

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA

ROL DE LAS AGUAS SUBTERRÁNEAS EN LOS LAGOS NORPATAGÓNICOS: CASO DEL LAGO VILLARRICA

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN GEOLOGÍA

AGUSTÍN VALENZUELA MOURE

PROFESORA GUÍA: LINDA DANIELE MIEMBROS DE LA COMISIÓN: BENOÎT VIGUIER PATRICIA LARREA MARQUEZ

> SANTIAGO DE CHILE 2022

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN GEOLOGÍA POR: Agustín Valenzuela Moure FECHA: 24/08/2022 PROFESOR GUÍA: Linda Daniele

ROL DE LAS AGUAS SUBTERRÁNEAS EN LOS LAGOS NORPATAGÓNICOS: CASO DEL LAGO VILLARRICA

La relación entre el agua subterránea y los lagos es un tema raramente estudiado en Chile y, generalmente, la información relevante se encuentra dispersa entre las distintas especialidades que estudian fenómenos hídricos asociados a los lagos. No obstante, para el manejo adecuado de estas aguas y sus riberas es necesario contar con la perspectiva hidrogeológica que otorga la dinámica existente entre el lago y las aguas subterráneas. Lo que, junto a otros aspectos, otorga una visión global del funcionamiento real de los lagos y su relación con las aguas que los alimentan.

En esta tesis de Magíster, mediante el análisis de los datos geológicos, hidrológicos e hidrogeológicos, se desarrolla un nuevo modelo conceptual hidrogeológico válido para los lagos norpatagónicos de Chile. El Lago Villarrica se analiza en detalle para validar este especial ambiente hidrogeológico, donde las relaciones entre la geología y el agua han revelado ser más complejas de lo que se ha considerado tradicionalmente.

Los resultados muestran que hay dos facies hidrogeológicas características en el área estudiada, una glacial y otra volcánica, que están en contacto con el Lago Villarrica y con las aguas superficiales en general. En ambas se tienen sistemas acuíferos multicapa, y los acuíferos individuales pueden ser confinados, semiconfinados y con bordes de recarga. Este novedoso modelo conceptual es posible extrapolarlo a otros Lagos Norpatagónicos, ya que varios de ellos tienen características similares al Lago Villarrica, como son la cercanía a estratovolcanes y un origen glacial.

Tabla de contenido

1 Introducción	1
1.1 Hipótesis	4
1.2 Objetivo	4
2 Marco Hidrogeológico	5
2.1 Contexto geológico	5
2.1.1 Estratigrafía en el área de estudio	6
2.1.2 Metodología	7
2.1.3 Recopilación y análisis de datos existentes con énfasis en expedientes de solicitud de derechos de agua subterránea	los 7
2.2 Reanálisis de columnas estratigráficas y ensayos de bombeos	8
2.3 Herramientas y cálculos hidrogeoquímicos e isotópicos	12
3 Resultados	13
3.1 Reinterpretación estratigráfica	13
3.2 Estimación de las propiedades hidráulicas	14
4 Discusión	16
4.1 Modelo conceptual hidrogeológico	16
4.2 Rol del Volcán Villarrica y Sistemas de Falla	19
4.3 Efectos de las glaciaciones en el entorno del Lago Villarrica	22
4.4 Remociones en masa subacuáticas y acuíferos confinados	23
4.5 Información química e isotópica	25
5 Conclusiones	34
6 Bibliografía	37
Anexos	40
Anexo A: Análisis de la información estratigráfica	41
Anexo B: Análisis de las pruebas de bombeo realizadas	70
Anexo B.1. Acuíferos confinados	71
Anexo B.2. Acuíferos semiconfinados	76
Anexo B.3. Influencia de bordes de recarga	83
Anexo C: Ubicaciones de los pozos e información hidroquímica e isotópi	ica
utilizada1	02

Índice de Figuras

Figura 11. Relación entre las facies glacial y volcánica con la geotermal, con la temperatura aproximada que alcanzan los fluidos (Nitschke et al., 2018). Hay dos dominios, ATF y LOFS. La figura se basa en perfiles de resistividad eléctrica de Pávez et al. (2020).

Figura 12. Ubicación de los pozos y norias en los depósitos morrénicos y volcánicos. Se indican los cordones morrénicos, tomados de Bravo (2008) y Moernaut et al. (2017).

Figura 13. Perfil que esquematiza la relación entre las capas del fondo del lago y muestra las zonas de escape de fluidos. Las flechas sólidas indican los flujos de agua subterránea hacia el lago y las líneas punteadas indican los flujos que podrían ocurrir en los sedimentos glaciales bajo y alrededor del lago a través de las zonas donde haya granos de mayor grosor. En el mapa, se muestran las zonas de escape de fluidos identificadas en Moernaut et al. (2017).

Figura 15. Gráfico Rb vs Sr, con datos de MMA-UChile para las muestras de agua subterránea y superficial, de Sánchez et al. (2013), Wrage et al. (2017) y Held et al. (2018) para aguas termales, y datos de química de roca de Jara et al. (2011) y Held et al. (2018). Se hace la distinción entre las aguas termales que se encuentran dentro del área de estudio (rombos completos) y las que se encuentran fuera de ésta (rombos vacíos)....28

Figura 16. Diagrama Piper marcando la tendencia desde las aguas meteóricas a las geotermales. Se diferencia entre las muestras superficiales (triángulos anaranjados),

Figura 17. Área experimental de sulfatos derivados de la oxidación de sulfuros, de Van Stempvoort y Krouse (1994), con las muestras termales de Held et al. (2015). Los colores verde y azul señalan muestras pertenecientes a LOFS o ATF, respectivamente.

Figura 19. Cálculo del gradiente altitudinal isotópico con datos de agua de lluvia de DGA (2016) (rombos azules). Los triángulos anaranjados corresponden a muestras de agua superficial y los círculos morados a muestras subterránea de MMA-UChile (2019) y DGA (2016). Las cruces rojas corresponden a muestras termales de Sánchez et al. (2013) y Held et al. (2017). Se indican muestras que han sufrido reacciones químicas que impiden el cálculo de la altura de recarga.

Índice de Tablas

 Tabla 2. Rangos de conductividad hidráulica para distintos depósitos volcánicos.

 Modificado de Selles (2014).

 20

 Tabla 7. Ubicación de los pozos en el área de estudio......102

 Tabla 8. Ubicación de los pozos del muestreo de hidroquímica de 2018. Tomado

Tabla 9. Ubicación de los pozos del muestreo de hidroquímica de 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......104

Tabla 10. Parámetros medidos in situ para las muestras de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......105

Tabla 11. Aniones mayores para las muestras de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......106

Tabla 13. Cationes trazas para las muestras de enero 2018. Tabla 1 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......108

Tabla 14. Cationes trazas para las muestras de enero 2018. Tabla 2 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......109

Tabla 15. Cationes trazas para las muestras de enero 2018. Tabla 3 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......110 Tabla 16. . Parámetros medidos in situ para las muestras de enero 2019. Tomado

 Tabla 17. Aniones mayores para las muestras de enero 2019. Tomado de

 Ministerio del Medio Ambiente & Universidad de Chile (2019)......111

Tabla 19. Cationes trazas para las muestras de enero 2019. Tabla 1 de 3. Tomadode Ministerio del Medio Ambiente & Universidad de Chile (2019)......111

Tabla 20. Cationes trazas para las muestras de enero 2019. Tabla 2 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......112

Tabla 21. Cationes trazas para las muestras de enero 2019. Tabla 3 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......112 Tabla 22. Análisis de isótopos para las muestras de agua de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......113 Tabla 23. Resultados del análisis isotópico para las muestras de agua de enero 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019)......114 Tabla 24. Ubicación y datos isotópicos de muestras de agua de lluvia, agua subterránea, agua superficial y aguas termales......114 Tabla 25. Información química e isotópica en muestras de Held et al. (2015). .117 Tabla 28. Datos in situ, SiO2 y de aniones de las muestras de agua superficial y subterránea......123 Tabla 29. Datos de cationes y trazas de muestras de agua superficial y subterránea......125 Tabla 30. Datos Rb y Sr de muestras de aguas termales, superficiales y subterráneas......127

1 Introducción

La zona de los lagos norpatagónicos de Chile es un importante punto de turismo en el país, la cual se asocia con la presencia de volcanes, el Sistema de Falla Liquiñe-Ofqui (LOFS) y las Fallas Transversales Andinas (ATF) (Figura 1). Es un lugar en el que se han generado numerosas erupciones volcánicas a lo largo de la historia y la geología local ha sido retrabajada durante las glaciaciones Santa María y Llanquihue, dando origen a los distintos lagos. Además, aunque la distribución de los lagos sigue un lineamiento N-S, como LOFS, la morfología de los lagos parece seguir una tendencia O-E o NO-SE, similar a los lineamientos de las ATF.

