
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

APPLICATION OF OPTIMAL CONTROL TECHNIQUES TO NATURAL SYSTEMS
MANAGEMENT

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA MENCIÓN
MODELACIÓN MATEMÁTICA EN COTUTELA CON SORBONNE UNIVERSITÉ

EMILIO JESÚS MOLINA OLIVARES

PROFESORES GUÍAS:
HÉCTOR RAMÍREZ CABRERA

MARIO SIGALOTTI

MIEMBROS DE LA COMISIÓN:
PIERRE MARTINON

MARIA SOLEDAD ARONNA
JEAN-BAPTISTE CAILLAU

EMMANUEL TRELAT
ALAIN RAPAPORT

JAIME ORTEGA PALMA

Este trabajo ha sido parcialmente financiado por ANID-PFCHA/Doctorado Nacional/2018-21180348,
FONDECYT grant 1201982 y Centro de Modelamiento Matematico (CMM) BASAL FB210005, todos

ellos de ANID (Chile), e Inria Cage team.

SANTIAGO DE CHILE
2022

Resumen

Aplicación de técnicas de control óptimo en la gestión de sistemas naturales

Las técnicas de control óptimo tienen numerosas aplicaciones en ingeniería y otros problemas concretos
del mundo real. Esta tesis trata sobre el uso de este tipo de técnicas en dos contextos particulares, minería
y epidimiología, los cuales dividen este documento en dos partes respectivas.

En la primera parte, que está relacionada con el tema de la minería, trabajamos con la formulación
continua del problema del Final Open Pit que consiste en encontrar la forma óptima, en el sentido de
maximizar la ganancia de extracción de mineral, de una mina a cielo abierto, cuyo borde está modelado
por una función continua. En esta tesis se introduce por primera vez una formulación de este problema
que usa la teoría control óptimo. Así, para esta versión continua del problema del Open Pit presentamos
condiciones de optimalidad y soluciones numéricas obtenidas usando métodos de optimización locales y
globales.

En el mismo contexto minero, otro problema importante consiste en la versión secuencial del mismo
problema anterior, denominado Sequential Open Pit y que consiste en planificar un programa de extrac-
ción dividido en periodos (por ejemplo, el estado de la mina cada 6 meses), dando lugar a una serie de
perfiles anidados que maximizan el beneficio descontando con un factor dependiendo del periodo. En
este trabajo proponemos una novedosa formulación semi-continua para este problema y la usamos para
obtener por primera vez en la literatura, para nuestro conocimiento, soluciones numéricas para el caso
tridimensional (una posible mina) que incluye el problema original del Final Open Pit (caso con un solo
periodo de tiempo).

La segunda parte se enfoca en el estudio de problemas de control óptimo cuya función objetivo corres-
ponde a minimizar el máximo valor de una variable de estado. Estos problemas vienen inspirados por la
pandemia del Covid-19, en donde los hospitales y las camas de urgencias se saturaron debido a la gran
cantidad de pacientes que recibían al mismo tiempo. Aquí presentamos cuatro diferentes refomulaciones
de la forma de Mayer para este tipo de problemas, cada una de estas con sus ventajas y desventajas.
También comparamos el desempeño numérico de cada uno de estos en un problema académico y en otro
más realista que consiste en minimizar el peak de infectados sobre un modelo SIR donde se impone
además una restricción integral en el control. Para este último problema más particular, demostramos
analíticamente que la estructura del control óptimo es nulo-singular-nulo y lo usamos para compararlo
con las soluciones numéricas.

i

Abstract

Application of optimal control techniques to natural systems management

Optimal control techniques have numerous applications in engineering and real world problems. This
thesis is devoted to using these techniques in two contexts, mining and epidemiology, dividing this doc-
ument in two respective parts.

In the first part related to mining, we work with the continuous formulation of the Open Pit Problem
consisting of finding the optimal shape of an opencast mine representing its profile by a continuous
function. Optimality in this context corresponds to maximizing the profit of mineral extraction. We
introduce for the first time optimal control models of this problem. We present optimality conditions of
solutions along with numerical experiments using local and global methods.

Another relevant problem in this context corresponds to the Sequential version of the Open Pit Prob-
lem, which consists of scheduling an extraction program over consecutive time frames (for example, a
profile each 6 months), finding nested profiles maximizing a discounted profit. We proposed a novel
semi-continuous model to obtain solutions of the sequential problem and we use it to present for the first
time, to the best of our knowledge, numerical solutions of a three dimensional case (a possible real world
mine) including the original Open Pit Problem (case with a single time-frame).

In the second part we deal with optimal control problems minimizing the maximum value of a state.
This problematic was inspired by Covid-19, where hospitals and ICU beds were overcrowded due to a
high amount of simultaneous infections. We present four different reformulations of this kind of op-
timal control problem as a Mayer one, each one having its pros and cons. We present the numerical
performance of each formulation in an academic example and in a more realistic SIR model where the
problem corresponds to minimizing the peak of infectious compartment with integral constraint in the
control. With respect to the latter problem, we prove analytically that the structure of the optimal control
is null-singular-null and we used it to assess numerical solutions.

ii

A mis padres.

A mi familia quienes son los que más creen en mi.

iii

Acknowledgements

Muchas cosas han pasado en este tiempo mientras hacia la tesis y también hay muchos a quienes agrade-
cer.

Quisiera partir agradeciendo a mis profesores guías por toda la ayuda brindada para realizar este
trabajo, muchas gracias a Héctor Remírez por aceptar trabajar conmigo y por su ayuda en concretar una
cotutela como era mi idea desde que ingresé al doctorado. Muchas gracias a Pierre Martinon por toda
la ayuda y por toda la enseñanza entregada desde su conocimiento sobre Bocop y métodos numéricos,
gracias también por toda la ayuda en las cosas burocráticas al comienzo de la cotutela, fuimos pioneros
con esto de las reuniones a distancia ya que partimos con esto previo al Covid-19. Gracias también
a Mario Sigalotti por su ayuda en temas administrativos y el gestionar todas las ayudas que tuve de
Inria. Durante mi doctorando tuve una pasantía muy agradable en el laboratorio MISTEA donde Alain
Rapaport me acogió, muchas gracias Alain por todas las horas de trabajo, su siempre buena disposición
y las recomendaciones dadas, aprendí mucho de su experiencia. Muchas gracias a quienes revisaron e
hicieron un informe de mi tesis, María Soledad Aronna y Jean-Baptiste Caillau por haber aceptado esta
labor y brindarme buenos comentarios sobre el trabajo. Gracias a Jaime Ortega y Emmanuel Trelat por
haber aceptado ser parte de mi comisión, en particular a Emmanuel por haberme contactado con Pierre
y ayudado a iniciar la cotutela. No quiero dejar de agradecer en esta parte a Jorge Amaya y Cristopher
Hermosilla con quienes realizamos una publicación que represetó el inicio de mi trabajo doctoral, y
además a Jorge por ser quien me presentó el problema de la minería y con quien me es siempre grato
discutir sobre distintos problemas aplicados.

En el camino del doctorado, uno se encuentra con mucha gente que decidió tomar la misma vía, y son
éstos quienes mejor entienden lo duro del proceso, por lo mismo el apoyo mutuo que nos brindamos sirve
mucho para afrontar los periodos de estrés y ansiedad. Parto entonces por agradecer al lado chileno, Nico
(gracias por subarrendarme el depa el tiempo de pasada en Chile), Marín, Laura, Jorge, Seba (las batallas
de rap y las jornadas de trabajo con cumbia ayudaron a esto), Jessica (gracias por tomar la posta del
seminario que dejamos con el Seba), Daniel, Yamit, Juan José, Álvaro, Hugo, Felipe bigotinni (Gracias
por todas las pautas burocráticas que te sacaste, hasta ahora último incluso), Antoine, Francisco, Juan
Pablo y Melanie.

Por el lado francés, parto por el team hispano hablante quienes nos adueñamos de la sala del café du-
rante el periodo de confinamiento y del equipo CROUS de las 12.30, Agustín (de las primeras amistades
en Francia, peleando fuertemente con el Seba al mejor compañero de oficina), Ramón (las partidas de
age deben volver), Jesús, Nicolás (desde los 14 me sigues a donde voy) y Ana (párrafo aparte). Muchas
gracias también al resto que crucé en mi estancia en el LJLL y que por culpa del covid faltó más tiempo
para compartir, Lise (la primera del lab que conocí cuando pasé por la escondida oficina del segundo
piso), Jules, Allen, Giorgia, Emma, Antoine, Chourouk, Alexiane, Alexandre, Remi, Matthieu, Anouk,

iv

Ludovic, Po-Yi, David, Eugenio, Iván y muchos más que pasaron por ahí que de seguro olvido.

Pero no solo los compañeros de doctorado son los que te sostienen en este camino, los exteriores
también hacen parte de este apoyo. Gracias al team juegos de fines de semana por zoom, Alvarín, Javi,
Seba Illanes, Seba Tapia, Dani y Chapa, sin ustedes mi encierro en Chile habría sido catastrófico. Gracias
también a los que han estado desde hace tiempo dando apoyo, Sapu, Salinas, Chi, Hasson, Palma, Mauro
(por alojarme en cada ciudad que estás), Viyo y Telo (los fase 1, que tuvo que haber una pandemia para
que retomaran el contacto). A los que me dejó el trote y aún siguen, Cristóbal (gracias Bender también por
dejarme ser tu compañero de piso durante 2 meses), Pancho (compañeros de trote y luego de experiencia
parisina haciendo doctorado), Cuneo, loco Victor (en su versión de entrenador) y Wolde (durante el
doctorado salió PB en la media maratón de Buenos Aires, mi última gran temporada de entrenamiento y
la hice contigo).

Mi pasada por París me dejó un grupete que espero siga con sus reuniones anuales, gracias La
Muchachada por hacer tan grata mi estadía en Francia, creo que a pesar del covid, ese periodo con
randonnées, pichangas, picnics y juntas es el que más he disfrutado en mi paso por el doctorado, muchas
gracias Agustín, Ana, Suney (los fundadores), Nicolás, Ramón, Claudia, Jesús, Cossio y Paula. Por mi
pasada en Montpellier, agradezco a Ahmad e Ismail con quienes compartí innumerables cafés y me en-
señaron harto sobre la cultura musulmana. Gracias también a Gisell y Amhed que han hecho más gratas
mis frecuentes pasadas por Lyon en esta parte final del doctorado.

Punto a parte para agradecer a Ana (o Nany como a ella le gusta que le digan), que conocí en mi
pasada por el LJLL en Francia y que a pesar (o gracias?) a la pandemia, entablamos una relación y
ha estado junto a mi en gran parte de mi trabajo doctoral, muchas gracias por el apoyo jevita pinareña-
habanera-parisina-lyonesa.

Para cerrar, muchas gracias a quienes son la parte más importante de mis logros alcanzados, mi fa-
milia. Gracias a mis padres, Javier, susto gigante que nos hizo pasar y casi se pierde este fin de doctorado,
gracias por estar ahí siempre atento a cualquier necesidad que tengamos y mostrarse siempre dispuesto
a ayudar al mundo; Patricia, mi gran partner y quien más sufre con mis ausencias de Chile, gracias por
ser la incondicional y mi pilar emocional. Gracias a mis abuelos, Juan y Rosalia, quienes han sido un
ejemplo de esfuerzo y trabajo duro que llevo siempre presente. Gracias a mis hermanos Sebita y Javierito,
que aún en su papel de rudos, siempre están pendientes de mí así como yo estoy pendiente de ustedes.
Gracias a mi tía Vero, que ha sido importante desde un principio y sigue siempre presente. Esta vez
también mencionaré a todo el resto que me he dado cuenta ha estado y ayudado directa o indirectamente
a forjame y ha permitido que alcance este logro, gracias abuelita Menche, tía Sonia, tía Isa, tía Bea, tío
Pez, watón Raúl, Daniela, Cristian, Sole, Vanesa, Francisca, Susi y Yuyo.

Finalmente, agradezco a todos y todas que me han ayudado con esto y que posiblemente olvidé.

v

Table of content

1 Introduction 1

1.1 General background in optimal control . 1

1.1.1 Pontryagin Maximum Principle and indirect shooting methods 2

1.1.2 Direct transcription approach . 3

1.1.3 Hamilton-Jaccobi-Bellman equation . 4

1.1.4 Bocop toolbox . 4

1.2 Dissertation Outline . 6

I Mining context and the Open Pit problem 8

2 The Open Pit problem 9

2.1 Integer programming formulation . 9

2.2 Continuous framework . 11

3 Analysis of optimality conditions for 2D and 3D Final Open Pit 14

3.1 Introduction . 14

3.2 The 2D open pit problem . 16

3.2.1 Statement of the problem . 16

3.2.2 Standing Assumptions . 17

3.2.3 Basics on state constrained optimal control . 18

3.2.4 Optimality conditions for the 2D open pit problem 20

3.3 The 3D open pit problem . 23

vi

3.3.1 Statement of the problem . 24

3.3.2 Standing Assumptions . 24

3.3.3 Optimality conditions . 25

3.4 Future work and final remarks . 27

4 Numerical study of 2D and 3D Final and Sequential Open Pit 28

4.1 Introduction . 28

4.2 Problem statement . 29

4.2.1 Continuous formulation . 29

4.2.2 Semi continuous formulation for SOP . 31

4.3 Analysis and optimality conditions for FOP . 35

4.3.1 Applying Pontryagin’s Maximum Principle . 35

4.3.2 Inactive case: bang/singular control . 37

4.3.3 Active state constraint case . 38

4.3.4 Control structure summary . 38

4.4 Numerical simulations . 39

4.4.1 Numerical methods . 39

4.4.2 Final open pit (2D): global and local optimization 40

4.4.3 Sequential Open Pit (2D and 3D): local optimization 43

4.5 Conclusions . 45

4.6 Implementation details for the semi-continuous approach 45

4.7 Additional examples for the final open pit - continuous formulation 46

4.7.1 FOP with infinite capacity and constant slope 46

4.7.2 FOP with infinite capacity and variable slope 47

II Problems inspired by Covid-19 peak reduction 51

5 Compartmental models 52

vii

5.1 SIR model . 52

5.2 A new compartmental model including vaccines . 54

6 A Mayer formulation for peak minimization problems 59

6.1 Introduction . 59

6.2 Problem and hypotheses . 60

6.3 Formulations with constraint . 61

6.4 Formulation without state constraints . 64

6.5 Numerical illustrations . 68

6.5.1 A particular class of dynamics . 68

6.5.2 Application to an epidemiological model . 71

6.6 Discussion and conclusions . 77

7 A feedback strategy for peak minimization in SIR model 79

7.1 Introduction . 79

7.2 Definitions and problem statement . 80

7.3 The NSN feedback . 81

7.4 Optimal strategy . 82

7.5 Numerical illustrations and discussion . 86

8 Conclusion and perspectives 90

Bibliography 97

III Annexes 98

A Codes global optimization (BocopHJB) 99

A.1 1D FOP - continuous formulation . 99

A.1.1 Problem definition . 99

A.1.2 Objective . 100

viii

A.1.3 Dynamics . 102

A.1.4 Constraints . 103

A.1.5 Other functions . 104

B Codes local optimization (Bocop) 108

B.1 1D SOP - continuous formulation . 108

B.1.1 Problem definition . 108

B.1.2 Problem functions . 109

B.2 1D SOP - semicontinuous formulation . 113

B.2.1 Problem definition . 113

B.2.2 Problem functions . 114

B.3 Local optimization (bocop) for 2D SOP - semicontinuous formulation 119

B.3.1 Problem definition . 119

B.3.2 Problem functions . 122

ix

Chapter 1

Introduction

For decades optimal control theory has been an important tool to apply in real world problems and
engineering. A main motivation to develop this theory came from aerospace engineering in the context
of the aerospace race in the Cold War, to solve problems such as the minimization of the fuel or time
spent by an aircraft going from an initial position to another one. Many other examples exist in domains
of aeronautics, chemical processes, vehicles and transportation, energy, biological systems, etc. Some of
them are showed in [73, 91, 96, 97].

This work consists of applying analytical as well as numerical optimal control techniques to two
specific problems. The first one corresponds to the Open Pit problem, well-known in context of mining,
but using a new continuous formulation in contrast to the classical binary formulation. The second one
arises during the pandemic motivated by overcrowded hospitals due to many infected individuals at the
same time, therefore, the idea was to use optimal control tools in order to minimize the peak of infections.

This introduction is devoted to presenting the main optimal control techniques used and at the end,
a brief explanation of each chapter. We refer to Chapters 2 and 5 as introductions to Parts I and II
respectively.

1.1 General background in optimal control

Consider a time interval [0,T], and (x(t),u(t))∈Rn×Rm ∀t ∈ [0,T] denoting x for the state and u for the
control. An optimal control problem in a Bolza form is written as follows:

(P0)

Minimize ϕ(x(T))+
∫ T

0
f 0(t,x(t),u(t))dt

over all x ∈A C n[0,T] and u ∈U
satisfying ẋ(t) = f (t,x(t),u(t)) for a.e.

x(0) = x0, x(T) ∈ E

where the set of admissible controls is usually U = {u : [0,T]→U,u ∈ L∞}. In this formulation, bound-
ary conditions are represented by a fixed initial state x(0) = x0 and a final state x(T) belonging to a

1

set E which typically correspond to {y ∈ Rn|c1(y) = 0,c2(y) ≤ 0} where c1 and c2 are continuously
differentiable functions with values in Rk1 and Rk2 respectively.

Additionally, we can consider optimal control problems with constraints in the state written as

(t,x(t)) ∈ A.

We then say that it is an optimal control problem with state constraints. Typically, state constraints are
represented by g(x(t)) ≤ 0, t ∈ [0,T] with g regular enough. In this same way, we define an optimal
control problem with mixed constraints when we add (P0) to the expression:

(t,x(t),u(t)) ∈ A

We do not focus on existence results for our problems, however those interested can refer to [34, 36,
73, 96]. In the following sections we will briefly recall the principle of 3 main classes of methods in
optimal control, furthermore, we present Bocop solver, used in numerical experiments of this thesis.

1.1.1 Pontryagin Maximum Principle and indirect shooting methods

After its discovery (see [50] for a review of the history), many versions of Maximum Principle can
be found in the literature. Here we present one of them, but other versions are shown throughout this
document when necessary. Firstly, we introduce the costate p, of the same dimension as the state x and
define the Hamiltonian associated to (P0) as

H(t,x, p, p0,u) = p0 f 0(t,x, p)+ pT f (t,x,u).

Let f 0, f ,ϕ be C 1 class and u ∈ L∞, the Maximum Principle is stated as follow

Theorem 1.1.1 Under previous assumptions, if the pair (x(t),u(t)) is optimal for (P0) then there exists
an absolutely continuous function p : [0,T]→ Rn and a real value p0 ≤ 0 such that:

1. (p(·), p0) ̸= 0.

2. ẋ(t) = ∂pH(t,x(t), p(t), p0,u(t)), −ṗ(t) = ∂xH(t,x(t), p(t), p0,u(t))

3. H(t,x(t), p(t), p0,u(t)) = maxv∈U H(t,x(t), p(t), p0,v)

4. p(T) ∈ p0∇ϕ(x(T))+NE(x(T))

5.
d
dt

H(t,x(t), p(t), p0,u(t)) = ∂tH(t,x(t), p(t), p0,u(t))

A proof of this theorem can be seen in [34, 73]. Note that this base version does not consider state
constraints although these will appear in the Final Open Pit problem, therefore, we will present more
general versions where appropriate.

Shooting method is based on the Pontryagin Maximum Principle and it is part of the indirect methods
(for more detail see [10, 28, 34]). To explain this method, assume the normal case, i.e., p0 ̸= 0. and free

2

final conditions on x, that means, E =Rn. The idea of the shooting method is to solve the boundary value
problem derived from the Maximum Principle:

(BV P)

ẋ(t) = f (t,x(t), ū(t))
ṗ(t) =−∂xH(t,x(t), p(t), p0, ū(t))
x(0) = x0

p(T) = ∇ϕ(x(T))

using the control ū obtained in point 3 of theorem 1.1.1 when it can be written depending explicitly on
x(t), p(t), i.e. ū(t) =Ψ(x(t), p(t)) for a certain function Ψ. We introduce the shooting function associated
to this system as the functional that returns p̄(T)−∇ϕ(x̄(T)) for a value z, where (x̄, p̄) are solutions of
the following Initial value problem

(IV Pz)

ẋ(t) = f (t,x(t),Ψ(x(t), p(t)))
ṗ(t) =−∂xH(t,x(t), p(t), p0,Ψ(x(t), p(t)))
x(0) = x0

p(0) = z

.

If we call S : z→ p̄(T)−∇ϕ(x̄(T)) the shooting function, then, the shooting method consists in
solving S(z) = 0, which is equivalent to solving the system (BVP) and therefore, obtaining a pair (x, p)
fulfilling the conditions of theorem 1.1.1.

This idea can be generalized to a different set E and a more general optimal control problem, for
instance, when x0 is not fix but belongs to a set F ⊆ Rn. In a more general case state constraints can be
considered but the generalization is far more difficult.

1.1.2 Direct transcription approach

The so-called direct approach transforms the infinite dimensional optimal control problem (P0) into a
finite dimensional optimization one (typically non linear). The idea is to discretize the time interval [0,T]
in {t0 = 0, . . . , tN = t f } and apply it to the state and control variables, obtaining the finite dimensional
variable X = {x0, . . . ,xN ,u0, . . . ,uN−1}.

Several options exist to discretize the Ordinary Differential Equation (ODE) of x, for instance, using
Euler explicit form and considering an equidistant discretization on time, where we obtain

xi+1 = xi +h f (xi,ui).

Finally, we get the following nonlinear programming problem:

3

(NLP)

min ϕ(xN)+
N−1

∑
i=0

h f 0(ti,xi,ui)

s.a xi+1 = xi +h f (xi,ui) ∀i ∈ {0, ..,N−1}
ui ∈U ∀i ∈ {0, ..,N−1}
x0 = x̄0, xN ∈ E

State and mixed constraints can be incorporated directly in each discretization point. These methods
are widely used in industrial applications because they are more straightforward to apply than indirect
methods. We refer the reader to [19] and [85] for more details on direct transcription methods and NLP
algorithms.

1.1.3 Hamilton-Jaccobi-Bellman equation

To introduce this results it is necessary to define the value function associated to (P0). Then, for t ∈ [0,T]
and ξ ∈ Rn, the value function V (t,ξ) is defined by:

V (t,ξ) = min
u∈U

{
ϕ(x(T))+

∫ T

t
f 0(s,x(s),u(s))ds | ẋ(s) = f (s,x(s),u(s))∀s ∈ [t,T]; x(t) = ξ

}
.

It corresponds to the optimal value of (P0) taking the initial time and position as t and ξ respectively. The
main result is then

Theorem 1.1.2 The value function V (t,ξ) is a solution (in some specific sense) of the equation

∂tV +minv∈U H(t,ξ ,∂ξV,−1,v) = 0, ∀(t,ξ) ∈ (0,T)×Rn

v(T,ξ) = ϕ(ξ)

An important tool in finding the value function is the Dynamic Programming Principle which corre-
sponds to the following expression

V (t,ξ) = min
u∈U

{∫
τ

t
f 0(s,u(s),y(s))ds+V (y(τ),τ)

}
. (1.1)

Many methods mix the HJB equation and dynamic principle giving a global solution unlike direct
transcription which is local, but the computational effort is normally higher.

For a complete introduction to the subject see [13, 92], considering state-constraints [3, 32] and the
link with Maximum Principle [37]. This approach is not mainly used in this thesis except for numerical
simulations using the HJB version of Bocop, the solver that we are going to present now.

1.1.4 Bocop toolbox

In most of the numerical simulation of this thesis we use Bocop, an open source toolbox for optimal
control problems, developed by Inria and which can be downloaded directly from https://www.bocop.

4

https://www.bocop.org/
https://www.bocop.org/

org/. On the official web-page there is the option to choose between two different packages.

The first and original package implements a local optimization method. The optimal control problem
is approximated by a finite dimensional optimization problem (NLP) using a time discretization (the
direct transcription approach, see section 1.1.2). The NLP problem is solved by the well known software
Ipopt [98], using sparse exact derivatives computed by CppAD [18]1. In Figure 1.1 its interface is shown
and it is possible to observe several options and functionalities of Bocop.

Figure 1.1: Bocop interface and some options

The second package BocopHJB implements a global optimization method. Similarly to the Dynamic
Programming approach, the optimal control problem is solved in two steps. First we solve the Hamilton-
Jacobi-Bellman equation satisfied by the value function of the problem. Then we simulate the optimal
trajectory from any chosen initial condition. The computational effort is essentially taken by the first
step, whose result, the value function, can be stored for subsequent trajectory simulations.2. Figure 1.2
shows interface of BocopHJB.

Bocop runs under Linux, Mac and Windows, besides, in both interfaces it is possible to export solu-
tions in a specified data format allowing its treatment in Matlab or Python. We also take advantage of
their interpolation tools, mainly in the mining context, where we have discretized data to be incorporated
in the continuous optimal control model. A well detailed user guide for both packages can be found in
https://www.bocop.org/download/.

1Explication obtained from Bocop user guide in https://www.bocop.org/download/
2see footnote 1

5

https://www.bocop.org/
https://www.bocop.org/
https://www.bocop.org/
https://www.bocop.org/download/
https://www.bocop.org/download/

Figure 1.2: BocopHJB interface and some options

1.2 Dissertation Outline

In this section we present how the manuscript is organized and the main subjects of each chapter.

Part I of this thesis begins with Chapter 2 where we introduce the Open Pit problem in mining. The
focus of this chapter is to show the classical binary programming formulation introduced by Johnson in
1968 and the newer formulation introduced by Alvarez et al. in 2011. The last one, which uses continuous
functions to retrieve the profile of a mine, will be the seminal model for Chapters 3 and 4.

In Chapter 3 we reformulate the continuous model of Alvarez et al, looking for optimal profiles among
absolutely continuous functions rather than continuous ones. This allowed us to write the Liptchitz
modulus Lp(x), introduced in equation (2.1), as a derivative of p. Using this slight reduction in the
functional space, we can use optimal control tools to obtain optimality conditions for profiles in 2D and
3D. This is the main result of this chapter and corresponds to theorems 3.2.1 and 3.3.1.

On the other hand, Chapter 4 focuses on a numerical study of the Open Pit problem and its Sequential
version. In this chapter we propose a new semi-continuous formulation, presented in section 4.2.2, of
the Sequential Open Pit problem. This formulation is based on a discretization of the space domain
and then the profile is represented by a finite set of variables at the discretization nodes. The explicit
models (SOP)2D

S C and (SOP)3D
S C are shown in section 4.2. We present in this chapter several numerical

experiments using local and global methods (using Bocop and BocopHJB) for the two dimensional case
and for the first time in literature, a numerical solution for a 3 dimensional case in a continuous framework
using this new semi-continuous model (see section 4.4.3).

6

Moving to Part II, in Chapter 5 we introduce two compartmental models for epidemiological pur-
poses. The first one corresponds to the classical SIR model, which we used in Chapters 6 and 7. The
second one is a small contribution developed in the context of a OPS (Organización Panamericana de
la salud) project where we set a compartmental model that considers vaccination ans booster status (see
section 5.2).

In Chapter 6 we work with optimal control problems consisted of minimizing the maximum of a
state. We provide four alternative formulations to this problem in the Mayer form, two of which use
state constraints, with one using mixed constraints and the other using differential inclusion. For the last
one we formulated a family of more regular optimal control problems that approximate from below the
optimal value. We compare the numerical performance of each one over both, an academic example and
the minimization of peak of infectious in a SIR model with a L1 constraint on the control. We summarize
advantages and drawbacks of the different formulations for numerical computations in Table 6.8 section
6.6.

Chapter 7 shows proof that the optimal control that minimizes the peak of I, with a L1 constraints in
the control, has the structure null-singular-null showed in equation (6.5.2). We also compare this solution
with the one obtained by Morris et al that impose just one interval of time where the intervention can
happen.

Finally, in Chapter 8 we show conclusion and perspectives for each part of this manuscript.

7

Part I

Mining context and the Open Pit problem

8

Chapter 2

The Open Pit problem

Mining is among the main Chilean economic activities, according to the technical report Anuario de la
mineria de Chile prepared by Sernageomin [1], the governmental agency of geology and mining in Chile.
It represented 12.5% of the CDP in 2020, mostly thanks to copper exports, of which Chile is the world’s
leading producer. Because of this, there exists in Chile a very active community of mining research which
motives the first part of this work.

The Final Open Pit problem (FOP) consists of finding the optimal shape of an open pit mine (in Figure
2.1 an example), in order to maximize the extraction profit while complying with a slope constraint which
ensures the mine does not collapse. From this base problem, many other more complex ones can be set,
for example, if we add a capacity in the number of blocks, the problem is called Capacitated Final Open
Pit (CFOP). Another well studied problem considers the time periods for which we would like to obtain
the shape of the mine, thus, obtaining an excavation plan. This problem is called Dynamical Final Open
Pit (DFOP) which we also call Sequential Open Pit (SOP).

We will present in the next section the classical formulation of the FOP, an integer programming prob-
lem based on a block model introduced in 1968 by Johnson in [61], and then the continuous framework
introduced in 2011 by Alvarez et al. [4], which is the seminal paper of our work.

2.1 Integer programming formulation

Let B be a set of blocks where for every i ∈B we know its benefit of extraction called bi. To extract
a block i it is necessary to take other blocks in order to respect the slope constraint. This information is
stored as an arc in a direct graph (B,A), i.e., (i, j) ∈ A if and only if to extract block i you have to take
block j, in which case j is a predecessor of i. This is shown in Figure 2.2.

To set the optimization problem we define the following variables for each block i ∈B :

xi =

{
1 if block i is chosen for extraction
0 if not

.

9

Figure 2.1: Chuquicamata mine, the biggest open pit mine in the world located in Atacama region of
Chile

therefore, the binary optimization problem is:

(FOP0) ∑
i∈B

bixi

x j− xi ≥ 0 ∀(i, j) ∈ A
xi ∈ {0,1} ∀i ∈B

.

adding a maximal capacity C of extraction in terms of total mass, the model can be modified as

(CFOP0) max ∑
i∈B

bixi

x j− xi ≥ 0 ∀(i, j) ∈ A
∑
i∈N

pixi ≤C

xi ∈ {0,1} ∀i ∈B

where pi is the density of block i. To pose the dynamical problem we consider T time periods. For each
time t ∈ {1, ..,T} and each block i ∈B we define the variable:

xt
i =

{
1 if block i is extracted at time t
0 if not

.

So, for a discount factor α ∈ (0,1) the Dynamical Final Open Pit, named also by us as Sequential
Open Pit (SOP), is written as follow

10

Figure 2.2: Block model example.

(SOP0) max
T

∑
t=1

∑
i∈B

bi

(1+α)t−1 xt
i

T

∑
t=1

xt
i ≤ 1 ∀i ∈B

t

∑
l=1

xl
j− xt

i ≥ 0 ∀(i, j) ∈ A, t = 1, ...,T

∑
i∈B

pixt
i ≤Ct t = 1, ...,T

xt
i ∈ {0,1} ∀i ∈B, t = 1, ...,T

.

These kinds of formulations have been studied for several years and many others constraints and
conditions can be added (see for example [44, 60, 90]). A complete review of theses models can be
found in [84]. In the following section, we will present a newer and less exploited model, which is based
of the first part of this thesis.

2.2 Continuous framework

The formulation presented in this section comes from [4] and we start by introducing the notation used.
Let Ω be the region of interest in R1 or R2, supposed to be open and bounded. The border of a pit shall
be determined by a continuous function p : Ω→ R that is called profile and where p(x) represents the
depth of the pit at point x ∈Ω.

The slope of the pit at point x∈Ω will be computed as the Lipschitz modulus Lp(x) defined as follows

Lp(x) := limsup
x̄→x←x̂

|p(x̄)− p(x̂)|
||x̄− x̂|| (2.1)

11

and it will be bounded by a function w writing Lp(x) ≤ w(x, p(x)),∀x ∈ Ω. The natural shape of the
ground will be represented by a continuous function p0, therefore, each feasible profile has to be deeper
than this initial one and it has to connect with p0 in the borders. That condition correspond to the
following constraints:

p(x)− p0(x)≥ 0, ∀x ∈Ω

p(x)− p0(x) = 0, ∀x ∈ ∂Ω.

