent), ii) the learning rule used to determine the weights during training (e.g., perceptron, 
Hebbian, etc.), and iii) the activation function between input and output neurons [105]. One of the 
most widely used ANN architectures is the multilayer perceptron (MLP) which is based on a 
backpropagation rule that evaluates the output’s error from the output back to the hidden layer 
[105]. ANN may be used to represent complex loads considering the effect of external weather 
variables [26]. Nevertheless, it is worth mentioning that this approach is useful when the model 
structure is unknown or it is hard to be mathematically represented and for systems that have 
already been developed [16]. The latter because a large volume of data is needed for ANN training, 
and there is not always sufficient data at the initial stage of systems development. A comprehensive 
review of studies regarding ANN and applications in several areas can be found in [110]. Moreover, 
the authors in [111] present some examples about the use of ANN in the context of MGs. 

 
 
The support vector machine (SVM) model is based on a structure risk minimum principal 

instead of the empirical minimization principle implmented by most of the traditional ANN models 
[112]. The SVM model shares a lot of similarities with standard MLP neural networks (e.g., 
network parameter selecting challenges), but it is more efficient than the ANN. The SVM model 
is equivalent to solve a linear constrained quadratic programming problem, thus, its solution is 
globally optimal [112]. The main advantages of this approach are [113]: the user can avoid 
overfitting due to regularization, expert knwoledge about the problem can be built through kernel 
trick and because it is defined by a convex optimization problem, it can reach global optimum and 
there are efficient methods to solve it. In contrast, some of the principal disadvantages are [113]: 
the biggest limitation depends on the choice of kernel, limitation in speed and size for both training 
and testing stages, and it is significantly slow in the testing stage. Consequently, the SVM approach 
has been improved by combining it with other approaches, for example, Genetic Algorithms (GA) 
[114], self-organizing maps (SOM) [115]. 

 
 
Fuzzy logic has the ability to emulate human decision making because it deals with ambiguous 

and uncertain information. Besides fuzzy logic is user friendly, robust and simple to design, thus, 
it is preferred over the ANN [116]. In general, fuzzy logic is a oversimplification of real-world 
problems and considers degrees of truth instead of usual true/false or 1/0 equivalent to Boolean 
logic [117]. In general, fuzzy logic comprises two parts: fuzzification and defuzzification. The 
former is the process of transforming a crisp set to a fuzzy set or a fuzzy set to fuzzier set, while 
the latter is the process of reducing a fuzzy set into a crisp set of to convert a fuzzy member into a 
crisp member [117]. Further, fuzzy logic regression can face some of the limitations of linear 
regression, for example, the poor relationship between the response variable and predictor variable, 
among others [118]. Moreover, in fuzzy regression the errors between the observed and the 
estimated values are assumed to be dependent on the indefiniteness of the system structure [118]. 
In general, the main advantages of fuzzy logic in load forecasting applications are [119]: this 
approach uses fuzzy sets that enabled us to condense large amount of data into a smaller set of 
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variable rule, fuzzy logic controllers are based on heuristics and therefore able to incorporate 
human intuiton and experience. Nevertheless, calibrating the parameters to obtain good quality 
results can be challenging. Therefore, several alternatives have been proposed in the scientific 
literature to address this challenge, e.g., bio-inspired metaheuristics [120]. 

2.3.3 Physical representation approaches 

As previously mentioned, to obtain the operating setpoints for dispatchable units in an MG, the 
EMS performs an ED and/or UC problem [96]. The former usually only considers the limits of the 
generator, and the constraint that supply must meet demand. However, to achieve more realistic 
results, the ED must consider the power flow equations, either a DC approximation [121] or an AC 
approach [121]. The DC approximation considers the power flow limits of the lines (in a linearized 
representation) and the active power, but reactive power and losses are not part of the formulation 
(these assumptions are typically valid for high-voltage transmission systems [121]). However, 
MGs feeders similar to distribution networks have a low 𝑋 𝑅⁄  ratio, which increases the coupling 
between active and reactive power [90], thus, the DC approach needs to be carefully used [122]. 
In contrast, the AC approach comprises a full detail of network constraints, active and reactive 
power flows, bus voltages (i.e., multi-bus) and branch losses. However, the full AC network 
representation is non-convex in its original form [123], thus, it is required to consider 
convexification techniques to achieve a global optimum [124], [125].   
 
 

In the context of MG, usually a single-bus EMS approach where network constraints are 
neglected [97], [126]–[128] or a multi-node EMS approach that considers physical network 
constraints such as bus voltages, line flow limits, etc. can be considered [129]–[132]. However, not 
considering the underlying network constraints can lead to bus voltages that significantly violate 
the tolerance constraints [129]. Nevertheless, the authors in [133] have shown that considering 
certain assumptions regarding the characteristics of the MGs, a single-bus EMS that also includes 
the reactive power of the MG can be formulated. 
 
 

The traditional AC approach considers variants of CP representations (i.e., PQ nodes) for 
representing aggregated loads [134]. In this context, the load forecasting results obtained through 
the approaches discussed in Sections 2.3.2 and 2.2.3 may be used as inputs for the OPF. However, 
the CP load representations do not consider the voltage dependence, therefore, they do not represent 
the behavior of the loads as observed from real measurements. For example, in the B.C. Hydro 
system where it was shown that decreasing the substation voltage by 1% will cause that the active 
and reactive demand decrease by 1.5% and 3.4%, respectively [135]. Besides, this effect can be 
observed in residential loads, for instance, a 5% reduction in voltage will lead to a decrease in the 
load consumption by around 7.6% [136]. 
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To adequately represent the relationship between the power and voltage, two of the most 
commonly used models are the exponential and the ZIP load model. The former relates the power 
and voltage through an exponential mathematical representation [16]. While the latter considers a 
polynomial expression (that combines constant impedance, constant current and constant power) 
to represent the relationship between the power and voltage. Figure 2.20 illustrates the behavior 
for each ZIP characteristic. 

 
Figure 2.20 Load behavior for constant impendance (Z), constant current (I) and constant power 

(P) characteristics 
 

Although the exponential model has fewer parameters than the ZIP load model, according to 
[137], the ZIP model has physical significance. In other words, the constant impedance can 
represent pure resistive loads, for example, space heaters, incandescent lights, hot plates, etc. [138]. 
Similarly, the constant power component can represent induction motor loads, while the constant 
current feature would represent power supplies and variable frequency drive loads [138]. 

 
 
Both the exponential model and the ZIP model are able to represent conventional electrical 

loads, however, with the introduction of complex loads such as electronics, electric vehicles, 
among others, these models are not sufficient to represent the complicated behavior of complex 
loads [38], [39]. For example, in the case of an electronic load, if the voltage is higher than a 
threshold value, the electronic load behaves as constant power. While if the voltage is between two 
different threshold values, the active and reactive power of the electronic load are linearly reduced 
to zero [38]. Further, when considering the charging of the battery of an electric vehicle (EV), at 
the beginning of the process the current absorbed by the battery is constant, but after the state-of-
charge (SOC) reaches a certain level, the voltage becomes constant but the current gradually 
decreases until it reaches a very small value when the battery is close to its maximum charge [39]. 

 
 
In addition, as mentioned in Section 2.1.2, SPSPs have appeared in recent years to promote 

sustainable development in communities. However, these SPSPs also present a complex electrical 
behavior because they are based on solar energy and may be influenced by changes in external 
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weather variables, for example, if we consider a solar drying process, besides the fact that the 
electrical consumption varies due to voltage changes, the process also varies depending on the solar 
radiation and the ambient temperature. 

 
 
Consequently, to capture and adequately represent the electrical behavior of complex loads, 

multi-zone models have been proposed, which are also known as multi-stage or multi-step models 
[38], [39], [139], [140]. These models have the property that depending on the zones or periods of 
operation they can vary their structure (e.g., combining physical representation models) to provide 
a more accurate representation of complex loads. For example, in the case of electronic charging, 
the authors in [38] propose a composite model that presents 5 modes of operation where in each of 
them the model parameters change depending on the operating voltage level. Further, to capture 
the electrical behavior of EV charging, a multi-stage time-variant model was proposed in which 
the ZIP model parameters change depending on the charging time [39]. 

 
 
In the case of SPSPs, D. Espín-Sarzosa et al. [141] present a methodology that considers an 

EMZ-ZIP load model to capture the complex behavior of this type of these processes. The EMZ-
ZIP load model consists of combining electrical devices that may belong to an SPSP [141]. In this 
context, the structure of the EMZ-ZIP changes according to operating zones. Moreover, to assess 
the performance of the EMZ-ZIP, the authors in [141] have conducted a performance analysis that 
comprises a bias-variance tradeoff analysis (second-order Akaike’s Information Criterion (AICc)) 
[142] and an analysis through forecasting indexes (RMSE, MAE, MAPE, and R2) [143]. 
Considering these analyses, the EMZ-ZIP is compared with other approaches frequently used in 
the literature such as time-variant ZIP model (TV-ZIP) [144], ZI model [145], exponential model 
based on both a linearized technique [133] and a variable transformation [146], SVM, gaussian 
process regression (GPR), and long short-term memory (LSTM) [147]. Table 2.3 summarizes the 
results of the performance analysis. 

Table 2.3 Performance analysis results [141] 

Model AICc RMSE MAE MAPE (%) R2 
TV-ZIP −29,703.57 0.01870 0.012326 6.586 0.98474 
LSTM −1703.42 0.14153 0.020032 11.141 0.98507 

EMZ-ZIP −1556.63 0.01874 0.012344 6.577 0.98484 
Var-exp −535.21 0.01879 0.012247 6.575 0.99234 
Lin-exp −534.63 0.01871 0.012304 6.580 0.98446 

GPR −369.01 0.02564 0.018614 12.960 0.97250 
SVM −368.52 0.02906 0.023662 15.280 0.96093 

ZI 99.09 0.01870 0.012329 6.586 0.98477 
 
It can be seen from Table 2.3 that the TV-ZIP model has the lowest AICc value. This implies 

that from the model selection point of view, the TV-ZIP model is the best to represent the power 
consumption of the SPSP considered in the case study in [141]. Nevertheless, the AICc value of 
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the EMZ-ZIP model is much lower than the other physical representation models (i.e., exponential 
models) considered in Table 2.3. Therefore, it has a better bias-variance tradeoff, consequently, it 
has a better representation of the complex consumption of SPSPs. A further analysis of the EMZ-
ZIP load model can be found in [141]. 

 
 
Moreover, Figure 2.21 shows the evolution of parameters that capture voltage sensitivity. As 

can be observed in Figure 2.21 (b), The TV-ZIP model assumes that the aggregate electrical 
consumption of the SPSP behaves as a constant impedance type for most of the time. This behavior 
does not apply in practice because SPSPs have a combination of several load types, not only 
constant impedance. In contrast, Figure 2.21 (a) shows the evolution of the EMZ-ZIP parameters 
which show a better result in capturing the sensitivity of the SPSP loads to voltage. Therefore, 
although the EMZ-ZIP model contemplates more parameters, it is the better model to properly 
represent the sensitivity of the SPSP loads to voltage. This is because of the incorporation of more 
knowledge about the load structure of the SPSP [141]. 

 
Figure 2.21 Evolution of parameters that capture voltage sensitivity: (a) EMZ-ZIP model and (b) 

TV-ZIP model [141] 

2.4 Summary 
This chapter presents the theoretical background of the main topics treated in this thesis. Firstly, 
Section 2.1 describes and showed examples of SPSPs deployed in various parts of the world. In 
addition, the concept of SPSPs was defined, describing their main characteristics and the most 
common projects in Chile. Secondly, in Section 2.2 the concept of the MG is described, in addition 
the operation and control characteristics for MGs are presented with a particular focus on the 
centralized architecture EMS because it is the main interest in this work. Finally, Section 2.3 
describes different alternatives for representing loads in EMS in the context of MGs. Therefore, 
due to the voltage dependence of the SPSPs loads and the characteristics of a centralized EMS 
considering an ED formulation that includes the network constraints, the physical representation 
approaches, particularly the EMZ-ZIP model, are of special interest in this thesis. 
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3 Proposed Methodology 

In this chapter, the proposed methodology for modeling the SPSPs and their integration into an 
EMS for operating a MG is presented. A general overview of the proposed methodology and a 
general description of its main stages are addressed in Section 3.1. The development of a database 
with ZIP load models of specific devices that belong to SPSPs is described in Section 3.2. The 
development of the EMZ-ZIP load model is presented in Section 3.3. The EMZ-ZIP load model 
parameter identification procedure is described in Section 3.4. The procedure to integrate the EMZ-
ZIP load model into an EMS formulation is discussed in Section 3.5. The details of the MG and 
ESM operation procedure are described in Section 3.6. The most relevant aspects for the 
implementation of MG model, databases and EMS routines that comprise the proposed 
methodology are described in Section 3.7. Some feasible extensions to the proposed methodology 
are discussed in Section 3.8. Finally, Section 3.9 summarizes the main topics treated in this chapter. 

3.1 General overview of the proposed methodology for modeling the 
SPSPs 

The proposed methodology for modeling the SPSPs and their integration into EMS for the 
operation of an MG consists of five main stages with its respective inputs and outputs as presented 
in D. Espín-Sarzosa et al. [141] (see Figure 3.1). First, stage A refers to the development of a 
database which includes the ZIP load model parameters of the electrical devices that an SPSP may 
include. Such ZIP parameters can be obtained from either experimental data or existing databases. 

 
 
Second, an extended TV-ZIP load model is developed in stage B. For this purpose, we gathered 

information through semi-structured surveys and/or from existing SPSPs and used it later. This is 
feasible and convenient, considering the engagement of customers promoted by an MG owner. 
Next, through the gathered information we can know an approximation of both the structure of the 
SPSPs (i.e., specific electrical devices that an SPSP may include) and the time in which the devices 
may be used (i.e., time of use of energy). Table 3.1 shows an example of the semi-structured survey 
employed to gather information from an SPSP. It should be noted that this survey is similar to those 
used in the gathering of information to estimate electrical demand in the design and planning of 
MGs [148]. Then, the extended TV-ZIP load model is developed. It combines a generic flexible 
TV-ZIP, and the ZIP load models for specific devices stored in the previously created database. 
Moreover, by using the information related to external weather variables (e.g., solar irradiation, 
temperature, wind speed, humidity, among others) that may influence the SPSPs’ electrical 
behavior and the time of use of energy, the zone classification approach performs a zone division. 
After this, an extended ZIP load model can be established for each identified zone leading to the 
formulation of the extended EMZ-ZIP load model. 
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Table 3.1 Overview of the semi-structured survey to gather information from an SPSP 

 
 

 
Figure 3.1 Overview of the proposed methodology [141] 

Third, the parameters of the EMZ-ZIP load model are identified in stage C. This procedure is 
performed through an optimization problem and the use of the historical data of power and voltage 
measurements. In this stage, the estimated parameters of the EMZ-ZIP load model and statistical 
information of residuals are provided. It should be noted that for SPSPs in the design phase, 
measurements from similar existing SPSPs, results from system simulations or information 
gathered through structured surveys [148] could be used. 
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Fourth, stage D refers to the integration of the EMZ-ZIP load model into an EMS approach. 
With this aim, the identified parameters of the EMZ-ZIP load model with the information of other 
MG elements are integrated into the system operation modeling of EMS. Moreover, due to the 
voltage sensitivity of the developed models, an AC approach is required. For example, an AC 
multi-period optimal power flow (OPF) will be able to define the operating conditions for the 
scheduling horizon of EMS. Furthermore, additional technical information about MG elements 
may be integrated at this stage. For example, cost information for generation/storage units, 
supplementary technical constraints (e.g., maximum and minimum limits, ramps, efficiencies, 
among others), and parameters of other individual loads in MG. 

 
 
Finally, once EMS is parameterized, it is able to perform the MG operation (stage E). To achieve 

this, EMS requires MG measurements such as power, voltage, among others, as well as historical 
data related to power, voltage, weather and time. After that, EMS runs its optimizing routines and 
sends the operating setpoints to dispatchable units and other devices. This procedure is carried out 
in a predefined period (e.g., 5 min, 10 min, 15 min) until a predetermined condition such as those 
described below is detected.  

 
 
At the initial time 𝑘! all stages (A–E) are performed following the sequence in Figure 3.1. 

However, if at the time 𝑘! +	∆𝑘 considerable changes are detected in analysis blocks 1 or 2, certain 
stages are conducted again. In this context, analysis block 1 evaluates statistical information from 
historical data. Therefore, if a significant variation in the errors in either the zone transitions or in 
the zone length is detected, it is necessary to execute stage B and, consequently, the other stages 
are executed too. For example, if the analysis window is in hours, it is evaluated whether it is 
improved by extending or reducing the current zone duration. Besides, new historical power and 
voltage data are available as MG operates; thus, it is necessary to identify the parameters of the 
EMZ-ZIP model by running stage C. This procedure can be performed after a predefined time, for 
example, every 24 hours.   

 
 
Alternatively, analysis block 2 analyzes the structural changes in either MG or the SPSPs, or 

both. For example, if new devices are installed in the SPSPs, it will be necessary to run from stage 
A again. Thus, the EMZ-ZIP model will include the ZIP models of the newly added devices. 
Moreover, if analysis block 2 detects structural changes in MG (e.g., changes in the topology, 
adding or removing generation units or loads different from those of the SPSPs), it is necessary to 
execute stage D to re-parameterize the EMS to include these structural changes. 

 
 
In addition, changes may occur in the scheduling of activities in the SPSPs, for example, 

advance or delay of the work shift. In this sense, the EMS includes a routine to detect these changes 
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and takes advantage of the zoning feature of the EMZ-ZIP model to move the zones (consequently, 
the identified parameters) to face these changes in the scheduling of productive activities. 

 
 
Finally, the proposed methodology for modeling the SPSPs and their integration into an EMS 

involves the aforementioned five stages. This strategy is compatible with different EMS 
approaches. Nevertheless, stages D and E are highly dependent on the specific EMS approach; 
thus, a detailed description of the formulation of the EMS approach selected in this work and the 
integration of the EMZ-ZIP model into this approach is presented in Section 3.5. 

3.2 Development of a database with ZIP load models of SPSP’s 
specific devices 

As mentioned in Section 2.3.3, the ZIP load model is one of the most appealing alternatives for 
load modeling. The mathematical expressions of the ZIP load models for the active and reactive 
power at any discrete time step 𝑘 (𝑘 ∈ ℤ") are expressed as follows: 
 

𝑃(𝑘) = 𝑃! 4𝛼# 5
𝑉(𝑘)
𝑉!

7
$

+ 𝛼$ 5
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7 + 𝛼%8 (1) 

𝑄(𝑘) = 𝑄! 4𝛽# 5
𝑉(𝑘)
𝑉!

7
$

+ 𝛽$ 5
𝑉(𝑘)
𝑉!

7 + 𝛽%8 (2) 

𝛼# + 𝛼$ + 𝛼% = 1 (3) 
𝛽# + 𝛽$ + 𝛽% = 1 (4) 

 
where 𝑃(𝑘) and 𝑄(𝑘) denote the total active and reactive power consumed by the load at any 

time step 𝑘, respectively; 𝑉(𝑘) is the current voltage at time step 𝑘; 𝑃! and 𝑄! are the active and 
reactive power at nominal voltage 𝑉!; 𝛼#, 𝛼$, 𝛼%, and 𝛽#, 𝛽$, 𝛽% represent the ZIP coefficients for 
the active and reactive power, respectively, and they must satisfy (3) and (4), respectively. 

 
 
As mentioned previously, based on the information gathered through semi-structured 

surveys/cadasters or information about existing SPSPs, it is feasible to know the structure of such 
SPSPs in terms of the type and number of specific devices that they comprise, such as a 
“fingerprint” of each SPSP. Thus, it is feasible to acquire the ZIP parameters (i.e., 𝛼#, 𝛼$, 𝛼%, 𝛽#, 
𝛽$, 𝛽%) of each potential device used by the SPSPs from either experimental data or existing load 
model databases, for example, from [16], [33]. It should be noted that the ZIP parameters obtained 
from sources are typical, but not exact values for the devices that an SPSP may include. This may 
lead to inaccuracies; however, to deal with this the ZIP parameters can be updated with 
measurements from the SPSP devices. In addition, as will be discussed below, the flexible 
component of the EMZ-ZIP is key to dealing with such inaccuracies. Then, the acquired ZIP 
parameters are stored in a database, which will be the main source of information for the next 
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stages. Figure 3.2 illustrates the procedure for the development of the database containing the ZIP 
parameters of the potential electrical devices used by the SPSPs.  