El funcionamiento hidrogeológico de los lagos no es un tema muy estudiado en el país, pero no deja de ser altamente relevante hoy en día, especialmente dentro de un contexto de cambio climático y otros eventos que pueden afectar tanto la calidad como la cantidad de las aguas (por ejemplo, el descenso del Lago Caburgua), y por lo tanto, la ecología de estos ambientes.

Es importante destacar que toda la zona de los lagos norpatagónicos representa un atractivo turístico internacional, lo que sustenta una parte de la economía regional. Mediante este trabajo se pretende sentar las bases para el estudio de la hidrogeología de los distintos lagos que se encuentran en la Patagonia Norte, proponiendo un modelo conceptual que será posible aplicar a los lagos norpatagónicos que cuenten con una situación similar al Lago Villarrica.

Figura 1. Cuencas de los Lagos Norpatagónicos del sur de Chile. LOFS, ATF y volcanes tomados de Stanton-Yonge et al. (2016). Mapa en EPSG:32718.

En los últimos años, se han manifestado los problemas relacionados con la cantidad (p.ej. Caburgua) y calidad (p.ej. Villarrica). Revelando el escaso conocimiento existente respecto de diferentes aspectos hidrológicos e hidrogeológicos relevantes para comprender el real funcionamiento de estos lagos.

En este escenario, se debe destacar la situación del Lago Villarrica, que ha sufrido episodios de proliferaciones algales, los cuales han sido descritos desde 1991, los que han llevado al Ministerio del Medio Ambiente ("MMA") a desarrollar un plan de descontaminación (Res-Ex. 1066 del 16/11/2018 del MMA).

Los trabajos de investigación realizados han demostrado que el exceso de nutrientes es la causa general, pero aún se desconocen en detalle los mecanismos y las fuentes que dan origen al problema. Si bien se han determinado las posibles fuentes de nutrientes, como los fertilizantes, fosas sépticas y pisciculturas, entre otros (Ministerio del Medio Ambiente & Universidad de Chile, 2019), se ha revelado que muy poco se conoce de los aportes subterráneos y del funcionamiento real del lago. Lo que, según lo que aquí

se plantea, es necesario para una gestión eficiente y una respuesta adecuada a los problemas detectados.

Figura 2. Área de estudio y subcuencas asociadas, definidas por la DGA.

Un modelo conceptual acabado permite entender la complejidad de estos medios y abordar de forma eficiente las posibles formas de resolución de problemas que se planteen. Por ejemplo, estudios recientes en el Lago Villarrica han revelado la complejidad de las posibles rutas de ingreso y transporte de nutrientes que originan los problemas de calidad detectados en sus aguas (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019).

En este trabajo, el cual usa de base estudios previos con trabajo en terreno en el lago y sus cercanías (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019) y a una exhaustiva revisión de la bibliografía científica sobre la zona, se establece un modelo conceptual hidrogeológico que explica el funcionamiento y la dinámica del agua superficial y subterránea que tributa al Lago Villarrica.

La evaluación de la conexión entre el lago y el agua subterránea le añade complejidad al análisis del sistema y permite esclarecer que los mecanismos y transporte de iones y sustancias al lago es más intrincado de lo que tradicionalmente se ha comprendido. Esta complejidad, en el contexto geológico y estructural de la región que hospeda a este lago puede trasladarse a otros que están experimentando problemas similares.

1.1 Hipótesis

Los lagos norpatagónicos son ecosistemas cuyo funcionamiento no se conocen en detalle ya que tradicionalmente han sido estudiados desde la perspectiva de los recursos hídricos superficiales. Esta visión ha dejado de lado el análisis del rol de las aguas subterráneas en el funcionamiento de estas masas de agua, sesgando el modelo conceptual y la interpretación de todos los procesos a los componentes superficiales. La hipótesis a validar en esta Tesis de Magíster es que las aguas subterráneas tienen un rol relevante en el funcionamiento de los lagos que contribuye no sólo al balance de agua y niveles que se observan, sino que es también un potencial mecanismo de transporte de iones y sustancias que pueden afectar la calidad de estas aguas.

Para validar esta hipótesis se analizará en detalle el Lago Villarrica, que ha sido objeto de estudios recientes, lo que permite elaborar una evaluación acabada del rol del agua subterránea en el funcionamiento del lago, enfocándose principalmente en datos químicos, isotópicos, pruebas de bombeo y bibliografía seleccionada.

1.2 Objetivo

El objetivo principal de este trabajo, es establecer la relación entre las aguas subterráneas y el Lago Villarrica para determinar su funcionamiento hidrodinámico real. El análisis, de toda la información y los resultados obtenidos, serán plasmados en un modelo conceptual que tendrá en cuenta las características hidrológicas e hidrogeológicas de la cuenca en la que se emplaza el lago.

Los objetivos específicos son los siguientes:

- 1. Identificar, actualizar y caracterizar las propiedades hidrogeológicas de las litologías que se encuentran en el entorno del Lago Villarrica.
- 2. Distinguir los principales factores que controlan el quimismo de las aguas superficiales y subterráneas para descifrar una eventual conexión.
- 3. Determinar la presencia de flujos subterráneos hacia el Lago Villarrica que den cuenta de una recarga por esta vía.
- 4. Determinar el impacto de los cambios propuestos en la gestión y resolución de problemas de cantidad y calidad de los lagos norpatagónicos.

2 Marco Hidrogeológico

La zona de estudio (Figura 3) se sitúa entre los 39,1 – 39,4°S aproximadamente, abarcando la cuenca del Lago Villarrica y sus tributarios; los ríos Trancura, Liucura y Turbio, la cual tiene un área de 2934 km² (Alvarez-Garreton et al., 2018).

Figura 3. Mapa geológico del área de estudio.

Tiene la característica que desde el Océano Pacífico, flujos atmosféricos húmedos generan precipitación sobre el relieve andino (Garreaud et al., 2013), alcanzando los 2.787 mm anuales en promedio (Alvarez-Garreton et al., 2018). En la cuenca, hay una temperatura promedio anual de 8,8 °C, con un rango de 0 a 8 °C durante invierno, a un máximo de 22 °C durante el verano.

Hasta la fecha, los derechos consuntivos superficiales alcanzan los 13.050,58 L/s y los subterráneos 2.246,63 L/s.

2.1 Contexto geológico

La cuenca del Lago Villarrica presenta unidades geológicas que marcan la evolución del margen sudamericano desde el Cretácico inferior hasta el Holoceno.

La estructura de primer orden en el área de estudio corresponde al Sistema de Falla Liquiñe-Ofqui (LOFS) (Figura 1). Se trata de un sistema de falla de rumbo dextral, que abarca más de 1000 km, de 39° – 46°S, con una orientación NNE-SSO y se encuentra paralelo al arco volcánico actual (Moreno & Gibbons, 2007). Otra estructura a este nivel corresponde a las Fallas Tranversales Andinas (ATF).

Otro rasgo importante en el área, es el Volcán Villarrica que corresponde a un estratovolcán activo y tiene sus orígenes en el Pleistoceno Medio a Superior. El principal

edificio corresponde a material Pleistoceno-Holoceno y cubre una superficie de 400 km² (Clavero & Moreno, 1994).

2.1.1 Estratigrafía en el área de estudio

Estructuras relevantes:

- 1. Complejos metamórficos: sólo se encuentran rocas del Complejo Metamórfico Bahía Mansa, correspondiente a esquistos pelíticos y cuarzo-feldespáticos, esquistos máficos y cuerpos ultramáficos. Estas rocas se formaron por acreción basal en un sistema acreción-subducción del Devónico al Triásico.
- 2. Granitos y complejos intrusivos: corresponden a granitos, dioritas, y granodioritas, desarrollados desde el Cretácico Inferior al Mioceno.
- Secuencias volcánicas y volcanosedimentarias: este tipo de secuencias se desarrollan desde el Oligoceno hasta la actualidad. Representan distintos eventos volcánicos, ocasionalmente en ambientes lacustres y glaciales, y se componen de lavas, rocas volcánicas, depósitos piroclásticos, tobas, y depósitos laháricos.
- 4. Sedimentos glaciales y lacustres: marcan los límites de los glaciares durante las Glaciaciones Llanquihue y Santa María, y los procesos lacustres posteriores, a medida que los glaciares van formando lagos. Incluyen sedimentos glaciofluviales, morrénicos y glaciolacustres. Ocurren desde el Pleistoceno Superior a la actualidad.