In Figure 2.3 it is possible to observe the previous description. To finally set the optimization problem,
the effort and gain density functions are defined as e(x,z)≥ eo > 0, g(x,z)∈R, ∀(x,z)∈Ω×Z, supposed
uniformly bounded, and the functionals

G[p,q] :=
∫

Ω

∫ q(x)

p(x)
g(x,z)dzdx, E[p,q] :=

∫

Ω

∫ q(x)

p(x)
e(x,z)dzdx

G[q] := G[p0,q] E[q] := E[p0,q]

Figure 2.3: Explication image from [4].

The Final Open Pit problem in this continuous framework is then posed as:

(FOPc) maxG[p]

p(x)− p0(x)≥ 0, ∀x ∈Ω

p(x)− p0(x) = 0, ∀x ∈ ∂Ω

Lp(x)≤ w(x, p(x)) ∀x ∈Ω

p ∈ C (Ω)

12

and after adding the capacity constraint, the Capacitated Final Ope Pit correspond to:

(CFOPc) maxG[p]

p(x)− p0(x)≥ 0, ∀x ∈Ω

p(x)− p0(x) = 0, ∀x ∈ ∂Ω

Lp(x)≤ w(x, p(x)) ∀x ∈Ω

E[p]≤C
p ∈ C (Ω)

.

To model the dynamical problem in [4] they consider a continuous interval of time [0,T] and for each
time t ∈ [0,T], p(t, ·) is a feasible profile of (FOPc). Let also c ∈ L∞(0,T), c(t) ≥ 0 be the capacity at
time t and

C(s, t) =
∫ t

s
c(τ)dτ

the total capacity in the interval [s, t]⊆ [0, T]. Introducing a monotonically decreasing function ϕ ∈
C 1[0, T] representing the discount factor, such that ϕ(0) = 1 and 0 < ϕ(T) < 1 (typically ϕ(t) = e−δ t ,
for a given δ > 0), and noting P(t)(x) := p(t,x), the present value of the gain is then:

∫ T

0
ϕ(t)

∫

Ω

g(x, p(t,x))dxdP(t) =
∫

Ω

∫ T

0
ϕ(t)g(x, p(t,x))

∂ p
∂ t

(t,x)dtdx.

Finally, the dynamical problem in the continuous framework can be written as:

(SOPc) max
∫

Ω

∫ T

0
ϕ(t)g(x, p(t,x))

∂ p
∂ t

(t,x)dtdx

p(t,x) = p0(x) ∀x ∈ ∂Ω, t ∈ [0,T]
Lp(t,·)(x)≤ w(x, p(t,x)) ∀x ∈Ω, t ∈ [0,T]

p0 = p(0, ·)≤ p(s, ·)≤ p(t, ·) ∀s, t ∈ [0, t], s≤ t
∫

Ω

∫ p(t,x)
p(s,x) e(x,z)dzdx≤C(s, t) ∀s, t ∈ [0, t], s≤ t

p(t, ·) ∈ C 1(Ω)

Remark 2.2.1 The objective function of (SOPc) suggest that p(t,x) must be differentiable with respect
to t, so, to avoid that requirement, it can be written in the following form (expression obtained integrating
by parts):

ϕ(T)
∫

Ω

∫ p(T,x)

p(0,x)
g(x,z)dzdx+

∫

Ω

∫ T

0
−ϕ
′(t)

∫ p(t,x)

p(0,x)
g(x,z)dzdtdx

In this work the authors proved existence results for previous problems (see propositions 6 and 11
in [4]) but neither was any characterization of solutions nor numerical experiments shown. These two
subjects are the novelty of Part I of this thesis.

13

Chapter 3

Analysis of optimality conditions for 2D and
3D Final Open Pit

This chapter corresponds to the article [5] entitled "Optimality conditions for the continuous model of
the final open pit problem"

3.1 Introduction

The long term planning of a mine operation consists of defining a sequence for the extraction of material
from the mine in order to maximize profit. As a first step in this process, decision-makers usually must
decide the final pit limit, which corresponds to the identification of a maximum value on the total mass
to be extracted from the site, which enables an upper bound on the discounted value of the profit over
several periods to be defined. This first step is called the Final Open Pit or Ultimate Open Pit problem. A
very early contribution to the practical resolution of this problem was proposed by Lerchs and Grossman
[74] and, since then, a great variety of models and algorithms have been proposed. See Hustrulid et al
[59] and Newman et al [84] for a more thorough introduction to open pit mine planning. The first effort
to formally describe a practical mathematical model to solve this problem in an integrated way seems to
be the work by Johnson [61].

Three different problems are usually considered for the economic valuation, design and planning
of open pit mines. The first is the Final Open Pit (FOP) problem, which aims at finding the region
of maximal economic value under geotechnical stability constraints. Another more realistic problem
is what we call here the Capacity Final Open Pit (CFOP), which adds an additional constraint on the
total capacity for extraction. The third problem is a multi-period version of the latter, which we call the
Capacity Dynamic Open Pit (CDOP) problem, with the goal of finding an optimal sequence of volumes
to be extracted with bounded capacities during each period.

The usual formulation of these problems consists of describing an ore reserve as a three-dimensional
block model. Each block corresponds to a unitary volume of extraction, characterized by several physical
and economic attributes, most of which are estimated from experimental sampling. Block models can
be represented as directed graphs where nodes represent the blocks and arcs determineblock precedence

14

(order of extraction). Block precedence is essentially induced by operational constraints, such as those
derived from slope stability. This discrete approach usually gives rise to huge, combinatorially large-scale
instances of Integer Programming, such as that presented by Cacetta [29]. A great number of publications
dealing with discrete block modeling for open pit mines have been published over the last 60 years. The
seminal methodology for obtaining the ultimate pit limit, introduced by Lerchs and Grossman [74], has
been extensively applied in real mines for many years. The capacity dynamic problem is more difficult to
solve and many methods using discrete optimization techniques have been proposed by Boland et al [22],
Cacetta and Hill [30] and Hochbaum and Chen [58]. This problem is beyond the scope of this chapter,
but we can mention some dynamic programming formulations, for instance, Johnson and Sharp [62] and
Wright [101]. Metaheuristic and evolutionary algorithms have also been extensively tested by Denby and
Schofield [39] and Ferland et al [47].

In this chapter we use an alternative approach to the above mentioned (CFOP) problem based on
a continuous framework, proposed by Alvarez et al [4]. The basic idea is to describe pit contours by
a continuous real-valued function, which maps each pair of horizontal coordinates to the correspond-
ing vertical depth. Slope stability is ensured by means of a spatially distributed constraint on the local
Lipschitz constant of the profile function. The maximal feasible local slope may vary throughout the
site, depending on the geotechnical properties of the mineral deposit. The extraction capacity and op-
erational costs are described by a possibly discontinuous effort density, a scalar function defined on the
three-dimensional mining site. Concerning the continuous approach, we mention here the contribution
by Ekeland and Queyranne [43], who proposed an alternative approach based on determining an opti-
mum pit from an optimum dual solution of a particular transportation problem. Additionally, in [55], the
authors derive duality results for the stationary open pit problem in the continuous framework, employing
an additional condition called convex-likeness. The same authors, in [93], propose a partial differential
equation model and show that, under suitable assumptions, the physically stable excavation path is the
solution of a certain Hamilton-Jacobi equation.

The economic value of the blocks is given by a gain density defined on the deposit, which can also
be a discontinuous function. Our goal here is to extend the existence results develop by Alvarez et al [4]
to the qualitative properties of the optimal solutions. This qualitative characterization is derived from the
optimality conditions in the calculus of variations and control theory.

The chapter is organized as follows. In Section 3.2 we describe the stationary problem in terms of
continuous profile functions and we establish the basis of our approach, in the context of a "2D-mine",
which permits to give a simple motivation of the real 3D problem and to derive relevant results that can
be generalized to the real case. Section 3.3 is devoted to the study of the realistic 3D instance, extending
the main results of the previous section. By using tools from the calculus of variations, we derive an
operational characterization of the optimal profile, particulary to show that the gain function must take
the value zero along the border of the optimal profile, unless the capacity or slope constraints are active.
In Section 3.4 we briefly summarize the main contributions of this chapter and indicate some avenues for
future research.

15

3.2 The 2D open pit problem

To fix ideas, we begin by considering the idealized case of an open pit on the plane, that is, the framework
where the profiles are modeled using a continuous function that depends only on a single space variable
(denoted x for simplicity). Generically, we denote a profile of an open pit by p : [a,b]→R+ where a and
b are the extreme points of the open pit (there is no loss of generality in taking a < b) and where p(x)
represents the depth of the profile at the point x ∈ [a,b]; see Figure 3.1.

Ground level ~x
a bx

p(x)

~Fgrav

Figure 3.1: Profile of an open pit on the plane

3.2.1 Statement of the problem

For the sake of notation, we assume that the depth of a profile is always positive. In this framework, an
admissible profile is a function p : [a,b]→ R that must satisfy some conditions, the first one being as
follows: given an initial profile p0 : [a,b]→ R an admissible profile has to satisfy

p0(x)⩽ p(x), ∀x ∈ [a,b].

which means that a feasible profile must be deeper than the initial profile p0.

Given a profile p : [a,b]→ R, we define its slope at the point x ∈ [a,b] as the Lipschitz modulus of p
at x (see for example Dontchev and Rockafellar [42, Section 1D]), that is,

Lp(x) := limsup
x̄→x←x̂

|p(x̄)− p(x̂)|
|x̄− x̂| .

Due to the risk of landslides, the slope of a profile cannot be too steep. Note that the maximal slope
allowed may change depending on the position and depth in the pit. This constraint is then represented
via the condition

Lp(x)⩽ κ(x, p(x)), ∀x ∈ [a,b],

where κ(x,z) represents the maximal slope at the point (x,z) allowed for a profile p : [a,b]→ R to be
admissible. Note that if the profile is continuously differentiable on (a,b), then the slope agrees with the
absolute value of the profile’s derivative (see [42, Section 1D]), that is,

Lp(x) = |ṗ(x)|, ∀x ∈ (a,b).

16

However, in our setting, working with smooth functions is too restrictive. For this reason we choose to
work with a broader class of functions, namely, the collection of continuous functions whose derivatives
exist almost everywhere on [a,b] and which satisfy

p(x) = p(a)+
∫ x

a
ṗ(s)ds, ∀x ∈ [a,b].

This class of functions is the so-called set of absolutely continuous functions, which we denote by
A C [a,b]. It turns out that absolutely continuous functions are well behaved with respect to the slope, in
the sense that the slope agrees almost everywhere with the derivative of an absolutely continuous profile.

Lemma 3.2.1 Let p ∈A C [a,b], then Lp(x) = |ṗ(x)| almost everywhere on [a,b].

On the other hand, due to physical or economic constraints, the capacity of extraction is indeed
limited. Given a position x, the effort associated with extracting a block at depth z ⩾ p0(x) can be
represented by a nonnegative quantity e(x,z). Thus, given a maximal budget cmax > 0, the capacity
constraints associated with a profile p : [a,b]→ R can be expressed via the condition

∫ b

a

∫ p(x)

p0(x)
e(x,z)dzdx⩽ cmax.

Concerning optimality, the marginal profit at each x ∈ [a,b] of an admissible profile p : [a,b]→ R is
given by ∫ p(x)

p0(x)
g(x,z)dz

where g(x,z) represents the profit earned (or gain) for carrying out extraction at the block (x,z) for any
z ∈ [p0(x), p(x)]. Therefore, the total profit associated with an admissible profile p : [a,b]→ R is given
by ∫ b

a

∫ p(x)

p0(x)
g(x,z)dzdx.

We are now in a position to formally state the 2D Final Open Pit problem:

Maximize
∫ b

a

∫ p(x)

p0(x)
g(x,z)dzdx

over all p ∈A C [a,b] subject to p(a) = p0(a), p(b) = p0(b)
p0(x)⩽ p(x), for all x ∈ [a,b],
|ṗ(x)|⩽ κ(x, p(x)) for a.e. x ∈ [a,b]
∫ b

a

∫ p(x)

p0(x)
e(x,z)dzdx⩽ cmax.

(P2D)

3.2.2 Standing Assumptions

Throughout the remainder of this section, unless otherwise stated, we will assume−∞ < a < b <+∞ and
cmax > 0 are fixed parameters of the problem. The initial profile p0 : [a,b]→ R is a given continuously
differentiable function.

17

The profit objective function g : [a,b]×R is assumed to be a nonnegative, bounded and piecewise
continuous function. The marginal cost of extraction e : [a,b]×R→ R is assumed to be a nonnegative,
bounded and continuous function. Also, the maximal slope allowed κ : [a,b]×R→ R is assumed to
be continuous, nonnegative and bounded with p 7→ κ(x, p) being continuously differentiable for any
x ∈ [a,b] fixed and such that (x,q) 7→ ∇qκ(x,q) is bounded on [a,b]×Rn.

Under these assumptions, the existence of an optimal profile is ensured, as proved by Alvarez et al
[4]. Moreover, the fact that an optimal profile is absolutely continuous (Lipschitz continuous actually) is
enforced by the boundedness and continuity of the maximal slope κ . This existence result concerns as
well the 3D case studied in §3.3.

Remark 3.2.1 In the light of Alvarez et al [4, Lemma 1], the feasible set of (P2D) without the capacity
constraint, is convex provided z 7→ κ(x,z) is concave for any x∈ [a,b] fixed. Moreover, by [4, Proposition
5], if z 7→ e(x,z) is monotonically increasing and z 7→ g(x,z) is monotonically decreasing (for x ∈ [a,b]
fixed), then the problem (P2D) turns out to be a convex one. The previous paragraph can also be applied
to the 3D case. However, under the assumptions we have done so far, these hypotheses cannot be assured.
As a matter of fact, the problem (P2D) may have several local minima, which are not necessarily global.
It worths to mention then that in general setting of this manuscript we deal with non-convex problems.
The previous comment also applies to the 3D case.

3.2.3 Basics on state constrained optimal control

Let us point out that the formulation of (P2D) is slightly more restrictive than what has been treated
in Alvarez et al [4]. Essentially, we restrict our analysis to a small class of functions, those that are
absolutely continuous. The main advantage of doing so is that now the Final Open Pit problem can be
treated as an optimal control problem with state constraints, and optimality conditions can be derived by
fairly standard methods.

For the sake of completeness, we state the main tool from optimal control theory we are going to use
in the analysis provided in this section. Let us consider a general Mayer optimal control problem on Rn:

Minimize ϕ(q(b))
over all q ∈A C n[a,b] and measurable functions u
satisfying q̇(x) = f (x,q(x),u(x)) , for a.e. x ∈ [a,b],

u(x) ∈U, for a.e. x ∈ [a,b],
h(x,q(x))⩽ 0, for any x ∈ [a,b],
(q(a),q(b)) ∈ E.

(PM)

Here, q ∈ A C n[a,b] means that q : [a,b] → Rn and if q = (q1, . . . ,qn), then each component qi ∈
A C [a,b]. Furthermore, for the purposes of our analysis, we only need to consider the case in which:

• ϕ : Rn→ R is a continuously differentiable function,

• f : [a,b]×Rn×Rm → Rn is such that, x 7→ f (x, q̂, û) is measurable, q 7→ f (x̂,q, û) is Lipschitz

18

continuous (uniformly with respect to (x̂, û)) and u 7→ f (x̂, q̂,u) is continuous for any (x̂, q̂, û) ∈
[a,b]×Rn×U fixed,

• h : [a,b]×Rn→ R is continuous, with q 7→ h(x̂,q) being differentiable for any x̂ ∈ [a,b] fixed and
such that (x,q) 7→ ∇qh(x,q) is continuous on [a,b]×Rn,

• U ⊆ Rm is a given nonempty compact set,

• E ⊆ Rn×Rn is a nonempty closed convex set.

It is worth recalling that the (convex) normal cone to a set S⊆ Rk is defined by

NS(s) := {η ∈ Rk | ⟨η , s̃− s⟩⩽ 0, ∀s̃ ∈ S}, ∀s ∈ S.

In particular, given s0 ∈ R, we have

N(−∞,s0](s) =

{
{0} if s < s0

[0,+∞) if s = s0,
and N{s0}(s0) = R.

Definition 3.2.1 An arc q̄ ∈ A C n[a,b] admissible for (PM) is said to be a weak local minimizer of the
problem (related to an optimal control ū) if there is ε > 0 such that

q ∈A C n[a,b] is admissible for (PM) and ∥q− q̄∥W 1,1 ⩽ ε =⇒ ϕ (q̄(b))⩽ ϕ (q(b)) .

Here ∥ · ∥W 1,1 stands for the usual norm of the Sobolev space W 1,1([a,b];Rn).

It turns out that, in this setting, weak local minimizers of (PM) satisfy Maximum Principle for State
Constrained problems (Vinter [97, Theorem 9.3.1]).

Lemma 3.2.2 Under the conditions stated above, if q̄ ∈ A C n[a,b] is a weak local minimizer of (PM)
related to the optimal control ū, then there exist λ ∈A C n[a,b], η ∈ {0,1}, a (positive) Radon measure
µ on [a,b], and a Borel measurable function γ : [a,b]→ Rn satisfying

γ(x) = ∇qh(x, q̄(x)), for µ-a.e. x ∈ [a,b],

such that

1. (λ ,µ,η) ̸= (0,0,0);

2. −λ̇ (x) ∈ ∂C
q H (x, q̄(x),ξ (x), ū(x)) for a.e. x ∈ [a,b];

3. (λ (a),−ξ (b)) ∈ {0}×{η∇ϕ(q̄(b))}+NE(q̄(a), q̄(b));

4. H (x, q̄(x),ξ (x), ū(x)) = maxu∈U H (x, q̄(x),ξ (x),u) for a.e. x ∈ [a,b];

5. supp(µ)⊆ {x ∈ [a,b] | h(x, q̄(x)) = 0}.

Here H (x,q,ξ ,u) = ⟨ξ , f (x,q,u)⟩ and

ξ (x) = λ (x)+
∫

[a,x[
γ(s)µ(ds) ∀x ∈ [a,b[and ξ (b) = λ (b)+

∫

[a,b]
γ(s)µ(ds)

19

3.2.4 Optimality conditions for the 2D open pit problem

In this part of the chapter, we analyze the behavior of an optimal profile by using the tools from optimal
control theory described earlier. The following result can in principle be stated for local optima as well.
However, to keep the presentation of the chapter simple, we prefer to present it only for a global optimum.

Theorem 3.2.1 Let p̄ ∈ A C [a,b] be an optimal profile of the problem (P2D). Then there are ζ ∈
A C [a,b], η ∈ {0,1}, λ̄ ⩽ 0 and a (positive) Radon measure µ on [a,b], with at least one of them
not equal to zero, such that

−ζ̇ (x) ∈ ηG(x, p̄(x))+ λ̄e(x, p̄(x))+ |µ([a,x[)−ζ (x)|∂pκ(x, p̄(x)), a.e. on [a,b],

with supp(µ)⊆ {x ∈ [a,b] | p0(x) = p̄(x)}, and where

G(x, p) = co
{

g(x, p−),g(x, p+)
}
, ∀x ∈ [a,b],∀p ∈ R.

Furthermore, we also have

λ̄

(∫ b

a

∫ p̄(x)

p0(x)
e(x,z)dzdx− cmax

)
= 0

and (ζ (x)−µ([a,x[))(|̄̇p(x)|−κ(x, p̄(x))) = 0 for a.e. x ∈ [a,b].

PROOF. The proof of the result is based on a transformation of the Final Open pit problem (P2D) into a
Mayer problem such as (PM), for which p̄ provides a weak local minimizer related to the optimal control

ū(x) :=

˙̄p(x)
κ(x, p̄(x))

if κ(x, p̄(x)) ̸= 0

0 otherwise.
(3.1)

We divide the proof into several parts for the sake of exposition.

1. First we show that (P2D) is an instance of the Mayer problem (PM). The key points here are to
interpret the slope condition as a controlled ordinary differential equation and to be able to handle
the capacity constraints

∫ b

a

∫ p(x)

p0(x)
e(x,z)dzdx⩽ cmax (3.2)

as an end-point constraint of an additional state. Let p ∈ A C [a,b] be a given profile. On the
one hand, note that for any x ∈ [a,b] such that κ(x, p(x)) ̸= 0, the condition |ṗ(x)| ⩽ κ(x, p(x)) is

equivalent to−1⩽ u(x) :=
ṗ(x)

κ(x, p(x))
⩽ 1. This implies then that the condition |ṗ(x)|⩽ κ(x, p(x))

is actually equivalent to

ṗ(x) = u(x)κ(x, p(x)), with −1⩽ u(x)⩽ 1, for a.e. x ∈ [a,b].

20

On the other hand, note that (3.2) is actually an isoperimetric inequality constraint. To deal with it,
we introduce a new auxiliary state. Let q1 : [a,b]→ R be given by

q1(t) =
∫ t

a

∫ p(x)

p0(x)
e(x,z)dzdx, ∀t ∈ [a,b].

Thus, it is clear that (3.2) can be written as q1(b)⩽ cmax. Furthermore, q1(a) = 0 and the velocity
of q1 is given by the expression

q̇1(x) =
∫ p(x)

p0(x)
e(x,z)dz, for a.e. x ∈ [a,b].

Also, by defining q2 : [a,b]→ R via the formula

q2(t) =
∫ t

a

∫ p(x)

p0(x)
g(x,z)dzdx, ∀t ∈ [a,b],

it is clear that the total profit is given by q2(b), and that this new state satisfies

q̇2(x) =
∫ p(x)

p0(x)
g(x,z)dz, for a.e. x ∈ [a,b], with q2(a) = 0.

Therefore, setting q(x) = (q1(x),q2(x), p(x)) for any x ∈ [a,b], we see that (P2D) is an instance of
the Mayer problem (PM) with ϕ(q) =−q2, h(x,q) = p0(x)−q3, U = [−1,1],

f (x,q,u) =
(∫ q3

p0(x)
e(x,z)dz,

∫ q3

p0(x)
g(x,z)dz,uκ(x,q3)

)

and
E =

{
(α,β) ∈ R3×R3 | α1 = α2 = 0, α3 = p0(a),β1 ⩽ cmax and β3 = p0(b)

}
.

2. Now, since p̄ is assumed to be an optimal solution of (P2D), it follows that p̄ provides a weak local
minimizer of (PM), related to the optimal control defined in (3.1).

Moreover, the condition under which Lemma 3.2.2 has been stated are satisfied by the data provided
in the preceding part; the Lipschitz continuity of q 7→ f (x̂,q, û) (uniformly with respect to (x̂, û) ∈
[a,b]×U) comes from the fact that e and g are measurable bounded functions and κ is Lipschitz
continuous in the second variable, uniformly with respect to the first one. Therefore, we can apply
Lemma 3.2.2, and so, there exist λ ∈A C 3[a,b], η ∈ {0,1}, a (positive) Radon measure µ on [a,b],
and a Borel measurable function γ : [a,b]→R3 fulfilling the conditions in Lemma 3.2.2. Note first
that the Hamiltonian does not depend on q1 nor on q2, and also that

∇qh(x,q) = (0,0,−1).

Because of point 2 in Lemma 3.2.2 and the definition of x 7→ ξ (x), we can deduce that there are
λ̄1, λ̄2 ∈ R such that

ξ1(x) = λ1(x) = λ̄1 and ξ2(x) = λ2(x) = λ̄2, ∀x ∈ [a,b],

and
ξ3(x) = λ3(x)−µ([a,x[), ∀x ∈ [a,b[, and ξ3(b) = λ3(b)−µ([a,b]).

21

Note also that ∇ϕ(q) = (0,−1,0) and

NE (q̄(a), q̄(b)) = R3×
{

β ∈ R3 | β1 ⩾ 0, β1(q̄1(b)− cmax) = 0 and β2 = 0
}
.

By point 3 in Lemma 3.2.2, we have that λ̄2 = η ∈ {0,1} and λ̄1 ⩽ 0 with

λ̄1

(∫ b

a

∫ p̄(x)

p0(x)
e(x,z)dzdx− cmax

)
= 0.

By point 4 in Lemma 3.2.2 we have, since κ is nonnegative, that

ξ3(x)ū(x)κ(x, p̄(x)) = |ξ3(x)|κ(x, p̄(x)), for a.e. x ∈ [a,b].

Note that whenever κ(x, p̄(x)) ̸= 0 (a.e. on [a,b]) we have that

ξ3(x) ˙̄p(x) = |ξ3(x)|κ(x, p̄(x)).

This implies that whenever ˙̄p(x)< κ(x, p̄(x)), then necessarily ξ3(x) = 0, and so

ξ3(x)(˙̄p(x)−κ(x, p̄(x))) , for a.e. x ∈ [a,b].

Finally, note that since e is continuous and κ is continuously differentiable in the second variable,
for any x ∈ [a,b] ξ ∈ R3 and u ∈ [−1,1] fixed, such that p 7→ q(x, p) is continuous at p = q3, we
have

∇qH(x,q,ξ ,u) = (0,0,ξ1e(x,q3)+ξ2g(x,q3)+ξ3u∂pκ(x,q3))

In particular, by point 2 in Lemma 3.2.2, for a.e. x ∈ [a,b] such that p 7→ q(x, p) is continuous at
p = p̄(x) we have

−λ̇3(x) = λ̄1e(x, p̄(x))+ηg(x, p̄(x))+ξ3(x)ū(x)∂pκ(x, p̄(x))

because in this case q 7→ H(x,q,ξ (x), ū(x)) is continuously differentiable at

q =

(∫ x

a

∫ p(x̃)

p0(x̃)
e(x̃,z)dzdx̃,

∫ x

a

∫ p(x̃)

p0(x̃)
g(x̃,z)dzdx̃, p̄(x)

)
.

Since the functions g is piecewise continuous, for any x ∈ [a,b], if p 7→ q(x, p) is not continuous at
p = p̄(x) we have that

∂
C
q H(x,q,ξ ,u) = {(0,0)}× (ξ1e(x,q3)+ξ2G(x,q3)+ξ3u∂pκ(x,q3))

where
G(x, p) = co{g(x, p−),g(x, p+)}, ∀x ∈ [a,b], p ∈ R.

Also, on the one hand, by Maximum Principle (point 4 in Lemma 3.2.2), for a.e. x ∈ [a,b] such
that κ(x, p̄(x))> 0 we must have that ξ3(x)ū(x) = |ξ3(x)|. On the other hand, if κ(x, p̄(x)) = 0, we
must have that ∂pκ(x, p̄(x)) = 0 because p = p̄(x) is a local minimum of p 7→ κ(x, p). Combining
these two issues we get

ξ3(x)ū(x)∂pκ(x, p̄(x)) = |ξ3(x)|∂pκ(x, p̄(x)), for a.e. x ∈ [a,b].

Therefore, setting λ̄ = λ̄1 and ζ = λ3 the conclusion follows.

22

We now state a direct consequence of the preceding theorem in the case when the slope condition is
not active, and the state constraint is only active at the end-points.

Corollary 3.2.1 Let p̄ ∈A C [a,b] be an optimal profile of the problem (P2D). Suppose that

p0(x)< p̄(x), ∀x ∈]a,b[and | ˙̄p(x)|< κ(x, p̄(x)), for a.e. x ∈ [a,b]. (3.3)

Then there are η ∈ {0,1} and λ̄ ⩽ 0, such that

0 ∈ ηG(x, p̄(x))+ λ̄e(x, p̄(x)), a.e. on [a,b].

with

λ̄

(∫ b

a

∫ p̄(x)

p0(x)
e(x,z)dzdx− cmax

)
= 0.

In particular, if p 7→ g(x, p) is continuous for any x ∈ [a,b] fixed, then the condition reduces to

ηg(x, p̄(x))+ λ̄e(x, p̄(x)) = 0, ∀x ∈ [a,b].

Moreover,

1. if the marginal cost associated with extracting a block at any depth is zero (there is no capacity
constraint), that is, e(x,z) = 0 for any x ∈ [a,b] and z⩾ p0(x), then the marginal gain of extracting
a block at any depth must be zero on the subsection [a,b], that is,

g(x, p̄(x)) = 0, ∀x ∈ [a,b].

2. if the marginal cost associated with extracting a block at any depth is positive (there is an effective
capacity constraint), that is, e(x,z)> 0 for any x ∈ [a,b] and z⩾ p0(x), then η = 1 and

g(x, p̄(x))+ λ̄e(x, p̄(x)) = 0, ∀x ∈ [a,b].

PROOF. It is enough to apply directly Theorem 3.2.1, and check that ζ (x) = µ([a,x[) for a.e. x ∈ [a,b]
and note that µ([a,x[) = 0 for a.e. x ∈ [a,b] because supp(µ)⊆ {a,b}.

3.3 The 3D open pit problem

We now turn into the more realistic case of an open pit in the 3D space. The profiles in this framework
are modeled using a continuous function that depends on the two horizontal space variable (denoted x
and y for simplicity). Generically, we denote a profile of an open pit by p : Ω→ R where Ω⊆ R2 is the
bounded domain in R2 that represents the open pit and where p(x,y) represents the depth of the profile
at the point (x,y) ∈Ω.

23

3.3.1 Statement of the problem

As done for the 2D case, we assume that the depth of a profile is always positive. The final open pit
problem in the 3D case has the same structure as in the 2D case. This means that for a given initial profile
p0 : Ω→R, the total profit and total extraction associated with an admissible profile p : Ω→R are given
respectively by ∫

Ω

∫ p(x,y)

p0(x,y)
g(x,y,z)dzdxdy and

∫

Ω

∫ p(x,y)

p0(x,y)
e(x,y,z)dzdxdy.

The maximal slope allowed is also considered to be bounded, and thus profiles are Lipschitz continuous
mappings. The associated constraint is then represented via the condition

Lp(x,y) := limsup
(x̄,ȳ)→(x,y)←(x̂,ŷ)

|p(x̄, ȳ)− p(x̂, ŷ)|√
|x̄− x̂|2 + |ȳ− ŷ|2

⩽ κ(x,y, p(x,y)), ∀(x,y) ∈Ω.

Therefore, the Final Open Pit problem in the 3D case is the following:

Maximize
∫

Ω

∫ p(x,y)

p0(x,y)
g(x,y,z)dzdxdy

over all p ∈ Lip
(
Ω
)

subject to p(x,y) = p0(x,y), for any (x,y) ∈ ∂Ω

p0(x,y)⩽ p(x,y), for any (x,y) ∈Ω,

Lp(x,y)⩽ κ(x,y, p(x,y)) for any (x,y) ∈Ω
∫

Ω

∫ p(x,y)

p0(x,y)
e(x,y,z)dzdxdy⩽ cmax.

(P3D)

Remark 3.3.1 A more general model that considers profiles having a time dependance has been studied
by Álvarez et al in [4]. The analysis of this problem, called Capacitated Dynamic Open Pit, becomes
more difficult and we plan to study it in details elsewhere.

Remark 3.3.2 Similarly as for the 2D case, a control setting can be introduced to deal with the 3D case;
see the proof of Theorem 3.2.1. This is certainly a suitable approach to handle Theorem 3.3.1, however, in
this setting the control is distributed and also subject to constraints; see the discussion in §3.4. Moreover,
optimality conditions for problems of this kind are known to be harder to handle and for this reason we
take another path to prove Theorem 3.3.1 base on classical calculus of variations.

3.3.2 Standing Assumptions

Throughout the remainder of this section, unless otherwise stated, we will assume Ω ⊆ R2 is an open
bounded domain and cmax > 0 is fixed parameter of the problem. The initial profile p0 : Ω→R is a given
continuously differentiable function.

The densities of gain and effort are now g : Ω×R and e : Ω×R→R, respectively. They are assumed
to be bounded, measurable and the second one (the densities of effort) nonnegative. Also, the maximal
slope allowed κ : Ω×R→ R is assumed to be continuous, nonnegative and bounded with p 7→ κ(x, p)

24

being continuously differentiable for any x ∈ Ω fixed and such that (x,q) 7→ ∂pκ(x, p) is bounded on
Ω×Rn.

3.3.3 Optimality conditions

We now present some necessary optimality conditions that extend the one given for the 2D case. The
conditions obtained in this case do not require the continuity of the gain function g nor the continuity
of the effort e. However, because of the nonholonomic character of the slope constraints, the result we
present is only valid for the case when optimal profiles do not saturate this condition (see assumption (3.4)
below). Nonholonomic constraints are hard to handle in calculus of variations of multiple integral and
require technical assumptions which may be too strong for the scope of this chapter. The main difficulty
is that the construction of suitable variations is not always ensured; see for instance [52, Chapter 2].
It remains then as an open problem and future work to provide necessary optimality conditions for the
general case where nonholonomic restriction may be active.