 
Figure 3.2 Overview of the development of the database that includes the ZIP parameters of 

potential electrical devices used by the SPSPs 

To illustrate the use of the database, let us assume that an SPSP consists of the following devices: 
i) a conveyor belt; ii) an electrical heater; and iii) two water pumps. Then, the ZIP parameters for 
each device are acquired from reported specialized literature (for instance, from [33]) and stored 
in the database. Consequently, the ZIP parameters	𝛼#,',	𝛼$,',	𝛼%,',	𝛽#,', 	𝛽$,',	𝛽%,' (𝜔 ∈ {heater, 
belt, pumps}) are available for the next stages. 

3.3 Development of the EMZ-ZIP load model 

3.3.1 Extending the ZIP load model 

Although the ZIP model captures the effect of voltage on load consumption, uncertainties of 
load behavior in the SPSPs could remain. In fact, some devices from the survey/cadaster could be 
missed or the assigned device from the database could mismatch the load behavior for specific 
devices. Thus, the first extension of the ZIP model based on the incorporation of a generic extra 
flexible ZIP component is proposed. More concretely, the TV-ZIP load model was used to account 
for these changes [141]. The TV-ZIP component for the active power is thus mathematically 
expressed as (5). Moreover, for notation simplicity, (6) is established for the remainder of this 
work; hence, 
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𝑉>(𝑘) = (𝑉(𝑘) 𝑉!)⁄  (6) 

𝛼=#(𝑘) + 𝛼=$(𝑘) + 𝛼=%(𝑘) = 1 (7) 

where 𝑃(𝑘) represents the active power at time step 𝑘, 𝑃!(𝑘) stands for the nominal active 
power at nominal voltage 𝑉!, 𝑉(𝑘) is the current voltage at time step 𝑘; 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘) are 
the time-dependent ZIP parameters, which represent the load features of constant impedance, 
constant current, and constant power, respectively. Moreover, as in the conventional ZIP load 
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model case, the coefficients must fulfill (7) for every time step 𝑘. It should be noted that, for 
reactive power representation, the mathematical expressions (5)-(7) are valid, except that they must 
consider the ZIP coefficients for reactive power. 

 
 
Consequently, the authors in [141] have proposed an extended TV-ZIP load model that 

combines both the TV-ZIP load model and the ZIP models of the set of active devices of the SPSPs. 
Let 𝛿'(𝑘) denote the contribution of each load category of the set of active devices to the total load 
consumption. Then, the extended TV-ZIP load model is expressed in (8)-(11). 

𝑃(𝑘) = 𝑍𝐼𝑃()*+(𝑉>(𝑘)) + B 𝛿'(𝑘)𝑍𝐼𝑃'(𝑉>(𝑘))
,

'-#

 (8) 

B𝛿'(𝑘)
,

'-#

≤ 1 (9) 

𝑍𝐼𝑃()*+(𝑉>(𝑘)) 	= 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉> $(𝑘) + 𝛼=$(𝑘)𝑉>(𝑘) + 𝛼=%(𝑘)? (10) 

𝑍𝐼𝑃'(𝑉>(𝑘)) = 𝑃!,'<𝛼#,'𝑉> $(𝑘) + 𝛼$,'𝑉>(𝑘) + 𝛼%,'? (11) 

where, 𝑃(𝑘) represents the total load consumption at time step 𝑘, 𝑍𝐼𝑃()*+(𝑉>(𝑘)) represents the 
flexible component of the extended TV-ZIP load model for which it is necessary to identify all its 
parameters (i.e., 𝑃()*+(𝑘), 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘)). The term 𝑍𝐼𝑃'(𝑉>(𝑘)) represents each active 
electrical device of the SPSP for which its ZIP coefficients (i.e., 𝑃!,' , 𝛼#,', 𝛼$,', 𝛼%,') are already 
given (see Section 3.2). Thus, solely the identification of its contribution 𝛿'(𝑘) is needed. Equation 
(9) reflects the contribution of each load category of the SPSP through the values of 𝛿'(𝑘). Finally, 
the term Ω (Ω ∈ ℤ") represents the set of devices that belong to an SPSP. 

3.3.2 Zoning the extended TV-ZIP load model 

The electrical behavior of the SPSPs may change influenced by external weather variables (see 
Section 2.1.2) such as solar irradiation, temperature, wind, humidity, among others. For example, 
in a solar drying process, the electrical resistances are not needed when there is a high solar 
irradiation contribution. Therefore, during periods of low solar contribution, the electrical 
resistances will be active, while they will be inactive during periods of high solar contribution. 
Besides, based on the information gathered from semi-structured surveys, the time in which the 
different electric devices that belong to an SPSP may be active can be known in advance. Then, to 
properly capture the complex behavior of SPSPs, a zone division of the analysis window (e.g., 24 
h) can be performed. According to [141], this is useful for two reasons: i) it significantly decreases 
the complexity of the parameter identification process (because solely a subset of parameters are 
identified instead of estimating all of them), and ii) it improves the representation of the sensitivity 
of SPSP loads to voltage variations. 
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The zoning procedure is based on the information regarding the type of SPSP, the information 
of the variables that may influence its electrical behavior, the time of use of energy obtained 
through the semi-structured surveys, and an ANN approach for classification [149], [150]. Figure 
3.3 shows the general ANN architecture, which consists of an input layer, a hidden layer, and an 
output layer. In the hidden layer and the output layer, the artificial neurons are interconnected via 
adaptive weights. These weights are obtained through a training process utilizing input and output 
data. Each artificial neuron is activated through an activation function, for example, threshold 
activation function, sigmoidal function, among others [151]. The most commonly used activation 
function is a sigmoidal function [152]; thus, it is considered in this work. Besides, the ANN training 
process can be performed by using different algorithms, for instance, the Levenberg-Marquardt 
(LM) backpropagation, the gradient descent backpropagation, among others [153]. The LM 
algorithm is used in this work because it is successful in reducing errors in classification 
applications compared to other algorithms [154], [155]. 

 
Figure 3.3 General ANN architecture 

Determining the number of inputs, outputs, hidden neurons, and the number of hidden layers is 
known as the definition of an ANN architecture [156]. However, there is no general rule to define 
the best ANN architecture, i.e.,  the determination of various parameters, such as the number of 
hidden layers, number of nodes in the hidden layer etc. [110]. Therefore, a method to calibrate the 
ANN architecture based on trial & error (i.e., in an empirically way [149]) is proposed in [157] and 
is used in this work. 

 
 
As illustrated by Figure 3.3, the ANN approach consists of an input layer, a hidden layer, and 

an output layer. In this context, the input data are selected depending on the type of SPSP and the 
external weather variables that may affect its electrical behavior as previously described in Section 
2.1.2. Whereas the output data for training are pre-identified zones (e.g., zone 1, zone 2, etc.) based 
on expert knowledge analysis [158], [159] considering the influence of external weather variables 
on the operation of the SPSP electrical devices and the time of use of energy. This information is 
gathered through semi-structured surveys (see Section 3.1). It should be noted that a zone is a 
period during a day where a device or a set of devices may be active. Then, the ANN associates 
the inputs (external weather variables data) with the output vector (zones). Once the ANN is 
trained, it is able to anticipate changes that may occur in the definition of zones. For instance, 

Input layer Hidden layer(s) Output layer

Input 1 Output 1

Input 2

Input n

Output 2

Output n
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during a cloudy day, there will be a considerable change in energy usage in the SPSP. Thus, the 
ANN will adjust the zones to handle the day's change in energy use due to the cloudy day. 

 
 

For illustrative purposes, let us consider a basic example where an SPSP has the daily active 
power profile shown in Figure 3.4 and is composed by three devices (cooler, heater, and water 
pump) represented by 𝑍𝐼𝑃.//)*0, 𝑍𝐼𝑃1*23*0, and 𝑍𝐼𝑃4564, respectively. Then, considering the 
information gathered through the semi-structured survey related to the effect of solar radiation and 
the ambient temperature on the time of use of energy of the SPSP, it is feasible to define the 
following zones. The period between 00:00 and 7:59 where there is no solar contribution, the heater 
can be active; then, it corresponds to zone 1. Next, between 8:00 and 17:59 due to increased solar 
radiation and ambient temperature, the cooler and fan will be activated. Thus, such period can be 
defined as zone 2. Finally, between 18:00 and 23:59 again the heater will be active because of poor 
solar contribution. This last period of the day can be considered as zone 3. Note that solar radiation 
and ambient temperature measurements are used as input data, and the pre-identified zones based 
on expert knowledge analysis are used as output data to train the ANN. This procedure can be 
performed considering information from several months, including seasons and changes in the 
environmental conditions, so that ANN performs the predictions to adjust the zones in case of 
detecting such changes. 

 
Figure 3.4 Determined operating zones and active devices in each zone 

Once zones have been identified, the general mathematical expression of the EMZ-ZIP load 
model is expressed as in (12)-(15). 
 

𝑃(𝑘) = 𝑍𝐼𝑃()*+(𝑉>(𝑘)) + B 𝛿'(𝑘)𝑍𝐼𝑃'(𝑉>(𝑘))

,!

'-#

 (12) 

B𝛿'(𝑘)

,!

'-#

≤ 1 (13) 

𝑍𝐼𝑃()*+(𝑉>(𝑘)) 	= 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉> $(𝑘) + 𝛼=$(𝑘)𝑉>(𝑘) + 𝛼=%(𝑘)? (14) 

𝑍𝐼𝑃'(𝑉>(𝑘)) = 𝑃!,'<𝛼#,'𝑉> $(𝑘) + 𝛼$,'𝑉>(𝑘) + 𝛼%,'? (15) 
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where, as can be seen, the expressions are similar to those of the extended TV-ZIP model. 
However, the term Ω7 (Ω ∈ ℤ") that denotes the number of SPSPs’ active devices in each zone 
(𝜓 ∈ ℤ"). 
 
 

It should be noted that the zones for the output set for ANN training are based on expert 
knowledge analysis, i.e., they are identified heuristically, which can lead to significant errors if 
misidentified. Nevertheless, the flexible component of the EMZ-ZIP (i.e., 𝑍𝐼𝑃()*+(𝑘)) plays a key 
role in dealing with this issue. This is because the flexible component can represent any device or 
a combination of devices, which may be ignored due to misidentification of zones. Besides, the 
flexible component can be updated at each time step k using available measurements data. 

3.4 Parameter identification of the EMZ-ZIP load model 
The parameter identification procedure corresponds to the stage C of the proposed methodology 
(see Section 3.1). In this sense, to identify the parameters of the EMZ-ZIP load model, an 
optimization problem based on a least-squares approach is used [160]. Let 𝑃F(𝑘) denote the 
estimated active power at time step 𝑘 for zone 𝜓, 𝑃G⃗8(𝑘) and 𝑉>8(𝑘) (𝑑 ∈ 𝐷) represent the vectors 
of active power and voltage measurements for each time step 𝑘, respectively, and 𝐷 stands for the 
set of measurements. Consequently, the minimization problem to identify the set of parameters of 
the EMZ-ZIP load model at each time step k is expressed in (16)-(22). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
9"#$%(;),		>&(;)	,?@'(;),

?@((;),	?@)(;)

BP𝑃G⃗8(𝑘) − 𝑃F(𝑘)R
$

A

8-#

 
(16) 

Subject to:  

𝑃F(𝑘) 	= 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉>8$(𝑘) + 𝛼=$(𝑘)𝑉>8(𝑘) + 𝛼=%(𝑘)?

+ B 𝛿'(𝑘)𝑃!,'<𝛼#,'𝑉>8$(𝑘) + 𝛼$,'𝑉>8(𝑘) + 𝛼%,'?

,!

'B-#

 (17) 

B𝛿'(𝑘)

,!

'-#

≤ 1 (18) 

𝛼=#(𝑘) + 𝛼=$(𝑘) + 𝛼=%(𝑘) = 1 (19) 

0 ≤ 𝛿'(𝑘) ≤ 1 (20) 

0 ≤ 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘) ≤ 1 (21) 

0 ≤ 𝑃()*+(𝑘) (22) 

Analyzing the minimization problem above it can be seen that, 𝑃()*+(𝑘) is a non-identifiable 
[161] and unbounded variable, hence, the big-M method is utilized to bound it. Besides, it is worth 
mentioning that the big-M value should be selected as proposed in [162]. Note that the objective 
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function in (16) and the constraints (18)-(22) are all convex. However, the constraint (17) is non-
convex due to the product between the variables 𝑃()*+(𝑘) and 𝛼=C(𝑘)	(	𝜑 ∈ {1,2,3}) (i.e., bilinear 
terms) [163], thus, it cannot be addressed directly. In this sense, several approaches to overcome 
this challenge can be found the specialized literature, for example, those reported in [164] and the 
convexification procedure presented in [141] (see Annexed C). Nevertheless, the well-known 
McCormick’s (MK) relaxations approach [165] is considered first in this work because of its 
benefits, such as applicability and easy implementation computationally. Moreover, these 
relaxations are typically stronger than those resulting from convexification or linearization 
procedures [166].  

 
 

By applying the MK [165], [167] to the product of variables 𝑃()*+(𝑘)𝛼=C(𝑘)	(𝜑 ∈ {1,2,3}) in 
the constraint (17), a new set of variables is defined as 𝑧C(𝑘) = 𝑃()*+(𝑘)𝛼=C(𝑘)	(𝜑 ∈ {1,2,3}). Let 
(∙)𝑼 and (∙)𝑳 denote the upper bound and lower bound of a variable, respectively. Consequently, 
the MK inequalities are formulated as follows: 

zC(𝑘) ≥ 𝑃()*+F 𝛼=C(𝑘) + 𝑃()*+(𝑘)𝛼=CF − 𝑃()*+F 𝛼=CF , (	𝜑 ∈ {1,2,3}) (23) 

zC(𝑘) ≥ 𝑃()*+G 𝛼=C(𝑘) + 𝑃()*+(𝑘)𝛼=CG − 𝑃()*+G 𝛼=CG , (	𝜑 ∈ {1,2,3}) (24) 

zC(𝑘) ≤ 𝑃()*+G 𝛼=C(𝑘) + 𝑃()*+(𝑘)𝛼=CF − 𝑃()*+G 𝛼=CF , (	𝜑 ∈ {1,2,3}) (25) 

zC(𝑘) ≤ 𝑃()*+(𝑘)𝛼=CG + 𝑃()*+F 𝛼=C(𝑘) − 𝑃()*+F 𝛼=CG , (	𝜑 ∈ {1,2,3}) (26) 

Then, by replacing 𝑧C(𝑘) = 𝑃()*+(𝑘)𝛼=C(𝑘)	(𝜑 ∈ {1,2,3}), introducing the MK inequalities 
derived above into the minimization problem (16)-(22) and considering the respective upper and 
lower bounds of the variables, the following convex minimization problem is obtained for each 
step k: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
H'(;),H((;)	H)(;),9"#$%(;)
?@'(;),?@((;),?@)(;),>&(;)	

B<𝑃G⃗8(𝑘) − 𝑃F(𝑘)?
$

A

8-#

 
(27) 

Subject to:  

𝑃F((𝑘)) 	= <z#(𝑘)𝑉>8$(𝑘) + z$(𝑘)𝑉>8(𝑘) + z%(𝑘)?

+ B 𝛿'(𝑘)𝑃!,'<𝛼#,'𝑉>8$(𝑘) + 𝛼$,'𝑉>8(𝑘) + 𝛼%,'?

,!

'-#

 (28) 

B𝛿'(𝑘)

,!

'-#

≤ 1 (29) 

𝛼=#(𝑘) + 𝛼=$(𝑘) + 𝛼=%(𝑘) = 1 (30) 

zC(𝑘) ≥ 𝑀𝛼=C(𝑘) + 𝑃()*+(𝑘) − 𝑀, (	𝜑 ∈ {1,2,3}) (31) 

zC(𝑘) ≤ 𝑀𝛼=C(𝑘), (	𝜑 ∈ {1,2,3}) (32) 
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zC(𝑘) ≤ 𝑃()*+(𝑘) (33) 

0 ≤ 𝛿'(𝑘) ≤ 1 (34) 

0 ≤ 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘) ≤ 1 (35) 

0 ≤ 𝑃()*+(𝑘) ≤ 𝑀 (36) 

Although MK relaxations provides stronger results for bilinear terms than convexification or 
linearization procedures, it may be difficult to prove its global optimality, i.e., the result of the 
relaxed problem may still be far from the best solution, which naturally increases the chances of 
failure with respect to finding the global optimal solution [168]. Thus, to cope with this drawback, 
more sophisticated approaches are needed, such as recursive MK relaxation, piecewise MK 
relaxations [167] global optimization (GO) [169], among others [170]. Indeed, according to [171], 
if an optimization problem has constraints involving bilinear terms, then, GO techniques are 
mandatory for its solution. 

 
 
Thus, to deal with bilinear term challenge, a GO technique is used in this work. Generally 

speaking, the goal of GO is to find a global solution (maximum or minimum) of a given 
optimization problem in some region of interest [172]. In the specialized literature exists various 
GO algorithms that can be used. For example, simulated annealing (SA), genetic algorithms (GA), 
PSO, among others [169].  

 
 
While GO increases the chances to find the global optimum, the local optimization techniques 

are an important element of a GO methodology [173]. In other words, a typical GO procedure is 
always a trade-off between two objectives: globally and locally search [173]. More concretely, 
globality of algorithms provides their capability of narrowing the area of search, and the problem 
of finding the global optimal point is solved by a local optimization technique [173]. In this sense, 
the Global-Search strategy together with a Scatter Search algorithm [174] and the local solver 
fmincon are used in this work (an applied research to an engineering problem can be found in 
[175]).  

 
 
It is worth mentioning that the local solver used in this work (i.e., fmincon) is a gradient-based 

method. Thus, it is a faster algorithm, however, its convergence performance is highly dependent 
on the starting point [176], [177], as shown in Figure 3.5(a). If the searching starts from initial point 
1, it will stop at local minimum. In contrast, if it starts from initial point 2, it can find global 
optimum, which in this case is the minimum. This same analogy can be applied in the case of 
finding the global maximum (see Figure 3.5(b)). 
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Figure 3.5 Local and global optimal solutions: (a) minimum, and (b) maximum  

Due to the high dependence on the starting point, it may not be desired that a starting point is 
close to a non-feasible or local stationary point. Consequently, we propose the use of the result of 
the minimization problem (27)-(36) (i.e., resulting optimization problem of applying MK) as 
starting point for the GO approach. Then, the parameters of the minimization problem (16)-(22) 
can be identified. Figure 3.6 shows an overview of the scheme for the parameter identification 
procedure (GO-MK) described above. 

 
Figure 3.6 Overview of the scheme for the parameter identification procedure 

3.4.1 Illustrative example 

This section presents an illustrative example where the procedure described above (i.e., parameter 
identification) is applied to identify the parameters of the loads that are connected to the small low 
voltage system shown in Figure 3.7. As can be seen, the small system contains three loads which 
are represented through ZIP load models. 
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Figure 3.7 Small low voltage system including loads represented through ZIP load models 

The small test system is a three-phase 220 V system that includes three ZIP loads, they represent 
an electric heater, an electric fan, and a set of electric lamps, respectively. The nominal active 
powers of each considered load are 𝑃!,0*I = 2000	(𝑊), 𝑃!,,(2J = 610	(𝑊), and 𝑃!,)264 =
944	(𝑊). Whereas the ZIP parameters of the mentioned loads were obtained from [33]. 

 
 
The experiment consists of, first, collecting the measurements of voltage and power every 10 

minutes at bus 3. Second, preprocessing the collected measurements to be used in the parameter 
identification procedure. Third, establishing the extended TV-ZIP load model for the small system 
by using (8)-(11). It is worth mentioning that the flexible part of the extended TV-ZIP model is 
responsible for representing the set of electric lamps. Next, identifying the parameters of the 
resulting extended TV-ZIP model using the collected measurements and, on the one hand, the 
minimization problem (27)-(36) solved through the MK, on the other hand, the minimization 
problem (16)-(22) solved through the proposed GO-MK strategy. It is worth mentioning that noise 
can affect the performance of parameter identification methods [178]. Usually, data collection 
methods are frequently corrupted by noise. Then, to improve the accuracy of parameter 
identification, filtering techniques can be used to preprocess the measurements to reduce noise 
[38]. However, the analysis of the effect of noise on parameter identification results is beyond the 
focus of this paper. 

 
 
We considered three cases to assess the performance of the parameter identification procedure 

by using the MK and the GO-MK approach. First, considering only one device switched on. 
Second, assuming that two devices are active. Third, considering that all three devices are active. 
Each of the considered cases and their respective resulting extended TV-ZIP model are further 
described below. It should be noted that, for simplicity, the experiments solely consider the 
estimation of the set of parameters for a time step k; nevertheless, this can be extended for all time 
steps considered in the study horizon. 
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Case 1: In this case, we have assumed that only the set of electric lamps is switched on. Thus, 
the aim is to use the measurements collected at bus 3 to identify all the parameters of the equation 
(37) (i.e., 𝑃()*+(𝑘), 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘)) and that the resulting identified parameters are close to 
the original ZIP values. Figure 3.8(a) and Figure 3.8(b) show the input data of active power and 
voltage that were gathered at bus 3 and we used for the parameter identification procedure. As can 
be seen in Figure 3.8 (b), the voltage profile is between 0.95 p.u. and 1.05 p.u., which corresponds 
to normal operating conditions. Further, the active power consumption in Figure 3.8(a) varies due 
to the voltage effect in the ZIP model of the electric lamps.  