Los principales acuíferos en el área de estudio se encuentran en depósitos volcánicos, volcanosedimentarios y, especialmente, los morrénicos.

En base a la estratigrafía, se han definido Unidades Hidrogeológicas para la Región de la Araucanía de acuerdo con sus propiedades hidráulicas estimadas (Dirección General de Aguas, 2016). No hay otros estudios que definan acuíferos específicos en el área de estudio, y se asume erróneamente que la unidad hidrogeológica con mejores propiedades hidráulicas es el acuífero principal en la zona.

2.1.2 Metodología

Las metodologías empleadas para la realización de esta tesis de grado contemplan:

- 1. Recopilación y análisis de datos existentes, con especial énfasis en la información contenida en los expedientes de solicitud de derechos de agua subterránea.
- 2. Reanálisis de columnas estratigráficas y ensayos de bombeos.
- 3. Herramientas y cálculos hidrogeoquímicos e isotópicos.

2.1.3 Recopilación y análisis de datos existentes con énfasis en los expedientes de solicitud de derechos de agua subterránea

Para el correcto entendimiento de la distribución y geometría de las aguas subterráneas en el entorno del Lago Villarrica, es necesario primero conocer la estratigrafía del área de estudio. Para así poder estimar o determinar cuál será el comportamiento hidráulico de los estratos, si son potenciales acuíferos, acuicludos o acuitardos.

En el área de estudio, existen numerosos pozos privados, los cuales necesitan la correspondiente autorización de la Dirección General de Aguas ("DGA") para poder funcionar y extraer agua. Para ello, se requiere hacer una solicitud de derechos de aprovechamiento de agua subterránea, la cual requiere de la construcción de un pozo, realizar una prueba de bombeo y enviar la información a la DGA. Conociendo la estratigrafía es posible correlacionar los estratos con la información obtenida en las pruebas de bombeo. Así se pueden estimar las propiedades hidráulicas, lo que va a determinar dónde se encuentran y cuáles son las características hidráulicas de los distintos acuíferos, acuicludos y acuitardos que se encuentran en la zona.

En este sentido, los resultados de estas pruebas indican que hay una gran heterogeneidad de las propiedades hidráulicas en la zona, lo que se puede ver en diferentes tipos de acuíferos y bordes de recarga.

Figura 4. Esquema que representa la forma de trabajo, desde que se analizan los datos estratigráficos hasta generar la geología por cada pozo.

2.2 Reanálisis de columnas estratigráficas y ensayos de bombeos

Para estimar la estratigrafía en detalle y las propiedades hidráulicas se consideraron los expedientes de las solicitudes de derechos de aprovechamiento de agua subterránea de la DGA, respecto de pozos que se encuentran o encontraban dentro de los límites del área de estudio. En el presente trabajo, cualquier referencia a éstos se hace a través del número de expediente correspondiente a la Región de La Araucanía, Provincia de Cautín. El código completo de los expedientes es ND-0902-X, donde X es el número del pozo al que se hará referencia. Los expedientes son accesibles desde el Registro Público de Solicitudes de la DGA. Se estudió una selección de expedientes basado en los pozos analizados por la DGA (2016) y de algunos pozos muy cercanos al lago, ya que hasta la fecha hay 2.420 solicitudes en toda la Provincia de Cautín.

En las solicitudes de derechos de aprovechamiento de agua subterránea que se envían a la DGA, usualmente se indica la estratigrafía que atraviesa el pozo durante su perforación. Sin embargo, no hay un estándar establecido sobre cómo definir la estratigrafía, y la perforación es realizada por distintas empresas privadas de ingeniería que no necesariamente dominan una terminología propiamente geológica.

La forma de definir los estratos es tomando muestras, generalmente cada un metro de perforación, y se presume una clasificación visual. No se han visto resultados de análisis granulométricos en los informes de las empresas que realizan la perforación adjuntos en los expedientes. En algunos casos, las empresas ingenieriles definen los límites de los acuíferos descubiertos, en otros se indica a qué profundidad hay una alta humedad o presencia de agua en los sedimentos o rocas perforados, pero generalmente

esta información se deduce a partir de la posición de las cribas. En general, no hay mención explícita de la presencia y posición de acuíferos y acuitardos.

Es por esto que se hace difícil establecer la estratigrafía de detalle de la zona desde una perspectiva hidrogeológica, pero es posible definir ciertos rangos granulométricos, que pueden indicar de manera más bien cualitativa los estratos que podrían corresponder a acuíferos. Por lo que, se ha definido una pauta para agrupar granulometrías con características hidráulicas comunes (Figura 5).

Figura 5. Granulometría de los depósitos y conductividades hidráulicas.

Esta pauta consta de sedimentos no consolidados, como arcilla, limo, arena, grava y bloques, y lava o grandes rocas, considerándose al limo y arcilla con muy baja permeabilidad, y a las arenas, grava y bloques con un grado de permeabilidad ascendente de acuerdo con el tamaño de grano. Se asume que el tamaño de grano más pequeño es el que indica la permeabilidad de cada estrato definido. En el caso de lavas y grandes rocas, puede ser considerado como no permeable o como permeable, dependiendo de su fracturamiento.

En algunos pozos se indica si la lava o roca está fracturada, la posición de las cribas permite inferir esto o se indica la presencia de agua en la roca en el informe. Se indica la conductividad hidráulica esperada para cada tipo de sedimentos, basada en los resultados de las pruebas de bombeo del área de estudio y en la información sobre hidrogeología de volcanes andesíticos y sedimentos glaciales y morrénicos.

Figura 6. Esquema que representa la forma de trabajo, desde que se analizan los datos de pruebas de bombeo hasta determinar el tipo de acuífero que se puede encontrar en el área de estudio, en base a la forma de la curva de descenso (d) por tiempo (t) (Kruseman et al., 1970).

Sólo se han realizado pruebas de un pozo, es decir, sin pozos de observación, por lo que es posible hacer una estimación de la transmisividad de los distintos acuíferos, pero no de su almacenamiento y deben entenderse más como una aproximación semicuantitativa que como un valor que describe exactamente el comportamiento de los acuíferos. Todo esto sin mencionar que los depósitos aquí descritos probablemente presenten grandes variaciones verticales y horizontales en su comportamiento hidráulico.

Otro punto importante a mencionar, es que como los pozos se construyen con el único fin extractivo del agua, no siempre se instalan las cribas para abarcar completamente el espesor de un acuífero. A veces, se extrae parcialmente de este, o instalando cribas en distintos tramos separados del pozo, se extrae agua de distintos acuíferos al mismo tiempo.

Se hizo una selección de aquellos pozos que contaban con información de mejor calidad, considerando estratigrafía reportada, ubicación de cribas y la realización de la prueba de bombeo, y mediante el método de Jacob-Cooper o de Hantush se calcula la transmisividad, dependiendo de si se tiene un acuífero confinado o semi-confinado. En base a este valor, se hace una estimación de la conductividad hidráulica tomando en cuenta el espesor del acuífero considerado (Tabla 1).

Sobre este punto hay que entender que, debido a la calidad de la información aún no se han establecido exactamente los espesores de los distintos acuíferos, y corresponden a una estimación en base a la información estratigráfica y a la posición de las cribas¹.

¹ Para revisar todas las pruebas de bombeo analizadas ver Anexo B.

Tabla 1. Pozos seleccionados para el estudio de las propiedades hidráulicas. La conductividad hidráulica se estimó a partir de los espesores que podrían tener los acuíferos en base a la información presente en los expedientes de solicitud de derechos de agua subterránea de la DGA.