Theorem 3.3.1 Let p̄ ∈ Lip
(
Ω
)

be an optimal profile of (P3D). Assume that p̄ ̸= p0 and let Ω0 ⊆ Ω be
the open domain of R2 given by

Ω0 =
{
(x,y) ∈ R2 | p0(x,y)< p̄(x,y)

}
.

If the slope constraints is not active on Ω0, that is,

sup
(x,y)∈Ω0

{
Lp̄(x,y)−κ(x,y, p̄(x,y))

}
< 0, (3.4)

then there is λ̄ ⩽ 0 such that

g(x,y, p̄(x,y))+ λ̄e(x,y, p̄(x,y)) = 0, ct p. inΩ0.

Furthermore, λ̄ satisfies the following properties:

1. If
∫

Ω

∫ p̄(x,y)

p0(x,y)
e(x,y,z)dzdxdy < cmax then λ̄ = 0.

2. λ̄ can be taken to be any value λ = −
∫

Ω

g(x,y, p̄(x,y))ψ(x,y)dxdy, provided that ψ ∈ C ∞
0 (Ω) is

such that
∫

Ω

e(x,y, p̄(x,y))ψ(x,y)dxdy = 1.

PROOF. The proof follows rather standard arguments in calculus of variations, adapted to be able to handle
the integral inequality constraint of isoperimetric type. Assume first that e(x,y, p̄(x,y)) is not identically
zero in Ω0. Take some ψ ∈ C ∞

0 (Ω0) such that
∫

Ω0

e(x,y, p̄(x,y))ψ(x,y)dxdy = 1.

Since e(x,y, p̄(x,y)) ⩾ 0 in (x,y) ∈ Ω0 and it is not identically zero, the existence of such function ψ is
guaranteed. Now take ϕ ∈ C ∞

0 (Ω0) arbitrary and define for s, t ∈ R the profile ps,t ∈ Lip
(
Ω
)

given by

25

ps,t(x,y) = p̄(x,y)+sϕ(x,y)+ tψ(x,y). Consider the functions (s, t) 7→ f (s, t) and (s, t) 7→ h(s, t) defined
on R2 via the formulas

f (s, t) :=
∫

Ω0

∫ ps,t(x,y)

p0(x,y)
g(x,y,z)dzdxdy and h(s, t) :=

∫

Ω0

∫ ps,t(x,y)

p0(x,y)
e(x,y,z)dzdxdy.

By the definition of Ω0, the continuity of p 7→ κ(x,y, p) and (3.4), it follows then that there is δ > 0 such
that for any (x,y) ∈Ω0 and any s, t ∈ (−δ ,δ) we have

ps,t(x,y)> p0(x,y) and Lps,t (x,y)< κ(x,y, ps,t(x,y)).

Since p̄ is an optimal profile for the final open pit problem (P3D), it follows that (0,0) is a local maximum
of the problem

Maximize f (s, t) over all s, t ∈ R subject to h(s, t)⩽ cmax.

This nonlinear optimization problem satisfies the so-called Mangasarian-Fromovitz condition because

∂th(0,0) =
∫

Ω0

e(x,y, p̄(x,y))ψ(x,y)dxdy = 1.

Where the first equality is justified by the Dominated Convergence Theorem and the fact that e∈ L∞(Ω×
R). Therefore, by the Karush-Kuhn-Tucker theorem, there is λ̄ ⩽ 0, which in principle depends on ψ

and ϕ , such that
∇ f (0,0)+ λ̄∇h(0,0) = 0 and λ̄ (h(0,0)− cmax) = 0.

Moreover, similarly as justified above, it is not difficult to see that

∂sh(0,0) =
∫

Ω0

e(x,y, p̄(x,y))ϕ(x,y)dxdy,

∂s f (0,0) =
∫

Ω0

g(x,y, p̄(x,y))ϕ(x,y)dxdy,

∂t f (0,0) =
∫

Ω0

g(x,y, p̄(x,y))ψ(x,y)dxdy.

On the one hand, by the condition over the partial derivatives with respect to the t variable we get λ̄ does
not depend on ϕ because

∫

Ω0

g(x,y, p̄(x,y))ψ(x,y)dxdy = ∂t f (0,0) =−λ̄ ∂th(0,0) =−λ̄ .

On the other hand, by the condition over the partial derivatives with respect to the s variable we get
∫

Ω0

(
g(x,y, p̄(x,y))+ λ̄e(x,y, p̄(x,y))

)
ϕ(x,y)dxdy = 0.

But, since ϕ ∈ C ∞
0 (Ω) is arbitrary and (x,y) 7→ g(x,y, p̄(x,y))+ λ̄e(x,y, p̄(x,y)) belongs in particular to

L2(Ω0), by the fundamental lemma of the calculus of variations (cf. [66, Lemma 3.2.3]) the conclusion
follows.

Finally, for the case that e(x,y, p̄(x,y)) is identically zero in Ω0 it is enough to define s 7→ f (s) on R
via the formula

f (s) :=
∫

Ω0

∫ p̄(x,y)+sϕ(x,y)

p0(x,y)
g(x,y,z)dzdxdy,

with ϕ ∈ C ∞
0 (Ω0) arbitrary and check that s = 0 is a local minimum of f . Then the conclusion follows

by using the Fermat rule (ḟ (0) = 0) and fundamental lemma of the calculus of variations.

26

Remark 3.3.3 Note in particular that Theorem 3.3.1 says that if the marginal cost associated with ex-
tracting a block at any depth is zero (there is no capacity constraint), that is, e(x,y,z) = 0 for any (x,y)∈Ω

and z⩾ p0(x,y), then the marginal gain of extracting a block at any depth must be zero on the subsection
Ω0, that is,

g(x,y, p̄(x,y)) = 0, ct p. inΩ0.

3.4 Future work and final remarks

In this chapter we have provided necessary optimality conditions for a profile of an open pit mine to be an
optimum for the final open pit problem in the 2D as well as on the 3D. Both settings involve isoperimetric
restriction, which are hard to handle in general. Nonholonomic restrictions, such as the slope condition
has been treated only for the 2D case. The 3D case remains as an open question that deserves some
attention, and which we plan to address in a future work.

Obtaining numerical solutions is still an open problem. For this purpose, a classical direct method or
an indirect method using the results of this chapter can be implemented. Preliminary simulations have
been done with the help of the INRIA solver for optimal control problems BOCOP [25]. This is an issue
that need to be investigated in more details.

Finally, let us mention that, similarly as done for the 2D case, the maximal slope condition in the 3D
can actually be subsumed by a control type condition

∇p(x,y) = κ(x,y, p(x,y))(cos(θ),sin(θ)) , for a.e. (x,y) ∈Ω, θ ∈ [0,2π).

Thus, a possible way to address the final open pit problem is to study the optimal control problem asso-
ciated with this constraints. This issue needs to be investigated in details.

27

Chapter 4

Numerical study of 2D and 3D Final and
Sequential Open Pit

This chapter corresponds to the submitted pre-print [80] titled "Optimal control approaches for Open Pit
planning"

4.1 Introduction

In long-term planning of mine operation, a common task consists in determining the profile of the total
mass of material to be extracted from the site to optimally design an opencast mine. This so-called Final
Open Pit problem was introduced in the early works Ref. [74, 61], with a more recent overview in Ref.
[84].

The typical approach used to solve this problem is based on a discrete block model of the site, each
block having an associated extraction cost and profit value, based on topographical and geological data.
Using a graph of block precedence (i.e. order of extraction) allows to take into account slope constraints
for the mine stability, and gives rise to large Integer Programming problems, see for instance Ref. [29].
The dynamic programming approach was also investigated in this framework, see e.g. Ref. [101]. An-
other approach presented in Ref. [93] uses a PDE formulation for time labeling functions.

The present chapter follows the continuous approach introduced in Ref. [4] with the reformulation of
the Open Pit using a calculus of variation framework, and then in Chapter 3 as an optimal control problem.
The main contributions of the present work include the analysis of the Final Open Pit (FOP from now)
with capacity, slope and initial profile constraints, using Pontryagin’s Maximum Principle to extend the
results previously obtained in chaper 3. Then we introduce a new semi-continuous formulation that
can handle the Sequential Open Pit problem (SOP from now) ,i.e. optimization of the mine profile over a
sequence of several time-frames, for a 2D space domain (3D mine profile). Finally, numerical simulations
are provided for both the continuous and semi-continuous approaches, including global optimization for
the 2D FOP case, and to our knowledge the first results for the 3D profile optimization as an optimal
control problem. The outline of the chapter is as follows. After the introduction presenting context,
Section II covers the SOP problem statement with the continuous approach, and introduces the semi-

28

continuous formulation. Section III presents the FOP analysis using Pontryagin’s Maximum Principle
and in particular discusses the control structure in terms of bang, constrained and singular arcs. Section
IV present the numerical simulations for three test cases: 2D FOP, 2D SOP and 3D SOP, and is followed
by the conclusions.

4.2 Problem statement

For a given spatial domain Ω, we consider a continuous function p : Ω→ R called profile that delimits
the shape of the mine pit. The aim is to determine the profile that maximizes the gain from the excavated
soil, while respecting some limits for the excavated capacity and maximal slope of the mine. We recall
now the continuous approach for open pit planning, and introduce a new semi-continuous approach that
can handle the 3D profile case. Both of these approaches lead to optimal control formulations of the
problem.

4.2.1 Continuous formulation

The key idea in the so-called continuous formulation, originally introduced in [4], is to use the distance
(position along the x-axis) as independent variable, which allows to define the mine profile as a function
of this new ’time’. Introducing a suitable dynamics for this function, with the associated control function,
allows to formulate the open pit planning as an optimal control problem (OCP).

Final open pit planning problems (FOP)

For the 1-dimensional case, the domain Ω= [a,b] will correspond to the independent variable or ’time’ of
the optimal control problem. Consider the state variables P,c : [a,b]→R+ for the depth profile of the pit
and the excavated capacity of the mine. Let us also denote P0 ∈ C 1 ≥ 0 the initial profile corresponding
to the natural shape of the ground. We set the state constraint P(t)≥ P0(t),∀t ∈ [a,b], and the boundary
conditions P(a) = P0(a),P(b) = P0(b). An additional final condition is that the total excavated capacity
is limited, i.e. c(b)≤ cmax.

We also introduce κ : [a,b]×R→R∗ such that κ(t,z) is the maximal pit slope at position t and depth
z. Instead of the original dynamics Ṗ= u, we choose to use a normalized control u : [a,b]→ [−1,1] which
is a bit simpler than having the mixed state-control constraint |u(t)| ≤ κ(t,P(t)) for the maximal slope.
As part of the soil characteristics, we also note g,e : [a,b]×R→ R the densities of gain and effort for
excavating at a given position and depth. The optimal control formulation of (FOP) is then as follows:

29

(FOP)

max
∫ b

a

∫ P(t)

P0(t)
g(t,z)dzdt

Ṗ(t) = u(t)κ(t,P(t)) ∀t ∈ [a,b]

ċ(t) =
∫ P(t)

P0(t)
e(t,z)dz ∀t ∈ [a,b]

u(t) ∈ [−1,1] ∀t ∈ [a,b]
P0(t)−P(t)≤ 0 ∀t ∈ [a,b]

P(a) = P0(a), P(b) = P0(b)
c(a) = 0, c(b)≤ cmax

Remark 4.2.1 In the following we take the basic effort function e ≡ 1. The gain function g is typically
defined by interpolation over tabular data, and has to be integrated numerically along the depth z.

Sequential open pit planning (SOP)

We introduce now an extended version of (FOP), in which we want to schedule an extraction program
over N consecutive time-frames. This case is quite relevant in mine planning since mining companies
divide the digging process into periods for operational purposes. We extend the notations of (FOP) to the
multi-frame framework, and note Pi the mine profile at time-frame i, with the associated control ui, while
ci is the excavated capacity during time-frame i. Each mine profile has to be deeper than the previous
one, i.e. the constraint P≥ P0 from (FOP) is generalized as Pi ≥ Pi−1, i = 1 . . .N. The capacity limit ci

max
is now enforced at each individual time-frame. Finally, the objective function now takes into account a
depreciation rate α > 0 over time, with the gains for the more distant time-frames being valued less than
for the more immediate time-frames. This new optimal control problem reads as follows

(SOP)

max
N

∑
i=1

∫ b

a

∫ Pi(t)

Pi−1(t)

g(t,z)
(1+α)t−1 dzdt

Ṗi(t) = uiκ(t,Pi(t)) ∀t ∈ [a,b], i = 1, . . . ,N

ċi =
∫ Pi(t)

Pi−1(t)
e(t,z)dz ∀t ∈ [a,b], i = 1, . . . ,N

ui(t) ∈ [−1,1], ∀t ∈ [a,b], i = 1, . . . ,N
Pi−1(t)−Pi(t)⩽ 0 ∀t ∈ [a,b], i = 1, . . . ,N

Pi(a) = P0(a), Pi(b) = P0(b) i = 1, . . . ,N
ci(a) = 0, ci(b)⩽ ci

max i = 1, . . . ,N

Remark 4.2.2 Note that (SOP) with N = 1 corresponds to (FOP). Numerically, the multi-process (SOP)
can be reformulated by duplicating the state and control variables (as well as the constraints) for each

30

time-frame. Adding the proper linking constraints between the final and initial conditions of the succes-
sive time-frames, we obtain a single process version of (SOP) that can be solved by standard methods.
The overall problem dimension, however, is higher, therefore computationally expensive methods such
as global optimization may be able to handle (FOP) but not (SOP), see section 4.4.

Remark 4.2.3 For the discrete (block) formulation, it is known (see for instance Ref. [30] and [79]) that
each profile (or ’pit’) which is solution of (SOP) is not deeper than the optimal pit of (FOP) with the
same parameters and infinite capacity. A similar result has been obtained for the continuous framework
in Ref. [4].

4.2.2 Semi continuous formulation for SOP

The main limitation of the continuous approach is that using the independent variable to represent the
position in space makes it difficult to handle the 3D profile case, both in terms of dynamics / controls and
profile slopes. This is why we introduce a new approach called the semi-continuous formulation, based
on an explicit discretization of the space domain Ω. The mine profile is therefore represented by a finite
set of variables at the discretization nodes, as illustrated in Figure 4.1. Control variables are defined as
the excavation effort at each discretization node. Slope constraints are modeled as state constraint linking
each node with their neighbors. The independent variable is here standard time, expressed in time-frames
such that the final time T is the total number of time-frames. Since SOP is a multi-phase problem, one
standard way to formulate it is to normalize the time interval to [0,1] and duplicate the variables for each
time-frame. This approach yields another optimal control formulation of the Sequential Open Pit prob-
lem, for which extension from 1D to 2D space domain is rather straightforward, at the cost of an increase
in overall problem dimension.

Notations. In the context of the semi-continuous approach, for functions of both space and time such
as profile, controls and slopes, we will typically use subscripts for the space discretization node in Ω, and
exponents for the time-frame of the multi-phase Sequential Open Pit. For instance, Pk

i will represent the
profile depth at node i and time-frame k, and Pk := (Pk

i), i = 0, . . . ,N refers to the mine profile at time-
frame k. Similarly, Uk

i will denote the digging at node i and time-frame k, with Uk := (Pk
i), i = 0, . . . ,N

corresponding to the overall excavation effort over the domain Ω at time-frame k. We will also denote by∫ Pk+1

Pk the integral of a function between the two mine profiles at time-frames k and k+1; for 2D profiles
this is a 2D integral along x and the depth z, and a 3D integral along x,y,z for 3D profiles.

One dimensional profile space domain

Discrete profile. We discretize the space domain Ω = [a,b] into N equal intervals of length ∆x = b−a
N ,

with N+1 discretization nodes (xi), and note I = {0, . . . ,N} the set of indices for the nodes. We define the
state variables for the profile nodes (Pi)i∈I as functions of time. We also introduce the control variables
at each node (Ui)i∈I ≥ 0, corresponding to the excavation effort, so that the profile variables follow the
simple dynamics

Ṗi(t) =Ui(t) , ∀i ∈ I , ∀t ∈ [0,T]. (4.1)

31

xa b

N intervals for Ω

z

∫ P2

P1

P0

P1

P2

x
y

z

N ×M intervals for Ω

Figure 4.1: 1D / 2D Space discretization of the mine profile

Gain. The achieved gain during time-frame k is the integral of g between the current profile Pk and
the previous Pk−1. Taking into account the depreciation rate α introduced in 4.2.1, the overall gain to be
maximized is

T

∑
k=1

∫ Pk

Pk−1

g(x,z)
(1+α)tk−1 dxdz. (4.2)

The computation of this objective is detailed in 4.6.

Slope. We denote Sk
i the slope at node i and time-frame k, which is a function of time. The maximal

slope condition writes as

−1≤ Sk
i (t)

κ
(
xi,Pk

i (t)
) ≤ 1 , ∀i ∈ I , ∀k = 0 . . .T , ∀t ∈ [0,1] (4.3)

In the 2D case we will use the simple slope formula

Sk
i = (Pk

i −Pk
i−1)/∆x (4.4)

and the slope limits are state constraints.

Capacity. The excavation effort at each time-frame k corresponds to the integral of the effort E
between the two consecutive profiles Pk−1 and Pk, and the capacity limit writes as

∫ Pk

Pk−1
e(x,z)dxdz≤Ck, ∀k = 1, . . . ,T. (4.5)

The computation of this integral is detailed in 4.6.

32

Initial profile. This is now a standard initial condition of the form

P0
i (0) = p0(xi) , ∀i ∈ I. (4.6)

We obtain the following multi-phase problem (SOP)2D
SC with Fig. 4.2 illustrating the profile discretiza-

tion in the 2D case, with N = 7 and T = 2. Implementation details regarding the approximation of the
various integrals are presented in 4.6

(SOP)2D
SC

max
T

∑
k=1

∫ Pk

Pk−1

g(x,z)
(1+α)k−1 dxdz

Ṗk
i (t) =Uk

i (t), i ∈ I, k = 1, . . . ,T, t ∈ [0,1]

−1≤ Sk
i (t)

κ(xi,Pk
i (t)
≤ 1, i ∈ I, k = 1, . . . ,T, t ∈ [0,1]

∫ Pk

Pk−1
e(x,z)dxdz≤Ck, k = 1, . . . ,T

P0
i (0) = p0(xi), i ∈ I

Uk
i (t)≥ 0, i ∈ I, k = 1, . . . ,T, t ∈ [0,1]

Remark 4.2.4 Setting T = 1 corresponds to the Final Open Pit problem with a single time-frame.

Remark 4.2.5 The boundary condition P|∂Ω = 0 is in practice built in directly in the problem formulation
by eliminating the profile and control variables at the nodes corresponding to the boundary of the space
domain.

Remark 4.2.6 Moreover, the constraint that each profile must be deeper than the previous one, which
was a state constraint in the continuous formulation, is now simply enforced by the conditions Ui ≥ 0.

Remark 4.2.7 The step size ∆x for the discretization of Ω in the semi-continuous approach can be seen
as the analogue of the time step ∆t for the continuous approach, which uses distance as independent
variable.

Two dimensional profile space domain

For the two dimensional case, the extraction domain considered is Ω = [a,b]× [c,d]. Generalizing the 2D
case, we discretize [a,b] and [c,d] into N and M intervals of length ∆x = b−a

N and ∆y = d−c
M respectively,

and obtain a grid with (N +1)× (M+1) nodes. Noting J = {0, . . . ,M}, we introduce the state variables
(functions of time) (Pi, j)i, j∈I×J representing the mine depth at each node (xi,y j) :=(a+ i∆x,c+ j∆y). The
mine profile at time-frame k is now a surface represented by the set of points Pk := (Pk

i, j(0)). We intro-
duce the (N+1)×(M+1) non-negative controls Uk

i, j ≥ 0 , i, j ∈ I×J, with the same dynamics Ṗk
i, j =Uk

i, j.

33

Ωa b

N intervals

P 0

P 1

P 2

Xi

P k
i

P k−1
i

P k
i+1

Uk
i

Sk
i

Figure 4.2: Illustration of the 2D profile model discretized w.r.t. space and time as a set of Pk
i state vari-

ables with i = 0, . . . ,N profile nodes and k = 0, . . . ,T time-frames. Controls Uk
i are the depths excavated

from the previous time-frame at each node. Slopes Sk
i between neighbor nodes must be smaller than the

local maximal slopes i.e. κ(Xi,Pk
i).

Initial profile conditions are written as:

P0
i, j(0) = p0(xi,y j) , i, j ∈ I× J. (4.7)

The objective and capacity limit are similar to the 2D case, except that the integrals of g and e between
two consecutive profiles are now in 3D instead of 2D. The relevant implementation details are provided
in 4.6.

The main adjustment concerns the slope constraint: for each point Pi, j of the profile we now choose
to consider two slopes Si, j and Ti, j, in the x-axis and y-axis directions respectively. Using the same basic

34

forward finite differences as in 2D, we obtain the two sets of slope constraints at time-frame k:

−1≤
Pk

i+1, j(t)−Pk
i, j(t)

κ

(
xi,y j,Pk

i, j(t)
)

∆x
≤ 1, ∀i = 0, . . . ,N−1, j = 0, . . . ,M−1, ∀t ∈ [0,1]. (4.8)

−1≤
Pk

i, j+1(t)−Pk
i, j(t)

κ

(
xi,y j,Pk

i, j(t)
)

∆y
≤ 1, ∀i = 0, . . . ,N−1, j = 0, . . . ,M−1, ∀t ∈ [0,1]. (4.9)

Note that more sophisticated choices could be used for the slopes, such as centered differences formulas
or increasing the number of slopes considered at each point. The formulation of (SOP)3D

SC is summarized
below, with Fig. 4.3 illustrating the profile discretization in the 3D case with N = 5 and M = 3.

(SOP)3D
SC

max
T

∑
k=1

∫ Pk

Pk−1

g(x,y,z)
(1+α)k−1 dxdydz

Ṗk
i, j(t) =Uk

i, j(t), ∀(i, j) ∈ I× J, k = 1, . . . ,T, t ∈ [0,1]

−1≤ Sk
i, j(t)

κ

(
xi,y j,Pk

i, j(t)
) ≤ 1, ∀(i, j) ∈ I× J, k = 1, . . . ,T, t ∈ [0,1]

−1≤ T k
i, j(t)

κ

(
xi,y j,Pk

i, j(t)
) ≤ 1, ∀(i, j) ∈ I× J, k = 1, . . . ,T, t ∈ [0,1]

∫ Pk

Pk−1
e(x,y,z)dxdydz≤Ck, k = 1, . . . ,T

P0
i, j(0) = p0(xi,y j), ∀(i, j) ∈ I× J

U̇k
i, j(t)≥ 0, ∀(i, j) ∈ I× J, k = 1, . . . ,T, t ∈ [0,1]

4.3 Analysis and optimality conditions for FOP

We study the final open pit problem in continuous formulation (FOP) by applying Pontryagin’s Maxi-
mum Principle (Ref. [87]), and look at the possible control structure of optimal profiles.

Optimality conditions for (SOP) are not detailed here, and are more involved in particular due to the
state constraint P≤ P0 being generalized over the sequence of time-frames, i.e. Pi ≤ Pi−1, i = 1, . . . ,N.

4.3.1 Applying Pontryagin’s Maximum Principle

Following the formulation in Ref. [26], we now state the PMP for (FOP). We denote y the state variables,
p the associated costate variables, l the running cost, f the dynamics and h the state constraint. In all the

35

Ω

x

y

0 N

M

P k
i,j P k

i+1,j

P k
i,j+1

Sk
i,j

T k
i,j Uk

i,j

Figure 4.3: Illustration of the 3D profile model with N = 5 and M = 3. View is from ’above’, with the
state variable Pk

i, j giving the profile depth at node (xi,y j) at time-frame k. Slopes Sk
i, j,T

k
i, j with neighbors

along the x-axis and y-axis must be smaller than the maximal allowed slopes given by the function κ .
The control Uk

i, j (along the z-axis) corresponds to the excavated depth from the same profile node at the
previous time-frame Pk−1

i, j .

following we assume the so-called normal case, i.e. the multiplier associated to the cost is nonzero and
can be normalized to 1. Let us define the pre-Hamiltonian, omitting the argument t of functions u,y, p for
clarity:

H(t,u,y, p) = l(t,u,y)+ p · f (t,y,u) (4.10)

=−
∫ P(t)

P0(t)
g(t,z)dz+ pPuκ(t,P)+ pc(P(t)−P0(t)) (4.11)

Noting the function of bounded variation µ ∈ BV (0,T) the multiplier associated with the state constraint,
the adjoint equation writes as

−dP(t) = ∇yH(t,u,y, p)dt +∇yh(t,y)dµ(t) (4.12)

Then for any local optimum (ȳ, ū), there exists a non-trivial set of multipliers (p̄, µ̄) such that the
following relations are satisfied:

i) Adjoint equation

dp̄P(t) = (g(t, P̄)− p̄P(t)ū(t)κP(t, P̄)− p̄c(t))dt +dµ̄(t) (4.13)
dp̄c(t) = 0 (4.14)

36

ii) Transversality conditions

p̄P(a), p̄P(b), p̄c(a) are free; p̄c(b)≥ 0 with p̄c(b) = 0 if c̄(b)< cmax (4.15)

iii) Hamiltonian minimization

ū(t) ∈ argmin
w

H(t,w, ȳ(t), p̄(t)) a.e. on (a,b) (4.16)

iv) State constraint complementary relations

dµ̄(t)≥ 0,
∫ b

a
(P0(t)− P̄(x))dµ̄(t) = 0 and µ̄(b) = 0 (4.17)

i.e. µ̄ is an non-decreasing function and is constant when the state constraint is not active.

Remark 4.3.1 The state constraint is of order 1 since the control appears in its first time derivative
ḣ =−uκ . We refer the reader to, for instance, Ref. [26] for a more in-depth analysis of state constraints
in the PMP framework, and especially the so-called "alternate adjoint" formulation.

4.3.2 Inactive case: bang/singular control

We start by studying the case when the state constraint is not active. Since per (4.16) the optimal control
minimizes the pre-Hamiltonian which is linear in the control, solutions typically consist in a sequence of
bang (saturated control) and/or singular control arcs. We introduce the switching function whose sign
will determine the optimal control

ψ(t) := Hu(t) = pP(t)κ(t,P(t)) (4.18)

As κ has strictly positive values we obtain the control law:

ū(t) =

1 if pP(t)< 0
−1 if pP(t)> 0
us(t) if pP(t) = 0 over an interval

(4.19)

The value of the singular control us is traditionally determined from the fact that ψ and all its time
derivatives vanish over a singular arc.

Over a singular arc, ψ vanishes and the first time derivative of the switching function can be reduced
to

ψ̇(t) = (g(t,P(t))− pc)κ(t,P(t)) (4.20)

and similarly, by plugging ψ̇(t) = 0 in the second derivative and recalling ṗc = 0, we obtain

ψ̈(t) = (gt(t,P(t))+uκgP(t,P(t)))κ (4.21)

Solving ψ̈(t) = 0 for the singular control leads to

us(t) =−
gt(t,P(t))

κgP(t,P(t))
(4.22)

We can now derive the two following lemmas concerning singular arcs.

37

Lemma 4.3.1 A singular arc is not admissible when | gt(t,P)
κgP(t,P)

|> 1, and in particular when gP(t,P) = 0.

PROOF. Immediate consequence of (4.22) and the control constraint u ∈ [−1,1]

Lemma 4.3.2 Let P̄ be an optimal profile solution of (FOP), then, over a singular arc the curve (t, P̄(t))
follows the geodesic of g. Moreover, when maximal capacity is not reached, singular arcs follow more
specifically the geodesics of null gain g = 0.

PROOF. From (4.20), over a singular arc the equation ψ̇ = 0 indicates that the derivative ġ := gt(t,P(t))+
ṖgP(t,P(t)) vanishes, therefore the mine profile will follow the geodesics of g. If the maximal capacity
constraint is not active, then the associated costate pc is zero (see (4.15)), and ψ̇ = 0 then gives g= 0.

These lemmas expand the analysis of singular arcs obtained in Chapter 3 with calculus of variations
techniques.

4.3.3 Active state constraint case

Over a constrained arc, the control uc is such that the constraint remains active, i.e. h = P0−P = 0,
leading to the expression

uc(t) =
Ṗ0(t)

κ(t,P(t))
(4.23)

Note that a constrained arc can only occur if the uc is admissible, i.e. |Ṗ0(t)| ≤ κ(t,P(t)). This simply
means that the initial profile must satisfy the maximal slope constraint.

4.3.4 Control structure summary

To summarize, the optimal profile, in terms of control structure, is a sequence of bang, singular and/or
constrained arcs. Constrained arcs are where the profile is the same as the initial one, meaning there was
no further excavation on these parts of the domain. Bang arcs correspond to the parts of the profile where
the slope reaches its maximal allowed value, i.e. the digging is as steep as possible. Singular arcs, on
the other hand, follow the geodesics of the gain function, meaning the gain is constant along these parts
of the profile. Moreover, if the capacity limit is not reached, then this geodesic is more specifically the
one of null gain, i.e. the digging stops where excavation is not profitable anymore.

Optimality conditions for the semi-continuous formulation are more involved and remain to be
investigated thoroughly. The main complications arise from the spatial discretization of the profile, lead-
ing to maximal slope limits now being state constraints that involve adjacent nodes variables (including
controls).

38

4.4 Numerical simulations

We present now the numerical simulations that illustrate the continuous and semi-continuous formula-
tions of the Open Pit problem. After a brief description of the algorithms used for the global and local
optimizations, we detail three test cases. First is the 2D FOP with limited capacity, that we solve with the
continuous (both global and local optimization) and semi-continuous formulation (local optimization).
The second example is the 2D SOP with limited capacity, for which we compare the results of both con-
tinuous and semi-continuous formulations (both with local optimization). Finally, we present a test case
for the 3D SOP problem with the semi-continuous formulation. All simulations were carried out on a
standard laptop, with numerical settings for all methods recalled in Table 4.1 p.39.

4.4.1 Numerical methods

Global optimization: FOP with continuous formulation

The Final Open Pit problem is low-dimensional, with only two state variables (not counting the running
cost) and one control variable. Therefore it makes sense to try a global optimization method such as
dynamic programming, or the so-called Hamilton-Jacobi-Bellman (HJB) approach. We use here the soft-
ware BOCOPHJB [25], and refer to for instance Ref. [46] for a detailed description of the HJB method.
In this approach the value function of a fully discretized (time, state and control variables) version of the
problem is computed, with the global optimum then being reconstructed from this information.

Local optimization: FOP and SOP with continuous and semi-continuous formulations

Since the numerical cost of the global method is too high for the Sequential Open Pit problem, we also
use a local optimization method, namely the direct transcription approach. This method approximates
the original (OCP) problem by a discretized reformulation as a nonlinear optimization problem (NLP),
using a discretization of the time interval. We refer interested readers to for instance Ref. [19] for a
review of direct methods. We use here the software BOCOP [27], based on the solver IPOPT [98] with
sparse derivative computed by the automatic differentiation tool CPPAD [18]. This local optimization
method is also used for the semi-continuous formulation with explicit discretization of the space domain.

Numerical settings

In Table 4.1 are the settings for the different numerical methods used in the simulations.

2D FOP (global) t : 123 steps; P : 50 steps, e : 210 steps; u : 100 steps
2D FOP/SOP (local) t : 123 steps; tol = 10−10; maxiter = 10000
2D SOP SC (local) t : T steps; N = 123 nodes; tol = 10−10;maxiter = 10000
3D SOP SC (local) t : T steps; 30×10 nodes; tol = 10−6;maxiter = 10000

Table 4.1: Numerical settings for the continuous and semi continuous formulations

39

4.4.2 Final open pit (2D): global and local optimization

We start with the 2D FOP as first example, since it is the only one for which all formulations, including
global optimization, are available. We set a maximal capacity cmax = 20.000. The gain function g is
interpolated from values found in the Marvin block model of MINELIB, a publicly available library of
test problem instances for open pit mining problems (see [45]).

Remark 4.4.1 Solutions for the unlimited capacity case, with a different control structure (i.e. singular
arcs), are shown in 4.7, with both constant and variable maximal slope.

2D FOP with global optimization for continuous approach

The solution obtained by the global optimization is displayed in Figure 4.4. At first glance, the control
structure seems to be of the form Constrained-Bang-Bang-Constrained. On both sides the constraint
P = P0 is active, meaning there is no additional digging from the initial profile. In the middle, digging
occurs with maximal slope, leading to the two bang arcs.