 
 
The original ZIP values and the results of the parameter identification procedure are given in 

Table 3.2. The estimated parameters indicate that the results obtained through MK have a higher 
error compared to those obtained with the GO-MK strategy. For example, the 𝛼=%,; estimated 
through MK has an error of 460%, while the values estimated through the GO-MK has an error of 
0.00%. Therefore, the parameters estimated using the GO approach are closer to the original ZIP 
parameter values. In this case, the estimated values using the GO-MK strategy are practically equal 
to the original values. 

 
 
Figure 3.9 shows the results of the active power estimated using a new voltage profile and the 

parameters already estimated through the MK (Figure 3.9(a)) and GO strategy (Figure 3.9(b)). 
Comparing Figure 3.9(c) and Figure 3.9(d) it can be seen that the active power estimated using the 
parameters obtained with the MK has an error by around 11.5%, while using the parameters 
obtained through GO-MK the error of the new active power profile is below 1x10-5%. It should be 
noted that the error made in the estimated power magnitude using the MK (Figure 3.9(a)) is due to 
the estimation error of the 𝑃! parameter. 

𝑃(𝑘) = 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉> $(𝑘) + 𝛼=$(𝑘)𝑉>(𝑘) + 𝛼=%(𝑘)? (37) 

 
Figure 3.8 (a) Active power measurements and (b) voltage measurements for case 1 
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Table 3.2 Original values and results of the parameter identification by using the MK and the 
GO-MK approach for case 1 

ZIP 
Parameter 

Original 
values MK results Relative 

error (%) 
GO-MK 
results 

Relative 
error (%) 

𝑃! 0.944 0.843 10.69 0.944 0.00 
𝛼=# 0.520 0.444 14.62 0.520 0.00 
𝛼=$ 0.450 0.388 13.78 0.450 0.00 
𝛼=% 0.030 0.168 460.00 0.030 0.00 

 

 
Figure 3.9 (a) Estimated active power using the parameters obtained through MK, (b) estimated 
active power using the parameters obtained through GO-MK, (c) relative estimation error using 

the parameters obtained through MK, and (d) relative estimation error using the parameters 
obtained through GO-MK for case 1 

 
Table 3.3 shows the type of programming model and size (number of decision variables) of the 

GO strategy considering a random starting point and using the MK result as the starting point. 
Similarly, Figure 3.10 and Figure 3.11 show the convergence characteristics of the GO considering 
a random starting point and the GO using the MK result as starting point (GO-MK), respectively.  
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On the side of the GO approach with the randomized starting point, we performed 100 
experiments with random points following a uniform distribution. Figure 3.10 shows the values of 
the relative probability and the cumulative relative probability for the number of local solver calls 
and function evaluations that the GO approach with random starting point performs to reach the 
best value of the objective function.  

 
 
On the one hand, as can be seen in Figure 3.10, the GO approach with random starting point has 

a probability of approximately 25% of conducting less than 12 calls to the local solver and around 
30% of conducting less than 5000 function evaluations to reach the best value of the objective 
function. On the other hand, it can be seen from Figure 3.11 that the GO-MK approach performs 
12 calls to the local solver and about 5000 function evaluations to reach the best value of the 
objective function. These results can be explained by the fact that although the MK result is 
suboptimal, as previously shown, it is close to the value of the global optimum. Then, the GO 
strategy, which is a nonlinear programming (NLP) type, takes less function evaluations and calls 
to the local solver to find the best solution when using the MK result as a starting point. Moreover, 
although the size of the programming model type increases from 4 variables in GO to 11 variables 
in GO-MK (see Table 3.3), the McCormik’s relaxations optimization model is a linear 
programming (LP) type which does not considerably increase the computational burden because it 
can be solved in polynomial time [179]. 

 
Table 3.3 Type of programming model and size of the GO strategy considering a random starting 

point and using the MK result as the starting point for case 1 

Strategy Type of 
programming model 

Size (number of 
decision variables) 

GO NLP 4 
GO-MK LP+NLP 11 
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Figure 3.10 Convergence characteristics of GO considering a random starting point (case 1): (a) 
relative probability value and (b) cumulative relative probability value for the number of local 

solver calls, and (c) relative probability value and (d) cumulative relative probability value for the 
number of function evaluations 

 
Figure 3.11 Convergence characteristics of GO-MK (case 1): (a) function value and (b) function 
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Case 2: In this case, we have assumed that two loads are switched on: the electric fan and the 

set of electric lamps. Thus, the aim is to use the measurements collected at bus 3 to identify all the 
parameters of the flexible component and the contribution (𝛿#(𝑘)) of the electric fan to total load 
consumption in (38). Figure 3.12(a) and Figure 3.12 (b) depict the input data of active power and 
voltage that were gathered at bus 3 and we used for the parameter identification procedure. Voltage 
profile variations are within normal operating limits similar to the previous case. Further, the active 
power consumption in Figure 3.12 (a) is higher than the previous case because two devices are 
active, besides, it varies due to the voltage effect on the ZIP models of the individual loads.  

 
 
The original ZIP values and the results of the parameter identification procedure are given in 

Table 3.4. As in the previous case, the estimated parameters indicate that the results obtained 
through MK have a higher error compared to those obtained with the GO-MK strategy (see Table 
3.4). Nevertheless, because the extended ZIP model in (38) considers one more parameter (i.e., 
𝛿#(𝑘)), the values estimated through the GO-MK strategy present a higher error than the previous 
case. Despite this, the parameters estimated using the GO-MK approach are closer to the original 
ZIP parameter values than using the MK. 
 
 

Figure 3.13 shows the results of the active power estimated using a new voltage profile and the 
parameters already estimated through the MK (Figure 3.13(a)) and GO using the McCormick result 
as starting point, i.e., GO-MK (Figure 3.13(b)). Comparing Figure 3.13(c) and Figure 3.13(d) 
shows that the active power estimated using the parameters obtained with the MK has an error by 
around 10.9%, while using the parameters obtained through GO-MK the error of the new active 
power profile is below 5x10-3%. 

𝑃(𝑘) = 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉> $(𝑘) + 𝛼=$(𝑘)𝑉>(𝑘) + 𝛼=%(𝑘)? + 𝛿#(𝑘)𝑍𝐼𝑃(2J(𝑉>(𝑘)) (38) 

 

 
Figure 3.12 (a) Active power measurements and (b) voltage measurements for case 2  
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Table 3.4 Original values and results of the parameter identification by using the MK and the 

GO-MK approach for case 2 
 

ZIP 
Parameter 

Original 
values MK results Relative 

error (%) 
GO-MK 
results 

Relative 
error (%) 

𝑃! 0.944 0.885 6.25 0.944 0.00 
𝛼=# 0.520 0.424 18.46 0.524 0.77 
𝛼=$ 0.450 0.431 4.22 0.442 1.78 
𝛼=% 0.030 0.145 383.33 0.034 13.33 
𝛿# 1.000 0.831 16.90 1.000 0.00 

 

 
Figure 3.13 Estimated active power using the parameters obtained through MK, (b) estimated 

active power using the parameters obtained through GO-MK, (c) relative estimation error using 
the parameters obtained through MK, and (d) relative estimation error using the parameters 

obtained through GO-MK for case 2 
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Table 3.5 shows the type of programming model and size (number of decision variables) of the 
GO strategy considering a random starting point and using the MK result as the starting point. 
Similarly, Figure 3.14 and Figure 3.15 show the convergence characteristics of the GO considering 
a random starting point and the GO using the MK result as starting point (GO-MK), respectively.  
 
 

Figure 3.14 shows the values of the relative probability and the cumulative relative probability 
for the number of calls to the local solver and the function evaluations that the GO approach with 
random starting point performs to reach the best value of the objective function. On the one hand, 
it can be seen from Figure 3.15 that the GO-MK approach performs 2 calls to the local solver and 
around 1800 function evaluations to reach the best value of the objective function. On the other 
hand, as can be seen in Figure 3.14, the GO approach with random starting point has a 0% 
probability of both performing less than 2 calls to the local solver and conducting less than 1800 
function evaluations to reach the best value of the objective function. Finally, as can be seen in 
Table 3.5, the size of the programming model type increases from 5 variables in GO to 13 variables 
in GO-MK. However, as mentioned above, the McCormik’s relaxations optimization model is LP 
type which does not considerably increase the computational burden because it can be solved in 
polynomial time. 
 
Table 3.5 Type of programming model and size of the GO strategy considering a random starting 

point and using the MK result as the starting point for case 2 

Strategy Type of 
programming model 

Size (number of 
decision variables) 

GO NLP 5 
GO-MK LP+NLP 13 
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Figure 3.14 Convergence characteristics of GO considering a random starting point (case 2): (a) 
relative probability value and (b) cumulative relative probability value for the number of local 

solver calls, and (c) relative probability value and (d) cumulative relative probability value for the 
number of function evaluations 

 

 
Figure 3.15 Convergence characteristics of GO-MK (case 2): (a) function value and (b) function 

evaluations 
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Case 3: The main difference between this case and the previous ones is that this one considers 
three devices turned on. Furthermore, in this case the parameters of the flexible part and the 
contributions of the electric fan (𝛿#(𝑘)) and the heater (𝛿$(𝑘)) must be estimated. Figure 3.16(a) 
and Figure 3.16(b) show the input data of active power and voltage that were gathered at bus 3 and 
we used for the parameter identification procedure. As in the two previous cases, the voltage profile 
varies between normal operating limits, and it influences active power consumption of the 
individual loads.  

 
 
The original ZIP values and the results of the parameter identification procedure are given in 

Table 3.6. As in the previous case, the estimated parameters obtained through MK have a higher 
error compared to those obtained with the GO-MK strategy (see Table 3.6). In the same way as in 
the case 2, but the extended ZIP model in (39) considers two additional parameters in this case, the 
values estimated through the GO-MK strategy are closer to the original ZIP parameter values than 
using the MK. 

 
 
Figure 3.17 shows the results of the active power estimated using a new voltage profile and the 

parameters already estimated through the MK (Figure 3.17(a)) and GO using the McCormick result 
as starting point, i.e., MK (Figure 3.17(b)). Comparing Figure 3.17(c) and Figure 3.17(d), it can be 
seen that the active power estimated using the parameters obtained with the MK has an error by 
around 6.6%, while using the parameters obtained through GO-MK the error of the new active 
power profile is below 0.02%. 

𝑃(𝑘) = 𝑃!"#$(𝑘) &𝛼(%(𝑘)𝑉* &(𝑘) + 𝛼(&(𝑘)𝑉*(𝑘) + 𝛼('(𝑘), + 𝛿%(𝑘)𝑍𝐼𝑃!() &𝑉*(𝑘),

+ 𝛿&(𝑘)𝑍𝐼𝑃*#(+#, &𝑉*(𝑘), (39) 

0𝛿-(𝑘)
&

-.%

≤ 1 (40) 

 
Figure 3.16 (a) Active power measurements and (b) voltage measurements for case 3 
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Table 3.6 Original values and results of the parameter identification by using the MK and the 

GO-MK approach for case 3 
 

ZIP 
Parameter 

Original 
values MK results Relative 

error (%) 
GO-MK 
results 

Relative 
error (%) 

𝑃! 0.944 0.912 3.39 0.944 0.00 
𝛼=# 0.520 0.482 7.31 0.550 5.77 
𝛼=$ 0.450 0.383 14.89 0.388 13.78 
𝛼=% 0.030 0.135 350.00 0.062 106.67 
𝛿# 1.000 0.828 17.20 1.000 0.00 
𝛿$ 1.000 0.953 4.70 1.000 0.00 

 

 
Figure 3.17 Estimated active power using the parameters obtained through MK, (b) estimated 

active power using the parameters obtained through GO-MK, (c) relative estimation error using 
the parameters obtained through MK, and (d) relative estimation error using the parameters 

obtained through GO-MK for case 3 
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Table 3.7 shows the type of programming model and size (number of decision variables) of the 
GO strategy considering a random starting point and using the MK result as the starting point. 
Similarly, Figure 3.18 and Figure 3.19 show the convergence characteristics of the GO considering 
a random starting point and the GO using the MK result as starting point (GO-MK), respectively.  
 
 

Figure 3.18 shows the values of the relative probability and the cumulative relative probability 
for the number of calls to the local solver and the function evaluations that the GO approach with 
random starting point performs to reach the best value of the objective function. On the one hand, 
it can be seen from Figure 3.19 that the GO-MK approach performs 12 calls to the local solver and 
around 4200 function evaluations to reach the best value of the objective function. On the other 
hand, as can be seen in Figure 3.18, the GO approach with random starting point has a probability 
of approximately 10% of conducting less than 12 calls to the local solver and around 9% of 
conducting less than 4200 function evaluations to reach the best value of the objective function. 
Finally, as can be seen in Table 3.7, the size of the programming model type increases from 5 
variables in GO to 13 variables in GO-MK. However, as mentioned above, the McCormik’s 
relaxations optimization model is LP type which does not considerably increase the computational 
burden because it can be solved in polynomial time. 
 
Table 3.7 Type of programming model and size of the GO strategy considering a random starting 

point and using the MK result as the starting point for case 3 

Strategy Type of 
programming model 

Size (number of 
decision variables) 

GO NLP 6 
GO-MK LP+NLP 15 
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Figure 3.18 Convergence characteristics of GO considering a random starting point (case 3): (a) 
relative probability value and (b) cumulative relative probability value for the number of local 

solver calls, and (c) relative probability value and (d) cumulative relative probability value for the 
number of function evaluations 

 
Figure 3.19 Convergence characteristics of GO-MK (case 3): (a) function value and (b) function 

evaluations 
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Discussion: Overall, the three selected cases showed that the values estimated using the GO-
MK strategy have a high probability of reaching the global optimum compared to the MK. 
However, when more active devices (i.e., more parameters) are considered in the extended TV-ZIP 
model, the errors between the original ZIP values and the estimated parameters of the flexible part 
increase, especially the parameter with the smallest original value which in this case is 𝛼=%. 
Nevertheless, although the estimation error of the parameter 𝛼=% has a considerable increase, its 
value is much lower compared to parameters 𝛼=# and 𝛼=$; therefore, it is not significant. In this sense, 
the estimation error of new active power values is considerably small, below 5x10-3% in case 2 and 
0.02% in case 3. On the contrary, if only MK are considered, the estimated parameters values will 
always be far from the global optimum compared to the GO-MK strategy. Consequently, the error 
of estimation of new active power values considering the parameters obtained through MK will be 
considerably higher, e.g., about 10.9% in case 2 and 6.6% in case 3.  

 
 
Regarding the convergence characteristics, in general, the GO requires less solver calls and less 

objective function evaluations, to reach the best objective function value when using the MK result 
as the starting point. Consequently, GO-MK presents less computational burden than GO with 
random starting point. This can be explained by the fact that, although the MK result is suboptimal, 
it is close to the global optimum value. Moreover, although the size of the programming model 
type increases in GO-MK, the McCormik’s relaxations optimization model is a LP type which does 
not considerably increase the computational burden because it can be solved in polynomial time.  

3.5 Integration of the EMZ-ZIP load model into an EMS 

3.5.1 Approaches for integrating the EMZ-ZIP load model into EMS formulation 

As previously described, the extended TV-ZIP model is based on the polynomial ZIP model (see 
Section 3.3.1). In this sense, although relatively simple, the ZIP model makes the mathematical 
formulation of the EMS non-convex due to the constant impedance part which has a quadratic 
dependence on voltage. Therefore, to integrate the ZIP model and consequently the EMZ-ZIP 
model into the EMS formulation, it is necessary to consider convex approximations of these 
models. 
 
 

In the specialized literature, depending on the type of problem, different alternatives can be 
found to either convexify or linearize the ZIP model [133], [145], [180], [181]. Nevertheless, for 
this work we have considered two alternatives: one based on an approximation using Taylor series 
[133] and the other based on the binomial expansion method [181]. Then, from these two 
alternatives we used only one to integrate the EMZ-ZIP to the EMS based on the analysis that is 
presented later in this section. 
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The first alternative to linearize the quadratic voltage dependence is proposed by the authors in 
in [133]. Although this linearization is focused on the exponential model, it can be extended to the 
ZIP model as shown below. Furthermore, the main assumption of this approach is that the bus 
voltages in a network are close to 1.00 p.u., thus, the voltage can be represented as in (41). 
 

𝑉 = 1 + ∆𝑉  (41) 

In addition, because the bus voltage limits commonly lie between 0.95 p.u. and 1.05 p.u., the 
range for ∆𝑉 is ±0.05, which yields a negligible range for ∆𝑉$ equal to ±0.0025 [133]. 
Consequently, the exponential term of the voltage can be linearized using the first-order Taylor 
series approximation method (TAM) [133] resulting in (42). 

 
𝑉? = (1 + ∆𝑉)? ≈ 1 + 𝛼∆𝑉 (42) 

Accordingly, based on these assumptions and replacing (42) in (5), the linearized ZIP load 
model for the active power is expressed as follows: 

 
𝑃 = 𝑃!(𝛼=#(1 + 2∆𝑉) + 𝛼=$(1 + ∆𝑉) + 𝛼=%) (43) 

The second alternative considered in this work is based on the binomial approximation method 
(BAM) as presented in [181]. This approximation approach makes use of the same assumption as 
the TAM, i.e., the bus voltages in a network stay close to 1.00 p.u. This results in the same 
expression in (42). However, the BAM makes use of an auxiliary variable by denoting the bus 
voltage squared as 𝑢. Then, replacing this new variable in (41) results in (44). 

 
𝑢 = 1 + ∆𝑢  (44) 

Moreover, establishing 𝛼 = 2 in (42), the following key relationship is obtained: 
 

∆𝑢 ≈ 2∆𝑉  (45) 

Next, by including 𝑢 and (41) into (5), the new expression is as follows: 
 

𝑃 ≈ 𝑃!(𝛼=#𝑢 + 𝛼=$(1 + ∆𝑉) + 𝛼=%) (46) 

Then, by replacing (45) in (46) results in: 
 

𝑃 ≈ 𝑃! 5𝛼=#𝑢 + 𝛼=$ 51 +
∆𝑢
2 7 + 𝛼=%7 (47) 

 
Finally, by substituting (44) in the expression (47) and rearranging the terms, we obtain the 

expression of the ZIP model approximated through the BAM. 
 

𝑃 ≈ 𝑃! 45𝛼=# +
𝛼=$
2 7𝑢 + 5𝛼=% +

𝛼=$
2 78 (48) 
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Note that, the constant current term of the original ZIP model was equally divided between the 
constant impedance and constant current terms in the approximate ZIP model [181]. 

 
 
Both alternatives can be valid for integrating the ZIP model into the EMS, however, to determine 

the most appropriate one, we performed a comparative analysis. This consists of a relative error 
analysis of the load representation and a sensitivity analysis of the ZIP parameters. The former was 
developed in [181] by considering the ZIP parameters of one load, but, in this work we considered 
four loads (a heater, a copier, a light, and an electronic load) having different characteristics (i.e., 
constant impedance, constant current and constant power). Then, we varied the voltage between 
0.85 p.u. and 1.15 p.u. with a step of 0.01 and analyzed the relative error between the original ZIP 
model representation and each of the two approximation methods for each load considered. The 
ZIP parameters were taken from [33]. Figure 3.20 shows the results of the comparative analysis of 
the relative error of load representation considering both the TAM and the BAM. Further, the 
sensitivity analysis of the ZIP parameters is presented in Annexed D. 

 
Figure 3.20 Results of the comparative analysis of the relative error of load representation 

considering: (a) TAM and (b) BAM 

It can be seen from Figure 3.20 that the two approximations (i.e., the TAM and the BAM) have 
a representation of the electric loads similar to the original ZIP models because they have a relative 
error below 5% in all cases. However, when considering the approximation errors between the 
voltage levels at the normal operating limits (i.e., 0.9 p.u. and 1.1 p.u.) the TAM presents a 
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maximum relative error of approximately 1.45% in the case of the heater, the copier and light, and 
only in the case of the electronic load the maximum error is below 0.4%, while the BAM presents 
a maximum error below 0.4% in all cases. As can be seen from the analysis, the TAM presents a 
higher error in most of the cases compared to the BAM considering the normal operating range. 
Besides, the results of the sensitivity analysis presented in Annexed D show that the BAM has a 
better performance than the TAM. Therefore, based on the results described above, in this work 
we used the BAM to approximate the EMZ-ZIP model as presented in the next Section. 