Pozo	Facies	$\begin{array}{c} {\rm Transmisividad} \\ {\rm (m^2/s)} \end{array}$	Conductividad hidráulica estimada (m/s)	
1644	Glacial	$5, 47 \cdot 10^{-3}$	$4,98 \cdot 10^{-4}$	
4134	Glacial	$2,50 \cdot 10^{-3}$	$4, 18 \cdot 10^{-4}$	
4354	Glacial	$5,32 \cdot 10^{-4}$	$1,04 \cdot 10^{-5}$	
4485	Glacial	$8,69 \cdot 10^{-3}$	$5, 43 \cdot 10^{-4}$	
4714	Glacial	$1,88 \cdot 10^{-3}$	$5,79 \cdot 10^{-4}$	
4787	Glacial	$5, 17 \cdot 10^{-3}$	$7,96 \cdot 10^{-4}$	
4974	Glacial	$5,20 \cdot 10^{-4}$	$1,04 \cdot 10^{-4}$	
4976	Glacial	$5,09 \cdot 10^{-3}$	$7,85 \cdot 10^{-4}$	
9289	Glacial	$1,77 \cdot 10^{-4}$	$3,68 \cdot 10^{-6}$	
11000	Glacial	$6,08 \cdot 10^{-4}$	$1,78 \cdot 10^{-5}$	
11065	Glacial	$7,41 \cdot 10^{-4}$	$3,90 \cdot 10^{-5}$	
11408	Glacial	$1,90 \cdot 10^{-4}$	$1,90 \cdot 10^{-5}$	
11698	Glacial	$3, 66 \cdot 10^{-3}$	$3,04 \cdot 10^{-4}$	
12529	Glacial	$2,35 \cdot 10^{-3}$	$1, 12 \cdot 10^{-4}$	
12786	Glacial	$4,65 \cdot 10^{-3}$	$7,75 \cdot 10^{-4}$	
12965	Glacial	$7,03 \cdot 10^{-3}$	$3,90 \cdot 10^{-4}$	
13726	Glacial	$3, 15 \cdot 10^{-3}$	$1,20 \cdot 10^{-4}$	
13727	Glacial	$2, 47 \cdot 10^{-3}$	$2,74 \cdot 10^{-4}$	
1768	Volcánica	$3,75 \cdot 10^{-3}$	$2,50 \cdot 10^{-4}$	
3270	Volcánica	$4,50 \cdot 10^{-4}$	$3, 46 \cdot 10^{-5}$	
3324	Volcánica	$3,02 \cdot 10^{-4}$	$3, 37 \cdot 10^{-5}$	
4863	Volcánica	$3, 24 \cdot 10^{-2}$	$1,81 \cdot 10^{-3}$	
4915	Volcánica	$3,88 \cdot 10^{-3}$	$6, 46 \cdot 10^{-4}$	
8883	Volcánica	$1, 38 \cdot 10^{-3}$	$9, 17 \cdot 10^{-5}$	
9887	Volcánica	$1, 23 \cdot 10^{-3}$	$1,02 \cdot 10^{-4}$	
10270	Volcánica	$1,41 \cdot 10^{-4}$	$2,03 \cdot 10^{-5}$	
11431	Volcánica	$1,70 \cdot 10^{-4}$	$1, 31 \cdot 10^{-5}$	
13378	Volcánica	$8,07 \cdot 10^{-5}$	$4,48 \cdot 10^{-6}$	
13789	Volcánica	$2,26 \cdot 10^{-4}$	$7,52 \cdot 10^{-5}$	
13790	Volcánica	$6, 66 \cdot 10^{-4}$	$2, 22 \cdot 10^{-4}$	
	Promedio	$3, 32 \cdot 10^{-3}$	$3,03 \cdot 10^{-4}$	
	Promedio	$3,72 \cdot 10^{-3}$	$2,75 \cdot 10^{-4}$	
	Promedio Glacial	$3,05 \cdot 10^{-3}$	$3,22 \cdot 10^{-4}$	

Para establecer el comportamiento hidrogeológico de los sedimentos y rocas del área de estudio, se compararon los resultados de este trabajo con la hidrogeología en estratovolcanes, en sedimentos glaciales y en morrenas -que son el principal tipo de material geológico en la zona (Jara et al., 2011). Además, la relación que puede existir entre los acuíferos confinados y el Lago Villarrica.

Los datos obtenidos de los análisis químicos del terreno correspondiente a esta memoria, además de datos anteriores provistos por el MMA y DGA serán analizados comparativa y estadísticamente, con técnicas y procedimientos descritos en el Marco Teórico de esta memoria.

2.3 Herramientas y cálculos hidrogeoquímicos e isotópicos

El punto de partida corresponde a lo realizado anteriormente desde la perspectiva hidrogeoquímica e isotópica (Valenzuela, 2019), en el que se demuestra la relación entre aguas superficiales y subterráneas, e indica que el principal proceso fisicoquímico es la interacción agua-roca, seguido de procesos antrópicos y relacionados con el Volcán Villarrica. Además, las aguas analizadas proceden de episodios de recarga actuales, sugiriendo que tanto las aguas superficiales como las subterráneas no tienen tiempos de residencia elevados y hay una dirección general del flujo de agua subterránea hacia el lago.

También, al igual que otros estudios (Bruning, 2018; Ministerio del Medio Ambiente & Universidad de la Frontera, 2018; Ministerio del Medio Ambiente & Universidad de Chile, 2019), se constata que las principales fuentes de nutrientes son el uso de fertilizantes, las fosas sépticas y pisciculturas. Sobre estas premisas, se trabaja para establecer los mecanismos y el comportamiento real de las aguas subterráneas con respecto al Lago Villarrica. Lo que requiere una revisión de bibliografía del área de estudio y sobre los temas relacionados a procesos y características hidrogeológicas que aquí ocurren, para ver cómo se compara con los descubrimientos de los estudios hidrogeoquímicos e isotópicos. Luego se determinan mecanismos hidrogeológicos congruentes con las premisas nombradas anteriormente.

Otro punto importante son las aguas termales, ya que existen varios lugares turísticos que hacen uso de fuentes termales naturales en el área de estudio. Es importante entender cómo ocurre este fenómeno y qué conexión tiene con el agua superficial y subterránea del área de estudio.

3 Resultados

3.1 Reinterpretación estratigráfica

A partir de los datos obtenidos, se observa que existen intercalaciones de lava y sedimentos permeables en las áreas en torno al Volcán Villarrica. En cambio, fuera de su zona de influencia, donde se encuentra una mayor cantidad de depósitos glaciales, hay secuencias gruesas de depósitos permeables con intercalaciones de sedimentos de espesor de grano variable. Lo anterior, da cuenta que la zona en estudio se comprende dos facies hidrogeológicas distintas, una volcánica y otra glacial.

En términos generales, hay presencia de capas más gruesas de lava a medida que se esté más cerca del cráter del Volcán Villarrica. En cambio, cerca de la orilla del lago existe una significativa presencia de gruesos estratos de arena o de finos (por ejemplo, arcilla, a veces, mezclada con sedimentos de grano más grueso, como arena y/o grava). Al mismo tiempo, se debe tomar en cuenta que la estratigrafía indicada puede tener variaciones horizontales. Si se indica que un estrato se compone de arcilla, arena y gravas, es posible que, a pesar de que pueda ser considerado como un estrato de baja conductividad hidráulica, tenga lentes de arenas o gravas que aumenten la permeabilidad. Para un análisis completo de todos los pozos considerados ver Anexo A.

Figura 7. Perfiles geológicos que representan la conductividad hidráulica y la disposición de los distintos tipos de depósitos del área de estudio. Este perfil da cuenta de la existencia de dos facies hidrogeológicas distintivas en el área de estudio, una volcánica y la otra glacial.

Con relación a lo anterior, es necesario aclarar que, debido a la calidad de la información disponible y a la alta variabilidad horizontal de los estratos, aún no es posible establecer límites definidos para acuíferos, acuitardos y acuicludos en el área de estudio. Sin embargo, ha sido posible estimar una dirección general de flujo subterráneo hacia el lago a partir de las cargas hidráulicas que muestran los pozos (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019). Así, se ha podido determinar los tipos de acuífero que podrían estar presentes en el área de estudio.

3.2 Estimación de las propiedades hidráulicas

A partir de los acuíferos detectados en el paso anterior, es posible hacer una correlación entre ellos y las propiedades hidráulicas que se pueden inferir a partir de las pruebas de bombeo. De esta manera, se puede conocer el comportamiento hidráulico de algunas zonas (Figura 8).

Figura 8. Mapa que indica los distintos tipos de acuíferos que existen en base a las curvas de las pruebas de bombeo y las trazas de los perfiles realizados en la Figura anterior.

Los datos de las pruebas de bombeo dan cuenta de que los valores de transmisividad estimados tienen un promedio de $3,32 \cdot 10^{-3}$ m²/s, y un máximo de $2,24 \cdot 10^{-2}$ m²/s. Estos valores deben usarse para estimar la conductividad hidráulica si se conocen los espesores de los acuíferos, los cuales fueron estimados a partir de la información proveída en los expedientes de la DGA. Sin embargo, no deben considerarse como un valor exacto, debido a las diferencias metodológicas utilizadas para elaborar la estratigrafía de cada expediente. El rango de valores estimados de conductividad hidráulica corresponde a $3,68 \cdot 10^{-6} - 1,81 \cdot 10^{-3}$ m/s, consistente con lo previamente registrado para depósitos morrénicos, glaciales y piroclásticos. Considerando, además, que estas conductividades representan los estratos más permeables en el área de estudio.