Remark 4.4.2 The non zero control around x = 200 simply follows the existing initial profile P0, and is
part of the first constrained arc. See 4.4.2 for more details.

Remark 4.4.3 It is worth noting that an estimate of the PMP costate can be derived from the gradient
of the value function computed by the global method, see for instance Refs. [37, 38]. In the present
case however, the gradient turns out to be quite noisy and of little practical use. This could be improved
by increasing the discretizations, although the increase in computational times would not be competitive
with respect to using a direct method.

2D FOP with local optimization for continuous approach

The solution from the local optimization is displayed in Figure 4.5 with the optimal profile and control
as well as the PMP costate check. This solution is actually extremely close to the one in section 4.4.2,
which indicates that the direct method actually found the global optimum as well, with the benefit of a
more accurate solution. In particular, we can here clearly see that the first two arcs with nonzero control
around x = 200 are not bang arcs since |u| < 1: they are actually part of the first constrained arc and
correspond to the region where P0 varies, thus the control uc(t) =

Ṗ0(t)
κ(t,P(t)) from (4.23) is not just zero.

Moreover, we can now check that the Constrained-Bang-Bang- Constrained control structure is
consistent with the switching function and the path constraint. We observe a perfect match between
the adjoint estimate from the discretized problem and the recomputed PMP costate. Figure 4.5 shows the
value of the state constraint h=P0−P and its associated multiplier dµ . We retrieve dµ from the multiplier
of the state constraint in the discretized problem (the correspondence can be inferred from comparing the
expression of the PMP Hamiltonian and the Lagrangian of the NLP problem). In accordance with (4.17),
the multiplier dµ is positive, and null when the constraint is not active. We also observe that the costate
pP is continuous at the junctions between bang and singular arcs, while the control is discontinuous.

40

0 500 1000

DISTANCE

0

100

200

300

400

500

600

700

800

900

1000

D
E

P
T

H

FINAL PROFILE

INITIAL PROFILE

GAIN MAP

0 500 1000 1500

DISTANCE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
O

N
T

R
O

L

Figure 4.4: 2D profile with limited capacity - global optimization (HJB method)

Remark 4.4.4 In this particular case, the solution has no singular arcs, which is due to the capacity
limit that prevents reaching the null gain region. The examples with unlimited capacity in 4.7 and 4.7.2
illustrate solutions with singular arcs where the optimal profile follows the geodesic g = 0.

2D FOP with semi-continuous approach

We finally present the solution obtained for the same problem using the semi-continuous formulation with
a single phase (i.e T = 1). As can be seen in Figure 4.6 and Table 4.2, the solution is similar to the global
and local optimizations using the continuous approach, with close values for the objective. CPU times
are of the same order of magnitude for the two local optimizations with continuous and semi-continuous
formulation, while global optimization is significantly slower (two orders).

Method Objective CPU
2D FOP Global optim. 10846 369s
2D FOP Local optim. 11093 3s
2D FOP SC Local optim. 11100 2s

Table 4.2: Solutions for the 2D FOP with limited capacity.

41

0 500 1000

DISTANCE

0

50

100

150

200

250

300

350

400

450

500

D
E

P
T

H
GAIN MAP

FINAL PROFILE

INITIAL PROFILE

0 500 1000

DISTANCE

-1

-0.5

0

0.5

1

OPTIMAL CONTROL

SWITCH / || ||

0 500 1000

DISTANCE

-50

0

50
MULTIPLIER FROM NLP

RECOMPUTED PMP COSTATE

0 200 400 600 800 1000 1200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
STATE CONSTRAINT g/||g||

LAGRANGE MULTIPLIER d

CONSTRAINT MULTIPLIER / 1000

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

CONTROL LOWER BOUND MULTIPLIERS

CONTROL UPPER BOUND MULTIPLIERS

Figure 4.5: 2D profile with limited capacity - local optimization (direct method) and optimality conditions

0 200 400 600 800 1000 1200
DISTANCE

0

100

200

300

400

500
PROFILE

Figure 4.6: 2D profile, limited capacity - local optimization using semi-continuous formulation

42

4.4.3 Sequential Open Pit (2D and 3D): local optimization

In this section we present solutions for the Sequential Open Pit. First we solve a 2D example using
both the continuous and semi-continuous formulations. Then we show a solution for a more realistic 3D
problem using the semi-continuous formulation. To our knowledge, this is the first attempt to tackle the
3D case in an optimal control framework.

2D SOP with continuous and semi-continuous approach

Continuous approach. We solve the 2D SOP problem for 12 time-frames, with a constant function
κ = 1 , a rate α = 0.1 and a maximal capacity cmax = 1e4 for each time-frame. The solution indicates
that most of the excavation effort is concentrated in the high gain regions of the domain, which is not
surprising.

Semi continuous approach. We now solve the same SOP problem with the semi-continuous formula-
tion. Both approaches give similar solutions, as can be seen in Figure 4.7. The objective values showed in
Table 4.3 are quite close with a difference of 1.3%, while CPU times are in the same order of magnitude.

Method Objective CPU
Continuous 89939 31s
Semi-continuous 91153 43s

Table 4.3: Solutions for the 2D SOP problem.

0 200 400 600 800 1000 1200
DISTANCE

0

100

200

300

400

500
PROFILE

continuous
space discretization

Figure 4.7: 2D SOP: continuous and semi-continuous formulations.

43

3D SOP with semi continuous approach

For the 3D case we consider a domain Ω = [0,1200]× [0,400] and an analytical gain density function
stated by

g(x,y,z) = 1000−
√
(x−600)2 +(y−200)2 +(z−350)2 (4.24)

that reaches its maximal value in (600,200,350) and which decreases radially from this point. The initial
profile used in this instance is showed in Figure 4.8.

DISTANCE X 020040060080010001200
DISTANCE Y0 50 100150200250300350

400

0

20

40

60

80

100

PROFILE INTIAL p0

DISTANCE X 020040060080010001200

DIST
ANCE

 Y

0 50100
150200

250300
350400

0

20

40

60

80

100

PROFILE INTIAL p0

Figure 4.8: Initial profile for the 3D SOP case

We set a discount factor α = 0.1 and solve the 3D SOP for different capacity limits and number of
time-frames, using a 30×10 discretization of Ω. Figures 4.9 and 4.10 illustrate the optimal sequence of
3D profile corresponding to cmax = 106 and 5 · 106 respectively, with T = 2,3,6 time-frames. Table 4.4
shows the objective values and CPU times. Results are consistent overall, with solutions trying to reach
the region of highest gain as fast as allowed by the slope and capacity constraints. Increasing the capacity
limit and / or the duration of the time interval both yield better objective values, as expected. CPU times
are still reasonable, with the longest run at 139s.

DISTANCE X 020040060080010001200
DIS

TAN
CE
 Y

050
100150

200250
300350

400

0
20
40
60
80
100
120
140

PROFILE

DISTANCE X 020040060080010001200
DIS

TAN
CE

Y

050
100150

200250
300350

400

0
20
40
60
80
100
120
140
160

PROFILE

DISTANCE X 020040060080010001200

DISTANCE Y0 50 100150200
250300350400

0
25
50
75
100
125
150
175

PROFILE

Figure 4.9: 3D profile optimization with limited capacity C = 1e6, for T = 2,3 and 6 time-frames.

44

DISTANCE X 020040060080010001200

DISTA
NCE

Y
0 50100

150200
250300

350400

0
25
50
75
100
125
150
175
200

PROFILE

DISTANCE X 020040060080010001200

DISTA
NCE Y

0 50100
150200

250300
350400

0
25
50
75
100
125
150
175
200

PROFILE

DISTANCE X 020040060080010001200

DISTANC
E Y0 50100150

200250300
350400

0
25
50
75
100
125
150
175
200

PROFILE

Figure 4.10: 3D profile optimization with limited capacity C = 5e6, for T = 2,3 and 6 time-frames.

Capacity limit: 106 Capacity limit : 5 ·106

Times-frames Objective CPU Objective CPU
T = 2 69954.88 11s 73089.311 53s
T = 3 100103.04 38s 104684.29 124s
T = 6 175132.64 31s 183583.57 139s

Table 4.4: 3D SOP: solutions from the semi-continuous formulation, for different time intervals and
capacity limit per time-frame.

4.5 Conclusions

In the present chapter we focused on the Open Pit problem in an optimal control framework. We ex-
tended some previous results on the optimality conditions for the Final Open Pit, and introduced a new
semi-continuous formulation that handles the 3D profile sequential optimization. Numerical simulations
are provided for the continuous and semi-continuous approaches on several test cases. The 2D FOP
case showed a good consistency between global and local optimization for the continuous approach, as
well as local optimization for semi-continuous, and matched the optimality conditions from Pontryagin’s
Principle. Then the 2D SOP case again indicated a good match for the continuous and semi-continuous
formulations. Finally we solved a 3D SOP test case, to our knowledge for the first time in an optimal
control framework. Perspectives in the continuation of the present work include solving a more complete
3D SOP example using 3D interpolated data for the gain and maximal slope, as well as studying the
optimality conditions for the semi-continuous approach. The latter could prepare for the use of indirect
shooting methods such as HAMPATH [31], especially since the local optimization method used here can
provide the knowledge of the optimal control structure and a costate approximation.

4.6 Implementation details for the semi-continuous approach

Time discretization. The Sequential Open Pit for the semi-continuous approach described in 4.2.2 is a
multi phase problem. Instead of duplicating the variables for each time-frame, we use here in practice
a more compact implementation, by using a time step ∆t of 1 time-frame, i.e. the time discretization
tk = 0 . . .T is the sequence of time-frames. This choice makes sense from the operational point of view,
since the sequential open pit planning precisely consists in determining the optimal mine profile at each
time-frame. It also simplifies a lot the computation of the integrals of the gain and effort functions

45

between two successive mine profiles. We choose an implicit Euler scheme for the time discretization,
which gives the trivial discrete dynamics

Pk+1
i = Pk

i +Uk+1
i (4.25)

that easily gives the next / previous mine profile when needed in the computations.

Gain. An additional state variable g is added to represent the gain realized along the time-frames,
whose dynamics can be written as

ġ(tk) =
1

(1+α)k−1

∫ Pk

Pk−1
g(x,z)dxdz, ∀k = 1, . . . ,T (4.26)

The objective is then to maximize g(T). For the 2D case, we approximate the 2-dimensional integral of g
by trapezoidal rule over x then along z. In the 3D profile case, the 3D integral of g for the computation of
the gain is approximated using a 2D trapezoidal rule along (x,y) then a standard trapezoidal rule along z.

Capacity. At each time-frame, the integral of the excavation effort over the domain Ω can be approx-
imated by

∫ Pk

Pk−1
e(x,z)dxdz≈

N

∑
i=0

∆x

(∫ Pk
i

Pk−1
i

e(xi,z)dz

)
(4.27)

Since E = 1 and from the discrete dynamics Pk
i = Pk−1

i +Uk
i , we can use the following formula

∫ Pk

Pk−1
e(x,z)dxdz≈ ∆x

N−1

∑
i=0

Uk
i . (4.28)

Similarly, for the 3D profile case, the excavation effort at time-frame k is approximated as

∫ Pk

Pk−1
e(x,y,z)dxdydz≈ ∆x∆y

N−1

∑
i=0

M−1

∑
j=0

Uk
i, j. (4.29)

4.7 Additional examples for the final open pit - continuous formu-
lation

4.7.1 FOP with infinite capacity and constant slope

We show here the basic example with unconstrained capacity, namely cmax = ∞. Fig. 4.11 shows the
solution obtained by the global method, and Fig.4.12 shows the solution from the local method, and
we observe that both solutions match. With infinite capacity, the solution, as expected, digs as much
as possible with respect to the maximal slope, until it reaches negative gain. This corresponds to the
observed Bang-Singular-Bang control structure (neglecting the two very small constrained arcs P =
P0 = 0 at the extremities). As stated in Lemma 2, the singular arc in the middle follows the geodesic
g = 0. The corresponding control also matches the theoretical expression of the singular control (4.19),
despite some oscillations at the junctions with the bang arcs.

46

0 500 1000

DISTANCE

0

100

200

300

400

500

600

700

800

900

1000

D
E

P
T

H

FINAL PROFILE

INITIAL PROFILE

GAIN MAP

0 500 1000 1500

DISTANCE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
O

N
T

R
O

L

Figure 4.11: 2D profile with infinite capacity - global optimization (HJB method)

4.7.2 FOP with infinite capacity and variable slope

Here we illustrate a case with a non-constant maximal slope κ . For this, we consider following arbitrary
κ function:

κ(x,z) =

0.5 x ∈ [0,330)
1 x ∈ [330,960)
5 x ∈ [960,1230]

(4.30)

We chose a piece-wise constant function so that the assumption in section 4.3 is satisfied almost every-
where. The solutions from the global and local optimizations are shown in Fig. 4.13 and Fig. 4.14
respectively. This time we obtain a control structure that includes all possible types of arcs: Bang-
Singular-Bang-Constrained. The main difference compared to the constant slope case is that the op-
timal profile digs less ground on the right side region where the gain is negative, as a steeper slope is
allowed there. As for the previous examples we observe that the singular control and costate from the
solution closely match their formal expressions from the PMP.

47

0 500 1000

DISTANCE

0

50

100

150

200

250

300

350

400

450

500

D
E

P
T

H

GAIN MAP

FINAL PROFILE

INITIAL PROFILE

0 500 1000

DISTANCE

-1

-0.5

0

0.5

1

OPTIMAL CONTROL

SWITCH / || ||

0 500 1000

DISTANCE

-20

0

20

40

MULTIPLIER FROM NLP

RECOMPUTED PMP COSTATE

500 550 600 650 700 750
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

CONTROL FROM SOLUTION

SINGULAR CONTROL FROM PMP

SWITCHING FUNCTION

Figure 4.12: 2D profile with infinite capacity - local optimization (direct method) and consistency with
PMP optimality condition

48

0 200 400 600 800 1000 1200
DISTANCE

0

100

200

300

400

500

DE
PT

H

final profile
initial profile

0

450000

900000

1350000

1800000

2250000

2700000

3150000

0 200 400 600 800 1000 1200
DISTANCE

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

CO
NT

RO
L

Figure 4.13: 2D profile with infinite capacity and variable maximal slope - global optimization (HJB
method)

49

0 200 400 600 800 1000 1200
DISTANCE

0

100

200

300

400

500

DE
PT
H

final profile
initi l profile

0

450000

900000

1350000

1800000

2250000

2700000

3150000

0 200 400 600 800 1000 1200
DISTANCE

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 OPTIMAL CONTROL
SWITCH ψ(t)/||ψ||∞

0 200 400 600 800 1000 1200
DISTANCE

−500

−400

−300

−200

−100

0

MULTIPLIER FROM NLP
RECOMPUTED PMP COSTATE

0 200 400 600 800 1000 1200
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
CONSTRAINT MULTIPLIER dμ
STATE CONSTRAINT g/||g||∞

620 640 660 680 700 720 740 760 780

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 CONTROL FROM SOLUTION
SINGULAR CONTROL FROM PMP
SWITCHING FUNCTION

Figure 4.14: 2D profile with infinite capacity and variable maximal slope - local optimization (direct
method) with PMP optimality conditions

50

Part II

Problems inspired by Covid-19 peak reduction

51

Chapter 5

Compartmental models

Since the Covid-19 outbreak, numerous research works have coupled optimal control techniques with
epidemiological models for the study and management of the pandemic, such as reducing the number
of infected people (see for example [20, 56, 67, 71, 72, 86]). In the context of this PhD, I had the
opportunity to contribute to the study of the so-called overcrowding problem, which is a significant issue
for hospitals. More precisely, our main objective was to minimize the peak of infections in order to keep
the health system below saturation levels.

We worked with the most widespread compartmental model in epidemiology called the SIR model,
which we recall in the following section. More specifically we started from the work of Morris et al. [83]
on peak minimization for the SIR model, which despite not using optimal control techniques per se, is
closely related to control theory in its formulation.

After the classical SIR model we introduce a new compartmental model that takes vaccination into
account. This model was developed in the framework of a Pan American Health Organization1 project
by a joint team of mathematicians and doctors devoted to the evaluation of the vaccination campaign of
which I was a part of. We hope that this new model can be used in future works.

5.1 SIR model

The so-called SIR model introduced in 1927 by Kermack and McKedrick [69] is the most widespread
model for the study of directly transmitted infectious diseases that spread through contact from an indi-
vidual to another, such as, for instance, flu, tuberculosis, MERS-CoV and Covid-19.

The model derives its name from partitioning a given population into three compartments, namely
Susceptible, Infected and Recovered individuals. We note respectively S(t), I(t) and R(t) the size at time
t ∈ [0,T] of each group. Many assumption can be made modifying the final model, we consider here the
case of a constant population, i.e. without any natural births or deaths. Normalizing the total population,
we have the relation S(t)+ I(t)+R(t) = 1, ∀t ≥ 0.

1In Spanish Organización Panamericana de la Salud (OPS)

52

The dynamic of the three groups follows the ODE system:

Ṡ =−βSI
İ = βSI− γI
Ṙ = γI,

(5.1)

with constants β > 0 and γ > 0 corresponding to transmission and recovery rates respectively. The
so-called basic reproductive number R0, defined as the average number of secondary infection cases
caused by a single primary case in a susceptible population, is therefore given by R0 = β /γ in the
SIR model. An obvious property of the model is that a disease will spread among the population when
R0 > 1, making this case the most relevant for study. We refer readers interested in more properties of
SIR models and basic reproductive number to for instance [6, 63, 69, 100].

In order to fight the pandemic, local governments have implemented a variety of measures to reduce
the transmission of the disease. These efforts can typically be categorized as non-pharmaceutical, such
as lock-downs and quarantines, and pharmaceutical such as vaccines and treatments. The first kind can
be introduced in the SIR model as a control variable b(t) ∈ [0,1] applied as a factor to the transmission
rate beta:

Ṡ =−b(t)βSI
İ = b(t)βSI− γI
Ṙ = γI

(5.2)

In this case, b = 1 corresponds to no intervention, while an identically null control b = 0 will com-
pletely contain the infection, however, this is a hardly applicable policy at large scale, since it would
amount to cutting off contact between individuals completely. This is why a more realistic constraint
is usually imposed on the control, for example, in Chapters 6 and 7 we considered a maximal budget
limit Q imposed on the L1 norm of the policy intensity 1− b. This is somewhat less restrictive that the
original constraint in [83] that limited the control effectively applied (i.e b < 1) to a certain time window
[ti, ti + τ] to be determined. With this constraint, the authors main result on the peak minimization, i.e.
minb maxt∈[0,T] I(t), in [83] was:

Proposition 5.1.1 The optimal intervention which is a solution of minb maxt∈[0,T] I(t) is:

bopt(t) =

γ

βS(t)
, t ∈ [ti, ti + f τ)

0, t ∈ [ti + f τ, ti + τ]

for a certain f ∈ [0,1].

This was our starting point to study the peak minimization in the SIR model, and in Chapter 7 we
present our results and compare them to this original work.

Regarding pharmaceutical measures, we studied how to include vaccine programs in compartmental
models. The result of this research will be presented in the next section and it corresponds to an original
model posed by our team.

53

5.2 A new compartmental model including vaccines

We introduce here an extension of the SIR model that includes the effect of vaccination campaigns.
This model was developed in the framework of a project supported by the OPS and the MINSAL (Chile
ministry of health). The aim of this model is to evaluate the effectiveness of different.

Many extensions of the original SIR model, typically with more compartments, have been proposed,
see for instance [7, 9, 53, 88]. The main novelty of the model presented here is the partition of the individ-
uals into three so-called fundamental parts, according to their vaccination status: (i) not fully vaccinated,
(ii) fully vaccinated and (iii) fully vaccinated with additional booster injection. This division follows the
idea that the disease dynamics are altered by vaccination. Each fundamental part is further modeled with
6 compartments (state variables): susceptible (S), asymptomatic infected (Ia), symptomatic infected (Is),
asymptomatic recovered (Ra), symptomatic recovered (Rs) and deceased (D). To distinguish variables
from the three fundamental parts, we add the subscripts N (non fully vaccinated), V (fully vaccinated)
and Vr (vaccinated with booster).

S

Ia Is

Ra Rs

D
qaRa qsRs

φΛ (1−φ)Λ

δ Is

γsIsγaIa

Figure 5.1: Schema of one fundamental part as a 6-compartment model: susceptible (S), asymptomatic
infected (Ia), symptomatic infected (Is), asymptomatic recovered (Ra), symptomatic recovered (Rs) and
dead (D). Red arcs represent the loss of immunity after infection.

Figure 5.1 shows the compartments and transitions inside of each fundamental part. The complete
model that we will call base structure has 18 compartments (6 for each part) as shown in Figure 5.2, with
the connections between the three fundamental parts corresponding to vaccination actions.

We suppose the population modeled by the base structure is homogeneous (meaning there is no age
structure in the model), isolated, susceptible to only one variant circulating and constant (no natural
birth or death). We denote the transmission rates by β k

i for i ∈ {N,V,VR} and k ∈ {a,s}, using a for
asymptomatic and s for symptomatic individuals. For example, β a

N represents the transmission rate after
contact with a non-vaccinated, asymptomatic, infected person. The overall transmission rate for the
susceptible partition Si with i ∈ {N,V,VR} will noted Λi defined as:

54

Λi(t) = (1− fi(t))

(
∑

j∈{N,V,Vr}
((1−u(t))β a

i, jI
a
j (t)+(1−µ)β s

i, jI
s
j(t))

)
Si(t) i ∈ {N,V,Vr}.

Here µ ∈ [0,1] represents the portion (assumed constant) of infected, symptomatic population that is
completely isolated. The factor u(t) ∈ [0,µ] corresponds to non pharmaceutical measures, similar to b(t)
in the basic SIR model except it only affects now the asymptomatic individuals, since the symptomatic
portion are assumed to be in maximum isolation.

We also denote by fi(t) the vaccine effectiveness to reduce transmission, being fN(t) ≡ 0 for the
non-fully vaccinated part. Noting eSN (τ), eRa

N
(τ), eRs

N
(τ) ∈ [0,1] the effectiveness for the compartments

(SN), (Ra
N) and (Rs

N), respectively, τ days after becoming fully vaccinated, and vSN (t), vRa
N
(t) and vRs

N
(t)

the vaccination rates for each compartment, then the overall effectiveness fi is modeled similarly as in
[88] by the equation:

fV (t) =

∫ t−tV

0

(
eSN (τ)vSN (t− τ)+ eRa

N
(τ)vRa

N
(t− τ)+ eRs

N
(τ)vRs

N
(t− τ)

)
dτ

∫ t−tV

0
vSi(s)+ vRa

i
(s)+ vRs

i
(s)ds

t ≥ tV ,

where tV is the start of the vaccination plan.

Similarly, for a booster we note rSV (τ), rRa
V
(τ), rRs

V
(τ) ∈ [0,1] the effectiveness in (SV), (Ra

V) and
(Rs

V), respectively, τ days after applying the booster dose and vSV (t), vRa
V
(t) and vRs

V
(t) the booster injec-

tion rates for each relevant compartment, then the total effectiveness of a booster dose is given by:

fVr(t) =

∫ t−tV

0

(
rSV (τ)vSV (t− τ)+ rRa

V
(τ)vRa

V
(t− τ)+ rRs

V
(τ)vRs

V
(t− τ)

)
dτ

∫ t−tV

0
v̂V (t)(s)ds

t ≥ tV ,

Finally we describe the remaining parameters of the model:

• Recovery rates: We denote γk
i , with i ∈ {N,V,Vr} and k ∈ {a,s} the recovery rates of infected

individuals who are in the fundamental part i and could be symptomatic (s) or asymptomatic (a).
A natural assumption is that recovery should be quicker for vaccinated people (as reported for
example in [78]), leading to the following inequalities

γ
k
N ≤ γ

k
V ≤ γ

k
Vr

k ∈ {a,s}.

• Death rates: We denote δi, with i ∈ {N,V,Vr} the death rates in the infected population in fun-
damental part i. Once again assuming vaccination reduces the mortality (as the evidence show in
[8, 77, 68, 89]), we have the inequalities

δVr ≤ δV ≤ δN .

55

Notation Description
β k

i Transmission rates, i ∈ {N,V,VR} and k ∈ {a,s}.
µ Portion of population which is infected, symptomatic and is completely isolated

u(t) Factor in transmission rate due to non pharmaceutical measures.
fi(t) Effectiveness of vaccines in transmission, i ∈ {N,V,VR}
γk

i Recovery rates of infected individuals, i ∈ {N,V,Vr} and k ∈ {a,s}
δi Death rates, i ∈ {N,V,Vr}.
qk

i Rate of loss of immunity for a recovered individual, i ∈ {N,V,Vr} and k ∈ {a,s}.
φi Probability of being asymptomatic, i ∈ {N,V,Vr}

Table 5.1: Parameters used in the model.

• Loss of immunity rates : The rate of loss of immunity for a recovered individual will be denoted
by qk

i with i ∈ {N,V,Vr} and k ∈ {a,s}.

• Probability of being asymptomatic: The probability of a susceptible individual, belonging to the
fundamental part i ∈ {N,V,Vr}, to be asymptomatic after infection will be denoted by φi ∈ [0,1].
These probabilities should fulfill

φN ≤ φV ≤ φVr ,

because the probability of being asymptomatic should increase as vaccination advances as it is
shown in [2, 94] .

Table 5.1 shows a summary of the parameters used in this model.

56

Fundamental part (N), non vaccinated:

ṠN(t) = −ΛN(t)+qa
NRa

N(t)+qs
NRa

N(t)− vSN (t)

İa
N(t) = φNΛN(t)− γa

NIa
N(t)

İs
N(t) = (1−φN)ΛN(t)− (γs

N +δN)Is
N(t)

Ṙa
N(t) = γa

NIa
N(t)−qa

NRa
N(t)− vRa

N
(t)

Ṙs
N(t) = γs

NIs
N(t)−qs

NRs
N(t)− vRs

N
(t)

ḊN(t) = δNIs
N(t);

Fundamental part (V), vaccinated without booster:

ṠV (t) = −ΛV (t)+qa
V Ra

V (t)+qs
V Ra

V (t)+ v̂N(t)− vSV (t)

İa
V (t) = φV ΛV (t)− γa

V Ia
V (t)

İs
V (t) = (1−φV)ΛV (t)− (γs

V +δV)Is
V (t)

Ṙa
V (t) = γa

V Ia
V (t)−qa

V Ra
V (t)− vRa

V
(t)

Ṙs
V (t) = γs

V Is
V (t)−qs

V Rs
V (t)− vRs

V
(t)

ḊV (t) = δV Is
V (t);

Fundamental part (Vr), vaccinated with booster:

ṠVr(t) = −ΛVr(t)+qa
Vr

Ra
Vr
(t)+qs

Vr
Ra

Vr
(t)+ v̂V (t)

İa
Vr
(t) = φVrΛVr(t)− γa

Vr
Ia
Vr
(t)

İs
Vr
(t) = (1−φVr)ΛVr(t)− (γs

Vr
+δVr)I

s
Vr
(t)

Ṙa
Vr
(t) = γa

Vr
Ia
Vr
(t)−qa

Vr
Ra

Vr
(t)

Ṙs
Vr
(t) = γs

Vr
Is
Vr
(t)−qs

Vr
Rs

Vr
(t)

ḊVr(t) = δVrI
s
Vr
(t).

57

SN

Ia
N Is

N

Ra
N Rs

N

DN

SV

Ia
V Is

V

Ra
V Rs

V

DV

SVr

Ia
Vr

Is
Vr

Ra
Vr

Rs
Vr

DVr

qa
NRa

N qs
NRs

N

φNΛN (1−φN)ΛN

δNIs
N

γs
NIs

Nγa
NIa

N

qa
V Ra

V qs
V Rs

V

φV ΛV (1−φV)ΛV

δV Is
V

γs
V Is

Vγa
V Ia

V

qa
Vr

Ra
Vr

qs
Vr

Rs
Vr

φVrΛVr (1−φVr)ΛVr

δVrI
s
Vr

γs
Vr

Is
Vr

γa
Vr

Ia
Vr

vSN

vRa
N

vRs
N

vSV

vRa
V

vRs
V

Figure 5.2: Base structure with 3 fundamental parts and 18 compartments in total. Green arcs indicate
vaccination actions that link the three parts, red arcs correspond to loss of immunity.

58

Chapter 6

A Mayer formulation for peak minimization
problems

This chapter corresponds to the accepted pre-print [82] titled "Equivalent formulations of optimal con-
trol problems with maximum cost and applications" to appear in Journal of Optimization Theory and
Applications.

6.1 Introduction

We consider the optimal control problem which consists in minimizing the maximum of a scalar function
over a time interval

inf
u(·)

esssup
t∈[t0,T]

y(t)

where y(t) = θ(t,ξ (t)) and ξ (·) is the solution of a controlled dynamics ξ̇ = φ(ξ ,u), ξ (t0) = ξ0. This
problem is not in the usual Mayer, Lagrange or Bolza forms of the optimal control theory, and therefore
is not suitable to use the classical necessary optimality conditions of Pontryagin Maximum Principle or
existing solving algorithms (based on direct method, shooting or Hamilton-Bellman Jacobi equation).
However, this problem falls into the class of optimal control with L∞ criterion, for which several char-
acterizations of the value function have been proposed in the literature [15, 16, 54]. Typically, the value
function is solution, in a general sense, of a variational inequality of the form

min
(

∂tV + inf
u

∂ξV.φ(x,u) , V −θ

)
= 0

without boundary condition. Nevertheless, although necessary optimality conditions and numerical pro-
cedures have been formulated [14, 40, 41, 51], there is no practical numerical tool to solve such problems
as it exists for Mayer problems, to the best of our knowledge. The aim of the present work is to study dif-
ferent reformulations of this problem into Mayer form in higher dimension with possibly state or mixed
constraints, for which existing numerical methods can be used. Indeed, it has already been underlined in
the literature that discrete-time optimal control problems with maximum cost do not satisfy the Principle
of Optimality but can be transformed into problems of higher dimension with additively separable objec-

59

tive functions [64, 65]. We pursue here this idea but in the continuous time framework, which faces the
lack of differentiability of the max function.

This manuscript is organized as follows. In Section 6.2, we establish the setup and the hypotheses
of this article, and define the problem. In Section 6.3, we provide equivalent formulations of the stud-
ied problem in the form of two Mayer problems with fixed initial condition, and under state or mixed
constraint. In Section 6.4, we propose another formulation in terms of differential inclusion but without
constraints, and then we show how the optimal value can be approximated from below by a sequence of
more regular Mayer problems. Section 6.5 is devoted to numerical illustrations. We consider two prob-
lems for which the optimal solution can be determined explicitly (one borrowed from epidemiology),
which allows to estimate and compare the numerical performances of the different formulations. These
problems have been chosen linear with respect to the control variable in order to present discontinuous
optimal controls, which are known to be numerically more sensitive. More precisely, the optimal solution
of the first problem has pure bang-bang controls, while the second one possesses a singular arc. We dis-
cuss the issues arising in the numerical implementations of the different formulations, and also compare
numerically with Lp approximations. Finally, we discuss in Section 6.6 about the potential merits of the
different formulations as practical methods to compute optimal solution of L∞ control problems.

6.2 Problem and hypotheses

We shall consider autonomous dynamical systems defined on a invariant domain D of Rn+1 of the form
{

ẋ = f (x,y,u)
ẏ = g(x,y,u) (6.1)

(where g is a scalar function) where the values of the control u(·) belong to a given set U ⊂ Rp. More
specifically, throughout the chapter, we shall assume that the following properties are fulfilled.

Assumption 1

i. U is a compact set.

ii. The maps f and g are C1 on D×U .

iii. The maps f and g have linear growth, that is there exists a number C > 0 such that

|| f (x,y,u)||+ |g(x,y,u)|⩽C(1+ ||x||+ |y|), (x,y) ∈D , u ∈U

For instance, y(·) can be a smooth output of a dynamics

ẋ = f (x,u), y = h(x)

which can be rewritten as {
ẋ = f (x,u)
ẏ = g(x,u) := ∇h(x)T · f (x,u)

60

Let U be the set of measurable functions u(·) : [0,T] 7→U and consider (x0,y0) ∈ D , T > 0. Under
the usual arguments of the theory of ordinary differential equations, Assumption 1 ensures that for any
u(·) ∈U there exists a unique absolutely continuous solution (x(·),y(·)) of (6.1) on [0,T] for the initial
condition (x(0),y(0)) = (x0,y0) (see for instance [48]). Define then the solutions set

S := {(x(·),y(·)) ∈A C ([0,T],Rn+1), sol. of (6.1) for u(·) ∈U with (x(0),y(0)) = (x0,y0)}.
We consider then the optimal control problem which consists in minimizing the "peak" of the function
y(·):

P : inf
u(·)∈U

(
max

t∈[0,T]
y(t)
)
= inf

(x(·),y(·))∈S

(
max

t∈[0,T]
y(t)
)
.