 

3.5.2 Multi-bus convex AC EMS integrating the EMZ-ZIP load model 

As mentioned earlier, an EMS ensures efficient and economical operation of an MG by determining 
the optimal (near optimal) operating setpoints of the dispatchable DG units present in a MG. In this 
context, the most typically used EMS approach that considers the minimization MG operating costs 
and is formulated in (49)-(61) as a mixed-integer linear programming (MILP)  [97], [182]–[186]. 
It should be noted that the system is assumed to be three-phase balanced. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
9*+(;),9,-../(;),90.(;)	

BbB𝐶KB𝑃KB(𝑘)
L

B-#

+B𝐶MN𝑃MOPPN(𝑘)
Q

N-#

+ 𝐶GP𝑃GP(𝑘)d∆;

R

;-#

 (49) 

Subject to:  

B𝑃KB(𝑘) +B𝑃MOPPN(𝑘)
Q

N-#

+ 𝑃GP(𝑘) = B𝑃FJ(𝑘)
S

J-#

− B 𝑃AT6(𝑘)
U

6-#

L

B-#

 (50) 

𝜗KB6BJ ≤ 𝜗KB(𝑘) ≤ 𝜗KB62+ (51) 

𝑃KB6BJ ≤ 𝑃KB(𝑘) ≤ 𝑃KB62+ (52) 

𝑃MOPPN(𝑘) = 𝜂MOPPN8BI 𝑃MOPPN8BI (𝑘) −
𝑃MOPPN.1 (𝑘)
𝜂MOPPN.1  (53) 

0 ≤ 𝑃MOPPN.1 (𝑘) ≤ 𝑃.1MOPPN62+ 𝑦MOPPN.1 (𝑘) (54) 

0 ≤ 𝑃MOPPN8BI (𝑘) ≤ 𝑃8BIMOPPN62+ 𝑦MOPPN8BI (𝑘) (55) 

𝑦MOPPN.1 (𝑘) + 𝑦MOPPN8BI (𝑘) ≤ 1 (56) 

𝑦MOPPN.1 (𝑘), 𝑦MOPPN8BI (𝑘) ∈ {0,1} (57) 

𝐸MOPPN(𝑘) = 𝐸MOPPN(𝑘 − 1) + ∆;
𝑃MOPPN.1 (𝑘)
𝜂MOPPN.1 − ∆;𝜂MOPPN8BI 𝑃MOPPN8BI (𝑘) (58) 

𝐸MOPPNBJB3 (𝑘) = 𝐸MOPPN
(BJ2) (𝑘) (59) 

𝐸MOPPN6BJ ≤ 𝐸MOPPN(𝑘) ≤ 𝐸MOPPN62+  (60) 

𝑃GP(𝑘) ≥ 0 (61) 
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where ∆; represents the duration of time sub-period 𝑘; 𝐶KB and 𝑃KB(𝑘) denote the generation 
cost and the active power provided by the i-th diesel generation unit, respectively; 𝐶OPPN, 𝑃OPPN(𝑘), 
𝑃OPPN.1 (𝑘), 𝑃OPPN8BI (𝑘), 𝜂OPPN.1 , 𝜂OPPN8BI , 𝑦OPPN.1 (𝑘) and 𝑦OPPN8BI (𝑘) represent the operating cost, the 
injected/consumed active power, the charging power, the discharging power, the charging 
efficiency, the discharging efficiency, the charging binary variable and the discharging binary 
variable of the j-th battery energy storage system (BESS), respectively;	𝑃GP(𝑘)	and 𝐶GP stand for 
the unserved power and the cost of the unserved power in the system, respectively; 𝑃FJ(𝑘) is the 
load consumption in the n-th load center of the system; 𝑃AT6(𝑘) denotes the active power supplied 
by the m-th DG unit (e.g., PV plant, wind turbine, etc.). Likewise, 	
𝜗KB6BJ	and	𝜗KB62+	denote the minimum and maximum volume of the diesel generator fuel tank; 𝑃KB6BJ 
and 𝑃KB62+ are the minimum and maximum limits of active power generated by the i-th diesel 
generator; 𝑃.1OPPN62+  and 𝑃8BIOPPN62+  denote the maximum charging and discharging allowed values of 
active power of the  j-th BESS; 𝐸MOPPN(𝑘), 𝐸MOPPN6BJ  and 𝐸MOPPN62+  represent the energy stored at time 
step k, and the minimum and maximum allowed values of energy stored by the  j-th BESS, 
respectively. 𝐸MOPPNBJB3  and 𝐸MOPPN

(BJ2)  represent the BESS’s initial and final energy. Finally, I, J, M, N 
and K denote the sets of diesel generators, BESSs, DG units and load centers of the MG, and the 
scheduling horizon, respectively.  

 
 
It is evident that the EMS formulation in (49)-(61) only considers the balance between 

generation and consumption. However, since network model is not considered, it is not possible to 
guarantee that the power scheduled and produced by the generation units can be transferred to the 
electricity consumption centers [96]. Indeed, the network constraints are required to achieve a MG 
operation within the operating voltage limits and system losses restriction [187], [188]. Moreover, 
because bus voltages are not considered in the EMS formulation above, the voltage effect on the 
SPSPs’ loads cannot be fully captured. 

 
 
Consequently, to address the challenges mentioned above, the network constraints are added to 

the EMS formulation. Let the MG branch model consists of the single-branch equivalent circuit 
illustrated in Figure 3.21. If the branch power flow from bus 𝑟 to bus 𝑠, then, 𝑆0,I, 𝑃0,I and 𝑄0,I 
represent the apparent, the active, and the reactive powers flowing through the branch. 

 

 
Figure 3.21 MG branch model 

!!,# = #!,# + %&!,#

'(! = '(! ∠*!
+!,# = ,!,# + %-!,#

'(# = '(# ∠*#
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Then, the admittance matrix that comprises the complex rectangular representation of all MG 
branch admittances (conductance and susceptance) is denoted as follows: 

 
𝑌V5I = 𝐺 + 𝑗𝐵	 (62) 

Besides, expressing the bus voltages through their polar form as in (63).  
 

𝑉F0 = p𝑉F0p∠𝜃0 (63) 

Moreover, for the simplicity in notation let 𝑉0 = p𝑉F0p. Then, the resulting active and reactive 
powers injected at an arbitrary bus r of the system [189] are expressed as in (64)-(65).  

 
𝑃,(𝑘) = 𝑉,&(𝑘)𝐺,,,

+04𝑉,(𝑘)𝑉0(𝑘)𝐺,,0 cos(𝜃,(𝑘) − 𝜃0(𝑘)) + 𝑉,(𝑘)𝑉0(𝑘)𝐵,,0 sin(𝜃,(𝑘) − 𝜃0(𝑘))=
1

0.%
02,

 (64) 

𝑄,(𝑘) = −𝑉,&(𝑘)𝐵,,,

−04𝑉,(𝑘)𝑉0(𝑘)𝐺,,0 cos?𝜃,(𝑘) − 𝜃0(𝑘)@ − 𝑉,(𝑘)𝑉0(𝑘)𝐵,,0 sin?𝜃,(𝑘) − 𝜃0(𝑘)@=
1

0.%
02,

 (65) 

where Υ denotes the number of buses in the MG, 𝑃0(𝑘) and 𝑄0(𝑘) represent the difference 
between the generated and demanded power at the r-th bus, 𝑉0(𝑘) is the voltage at the r-th bus, 
𝜃0(𝑘) represents the voltage angle at the r-th bus, and 𝑟	, 𝑠	 ∈ {Υ}. Note that, expressions in (64)-
(65) are non-convex because they involve trigonometric functions (i.e., sine and cosine). Besides, 
the active and reactive power balance could be achieved through several values of 𝑃0(𝑘), 𝑄0(𝑘), 
𝑉0(𝑘) and 𝜃0(𝑘). Therefore, to efficiently integrate the network equations into the mathematical 
formulation of the EMS requires expressing them in their convex equivalents. For this purpose, we 
considered the convex approximation proposed in [190]. It should be noted that, the McCormick 
envelopes can be also used to convert the non-convex feature of the optimal power flow model into 
a convex quadratic constrained programming problem as shown in [191]. 

 
 
Power losses are caused because active and reactive currents pass through the lines (i.e., 𝜁0,I). 

For notation simplicity, define ℓ0,I = p𝜁0,Ip
$. Then, the current expression is expressed in (66) and 

the branch active (𝑃,,0"300(𝑘)) and reactive (𝑄,,0"300(𝑘)) power losses are expressed in (67) and (68) 
[192], respectively. 

 

ℓ0,I(𝑘) =
𝑃0,I$ (𝑘) + 𝑄0,I$ (𝑘)

𝑉0$(𝑘)
 (66) 

𝑃0,I)/II(𝑘) = ℓ0,I(𝑘) ∙ ℜ(𝑌0,I) (67) 

𝑄0,I)/II(𝑘) = ℓ0,I(𝑘) ∙ ℑ(𝑌0,I) (68) 

 
Next, by following [190], the expressions below are defined: 
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𝑅0,I(𝑘) = 𝑉0(𝑘)𝑉I(𝑘) cos(𝜃𝑟(𝑘) − 𝜃𝑠(𝑘)) (69) 

𝑇0,I(𝑘) = 𝑉0(𝑘)𝑉I(𝑘) sin(𝜃𝑟(𝑘) − 𝜃𝑠(𝑘)) (70) 

𝑢0(𝑘) =
𝑉𝑟2(𝑘)
√2

 (71) 

 
By substituting 𝑅0,I(𝑘), 𝑇0,I(𝑘) and 𝑢0(𝑘) in (64)-(65), we obtain: 
 

𝑃0(𝑘) = √2𝐺0,0𝑢0(𝑘) +B~𝐺0,I𝑅0,I(𝑘) + 𝐵0,I𝑇0,I(𝑘)�
Υ

I-#
IW0

+B𝑃𝑟,𝑠𝑙𝑜𝑠𝑠(𝑘)
Υ

𝑠=1
𝑠≠𝑟

 
(72) 

𝑄0(𝑘) = −√2𝐵0,0𝑢0(𝑘) −B~𝐵0,I𝑅0,I(𝑘) − 𝐺0,I𝑇0,I(𝑘)�
Υ

I-#
IW0

+B𝑄𝑟,𝑠
𝑙𝑜𝑠𝑠(𝑘)

Υ

𝑠=1
𝑠≠𝑟

 
(73) 

 
Next, by considering the properties of sin(𝑥) and cos(𝑥) the following relations can be derived: 
 

𝑅0,I(𝑘) = 𝑅I,0(𝑘) (74) 

𝑇0,I(𝑘) = −𝑇I,0(𝑘) (75) 

2𝑢0(𝑘)𝑢I(𝑘) = 𝑅0,I$ (𝑘) + 𝑇0,I$ (𝑘) (76) 

Nevertheless, the expressions in (66) and (76) need to be transformed into their conic 
programming formats; thus, by following [193] we get: 

 
ℓ0,I(𝑘)𝑢0(𝑘) ≥ 𝑃0,I$ (𝑘) + 𝑄0,I$ (𝑘) (77) 

2𝑢0(𝑘)𝑢I(𝑘) ≥ 𝑅0,I$ (𝑘) + 𝑇0,I$ (𝑘) (78) 

 
Next, by adding 𝑃,,0"300(𝑘) in (50) yields (79). Besides, since network constraints are considered 

and these involve reactive power, it is also required to consider the reactive power balance equation 
(80) in the EMS formulation.  

 

B𝑃KB(𝑘) +B𝑃MOPPN(𝑘)
Q

N-#

+ 𝑃GP(𝑘) = B𝑃FJ(𝑘)
S

J-#

+B 𝑃𝑟,𝑠𝑙𝑜𝑠𝑠(𝑘)
Υ

𝑠=1
𝑠≠𝑟

− B 𝑃AT6(𝑘)
U

6-#

L

B-#

 
(79) 

B𝑄KB(𝑘) +B𝑄MOPPN(𝑘)
Q

N-#

= B𝑄FJ(𝑘)
S

J-#

+B𝑄𝑟,𝑠
𝑙𝑜𝑠𝑠(𝑘)

Υ

𝑠=1
𝑠≠𝑟

L

B-#

 
(80) 

 
Additionally, the constraints of minimum and maximum limits of bus voltages, and maximum 

power flow limits through branches are expressed in (81) and (82), respectively.  
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<𝑉06BJ?
$

√2
≤ 𝑢0(𝑘) ≤

(𝑉062+)$

√2
 (81) 

C𝑌,,0(𝑢𝑟(𝑘)− 𝑢𝑠(𝑘))C ≤ 𝑆𝑟,𝑠𝑚𝑎𝑥(𝑘) (82) 

Consequently, the resulting convex AC EMS optimization problem is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (49) 
 
Subject to: (79), (80), (72), (73), (51), (52), (53), (54), (55), (56), (57), (58), (60), (61), 
(77), (78), (81), (82) 

 
Next, to integrate the EMZ-ZIP load model expressed in (12)-(15) into the EMS formulation, it 

is required to derive its convex approximation by applying the BAM described in Section 3.5.1. 
Subsequently, the resulting convex approximation of the EMZ-ZIP model is formulated as follows: 

 

𝑃P9P9(𝑢0(𝑘)) ≈ 𝑍𝐼𝑃()*+(𝑢0(𝑘)) + B 𝛿'(𝑘)𝑍𝐼𝑃'(𝑢0(𝑘))

,!

'-#

 (83) 

B𝛿'(𝑘)

,!

'-#

≤ 1 (84) 

𝑍𝐼𝑃()*+(𝑢0(𝑘)) = 𝑃()*+(𝑘) �5𝛼=#(𝑘) +
𝛼=$(𝑘)
2 7𝑢0(𝑘) + 5𝛼=%(𝑘) +

𝛼=$(𝑘)
2 7� (85) 

𝑍𝐼𝑃'(𝑢0(𝑘)) = 𝑃!,' 4P𝛼#,' +
𝛼$,'
2 R𝑢0(𝑘) + P𝛼%,' +

𝛼$,'
2 R8 (86) 

 
It should be noted that the same procedure is applicable to derive the reactive power expression, 

i.e., 𝑄P9P9(𝑢0(𝑘)) of the EMZ-ZIP load model. Accordingly, by replacing 𝑃P9P9(𝑢0(𝑘)) and 
𝑄P9P9(𝑢0(𝑘)) in the energy balance expressions (50), (79), and in the load flow expressions (72), 
(73) considering that they are buses where the SPSPs may be connected besides other loads, the 
following resulting expressions are obtained. 

 

B𝑃KB(𝑘) +B𝑃MOPPN(𝑘)
Q

N-#

+ 𝑃GP(𝑘)
L

B-#

= B[𝑃FJ(𝑘) + 𝑃P9P9(𝑢0(𝑘))]
S

J-#

+B𝑃𝑟,𝑠𝑙𝑜𝑠𝑠(𝑘)
Υ

𝑠=1
𝑠≠𝑟

− B 𝑃AT6(𝑘)
U

6-#

 
(87) 

B𝑄KB(𝑘) +B𝑄MOPPN(𝑘)
Q

N-#

= B[𝑄FJ(𝑘) + 𝑄P9P9(𝑢0(𝑘))]
S

J-#

L

B-#

+B𝑄𝑟,𝑠
𝑙𝑜𝑠𝑠(𝑘)

Υ

𝑠=1
𝑠≠𝑟

 
(88) 

𝑃0(𝑘) − 𝑃P9P9(𝑢0(𝑘)) = √2𝐺0,0𝑢0(𝑘) +B~𝐺0,I𝑅0,I(𝑘) + 𝐵0,I𝑇0,I(𝑘)�
Υ

I-#
IW0

+B𝑃𝑟,𝑠𝑙𝑜𝑠𝑠(𝑘)
Υ

𝑠=1
𝑠≠𝑟

 
(89) 
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𝑄0(𝑘) − 𝑄P9P9(𝑢0(𝑘)) = −√2𝐵0,0𝑢0(𝑘) −B~𝐵0,I𝑅0,I(𝑘) − 𝐺0,I𝑇0,I(𝑘)�
Υ

I-#
IW0

+B𝑄𝑟,𝑠
𝑙𝑜𝑠𝑠(𝑘)

Υ

𝑠=1
𝑠≠𝑟

 
(90) 

 
To avoid the integer variables in (54)-(57), the nonlinear convex BESS model [194] or the 

convex relaxation proposed in [187] can be considered. The resulting EMS optimization problem 
is expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (49) 
 
Subject to: (87), (88), (89), (90), (51), (52), (53), (54), (55), (56), (57), (58), (59), (60), 
(61), (77), (78), (81) 

 
Finally, it is important to note that the resulting EMS optimization problem that integrates the 

EMZ-ZIP load model is convex due to both the BAM applied to the EMZ-ZIP model and the 
variable transformation used to convexify the power flow constraints. As a result of the latter 
procedure, the EMS became a second-order cone programming (SOCP) optimization problem that 
can be efficiently solved in a finite number of steps [195] and it has a lower computational 
complexity [196] which scales with the square-root of the problem size [197], i.e., the number of 
decision variables [198]. Therefore, these properties allow scalability of the resulting EMS and a 
certain degree of flexibility for its application in actual MGs and large-scale problems [196]. 

3.6 Operation of MG-EMS 

The timetable in Figure 3.22 shows the procedures performed at each EMS run time. At the 
beginning, i.e., at run time 𝑡! the EMS is in safe mode. Consequently, a set of predefined settings 
are stored in the EMS, which is ready to execute a black-start procedure to initiate the operation of 
the MG [199], [200]. For this purpose, the MG generation units use their local controllers to 
maintain synchronism in the MG based among others on the droop curves [201].  

 
Figure 3.22 Timetable of EMS operation 

 
It should be noted that, at 𝑡! stages A, B, and C in Figure 3.1 are already developed, which 

correspond to the EMZ-ZIP model and the identification of its parameters. Then, at run time 𝑡# the 
EMS acquires the renewable generation and load forecasts except the SPSPs. At run time 𝑡$, based 
on the local time and zones determined in step 2 (see Figure 3.1), an EMS routine determines the 
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current operating zone candidate for each SPP based on the predefined zones (see Figure 3.4). For 
this purpose, the available measurement of an SPP consumption is compared with the two load 
estimations (i.e., Zone 1 vs Zone 2 EMZ-ZIPs) in the transition zone depicted in red color (see 
Figure 3.23). The duration of the transition zone corresponds to a predefined value based on the 
practical observations of an existing SPSP. The zone with the lowest accumulated error (𝜀) based 
on the available measurements is selected for the SPSP load forecast used by the EMS in the 
transition period. In 𝑡%, for the remaining future time intervals the predefined zone definition is 
considered. 

 
Figure 3.23 Zone transitions 

 
More structural changes in the SPSP behavior can be managed by the Analysis 1 and 2 blocks 

presented in Figure 3.1. This is a key aspect of the proposal that allows for more robust and efficient 
management in the transitions between zones. Next, at run time 𝑡] the EMS optimization problem 
is solved.   If the optimization problem converges it follows to 𝑡^, otherwise the previous operating 
setpoints are kept.  In this run time (i.e., 𝑡^) the valid operating setpoints are sent to the local 
controllers of dispatchable units in the MG. Specifically, the voltage references and the power 
generation references are sent using the communication links. It should be noted that full EMS 
procedure (𝑡! −	𝑡^), there is a time range by around several minutes (e.g., 10 minutes, 15 minutes, 
etc.). It should be noted that in cases of load perturbations (i.e., connection/disconnection), the local 
controllers react first to maintain the balance between generation and demand. Finally, at run time 
𝑡_ the EMS re-start its procedures and go back to 𝑡#. 

3.7 Implementation aspects 

To implement the proposed methodology described in this chapter, the following aspects should 
be considered: 
 
 

For stage A, based on the information obtained through semi-structured surveys, a relational 
database is created which includes the ZIP models of the devices that the SPSPs may include. For 
stage B, the information obtained through the surveys and the actual measurements of the external 
weather variables are used as input data for the zone classifier which is based on ANN and was 
implemented using the Neural Networks Toolbox of MATLAB® [202]. Then the zones classifier 
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module identifies the zones and for each of them an extended TV-ZIP model is established with 
the SPSP devices can be active. Through this procedure the EMZ-ZIP model is developed. 

 
 
For the EMZ-ZIP model parameter identification procedure (stage C), measurements obtained 

through an SPSP simulator, and the proposed GO strategy were used. The former was implemented 
in MATLAB®/Simulink® considering the constructive and operational characteristics of an actual 
SPSP (see Annexed E.6), whereas the latter was implemented using the Global Optimization 
Toolbox of MATLAB® [203].  

 
 
For stage D, the EMS optimization routine integrating the EMZ-ZIP model was implemented 

in CVX, a package for specifying and solving convex programs [204], [205] considering the 
information generated in the previous stages and the technical characteristics of the MG. Whereas 
the MG-EMS operation is executed in stage E. For this purpose, the MG and Supervisory Control 
and Data Acquisition (SCADA) are modeled in MATLAB®/Simulink® using the Simscape™ 
Electrical™ Specialized Power Systems blocks [206] which simulates the actual operation of an 
MG. The time domain simulations are 1 millisecond while the EMS optimization routine is 
executed every 10 minutes, while the other routines, for example, the detection of changes in the 
scheduling of productive activities, are executed every time a new measurement arrives from the 
SCADA. 