A pesar que los depósitos volcánicos tienen una mayor transmisividad que los depósitos glaciales, al mismo tiempo, tienen una menor conductividad hidráulica debido a la diferencia de los espesores entre cada tipo de depósitos. Los datos de los pozos N°2050, N°3270 y N°3444, indican que existe almacenamiento y transferencia de agua en lava o roca fracturada. Si bien no se han podido estudiar con el método Jacob-Cooper para conocer sus propiedades hidrogeológicas, se estima que son comparables a los acuíferos en sedimentos no consolidados, ya que se extraen caudales similares a ellos, de 1,6 y 90 L/s, respectivamente a los pozos anteriormente nombrados.

Siguiendo con el análisis de los datos de las pruebas de bombeo, se observa que la mayoría de los acuíferos confinados se encuentran cercanos a los depósitos volcánicos, lo que concuerda con la presencia de secuencias de lava que pueden actuar como una capa confinante. En cambio, los acuíferos semiconfinados están principalmente en los depósitos morrénicos. Evidenciando la compleja geología de éstos, con distintos acuíferos interconectados.

Al estudiar la influencia de los bordes de recarga, esta se da principalmente en zonas cercanas a cursos de agua o al lago. Aunque, también, podría haber aportes desde acuíferos libres u otros, lo que sería consistente con la relación que entre las aguas superficiales y las subterráneas (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019).

Es dable señalar que los valores de transmisividad y conductividad hidráulica podrían ser considerados altos para el tipo de depósitos presentes en el área de estudio. Sin embargo, los pozos se construyen sólo para la obtención de agua, por lo que hay un fuerte sesgo hacia los estratos y acuíferos más permeables. Además, al sólo haber datos de pruebas de bombeo sin pozos de observación, sólo se pueden estimar valores de transmisividad y no de almacenamiento. Por lo que, podrían no reflejar correctamente la transmisividad de los acuíferos. Para poder tener mayor certeza, es necesario obtener mejores datos mediante pruebas de bombeo con piezómetros o pozos de observación.

4 Discusión

4.1 Modelo conceptual hidrogeológico

En base a lo desarrollado anteriormente, se propone un modelo conceptual hidrogeológico para el Lago Villarrica. El cual comprende dos sistemas principales, cada uno con características hidrogeológicas distintivas. Estos sistemas corresponden a un sistema somero de acuíferos en estratos y sedimentos volcanosedimentarios, y otro sistema somero de acuíferos en sedimentos morrénicos y glaciofluviales conectado al anterior. Al mismo tiempo, se presume la existencia de un sistema geotermal asociado a las zonas de falla en el área de estudio, sin embargo, no se ha podido establecer con certeza la relación entre éste y el lago.

El propósito de este nuevo perfil geológico, es permitir una mejor comprensión de la disposición espacial de los distintos sistemas que componen el modelo conceptual hidrogeológico. El cual utiliza como base el perfil del Volcán Villarrica² y la estratigrafía definida para el área de estudio³ (Figura 7). Entre las secuencias que conforman los dos sistemas someros se observa cierta interdigitación, por lo que se hace difícil separarlos en el límite entre ambos depósitos, como se indica en las cartas geológicas. Además, la mayoría de los pozos se encuentran en el sistema somero glacial, por lo que se dispone de mayor información sobre éste.

El modelo propuesto presenta facies para cada sistema. Para la determinación de las facies de los sistemas someros, se consideró toda la información anterior -la reinterpretación estratigráfica; las propiedades hidráulicas a partir de las pruebas de bombeo; y en base a los tipos de depósitos encontrados en el área de estudio, según la bibliografía-, y se definió a partir de una estratigrafía basada en la granulometría de los sedimentos. Asociada con rangos de conductividad hidráulica estimada para cada sistema⁴.

La facies volcánica, corresponde a un arreglo de distintas capas alternadas de lavas y material piroclástico, con un mayor espesor de las lavas mientras más cerca se esté del cráter activo del volcán. El agua puede fluir a través de los acuíferos conformados por material piroclástico, mientras que la lava actúa como acuicludo. Ocasionalmente, las fracturas en la lava permiten que ésta funcione como un acuífero fracturado, sin embargo, las propiedades hidráulicas en este sistema están definidas principalmente por la porosidad primaria de los sedimentos no consolidados (Figura 7).

² (Moreno & Clavero, 2006)

³ (Jara et al., 2011)

⁴ Los rangos de conductividad y granulometrías se encuentran en la Figura 5.

Figura 9. Representación de la facies volcánica del sistema hidrogeológico del Volcán Villarrica y dirección de los flujos de aua subterránea.

En base a las pruebas de bombeo del área de estudio se estima que la conductividad hidráulica del material piroclástico se encuentra entre los $4,48 \cdot 10^{-6}$ y $1,81 \cdot 10^{-3}$ m/s. Las pruebas de bombeo que consideran lava o roca fracturada, no permiten un análisis simple (utilizando Jacob-Cooper, por ejemplo) de las propiedades hidráulicas. Por lo que, se optó por no considerarlos para este análisis. ⁵

El agua subterránea en este sistema tiene una química principalmente bicarbonatada mixta, con una baja mineralización, hasta aproximadamente 200 mg/L. Esta química se comparte con las aguas de los cursos superficiales y la del Lago Villarrica. Isotópicamente, puede mostrar una ligera desviación hacia valores más livianos de δ^{18} O, dando cuenta de una leve tendencia hacia procesos de reacción con la roca a temperaturas bajas (entre 0 y 20°C). Sin embargo, generalmente, no se tienen temperaturas elevadas o el tiempo de residencia suficiente para que se vea afectada fuertemente su composición isotópica.

A medida que incrementa la profundidad, los sedimentos deberían mostrar un mayor grado de consolidación. Siendo la conductividad hidráulica dependiente de la porosidad secundaria, generada principalmente por fracturamiento. Es posible que este sistema más profundo esté conectado con fuentes de calor, como la cámara magmática del Volcán Villarrica, lo que da origen a las manifestaciones de aguas termales en las cercanías del volcán. El agua meteórica es aquí calentada y entra en contacto con

⁵ Sin embargo, queda patente que es posible extraer agua de este tipo de acuíferos en el área y que su capacidad de transmitir agua debería ser comparable a los otros acuíferos de sedimentos no consolidados, ya que los pozos de ambos tipos de acuíferos bombean caudales similares.

algunos gases volcánicos, como SO₄, H₂S, HCI, HF, que incrementan su contenido de S, CI, F y elementos traza como As. Además, las mayores temperaturas del fluido incrementan las reacciones con la roca huésped, aumentando las concentraciones de HCO₃, SiO₂, Na. El fluido debería mostrar una evolución hacia aguas de facies sulfatosódica principalmente o cloruro-sódica en algunos casos. Correspondientes a las aguas que se encuentran finalmente en los sistemas geotermales.

Respecto a la facies glacial, esta comprende todos los depósitos morrénicos y glaciales en la zona próxima al Lago Villarrica, en ésta se encuentran la mayoría de los pozos de la zona (Figura {fig15}, en Anexo A). Basándonos en los registros de construcción de pozos y las pruebas de bombeo, se puede observar que este sistema tiene una alta heterogeneidad en sus sedimentos. Prueba de esto, son los numerosos límites de recarga inferidos en las pruebas de bombeo.

La conductividad hidráulica varía entre $3,68 \cdot 10^{-6}$ y $7,96 \cdot 10^{-4}$ m/s según las pruebas de bombeo, existiendo claramente un sesgo hacia las secuencias más permeables, ya que ahí es donde se habilitan los pozos de la zona.

Figura 10. Representación de la facies glacial del sistema hidrogeológico del Volcán Villarrica y dirección de los flujos de agua subterránea.

Este sistema se relaciona directamente con el Lago Villarrica, mediante acuíferos confinados que llevan agua hacia el lago. Estos acuíferos producen zonas de escape de fluidos, las cuales generan debilidades y fallas en el talud, activándose al ocurrir eventos sísmicos y produciendo eventos submarinos de remoción en masa (Figura 7). Los

depósitos glaciales proximales son los que finalmente terminan aportando el fluido⁶, ya que, aunque, no sean altamente permeables pueden acumular agua con el tiempo, y cuando son perturbados ocurre el escape de fluidos.