6.3 Formulations with constraint

A first approach considers the family of constrained sets of solutions

Sz := {(x,y) ∈S , y(t)⩽ z, t ∈ [0,T]}, (z ∈ R)

and to look for the optimization problem

inf{z; Sz ̸= /0}.
This problem can be reformulated as a Mayer problem

P0 : inf
u(·)∈U

z(T)

for the extended dynamics in D×R

ẋ = f (x,y,u)
ẏ = g(x,y,u)
ż = 0

under the state constraint
C : z(t)− y(t)⩾ 0, t ∈ [0,T]

where z(0) is free. Direct methods can be used for such a problem. However, as z(0) is free, solutions are
not sought among solutions of a Cauchy problem, which prevents using other methods based on dynamic
programming such as the Hamilton-Jacobi-Bellman equation.

We propose another extended dynamics in D×R with an additional control v(·) with values in [0,1]

ẋ = f (x,y,u)
ẏ = g(x,y,u)
ż = max(g(x,y,u),0)(1− v)

(6.2)

Let V be the set of measurable functions v : [0,T] 7→ [0,1]. Note that under Assumption 1, for any
(x0,y0,z0) ∈ D ×R and (u,v) ∈ U ×V , there exists an unique absolutely solution (x(·),y(·),z(·)) of
(6.2) on [0,T] for the initial condition (x(0),y(0),z(0)) = (x0,y0,z0). Here, we fix the initial condition
with z0 = y0 and consider the Mayer problem

P1 : inf
(u(·),v(·))∈U ×V

z(T) under the constraint C

and shows its equivalence with problem P . We first consider fixed controls u(·).

61

Proposition 6.3.1 For any control u(·) ∈U , the optimal control problem

inf
v∈V

z(T) under the constraint C (6.3)

admits an optimal solution. Moreover, an optimal solution verifies

z(T) = max
t∈[0,T]

y(t), (6.4)

and is reached for a control v(·) that takes values in {0,1}.

PROOF. From equations (6.2), one get that any solution z(·) is non decreasing, and as z satisfies the
constraint z⩾ y, we deduce that one has

z(T)⩾ max
t∈[0,T]

y(t) (6.5)

for any solution of (6.2), and thus

max
t∈[0,T]

y(t)⩽ inf
v∈V

z(T) under the constraint z(t)⩾ y(t), t ∈ [0,T].

Let x(·), y(·) be the solution of (6.1) for the control u(·) and let I be the set of invisible points from the
left of y, that is

I :=
{

t ∈ (0,T); y(t ′)> y(t) for some t ′ < t
}
.

Consider then the control

v(t) =

{
1, t ∈ int I,
0, t /∈ int I

(6.6)

When I is empty, y(·) is a non decreasing function and, when v(t) = 0 for all t ∈ [0,T], one has z(t) = y(t)
for any t ∈ [0,T]. Therefore, one has

z(T) = y(T) = max
t∈[0,T]

y(t).

When I is non empty, there exists, from the sun rising Lemma [95], a countable set of disjoint non-empty
intervals In = (an,bn) of [0,T] such that

- the interior of I is the union of the intervals In,

- one has y(an) = y(bn) if bn ̸= T ,

- if bn = T , then y(an)⩾ y(bn).

Note that when t /∈ int I, one has y(t) ⩾ y(t ′) for any t ′ ⩽ t. Therefore, the solution z with control (6.6)
verifies

z(t) =

{
y(t), t /∈ int I
y(an), t ∈ In for some n

(see Figure 6.1 as an illustration). Let t̄ ∈ [0,T] be such that

y(t̄) = max
t∈[0,T]

y(t),

62

which implies that any point t ′ > t̄ in [0,T] is invisible from the left. Then, one has z(T) = z(t̄) ⩽ y(t̄).
Thus, from (6.5), we obtain

max
t∈[0,T]

y(t) = z(T)

and deduce
max

t∈[0,T]
y(t) = inf

v(·)∈V
z(T) under the constraint C .

Figure 6.1: Illustration of the function z (in red) corresponding to a function y (in blue) with the control
given by expression (6.6)

Remark 6.3.1 The proof of Proposition 6.3.2 gives an optimal construction of z(·) which is the lower
envelope of non decreasing continuous functions above the function y(·), as depicted on Figure 6.1.
However, there is no uniqueness of the optimal control v(·). Any admissible solution z(·) that is above
y(·) and such that z(t) = ŷ for t ⩾ t̂ = min{t ∈ (0,T],y(t) = ŷ}, where ŷ := maxs∈[0,T] y(s), is also optimal.

We then obtain the equivalence between problems P1 and P in the following sense.

Proposition 6.3.2 If (u⋆(·),v⋆(·)) is optimal for Problem P1, then u⋆(·) is optimal for Problem P .
Conversely, if u⋆(·) is optimal for Problem P , then (u⋆(·),v⋆(·)) is optimal for Problem P1 where v⋆(·)
is optimal for the problem (6.3) for the fixed control u⋆(.).

Let us give another equivalent Mayer problem but with a mixed constraint (this will be useful in the
next section). We consider again the extended dynamics (6.2), with a control v(·) which values belong to
[0,1] and the initial conditions (x(0),y(0),z(0)) = (x0,y0,y0). Define then the mixed constraint

Cm : max(y(t)− z(t),0)(1− v(t))+ z(t)− y(t)⩾ 0, a.e. t ∈ [0,T]

and the optimal control problem

P2 : inf
(u(·),v(·))∈U ×V

z(T) under the constraint Cm.

63

Proposition 6.3.3 Problems P1 and P2 are equivalent.

PROOF. One can immediately see that for any admissible solution that satisfies constraint C , the constraint
Cm is necessarily fulfilled as max(y− z,0) is identically null.

Conversely, fix an admissible control u(·) and consider a control v(·) that satisfies Cm. We show that
this implies that the solution (y(·),z(·)) verifies necessarily z(t)⩾ y(t) for any t ∈ [0,T]. If not, consider
the non-empty set

E := {t ∈ [0,T]; z(t)− y(t)< 0},
which is open as z− y is continuous. Note that one has ż(t)− ẏ(t) ⩾ 0 for a.e. t ∈ E. Therefore z− y
is non decreasing in E and we deduce that for any t ∈ E, the interval [0, t] is necessarily included in E,
which then contradicts the initial condition z(0) = y(0).

6.4 Formulation without state constraints

We posit Π = (x,y,z) ∈D×R and consider the differential inclusion

Π̇ ∈ F(Π) :=
⋃

(u,v)∈U×[0,1]

f (x,y,u)
g(x,y,u)

h(x,y,z,u,v)

 (6.7)

with
h(x,y,z,u,v) = max(g(x,y,u),0)(1− v⊮R+(z− y))

where ⊮R+ is the indicator function

⊮R+(ζ) =

{
1, ζ ⩾ 0
0, ζ < 0

Let Π0 = (x0,y0,y0) and denote by Sℓ the set of absolutely continuous solutions of (6.7) with Π(0) =
Π0 ∈D×R. We consider the Mayer problem

P3 : inf
Π(·)∈Sℓ

z(T).

Assumption 2

∀(x,y) ∈D , G(x,y) :=
⋃

u∈U

[
f (x,y,u)
g(x,y,u)

]
is convex.

Proposition 6.4.1 Under Assumption 2, problem P3 admits an optimal solution. Moreover, any optimal
solution Π(·) = (x(·),y(·),z(·)) verifies

z(T) = max
t∈[0,T]

y(t)

with (x(·),y(·)) solution of (6.1) for some control u(·) ∈U , that in turn is optimal for problem P .

64

PROOF. We fix the initial condition Π(0) = Π0 and consider the augmented dynamics

Π̇ ∈ F†(Π) :=
⋃

(u,v,α)∈U×[0,1]2

f (x,y,u)
g(x,y,u)

h†(x,y,z,u,v,α)

 (6.8)

with
h†(x,y,z,u,v,α) = (1−α)h(x,y,z,u,v)+α max

w∈U
h(x,y,z,w,0).

Under Assumption 2, the values of F† are convex compact. One can straightforwardly check that the
set-valued map F† is upper semi-continuous1 with linear growth. Therefore, the reachable set S †

ℓ (T)
(where S †

ℓ denotes the set of absolutely continuous solutions of (6.8) with Π(0) = Π0) is compact (see
for instance [11, Proposition 3.5.5]). Then, there exists a solution Π⋆(·) = (x⋆(·),y⋆(·),z⋆(·)) of (6.8)
which minimizes z(T).

Note that any admissible solution (x(·),y(·),z(·)) of system (6.2) that satisfies the constraint Cm be-
longs to Sℓ ⊂S †

ℓ . We then get the inequality

z⋆(T)⩽ inf{z(T); (x(·),y(·),z(·)) sol. of (6.2) with Cm}. (6.9)

Let us show that any solution Π(·) = (x(·),y(·),z(·)) in Sℓ verifies

z(T)⩾ max
t∈[0,T]

y(t) (6.10)

We show that one has z(t) ⩾ y(t) for any t ∈ [0,T]. We proceed by contradiction, as in the proof of
Proposition 6.3.3. If the set E = {t ∈ (0,T); z(t)− y(t) < 0} is non-empty, one has ż(t)− ẏ(t) ⩾ 0 for
a.e. t ∈ E which implies, by continuity, that z(s)− y(s) < 0∀s ∈ (0, t), t ∈ E and then z(0)− y(0) < 0
which contradicts the initial condition z(0) = y(0). Moreover, as the map h is non-negative, z(·) is non
decreasing and we conclude that (6.10) is verified.

On another hand, thanks to Assumptions 1 and 2, we can apply Filippov’s Lemma to the set-valued
map G, which asserts that (x(·),y(·)) is solution of (6.1) for a certain u(·) ∈U . With(6.10), we obtain

z⋆(T)⩾ max
t∈[0,T]

y⋆(t)⩾ inf
u∈U

{
max

t∈[0,T]
y(t); (x(·),y(·)) sol. of (6.1)

}
(6.11)

where (x⋆(·),y⋆(·)) is solution of (6.1) for a certain u⋆(·) ∈U .

Finally, inequalities (6.9) and (6.11) with Propositions 6.3.2 and 6.3.3 show that z⋆(T) is reached by
a solution of (6.2) under the constraint Cm, and that u⋆(·) is optimal for problem P . We also conclude
that the optimal value z⋆(T) is reached by a solution in Sℓ, which is thus optimal for problem P3.

Remark 6.4.1 Let us stress that the function h is not continuous, which does not allow to use Filippov’s
Lemma for the set valued map F . This means that one cannot guarantee a priori that an absolutely contin-
uous solution Π(·) = (x(·),y(·),z(·)) can be synthesized by a measurable control (u(·),v(·)). Proposition
6.4.1 shows that (x(·),y(·)) is indeed a solution of system (6.1) for a measurable control u(·), but one
cannot guarantee a priori that z(·) can be generated by a measurable control v(·), which is irrelevant for
our purpose.

1A set-valued map F : X ⇝X is upper semi-continuous at ξ ∈X if and only if for any neighborhood N of F(ξ), there
exists η > 0 such that for any ξ ′ ∈ BX (ξ ,η) one has F(ξ ′)⊂N (see for instance [11]).

65

We end this section by exhibiting an approximation scheme from below of the optimal cost. These
approaches are of major interest for minimization problems because, since upper bounds are commonly
obtained via any sub-optimal control of problem P0, P1, P2 or P3 (provided typically by a numerical
scheme), they are useful to frame the optimal value of the problem. This will be illustrated in Section
6.5.

Let us consider the family of dynamics parameterized by θ > 0

ẋ = f (x,y,u)
ẏ = g(x,y,u)
ż = hθ (x,y,z,u,v)

(6.12)

with
hθ (x,y,z,u,v) = max(g(x,y,u),0)(1− ve−θ max(y−z,0)).

Here the expression e−θ max(y−z,0) plays the role of an approximation of ⊮R+(z−y) when θ tends to +∞.

We then define the family of Mayer problems

Pθ
3 : inf

Π(·)∈Sθ

z(T)

where Sθ denotes the set of absolutely continuous solutions Π(·) = (x(·),y(·),z(·)) of (6.12) for the
initial condition Π(0) = Π0. Let us underline that, for problems with Lipschitz dynamics and without
state constraints, necessary conditions based on Pontryagin Maximum Principle can be derived, leading
to shooting methods that are known to be very accurate. They can be initialized from numerical solutions
of problems P1 or P2, that in turn can be obtained, for instance, through direct methods.

Proposition 6.4.2 Under Assumption 2, for any increasing sequence of numbers θn (n∈N) that tends to
+∞, the problem Pθn

3 admits an optimal solution, and for any sequence of optimal solutions (xn(·),yn(·),zn)(·))
of Pθn

3 , the sequence (xn(·),yn(·)) converges, up to sub-sequence, uniformly to an optimal solution
(x⋆(·),y⋆(·)) of Problem P , and its derivatives weakly to (ẋ⋆(·), ẏ⋆(·)) in L2. Moreover, zn(T) is an
increasing sequence that converges to maxt∈[0,T] y⋆(t).

PROOF. As in the proof of Proposition 6.4.1, we consider for any θ > 0 the convexified dynamics

ẋ = f (x,y,u)
ẏ = g(x,y,u)
ż = h†

θ
(x,y,z,u,v,α) := (1−α)hθ (x,y,z,u,v)+α maxw∈U hθ (x,y,z,w,0)

where α ∈ [0,1]. Then, there exists an absolutely continuous solution (x⋆
θ
(·),y⋆

θ
(·),z⋆

θ
(·)) and a measur-

able control (u⋆
θ
(·),v⋆

θ
(·),α⋆

θ
(·)) that minimize z(T). For the control (u⋆

θ
(·),v⋆

θ
(·),0), the solution is given

by (x⋆
θ
(·),y⋆

θ
(·), z̃⋆

θ
(·)) where z̃⋆

θ
(·) is solution of the Cauchy problem

ż = l̃θ (t,z) := h†
θ
(x⋆θ (t),y

⋆
θ (t),z;u⋆θ (t),v

⋆
θ (t),0), z(0) = y(0)

while z⋆
θ
(·) is solution of

ż = lθ (t,z) := h†
θ
(x⋆θ (t),y

⋆
θ (t),z,u

⋆
θ (t),v

⋆
θ (t),α

⋆
θ (t)), z(0) = y(0).

66

One can check that the inequality

l̃θ (t,z)⩽ lθ (t,z), t ∈ [0,T], z ∈ R

is fulfilled, which gives by comparison of solutions of scalar ordinary differential equations (see for
instance [99]) the inequality

z̃⋆θ (t)⩽ z⋆θ (t), t ∈ [0,T].

We deduce that (x⋆
θ
(·),y⋆

θ
(·),z⋆

θ
(·)) is necessarily a solution of (6.12).

Let

ȳ := inf
u∈U

{
max

t∈[0,T]
y(t); (x(·),y(·)) sol. of (6.1)

}

By Proposition 6.4.1, we know that there exists an optimal solution (x(·),y(·),z(·)) of problem P3 such
that z(T) = ȳ. Clearly, this solution belongs to Sθ for any θ , and we thus get

z⋆θ (T)⩽ ȳ. (6.13)

Let

Fθ (Π) :=
⋃

(u,v)∈U×[0,1]

f (x,y,u)
g(x,y,u)

hθ (x,y,z,u,v)

and note that one has
lim

θ→+∞
d(Fθ (Π),F(Π)) = 0, Π ∈D×R (6.14)

Consider an increasing sequence of numbers θn (n∈N), and denote Πn(·)= (xn(·),yn(·),zn(·)) an optimal
solution of problem Pθn

3 . Note that one has

Sθn+1 ⊂Sθn · · · ⊂Sθ0. (6.15)

Therefore, the sequence Π̇n(·) is bounded, and Πn(·) as well. As F is upper semi-continuous, we obtain
that Πn(·) converges uniformly on [0,T], up to a sub-sequence, to a certain Π⋆(·) = (x⋆(·),y⋆(·),z⋆(·))
which belongs to Sl (see for instance [35, Th. 3.1.7]). From property(6.15), we obtain that zn(T) is a
non decreasing sequence that converges to z⋆(T), and from (6.13), we get passing at the limit

z⋆(T)⩽ ȳ

On another hand, (x⋆(·),y⋆(·),z⋆(·)) belongs to Sl and we get from Proposition 6.4.1 the inequality

z⋆(T)⩾ ȳ

Therefore, one has z⋆(T) = ȳ and (x⋆(·),y⋆(·),z⋆(·)) is then an optimal solution of problem P3. From
Proposition 6.4.1, we obtain that one has necessarily

z⋆(T) = max
t∈[0,T]

y⋆(t).

Finally, the sequence (ẋn(·), ẏn(·)) being bounded, it converges, up to a sub-sequence, weakly to (ẋ⋆(·), ẏ⋆(·))
in L2 thanks to Alaoglu’s Theorem.

67

6.5 Numerical illustrations

Our aim is to illustrate the different formulations on problems for which the optimal solution is known.

6.5.1 A particular class of dynamics

We consider dynamics of the form

(Σ) :
{

ẋ = f (x)
ẏ = g(x,u) x ∈ Rn, u ∈U

Proposition 6.5.1 A feedback control x 7→ φ⋆(x) such that

g(x,φ⋆(x)) = min
u∈U

g(x,u), x ∈ Rn

is optimal for problem P .

PROOF. For a given x0 in Rn, let x(·) be the solution of ẋ = f (x), x(0) = x0 independently to the control
u(·). Then, for any solution y(·), one has

y(t) = y(0)+
∫ t

0
g(x(τ),u(τ))dτ ⩾ y(0)+

∫ t

0
min
v∈U

g(x(τ),v)dτ, t ⩾ 0

Let y⋆(·) be defined as

y⋆(t) := y(0)+
∫ t

0
min
v∈U

g(x(τ),v)dτ, t ⩾ 0

Clearly, one has
max

t
y(t)⩾max

t
y⋆(t)

where y⋆(·) is a solution of Σ for any measurable control u⋆(·) such that

g(x(t),u⋆(t)) = min
v∈V

g(x(t),v), a.e. t ⩾ 0.

We conclude that y⋆(·) is an optimal trajectory of problem P for the control generated by the feedback
φ⋆.

As a toy example, we have considered the system
{

ẋ = 1, x(0) = 0
ẏ = (1− x)(2− x)(4− x)(1+u/2), y(0) = 0 u ∈ [−1,1]

for which
φ
⋆(x) =−sign

(
(1− x)(2− x)(4− x)

)

68

is an optimal control which minimizes maxt∈[0,T] y(t). The optimal control is thus pure bang-bang. Re-
mark that this problem can be equivalently written with a scalar non-autonomous dynamics

ẏ = (1− t)(2− t)(4− t)(1+u/2)

for which the open-loop control

u⋆(t) =−sign
(
(1− t)(2− t)(4− t)

)

is optimal.

For T = 5, we have first computed the exact optimal solution of problem P with the open-loop u⋆(·),
by integrating the dynamics with Scipy in Python software (see Figure 6.2). Effects of perturbations

0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

0 1 2 3 4 5

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.2: Optimal solution: y(·) on the left, u⋆(·) on the right

on the switching times of the control are presented in Table 6.1, which show a quite high sensitivity
of the optimal control for this problem (as it often the case for bang-bang controls). Then, we have

disturbance max
t∈[0,T]

y(t) error

0 2.24985 0
0.001% 2.24985 4.10−6%
0.01% 2.25010 0.01%
0.1% 2.69457 20%

Table 6.1: Sensitivity to the optimal switching

solved numerically problems P0 to P2 with a direct method (Bocop software using Gauss II integration
scheme) for 500 time steps and an optimization relative tolerance equal to 10−10. For problem P3, as
the dynamics is not continuous, direct methods do not work well and we have used instead a numerical
scheme based on dynamic programming (BocopHJB software) with 500 time steps and a discretization
of 200×200 points of the state space. For the additional control v, we have considered only two possible

69

0 1 2 3 4 5

5

4

3

2

1

0

1

2

y open loop
y 0
y 1
y 2
y 3

0 1 2 3 4 5

1.0

0.5

0.0

0.5

1.0

1.5
u open loop
u 0
u 1
u 2
u 3

0 1 2 3 4 5

5

4

3

2

1

0

1

2

y open loop
z 0
z 1
z 2
z 3

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0 v 1
v 2
v 3

Figure 6.3: Comparisons of the three methods on y(·), u(·), z(·) and v(·).

problem max
t∈[0,T]

y(t) error computation time

P 2.24705 0 −
P0 2.249888 0.126% 0.5s
P1 2.24998 0.130% 1.8s
P2 2.249941 0.129% 3.8s
P3 2.26778 0.8% 248s

Table 6.2: Comparison of the numerical results

values 0 and 1 as we know that the optimal solution is reached for v ∈ {0,1} (see Proposition 6.3.1).
The numerical results and computation times are summarized in Table 6.2, while Figure 6.3 presents the
corresponding trajectories.

We note that the direct method give very accurate results, and the computation time for problem P0
is the lowest because it has only one control. The computation time for problem P2 is slightly higher
than for P1 because the mixed constraint Cm is heavier to evaluate. The numerical method for problem
P3 is of completely different nature as it computes the optimal solution for all the initial conditions on
the grid, which explains a much longer computation time. The accuracy of the results is also directly

70

related to the size of the discretization grid and can be improved by increasing this size but at the price of
a longer computation time.

On Figure 6.3, one may notice some difference between the obtained trajectories. Let us underline
that after the peak of y(·), there is no longer uniqueness of the optimal control.

6.5.2 Application to an epidemiological model

The SIR model is one of the most basic transmission model in epidemiology for a directly transmitted
infectious disease (for a complete introduction, see for instance [100]) and it retakes great importance
nowadays due to covid-19 epidemic.

Consider on a time horizon [0,T] variables S(t), I(t) and R(t) representing the fraction of suscep-
tible, infected and recovery individuals at time t ∈ [0,T], so that one has S(t) + I(t) +R(t) = 1 with
S(t), I(t),R(t) ≥ 0. Let β > 0 be the rate of transmission and γ > 0 the recovery rate. Interventions as
lock-downs and curfew are modeled as a factor in rate transmission that we denote u and which represents
our control variable taking values in [0,umax] with umax ∈ (0,1), where u = 0 means no intervention and
u = umax the most restrictive one which reduces as much as possible contacts among population. The SIR
dynamics including the control is then given by the following equations:

Ṡ =−(1−u)βSI (6.16)
İ = (1−u)βSI− γI (6.17)
Ṙ = γI (6.18)

When the reproduction number R0 = β/γ is above one and the initial proportion of susceptible is above
the herd immunity threshold Sh = R−1

0 , it is well known that there is an epidemic outbreak. Then, the
objective is to minimize the peak of the prevalence

max
t∈[0,T]

I(t)

with respect to control u(·) subject to a L1 budget
∫ T

0
u(t)≤ Q (6.19)

on a given time interval [0,T] where T is in chosen large enough to ensure the herd immunity of the
population is reached at date T . Note that one can drop the R dynamics to study this problem. If the
constraint (6.19) were not imposed, then the optimal solution would be the trivial control u(t) = umax, t ∈
[0,T], which is in general unrealistic from a operational point of view. A similar problem has been
considered in [83] but under the constraint that intervention occurs only once on a time interval of given
length, that we relax here. Note that the constraint (6.19) can be reformulated as a target condition,
considering the augmented dynamics

Ṡ =−(1−u)βSI (6.20)
İ = (1−u)βSI− γI (6.21)

Ċ =−u(t) (6.22)

71

with initial condition C(0) = Q and target {C ⩾ 0}. Extension of the results of Sections 6.3 and 6.4 to
problems with target do not present any particular difficulty, and is left to the reader.

For initial conditions I0 = I(0)> 0 and S0 = S(0)> Sh, the optimal solution has been determined in
Chapter 7 as the feedback control

ψ(I,S) :=

{
1− Sh

S if I = Ī and S > Sh

0 otherwise

where

Ī :=
I0 +S0−Sh−Sh log

(
S0
Sh

)

QβSh +1
is the optimal value of the peak. The proof of the optimality of this feedback is out of the scope of the
present chapter and can be found in Chapter 7. This control strategy consists in three phases:

1. no intervention until the prevalence I reaches Ī (null control),

2. maintain the prevalence I equal to Ī until S reaches Sh (singular control),

3. no longer intervention when S > Sh (null control)

as illustrated in Figure 6.4 for the parameters given in Table 6.3. Note that differently to the previous

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

Suceptible S

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

Infected I

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Optimal control u

Figure 6.4: The optimal solution for the SIR problem

example, this control strategy is intrinsically robust with respect to a bad choice of Ī: the maximum value
of I is always guaranteed to be equal to Ī. However, a mischoice of Ī has an impact on the budget (see
Chapter 7 for more details).

β γ T Q S(0) I(0) Ī
0.21 0.07 300 28 1−10−6 10−6 0.105

Table 6.3: Parameters used in numerical computations and optimal value of the peak

Adding the z-variable, we end up with a dynamics in dimension four, which is numerically heavier
than for the previous example. In particular, methods based on the value function are too time consuming
to obtain accurate results for refined grids in a reasonable computation time. So we have considered direct

72

methods only. We do not consider here problem P3, but instead its regular approximations Pθ
3 suitable

to direct methods. For direct methods that use algebraic differentiation of the dynamics, convergence and
accuracy are much better if one provides differentiable dynamics. This is why we have approximated the
max(·,0) operator for problems P1 and P2 by the Laplace formula

log
(

eλξ +1
)

λ
−→

λ→+∞

max(ξ ,0), ξ ∈ R

with λ = 100 for the numerical experiments. For problem Pθ
3 , one has to be careful about the interplay

between the approximations of max(·,0) and the sequence θn → +∞, to provide approximations from
below of the optimal value. The function hθ is thus approximated by the expression

hθ (x,y,z,u,v)≃
log
(

eλ1g(x,y,u)+1
)

λ1

(
1− ve

θ

λ2
log(eλ2(y−z)+1)

)

which depends on three parameters λ1, λ2 and θ . Posit for convenience

α :=
θ

λ2

and consider the function
ωα,λ2(ξ) := e−α log(e−λ2ξ+1), ξ ∈ R

which approximates the indicator function ⊮R+ . One has the following properties.

Lemma 6.5.1

1. For any positive numbers α , λ2, the function ωα,λ2 is increasing with

lim
ξ→−∞

ωα,λ2(ξ) = 0, lim
ξ→+∞

ωα,λ2(ξ) = 1

2. For any ε ∈ (0,1), one has ωα,λ2

(
−ε2)= ε and ωα,λ2(0) = 1− ε exactly for

α =− log(1− ε)

log(2)
, λ2 =

log(ε−
1
α −1)

ε2 (6.23)

PROOF. One has first

ω
′
α,λ2

(ξ) = λ2α
e−λ2x

e−λ2ξ +1
ωα,λ2(ξ)> 0

and the function ωα,λ2(·) is thus increasing. From

lim
ξ→−∞

−α log(e−λ2ξ +1) =−∞

one get
lim

ξ→−∞

ωα,λ2(ξ) = 0

73

and similarly
lim

ξ→+∞

−α log(e−λ2ξ +1) = 0

implies
lim

ξ→+∞

ωα,λ2(ξ) = 1

Finally, with simple algebraic manipulation of the conditions ωα,λ2

(
−ε2)= ε and ωα,λ2(0) = 1−ε , one

obtains straightforwardly the expressions (6.23).

We have taken λ1 = 5000 and considered a sequence of approximations of the indicator function for
the values given in Table 6.4 according to expressions (6.23) of Lemma 6.5.1 (see Figure 6.5).

ε α λ2

0.2 0.32 124
0.15 0.234 360
0.1 0.152 1514
0.075 0.112 4094
0.05 0.074 16193

Table 6.4: Values of parameters α , λ2 for different ε

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0 = 0.2
= 0.15
= 0.1
= 0.05

+

0.4 0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0 = 0.2
= 0.15
= 0.1
= 0.05

+

Figure 6.5: Approximation of the indicator function with different values of ε (zoom on the abscissa axis
on the right)

Computations have been performed with Bocop software on a standard laptop computer (with a Gauss
II integration scheme, 600 time steps and relative tolerance 10−10). As one can see in Figure 6.6 and
Table 6.5 problems P0, P1, P2 give the peak values with a very good accuracy, and present similar
performances in terms of computation time. In Figure 6.7 and Table 6.6, the numerical solutions of Pθ

3
are illustrated for the values of α and λ2 given in Table 6.4. As expected, the numerical computation of
the family of problems Pθ

3 provides an increasing sequence of approximation from below of the optimal
value and thus complements the computation of problems P0, P1 or P2. From Figures of Tables 6.5 and
6.6, one can safely guarantee that the optimal value belongs to the interval [0.1010,0.1015]. However,

74

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10 y 0
y 1
y 2

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6 u 0
u 1
u 2

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

z 0
z 1
z 2

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

v 1
v 2

Figure 6.6: Comparisons of numerical results for the methods P0, P1, P2

problem max
t∈[0,T]

y(t) computation time

P0 0.1015 10s
P1 0.1015 12s
P2 0.1015 13s

Table 6.5: Comparison of performances for problems P0, P1, P2

ε z(T) max
t∈[0,T]

y(t) computation time

0.2 0.0684 0.1038 80s
0.15 0.0823 0.1038 65s
0.1 0.0954 0.1037 51s

0.075 0.0993 0.1050 83s
0.05 0.1010 0.1036 97s

Table 6.6: Comparison of performances for problem Pθ
3

75

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

State I

y 0
= 0.2
= 0.15
= 0.1
= 0.075
= 0.05

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Control u

u 0
= 0.2
= 0.15
= 0.1
= 0.075
= 0.05

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

State z

z 0
= 0.2
= 0.15
= 0.1
= 0.075
= 0.05

Figure 6.7: Comparison of the numerical results for problem Pθ
3

the trajectories found for Pθ
3 are not as closed as the ones of problems P0, P1 or P2. This can be

explained by the fact that problems Pθ
3 are not subject to the constraint z(t) ⩾ y(t) and thus provides

trajectories for which z(T) is indeed below maxt y(t).

Finally, we have compared our approximation technique with the classical approximation of the L∞

criterion by Lp norms
PLp : inf

u(·)∈U
||y(t)||p

with the same direct method. To speed up the convergence, we have used the Bocop facility which allows
a batch mode which consists in initializing the search from a solution found for a former value of p,
that have been taken p ∈ {2,5,10,15} (see Figure 6.8). Besides, to ensure convergence it was necessary
take 1200 time step instead of 600 as in previous simulations. The total time of the process is 78s after

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

0.12
state I

1
L2

L5

L10

L15

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

control

1
L2

L5

L10

L15

Figure 6.8: Numerical solutions for problems PLp

summing computation times given in Table 6.7. However, one can see that the trajectory found for p= 15
is quite far to give a peak value close from the other methods. Moreover, the same method for p = 15 but
initialized from the solution found for p = 2 gives poor results for a computation time of 50s (see Figure
6.9). We conclude that the Lp approximation is not practically reliable for this kind of problems.

76

p max
t∈[0,T]

y(t) ||y(t)||p computation time

2 0.119653 1.0222 34s
5 0.105244 0.2474 14s

10 0.105375 0.15678 13s
15 0.105170 0.13549 17s

Table 6.7: Comparison of the numerical results with the Lp approximation

0 50 100 150 200 250 300

0.00

0.05

0.10

0.15

0.20

state I
1

L15

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

control

1
L15

Figure 6.9: Numerical solution for PL15 without batch iteration (computation time 50s)

6.6 Discussion and conclusions

In this work, we have presented different reformulations of optimal control problems with maximum
cost in terms of extended Mayer problems, and tested them numerically on two examples whose optimal
solution has bang-bang controls and singular arcs. We have proposed two kinds of formulations: one
with state or mixed constraints suitable to direct methods, and another one without any constraint but
less regular and suitable to dynamical programming type methods. Moreover, for the latter one, we have
proposed an approximation scheme generated by a sequence of regular Mayer unconstrained problems,
which performs better than approximations based on Lp norms. However, although this second approach
requires larger computation time, it complements the first one providing approximations of the optimal
value from above.