 
 
Finally, once the MG and SCADA models, databases and others were implemented, the actual 

operation of the MG was simulated on a computer with the following characteristics: HP ENVY 
27 All-in-One, Intel® Core™ i7-4790T @2.70 GHz, 12.0 GB RAM. 

3.8 Extensions 
In this section, some feasible extensions to the proposed methodology are discussed. 
 

Firstly, it should be noted that ramping and reserves constraints are not part of the EMS 
formulation in (49)-(61). Regarding ramping constraints, DGs in MGs generally have fast start-up, 
shut-down, and ramp characteristics in the order of a few minutes [26]. Diesel units in particular 
accept load rapidly, with start times to full load as fast as 10 seconds and ramp-up time from 25% 
percent to 100% of load in as little as 5 seconds [207].  

 
 
Concerning system reserves, they are required to deal with forecast errors, e.g., from renewable 

generation. These reserves can be modeled as a percentage of the expected renewable generation 
and demand [208]. For example, a 35% of the forecasted hourly peak demand [209] can be added 
to (52). Alternatively, probabilistic approaches using interval predictions can be incorporated in 
the proposed EMS optimization problem for more accurate estimation of system’s reserves [210].  
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Despite the above, both ramping and reserves constraints can be included in the EMS formulation 

presented in Section 3.5.2, for example, following the EMS model presented in [26]. In addition, 
uncertainties in the renewables forecast can significantly affect dispatch decisions in the MG. 
Nevertheless, the analysis of the effect of uncertainties in renewable energy and demand 
forecasting is beyond the scope of this study. With this aim, a model predictive control [26], [211], 
robust [212] or stochastic approaches [213] can be used.  
 

 
Secondly, as mentioned above, the system considered in this work for the development of the 

EMS mathematical model is assumed to be balanced. Nevertheless, MGs usually have unbalanced 
characteristics. Thus, according to [41], under certain loading conditions, phase unbalances can 
lead to deviations of the optimal dispatch strategy or the inability of the system to meet reactive 
power requirements. In addition, in an unbalanced configuration, the same load will produce higher 
system losses as compared to a balanced configuration, and when voltage-dependent load models 
are considered, higher voltage in one of the phases will lead to higher power absorbed. 
 
 

In this context, the methodology proposed in this work presents some limitations to consider 
phase unbalances. For example, the EMZ-ZIP model considers the loads to be equally distributed 
in each phase, which may lead to an under or over estimation of the SPSPs consumption when 
voltage asymmetries exist. 

 
 
Notwithstanding the above, the methodology proposed in this work can be extended to represent 

the case of an unbalanced system. For this purpose, it would be necessary to consider the following 
extensions based on the methodology presented in Section 3. 

 
• To develop an estimation model for the per phase assignment of loads in the MG. 
• To incorporate a per phase description and database for the proposed EMZ-ZIP model. 
• To extend the EMS mathematical model to include the details of an unbalanced three-phase 

system, for example, considering the EMS model presented in [41]. 

 
 
It should be noted that, the balanced MG system, where the loads are assumed to be evenly shared 

among the phases, represents a less critical scenario in terms of system losses, voltage variations, 
and reactive power requirements. Therefore, by considering an unbalanced representation, we 
would expect a better result in terms of a more accurate estimation of the SPSPs consumption, 
leading to better decision making by the EMS. In other words, the results of this work may be a 
conservative estimation of the capabilities of the proposed methodology. 
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3.9 Summary 

This chapter describes the proposed methodology for modeling SPSPs and their integration into an 
EMS. The methodology includes the development of a database containing the ZIP parameters of 
the devices that may belong to an SPSP. Then, the procedure for the development of the EMZ-ZIP 
model is presented. First, the extended TV-ZIP model that considers a flexible component and the 
parameters stored in the database of the devices that can belong to an SPSP is developed. Secondly, 
the zoning procedure is described for which it is key to consider the external weather variables that 
can influence the electrical behavior of SPSPs. Once the EMZ-ZIP model has been built, a GO 
strategy is proposed in which the results of the McCormick’s relaxations are used to obtain the 
starting points for estimating the EMZ-ZIP parameters. Next, the integration of the EMZ-ZIP to an 
EMS approach is proposed. For this purpose, to ensure that the operation of the MG is within the 
limits of bus voltages, among others, a convex EMS with network constraints is considered. Then, 
the BAM is used to develop a convex approximation of the EMZ-ZIP to achieve an effective 
integration of the model to the EMS. Finally, this chapter also described some feasible extensions 
for the proposed methodology and the most relevant aspects for the implementation of the models, 
databases and routines that comprise the proposed methodology.  
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4 Case Study, Results and Discussion 

This thesis proposes a methodology for modeling SPSPs and integrating them into an EMS for a 
MG. In this sense, this chapter presents the application of the proposed methodology to a case 
study. First, Section 4.1 presents an overview of the case study considered to apply the proposed 
methodology. Second, Section 4.2 presents the development of the EMZ-ZIP model and the 
estimation of its parameters. Third, Section 4.3 presents the results and analysis of the simulations 
of the energy management performed by the EMS (integrating the EMZ-ZIP model) during the 
operation of the MG. Next, Section 4.4 shows the results and analysis of two complementary 
performance cases to evaluate the functionality of the proposed methodology. The analysis of the 
computational time required for the EMS to reach convergence is presented in Section 4.5. Finally, 
Section 4.6 presents the discussion of the results obtained by applying the methodology proposed 
in this work to the case study under consideration. 

4.1 Case study details 

The methodology for modeling SPSPs and their integration into an EMS for a MG is tested and 
validated in a case study. This consists of a 9-bus test system, which has the characteristics of a 
low-voltage MG, specifically the low 𝑋 𝑅⁄  ratio [90]. The 9-bus system was selected because its 
topology is similar to the actual isolated MGs installed in Chile (e.g., [97], [214]). Figure 4.1 shows 
an overview of the MG of the case study. The reference values of the lengths and the 𝑋 and 𝑅 
values of the MG feeders were taken from [214]. As can be seen in Figure 4.1, the MG comprises 
two diesel generators (DGU), two transformers, a PV generator connected to the system through 
an inverter and three consumption centers. 
 
 

Additionally, as can be seen in Figure 4.1, an SPSP was connected to the MG at bus 6, which in 
this case is a solar drying process. This process consists of a processing and drying center for fruits 
and other vegetables (see Annexed B) for which it includes an electric heater, an electric fan, and 
some auxiliary equipment. The productive process is continuous process the drying period 
depending primarily on the air-drying temperature, and humidity [215]. Because it is an SPSP, it 
mainly takes advantage of solar radiation to increase the internal temperature of the dryer. 
However, during periods of poor solar contribution (e.g., sunrise, sunset, night, cloudy days, among 
others) the electric heater is used to maintain a temperature for the drying process. In addition, the 
electric fan is activated primarily during periods of high solar contribution to regulate the process 
temperature. Besides, the auxiliary electric equipment (e.g., office devices, lighting, among others) 
are used in the offices of the SPSP for the administrative activities of the process. These 
administrative activities are typically carried out from 9:00 a.m. to 6:00 p.m. (18h) The SPSP 
electric consumption measurements are collected at the coupling point, as indicated in Figure 4.1. 
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As previously described, the modeling of the MG and the SPSP of the case study was 
implemented in MATLAB®/Simulink® using the Simscape™ Electrical™ Specialized Power 
Systems blocks. Details of the models and parameter values of the MG elements of the case study 
are presented in Annexed E. 

 
Figure 4.1 Overview of the MG system including an SPSP 

4.2 Development of the EMZ-ZIP load model for the case study 

Once the test MG and the SPSP have been defined, the first stage of the proposed methodology 
(see Section 3) consists of the development of the database containing the ZIP models of the 
devices that an SPSP may have. As mentioned in the previous section, the case study includes a 
solar drying productive process. Then, from the semi-structured survey of the SPSP process 
operators, the devices comprising the SPSP and the time of energy use are determined.  
 
 

 
Table 4.1 shows the semi-structured survey and information collected for the solar drying 

process. Next, a relational database is established for this productive process which contains the 
ZIP models of the electrical devices mentioned above. The ZIP parameters of these devices are 
taken from [33]. For example, the ZIP parameters for the heater are 𝛼#,1*23*0 = 0.92, 𝛼$,1*23*0 =
0.1, 𝛼%,1*23*0 = −0.02, whereas for the fan they are 𝛼#,(2J = 0.26, 𝛼$,(2J = 0.9, 𝛼%,(2J = −0.16. 
In addition, the 𝑃/ parameter values (i.e., nominal power) for the heater, the electric fan, and 
auxiliary equipment are listed in Table 4.1. 
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Table 4.1 Information of the SPSP’s electrical devices and their time of use of energy obtained 
through the semi-structured survey. 

 
 

The next stage of the proposed methodology consists of developing the extended TV-ZIP model 
of the SPSP under study. In this sense, by considering the ZIP load models of the electric devices 
that belong to the drying process (see Table 4.1) and utilizing the procedure described in Section 
3.3.1, the extended TV-ZIP model for the active power is expressed as follows: 

𝑃(𝑘) = 𝑍𝐼𝑃()*+ P𝑉>(𝑘)R + 𝛿#(𝑘)𝑍𝐼𝑃1*23*0 P𝑉>(𝑘)R + 𝛿$(𝑘)𝑍𝐼𝑃(2J P𝑉>(𝑘)R (91) 

B𝛿'(𝑘)
$

'-#

≤ 1 (92) 

𝑍𝐼𝑃()*+ P𝑉>(𝑘)R 	= 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉> $(𝑘) + 𝛼=$(𝑘)𝑉>(𝑘) + 𝛼=%(𝑘)? (93) 

Note that because auxiliary equipment can be turned on or off at any instant (influenced by, for 
example, people's behavior), the flexible component of the extended TV-ZIP model will capture 
and represent their electrical behavior. 

 
 
The next step in the proposed methodology is the zoning of the extended TV-ZIP model. For 

this purpose, the procedure described in Section 3.3.2 is considered. First, the measurement data 
of the variables of interest for the solar drying process are obtained, which are mainly solar 
radiation, ambient temperature, relative humidity, and time. On the one hand, the data of these 
variables are the inputs for the ANN-based zones identifier, and they are actual measurements that 
were taken from [216]. On the other hand, the time of use of energy information obtained through 
the semi-structured survey (see Table 4.1) is used to develop the output vector for the ANN 
training. 
 
 

The ANN approach used in this work is a MLP with a sigmoidal activation function and the 
training process was performed using the Levenberg-Marquardt algorithm. The ANN architecture 
is defined following the method described in Section 3.3.2; thus, the ANN consists of an input 
layer, a hidden layer with 8 neurons and an output layer as shown in Figure 4.2. 

Time of use of energy (          = on,           = off)

Solar 
dryer
SPSP

Type of
device

Nominal 
power
(W)

Nominal 
voltaje 

(V)
Quantity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Heater 2,000 220 1

Fan 610 220 1

Aux. eq. 420 - 800 220 n/a
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Figure 4.2 ANN architecture 

For the zone identification procedure, solar radiation, ambient temperature, relative humidity 
data measured every 10 minutes for 54 days and time information (i.e., an input 1296 x 4 matrix), 
and an output vector of 1296 are used. Then, 70% of the data set was used for training, 15% for 
validation and 15% for testing. With the trained model, a second data set of 188 samples (i.e., 48 
hours) was used to perform zone identification. Figure 4.3 shows the plots of the second data set 
used by the zone classifier and the results of the identified zones. 

 
Figure 4.3 (a) Solar irradiation, (b) ambient temperature, (c) relative humidity, and (d) actual 

and predicted zones 
 

Considering the time of use of energy information obtained from the semi-structured survey 
(see Table 4.1), it can be established that the heater may be turned on in zones I and III, the electric 
fan can be activated mainly in zone III, and the auxiliary equipment may be active at any time, i.e., 
in all zones. Then, using the expressions in (91)-(93), an extended TV-ZIP is established for each 
identified zone for which parameter identification is carried out. Table 4.2 summarizes the details 
of the active devices and the parameters to be identified in each zone.  
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Table 4.2 Active devices and parameters to be identified in each zone 

Zone Active devices Parameters 
I Heater + auxiliary equipment 𝑃()*+(𝑘), 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘), 𝛿#(𝑘) 
II Electric fan + auxiliary equipment 𝑃()*+(𝑘), 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘), 𝛿$(𝑘) 
III Heater + auxiliary equipment 𝑃()*+(𝑘), 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘), 𝛿#(𝑘) 

 
Parameter identification is performed considering the procedure proposed in Section 3.4, 

specifically the optimization problem in (16)-(22) and the GO-MK strategy. In addition, parameter 
identification is carried out for every 10 minutes of a representative day, i.e., 144 discrete time 
steps. Moreover, the input data (i.e., voltage and power measurements) required for parameter 
identification were obtained from a simulator of the solar drying productive process (see Annexed 
E.6). Measurements collected every 10 minutes for 8 days are considered, i.e., 1152 samples of 
which the measurements of 7 days are used for parameter identification and the measurements of 
the remaining day are considered to validate the parameter identification result. Figure 4.4 displays 
the results of the active power estimated using the EMZ-ZIP model and the evolution of the 
identified parameters. 

 
Figure 4.4 (a) Measured and estimated active power, (b) evolution of the parameters 

𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘) identified using the EMZ-ZIP, and (c) evolution of the parameters 
𝛿#(𝑘), 𝛿$(𝑘) identified using the EMZ-ZIP load model 
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As illustrated by Figure 4.4(a), the EMZ-ZIP model can properly estimate new values of active 
power for the validation period (i.e., 1 day). Figure 4.4(b) shows the evolution of the parameters 
the capture the sensitivity of the SPSP loads to voltage variations (i.e., 𝛼=#(𝑘), 𝛼=$(𝑘), 𝛼=%(𝑘)). 
Moreover, Figure 4.4(c) illustrates the evolution identified parameters 𝛿#(𝑘) and 𝛿$(𝑘) which 
represent the contribution of the heater and electric fan to total load consumption, respectively. 
Additionally, to assess the quality of the EMZ-ZIP, a residual analysis was performed. Figure 7 
depicts the results of the residual analysis. 

 
Figure 4.5 (a) Histogram of residuals, (b) normal probability plot, (c) residuals vs. dependent 

variable plot, and (d) residuals vs. independent variable plot 
 

It can be observed from Figure 4.5(a) and Figure 4.5(b) that the residuals are normally 
distributed (𝜇 = 0.0018, 𝜎 = 0.041). Nevertheless, some deviations int the tails can be observed. 
So, we applied the Anderson-Darling normality test [217] where the resulting 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.07 
confirms that the residuals are normally distributed. From the results in Figure 4.5(c) and Figure 
4.5(d), it is evident that the residuals have no dependence with the dependent variable and the 
independent variable. These results reveal that the EMZ-ZIP load model can adequately represent 
the relationship between the dependent variable and the independent variable, i.e., power 
consumption of the SPSP and voltage, respectively. 
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Table 4.3 shows the type of programming model, size (number of decision variables), 
computational time and percentage time improvement to identify the parameters of the 
representative (i.e., 144 discrete time steps) of the TV-ZIP and the EMZ-ZIP models considering 
the GO and the GO-MK strategy (see Section 3.4). It should be noted that the GO approach employs 
a random starting point; thus, to determine the computational time, we performed 25 experiments 
with random points following a uniform distribution and averaged the times obtained. 

Table 4.3 Type of programming model, size, computational time, and percentage time 
improvement for the TV-ZIP and the EMZ-ZIP 

Load 
model Strategy 

Type of 
programming 

model 

Size (number 
of decision 
variables) 

Time (s) 
Time 

improvement 
(%) 

TV-ZIP GO NLP 576 179.33 - 
GO-MK LP+NLP 1584 155.65 15.21 

EMZ-ZIP GO NLP 720 354.75 - 
GO-MK LP+NLP 1872 270.43 31.17 

 
As can be seen in Table 4.3, the GO approach solves an NLP type problem, while the resulting 

problem for the GO-MK strategy is LP+NLP due to the use of the MK result as a starting point for 
the GO method. In general, the optimization problem solved by the GO-MK strategy presents more 
variables because it first solves the problem with the MK relaxation. However, the GO-MK method 
presents a lower computational time than the GO with random starting point. For example, for the 
TV-ZIP model and for the EMZ-ZIP model there is an improvement in computational time of about 
15% and 31%, respectively. This is an expected result for two main reasons. First, although the 
MK result is suboptimal, it is close to the global optimum; therefore, the GO method requires less 
time to reach the best solution. Second, the McCormik's relaxations optimization model is a LP 
type which does not considerably increase the computational burden because it can be solved in 
polynomial time [179]. 

 
 
Considering the GO-MK strategy, the number of variables of the EMZ-ZIP is relatively larger 

(1872) than the TV-ZIP model (1584) because of the EMZ-ZIP model structure (see Section 3.3). 
Therefore, it takes more time to estimate the parameters of the EMZ-ZIP model. In average, it takes 
1.08 seconds and 1.87 seconds to estimate the set of parameters for each time step k for the TV-
ZIP and the EMZ-ZIP model, respectively. Then, the total time span incurred to estimate the 
parameters of the EMZ-ZIP model for a representative day (i.e., 144 discrete time steps) is within 
a reasonable computational time (around 4.5 minutes), making it suitable for practical applications. 

4.3 Operation of MG-EMS 

Once the EMZ-ZIP parameters have been identified, the MG operation can be performed (stage E 
of the proposed methodology, see Section 3.1). The time domain of the MG operation simulation 
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is 1 millisecond, while the EMS minimizes the operational costs of the MG (using the optimization 
problem described in Section 3.5.2) based on available generation and expected demand, and then 
sends operating setpoints every 10 minutes to the dispatchable units. In addition, the primary 
control of voltage and frequency are based on local control strategies implemented at each 
generation unit (see Annexed E). 
 

 
Since the MG includes a PV generation unit (see Figure 4.1), its power injection was obtained 

using the model described in Annexed E.5 and a solar radiation profile taken from [216]. The 
expected power consumption in the EMS is obtained through the already identified parameters of 
the EMZ-ZIP (in the case of the SPSP), while the power consumption of the other loads in the 
system are obtained in a similar way because they are modeled as voltage-sensitive loads. 

  
 
One day of operation (i.e., 24 hours) was considered to analyze the operation of the MG-EMS.  

In addition, to analyze the performance of the MG operation when representing the SPSP 
consumption with different load models, three cases were considered: i) EMS including a CP model 
(in this case a persistence modela [218] was used), ii) EMS considering a TV-ZIP to represent the 
SPSP, and iii) the EMZ-ZIP model as integral part into the EMS. For comparison purposes, the 
following performance indicators were considered: i) simulated system operating costs and 
expected EMS operating costs (in Chilean pesos or CLP), ii) reference and operating voltages at 
the generation buses, iii) and the estimated power consumption of the SPSP in the EMS. It should 
be noted that the same PV power generation profile was considered for the three cases of load 
representation models, i.e., CP, TV-ZIP and EMZ-ZIP. Figure 4.6 shows the evolution of the 
simulated system operating costs and the expected costs obtained from the EMS for the analysis 
period (i.e., 1 day) and for the three cases of load representation, and the relative error between the 
costs obtained with the CP representation vs. the other two models. 

 
a The persistence model consists of using the power consumption measurement of the previous time step to determine 
the operating setpoints for the next time step, i.e., 𝑃(𝑘) 	= 	𝑃(𝑘 − 1). 
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Figure 4.6 (a) Simulated system operating costs and estimated costs obtained from the EMS for 
the three cases (i.e., CP, TV-ZIP and EMZ-ZIP), (b) evolution of the relative error between the 

costs obtained with the CP model vs. TV-ZIP and EMZ-ZIP 

Table 4.4 presents a summary of simulated operating costs for the three SPSP load representation 
cases. The summary includes the following: total operating cost (Total), minimum cost (Min), 
maximum cost (Max), average total operating cost for the evaluation day (Avg.), average operating 
cost reduction considering the CP model as base case (Avg. red.), and the minimum, maximum 
and standard deviation (Std.) of the average operating cost reduction. Table 4.5 shows the summary 
of the operating costs obtained from the EMS for the three cases, considering the same indicators. 
And Table 4.6 presents a summary of the difference (relative percentage error) between the 
simulated operating costs and those obtained from the EMS for each case of representation of the 
SPSP load. 

Table 4.4 Summary of simulated operating costs 

Load 
model 

Total 
(CLP) 

Min 
(CLP) 

Max 
(CLP) 

Avg. 
(CLP) 

Avg. 
red. (%) 

Min 
(%) 

Max 
(%) Std. 