Según datos de permeabilidad del fondo del lago (Moernaut et al., 2017), y estimando la conductividad hidráulica para el agua a diferentes temperaturas. Se obtienen valores consistentes con la zona inferior del rango de conductividad hidráulica del till glacial (Comparar Tabla 3 con Tabla 2) y la capa aportante de fluido debe tener una permeabilidad menor que la sobre yacente, la cual tiene una permeabilidad de $1 \cdot 10^{-17}$ m².

Este sistema tiene un traslape con el sistema volcano sedimentario debido a la gran cantidad de material que se ha expulsado del Volcán Villarrica y que cubre una gran área, como las ignimbritas Licán y Pucón. Es posible que se tengan acuíferos ininterrumpidos desde el volcán hasta el Lago Villarrica. Se espera que tenga la misma hidroquímica e isotopía que el sistema somero volcánico, con aguas bicarbonatadas mixtas y aguas subterráneas ligeramente desviadas, pero con un claro origen pluvial. En cuanto a su relación con el sistema geotermal, no está totalmente establecida. Sin embargo, en zonas a mayor altitud, es posible que haya transferencia de agua desde este sistema al geotermal a través de fallas en el basamento.

Otra implicancia de este tipo de sistema, es el efecto que puede tener en el transporte de nutrientes hacia el lago. La presencia de norias indica que es posible encontrar acuíferos libres. Considerando la interconectividad de los acuíferos en el área de estudio es posible que los bombeos en acuíferos libres afecten los niveles piezométricos de las inmediaciones de las fosas sépticas, facilitando el transporte de nutrientes hacia el lago.

4.2 Rol del Volcán Villarrica y Sistemas de Falla

El Volcán Villarrica, al estar compuesto de una gran cantidad de estratos con comportamientos hidráulicos distintos, puede considerarse como un gran sistema interconectado por distintos acuíferos. Su cercanía al Lago Villarrica, indica que participa en el transporte de aguas subterráneas hacia éste.

En las diferentes capas que componen los estratovolcanes, es posible que algunas almacenen agua. Estas capas pueden estar compuestas por lavas o material piroclástico y su comportamiento hidráulico es variable. Generalmente, las lavas actúan como capas confinantes⁷, sin embargo, si están fracturadas pueden actuar como un material permeable. De la misma manera, el material piroclástico, dependiendo de sus características, tiene variaciones en su permeabilidad y capacidad de transmitir agua. Por lo general, el material de grano fino va a actuar como acuicludos o acuitardos, mientras que los de grano más grueso van a corresponder a acuíferos⁸.

⁶ (Moernaut et al., 2017)

⁷ (Delcamp et al., 2016)

⁸ Descripciones de la estratigrafía del Volcán Villarrica muestran esta intercalación entre lavas y depósitos piroclásticos (Clavero & Moreno, 1994).

Respecto a las características de los estratovolcanes andesíticos, como el Volcán Villarrica, presentan una zonación general de sus facies⁹. Donde la zona central (a <2 km del cráter), presenta domos silíceos, intrusivos y lavas con distintos grados de fracturas y fallas. La zona proximal (2 a 5 km), se compone de lavas, depósitos piroclásticos y toba de lapilli. Luego, la zona media (5 a 10 km), donde se encuentran principalmente lahares, tobas, y capas de bloques. Finalmente, la zona distal (10 a 20 km), donde se tiene arenisca intercalada con tobas y capas de bloques.

En cuanto al comportamiento hidráulico esperado, la zona central va a estar dominada por fracturas. En cambio, en las otras zonas tendrá diferentes comportamientos, dependiendo de la consolidación y del tamaño de grano mínimo de los estratos. Con conductividades hidráulicas que van a ir disminuyendo a medida que uno se aleje del cráter, mientras más profundos se encuentren los depósitos piroclásticos, y, además, ante la presencia de lavas y su grado de fracturamiento.

Al estar el lago a 15 km del cráter activo del volcán, se espera que dominen los depósitos volcánicos propios de la zona proximal y medial en la zona de la orilla del lago. En la siguiente tabla, se indican rangos de conductividad hidráulica para distintos tipos de depósitos comúnmente encontrados en volcanes andesíticos y sus alrededores.

Litología	Rango de conductividad hidráulica [m/s]	Referencia
Suelos de ceniza volcánica	$10^{-8} \ \mathrm{a} \ 10^{-5}$	Pirone et al., 2015
Tefra y tobas	$10^{-12} \ \mathrm{a} \ 10^{-5}$	Smith y Sharp, 2006 Flint y Selker, 2003
Brechas (lahares)	10^{-6} a 10^{-3}	McWorter y Sunada, 1977 Singhal y Gupta, 2010
Depósitos de flujos piroclásticos	$10^{-7} \ \mathrm{a} \ 10^{-3}$	Mueller et al., 2011 Hahn et al., 1997 McWorter y Sunada, 1977
Lava andesítica	10 ⁻¹¹ a 10 ⁻⁸	Entwisle et al., 2005

Tabla 2. Rangos de conductividad hidráulica para distintos depósitos volcánicos. Modificado de Selles (2014).

Estos rangos de conductividad hidráulica dan cuenta de que el funcionamiento hidrogeológico de un volcán andesítico, puede ser resumido como un sistema acuífero multicapa a nivel superficial sobre otro más profundo.

Aún no es posible establecer si dentro del Volcán Villarrica hay una conexión hidráulica entre el sistema somero y el sistema profundo, y si el sistema profundo se asocia con aguas termales que se encuentran en el área de estudio. Además, es posible que sólo el sistema superficial tenga conexión con el Lago Villarrica.

⁹ (Selles, 2014)

A modo de resumen, se estima que el Volcán Villarrica posee las características hidrogeológicas asociadas a los volcanes andesíticos, como sistemas de acuíferos multicapa, con las lavas funcionando como capas confinantes.

En el área de estudio, se encuentran importantes estructuras de primer orden, como son el LOFS y ATF. Esta última, representada por la Zona de Falla Mocha-Villarrica (MVFZ), sobre la que se encuentran los volcanes Villarrica, Quetrupillán y Lanín¹⁰.

Estos sistemas de falla se asocian a actividad magmática, volcánica y geotermal, ésta última se produce principalmente por calentamiento de aguas meteóricas¹¹. No hay muchos estudios enfocados en la hidrogeología de los sistemas geotermales. Sin embargo, un estudio reciente sobre los conductos preferentes para los fluidos magmáticos y termales, relaciona las manifestaciones geotermales principalmente con anomalías de conductividad entre los 0 a 2 km de profundidad, aunque también podrían ser más profundas¹².

El sistema geotermal se encuentra principalmente asociado a sistemas de falla en el basamento que, para efectos prácticos, consiste de rocas plutónicas, metamórficas u otro tipo de rocas altamente consolidadas en el área de estudio. La escala de este sistema, de kilómetros, es mayor que los sistemas someros, de decenas y centenas de metros.

Es posible que los sistemas geotermales asociados a ATF se relacionan con estructuras de mayor altitud, por lo tanto, recargan más alto y antes de la incorporación al sistema geotermal. Mientras que los sistemas asociados a LOFS, simplemente recargan a menor altura por no tener esta asociación (Figura 11). Se presume que el sistema geotermal no está relacionado directamente con el Lago Villarrica, aunque es posible que haya una relación entre el lago y las fallas de MFVZ, ya que se encuentra sobre ésta.

Figura 11. Relación entre las facies glacial y volcánica con la geotermal, con la temperatura aproximada que alcanzan los fluidos (Nitschke et al., 2018). Hay dos dominios, ATF y LOFS. La figura se basa en perfiles de resistividad eléctrica de Pávez et al. (2020).

A pesar de que el Lago Villarrica se encuentra sobre la MVFZ, aún no se puede establecer con seguridad la relación entre ambos y si es posible que haya intercambio o aporte de fluidos entre uno y otro. De todas maneras, estos sistemas de falla tienen

¹⁰ (Figura 1)

¹¹ (Held et al., 2017)

^{12 (}Pavez et al., 2020)

ciertas características hidrogeológicas interesantes, como que puedan albergar sistemas geotermales.

4.3 Efectos de las glaciaciones en el entorno del Lago Villarrica

Otro importante dominio dentro del área de estudio corresponde a depósitos morrénicos y glaciofluviales, los cuales se encuentran colindantes al lago y, probablemente, en el fondo de éste (Figura 12).

Figura 12. Ubicación de los pozos y norias en los depósitos morrénicos y volcánicos. Se indican los cordones morrénicos, tomados de Bravo (2008) y Moernaut et al. (2017).