This first work puts in perspective the study of necessary optimality conditions for the maximum cost
problems with the help of these formulations, which will be the matter of a future work.

Finally, we summarize advantages and drawbacks of the different formulations for numerical compu-
tations in Table 6.8, that could help practitioners in the choice of the method.

77

Formulation P0 P1 or P2 P3 Pθ
3

suitable to direct methods yes yes no yes
suitable to Hamilton-Jacobi-Bellman methods no yes yes yes
suitable to shooting methods without constraint no no no yes
provides approximations from below no no no yes

Table 6.8: Comparison of the different formulations

78

Chapter 7

A feedback strategy for peak minimization in
SIR model

This chapter corresponds to the accepted pre-print [81] titled "An optimal feedback control that mini-
mizes the epidemic peak in the SIR model under a budget constraint" to appear in Automatica journal.

7.1 Introduction

Since the pioneering work of Kermack and McKendrick [70], the SIR model has been very popular
in epidemiology, as the basic model for infectious diseases with direct transmission (see for instance
[100, 75] as introductions on the subject). It retakes great importance nowadays due to the recent coron-
avirus pandemic. In face of a new pathogen, non-pharmaceutical interventions (such as reducing physical
distance in the population) are often the first available means to reduce the propagation of the disease,
but this has economic and social prices. In [83, 76], the authors underline the need of control strategies
for epidemic mitigation by “flattering the epidemic curve”, rather than eradication of the disease that
might be too costly. Several works have applied the optimal control theory considering interventions
as a control variable that reduces the effective transmission rate of the SIR model, and studied optimal
strategies with criteria based on running and terminal cost over fixed finite interval or infinite horizon
[17, 24, 23, 67, 86, 20, 33, 49, 71, 21]. However, the highest peak of the epidemic appears to be the
highly relevant criterion to be minimized (especially when there is an hospital pressure to save individ-
uals with severe forms of the infection). In [83], the authors studied the minimization of the peak of
the infected population under the constraint that interventions occur on a single time interval of given
duration. In the present work, we consider the same criterion, but under a budget constraint on the con-
trol (as an integral cost) that we believe to be more relevant as it takes into account the strength of the
interventions and does not impose an a priori single time interval of given length for the interventions
to take place (although we have been able to prove that the optimal solution consists indeed in having
interventions on a single time interval but with a control strategy different that the one obtained in [83]).
Let us also mention a more recent work [12] that considers a kind of "dual" problem, which consists in
minimizing an integral cost of the control under the constraint that the epidemic stays below a prescribed
value and an additional constraint on the state at a fixed time. The structure of the optimal strategy given
by the authors in [12] is similar to the one we obtained without having to fix a time horizon and a terminal

79

constraint. All the cited works rely on numerical methods to provide the effective control. Here, we give
an explicit analytical expression of the optimal control.

Let us stress that optimal control problems with maximum cost are not in the usual Mayer, Lagrange
or Bolza forms of the optimal control theory [34], for which the necessary optimality conditions of
Pontryagin’s Principle apply, but fall into the class of optimal control with L∞ criterion, for which char-
acterizations have been proposed in the literature mainly in terms of the value function (see for instance
[15]). Although necessary optimality conditions and numerical procedures have been derived from the-
ses characterizations (see for instance [14, 41]), these approaches remain quite difficult and numerically
heavy to be applied on concrete problems. On the other hand, for minimal time problems with planar
dynamics linear with respect to the control variable, comparison tools based on the application of the
Green’s Theorem have shown that it is possible to dispense with the use of necessary conditions to prove
the optimality of a candidate solution [57]. Although our criterion is of different nature, we show in the
present work that it is also possible to implement this approach for our problem.

The chapter is organized as follows. In the next section, we posit the problem of peak minimization
to be studied. In Section 7.3, we define a class of feedback strategies that we called "NSN", and give
some preliminary properties. Section 7.4 proves the existence of an NSN strategy which is optimal for
our problem, and makes it explicit. Finally, Section 7.5 illustrates the optimal solutions on numerical
simulations and discusses about the optimal strategy.

7.2 Definitions and problem statement

We consider the SIR model

Ṡ =−βSI(1−u)
İ = βSI(1−u)− γI
Ṙ = γI

(7.1)

where S, I and R denotes respectively the proportion of susceptible, infected and recovered individuals
in a population of constant size. The parameters β and γ are the transmission and recovery rates of the
disease. The control u, which belongs to U := [0,1], represents the efforts of interventions by reducing
the effective transmission rate. For simplicity, we shall drop in the following the R dynamics. Throughout
the chapter, we shall assume that the basic reproduction number R0 is larger than one, so that an epidemic
outbreak may occur.

Assumption 3

R0 :=
β

γ
> 1.

For a positive initial condition (S(0), I(0)) = (S0, I0) with S0+ I0 ⩽ 1, we consider the optimal control
problem which consists in minimizing the epidemic peak under a budget constraint

inf
u(·)∈U

max
t⩾0

I(t), (7.2)

where U denotes the set of measurable functions u(·) that take values in U and satisfy the L1 constraint
∫ +∞

0
u(t)dt ⩽ Q

80

.

Remark 7.2.1 From equations (7.1), one can easily check that the solution I(t) tends to zero when t
tends to +∞ whatever is the control u(·), so that the supreme of I(·) over [0,+∞) in (7.2) is reached.

Equivalently, one can consider the extended dynamics.

Ṡ =−βSI(1−u)
İ = βSI(1−u)− γI
Ċ =−u

(7.3)

with the initial condition (S(0), I(0),C(0)) = (S0, I0,Q) and the state constraint

C(t)⩾ 0, t ⩾ 0. (7.4)

A solution of (7.3) is admissible if the control u(·) takes its values in U and the condition (7.4) is fulfilled.

7.3 The NSN feedback

Let us denote the immunity threshold

Sh := R−1
0 =

γ

β
< 1.

Note that S(·) is a non increasing function and that one has İ ⩽ 0 when S ⩽ Sh, whatever is the control.
If S0 ⩽ Sh, the maximum of I(·) is thus equal to I0 for any control u(·), which solves the optimal control
problem. We shall now consider that the non-trivial case.

Assumption 4
S0 > Sh.

Under this assumption, we thus know that for any admissible solution, the maximum of I(·) is reached
for S⩾ Sh. For the control u = 0, one can easily check that the following property is fulfilled

S(t)+ I(t)−Sh log(S(t)) = S0 + I0−Sh log(S0), t > 0, (7.5)

and the maximum of I(·) is then reached for the value

Ih := I0 +S0−Sh−Sh log
(

S0

Sh

)
.

We define the "NSN" (for null-singular-null) strategy as follows.

Definition 7.3.1 For Ī ∈ [I0, Ih], consider the feedback control

ψĪ(I,S) :=

{
1− Sh

S if I = Ī and S > Sh

0 otherwise.
(7.6)

81

We denote the L1 norm associated to the NSN control

L (Ī) :=
∫ +∞

0
uψĪ(t)dt, Ī ∈ [I0, Ih],

where uψĪ(·) is the control generated by the feedback (7.6).

This control strategy consists in three phases:

1. no intervention until the prevalence I reaches Ī (null control),

2. maintain the prevalence I equal to Ī until S reaches Sh (singular control),

3. no longer intervention when S < Sh (null control)

Remark 7.3.1 There is no switch of the control between phases 2 and 3, because u(t) tends to zero when
S(t) tends to Sh, according to expression (7.6).

One can check straightforwardly the following properties are fulfilled.

Lemma 7.3.1 For any Ī ∈ [I0, Ih], the maximal value of the control uψĪ(·) is given by

umax(Ī) := 1− Sh

S̄
< 1,

where S̄ is solution of
S̄−Sh log S̄ = S0 + I0−Sh logS0− Ī.

Moreover, any solution given by the NSN strategy verifies

max
t⩾0

I(t) = Ī.

7.4 Optimal strategy

We first show that the function L can be made explicit.

Proposition 7.4.1 One has

L (Ī) =
Ih− Ī
βShĪ

, Ī ∈ [I0, Ih]. (7.7)

PROOF. Note first that whatever is Ī, S(·) is decreasing with the control (7.6). One can then equivalently
parameterize the solution I(·), C(·) by

σ(t) := S0−S(t)

instead of t. Posit σh := σ(th) = S0−Sh.

82

As long as I < Ī, one has u = 0 which gives

dI
dσ

= f (σ) := 1− Sh
S0−σ

> 0

dC
dσ

= 0

Remind, from the definition of Ih, that the solution I(·) with u = 0 reaches Ih in finite time. Therefore,
one can define the number

σ̄ := inf{σ ⩾ 0, I(σ) = Ī}⩽ σh,

which verifies ∫
σ̄

0
f (σ)dσ = Ī− I0. (7.8)

For σ ∈ [σ̄ ,σh], one has u = 1−Sh/S, that is

dI
dσ

= 0

dC
dσ

=− 1
βSh Ī

(
1− Sh

S0−σ

)
=− f (σ)

βSh Ī < 0

One then obtains
L (Ī) =C(0)−C(σh) =

1
βShĪ

∫
σh

σ̄(Ī)
f (σ)dσ

and with (7.8) one can write

L (Ī) =
1

βShĪ

(∫
σh

0
f (σ)dσ + I0− Ī

)
.

On the other hand, one has
∫

σh

0
f (σ)dσ = σh +Sh log

(
Sh

S0

)
= Ih− I0

which finally gives the expression (7.7).

Then, the best admissible NSN control can be given as follows.

Corollary 7.4.1 When Q⩽ Ih−I0
βShI0

, the smallest Ī ∈ [I0, Ih] for which the solution with the NSN strategy is
admissible, is given by the value

Ī⋆(Q) :=
Ih

QβSh +1
(7.9)

and one has
L (Ī⋆(Q)) = Q. (7.10)

We give now our main result that shows that the NSN strategy is optimal.

83

Proposition 7.4.2 Let Assumptions 3 and 4 be fulfilled. Then, the NSN feedback is optimal with

Ī =

{
Ī⋆(Q), Q < Ih−I0

βShI0

I0, Q⩾ Ih−I0
βShI0

where Ī⋆(Q) is defined in (7.9), and Ī is the optimal value of problem (7.2).

PROOF. When Q⩾ Ih−I0
βShI0

, the NSN strategy is admissible and the corresponding solution verifies

max
t⩾0

I(t) = I0

which is thus optimal.

Consider now Q < Ih−I0
βShI0

. Let (S⋆(·), I⋆(·),C⋆(·)) be the solution generated by the NSN strategy with
Ī = Ī⋆(Q), and denote u⋆(·) the corresponding control. Let

S̄ := S⋆(t̄) where t̄ = inf{t > 0, I⋆(t) = Ī}

and
t⋆h := inf{t > t̄, S⋆(t) = Sh}.

We consider in the (S, I) plane the curve

C ⋆ := {(S⋆(t), I⋆(t)); t ∈ [0, t⋆h]}

For S⩾ S̄, the control (7.6) is null and a upward normal to C ⋆ is given by the expression

n⃗(S, I) =
[

βSI− γI
βSI

]
, (S, I) ∈ C ⋆ with S ∈ [S̄,S0].

On the other hand, the vector field in the (S, I) plane of any admissible solution is

v⃗(S, I,u) =
[
−βSI(1−u)

βSI(1−u)− γI

]
.

Then, one has
n⃗(S, I) · v⃗(S, I,u) =−βγSI2u⩽ 0,

∀(S, I)∈C ⋆ with S ∈ [S̄,S0], which shows that any admissible solution is below the curve C ⋆ in the (S, I)
plane for S ∈ [S̄,S0]. For S ∈ [Sh, S̄], the curve C ⋆ is an horizontal line with I = Ī. Therefore, if there
exists an admissible solution (S(·), I(·),C(·)) with maxt I(t)< Ī, its trajectory in the (S, I) plane has to be
below the curve C ⋆ for any S ∈ [Sh,S0]. Let

th := inf{t > 0, S(t) = Sh}.

One has thus I(th)< Ī. Define

T := t⋆h +
1
γ

log
(

Ī
I(th)

)
> t⋆h

84

and consider the non-admissible solution (S̃(·), Ĩ(·),C̃(·)) of (7.3) on [0,T] defined by the control

ũ(t) =

{
u⋆(t), t ∈ [0, t⋆h)
1, t ∈ [t⋆h ,T]

.

One can straightforwardly check with equations (7.3) that the solution (S̃(t), Ĩ(t),C̃(t)) is
{
(S⋆(t), I⋆(t),C⋆(t)), t ∈ [0, t⋆h)
(Sh, Ī exp(−γ(t− t⋆h)),C

⋆(t⋆h)+ t⋆h − t), t ∈ [t⋆h ,T].

Remind, from Corollary 7.4.1, that one has C⋆(t⋆h)= 0 by equation (7.10)). Clearly, one has (S̃(T), Ĩ(T))=
(Sh, I(th)) and C̃(T)< 0. We consider now in the (S, I) plane the simple closed curve Γ which is the con-
catenation of the trajectory (S̃(·), Ĩ(·)) on forward time with the trajectory (S(·), I(·)) in backward time:

Γ := {(S̃(τ), Ĩ(τ)), τ ∈ [0,T]}∪
{(S(T + th− t), I(T + th− t)), τ ∈ [T,T + th]}

that is anticlockwise oriented by τ ∈ [0,T + th]. Then one has

C̃(T)−C(th) =
∮

Γ

dC.

From equations (7.3), one gets

dC =− dS
βSI −dt =− dS

βSI +
dS+dI

γI =
(

1− Sh
S

)
dS
γI +

dI
γI

and thus
C̃(T)−C(th) =

∮

Γ

P(S, I)dS+Q(S, I)dI

with

P(S, I) =
(

1− Sh

S

)
1
γI
, Q(S, I) =

1
γI
.

By the Green’s Theorem, one obtains

C̃(T)−C(th) =
∫∫

D

(
∂Q
∂S

(S, I)− ∂P
∂ I

(S, I)
)

dSdI

=
∫∫

D

(
1− Sh

S

)
1

γI2 dSdI

> 0

where D is the domain bounded by Γ (see Figure 7.1 as an illustration). This implies C(th) < C̃(T) <
0 and thus a contradiction with the admissibility condition (7.4) of the solution (S(·), I(·),C(·)). We
conclude that (S⋆(·), I⋆(·),C⋆(·)) is optimal.

85

D

S
h

I

Figure 7.1: The closed curve Γ is composed of the trajectory (S⋆(·), I⋆(·)) in blue up to to the point (Sh, Ī),
the additional part (S̃(·), Ĩ(·)) in red and the hypothetical better trajectory (S(·), I(·)) in backward time in
green.

β γ S(0) I(0)

0.21 0.07 1−10−6 10−6

Table 7.1: SIR parameters and initial condition

7.5 Numerical illustrations and discussion

We have considered the same parameters and initial condition as in [83] (see Table 7.1). For these values,
one computes

R0 = 3, Sh =
1
3
, Ih ≃ 0.3.

Figure 7.2 presents a simulation of the optimal solution for the budget Q = 28, as an example (the
minimum peak is reached for Ī ≃ 0.1015). As a comparison, the optimal strategy obtained by Morris et

Figure 7.2: Optimal solution for Q = 28.

al. in [83] for a fixed time duration of interventions without consideration of any budget is quite different
(see Figure 7.3). It consists in four phases: no intervention, maintain I constant, apply the maximal
control (i.e. u = 1) and stop the intervention. This control presents thus three switches and relies on a full

86

break of the transmission, differently to the NSN strategy which presents only one switch (see Remark
7.3.1) and does not require a full break (see the maximal value of the control given in Lemma 7.3.1).
Applying an NSN strategy appears thus less restrictive to be applied in practice. The strategy proposed

Figure 7.3: Comparison of the time evolution of the infected population I between the optimal NSN
strategy and the optimal one of Morris et al.

by Morris et al. induces also a second peak: after the third phase, the prevalence I increases again up to a
peak which has to be equal to the level maintained during the second phase if it is optimally chosen. But
this second peak turns out to be non robust under a mischoice (or mistiming) of the second phase (see
[83] for more details). Comparatively, the NSN is naturally robust with respect to a bad choice of Ī: the
maximum value of I is always guaranteed to be equal to Ī. However, a mischoice of Ī has an impact on the
budget of the NSN strategy, given by expression (7.7) and illustrated in Table 7.2 (for model parameters
given in Table 7.1 and Q = 28).

Ī− Ī⋆ −10% −5% −1% +5% +10%
L (Ī)−Q +17% +8% +1.5% −7% −14%

Table 7.2: Variation of the control budget of the NSN strategy under a mischoice of Ī

In case of a new epidemic among a large population, one can consider that the initial number of
infected individuals is very low, while all the remaining population is susceptible. Therefore, one has
S0 + I0 = 1 with I0 very small, and the optimal value of Ī can be well approximated by its limiting
expression for I0 = 0, that is

Īℓ :=
1−Sh +Sh log(Sh)

QβSh +1
. (7.11)

From property (7.5), one also gets an approximation of the value S̄ℓ of S when I reaches Īℓ with u = 0, as
the solution of the equation

S̄ℓ+ Īℓ−Sh log(S̄ℓ) = 1,

and then an approximation of the duration of the intervention is given by

dℓ :=
Sh− S̄ℓ

γ Īℓ
,

(one can easily check that along the singular arc I = Ī, one has Ṡ =−γ Ī). For the parameters of Table 7.1,
one obtains the limiting values given in Table 7.3. This means that depending on the budget Q only, one
can determine the minimal peak and the optimal strategy to apply, without the knowledge of the initial
size of the infected population, provided that parameters β and γ of the disease are known.

87

Īℓ S̄ℓ dℓ

0.1015 0.8406 71.39

Table 7.3: The limiting optimal values for arbitrarily small I0 (with Q = 28)

The question of parameters estimation in the SIR model from data is out of the scope of the present work.
However, while reaching I = Īℓ without intervention, one may expect refinement of the estimates and
thus an adjustment of the value of Īℓ.

Note that if it is rather the height of the peak Ī that is imposed, the corresponding effort can be
determined with expression (7.11), that is

Q =
1

βSh

(
1−Sh

Ī
−1
)
,

as well with the duration of the intervention.

To have a better insight of the impacts of the available budget Q on the course of the epidemic, we
have considered four characteristics numbers:

• ti: the starting date of the intervention,

• d: the duration of the intervention,

• Ī: the height of the peak,

• umax: the maximal value of the control,

of the optimal solution, depicted on Figure 7.4 as a function of Q for I0 = 10−6 and S0 + I0 = 1. Let us
note that the maximal budget Q under which it is not possible to immediately slow down the progress of
the epidemic is given, according to Proposition 7.4.2, by

Qmax :=
Ih− I0

βShI0
≃ 4.3106,

which is quite high. Moreover, the maximal value of the control is bounded by the value

umax(Ī)⩽ 1−Sh =
2
3
,

far from the value 1 (that would consists in a total lockdown of the population). On Figure 7.4, one
can see that the peak Ī can be drastically reduced under a reasonable budget, and that taking larger
budgets slows down the decrease of the peak, while the duration of the intervention carries on increasing,
almost linearly. Indeed, remind that one has d = (S̄− Sh)/(γ Ī) and for an optimal value of Ī, one has
Q = (Ih− Ī)/(γ Ī) from (7.9). Then one gets

d =
S̄−Sh

Ih− Ī
Q,

88

Figure 7.4: Characteristics numbers as functions of Q.

but for large values of Q, Ī is small and S̄ closed to one, which gives an approximation of d as the linear
function of Q

d≃ 1−Sh

Ih
Q≃ 2.194Q.

This implies that for a long duration, fixing the budget Q or the duration d tends to be equivalent. There-
fore, for a same large duration, the optimal peak gets closed from the optimal one of the strategy of
Morris et al. which constraints the duration only, but the difference of the budgets of these two strategies
gets increasing with always a lower one for the NSN strategy, as one can see on Figure 7.5.

Figure 7.5: Comparison of the performances of the optimal strategies with same duration (in abscissa).

Finally, this analysis highlights (as already mentioned in [83, 76]) the importance to do not intervene
too early (unless one has a very large budget) and to choose the "right" time to launch interventions. We
believe that curves as in Figure 7.4 might be of some help for decision makers.

89

Chapter 8

Conclusion and perspectives

The objective of this thesis was to apply optimal control techniques in resource management problems.
In particular we worked in two contexts, mining and epidemiology. Now, we will present the main results
obtained and open problems which we identified.

We begin with the mining context corresponding to Part 1 of this document.

• Conclusions: In Chapter 3, we proposed a formulation based on the continuous framework of [4],
where the only change was to reduce the functional space of profiles from continuous to abso-
lutely continuous functions. Then, we characterized analytically optimal profiles of (FOP) in 2D
(Theorem 3.2.1) and 3D (Theorem 3.3.1), both being, main results of that section.

In Chapter 4 we showed (FOP) and (SOP) versions in a 2D case assuming continuity in densities
g and e. Then we recovered Theorem 3.2.1 for these hypotheses. Moreover, we proposed a new
version of the sequential problem (SOP) that we called Semi continuous formulation consisting in
discretizing the space domain Ω and in each point of this discretization take a continuous function
characterizing the depth at that point. This formulation is applied on 2D ((SOP)2D

SC) and 3D cases
((SOP)3D

SC) and allows us to manipulate the 3D case numerically.

We showed numerical experiments for the 2D case, comparing both formulations and methods of
resolution (local optimization and HBJ). Besides, we present, for the first time in literature to our
knowledge, numerical solutions of (SOP) in the 3D case.

• Perspectives: The hypothesis in Theorem 3.3.1 are a bit strong, therefore, the search for weaker
hypotheses remains an open problem. An option would be work with profiles parameterized in
each coordinate by another variable, reducing then the dimension of the optimal control problem
space.

In the analytical part, another open problem is to explore optimality conditions for ((SOP)2D
SC) and

((SOP)3D
SC) which could give extra information of optimal profiles.

With respect to the numerical part, there does not exists a density function g in literature built from
real data. That information is found in blocks as it was presented in the Introduction. A challenge
is to design an efficient interpolation tool to pass from a block model to a continuous function g,
and then use the same optimization tools used in Chapter 4 to solve an academic example.

90

Now, the epidemiology context corresponding to Part 2 of this document.

• Conclusions: In Chapter 6 we worked with general optimal control problems consisting of min-
imizing the maximum value of a state which appear in epidemiology to minimize the peak of
infected individuals after an outbreak disease. We presented four different equivalent formulations
as a Mayer optimal control problem with and without state constraints. These formulations let us
apply classical optimal control tools.

We showed the numerical experiment in an academic example and in a more realistic SIR problem.
We compared performance among each formulation and Lp approximation, used to approximate
L∞ norm. The main advantages and disadvantages in a numerical sense are summarized in the
following table.

Formulation P0 P1 or P2 P3 Pθ
3

suitable to direct methods yes yes no yes
suitable to Hamilton-Jacobi-Bellman methods no yes yes yes
suitable to shooting methods without constraint no no no yes
provides approximations from below no no no yes

Table 8.1: Comparison of the different formulations

In Chapter 7 we worked the particular problem of minimizing the peak of infected individuals over
a SIR model with a L1 cost in the control. We found the analytical expression for the optimal
strategy which we called NSN (null-singular-null) and which corresponds to the feedback control
(6.5.2).

Finally we presented numerical experiment and a parametric analysis of solutions comparing the
budget Q with the duration of the intervention and height of the optimal peak.

• Perspectives: Chapter 6 was focused on modeling and numerical experiments, therefore, there is
still work to be done in finding optimality conditions using one of the four formulations.

The strategy NSN presented in Chapter 7 seems possible to extend to more general planar optimal
control problems and it is a work in progress. Besides it would be interesting investigate the
performance of this strategy with other related problems, for example, minimizing the final value
of susceptible S(T) as in [21].

The compartment model introduced in section 5.2 has not been exploited in an optimal control
sense which would be the following step to take. For example, it would be interesting to study
what happens with results of Chapters 6 and 7 using this new model rather than the SIR one or
indeed consider the vaccination rate as a control to be optimize.

91

Bibliography

[1] Anuario de la mineria de chile. Technical report, Sernageomin, 2020.

[2] M. Aguiar, J. Van-Dierdonck, J. Mar, and N. Stollenwerk. The role of mild and asymptomatic
infections on covid-19 vaccines performance: a modeling study. Journal of Advanced Research,
39:157–166, 2022.

[3] A. Altarovici, O. Bokanowski, and H. Zidani. A general hamilton-jacobi framework for non-linear
state-constrained control problems. ESAIM: Control, Optimisation and Calculus of Variations,
19(2):337–357, 2013.

[4] F. Alvarez, J. Amaya, A Griewank, and N. Strogies. A continuous framework for open pit mine
planning. Mathematical methods of operations research, 73(1):29–54, 2011.

[5] J. Amaya, C. Hermosilla, and E. Molina. Optimality conditions for the continuous model of the
final open pit problem. Optimization Letters, 15(3):991–1007, 2021.

[6] R. Anderson. Discussion: the kermack-mckendrick epidemic threshold theorem. Bulletin of math-
ematical biology, 53(1):1–32, 1991.

[7] G. Angelov, R. Kovacevic, N. Stilianakis, and V. Veliov. Optimal vaccination strategies using a
distributed epidemiological model applied to covid-19. 2021.

[8] R. Arbel, R. Sergienko, M. Friger, A. Peretz, T. Beckenstein, S. Yaron, D. Netzer, and A. Hammer-
man. Effectiveness of a second bnt162b2 booster vaccine against hospitalization and death from
covid-19 in adults aged over 60 years. Nature medicine, pages 1–5, 2022.

[9] M. Aronna, R. Guglielmi, and L. Moschen. A model for covid-19 with isolation, quarantine and
testing as control measures. Epidemics, 34:100437, 2021.

[10] U. Ascher, R. Mattheij, and R. Russell. Numerical solution of boundary value problems for ordi-
nary differential equations. SIAM, 1995.

[11] J.-P. Aubin. Viability Theory. Birkhäuser, Boston, MA, 2009.

[12] F. Avram, L. Freddi, and D. Goreac. Optimal control of a sir epidemic with icu constraints and
target objectives. Applied Mathematics and Computation, 418:126816, 2022.

[13] M. Bardi and I. Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman
equations, volume 12. Springer, 1997.

92

[14] E. Barron. The pontryagin maximum principle for minimax problems of optimal control. Nonlin-
ear Analysis: Theory, Methods & Applications, 15(12):1155–1165, 1990.

[15] E. Barron and H. Ishii. The bellman equation for minimizing the maximum cost. Nonlinear
Analysis: Theory, Methods & Applications, 13(9):1067–1090, 1989.

[16] E. Barron, R. Jensen, and W. Liu. The l∞ control problem with continuous control functions.
Nonlinear Analysis: Theory, Methods & Applications, 32(1):1–14, 1998.

[17] H. Behncke. Optimal control of deterministic epidemics. Optimal control applications and meth-
ods, 21(6):269–285, 2000.

[18] B. M. Bell. CppAD: a package for C++ algorithmic differentiation. Computational Infrastructure
for Operations Research, 2012.

[19] J. T. Betts. Practical methods for optimal control using nonlinear programming. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[20] P.-A. Bliman and M. Duprez. How best can finite-time social distancing reduce epidemic final
size? Journal of theoretical biology, 511:110557, 2021.

[21] P.-A. Bliman, M. Duprez, Y. Privat, and N. Vauchelet. Optimal immunity control and final size
minimization by social distancing for the sir epidemic model. Journal of Optimization Theory and
Applications, 189(2):408–436, 2021.

[22] N. Boland, C. Fricke, and G. Froyland. A strengthened formulation for the open pit mine produc-
tion scheduled problem. Preprint, University of Melbourne, Parkville, VIC, 3010, 2006.

[23] L. Bolzoni, E. Bonacini, R. Della Marca, and M. Groppi. Optimal control of epidemic size and
duration with limited resources. Mathematical biosciences, 315:108232, 2019.

[24] L. Bolzoni, E. Bonacini, C. Soresina, and M. Groppi. Time-optimal control strategies in sir epi-
demic models. Mathematical biosciences, 292:86–96, 2017.

[25] F. Bonnans, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot, and J. Liu.
Bocop – A collection of examples. Technical report, INRIA, 2017.

[26] F. Bonnans and A. Hermant. Revisiting the analysis of optimal control problems with several state
constraints. Control Cybernet, 38(4A):1021–1052, 2009.

[27] F. Bonnans, P. Martinon, D. Giorgi, V. Grelard, S. Maindrault, and O. Tissot. BOCOP - A toolbox
for optimal control problems, 2019. http://bocop.org.

[28] R. Bulirsch, J. Stoer, and J Stoer. Introduction to numerical analysis, volume 3. Springer, 2002.

[29] L. Caccetta. Application of optimisation techniques in open pit mining. In Handbook of operations
research in natural resources, pages 547–559. Springer, 2007.

[30] Louis Caccetta and Stephen P Hill. An application of branch and cut to open pit mine scheduling.
Journal of global optimization, 27(2):349–365, 2003.

[31] J-B. Caillau, O. Cots, and J. Gergaud. Differential pathfollowing for regular optimal control prob-
lems. Optim. Methods Softw., 27(2):177–196, 2012.

93

[32] I. Capuzzo-Dolcetta and P-L. Lions. Hamilton-jacobi equations with state constraints. Transac-
tions of the American mathematical society, 318(2):643–683, 1990.

[33] J. Caulkins, D. Grass, G. Feichtinger, R. Hartl, P. Kort, A. Prskawetz, A. Seidl, and S. Wrzaczek.
The optimal lockdown intensity for covid-19. Journal of Mathematical Economics, 93:102489,
2021.

[34] L. Cesari. Optimization—theory and applications: problems with ordinary differential equations,
volume 1. Springer, New York, NY, 1983.

[35] F. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[36] F. Clarke. Functional analysis, calculus of variations and optimal control, volume 264. Springer,
2013.

[37] F. Clarke and R. Vinter. The relationship between the maximum principle and dynamic program-
ming. SIAM Journal on Control and Optimization, 25(5):1291–1311, 1987.

[38] E. Cristiani and P. Martinon. Initialization of the shooting method via the hamilton-jacobi-bellman
approach. Journal of Optimization Theory and Applications, 146(2):321–346, 2010.

[39] B. Denby and D. Schofield. Open-pit design and scheduling by use of genetic algorithms. Trans-
actions of the Institution of Mining and Metallurgy. Section A. Mining Industry, 103, 1994.

[40] S. Di Marco and R. González. A numerical procedure for minimizing the maximum cost. In
System Modelling and Optimization, pages 285–291. Springer, 1996.

[41] S. Di Marco and R. González. Minimax optimal control problems. numerical analysis of the finite
horizon case. ESAIM: Mathematical Modelling and Numerical Analysis, 33(1):23–54, 1999.

[42] A. Dontchev and R. Rockafellar. Implicit functions and solution mappings, volume 543. Springer,
2014.

[43] I. Ekeland and M. Queyranne. Optimal pits and optimal transportation. ESAIM: Mathematical
Modelling and Numerical Analysis, 49(6):1659–1670, 2015.

[44] N. Espejo, P. Nancel-Penard, and N. Morales. A methodology for automatic ramp design in open
pit mines. Journal of Mining Engineering and Research, 1(2):87–93, 2019.

[45] D. Espinoza, M. Goycoolea, E. Moreno, and A. Newman. Minelib: a library of open pit mining
problems. Annals of Operations Research, 206(1):93–114, 2013.

[46] M. Falcone and R. Ferretti. Semi-Lagrangian approximation schemes for linear and Hamilton-
Jacobi equations. SIAM, 2013.

[47] J. Ferland, J. Amaya, and M. Djuimo. Application of a particle swarm algorithm to the capacitated
open pit mining problem. In Autonomous robots and agents, pages 127–133. Springer, 2007.

[48] W. Fleming and R. Rishel. Deterministic and stochastic optimal control, volume 1. Springer
Science & Business Media, 2012.

[49] L. Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical
Control & Related Fields, 2021.

94

[50] R. Gamkrelidze. Discovery of the maximum principle. Journal of dynamical and control systems,
5(4):437–451, 1999.

[51] J. Gianatti, L. Aragone, P. Lotito, and L. Parente. Solving minimax control problems via nons-
mooth optimization. Operations Research Letters, 44(5):680–686, 2016.