CP 3.927e6 1.232e3 9.677e3 5.843e3 - - - - 
TV-ZIP 3.768e6 1.112e3 9.677e3 5.606e3 4.762 0 10.564 1.774 
EMZ-ZIP 3.767e6 1.112e3 9.677e3 5.605e3 4.800 0 10.564 1.824 
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Table 4.5 Summary of operating costs obtained from the EMS 

Load 
model 

Total 
(CLP) 

Min 
(CLP) 

Max 
(CLP) 

Avg. 
(CLP) 

Avg. 
red. (%) 

Min 
(%) 

Max 
(%) Std. 

CP 3.885e6 1.216e3 9.449e3 5.780e3 - - - - 
TV-ZIP 3.689e6 1.044e3 8.149e3 5.489e3 7.447 2.328 22.142 5.885 
EMZ-ZIP 3.695e6 1.044e3 8.149e3 5.497e3 7.075 2.328 22.142 5.349 

 
Table 4.6 Summary of the difference between the simulated operating costs and those obtained 

from the EMS for the three cases of load representation 

Load model Avg. (%) Min (%) Max (%) 
CP 4.280 0.0024 25.811 
TV-ZIP 4.769 0.0053 27.356 
EMZ-ZIP 4.361 0.0049 29.356 

The results of actual MG operating costs in Table 4.4 show that considering load representations 
that capture the sensitivity of the loads to voltage variations results in a considerable reduction in 
total MG operating costs, by about 5% in the case of EMZ-ZIP. This result is explained by the fact 
that when considering voltage sensitive loads, the EMS with an AC approach will try to minimize 
the voltage at the load buses to reduce the power consumption; thus, reducing the operating costs, 
and consequently the voltages will be close to the minimum allowed value [133]. This same trend 
was observed in the operating costs obtained from the EMS (see Table 4.5). Nevertheless, in this 
case, the highest reduction in operating costs (7.447%) is obtained with the TV-ZIP model. Further, 
the results in Table 4.6 show that the smallest difference between the actual operating costs and the 
operating costs estimated from the EMS is obtained with the EMZ-ZIP model (4.361%). This can 
be explained because the EMZ-ZIP model better captures the dependence of the SPSP loads on 
voltage (see Section 2.3.3); therefore, it better represents the SPSP power consumption. 
 
 

Figure 4.7(a) shows the results of the reference and generated power of the diesel generators, 
and the power generation profile of the PV unit. Figure 4.7(b) shows the power consumption profile 
of the SPSP simulated in the system and obtained from the EMS using the CP load model. In 
addition, Figure 4.8(a), Figure 4.8(b), Figure 4.9(a) and Figure 4.9(b) show similar results but 
considering the TV-ZIP model (Figure 4.8) and the EMZ-ZIP model (Figure 4.9). 
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Figure 4.7 (a) Reference and generated power of the diesel generators, and the power generation 
profile of the PV unit, (b) power consumption profile of the SPSP simulated and obtained from 

the EMS using the CP model 
 

 
Figure 4.8 (a) Reference and generated power of the diesel generators, and the power generation 
profile of the PV unit, (b) power consumption profile of the SPSP simulated and obtained from 

the EMS using the TV-ZIP load model 
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Figure 4.9 (a) Reference and generated power of the diesel generators, and the power generation 
profile of the PV unit, (b) power consumption profile of the SPSP simulated and obtained from 

the EMS using the EMZ-ZIP load model 

Table 4.7 presents a summary of the results of the relative percentage error of the SPSP power 
consumption between simulated and obtained from the EMS using each of the load models, i.e., 
CP, TV-ZIP and EMZ-ZIP. The results include the average error (Avg.), minimum (Min), 
maximum (Max) and standard deviation (Std.). 

Table 4.7 Summary of the results of the relative percentage error of the SPSP power consumption 
between simulated and obtained from the EMS using each load 

Load model Avg. (%) Min (%) Max (%) Std. 
CP 12.515 1.269e-7 294.419 32.923 
TV-ZIP 12.691 0.0011 305.529 30.994 
EMZ-ZIP 11.973 0.0013 305.259 31.607 

 
As can be seen in Figure 4.7(a), Figure 4.8(a) and Figure 4.9(a) the local controllers of the diesel 

generators are able to follow the power operating setpoints sent from the EMS. In addition, it is 
observed that the diesel generators decrease their power generation when the PV unit injects its 
energy production to the system. Thus, there is not a significant difference between the actual 
operating costs and the operating costs obtained from the EMS. Moreover, in the period between 
13:00 and 16:00 there is a fan switch-on. Then, comparing Figure 4.8(b) and Figure 4.9(b) it can 
be observed that the TV-ZIP model is not able to represent the switching on of another device in 
the same zone which leads to a higher estimation error than the EMZ-ZIP model. Further, the 
results in Table 4.7 reveal that when considering the EMZ-ZIP model to represent the power 
consumption of the SPSP, the average error between the simulated and estimated consumption of 
the SPSP is slightly lower (11.973%) compared to the other load models. This is because the EMZ-
ZIP model better captures the dependence of the SPSP loads on voltage variations which leads to 
a decrease in the error. 



86 
 

Figure 4.10(a) displays the results of the reference and operating voltages at the generation buses 
of the system, and Figure 4.10 (b) shows the operating voltages at the MG load buses when the 
SPSP load is represented with a CP model. Besides, Figure 4.11(a), Figure 4.11(b), Figure 4.12(a) 
and Figure 4.12 (b) depict similar results but when the SPSP power consumption is represented 
through a TV-ZIP model (Figure 4.11) and using the EMZ-ZIP model (Figure 4.12). Table 4.8 
presents a summary of the results of the relative percentage error between voltage references and 
bus voltages at generation buses. 

 
Figure 4.10 (a) Reference and operating voltages at the generation buses of the system, (b) 

operating voltages at the load buses of the MG when the SPSP power consumption is represented 
through a CP model 

 
Figure 4.11 (a) Reference and operating voltages at the generation buses of the system, (b) 

operating voltages at the load buses of the MG when the SPSP power consumption is represented 
through a TV-ZIP model 
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Figure 4.12 (a) Reference and operating voltages at the generation buses of the system, (b) 

operating voltages at the load buses of the MG when the SPSP power consumption is represented 
through the EMZ-ZIP load model 

 
Table 4.8 Summary of the results of the relative percentage error between voltage references and 

bus voltages at generation buses 

  DGU1 DGU2 
Load model Avg. (%) Min (%) Max (%) Avg. (%) Min (%) Max (%) 
CP 0.0436 1.225e-5 9.249 0.0324 2.015e-5 8.629 
TV-ZIP 0.0426 1.582e-5 9.249 0.0340 4.709e-5 8.629 
EMZ-ZIP 0.0425 2.365e-5 9.249 0.0339 6.178e-5 8.629 

 
Figure 4.13 depicts the simulated operating frequency of the MG when the SPSP power 

consumption is represented through the CP, TV-ZIP and EMZ-ZIP model. Table 4.9 presents a 
summary of the results of the simulated operating frequency of the MG when the SPSP power 
consumption is represented through the CP, TV-ZIP and EMZ-ZIP model. The results include the 
average frequency (Avg.), minimum (Min), maximum (Max) and standard deviation (Std.). 

 
Figure 4.13 Simulated operating frequency of the MG when the power consumption of the SPSP 

is represented through the CP, TV-ZIP and EMZ-ZIP model 
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Table 4.9 Summary of the results of the simulated operating frequency of the MG when the SPSP 
power consumption is represented through the CP, TV-ZIP and EMZ-ZIP model 

Load model Avg. (Hz) Min (Hz) Max (Hz) Std. (Hz) 
CP 49.67 48.22 51.80 0.27 
TV-ZIP 49.70 48.31 51.09 0.24 
EMZ-ZIP 49.71 48.33 51.08 0.23 

Overall, the results shown in Figure 4.10, Figure 4.11 and Figure 4.11 show that with the 
operating setpoints sent from the EMS, the voltages at the generation and load buses of the MG are 
under normal operating levels for the three cases of SPSP load representation (CP, TV-ZIP and 
EMZ-ZIP). However, comparing Figure 4.10(a), Figure 4.11(a) and Figure 4.12(a) shows that the 
reference voltages sent by the EMS remain close to 1.00 p.u. when the SPSP consumption is 
represented through a CP model. This is an expected result because this type of model does not 
consider the dependence of the power consumption on the voltage. In contrast, as previously 
mentioned, when voltage-dependent load models (i.e., TV-ZIP or EMZ-ZIP) are considered, the 
EMS will try to keep the voltages at the load buses to the minimum allowed value to decrease the 
load consumption; hence, minimizing the operating costs. Nevertheless, using the EMZ-ZIP model 
results in a slightly smaller difference between the simulated and reference voltages sent from the 
EMS (see Table 4.8). Finally, considering the results of Figure 4.13 and Table 4.9 it is observed 
that the average operating frequency is closer to the nominal frequency (50 Hz) when the SPSP is 
represented using the EMZ-ZIP than the CP model. Surprisingly, the operating frequency results 
using the TV-ZIP are similar to the EMZ-ZIP. This can be explained by the time-variant 
characteristic of the TV-ZIP model that makes it better than the conventional ZIP model. 

4.4 Practical performance aspects  

From the results presented in the previous section, the advantage of considering voltage-dependent 
loads to represent the loads, especially of the SPSP, was evident. However, the results showed 
slight differences between the EMZ-ZIP model and the TV-ZIP model. In this sense, to further 
analyze the performance of the two models, we designed two additional cases of MG operation 
that are expected in practice, which are: i) change in the scheduling of the SPSP production 
activities, and ii) variability in the solar radiation profile. 
 
 

Case 1: In this case, we have assumed that there was a change in the scheduling of the SPSP 
production activities. More specifically, we consider moving the morning work shift to an earlier 
time because more products need to be produced. Therefore, in the new scheduling, the work shift 
starts at 8:00 a.m. instead of 9:00 a.m. In this context, one day of MG operation was simulated 
including the change in productive activities and keeping the MG operating parameters similar to 
the experiments performed in the previous section. This experiment was performed by representing 
the SPSP in the EMS through the TV-ZIP model and then using the EMZ-ZIP. Moreover, a three-
hour analysis window from 7:00 a.m. to 10:00 a.m. was considered. Figure 4.14 depicts the 
reference and generated power of the diesel generators, and the power generation profile of the PV 
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unit, the power consumption profile of the SPSP simulated and obtained from the EMS using the 
TV-ZIP load model, and the zoom plot of the three-hour period. Figure 4.15 shows the same results 
but in this case the SPSP was represented using the EMZ-ZIP model. Table 4.10 presents a 
summary of the results of the relative percentage error of the SPSP power consumption between 
simulated and obtained from the EMS using each of the load models considered in this case, i.e., 
TV-ZIP and EMZ-ZIP. Table 4.11 shows a summary of the difference between simulated operating 
costs and those obtained from the EMS for the whole operating day. Table 4.12 summarizes the 
results of the relative percentage error of the SPSP power consumption between simulated and 
obtained from the EMS using each load model for the three-hour analysis window. Table 4.13 
gives a summary of the difference between operating the actual MG operating costs and the costs 
obtained from the EMS for the whole operating day. Figure 4.16 shows the simulated operating 
frequency of the MG when the power consumption of the SPSP is represented through the TV-ZIP 
and EMZ-ZIP model for the three-hour analysis window. Table 4.14 presents a summary of the 
simulated operating frequency results such as average frequency (Avg.), minimum (Min), 
maximum (Max) and standard deviation (Std.). 

 
Figure 4.14 (a) Reference and generated power of the diesel generators, and the power generation 
profile of the PV unit, (b) power consumption profile of the SPSP simulated and estimated in the 

EMS using the TV-ZIP for the three-hour period 
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Figure 4.15 (a) Reference and generated power of the diesel generators, and the power generation 
profile of the PV unit, (b) power consumption profile of the SPSP simulated and estimated in the 

EMS using the EMZ-ZIP for the three-hour period 

Table 4.10 Summary of the results of the relative percentage error of the SPSP power 
consumption between simulated and obtained from the EMS using each load model for the whole 

operating day 

Load model Avg. (%) Min (%) Max (%) Std. 
TV-ZIP 15.215 0.0011 305.529 32.898 
EMZ-ZIP 12.189 0.0013 305.259 31.845 

 
Table 4.11 Summary of the difference between simulated operating costs and those obtained 

from the EMS for the whole operating day 

Load model Avg. (%) Min (%) Max (%) 
TV-ZIP 4.794 0.0053 27.356 
EMZ-ZIP 4.285 0.0049 27.355 

 
Table 4.12 Summary of the results of the relative percentage error of the SPSP power 

consumption between simulated and obtained from the EMS using each load model for the three-
hour analysis window 

Load model Avg. (%) Min (%) Max (%) Std. 
TV-ZIP 45.205 0.154 75.634 28.586 
EMZ-ZIP 17.198 0.086 73.038 21.967 

 
Table 4.13 Summary of the difference between simulated operating costs and those obtained 

from the EMS for the three-hour analysis window 

Load model Avg. (%) Min (%) Max (%) 
TV-ZIP 3.720 0.141 10.267 
EMZ-ZIP 2.511 0.271 8.115 
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Figure 4.16 Simulated operating frequency of the MG when the power consumption of the SPSP 

is represented through the TV-ZIP and EMZ-ZIP model for the three-hour analysis window 

Table 4.14 Summary of the results of the simulated operating frequency of the MG when the 
SPSP power consumption is represented through the TV-ZIP and EMZ-ZIP model for the three-

hour analysis window 

Load 
model Avg. (Hz) Min (Hz) Max (Hz) Std. 

TV-ZIP 49.86 49.65 50.30 0.112 
EMZ-ZIP 49.89 49.72 50.30 0.108 

As can be seen in Figure 4.14(b), the TV-ZIP model was not able to identify the change in the 
scheduling of production activities; therefore, it presents a cumulative average error of about 45% 
in the analysis window (see Table 4.12). In contrast, the EMZ-ZIP model presents a lower 
cumulative error in the analysis window, specifically 17.198%. This is because the EMS in its 
routines includes a zone transition analysis (see Section 3.6). Then, in the case of the change in the 
scheduling of production activities, it can use the EMZ-ZIP zoning to advance the operating zone 
(see Figure 4.15(b)). Therefore, this feature presented by the EMZ-ZIP model contributes to reduce 
the SPSP consumption estimation error both in the analysis window (see Table 4.12) and in the 
whole operating day (see Table 4.10) which leads to reduce the error between the actual operating 
costs of the MG and those expected from the EMS which in this case is 2.511% as shown in Table 
4.13. Finally, considering the results of Figure 4.16 and Table 4.14 it can be observed that the 
average operating frequency is closer to the nominal frequency (50 Hz) when the SPSP is 
represented using the EMZ-ZIP than the TV-ZIP model. In addition, the average operating 
frequency of the system in the period where the scheduling change occurs is closer to the nominal 
frequency (50 Hz) when using the EMZ-ZIP model. This is because of the zone transition analysis 
strategy of the EMZ-ZIP. 

 
 
Case 2: In practical operating scenarios, some variability in the solar resource is expected, for 

example, due to cloudy days. In this sense, a random variable with uniform distribution was added 
to the original solar radiation profile. In addition, to evaluate the performance of the two models 
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(i.e., TV-ZIP and EMZ-ZIP) in representing the SPSP consumption under these variability 
conditions, a sensitivity analysis was performed. This consisted of adding the random variable with 
10%, 20% or 30% of the value of each solar radiation profile measurement. The sensitivity analysis 
focused mainly on the performance of each model to represent the SPSP consumption and the 
difference between the actual operating costs and those obtained from the EMS. Figure 4.17(a) 
shows the results of the reference and generated power of the diesel generators, and the power 
generation profile of the PV unit and Figure 4.17(b) shows the power consumption profile of the 
SPSP simulated in the system and obtained from the EMS using the CP load model for 30% 
variability in the solar radiation profile. Figure 4.18 shows the same results but in this case the 
SPSP was represented using the EMZ-ZIP model. Table 4.15 presents a summary of the relative 
percentage error of the SPSP power consumption between simulated and obtained from the EMS 
for the sensitivity analysis, while Table 4.16 summarizes the relative percentage error between the 
simulated operating costs and those obtained from the EMS. The base case results correspond to 
those previously obtained with the original solar radiation profile. 

 
Figure 4.17 (a) Reference and generated power of the diesel generators, and the power generation 

profile of the PV unit, and (b) power consumption profile of the SPSP simulated and obtained 
from the EMS using the TV-ZIP load model for 30% variability in the solar radiation profile 
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Figure 4.18 (a) Reference and generated power of the diesel generators, and the power generation 

profile of the PV unit, and (b) power consumption profile of the SPSP simulated and obtained 
from the EMS using the EMZ-ZIP load model for 30% variability in the solar radiation profile 

 
Table 4.15 Summary of the sensitivity analysis results: relative percentage error of the SPSP 

power consumption between simulated and obtained from the EMS 

Solar radiation var. Load model Avg. (%) Min (%) Max (%) 

Base case 
TV-ZIP 4.769 0.0053 27.356 
EMZ-ZIP 4.361 0.0049 29.356 

10% 
TV-ZIP 5.468 0.0015 47.181 
EMZ-ZIP 5.255 0.0019 47.182 

20% 
TV-ZIP 7.310 0.0030 85.175 
EMZ-ZIP 7.175 0.0024 85.175 

30% 
TV-ZIP 8.484 0.0039 139.314 
EMZ-ZIP 8.425 0.0039 139.311 
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Table 4.16 Summary of the sensitivity analysis results: relative percentage error between the 
simulated operating costs and those obtained from the EMS 

Solar radiation var. Load model Avg. (%) Min (%) Max (%) 

Base case 
TV-ZIP 12.691 0.0011 305.529 
EMZ-ZIP 11.973 0.0013 305.259 

10% 
TV-ZIP 12.722 0.0028 305.309 
EMZ-ZIP 12.001 0.0082 305.309 

20% 
TV-ZIP 12.733 0.0019 305.356 
EMZ-ZIP 12.022 0.0085 305.356 

30% 
ZIP 12.746 0.0010 305.300 
EMZ-ZIP 12.039 0.0030 305.300 

 
Overall, the results in Figure 4.17(a) and Figure 4.18(a) show that the variability in the solar 

radiation profile influences the operating setpoints sent from the EMS, since in certain periods the 
reference power of the DGU1 increases or decreases to cope with such variability. In addition, the 
local controllers are able to follow the power references sent from the EMS. However, DGU2 must 
generate power at certain times to maintain the balance between generation and demand, which is 
considerably affected by the variability of the solar radiation profile. 

 
 
In addition, as expected, the variability in the solar resource considerably influences the 

performance of the load models when estimating SPSP consumption. This is evident in Table 4.15 
since the error between the simulated and estimated power with the TV-ZIP model increases from 
4.769% in the base case to 8.484% when the variability is 30%. Similarly, the error between the 
simulated and estimated power with the EMZ-ZIP model increases from 4.361% to 8.425%. This 
increase in the SPSP power consumption estimation error affects the expected costs in the EMS vs. 
the actual operating costs of the MG. However, in all scenarios of solar profile variability the EMZ-
ZIP load model presents a lower error than the TV-ZIP model (see Table 4.16). 

4.5 EMS computational performance 
Table 4.17 shows the computing time required to reach convergence for each case presented 

above (i.e., operation of MG-EMS, change in planning of production activities and solar radiation 
variability) and for each model. We ran the computational experiment for each case and for each 
load model during a 24-hour period. We then averaged the time taken by the EMS each time it 
solves the optimization problem, these averages are illustrated in Table 4.17. Note that the EMS 
runs every 10 minutes. Thus, it runs 144 times over a 24-hour period. Table 4.17 shows that, in all 
the studied cases, the convergence time of the EMS that integrates the EMZ-ZIP model is almost 
the same as the CP and the TV-ZIP in all cases. This implies that, although the proposed approach 
is more elaborate, it does not significantly increase the solver time. Therefore, making it feasible 
for practical applications where the proposed approach can be implemented on a typical computer 
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used in rural MGs. It should be noted that no convergence problems were observed in all numerical 
exercises performed with the programmed EMS routines.  

Table 4.17 Average time taken by the EMS to reach convergence for each case and for each 
load model 

Case Load model Avg. time (sec) 

Operation of MG-EMS 
CP 1.988 
TV-ZIP 2.039 
EMZ-ZIP 2.043 

Change in the scheduling of the SPSP production activities 
TV-ZIP 1.865 
EMZ-ZIP 2.025 

Solar radiation variability 
TV-ZIP 2.202 
EMZ-ZIP 2.001 

4.6 Discussion 
In this chapter, a case study is presented in which the proposed methodology is applied to model 
SPSPs and integrate them into an EMS approach for the operation of a MG. To evaluate the 
performance of the EMZ-ZIP model, it is compared with two other alternatives (i.e., CP model and 
TV-ZIP) to represent the power consumption of the SPSP. The actual MG operating costs, the 
expected costs from the EMS, the SPSP power consumption simulated and obtained from the EMS, 
and the voltage levels at the generation and load buses are considered as performance indicators. 
 