La hidrogeología en morrenas se caracteriza por capas heterogéneas, desde till compactado hasta gravas y arena¹³. La conductividad hidráulica es altamente variable debido a esto, y debe diferenciarse si se considera una escala local o regional (Tabla 3). Esto, ya que en la primera se tienen altas variaciones, mientras que en la segunda se pueden establecer valores consistentes a pesar de la variabilidad litológica¹⁴.

Tabla 3. Rangos de conductividad hidráulica para distintos depósitos glaciales. El asterisco (*) señala que sólo se indica transmisividad en la referencia.

Depósito	Depósito Rango de conductividad hidráulica [m/s]		Referencia	
Esker o canal	$10^{-3} - 10^{1}$			
Glaciofluviales	$10^{-6} - 10^{-3}$	Morrana da Oak Bidaar	Sharma et al. (2002)	
Arena fina y limo intercaladados	10 ⁻⁷ - 10 ⁻⁵ Morrena de Oak Rodge		Sharpe et al. (2003)	
Till denso (K alto indica lentes de arena)	$10^{-11} - 10^{-5}$			
Acuitardo superficial	$10^{-9} - 10^{-7}$			
Upper Waterloo Moraine Aquifer	$1000 - 4500 m^2/d^*$			
Lower Mayhill Till Aquitard	10-9	Mamma da Watadaa	Rischmant et al. (2014)	
Lower Waterloo Moraine Aquifer	1060 - 1970 m ² /d* Morrena de Waterloo		Diackport et al. (2014)	
Catfish Creek Till Aquitard	$10^{-8} - 10^{-6}$			
Pre-Catfish Creek Till Aquifers	$130 - 4000 m^2/d^*$			
Planicie de till drumlinizada	$8, 36 \cdot 10^{-8} - 4, 15 \cdot 10^{-7}$			
Sandur	$2,88 \cdot 10^{-7} - 2,19 \cdot 10^{-5}$	Morrena de París	Arnaud et al. (2018)	
Morrena de París	$1,25 \cdot 10^{-7} - 8,48 \cdot 10^{-4}$			

¹³ (Sharpe et al., 2003; Arnaud et al., 2018)

¹⁴ (Arnaud et al., 2018)

Un ejemplo de un modelo para depósitos morrénicos, es el presentado por Blackport et al. (2014) en base a la Morrena de Waterloo. El cual se compone de una sucesión de distintos acuíferos y acuitardos con variados límites verticales y horizontales que conforman un sistema hidrogeológico complejo. Debido a esto, las morrenas son un blanco atractivo para la construcción de pozos.

Se espera que los depósitos morrénicos, que conforman casi toda la orilla del Lago Villarrica, sean similares al modelo mostrado con diferentes sucesiones de acuíferos y acuitardos. Sin embargo, no se cuenta con información más detallada que pudiera indicar la composición interna de los distintos cordones morrénicos. Sólo se tiene su posición y es posible ver que efectivamente varios pozos en el área de estudio se construyen cerca de estas estructuras (Figura 12). Por lo que, probablemente, se tienen acuíferos más accesibles en estos depósitos.

En los informes de algunos pozos, como por ejemplo en el N°3291, se nota una alta sobrepresión en el acuífero, con un pozo fuertemente artesiano con el nivel piezométrico 2 m sobre la superficie. También, durante el trabajo en terreno, se ha notado la presencia de manantiales, los cuales son utilizados por los propietarios de los terrenos para uso doméstico y económico en algunos casos. Esta característica da cuenta de cierta relación entre el agua superficial y subterránea.

4.4 Remociones en masa subacuáticas y acuíferos confinados

Los resultados obtenidos revelan una complejidad hidrogeológica con sectores confinados y límites permeables en proximidad del lago, que han llevado a profundizar en el análisis de la relación del lago con las aguas subterráneas considerando la presencia de acuíferos confinados.

La literatura relativa a estas relaciones hidrodinámicas en ambiente lacustres no es abundante, pero han sido descritas en ambientes costeros¹⁵. El análisis de esta información revela ciertos aspectos importantes que pueden trasladarse al caso en estudio y, así, ayudar a comprender mejor su funcionamiento. De todas maneras, hay que considerar que hay una gran diferencia de escala entre los procesos descritos para los ambientes costeros y los observados en ambientes lacustres.

En el sector suroeste del Lago Villarrica han ocurrido eventos de remociones en masa, frente a la ciudad de Villarrica¹⁶. Se propone un mecanismo análogo a las remociones en masa en sectores costeros, ya que hay evidencia de estructuras de escape de fluidos. Las cuales pueden estar relacionadas a la presencia de acuíferos confinados que pueden liberar fluido que afecta a los sedimentos sobre éstos. Generando zonas de debilidad, que luego provocan las remociones en masa subacuáticas como se explica más adelante.

Para determinar las características del acuicludo, se utilizaron datos de Moernaut et al. (2017). Los cuales, dan cuenta de que hay conductividades hidráulicas en el rango

¹⁵ (Dugan & Sheahan, 2012; Talling et al., 2014)

¹⁶ (Moernaut et al., 2017)

inferior de los depósitos glaciales para la capa identificada como la originaria del escape de fluidos (Tabla 4).

Tabla 4. Estimaciones de la conductividad hidráulica a partir de la capa glacial proximal, la cual está bajo los sedimentos del fondo del Lago Villarrica, descrita en Moernaut et al. (2017), a distintas temperaturas y permeabilidades, basado en la ecuación $K = \frac{k\rho g}{u}$.

TT (9(7))	1090	0000	1000	0000	1090	0000
1 (-0)	10-0	20-0	10-0	20-0	10-0	20-0
k (m ²)	$1 \cdot 10^{-19}$	$1 \cdot 10^{-19}$	$1 \cdot 10^{-18}$	$1 \cdot 10^{-18}$	$1 \cdot 10^{-17}$	$1 \cdot 10^{-17}$
$\rho (Kg/m^3)$	999,8	999,1	999,8	999,1	999,8	999,1
$g (m/s^2)$	9,8	9,8	9,8	9,8	9,8	9,8
$\mu (Ns/m^2)$	0,0013	0,010	0,0013	0,010	0,0013	0,010
K (m/s)	$7, 5 \cdot 10^{-13}$	$9, 8 \cdot 10^{-13}$	$7, 5 \cdot 10^{-12}$	$9, 8 \cdot 10^{-12}$	$7, 5 \cdot 10^{-11}$	$9, 8 \cdot 10^{-11}$

Como se describe en Moernaut et al. (2017), el escape de fluidos ocurre desde la capa glacial proximal, la cual se encuentra bajo los sedimentos lacustres y glaciolacustres del fondo del lago, hacia estos últimos. Se hizo una estimación de la conductividad hidráulica de la capa glacial proximal, dando un rango de $7,5 \cdot 10^{-13}$ a $9,8 \cdot 10^{-11}$ m/s (Tabla 4). Este rango es consistente con el rango inferior de conductividades hidráulicas descritas para depósitos glaciales.

Adicionalmente, la presencia de estructuras de escape de fluidos da sustento a que ocurre una sobrepresión. Donde una capa confinante contiene los flujos de agua, excepto en zonas donde la integridad y cohesión de los sedimentos ha sido afectada. El agua que escapa de los acuíferos genera debilidades y fracturas en las secuencias superiores que se van depositando, facilitando el desarrollo de eventos de remociones en masa posteriores¹⁷.

Lo anterior, da soporte a la idea de que existe una relación entre las aguas subterráneas y el lago, es decir, que los acuíferos que existen se extienden hasta el lago, por debajo de éste, y debido a perturbaciones en los sedimentos y sobrepresión, se produce el escape de fluidos. Las perturbaciones generadas en los sedimentos se pueden asociar a actividad sísmica, ya que las remociones en masa subacuáticas en el Lago Villarrica aparecen vinculadas a eventos sísmicos¹⁸. Lo que podría guardar relación con la posición del lago sobre la MFVZ.

En resumen, la ocurrencia de eventos de remociones en masa en sectores costeros es posible relacionarla a la presencia de acuíferos confinados. La fuente de los fluidos podría corresponder a los sedimentos glaciales en los alrededores del Lago Villarrica, donde las zonas más permeables dentro de ellos permiten la transferencia de agua hasta las zonas de escape de fluidos (Figura 13).

¹⁷ (Talling et al., 2014)

¹⁸ (Moernaut et al., 2017)

Figura 13. Perfil que esquematiza la relación entre las capas del fondo del lago y muestra las zonas de escape de fluidos. Las flechas sólidas indican los flujos de agua subterránea hacia el lago y las líneas punteadas indican los flujos que podrían ocurrir en los sedimentos glaciales bajo y alrededor del lago a través de las zonas donde haya granos de mayor grosor. En el mapa, se muestran las zonas de escape de fluidos identificadas en Moernaut et al. (2017).