[52] M. Giaquinta and S. Hildebrandt. Calculus of variations I, volume 311. Springer Science &
Business Media, 2013.

[53] G. Giordano, M. Colaneri, A. Di Filippo, F. Blanchini, P. Bolzern, G. De Nicolao, P. Sacchi,
P. Colaneri, and R. Bruno. Modeling vaccination rollouts, sars-cov-2 variants and the requirement
for non-pharmaceutical interventions in italy. Nature medicine, 27(6):993–998, 2021.

[54] R. González and L. Aragone. A bellman’s equation for minimizing the maximum cost. Indian
Journal of Pure and Applied Mathematics, 31(12):1621–1632, 2000.

[55] A. Griewank and N. Strogies. Duality results for stationary problems of open pit mine planning in
a continuous function framework. Computational & Applied Mathematics, 30(1):197–215, 2011.

[56] E. Grigorieva, E. Khailov, and A. Korobeinikov. Optimal quarantine strategies for covid-19 control
models. arXiv preprint arXiv:2004.10614, 2020.

[57] H. Hermes and J. La Salle. Functional Analysis and Time Optimal Control, volume 56. Academic
Press, New York, NY, 1969.

[58] D. Hochbaum and A. Chen. Performance analysis and best implementations of old and new algo-
rithms for the open-pit mining problem. Operations Research, 48(6):894–914, 2000.

[59] W. Hustrulid, M. Kuchta, and R. Martin. Open pit mine planning and design, two volume set &
CD-ROM pack. CRC Press, 2013.

[60] E. Jélvez, N. Morales, and H. Askari-Nasab. A new model for automated pushback selection.
Computers & Operations Research, 115:104456, 2020.

[61] T. Johnson. Optimum open pit mine production scheduling. University of California, Berkeley,
1968.

[62] Thys B Johnson and William R Sharp. A Three-dimensional dynamic programming method for
optimal ultimate open pit design, volume 7553. Bureau of Mines, US Department of the Interior,
1971.

[63] J. Jones. Notes on r0. Califonia: Department of Anthropological Sciences, 323:1–19, 2007.

[64] Morgan Jones and Matthew M Peet. Extensions of the dynamic programming framework: Battery
scheduling, demand charges, and renewable integration. IEEE Transactions on Automatic Control,
66(4):1602–1617, 2020.

[65] Morgan Jones and Matthew M Peet. A generalization of bellman’s equation with application to
path planning, obstacle avoidance and invariant set estimation. Automatica, 127:109510, 2021.

[66] J. Jost, J. Jost, and X. Li-Jost. Calculus of variations, volume 64. Cambridge University Press,
1998.

95

[67] M. Kantner and T. Koprucki. Beyond just “flattening the curve”: Optimal control of epidemics
with purely non-pharmaceutical interventions. Journal of Mathematics in Industry, 10(1):1–23,
2020.

[68] Jonathan Kennedy. Vaccine hesitancy: a growing concern. Pediatric drugs, 22(2):105–111, 2020.

[69] W. Kermack and A. McKendrick. A contribution to the mathematical theory of epidemics. Pro-
ceedings of the royal society of london. Series A, Containing papers of a mathematical and physi-
cal character, 115(772):700–721, 1927.

[70] W. Kermack and A. McKendrick. A contribution to the mathematical theory of epidemics. Pro-
ceedings of the royal society of london. Series A, Containing papers of a mathematical and physi-
cal character, 115(772):700–721, 1927.

[71] D. Ketcheson. Optimal control of an sir epidemic through finite-time non-pharmaceutical inter-
vention. Journal of Mathematical Biology, 83(1):1–21, 2021.

[72] R. Kovacevic, N. Stilianakis, and V. Veliov. A distributed optimal control model applied to covid-
19 pandemic. SIAM Journal on Control and Optimization, 60(2):S221–S245, 2022.

[73] E. Lee and L. Markus. Foundations of optimal control theory. Technical report, Minnesota Univ
Minneapolis Center For Control Sciences, 1967.

[74] H. Lerchs and I. Grossman. Optimum design of open-pit mines. pages 47–54, 1965.

[75] M. Li. An introduction to mathematical modeling of infectious diseases, volume 2. Springer, 2018.

[76] C. Lobry. Qu’est ce que le pic d’une épidémie et comment le contrôler. Cassini, 2021.

[77] G. Lv, J. Yuan, X. Xiong, and M. Li. Mortality rate and characteristics of deaths following covid-
19 vaccination. Frontiers in Medicine, page 649, 2021.

[78] P. Maclean, A. Mentzer, T. Lambe, and J. Knight. Why do breakthrough covid-19 infections occur
in the vaccinated? QJM: An International Journal of Medicine, 115(2):67–68, 2022.

[79] E. Molina and J. Amaya. Analytical properties of the feasible and optimal profiles in the binary
programming formulation of open pit. In Application of Computers and Operations Research in
the Mineral Industry, Golden, Colorado USA, 2017.

[80] E. Molina, P. Martinon, and H. Rámirez. Optimal control approaches for Open Pit planning.
working paper or preprint, February 2022.

[81] E. Molina and A. Rapaport. An optimal feedback control that minimizes the epidemic peak in the
sir model under a budget constraint. arXiv preprint arXiv:2203.05800, 2022.

[82] E. Molina, A. Rapaport, and H. Ramirez. Equivalent formulations of optimal control problems
with maximum cost and applications. arXiv preprint arXiv:2202.12545, 2022.

[83] Dylan H Morris, Fernando W Rossine, Joshua B Plotkin, and Simon A Levin. Optimal, near-
optimal, and robust epidemic control. Communications Physics, 4(1):1–8, 2021.

[84] A. Newman, E. Rubio, R. Caro, A. Weintraub, and K. Eurek. A review of operations research in
mine planning. Interfaces, 40(3):222–245, 2010.

96

[85] J. Nocedal and S. Wright. Numerical optimization. Springer, 1999.

[86] AZ Palmer, ZB Zabinsky, and S Liu. Optimal control of covid-19 infection rate with social costs.
arxiv 2020. arXiv preprint arXiv:2007.13811.

[87] L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Michtchenko. The Mathematical Theory of
Optimal Processes. Wiley Interscience, New York, 1962.

[88] A. Ramos, M. Vela-Pérez, M. Ferrández, A. Kubik, and B. Ivorra. Modeling the impact of sars-
cov-2 variants and vaccines on the spread of covid-19. Communications in Nonlinear Science and
Numerical Simulation, 102:105937, 2021.

[89] A. Roghani et al. The influence of covid-19 vaccination on daily cases, hospitalization, and death
rate in tennessee, united states: Case study. JMIRx med, 2(3):e29324, 2021.

[90] J. Saavedra-Rosas, E. Jeivez, J. Amaya, and N.E Morales. Optimizing open-pit block scheduling
with exposed ore reserve. Journal of the Southern African Institute of Mining and Metallurgy,
116(7):655–662, 2016.

[91] S. Sethi. Optimal Control Theory, volume 3. Springer, Cham, 2019.

[92] E. Sontag. Mathematical control theory: deterministic finite dimensional systems, volume 6.
Springer Science & Business Media, 2013.

[93] N. Strogies and A. Griewank. A pde constraint formulation of open pit mine planning problems.
PAMM, 13(1):391–392, 2013.

[94] L. Tang, D. Hijano, A. Gaur, T. Geiger, E. Neufeld, J. Hoffman, and R. Hayden. Asymptomatic and
symptomatic sars-cov-2 infections after bnt162b2 vaccination in a routinely screened workforce.
Jama, 325(24):2500–2502, 2021.

[95] T. Tao. An introduction to measure theory, volume 126. American Mathematical Society Provi-
dence, 2011.

[96] E. Trélat. Contrôle optimal: théorie & applications, volume 36. Vuibert Paris, 2005.

[97] R. Vinter. Optimal control. Springer, 2010.

[98] A. Waechter and L. T. Biegler. On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Mathematical Programming Series A, 106:25–57,
2006.

[99] W. Walter. Ordinary Differential Equations. Springer, New York, NY, 1998.

[100] H. Weiss. The sir model and the foundations of public health. Materials matematics, pages 0001–
17, 2013.

[101] E Alaphia Wright. The use of dynamic programming for open pit mine design: some practical
implications. Mining Science and Technology, 4(2):97–104, 1987.

97

Part III

Annexes

98

Annexed A

Codes global optimization (BocopHJB)

A.1 1D FOP - continuous formulation

A.1.1 Problem definition

1 # This file defines all dimensions and parameters for your problem:

2 # Dimensions:

3 state.dimension 2

4 control.dimension 1

5 constant.dimension 2

6 brownian.dimension 0

7

8 # Variable Names :

9 state .0 x

10 state .1 c

11 control .0 u

12

13 # Constants :

14 constant .0 effort_max 1e9

15 constant .1 K 0

16

17 # Time discretization :

18 time.initial 0

19 time.final 1230

20 time.steps 123

21

22 # State discretization: uniform grid

23 state .0. lowerbound 0

24 state .0. upperbound 500

25 state .0. steps 50

26 state .1. lowerbound 0

27 state .1. upperbound 1e6

28 state .1. steps 210

29

30 # value function for points outside the state grid:

31 # final cost ; projection; infinity; user_function

32 valueFunction.out.of.grid infinity

99

33

34 # Control discretisation :

35 # uniform ;

36 # components_user_file; components_user_function; control_set_user_file;

37 # control_set_user_function; control_set_user_function_state_dependent

38 control.set uniform

39 # uniform case

40 control .0. lowerbound -1

41 control .0. upperbound 1

42 control .0. steps 100

43

44 # System modes (>=1) and admissible transitions for switching between modes

45 # all_transitions; user_file; user_function

46 # state jumps at transitions: none; user_function

47 system.modes 1

48 admissible.transitions all_transitions

49 state.jumps none

50

51 # Value function save files:

52 # Previous steps type: resume; overwrite; ask

53 # Output format type: text; binary; none

54 # Output path: . --> here; other repertoire

55 valueFunction.previous.steps overwrite

56 valueFunction.output.format text

57 valueFunction.output.path valueFunction/

58

59 # SimulatedTrajectory:

60 # Computation: none; after_valueFunction; read_valueFunction

61 # Noise: none; gaussian; user_function

62 # Starting mode: best_mode; user_function; value:[0, nbmode -1]

63 # Output path: . -->here; other repertoire

64 simulatedTrajectory.computation after_valueFunction

65 simulatedTrajectory.output.path trajectory/

66 simulatedTrajectory.noise gaussian

67 simulatedTrajectory.starting.mode 0

68 simulatedTrajectory.starting.state.0 0.001

69 simulatedTrajectory.starting.state.1 0.1

70 simulatedTrajectory.other_output 0

71

72 # ProcessLaw:

73 # Computation: true; false

74 # Output Path: . -->here; other repertoire

75 processLaw.computation false

76 processLaw.output.path processLaw/

77 processLaw.initial.path processLaw/initialDistribution/

78

79 HD.option false

A.1.2 Objective

1 // This code is published under the Eclipse Public License

2 // Authors: Daphne Giorgi , Benjamin Heymann , Jinyan Liu , Pierre Martinon ,

Olivier Tissot

3 // Inria Saclay and Cmap Ecole Polytechnique

4 // 2014 -2017

5

100

6

7 // Function for the running cost

8 // Input :

9 // time : current time t

10 // initial_time : t0

11 // final_time : tf

12 // state : vector of state variables x

13 // control : vector of control variables u

14 // mode : mode of the system i

15 // constants : vector of constants

16 // dim_constant : dimension of the vector constants

17 // Output :

18 // running_cost : running cost l(t,x,u,i)

19 #include "dependencies.hpp"

20 #include "publicTools.hpp"

21

22 #include "header_runningCost"

23 {

24 double depth = state [0];

25 double distance = time;

26 double p0 = interpolation(distance , distance_grid , p0_values);

27 running_cost = - G_depth_integral(p0,depth ,distance);

28 }

29

30

31 // Function for the final cost

32 // Input :

33 // initial_time : t0

34 // final_time : tf

35 // final_state : vector of state variables x_f

36 // final_mode : final mode of the system i_f

37 // constants : vector of constants

38 // dim_constant : dimension of the vector constants

39 // Output :

40 // final_cost : final cost g(t0 ,tf ,x_f ,i_f)

41 #include "header_finalCost"

42 {

43

44 // final condition xf = 0

45 double xf = final_state [0];

46 if (abs(xf) <= 1e0)

47 final_cost = 0e0;

48 else

49 final_cost = 1e20;

50 }

51

52

53 // Function for the switching cost

54 // Input :

55 // current_mode : current mode

56 // next_mode : next mode

57 // constants : vector of constants

58 // dim_constant : dimension of the vector constants

59 // Output :

60 // switching_cost : switching cost s(i_k ,i_k+1)

61 #include "header_switchingCost"

101

62 {

63 switching_cost = 0e0;

64 }

A.1.3 Dynamics

1 // This code is published under the Eclipse Public License

2 // Authors: Daphne Giorgi , Benjamin Heymann , Jinyan Liu , Pierre Martinon ,

Olivier Tissot

3 // Inria Saclay and Cmap Ecole Polytechnique

4 // 2014 -2017

5

6 // General dynamics

7 // dy/dt = drift(t,y,u)dt + volatility(y,u)dWt where Wt is the standard

Brownian motion

8

9 // Function for the drift (deterministic dynamics)

10 // Input :

11 // time : current time t

12 // initial_time : t0

13 // final_time : tf

14 // state : vector of state variables x

15 // control : vector of control variables u

16 // mode : mode of the system i

17 // constants : vector of constants

18 // dim_constant : dimension of the vector constants

19 // Output :

20 // state_dynamics : drift f(t,x,u,i) ie deterministic dynamics

21 #include "publicTools.hpp"

22 #include "header_drift"

23 {

24 double distance = time;

25 double depth = state [0];

26 double u = control [0];

27

28 double p0 = interpolation(distance , distance_grid , p0_values);

29 double K = constants [1];

30 if (K == 0)

31 K = interpolation2D(distance , depth , distance_grid , depth_grid , K_values);

32 state_dynamics [0] = u * K;

33 state_dynamics [1] = depth - p0;

34 }

35

36

37 // Function for the volatility (stochastic dynamics)

38 // Input :

39 // time : current time t

40 // initial_time : t0

41 // final_time : tf

42 // state : vector of state variables x

43 // control : vector of control variables u

44 // mode : mode of the system i

45 // constants : vector of constants

46 // dim_constant : dimension of the vector constants

47 // Output :

48 // volatility_dynamics : vector giving the volatility expression of the

102

volatility

49 // Remember that this is a matrix of dimension dim_state x dim_brownian and you

have to fill every coefficient.

50 #include "header_volatility"

51 {

52 }

53

54 void generic_noise_dynamics (const double time , const vector <double >& state ,

const vector <double >& control ,

55 const int mode , const vector <double > noise , const

vector <double >& constants , vector <double >& dynamics)

56 {

57 }

A.1.4 Constraints

1 // This code is published under the Eclipse Public License

2 // Authors: Daphne Giorgi , Benjamin Heymann , Jinyan Liu , Pierre Martinon ,

Olivier Tissot

3 // Inria Saclay and Cmap Ecole Polytechnique

4 // 2014 -2017

5

6 #include "publicTools.hpp"

7

8 // Function for the state admissibility

9 // Input :

10 // time : current time (t)

11 // state : vector of state variables (x)

12 // mode : current mode of the system (i)

13 // constants : vector of constants

14 // dim_constant : dimension of the vector constants

15 // Output :

16 // true if the state is admissible

17 // false if it is not

18 #include "header_checkAdmissibleState"

19 {

20 double depth = state [0];

21 double distance = time;

22 double p0 = interpolation(distance , distance_grid , p0_values);

23 if (depth < p0)

24 return false;

25 else

26 return true;

27 }

28

29

30 // Function for the (control ,state) admissibility

31 // Input :

32 // time : current time (t)

33 // state : vector of state variables (x)

34 // control: vector of control variables (u)

35 // mode : current mode of the system (i)

36 // constants : vector of constants

37 // dim_constant : dimension of the vector constants

38 // Output :

39 // true if the (control ,state) pair is admissible

103

40 // false if it is not

41 #include "header_checkAdmissibleControlState"

42 {

43 return true;

44 }

45

46

47 // Function for the final state admissibility

48 // Input :

49 // time : current time (t)

50 // final_state : vector of state variables (x)

51 // control: vector of control variables (u)

52 // mode : current mode of the system (i)

53 // constants : vector of constants

54 // dim_constant : dimension of the vector constants

55 // Output :

56 // true if the (control ,state) pair is admissible

57 // false if it is not

58 #include "header_checkAdmissibleFinalState"

59 {

60 double final_effort = final_state [1];

61 double effort_max = constants [0];

62 if (final_effort > effort_max)

63 return false;

64 else

65 return true;

66 }

A.1.5 Other functions

1 #include "publicTools.hpp"

2 #include "dependencies.hpp"

3 using namespace std;

4

5

6 #include "header_preProcessing"

7 {

8

9 // intialize interpolations for p0 , G and K

10 readFileToVector("data/distance.data", distance_grid);

11 readFileToVector("data/p0.data", p0_values);

12 readFileToVector("data/depth.data", depth_grid);

13 readCVSToMatrix("data/gain.csv",G_values ,';' ,0,1);

14 readCVSToMatrix("data/slope.csv",K_values ,';' ,0,1);

15

16 return 0;

17 }

1 // This code is published under the Eclipse Public License

2 // Authors: Daphne Giorgi , Benjamin Heymann , Jinyan Liu , Pierre Martinon ,

Olivier Tissot

3 // Inria Saclay and Cmap Ecole Polytechnique

4 // 2014 -2017

5

6

7 // Function to define the value function outside of the state grid

104

8 // Input :

9 // time : current time (t)

10 // state : vector of state variables

11 // constants : vector of constants

12 // dim_constant : dimension of the vector constants

13 // Output :

14 // result : double representing the user interpolation formula

15 #include "header_userOutOfGridValueFunction"

16 {

17 result = 1e20;

18 }

19

20

21 /** User function for component -wise control discretization */

22 #include "header_userControlDiscretization"

23 {

24 vector <vector <double > > control_discretization;

25 return control_discretization;

26 }

27

28

29 /** User function for the set of discretized controls */

30 #include "header_userControlSet"

31 {

32 vector < vector <double > > control_set;

33 return control_set;

34 }

35

36

37 /** User function for the set of discretized controls (state dependent) */

38 #include "header_userControlSetStateDependent"

39 {

40 vector < vector <double > > control_set;

41 return control_set;

42 }

43

44

45 /** User function for the set of admissible transitions between system modes */

46 #include "header_userAdmissibleTransition"

47 {

48 vector <vector <int > > admissibleTransitionSet;

49 return admissibleTransitionSet;

50 }

51

52

53 /** User function for state jump */

54 #include "header_stateJumpAtSwitching"

55 {

56 // vector 'state' can be modified here

57 // example: if state [0] counts the number of switchings

58 // if (current_mode != next_mode)

59 // state [0] = state [0] + 1;

60 }

61

62

63 /** User noise */

105

64 #include "header_userNoise"

65 {

66 vector <double > noise;

67 return noise;

68 }

69

70

71 void other_outputs(double time , vector <double > state , vector <double > control ,

vector <double > noise , vector <double > constants , vector <double >& output)

72 {

73 }

1 #include "dependencies.hpp"

2

3

4 vector <double > distance_grid;

5 vector <double > depth_grid;

6 vector <double > p0_values;

7 vector < vector <double > > G_values , K_values;

8

9 #include <cmath >

10 #include "publicTools.hpp"

11

12 double G_depth_integral(const double p0, const double depth , const double

distance)

13 {

14

15 // compute integral of g over [p0,depth] at x=distance

16 double g_sum = 0e0;

17 if (depth < p0)

18 return g_sum;

19

20 // limit indices for integral along depth

21 int j0 = locateInArray(p0,depth_grid.data(),depth_grid.size());

22 int j1 = locateInArray(depth ,depth_grid.data(),depth_grid.size());

23

24 // partial first interval (p0 ,depth_grid[j0+1])

25 double d0 = p0;

26 double d1 = depth_grid[j0+1];

27 double G0 = interpolation2D(distance , d0, distance_grid , depth_grid , G_values

);

28 double G1 = interpolation2D(distance , d1, distance_grid , depth_grid , G_values

);

29 g_sum += 0.5e0 * (G0 + G1) * (d1 - d0);

30

31 // complete intervals (depth_grid[j],depth_grid[j+1])

32 for (int j=j0+1;j<j1;j++)

33 {

34 d0 = depth_grid[j];

35 d1 = depth_grid[j+1];

36 G0 = interpolation2D(distance , d0 , distance_grid , depth_grid , G_values);

37 G1 = interpolation2D(distance , d1 , distance_grid , depth_grid , G_values);

38 g_sum += 0.5e0 * (G0 + G1) * (d1 - d0);

39 }

40

41 // partial last interval (depth_grid[j1],detph)

42 d0 = depth_grid[j1];

106

43 d1 = depth;

44 G0 = interpolation2D(distance , d0 , distance_grid , depth_grid , G_values);

45 G1 = interpolation2D(distance , d1 , distance_grid , depth_grid , G_values);

46 g_sum += 0.5e0 * (G0 + G1) * (d1 - d0);

47

48 // rescale

49 return g_sum / 1e6;

50 }

107

Annexed B

Codes local optimization (Bocop)

B.1 1D SOP - continuous formulation

B.1.1 Problem definition

1 # Definition file

2

3 # Dimensions

4 dim.state 3

5 dim.control 1

6 dim.boundaryconditions 6

7 dim.pathconstraints 1

8 dim.parameters 0

9 dim.constants 2

10

11 # Time interval

12 initial.time 0

13 final.time 1230

14

15 # Constants

16 constant .0 1 # slope type (value or '0' for table)

17 constant .1 0 # quadratic regularization. effect not clear ...

18

19 # Time discretisation NB; singular case , CV not necessarily better when

increasing steps from 1000 to 2000

20 time.steps 1000

21

22 # Bounds for constraints

23 boundarycond .0. lowerbound 0

24 boundarycond .0. upperbound 0

25 boundarycond .1. lowerbound 0

26 boundarycond .1. upperbound 0

27 boundarycond .2. lowerbound 0

28 boundarycond .2. upperbound 0

29 boundarycond .3. lowerbound 0

30 boundarycond .3. upperbound 0

31 boundarycond .4. lowerbound 0

108

32 boundarycond .5. upperbound 2e4

33 pathconstraint .0. lowerbound 0

34

35 # Bounds for variables

36 state .0. upperbound 500

37 control .0. lowerbound -1

38 control .0. upperbound 1

39

40 # Initialization for discretized problem

41 state .0. init 0.1

42 state .1. init 0.1

43 state .2. init 0.1

44 control .0. init 0.1

45

46 # Names

47 state .0. name depth

48 state .1. name gain

49 state .2. name effort

50

51 # Ipopt

52 ipoptIntOption.print_level 5

53 ipoptIntOption.max_iter 2000

54 ipoptStrOption.mu_strategy monotone

55 ipoptNumOption.tol 1e-12

56

57 # Misc

58 ad.retape 1

B.1.2 Problem functions

1 // +++ DRAFT +++ This class implements the OCP functions

2 // It derives from the generic class bocop3OCPBase

3 // OCP functions are defined with templates since they will be called

4 // from both the NLP solver (double arguments) and AD tool (ad_double arguments

)

5 #include <OCP.h>

6

7 // data for interpolations

8 std:: vector <double > depth_grid , p0_values , distance_grid;

9 std:: vector <std:: vector <double > > G_values;

10 std:: vector <std:: vector <double > > K_values;

11

12 template <typename Variable > Variable getG(const double distance , const Variable

depth)

13 {

14 // basic 2D linear interpolation

15 int verbose = 0;

16 Variable distance_ad = distance;

17 Variable G = bcp:: interpolation2Dbilinear(distance_ad , depth , distance_grid ,

depth_grid , G_values , verbose);

18

19 // rescale

20 return G / 1e6;

21 }

22

23 template <typename Variable > Variable getK(const double distance , const Variable

109

depth)

24 {

25 // basic 2D linear interpolation

26 int verbose = 0;

27 Variable distance_ad = distance;

28 Variable K = bcp:: interpolation2Dbilinear(distance_ad , depth , distance_grid ,

depth_grid , K_values , verbose);

29 return K ;

30 }

31

32

33 template <typename Variable > Variable G_depth_integral(const Variable p0 , const

Variable depth , const double distance)

34 {

35 // compute integral of g over [p0,depth] at x=distance +++ use rectangle

instead ? ('right '/implicit rectangle ?)

36 Variable g_sum = 0e0;

37

38 // limit indices for integral along depth

39 int verbose = 0;

40 int j0 = bcp:: locate(p0 ,depth_grid ,verbose);

41 int j1 = bcp:: locate(depth ,depth_grid ,verbose);

42 double d0 , d1;

43 Variable G0, G1;

44

45 // partial first interval (p0 ,depth_grid[j0+1])

46 d1 = depth_grid[j0+1];

47 G0 = getG(distance , p0);

48 G1 = getG(distance , d1);

49 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - p0);

50

51 // complete intervals (depth_grid[j],depth_grid[j+1])

52 for (int j=j0+1;j<j1;j++)

53 {

54 d0 = depth_grid[j];

55 d1 = depth_grid[j+1];

56 G0 = getG(distance , d0);

57 G1 = getG(distance , d1);

58 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - d0);

59 }

60

61 // partial last interval (depth_grid[j1],depth)

62 d0 = depth_grid[j1];

63 G0 = getG(distance , d0);

64 G1 = getG(distance , depth);

65 g_sum = g_sum + (G0 + G1) / 2e0 * (depth - d0);

66

67 return g_sum;

68 }

69

70

71 template <typename Variable > Variable E_depth_integral(const Variable depth0 ,

const Variable depth1)

72 {

73 // NB. the first branch (then) blocks convergence -_- oO

74 //if (depth1 <= depth0)

110

75 // return 0e0;

76 //else

77 return depth1 - depth0;

78 }

79

80 // ///

81

82 template <typename Variable >

83 inline void OCP:: finalCost(double initial_time , double final_time , const

Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable &final_cost)

84 {

85 // maximize integral of G (sum of all 2nd final state of each timeframe)

86 final_cost = - final_state [1] - final_state [4];

87 }

88

89 template <typename Variable >

90 inline void OCP:: dynamics(double time , const Variable *state , const Variable *

control , const Variable *parameters , const double *constants , Variable *

state_dynamics)

91 {

92 // LAYOUT: 3 states and 1 control

93 // - depth profile for current timeframe

94 // - gain from previous timeframe

95 // - effort from previous timeframe

96 // - control is slope derivative for the depth profile

97

98 double distance = time;

99 Variable depth = state [0];

100 Variable u = control [0];

101

102 int verbose = 0;

103 Variable p0 = bcp:: interpolation1Dlinear(distance , distance_grid , p0_values ,

verbose);

104

105 Variable K = constants [0];

106 if (K == 0)

107 K = getK(distance , depth);

108 double eps_reg = constants [1];

109

110 state_dynamics [0] = u * K;

111 state_dynamics [1] = G_depth_integral(p0, depth , distance) - eps_reg*u*u;

112 state_dynamics [2] = E_depth_integral(p0, depth);

113

114 }

115

116 template <typename Variable >

117 inline void OCP:: boundaryConditions(double initial_time , double final_time ,

const Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable *boundary_conditions)

118 {

119 // initial and final conditions for depth , gain , effort

120 size_t dim_state = 3;

121 for (int i=0; i<dim_state; i++)

122 {

123 boundary_conditions[i] = initial_state[i];

111

124 boundary_conditions[dim_state+i] = final_state[i];

125 }

126 }

127

128 template <typename Variable >

129 inline void OCP:: pathConstraints(double time , const Variable *state , const

Variable *control , const Variable *parameters , const double *constants ,

Variable *path_constraints)

130 {

131 // initial profile contraint x >= p0

132 int verbose = 0;

133 double distance = time;

134 double p0 = bcp:: interpolation1Dlinear(distance , distance_grid , p0_values ,

verbose);

135 path_constraints [0] = state [0] - p0;

136 }

137

138

139 void OCP:: preProcessing ()

140 {

141 // intialize interpolations for p0 and G

142 bcp:: readFileToVector("data/distance.data", distance_grid);

143 bcp:: readFileToVector("data/p0.data", p0_values);

144 bcp:: readFileToVector("data/depth.data", depth_grid);

145 bcp:: readCSVToMatrix("data/gain.csv",G_values ,';' ,0,1);

146 bcp:: readCSVToMatrix("data/slope.csv",K_values ,';' ,0,1);

147 }

148

149

150 // ///

151 // explicit template instanciation for template functions , with double and

double_ad

152 // +++ could be in an included separate file ?

153 // but needs to be done for aux functions too ? APPARENTLY NOT !

154 template void OCP::finalCost <double >(double initial_time , double final_time ,

const double *initial_state , const double *final_state , const double *

parameters , const double *constants , double &final_cost);

155 template void OCP::dynamics <double >(double time , const double *state , const

double *control , const double *parameters , const double *constants , double *

state_dynamics);

156 template void OCP:: boundaryConditions <double >(double initial_time , double

final_time , const double *initial_state , const double *final_state , const

double *parameters , const double *constants , double *boundary_conditions);

157 template void OCP:: pathConstraints <double >(double time , const double *state ,

const double *control , const double *parameters , const double *constants ,

double *path_constraints);

158

159 template void OCP::finalCost <double_ad >(double initial_time , double final_time ,

const double_ad *initial_state , const double_ad *final_state , const

double_ad *parameters , const double *constants , double_ad &final_cost);

160 template void OCP::dynamics <double_ad >(double time , const double_ad *state ,

const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *state_dynamics);

161 template void OCP:: boundaryConditions <double_ad >(double initial_time , double

final_time , const double_ad *initial_state , const double_ad *final_state ,

const double_ad *parameters , const double *constants , double_ad *

112

boundary_conditions);

162 template void OCP:: pathConstraints <double_ad >(double time , const double_ad *

state , const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *path_constraints);

B.2 1D SOP - semicontinuous formulation

B.2.1 Problem definition

1 # Definition file

2

3 # Dimensions

4 dim.state 100

5 dim.control 99

6 dim.boundaryconditions 101

7 dim.pathconstraints 101

8 dim.parameters 0

9 dim.constants 3

10

11 # Time interval

12 initial.time 0

13 final.time 1

14

15 # Constants

16 constant .0 100

17 constant .1 20000.0

18 constant .2 0.1

19

20 # Time discretisation

21 ode.discretization euler_implicit

22 time.steps 1

23

24 # Bounds for constraints

25 boundarycond .0. lowerbound 0

26 boundarycond .0. upperbound 0

27 ...

28 boundarycond .99. lowerbound 0

29 boundarycond .99. upperbound 0

30 boundarycond .100. lowerbound 5000.0

31 pathconstraint .0. lowerbound -1

32 pathconstraint .0. upperbound 1

33 ...

34 pathconstraint .99. lowerbound -1

35 pathconstraint .99. upperbound 1

36 pathconstraint .100. lowerbound 0

37

38 # Bounds for variables

39 state .0. lowerbound 0

40 state .0. upperbound 500

41 ...

42 state .98. upperbound 500

43 state .99. lowerbound 0

44 control .0. lowerbound 0

45 control .0. upperbound 500

113

46 ...

47 control .99. lowerbound 0

48 control .99. upperbound 500

49

50 # Initialization for discretized problem

51 state .0. init 100

52 ...

53 state .99. init 100

54 control .0. init 0.1

55 ...

56 control .98. init 0.1

57

58 # Names

59

60 # Ipopt

61 ipoptIntOption.print_level 5

62 ipoptIntOption.max_iter 10000

63 ipoptStrOption.mu_strategy monotone

64 ipoptNumOption.tol 1e-6

65

66 # Misc

67 ad.retape 1

B.2.2 Problem functions

1 // +++ DRAFT +++ This class implements the OCP functions

2 // It derives from the generic class bocop3OCPBase

3 // OCP functions are defined with templates since they will be called

4 // from both the NLP solver (double arguments) and AD tool (ad_double arguments

)

5 #include <OCP.h>

6

7 // gloabl N, DX, T ?