 

Firstly, using the MK result as a starting point for the GO method achieves better performance 
from a computational time point of view. This is because two main reasons: i) although the MK 
result is suboptimal, it is close to the global optimum; therefore, the GO method requires less time 
to reach the best solution, and ii) the McCormik's relaxations optimization model is a LP type 
which does not considerably increase the computational burden because it can be solved in 
polynomial time [179]. In addition, the number of variables of the EMZ-ZIP is relatively larger 
than the TV-ZIP model because of the EMZ-ZIP model structure (see Section 3.3). Therefore, it 
takes more time to estimate the parameters of the EMZ-ZIP model. Nevertheless, the total time 
span incurred to estimate the parameters of the EMZ-ZIP model for a representative day (i.e., 144 
discrete time steps) is within a reasonable computational time, making it suitable for practical 
applications. 

 
 
Secondly, the reduction of operating costs is evidenced by considering voltage-dependent load 

models. In this sense, using the proposed EMZ-ZIP model, the highest reduction in actual operating 
costs is achieved and the lowest relative error between the actual operating costs and the expected 
costs in the EMS. In addition, the ability of the EMZ-ZIP model to deal with considerable changes 
in the SPSP consumption profile due to a change in the scheduling of production activities is 
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remarkable both in the estimation of SPSP consumption and the operating frequency of the MG. 
Further, the sensitivity analysis, specifically the variability in the solar radiation profile evidence 
the robustness of the EMS when considering the EMZ-ZIP model to represent the productive 
process consumption. More specifically, despite the expected increase in the SPSP consumption 
estimation error and between the actual operating costs and those expected from the EMS, using 
the EMZ-ZIP model resulted in slight lower errors. In summary, these results reveal that the EMZ-
ZIP model has a better performance compared to the other two considered alternatives to represent 
the complex electrical behavior of the SPSPs. 

 
 
Finally, it should be noted that the benefits of the proposed EMZ-ZIP model versus the existing 

TV-ZIP model are relatively small. A comparative summary is presented in the following Table 
4.18. 

 
Table 4.18 Comparative summary of the results obtained using the EMZ-ZIP and the TV-ZIP 

models 

 Description EMZ-
ZIP TV-ZIP 

Operation of 
MG-EMS 

Relative error of the SPSP power consumption between 
simulated and obtained from the EMS (%) 12.0 12.7 

Difference between simulated operating costs and those 
obtained from the EMS (%) 4.4 4.8 

Average reduction in MG operating costs (%) 4.8 4.8 

Change in the 
scheduling of 

the SPSP 
production 
activities 

Relative error of the SPSP power consumption between 
simulated and obtained from the EMS for the three-hour 
analysis window (%) 

17.2 45.2 

Difference between simulated operating costs and those 
obtained from the EMS for the three-hour analysis 
window (%) 

2.5 3.7 

Relative error of the SPSP power consumption between 
simulated and obtained from the EMS for the whole 
operating day (%) 

12.2 15.2 

Difference between simulated operating costs and those 
obtained from the EMS for the whole operating day (%) 4.3 4.8 

Solar 
radiation 

variability 

Average relative error of the SPSP power consumption 
between simulated and obtained from the EMS for a 10% 
in solar radiation variability (%) 

5.3 5.5 

Average relative error between the simulated operating 
costs and those obtained from the EMS for a 10% in solar 
radiation variability (%) 

12.0 12.7 
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The EMZ-ZIP approach dominates the overall performance indexes (costs and prediction errors) 
with values between 2.5% and 17.2%. Thus, the additional benefits seem to be relatively small for 
a proposal that is more complex than the TV-ZIP one. Nevertheless, the EMZ-ZIP approach also 
involves the zone definition and transition strategies where the benefits obtained in reducing the 
SPSP consumption estimation error are much more relevant (17.2%) than the TV-ZIP (45.2%). 
Moreover, it should be noted that the proposed zone definition strategy is not feasible for the 
conventional TV-ZIP approach. This is because the zone definition requires the information 
collected from surveys and ZIP model databases, which are part of the EMZ-ZIP proposal. 
Furthermore, as described above, the increased complexity of the EMZ-ZIP is manageable from 
the perspective of computational requirements and convergence. 

 
 
It should be noted that, although the differences in percentages between the results of the EMZ-

ZIP and TV-ZIP models are relatively small, achieving a decrease in the operating costs of MGs 
installed in remote locations would directly imply an increase in the autonomy of such MGs. This 
is because the fossil fuel-based generation units would be used in a better way. Therefore, it is 
expected that fuel consumption will be lower leading to an increase in the autonomy of the MGs 
and a reduction in other associated costs such as fuel logistics and transportation. 
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5 Conclusions and Future work 

5.1 Conclusions 

In this thesis, a methodology for modeling the SPSPs that include electrical devices and their 
integration into an EMS for an MG has been proposed. The voltage-dependence and the complex 
electrical consumption of the SPSPs was addressed through a novel extended multi-zone ZIP load 
model. This model employs information of the electrical devices that the SPSPs may include and 
the time of use of energy of these devices obtained through semi-structured surveys. With this 
information, first, a relational database is created that includes the ZIP models of the devices that 
may have SPSPs. Second, an extended ZIP model is developed combining a flexible ZIP 
component and the ZIP models of the devices that belong to an SPSP. Then, through a zoning 
procedure and using the information obtained from the surveys, the zones and the devices that may 
be active in each zone are identified. This is useful primarily for two reasons: i) it reduces the 
complexity for parameter identification and ii) it improves the representation of the sensitivity of 
the SPSP loads to voltage variations. Next, based on a BAM approach an integration of the EMZ-
ZIP model to an EMS for the operation of an MG was proposed. 
 
 

The semi-structured survey plays a key role in collecting information regarding the structure of 
the SPSP, i.e., the electrical devices it may include and their time of use of energy. Further, with 
the information of the SPSP structure, it is feasible to create a database which contains the ZIP 
models of the devices that the SPSP may contain. It should be noted that this database is the main 
source of information for all stages of the methodology presented in Section 3. Moreover, the time 
of use of energy information was used to analyze the influence of external weather variables on the 
operation of the SPSP devices and to determine the operation zones used in the training stage of 
the ANN. 
 

 
The GO strategy showed excellent performance in dealing with non-convexities due to the 

product of the bilinear terms of the flexible component of the EMZ-ZIP model. In addition, when 
using the result of the McCormick’s relaxations as a starting point for GO, the size (i.e., number of 
decision variables) of the resulting GO-MK problem increases significantly. Nevertheless, the 
computational time required to estimate the model parameters is considerably reduced compared 
to using a random starting point. This is due to two main reasons. First, although the MK result is 
suboptimal, it is close to the global optimum; therefore, the GO method requires less time to reach 
the best solution. Second, the McCormik's relaxations optimization model is a LP type which does 
not considerably increase the computational burden because it can be solved in polynomial time. 
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The benefits of considering physical representation models to capture the voltage dependence 
of the SPSP loads was evidenced. This is because by considering the voltage effect, a considerable 
reduction of the actual MG operating costs was obtained, especially when considering the EMZ-
ZIP model, while the bus voltages remain within normal operating ranges. These results are 
explained by the fact that when considering voltage sensitive load models as an integral part of an 
AC-based EMS approach, it will try to decrease the voltage at the load buses close to the minimum 
allowed value to reduce the power consumption; hence, minimizing the operating costs [133]. 

 
 
Overall, the EMZ-ZIP approach dominates performance indexes such as costs and prediction 

errors. Thus, the additional benefits seem to be relatively small for a proposal that is more complex 
than the TV-ZIP model. Nevertheless, the EMZ-ZIP approach also involves the zone definition 
and transition strategies where the benefits obtained in reducing the SPSP consumption estimation 
error are much more relevant than the TV-ZIP. This is an important feature when considering 
practical operating scenarios, e.g., change in the scheduling of SPSPs production activities. 
Moreover, it should be noted that the proposed zone definition strategy is not feasible for the 
conventional TV-ZIP approach. This is because the zone definition requires the information 
collected from surveys and ZIP model databases, which are part of the EMZ-ZIP proposal. 
Furthermore, the increased complexity of the EMZ-ZIP is manageable from the perspective of 
computational requirements and convergence to solve the parameter estimation problem and the 
EMS optimization problem by integrating the EMZ-ZIP model. 
 

 
Finally, our results provide compelling evidence for modeling the SPSPs through an EMZ-ZIP 

load model to provide technical and economic benefits to the MG. Therefore, this work indicates 
the advantages gained from extending and zoning the TV-ZIP load model to represent the 
complicated electrical behavior of SPSPs, which is influenced by voltage variations and external 
weather variables. 

5.2 Future work 

Although the proposed methodology for modeling the SPSPs and their integration into an EMS 
for a MG is novel, future work will focus on the following aspects: 
 
• In this work we considered the electricity consumption measurements of the SPSPs, however, 

some may include DG which leads to the measurements being the net demand. This may affect 
the structure of the proposed load model, the zoning procedure, and the parameter 
identification procedure. Therefore, further work is planned on this topic. For example, the 
approach to include DG in the load models presented in [219] may be used.  
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• Although analysis blocks 1 and 2 (see Section 3) are described methodologically, they were 
not fully addressed in this thesis. In this sense, future work will focus on developing these 
blocks of analysis and incorporating them into the proposed methodology. 

 
• The complete development of the aforementioned analysis blocks will lead to a complex 

interaction between the blocks and mainly the zone classifier because the commands indicating 
the re-execution of certain stages of the proposed methodology would be modified. Therefore, 
a further analysis of this interaction should be conducted. 

 
• Phase unbalances are relevant and impactful in MGs because they can lead to deviations of the 

optimal dispatch strategy or the inability of the system to meet reactive power requirements 
[41]. Therefore, a further analysis of these conditions considering SPSPs as part of the system 
should be studied. 
 

• Uncertainty in the renewables forecast can significantly affect dispatch decisions in the MG. 
Therefore, future work will focus on analyzing strategies to deal with uncertainty, e.g., model 
predictive control [26], among others. 
 

• Finally, the proposed methodology can be applied in other contexts such as industrial plants, 
which are connected to the main grid as part of an overall distribution EMS considering 
industrial flexibility mechanisms. Preliminary results of these extensions are presented in 
Annexed F.  
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ANNEXES 

Annexed A List of acronyms 

AC Alternating Current 
AI Artificial Intelligence 
AIC Akaike's Information Criterion 
ANN Artificial Neural Network 
ARIMA Autoregressive Moving Average Model 
ARMA Autoregressive Moving Average Model 
BAM Binomial Approximation Method 
BESS Battery Energy Storage System 
CLP Chilean peso 
CP Constant power model 
CST Concentrating Solar Thermal 
CVX package for specifying and solving ConVeX programs 
DC Direct Current 
DER Distributed Energy Resources 
DES Decentralized Energy Systems 
DG Distributed Generation 
DGU Diesel Generator Unit 
ED Economic Dispatch 
EMS Energy Management System 
EMZ-ZIP Extended Multi-Zone ZIP Model 
ESS Energy Storage Systems 
EV Electric Vehicle 
GA Genetic Algorithms 
GHI Global Horizontal Irradiation 
GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit  
GO Global Optimization 
GPR Gaussian Process Regression 
HDI Human Development Index 
LM Levenberg-Marquardt algorithm 
LP Linear Programming 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MAS Multi-Agent System 
MG Microgrid 
MILP Mix-Integer Linear Programming 
MK McCormick approach 
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MLP Multilayer Perceptron 
MPP Maximum Power Point 
NCRE Non-conventional Renewable Energy 
NLP Nonlinear Programming 
OPF Optimal Power Flow 
PCC Point of Common Coupling 
PSO Particle Swarm Optimization 
PUE Productive Use of Energy 
PV Photovoltaic 
RMSE Root Mean Squared Error 
SA  Simulate Annealing 
SARIMA Seasonal Autoregressive Integrated Moving Average 
SCOP Second-Order Cone Programming 
SERC Solar Energy Research Center-Chile 
SGD Sustainable Development Goals 
SOC State of Charge 
SOM Self-organizing Maps 
SPP Small Productive Process 
SPSP Small Productive Solar Process 
SVM Support Vector Machine 
SWH Solar Water Heater 
TAM  first-order Taylor series Approximation Method 
TV-ZIP Time-variant ZIP model 
UC Unit Commitment 
VSC Voltage Source Converter 
ZIP Constant impedance, constant current and constant power model 
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Annexed B The Ayllu Solar project 

Due to its high solar energy potential, the Arica and Parinacota region was selected as a suitable 
location for the implementation of the Ayllu project. Besides, the main economic activities of this 
region are agriculture, mining, tourism, and trading. Thus, the introduction of productive use of 
solar energy projects in northern Chile constitutes a great opportunity for sustainable development 
of communities in such region. All small-scale projects of the Ayllu project use the solar energy as 
main source of energy to carry out their productive activities. 
 

The key specific objectives of the Ayllu Solar [6] as follows: 
 
• To create cost-effective, replicable, and scalable solar energy solutions in key areas for 

community development. 
• To create human capital capabilities for the effective use and development of solar energy 

solutions through continuing education and skill-building tools with active engagement of the 
whole community. 

• To ensure sustainability by developing effective solar energy solutions, business models, 
support network, community involvement and a proper institutional framework. 

 
Figure 2.11 in Section 2.1.2 shows the Ayllu Solar small-scale projects (i.e., SPSPs) located in 

the Arica and Parinacota region. As can be seen in such figure, the Ayllu solar project comprises 
several initiatives, nevertheless, only the reference projects, i.e., those located in Caleta Vítor, 
Camarones and Visviri are described in more detail below. 

 
 
Processing of agricultural products with solar energy [6]: This project has been implemented 

in the Caleta Vítor and Chaca valley, in the Arica commune. The main economic activity of 
community people is the agriculture. However, agriculture activities are developed in a traditional 
way, i.e., manually and do not consider packing, storage, or any other processing of the harvested 
products. Moreover, in this place, it is feasible to harvest crops most of the year, providing raw 
material (i.e., fruits and vegetables) regularly.  

 
 
In this sense, there is a clear opportunity to take advantage of the solar energy to add value to 

the agricultural products produced. Accordingly, the project consisted of installing a solar dryer, 
packing and storage systems for fruits and vegetables harvested in Caleta Vítor and Valle del 
Chaca. Figure B.1 illustrates a general layout of the Caleta Vítor and Chaca valley SPSP. It includes 
the following subsystems: 1) PV generation system, 2) infrastructure (office, meeting room and 
processing room), 3) processing, sorting and calibration line, and 4) dehydration process line (solar 
dryer). Since this is a solar-based dehydration process, its behavior may be influenced by external 
weather variables, mainly solar radiation, ambient temperature, wind speed and relative humidity.  



122 
 

 
Figure B.1 General layout of the Caleta Vítor and Chaca Valley SPSP [78] 

River shrimp farming [220]: This project has been implemented in the Camarones commune. 
This project aims to improve the socio-economic development of people of the people of the 
villages of Camarones, Maquita and Taltape through technological improvements in river shrimp 
and trout farming using a solar water treatment system. The technological improvement consists 
of the use of solar energy to improve the quality of the natural river water used in the cultivation 
of these aquatic species. The project also considers a PV generation system to supply the 
aquaculture system's electrical devices. Figure B.2 shows an overview of the aquaculture SPSP. 
As illustrated in Figure B.2, this project includes the following subsystems: 1) PV generation 
system, 2) solar water treatment system, and 3) water recirculation system that provides arsenic-
free water. Similar to the SPSP described above, this aquaculture process is based on solar energy, 
thus, its electrical behavior can change due to the influence of external weather variables such as 
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solar radiation, ambient temperature, as well as endogenous variables such as the amount of 
dissolved chemicals in the treated water. 

 
Figure B.2 General overview of the aquaculture SPSP installed in Camarones [78] 

Camelid fiber collection and processing center [6]: This SPSP was established in the General 
Lagos jointly with the Visviri community where the main economic activity is the sale of camelid 
fiber. The work of shearing camelid fiber was usually done in the traditional way, in the same 
manner as it was done by their ancestors for several generations. However, adding value to the raw 
fiber produced in General Lagos and Visviri can help the people of these communities gain access 
to markets for the sale of the fiber. Therefore, the project consisted of implementing a camelid fiber 
collection and processing center. This center includes machinery that is powered by solar energy. 
Figure B.3 displays a general layout of the camelid fiber collection and processing center installed 
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in Visviri. It includes the following subsystems: 1) PV generation system, and 2) thermo-solar 
system for water heating for camelid fiber processing. 

 
 
The climate in these places is cold semi-arid, with strong winds, high thermal oscillation, rainfall 

and thunderstorms in summer, snow in winter and a high solar radiation throughout the year. 
Therefore, these climatic conditions may influence the fiber processing process, for example, high 
relative humidity can affect fiber quality, while variation in ambient temperature can affect the 
thermo-solar process leading to varying process operating conditions. Consequently, it is worth 
considering the effect of these external weather variables when analyzing the electrical 
characteristics of this SPSP. 
 

 
Figure B.3 General layout of the camelid fiber collection and processing center [78]  
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Annexed C Parameter identification through a convexification procedure 

The authors in [141] proposed a procedure based on the convexification of the bilinear product 
through a transformation of variables to solve the minimization problem expressed in (16)-(22). 
Thus, such procedure is further described in this Section. 
 
 

First, as previously mentioned, the parameter 𝑃()*+(𝑘) is non-identifiable  [161]. Thus, to 
address this challenge, a splitting procedure is considered. More concretely, the minimization 
problem in (16)-(22) is broken-down into three stages. 

 
 
In the first stage, the product between the variables 𝑃()*+(𝑘) and 𝛼=C(𝑘)	(	𝜑 ∈ {1,2,3}) are 

replaced by auxiliary variables, thus 
 

ΞC(𝑘) = 𝑃()*+(𝑘)𝛼=C(𝑘), (	𝜑 ∈ {1,2,3}) (94) 

 
Then, the EMZ-ZIP load model in (17) becomes: 

 
𝑃(𝑘) = <Ξ#(𝑘)𝑉>8$(𝑘) + Ξ$(𝑘)𝑉>8(𝑘) + Ξ%(𝑘)?

+ B 𝛿'(𝑘)𝑃!,'<𝛼#,'𝑉>8$(𝑘) + 𝛼$,'𝑉>8(𝑘) + 𝛼%,'?

,!

'-#

 
(95) 

 
Next, replacing the expression (95) in (16)-(22), the resulting minimization problem is as 

follows: 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
`'(;),`((;)	`)(;),

>&(;)	

B<𝑃G⃗8(𝑘) − 𝑃F(𝑘)?
$

A

8-#

 (96) 

Subject to:  

𝑃F(𝑘) 	= <Ξ#(𝑘)𝑉>8$(𝑘) + Ξ$(𝑘)𝑉>8(𝑘) + Ξ%(𝑘)?

+ B 𝛿'(𝑘)𝑃!,'<𝛼#,'𝑉>8$(𝑘) + 𝛼$,'𝑉>8(𝑘) + 𝛼%,'?

,/

'-#

 (97) 

B𝛿'(𝑘)

,/

'-#

= 1 (98) 

Ξ#(𝑘) + Ξ$(𝑘) + Ξ%(𝑘) = 𝑀 (99) 

0 ≤ 𝛿'(𝑘) ≤ 1 (100) 

0 ≤ Ξ#(𝑘) + Ξ$(𝑘) + Ξ%(𝑘) ≤ 𝑀 (101) 
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Moreover, because 𝑃()*+(𝑘) is a non-identifiable parameter, the big-M method is utilized to 
bound the new set of variables ΞC(𝑘)	(𝜑 ∈ {1,2,3}). The big-M value must be selected, large 
enough, but not too high to prevent the M value influencing the results of the optimization problem 
[162]. 

 
 
Once the variables ΞC(𝑘)	(𝜑 ∈ {1,2,3}) and 𝛿'(𝑘)	<𝜔 ∈ �Ω7�? are identified, the original 

parameters 𝑃()*+(𝑘) and 𝛼=C(𝑘)	(	𝜑 ∈ {1,2,3}) can be determined. For this purpose, the identified 
values of 𝛿'(𝑘) are considered as fixed. Consequently, the original parameters (i.e., 𝑃()*+(𝑘) and 
𝛼=C(𝑘)) are identified in the second stage by using the minimization problem in (16)-(22) adding 
the constraints expressed in (102). 
 

𝑃()*+(𝑘)𝛼=C(𝑘) ≤ ΞC , (	𝜑 ∈ {1,2,3}) (102) 

 
Finally, as previously mentioned 𝑃()*+(𝑘) is non-identifiable, hence, a correction on its 

identification is necessary. For this purpose, in the third stage the values already identified for 
𝛿'(𝑘)	<𝜔 ∈ �Ω7�? and 𝛼=C(𝑘)	(	𝜑 ∈ {1,2,3}) are taken as fixed. Therefore, the values of 𝑃()*+(𝑘) 
can be determined by solving the minimization problem (103)-(105). 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
9"#$%(;)
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$

A

8-#

 (103) 

Subject to:  

𝑃F(𝑘) 	= 𝑃()*+(𝑘)<𝛼=#(𝑘)𝑉>8$(𝑘) + 𝛼=$(𝑘)𝑉>8(𝑘) + 𝛼=%(𝑘)?

+ B 𝛿'(𝑘)𝑃!,'<𝛼#,'𝑉>8$(𝑘) + 𝛼$,'𝑉>8(𝑘) + 𝛼%,'?

,!

'-#

 (104) 

0 ≤ 𝑃()*+(𝑘) ≤ 𝑀 (105) 

 
Note that the resulting minimization problems (96)-(101) and (103)-(105) are all convex and, 

thus, they have a global optimum, which can be numerically found in a finite number of steps [195] 
using different convex programming tools such as CVX [204], [205]. 
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Annexed D Sensitivity analysis of the ZIP parameters for TAM and BAM 

The sensitivity analysis consists of taking each parameter of the ZIP model and varying it by taking 
values from an interval (in this case between 0.01 and 1.00 with a fixed step of 0.01). It is important 
to note that, to fulfill that the sum of the ZIP parameters equals 1, the difference is equally 
distributed between the remaining two parameters. For example, if we consider that the parameter 
𝛼=# will vary, the resulting expression is 𝛼=# +

?@(
$
+ ?@)

$
= 1. Then, following the comparative 

analysis performed in Section 3.5.1, we varied the voltage between 0.85 p.u. and 1.15 p.u. with a 
step of 0.01 and analyze the relative error between the original ZIP model representation and each 
of the two approximation methods (i.e., TAM and BAM).  Figure D.1, Figure D.2 and Figure D.3 
show the results of the sensitivity analysis for the constant impedance, constant current and 
constant power parameters, respectively. 
 

 
Figure D.1 Results of the sensitivity analysis for the constant impedance parameter: (a) TAM and 

(b) BAM 

 

 
Figure D.2 Results of the sensitivity analysis for the constant current parameter: (a) TAM and (b) 

BAM 

(a) (b)

(a) (b)
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Figure D.3 Results of the sensitivity analysis for the constant power parameter: (a) TAM and (b) 

BAM 

 
As can be seen from Figure D.1, Figure D.2 and Figure D.3, in general, the BAM exhibits a 

lower relative error than the TAM in all cases. For example, in the case of the constant power 
parameter the TAM presents a maximum error by around 3% while the BAM a maximum error by 
approximately 0.6%. Table D.1 presents a summary of the results of the sensitivity analysis for the 
three ZIP parameters (i.e., constant impedance, constant current and constant power) for TAM and 
BAM. For the summary, the maximum (Max), minimum (Min), average (Avg.), and standard 
deviation (Std.) of the relative errors for all cases and relative errors for voltages at the limits of the 
normal operating range, i.e., 0.90 p.u. and 1.10 p.u., were considered. 

 
Table D.1 Summary of sensitivity analysis for constant impedance, constant current and constant 

power parameters for TAM and BAM 

  Constant impedance Constant current Constant power 
  TAM BAM TAM BAM TAM BAM 

O
ve

ra
ll Min (%) 0.000 0.000 0.000 0.000 0.000 0.000 

Max (%) 3.114 0.603 1.293 1.324 1.413 0.706 
Avg. (%) 0.414 0.100 0.200 0.204 0.200 0.100 
Std. (%) 0.514 0.120 0.241 0.245 0.244 0.122 

𝑽
=
𝟎.
𝟗𝟎

 
p.

u.
 

Min (%) 0.011 0.000 0.000 0.006 0.000 0.000 
Max (%) 1.235 0.261 0.547 0.556 0.578 0.289 
Avg. (%) 0.591 0.137 0.274 0.280 0.274 0.137 
Std. (%) 0.358 0.076 0.160 0.161 0.169 0.085 

𝑽
=
𝟏.
𝟏𝟎

 
p.

u.
 Min (%) 0.010 0.000 0.000 0.005 0.000 0.000 

Max (%) 0.826 0.235 0.448 0.455 0.429 0.215 
Avg. (%) 0.437 0.112 0.224 0.229 0.225 0.112 
Std. (%) 0.239 0.069 0.131 0.132 0.126 0.063 

 

(a) (b)
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Can be seen from Table D.1 that considering the overall results, the BAM presents lower 
maximum, average and standard deviation relative error values than the TAM for the constant 
impedance and constant power parameters. However, the TAM presents a slight improvement 
when the results of the constant current parameter are analyzed. However, this improvement is 
approximately 0.005% and is therefore negligible. Therefore, the two approaches have practically 
the same relative error results for the constant current parameter. This same trend is repeated when 
analyzing the results for the voltage values at the limits of the normal operating range. 
Consequently, the BAM outperforms the TAM considering all the cases analyzed in the sensitivity 
analysis of the ZIP parameters. 
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Annexed E Models and parameter values of the MG elements for the case 
study 

Annexed E1 Diesel generators 

The diesel generator model comprises four main components, such as synchronous machine, an 
excitation system, a governor, and a diesel engine. The diesel generators are based on a three-phase 
salient pole synchronous machine. The electrical part of the machine is represented by a sixth-order 
state-space model [221]. Figure E.1 shows a simplified block diagram of a diesel generator and its 
main components. Table E.1 lists the synchronous machine parameters for the two diesel 
generators. 

 
Figure E.1 Simplified block diagram of a diesel generator 

Table E.1 Synchronous machine parameters 

 DGU1 DGU2 
Nominal power (kVA) 19.2 12.8 
Nominal voltage (Vrms L-L) 220.0 220.0 
Xd (p.u.) 1.966 2.057 
Xd’ (p.u.) 0.200 0.210 
Xd’’ (p.u.) 0.126 0.132 
Tdo’ (s) 4.484 4.489 
Tdo’’ (s) 0.068 0.068 
Xq (p.u.) 0.977 1.022 
Xq’’ (p.u.) 0.225 0.236 
Tqo’’ (s) 0.100 0.100 
Rs (p.u.) 0.061 0.078 
Xl (p.u.) 0.079 0.083 
H (s) 1.100 0.900 

 
The excitation system of a diesel generator provides direct current to the synchronous machine 

field winding. Besides, the excitation system performs control functions of voltage and reactive 
power flow [222]. The excitation system are based on the IEEE type DC1A excitation system 
model (see Figure E.2) [223]. Table E.2 presents the exciter parameters for the two diesel 
generators. 

Diesel engineGovernor !!

Excitation 
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""

##$"
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#
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machine
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Figure E.2 Diesel generator excitation system block diagram [223] 

Table E.2 Excitation system parameters 

 DGU1 DGU2 
Ka 400.0 400.0 
Kf 0.030 0.030 
Ta (s) 0.020 0.020 
Tr (s) 0.020 0.020 
Tf (s) 1.000 1.000 
Vr min (p.u.) -2.200 -2.200 
Vr max (p.u.) 2.200 2.200 

 
The governor of a diesel generator provides a mean of controlling power and frequency as 

function of the rotational speed of the diesel engine [222]. Figure E.3 depicts the diesel generator 
governor block diagram. Table E.3 lists the governor parameters for the two diesel generators. 

 

 
Figure E.3 Diesel generator governor block diagram 

Table E.3 Diesel generator governor parameters 

 DGU1 DGU2 
T1 0.628 3.927 
T2 0.395 15.421 
T3 0.200 0.200 
T4 0.250 0.250 
T5 0.009 0.009 
T6 0.038 0.038 
Td 0.024 0.024 
K 0.395 1.696e3 
Kdroop 0.100 0.050 
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Annexed E2 Transformers 

The transformer used in this work is a three-phase two-winding transformer. The transformer 
model is three-phase based on single-phase transformers with DY connection. More details of the 
mathematical model of the transformer can be found in [189], [224]. Table E.4 presents the 
parameters of the transformers considered in this work. 

Table E.4 Transformer parameters 

 T1 T2 T3 
Nominal power (kVA) 25.0 25.0 25.0 
Nominal primary voltage (Vrms L-L) 220.0 220.0 220.0 
Nominal secondary voltage (Vrms L-L) 380.0 380.0 380.0 
R1 (p.u.) 0.0015 0.0015 0.0015 
L1 (p.u.) 0.0018 0.0018 0.0018 
R2 (p.u.) 0.0009 0.0009 0.0009 
L2 (p.u.) 0.0025 0.0025 0.0025 
Rm (p.u.) 100.0 100.0 100.0 
Lm (p.u.) 100.0 100.0 100.0 

Annexed E3 Branches 

As earlier mentioned, the MGs feeders are similar to those of distribution networks; therefore, they 
can be represented through a series impedance model. A detailed description of the model can be 
found in [189], [222]. Table E.5 presents the parameters of the MG branches shown in Figure 4.1. 

Table E.5 Branch parameters 

Branch Length 
(km) 

R 
(ohm/km) 

X 
(ohm/km) From To 

4 5 0.20 1.01 0.2525 
4 6 0.24 1.01 0.2525 
5 7 0.25 1.01 0.2525 
6 9 0.38 1.01 0.2525 
7 8 0.48 1.01 0.2525 
8 9 0.68 1.01 0.2525 

Annexed E4 Loads 

The MG loads, except for the SPSP load, are modeled as a balanced three-phase load. Besides, the 
active and reactive powers absorbed by the load are proportional to the square of the voltage applied 
at the load connection bus [225]. Table E.6 shows the nominal active and reactive powers of the 
system loads. 

Table E.6 Load parameters 

 Load A Load B Load C 
Nominal active power (kVW) 8.33 9.80 6.86 
Nominal reactive power (kVAr) 2.92 3.92 2.40 
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Annexed E5 PV plant 

The PV plant model is based on a single-stage topology where only one DC/AC converter is used 
to interface the PV plant to the MG [226] (see Figure E.4). The DC/AC converter is modeled as a 
voltage source converter (VSC) which has a decoupled d-q controller [227]. The PV plant power 
generation is obtained by using the mathematical expression presented in (106) [97]. Besides, we 
have assumed that the PV plant is always operating at maximum power point (MPP). Further, the 
PV system is connected to the MG through a series RL filter. The single-stage PV system main 
parameters are summarized in Table E.7. 
 

 
Figure E.4 Simplified scheme of a single-phase PV system 

𝑃9a(𝑘) = 𝜂9a𝐴9aΛ(𝑘) (106) 

where 𝜂9a is the solar panel efficiency, 𝐴9a denotes the total plant surface, and Λ(𝑘) represents 
the solar radiation. 

 
Table E.7 Single-stage PV system parameters 

𝜼𝑷𝑽 (%) 16.48 
𝑨𝑷𝑽 (m2) 121 
𝑹𝒇 (ohm) 250 
𝑳𝒇 (henry) 0.6631 

Annexed E6 Solar drying productive process simulator 

The solar drying productive process simulator comprises two main models, such as thermal model, 
and electrical model, which were implemented in MATLAB®/Simulink®. Figure E.5 shows a 
simplified scheme of the solar drying productive process simulator. As can be seen in Figure E.5, 
the thermal model and the electrical model are coupled through the commands (on/off) sent by the 
thermostats inside the thermal module. 
 
 

On the one hand, the electrical module includes the following devices: i) an electric heater, ii) 
an electric fan, and iii) auxiliary equipment. These devices were implemented using the 
Simscape™ Electrical™ Specialized Power Systems blocks [206], and each device was 
represented through its ZIP load model. The ZIP parameters were taken from [33] and the nominal 
powers of the electric devices and other required parameters are presented in Table E.8. 

VSC

MG
𝑅𝑓 𝐿𝑓

PV plant

𝑃𝑃𝑉
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Figure E.5 Simplified scheme of the solar drying productive process simulator 

On the other hand, the thermal model was implemented using the heat transfer equations 
described in [228]. For this purpose, the heat fluxes shown in Figure E.6 should be considered. Let 
𝑄̇I/)20 denote the heat flux contributed by solar radiation, 𝑄̇1*23*0 represents the heat flux 
contributed by the electric heater, 𝑄̇(2J is the heat flux removed by the electric fan, and 𝑄̇)/II*I are 
the heat losses through the dryer walls. Figure E.6 shows a simplified overview of the solar dryer 
and the heat fluxes involved. The heat transfer differential equations were implemented in 
MATLAB®/Simulink®, and the technical parameters of an actual solar dryer used in this type of 
productive process were used [229]. Figure E.7 shows some actual photos of the solar dryer. Table 
E.8 lists the general technical characteristics of the solar dryer, while Table E.9 presents the 
required parameters for the thermal model. Figure E.8 illustrates the operation of the solar dryer 
for two days. Figure E.8(a) shows the input data which in this case are the solar radiation and 
ambient temperature profiles. Figure E.8(b) displays the internal temperature profile of the solar 
dryer in which the influence of the solar input variables on the internal temperature can be seen. 
Finally, Figure E.8(c) depicts the electrical consumption profile of the dryer. As mentioned earlier, 
during periods of low solar radiation, the electrical heater is activated to maintain the working 
temperature range. 

 

 
Figure E.6 Simplified overview of the solar dryer and its heat fluxes 
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Figure E.7 Actual photos of the solar dryer [230] 

Table E.8 Technical characteristics of the solar dryer and electrical devices 

Description Technical characteristics (units) 
Working temperature ~ 60 (ºC) – 70 (ºC) 
Capacity 1,400 (kg) – 1,800 (kg) 

Container 

Length = 5.4 (m) 
Width = 2.2 (m) 
Height = 2.1 (m) 
Material: zinc 

Thermal insulation High-density polyurethane film 
Thickness = 0.04 (m) 

Electric fan 
Nominal active power = 610 (W) 
Frequency = 50 (Hz) 
Diameter = 0.45 (m) 

Electric heater Nominal active power = 2,000 (W) 
Frequency = 50 (Hz) 

 
Table E.9 Thermal model parameters 

Description Value (units) 
Temperature of hot air from heater ~ 250 (ºC) 
Specific heat capacity of air at constant 
pressure 1005.4 (J/kg ºC) 

Air mass flow rate through heater 58.5 (kg/h) 
Density of air at sea level 1.225 (km/m3) 
Air mass flow rate through fan 315.62 (kg/h) 
Dryer surface exposed to solar radiation 23.22 (m2) 
Solar radiation Actual measurementsb (W/m2) 
Absorptivity coefficient of the dryer walls 0.76 
Emissivity coefficient of the dryer walls 0.60 

 
b Actual measurements taken from [216] 
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Table E.9 Thermal model parameters (continued) 

Description Value (units) 
Boltzmann constant 5.67x10-8 (W/m2K4) 
Equivalent thermal resistance of the dryer 7.13x10-6 (h ºC/J) 
Mass of food Depends on the product selected 
Mass of the air inside the dryer Depends on the mass food 
Mass of food Depends on the product selected 
Specific heat capacity of food Depends on the product selected 
Ambient temperature Actual measurements2 (ºC) 

 
 

 
Figure E.8 (a) Solar radiation profile (left axis) and ambient temperature profile (right axis), (b) 

Internal temperature of dryer profile, and (c) dryer power consumption 
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Annexed F Case study of application of the proposed methodology to a 
small industrial grid in Germanyc 

As previously mentioned, the methodology proposed in this work was applied to a small electrical 
grid containing an industrial plant, which is installed at Karlsruhe Institute of Technology, 
Germany. The small electrical grid is connected to the main grid, and the industrial plant produces 
electronic systems for particle physics, battery systems, and medical applications in small batches, 
i.e., less than 1000 pieces. The productive process involves all processing steps from individual 
components to the final assembly [231]. It should be noted that, since there was no information on 
the specific devices that comprise the productive process, after performing the analysis with the 
zone identifier it was determined that this application case is best represented with one zone. 
Therefore, only the flexible component of the EMZ-ZIP model was considered to represent 
industrial consumption. 
 
 

As mentioned above, in this application case, we used the flexible component of the EMZ-ZIP 
model presented in (12)-(15) to represent the industrial consumption. Then, the parameter 
identification procedure was performed by using the procedure described in Section 3.4. The 
energy management of the industrial grid was carried out considering the optimization problem 
presented in Section 3.5.2. However, since the industrial grid of this application case is connected 
to the main grid, the following objective function and balance equation were considered instead of 
the original ones. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
9122(;)	

�B𝐶K0B8(𝑘)𝑃9ee(𝑘)
R

;-#

�∆; (107) 

𝑃9ee(𝑘) + 𝑃MOPP(𝑘) + 𝑃9a(𝑘) = 𝑃F<𝑢0(𝑘)? + 𝑃)/II(𝑘) (108) 

 
where, 𝐶K0B8(𝑘) is the main grid electricity cost, 𝑃9ee(𝑘) denotes the active power imported 

from the main grid, 𝑃9a(𝑘) means the active power generated by the PV unit, 𝑃MOPP(𝑘) represents 
the active power injected/consumed by the BESS, and 𝑃F(𝑢(𝑘)) denotes the industrial load 
represented through the TV-ZIP. 

 
 
Figure F.1 depicts an overview of the topology of the industrial grid. It was modeled as a 4-

buses radial distribution grid which is connected to the power distribution grid through the PCC at 
node 1 as illustrated in Figure F.1. Besides, the industrial grid includes a PV unit connected at bus 

 
c This application case study is part of the paper D. Sen Sarma, T. Warendorf, D. Espín-Sarzosa, F. Valencia-Arroyave, 
C. Rehtanz, J. Myrzik, and R. Palma-Behnke, "Multi-objective Energy Management for Modern Distribution Power 
Systems Considering Industrial Flexibility Mechanisms", Sustainable Energy, Grids and Networks, June 2022, 
https://doi.org/10.1016/j.segan.2022.100825. 
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2, the industrial load is connected at node 3, and a BESS unit is installed at node 4. The colored 
arrows represent the different power flows within the industrial grid. 

 

 
Figure F.1 Overview of the industrial grid topology 

The active power measurements for the parameter identification procedure were taken from 
[231]. The BESS charging/discharging depends on the main grid electricity cost profile, which was 
obtained from [232]. The PV generation profile was taken from [233]. For this case study, we 
considered three operating cases: 

 
 
Case 1: In this case, we assumed that the industrial load is represented through a CP, i.e., the 

effect of voltage is not considered. Furthermore, we have assumed that the BESS unit is not part 
of the system operation. 

 
 
Case 2: In this case, we assumed that the industrial load is represented through a TV-ZIP, i.e., 

the effect of voltage on the load is considered. As previous case, we have assumed that the BESS 
unit is not part of the system operation. 

 
 
Case 3: In this case, we assumed that the industrial load is represented through a TV-ZIP, i.e., 

the effect of voltage on the load is considered. Also, the BESS unit is part of the system operation; 
thus, it can purchase/sell energy from/to the grid. The BESS considers a mixed-integer linear model 
including SOC, efficiencies and maximum power for charging and discharging [194]. It should be 
noted that, for comparison purposes, the case 1 was considered as base case. 

 
 
Figure F.2(a) shows the PV power generation profile (left axis) and the main grid electricity 

price profile (right axis). Figure F.2(b) displays the industrial consumption profile and the power 
at PCC for the three cases. Figure F.2(c) illustrates the results of the BESS operation, i.e., 
charging/discharging power profiles (left axis) and SOC profile (right axis), for the third case. 
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Table F.1 presents a summary of the results of energy imported from the main grid and total 
expenses for the three cases. 

 

 
Figure F.2 (a) PV power generation profile (left axis) and the main grid electricity price profile 
(right axis), (b) industrial consumption profile and the power at PCC for the three cases, and (c) 

BESS charging/discharging power profiles (left axis) and SOC profile (right axis) 

Table F.1 Summary of energy imported from the main grid and total expenses 

Case Total energy 
purchased (MWh) % Reduction Total expenses 

(EUR) % Reduction 

1 17.09 - 1209.12 - 
2 13.90 18.66 979.49 18.99 
3 14.09 17.55 971.22 19.68 

 
Discussion: Considering the voltage effect on the industrial load in a considerable reduction in total 
energy purchased, about 19% in the case 2. This is because when considering voltage sensitive 
load models, the AC-based EMS will try to reduce the voltage close to the minimum allowed value 
at the load bus to decrease the load consumption; thus, minimizing the energy required to meet the 
industrial load [133]. In addition, when BESS is considered and the load is represented through a 
TV-ZIP (case 3), even though more energy is purchased than case 2, the total expenses are lower 
than the other cases because of the energy arbitrage done by the BESS. 
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