8

9 // data for interpolations

10 std:: vector <double > depth_grid , p0_values , distance_grid;

11 std:: vector <std:: vector <double > > G_values;

12

13 template <typename Variable > Variable getG(const double distance , const Variable

depth)

14 {

15 // basic 2D linear interpolation

16 int verbose = 0;

17 Variable distance_ad = distance;

18 Variable G = bcp:: interpolation2Dbilinear(distance_ad , depth , distance_grid ,

depth_grid , G_values , verbose);

19

20 // rescale

21 return G / 1e6;

22 }

23

24 template <typename Variable > Variable G_depth_integral(const Variable p0 , const

Variable depth , const double distance)

25 {

114

26 // compute integral of g over [p0,depth] at x=distance +++ use rectangle

instead ? ('right '/implicit rectangle ?)

27 Variable g_sum = 0e0;

28

29 // limit indices for integral along depth

30 int verbose = 0;

31 int j0 = bcp:: locate(p0 ,depth_grid ,verbose);

32 int j1 = bcp:: locate(depth ,depth_grid ,verbose);

33 double d0 , d1;

34 Variable G0, G1;

35

36 // partial first interval (p0 ,depth_grid[j0+1])

37 d1 = depth_grid[j0+1];

38 G0 = getG(distance , p0);

39 G1 = getG(distance , d1);

40 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - p0);

41

42 // complete intervals (depth_grid[j],depth_grid[j+1])

43 for (int j=j0+1;j<j1;j++)

44 {

45 d0 = depth_grid[j];

46 d1 = depth_grid[j+1];

47 G0 = getG(distance , d0);

48 G1 = getG(distance , d1);

49 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - d0);

50 }

51

52 // partial last interval (depth_grid[j1],depth)

53 d0 = depth_grid[j1];

54 G0 = getG(distance , d0);

55 G1 = getG(distance , depth);

56 g_sum = g_sum + (G0 + G1) / 2e0 * (depth - d0);

57

58 return g_sum;

59 }

60

61

62 template <typename Variable > Variable gain_at_timeframe(const Variable *state ,

const Variable *control , const int N)

63 {

64 // NB. if using implicit euler then state is at the end of the time step

aka P^k+1

65 // previous state P^k is recomputed via the control

66

67 // gain for current timeframe

68 // G = sum DX (g_i^k + g_i+1^k) / 2

69 // with g_i^k = int_Pik^Pik+1 G(Xi ,p) dp

70

71 double DX = 1230 / N;

72 Variable gain = 0e0;

73 Variable Gi, Giplus , depth_start , depth_end;

74 double distance;

75

76 for (int i=-1; i<=N-2; i++)

77 {

78 // Gi = int_Pik^Pik+1 G(Xi ,p) dp

115

79 if (i==-1)

80 Gi = 0e0;

81 else

82 {

83 depth_end = state[i];

84 depth_start = depth_end - control[i];

85 distance = DX * (i+1);

86 Gi = G_depth_integral(depth_start ,depth_end ,distance);

87 }

88 // Gi+1 = int_Pi +1k^Pi+1k+1 G(Xi+1,p) dp

89 if (i==N-2)

90 Giplus = 0e0;

91 else

92 {

93 depth_end = state[i+1];

94 depth_start = depth_end - control[i+1];

95 distance = DX * (i+2);

96 Giplus = G_depth_integral(depth_start ,depth_end ,distance);

97 }

98 gain += DX / 2 * (Gi + Giplus);

99 }

100 return gain;

101 }

102

103

104 // ///

105

106 template <typename Variable >

107 inline void OCP:: finalCost(double initial_time , double final_time , const

Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable &final_cost)

108 {

109 // maximize final gain

110 final_cost = - final_state[stateSize () -1];

111 }

112

113 template <typename Variable >

114 inline void OCP:: dynamics(double time , const Variable *state , const Variable *

control , const Variable *parameters , const double *constants , Variable *

state_dynamics)

115 {

116 int N = (int) constants [0];

117

118 // digging progress: p_i^k+1 - p_i^k = u_i^k (not for extremities which are

fixed to 0)

119 for (int i=0; i<=N-2; i++)

120 state_dynamics[i] = control[i];

121

122 // gain at timeframe TIME STEP SHOULD BE EQUAL TO 1 (or gain will be scaled

wrongly)

123 // NB. if using implicit euler the state will correctly be the profile at the

end of the time step (NOT if using midpoint !)

124 double alpha = constants [2];

125 state_dynamics[N-1] = gain_at_timeframe(state , control , N) / pow(1e0+alpha ,

time -1e0);

126 }

116

127

128 template <typename Variable >

129 inline void OCP:: boundaryConditions(double initial_time , double final_time ,

const Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable *boundary_conditions)

130 {

131 int N = (int) constants [0];

132

133 // initial profile P(t0) = P0

134 double distance , P0;

135 double DX = 1230 / N;

136 int verbose = 1;

137 for (int i=0; i<=N-2; i++)

138 {

139 distance = DX * (i+1);

140 P0 = bcp:: interpolation1Dlinear(distance , distance_grid , p0_values , 0,

verbose);

141 boundary_conditions[i] = initial_state[i] - P0;

142 }

143

144 // gain

145 boundary_conditions[N-1] = initial_state[N-1];

146 boundary_conditions[N] = final_state[N-1];

147 }

148

149 template <typename Variable >

150 inline void OCP:: pathConstraints(double time , const Variable *state , const

Variable *control , const Variable *parameters , const double *constants ,

Variable *path_constraints)

151 {

152 int N = (int) constants [0];

153 double DX = 1230 / N;

154 double kappa = 1e0; // max slope (+++ use table interpolation here)

155

156 // N profile constraints according to space discretization

157 // at time t_k for 0=1..N-1 (p_i +1^k+1 - p_i^k+1)/DX/kappa = s_i^k with p_0

= p_N = 0 at extremities

158 // IMPORTANT: note that constraint involves 'next' state p^k+1 since p^0 is

fixed by bounday conditions

159 // last call of pathcond occurs at penultimate time t_T -1, so constraint will

be properly enforced for last state p^T

160

161 // recompute next state at end of time step

162 Variable next_state[N-1];

163 for (int i=0; i<N-1; i++)

164 next_state[i] = state[i] + control[i];

165

166 // slope constraints

167 path_constraints [0] = (next_state [0] - 0e0) / DX / kappa;

168 path_constraints[N-1] = (0e0 - next_state[N-2]) / DX / kappa;

169 for (int i=1; i<=N-2; i++)

170 path_constraints[i] = (next_state[i] - next_state[i-1]) / DX / kappa;

171

172 // capacity constraint for current timeframe TIME STEP SHOULD BE EQUAL TO 1 (

or Cmax will be scaled wrongly)

173 // E = sum DX u_i^k

117

174 Variable capacity = 0e0;

175 double Cmax_per_time_step = constants [1];

176 for (int i=0; i<=N-2; i++)

177 capacity += DX * control[i];

178 path_constraints[N] = Cmax_per_time_step - capacity;

179 }

180

181

182 void OCP:: preProcessing ()

183 {

184 // intialize interpolations for p0 and G

185 bcp:: readFileToVector("data/distance.data", distance_grid);

186 bcp:: readFileToVector("data/p0.data", p0_values);

187 bcp:: readFileToVector("data/depth.data", depth_grid);

188 bcp:: readCSVToMatrix("data/gain.csv",G_values ,';' ,0,1);

189

190 // +++ constants seems unaffected at this call -_- (OCP:: initialize ())

191 }

192

193

194 // ///

195 // explicit template instanciation for template functions , with double and

double_ad

196 // +++ could be in an included separate file ?

197 // but needs to be done for aux functions too ? APPARENTLY NOT !

198 template void OCP::finalCost <double >(double initial_time , double final_time ,

const double *initial_state , const double *final_state , const double *

parameters , const double *constants , double &final_cost);

199 template void OCP::dynamics <double >(double time , const double *state , const

double *control , const double *parameters , const double *constants , double *

state_dynamics);

200 template void OCP:: boundaryConditions <double >(double initial_time , double

final_time , const double *initial_state , const double *final_state , const

double *parameters , const double *constants , double *boundary_conditions);

201 template void OCP:: pathConstraints <double >(double time , const double *state ,

const double *control , const double *parameters , const double *constants ,

double *path_constraints);

202

203 template void OCP::finalCost <double_ad >(double initial_time , double final_time ,

const double_ad *initial_state , const double_ad *final_state , const

double_ad *parameters , const double *constants , double_ad &final_cost);

204 template void OCP::dynamics <double_ad >(double time , const double_ad *state ,

const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *state_dynamics);

205 template void OCP:: boundaryConditions <double_ad >(double initial_time , double

final_time , const double_ad *initial_state , const double_ad *final_state ,

const double_ad *parameters , const double *constants , double_ad *

boundary_conditions);

206 template void OCP:: pathConstraints <double_ad >(double time , const double_ad *

state , const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *path_constraints);

118

B.3 Local optimization (bocop) for 2D SOP - semicontinuous for-
mulation

B.3.1 Problem definition

1 # Definition file

2

3 # Dimensions

4 dim.state 172

5 dim.control 171

6 dim.boundaryconditions 173

7 dim.pathconstraints 401

8 dim.parameters 0

9 dim.constants 4

10

11 # Time interval

12 initial.time 0

13 final.time 2

14

15 # Constants

16 constant .0 20

17 constant .1 10

18 constant .2 1000000.0

19 constant .3 0.1

20

21 # Time discretisation

22 ode.discretization euler_implicit

23 time.steps 2

24

25 # Bounds for constraints

26 boundarycond .0. lowerbound 0

27 boundarycond .0. upperbound 0

28 ...

29 boundarycond .171. lowerbound 0

30 boundarycond .171. upperbound 0

31 boundarycond .172. lowerbound 1000.0

32 pathconstraint .0. lowerbound -1

33 pathconstraint .0. upperbound 1

34 ...

35 pathconstraint .399. lowerbound -1

36 pathconstraint .399. upperbound 1

37 pathconstraint .400. lowerbound 0

38

39 # Bounds for variables

40 state .0. lowerbound 0

41 state .0. upperbound 500

42 ...

43 state .170. upperbound 500

44 state .171. lowerbound 0

45 control .0. lowerbound 0

46 control .0. upperbound 500

47 ...

48 control .170. lowerbound 0

49 control .170. upperbound 500

119

50

51 # Initialization for discretized problem

52 state .0. init 10

53 ...

54 state .171. init 10

55 control .0. init 1

56 ...

57 control .170. init 1

58

59 # Names

60

61 # Ipopt

62 ipoptIntOption.print_level 5

63 ipoptIntOption.max_iter 5000

64 ipoptStrOption.mu_strategy monotone

65 ipoptNumOption.tol 1e-06

66

67 # Misc

68 ad.retape 1

1 # .def file generation for mine problem ('PDE formulation ') 3D CASE

2 import bocop

3

4 # parameters

5 filename = 'problem.def'

6 N = 20

7 M = 10

8 T = 2

9 steps = T

10 Cmax_per_time_unit = 1e6

11 objective_lowerbound = 1e3 #1e5

12 alpha = 0.1

13 snorm = 1

14 # ipopt

15 maxiter = 5000

16 tol = 1e-6

17

18 # values

19 dim_state = (N-1)*(M-1) + 1 # interior grid points for profile + gain

20 dim_control = (N-1)*(M-1) # digging effort for interior grid points

21 dim_boundaryconditions = (N-1)*(M-1) + 2 # initial interior profile +

initial gain + final gain

22 dim_pathconstraints = 2*M*N + 1 # X/Y slopes for points except farther

boundaries + capacity limit

23

24 # later use default options ?

25 with open(filename ,'w') as deffile:

26 deffile.write('# Definition file\n\n')

27

28 deffile.write('# Dimensions\n')

29 deffile.write('dim.state ' + str(dim_state) + '\n')

30 deffile.write('dim.control ' +str(dim_control) + '\n')

31 deffile.write('dim.boundaryconditions ' +str(dim_boundaryconditions) + '\n'

)

32 deffile.write('dim.pathconstraints ' +str(dim_pathconstraints) + '\n')

33 deffile.write('dim.parameters 0\n')

34 deffile.write('dim.constants 4\n')

120

35

36 deffile.write('\n# Time interval\n')

37 deffile.write('initial.time 0\n')

38 deffile.write('final.time ' +str(T)+'\n')

39

40 deffile.write('\n# Constants\n')

41 deffile.write('constant .0 ' +str(N)+'\n')

42 deffile.write('constant .1 ' +str(M)+'\n')

43 deffile.write('constant .2 ' +str(Cmax_per_time_unit * T / steps)+'\n')

44 deffile.write('constant .3 ' +str(alpha)+'\n')

45

46 deffile.write('\n# Time discretisation\n')

47 deffile.write('ode.discretization euler_implicit\n')

48 deffile.write('time.steps ' +str(steps)+'\n')

49

50 deffile.write('\n# Bounds for constraints\n')

51 # initial profile and gain

52 for i in range(dim_boundaryconditions -1):

53 deffile.write('boundarycond.'+str(i)+'.lowerbound 0\n')

54 deffile.write('boundarycond.'+str(i)+'.upperbound 0\n')

55 # final gain

56 deffile.write('boundarycond.'+str(dim_boundaryconditions -1)+'.lowerbound '+

str(objective_lowerbound)+'\n')

57 # profile slope constraints

58 for i in range(dim_pathconstraints -1):

59 deffile.write('pathconstraint.'+str(i)+'.lowerbound -'+str(snorm)+'\n')

60 deffile.write('pathconstraint.'+str(i)+'.upperbound '+str(snorm)+'\n')

61 # capacity constraint

62 deffile.write('pathconstraint.'+str(dim_pathconstraints -1)+'.lowerbound 0\n

')

63

64 deffile.write('\n# Bounds for variables\n')

65 # profile bounds

66 for i in range(dim_state -1):

67 deffile.write('state.'+str(i)+'.lowerbound 0\n')

68 deffile.write('state.'+str(i)+'.upperbound 500\n')

69 # gain

70 deffile.write('state.'+str(dim_state -1)+'.lowerbound 0\n')

71 # digging bounds

72 for i in range(dim_control):

73 deffile.write('control.'+str(i)+'.lowerbound 0\n')

74 deffile.write('control.'+str(i)+'.upperbound 500\n')

75

76 deffile.write('\n# Initialization for discretized problem\n')

77 for i in range(dim_state):

78 deffile.write('state.'+str(i)+'.init 10\n')

79 for i in range(dim_control):

80 deffile.write('control.'+str(i)+'.init 1\n')

81

82 deffile.write('\n# Names\n\n# Ipopt\n')

83 deffile.write('ipoptIntOption.print_level 5\n')

84 deffile.write('ipoptIntOption.max_iter '+str(maxiter)+'\n')

85 deffile.write('ipoptStrOption.mu_strategy monotone\n')

86 deffile.write('ipoptNumOption.tol '+str(tol)+'\n')

87

88 deffile.write('\n# Misc\n')

121

89 deffile.write('ad.retape 1\n')

B.3.2 Problem functions

1 // +++ DRAFT +++ This class implements the OCP functions

2 // It derives from the generic class bocop3OCPBase

3 // OCP functions are defined with templates since they will be called

4 // from both the NLP solver (double arguments) and AD tool (ad_double arguments

)

5 //#pragma once

6

7 #include <OCP.h>

8

9 // ///

10

11 // space domain is discretized on a X/Y grid with N x M intervals

12 // this means (N+1)(M+1) points on the grid including the boundaries

13 // since profile is equal to 0 on the boundary , only the (N-1)(M-1) interior

points are modeled as state variables

14 // this matrix is stored by columns ie 1D index is l = j * (N-1) + i

15

16 // constants: [N, M, Cmax_per_time_unit , alpha]

17

18 double X_length = 1230;

19 double Y_length = 400;

20 std:: vector <double > distanceX_grid , distanceY_grid , distanceZ_grid;

21 std::vector <std::vector <double > > p0_2D_values , G_blob;

22 std::vector <std::vector <std::vector <double > > > G_3D_values;

23

24 template <typename Variable > Variable getG(const double distanceX , const double

distanceY , const Variable depth)

25 {

26

27 // custom 3D linear interpolation: first two interp2D on depth Di and Di+1

then interpolate between these two

28 int verbose = 0;

29 /* int k = bcp:: locate(depth , distanceZ_grid , verbose);

30 double G0 = bcp:: interpolation2Dbilinear(distanceX , distanceY , distanceX_grid

, distanceY_grid , G_3D_values[k], verbose);

31 double G1 = bcp:: interpolation2Dbilinear(distanceX , distanceY , distanceX_grid

, distanceY_grid , G_3D_values[k+1], verbose);

32 Variable r = (depth - distanceZ_grid[k]) / (distanceZ_grid[k+1] -

distanceZ_grid[k]);

33 Variable G = (1e0 - r) * G0 + r * G1;

34

35 */

36 Variable r = pow(pow(distanceX - 600 ,2)+pow(distanceY - 200 ,2)+pow(depth -

350,2) ,0.5);

37 Variable G = -r+1000;

38

39 // rescale

40 return G/1e6 ;

41 }

42

122

43

44 template <typename Variable > Variable G_depth_integral(const Variable p0 , const

Variable depth , const double distanceX , const double distanceY)

45 {

46 // compute integral of g over [p0,depth] at x=distance and y=width +++ use

rectangle instead ? ('right '/implicit rectangle ?)

47 Variable g_sum = 0e0;

48

49 // limit indices for integral along depth

50 int verbose = 0;

51 int j0 = bcp:: locate(p0 , distanceZ_grid , verbose);

52 int j1 = bcp:: locate(depth , distanceZ_grid , verbose);

53 double d0 , d1;

54 Variable G0, G1;

55

56 // partial first interval (p0 ,distanceZ_grid[j0+1])

57 d1 = distanceZ_grid[j0+1];

58 G0 = getG(distanceX , distanceY , p0);

59 G1 = getG(distanceX , distanceY , d1);

60 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - p0);

61

62 // complete intervals (distanceZ_grid[j],distanceZ_grid[j+1])

63 for (int j=j0+1; j<j1; j++)

64 {

65 d0 = distanceZ_grid[j];

66 d1 = distanceZ_grid[j+1];

67 G0 = getG(distanceX , distanceY , d0);

68 G1 = getG(distanceX , distanceY , d1);

69 g_sum = g_sum + (G0 + G1) / 2e0 * (d1 - d0);

70 }

71

72 // partial last interval (distanceZ_grid[j1],depth)

73 d0 = distanceZ_grid[j1];

74 G0 = getG(distanceX , distanceY , d0);

75 G1 = getG(distanceX , distanceY , depth);

76 g_sum = g_sum + (G0 + G1) / 2e0 * (depth - d0);

77

78 return g_sum;

79 }

80

81

82 template <typename Variable > Variable G_depth_integral_indices(const Variable *

state , const Variable *control , const int i, const int j, const int N, const

int M)

83 {

84 // note: on boundary the depth profile is always 0 so the integral of G

along depth is 0 as well

85 Variable G = 0e0;

86

87 // full grid is (N+1)(M+1) points with i|j indices from 0 to N|M

88 // interior is (N-1)(M-1) points with i|j indices from 1 to N-1|M-1

89 // interior point

90 if ((i > 0) && (i < N) && (j > 0) && (j < M))

91 {

92 int l = (j-1) * (N-1) + (i-1);

93 Variable depth_end = state[l];

123

94 Variable depth_start = depth_end - control[l];

95 double distanceX = X_length / N * i;

96 double distanceY = Y_length / M * j;

97 G = G_depth_integral(depth_start , depth_end , distanceX , distanceY);

98 }

99

100 /* if ((i>-1) and (j>-1) and (i<N-2) and (j<M-2))

101 {

102 double DX = X_length / N;

103 double DY = Y_length / M;

104 int l = j * (N-1) + i;

105 Variable depth_end = state[l];

106 Variable depth_start = depth_end - control[l];

107 double distanceX = DX*(i+1);

108 double distanceY = DY*(j+1);

109 G = G_depth_integral(depth_start , depth_end , distanceX , distanceY);

110 }

111 */

112 return G;

113 }

114

115 template <typename Variable > Variable gain_at_timeframe(const Variable *state ,

const Variable *control , const int N, const int M)

116 {

117 // NB. if using implicit euler then state is at the end of the time step

aka P^k+1

118 // previous state P^k is recomputed via the control

119

120 // gain for current timeframe +++ CHECK THIS ONE

121 // G = DX DY sum (g_ij^k + g_i+1j^k + g_i+1j+1^k + g_ij +1^k) / 4

122 // with g_i^k = int_Pik^Pik+1 G(Xi ,p) dp

123 Variable gain = 0e0;

124

125 double DX = X_length / N;

126 double DY = Y_length / M;

127 Variable G00 , G01 , G10 , G11;

128 double distanceX , distanceY;

129

130 // full grid is (N+1)(M+1) points with i|j indices from 0 to N|M

131 // interior is (N-1)(M-1) points with i|j indices from 1 to N-1|M-1

132 // summation for gain is done for indices i=0..N-1 and j=0..M-1 since we

take [i,i+1]x[j,j+1] cells

133 //+++ use something more centered here , with loop on all interior points

exactly ?

134 //for (int i=-1; i<=N-2; i++)

135 // for (int j=-1; j<=M-2; j++)

136 for (int i=0; i<=N-1; i++)

137 for (int j=0; j<=M-1; j++)

138 {

139 // G00 ie g_i_j

140 G00 = G_depth_integral_indices(state , control , i, j, N, M);

141 // G01 ie g_i_j +1

142 G01 = G_depth_integral_indices(state , control , i, j+1, N, M);

143 // G10 ie g_i+1_j

144 G10 = G_depth_integral_indices(state , control , i+1, j, N, M);

145 // G11 ie g_i+1_j+1

124

146 G11 = G_depth_integral_indices(state , control , i+1, j+1, N, M);

147 // update gain with current cell integral

148 gain += DX * DY/ 4 * (G00 + G01 + G11 + G10);

149 }

150

151 return gain;

152 }

153

154 // get profile at grid point (i,j) ie X= i DX and Y= j DY

155 template <typename Variable > Variable getPij(const int i, const int j, std::

vector <Variable > state , const int N, const int M)

156 {

157 // profile is 0 on boundary

158 Variable Pij = 0e0;

159

160 // interior point: retrieve profile value from 1D vector

161 // NB. first state (index 0) is grid point (1,1) since boundary is omitted

!

162 // full grid is (N+1)(M+1) points with i|j indices from 0 to N|M

163 // interior is (N-1)(M-1) points with i|j indices from 1 to N-1|M-1

164 if ((i > 0) && (i < N) && (j > 0) && (j < M))

165 Pij = state[(j-1) * (N-1) + (i-1)];

166

167 return Pij;

168 }

169

170

171 template <typename Variable >

172 inline void OCP:: finalCost(double initial_time , double final_time , const

Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable &final_cost)

173 {

174 // maximize final gain

175 final_cost = - final_state[stateSize () -1];

176 }

177

178

179 template <typename Variable >

180 inline void OCP:: dynamics(double time , const Variable *state , const Variable *

control , const Variable *parameters , const double *constants , Variable *

state_dynamics)

181 {

182 int N = (int) constants [0];

183 int M = (int) constants [1];

184

185 // 2D (N-1)x(M-1) grid stored by columns ie 1D index is l = j * (N-1) + i

186 // digging progress: p_ij^k+1 - p_ij^k = u_ij^k (not for boundaries which

are fixed to 0)

187 for (int l=0; l<(N-1)*(M-1); l++)

188 state_dynamics[l] = control[l];

189

190 // gain at timeframe TIME STEP SHOULD BE EQUAL TO 1 (or gain will be scaled

wrongly)

191 // NB. if using implicit euler the state will correctly be the profile at the

end of the time step (NOT if using midpoint !)

192 double alpha = constants [3];

125

193 state_dynamics [(N-1)*(M-1)] = gain_at_timeframe(state , control , N, M) / pow(1

e0+alpha ,time -1e0);

194 }

195

196

197 template <typename Variable >

198 inline void OCP:: boundaryConditions(double initial_time , double final_time ,

const Variable *initial_state , const Variable *final_state , const Variable *

parameters , const double *constants , Variable *boundary_conditions)

199 {

200 int N = (int) constants [0];

201 int M = (int) constants [1];

202 double DX = X_length / N;

203 double DY = Y_length / M;

204

205 // initial profile P(t0) = P0

206 double distanceX , distanceY , P0;

207 int verbose = 1;

208 int l;

209 for (int i=0; i<=N-2; i++)

210 for(int j=0; j<=M-2; j++)

211 {

212 distanceX = DX * (i+1);

213 distanceY = DY * (j+1);

214 P0 = bcp:: interpolation2Dbilinear(distanceX , distanceY , distanceX_grid ,

distanceY_grid , p0_2D_values , verbose);

215 l = j*(N-1)+i;

216 boundary_conditions[l] = initial_state[l] - P0;

217 }

218

219 // gain CI and CF

220 boundary_conditions [(N-1)*(M-1)] = initial_state [(N-1)*(M-1)];

221 boundary_conditions [(N-1)*(M-1)+1] = final_state [(N-1)*(M-1)];

222 }

223

224

225 template <typename Variable >

226 inline void OCP:: pathConstraints(double time , const Variable *state , const

Variable *control , const Variable *parameters , const double *constants ,

Variable *path_constraints)

227 {

228 // profile constraint: normalized slopes at each point must be in [-1,1] (

NB. 2 slopes per point , so twice the constraints !)

229 double kappa = 1e0; // max slope (+++ use table interpolation here)

230

231 // compute the two X,Y slopes at each point Xi,Yj

232 int N = (int) constants [0];

233 int M = (int) constants [1];

234 double DX = X_length / N;

235 double DY = Y_length / M;

236

237 // recompute next state at end of time step

238 // Variable next_state [(N-1)*(M-1)];

239 std:: vector <Variable > next_state ((N-1)*(M-1));

240

241 // note: could also use two i,j loops here ...

126

242 for (int l=0; l<(N-1)*(M-1); l++)

243 next_state[l] = state[l] + control[l];

244

245 // slopes by forward difference ie (Pi+1,j - Pij) / Dx, same for j and Dy

246 // all points except boundaries i=N and j=M, ie i=0..N-1 x j=0..M-1

247 // total 2MN slopes constraints (some of which are trivial since P=0 on the

i=0,j=0 boundaries , but simpler this way)

248 int k = 0;

249 for (int i=0; i<=N-1; i++)

250 for (int j=0; j<=M-1; j++)

251 {

252 // X slope

253 path_constraints[k++] = (getPij(i+1, j ,next_state , N, M) - getPij(

i, j,next_state , N, M)) / DX / kappa;

254 // Y slope

255 path_constraints[k++] = (getPij(i, j+1 ,next_state , N, M) - getPij(

i, j,next_state , N, M)) / DY / kappa;

256 }

257

258 // capacity constraint for current timeframe TIME STEP SHOULD BE EQUAL TO 1

(or Cmax will be scaled wrongly)

259 // E = sum DX DY u_ij^k

260 Variable capacity = 0e0;

261 double Cmax_per_time_step = constants [2];

262 for (int l=0; l<(N-1)*(M-1); l++)

263 capacity += DX * DY * control[l];

264 path_constraints [2*M*N] = Cmax_per_time_step - capacity;

265

266 }

267

268 void OCP:: preProcessing ()

269 {

270 // NB. constants are not available here -_-

271

272 // P0 is now 2D X,Y

273 std::cout << "read distanceX" << std::endl;

274 bcp:: readFileToVector("data/distanceX.data", distanceX_grid);

275 std::cout << "read distanceY" << std::endl;

276 bcp:: readFileToVector("data/distanceY.data", distanceY_grid);

277 std::cout << "read p0 2D" << std::endl;

278 bcp:: readCSVToMatrix("data/p0_2D.csv",p0_2D_values ,';' ,0,1);

279

280 // G is now 3D Z,X,Y

281 std::cout << "read distanceZ" << std::endl;

282 bcp:: readFileToVector("data/distanceZ.data", distanceZ_grid);

283

284

285 std::cout << "read gain 3D" << std::endl;

286 bcp:: readCSVToMatrix("data/gain_3D.csv",G_blob ,';' ,0,1);

287 // reshape G in 3D

288 G_3D_values.resize(distanceZ_grid.size());

289 for (int k = 0; k<distanceZ_grid.size(); k++)

290 {

291 G_3D_values[k]. resize(distanceX_grid.size());

292 for (int i = 0; i < distanceX_grid.size(); i++)

293 {

127

294 G_3D_values[k][i]. resize(distanceY_grid.size());

295 for (int j=0; j < distanceY_grid.size(); j++)

296 G_3D_values[k][i][j] = G_blob[k*distanceX_grid.size() + i][j];

297 }

298 }

299 std::cout << "Gain 3D is " << G_3D_values.size() << " x " << G_3D_values

[0]. size() << " x " << G_3D_values [0][0]. size() << std::endl;

300

301

302 }

303

304 // ///

305 // explicit template instanciation for template functions , with double and

double_ad

306 // +++ could be in an included separate file ?

307 // but needs to be done for aux functions too ? APPARENTLY NOT !

308 template void OCP::finalCost <double >(double initial_time , double final_time ,

const double *initial_state , const double *final_state , const double *

parameters , const double *constants , double &final_cost);

309 template void OCP::dynamics <double >(double time , const double *state , const

double *control , const double *parameters , const double *constants , double *

state_dynamics);

310 template void OCP:: boundaryConditions <double >(double initial_time , double

final_time , const double *initial_state , const double *final_state , const

double *parameters , const double *constants , double *boundary_conditions);

311 template void OCP:: pathConstraints <double >(double time , const double *state ,

const double *control , const double *parameters , const double *constants ,

double *path_constraints);

312

313 template void OCP::finalCost <double_ad >(double initial_time , double final_time ,

const double_ad *initial_state , const double_ad *final_state , const

double_ad *parameters , const double *constants , double_ad &final_cost);

314 template void OCP::dynamics <double_ad >(double time , const double_ad *state ,

const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *state_dynamics);

315 template void OCP:: boundaryConditions <double_ad >(double initial_time , double

final_time , const double_ad *initial_state , const double_ad *final_state ,

const double_ad *parameters , const double *constants , double_ad *

boundary_conditions);

316 template void OCP:: pathConstraints <double_ad >(double time , const double_ad *

state , const double_ad *control , const double_ad *parameters , const double *

constants , double_ad *path_constraints);

128

	Introduction
	General background in optimal control
	Pontryagin Maximum Principle and indirect shooting methods
	Direct transcription approach
	Hamilton-Jaccobi-Bellman equation
	Bocop toolbox

	Dissertation Outline

	I Mining context and the Open Pit problem
	The Open Pit problem
	Integer programming formulation
	Continuous framework

	Analysis of optimality conditions for 2D and 3D Final Open Pit
	Introduction
	The 2D open pit problem
	Statement of the problem
	Standing Assumptions
	Basics on state constrained optimal control
	Optimality conditions for the 2D open pit problem

	The 3D open pit problem
	Statement of the problem
	Standing Assumptions
	Optimality conditions

	Future work and final remarks

	Numerical study of 2D and 3D Final and Sequential Open Pit
	Introduction
	Problem statement
	Continuous formulation
	Semi continuous formulation for SOP

	Analysis and optimality conditions for FOP
	Applying Pontryagin's Maximum Principle
	Inactive case: bang/singular control
	Active state constraint case
	Control structure summary

	Numerical simulations
	Numerical methods
	Final open pit (2D): global and local optimization
	Sequential Open Pit (2D and 3D): local optimization

	Conclusions
	Implementation details for the semi-continuous approach
	Additional examples for the final open pit - continuous formulation
	FOP with infinite capacity and constant slope
	FOP with infinite capacity and variable slope

	II Problems inspired by Covid-19 peak reduction
	Compartmental models
	SIR model
	A new compartmental model including vaccines

	A Mayer formulation for peak minimization problems
	Introduction
	Problem and hypotheses
	Formulations with constraint
	Formulation without state constraints
	Numerical illustrations
	A particular class of dynamics
	Application to an epidemiological model

	Discussion and conclusions

	A feedback strategy for peak minimization in SIR model
	Introduction
	Definitions and problem statement
	The NSN feedback
	Optimal strategy
	Numerical illustrations and discussion

	Conclusion and perspectives
	Bibliography

	III Annexes
	Codes global optimization (BocopHJB)
	1D FOP - continuous formulation
	Problem definition
	Objective
	Dynamics
	Constraints
	Other functions

	Codes local optimization (Bocop)
	1D SOP - continuous formulation
	Problem definition
	Problem functions

	1D SOP - semicontinuous formulation
	Problem definition
	Problem functions

	Local optimization (bocop) for 2D SOP - semicontinuous formulation
	Problem definition
	Problem functions