No hay que olvidar que la diferencia de escala puede influir bastante en el comportamiento real de los sectores lacustres comparados con los costeros, por lo que, se propone un mecanismo análogo.

4.5 Información química e isotópica

A partir de la información geoquímica e isotopía que se tiene de trabajos anteriores¹⁹, se puede tener una comprensión general de los procesos relevantes que dan origen a la hidroquímica particular de esta cuenca. Las muestras de agua obtenidas en la cuenca, se pueden clasificar como agua superficial cuando se trata de muestras tomadas de ríos y lagos, y como agua subterránea si se tomaron de un pozo, termales y agua de lluvia²⁰.

Otro aspecto relevante para la clasificación, es si las muestras se encuentran dentro o fuera del área de estudio. En el mapa (Figura 14), se indican qué muestras se consideran dentro o fuera del área de estudio. Algunas muestras se encuentran fuera de

¹⁹ (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019)

²⁰ En el caso de las termales, pueden asociarse espacialmente con alguno de los dos grandes sistemas de fallas encontrados en el área de estudio, LOFS o ATF.

la cuenca hidrográfica hacia el sur, sin embargo, se consideran parte de la cuenca hidrogeológica del Volcán Villarrica. Por lo tanto, dentro del área de estudio²¹.

Figura 14. Mapa con las muestras analizadas que tienen datos hidroquímicos e isotópicos. Hay muestras que están dentro (IN) o fuera (OUT) del área de estudio. Se toman datos de las otras subcuencas que conforman la cuenca del Río Toltén, además de las cuencas aledañas de los Ríos Budi y Queule.

Como punto de partida, se debe observar que se tienen aguas con una baja concentración de elementos disueltos (alrededor de 100 mg/L), donde el principal aporte de la carga química del agua lo hace el contacto con el suelo y rocas²².

Desde el año 1993, se registra durante los veranos la ocurrencia de eventos de proliferaciones algales en el lago²³. Durante los cuales, aumentan las poblaciones de

²¹ Cabe notar que no se han definido límites de cuencas hidrogeológicas en el área de estudio.

²² (Valenzuela, 2019)

²³ (Steffen et al., 1995)

cianobacterias, generando un riesgo a la salud humana y animal²⁴. Hasta el punto de que se han llegado a registrar concentraciones de $1,4 \cdot 10^6$ cel/ml de clorofila cianobacterial. Como referencia, la OMS recomienda no más de $1 \cdot 10^5$ cel/ml para aguas de uso recreativo²⁵. Respecto a la causa de las proliferaciones algales, estas se deben a un aporte excesivo de nutrientes al cuerpo de agua²⁶.

Debido a estos eventos, el MMA ha diseñado un programa de monitoreo para establecer la necesidad de un plan de descontaminación. Cuya elaboración fue decretada mediante Resolución Exenta N°1066, de fecha 16 de noviembre del 2018.

Los datos químicos e isotópicos de las aguas y suelos estudiados indican lo siguiente:

- Las aguas superficiales y subterráneas están altamente relacionadas, presentando baja mineralización. Esto se deduce debido a una hidroquímica e isotopía muy similar²⁷.
- 2. El principal proceso fisicoquímico es la interacción agua-roca, seguido de procesos antrópicos y relacionados con el Volcán Villarrica. Las asociaciones de elementos derivadas de análisis estadísticos muestran que por un lado se tiene el grupo HCO₃, SiO₂, Na, Ca, Mg, K, V y Sr, y elementos asociados a la litología del área de estudio. Por otro lado, se tiene el grupo SO₄, B, Cl y F, elementos que podrían tener un origen tanto natural como antrópico, y no parece tener una distribución clara en el área de estudio²⁸.
- 3. Las principales fuentes de nutrientes son el uso de fertilizantes, las fosas sépticas y las pisciculturas. El uso de fertilizantes se asocia a las inmediaciones de la mayoría de los cursos de agua superficial en gran parte de la cuenca, las fosas sépticas se encuentran principalmente en la ribera sur del lago y las pisciculturas se encuentran en cursos superficiales cercanos al lago²⁹. El compuesto más importante en este caso corresponde al fosfato, el cual, probablemente, podría estar detrás de las proliferaciones algales. Esto, debido a que el fósforo es el elemento limitante para las poblaciones de algas y, especialmente, de cianobacterias. ³⁰
- 4. Las aguas analizadas proceden de episodios de recarga actuales, sugiriendo que tanto las aguas superficiales como las subterráneas no tienen tiempos de

²⁴ (Chorus & Welker, 2001)

²⁵ (Chorus & Welker, 2001)

²⁶ (Chorus & Welker, 2001)

²⁷ (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019)

²⁸ (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019)

²⁹ (Valenzuela, 2019; Ministerio del Medio Ambiente & Universidad de Chile, 2019)

³⁰ (Chorus & Welker, 2001)

residencia elevados que permitan una modificación de la hidroquímica o una alta concentración de elementos disueltos. Tampoco hay mezcla con otros fluidos que puedan cambiar su composición isotópica³¹.

Comparando la hidroquímica del agua superficial y subterránea con las aguas termales, se puede observar que se diferencian, principalmente, en el tipo de facies hidroquímica que presentan, en la concentración de elementos disueltos y en la temperatura.

Los elementos disueltos en las muestras de aguas someras y termales vienen principalmente del contacto con la roca en el área de estudio. Los elementos Rb y Sr son ideales para estudiar el equilibrio químico de fluidos con la roca³². Combinando los datos de MMA & UChile (2019) y Held et al. (2018), se puede ver la tendencia que muestran las muestras de agua hacia la composición química de la roca, con las muestras termales mostrando un mayor equilibrio químico (Figura 15), debido a tiempos más largos de residencia y una mayor temperatura³³.

Figura 15. Gráfico Rb vs Sr, con datos de MMA-UChile para las muestras de agua subterránea y superficial, de Sánchez et al. (2013), Wrage et al. (2017) y Held et al. (2018) para aguas termales, y datos de química de roca de Jara et al. (2011) y Held et al. (2018). Se hace la distinción entre las aguas termales que se encuentran dentro del área de estudio (rombos completos) y las que se encuentran fuera de ésta (rombos vacíos).

En cuanto a las facies hidroquímicas, en un diagrama Piper se ve claramente la diferencia entre las muestras más someras, el agua superficial y subterránea de

³¹ (Ministerio del Medio Ambiente & Universidad de Chile, 2019)

³² (Held et al., 2018)

³³ (Held et al., 2018)

composición bicarbonatada mixta, y las más profundas, las aguas termales de composición principalmente sulfatada sódica con algunas muestras mostrando mayor influencia de HCO₃ o CI o ambos (Figura 16).

Figura 16. Diagrama Piper marcando la tendencia desde las aguas meteóricas a las geotermales. Se diferencia entre las muestras superficiales (triángulos anaranjados), subterráneas (círculos morados) y aguas termales del área de estudio dentro del dominio LOFS (rombos verdes) o ATF (rombos azules). También se indican muestras de aguas termales fuera del área de estudio que corresponden a alguno de los dominios nombrados (rombos vacíos). Las muestras superficiales y subterráneas son de DGA (2016) y MMA-UChile (2019), las termales de Sánchez et al. (2013), Held et al. (2017), Wrage et al. (2017), Bucarey (2020) y Daniele et al. (2020).

Al observar la temperatura y la concentración de disueltos, se ve un gran aumento de la concentración en el SO₄, Li y Na, en menor medida en Cl y B, y no difieren en contenidos de K, Mg, Ca y SiO₂ (Figura 16).

De acuerdo con el aumento de las concentraciones de SO₄ y siendo las aguas termales pertenecientes a la facies sulfatada sódica, el SO₄ parece ser el rasgo más distintivo de la química de los sistemas más profundos. Sin embargo, aún no se establece el origen definitivo de este compuesto, existiendo dos hipótesis. Una primera hipótesis sostiene que es posible que el sulfato provenga de la meteorización de la roca huésped,
enriquecida en sulfato o sulfuro³⁴. En cambio, la segunda hipótesis, sostiene que el sulfato vendría del contacto de las aguas termales con fases gaseosas ricas en H₂S³⁵.

Si la temperatura de los reservorios termales es menor que 200°C, el $\delta^{18}O_{SO4}$ no está en equilibrio con $\delta^{18}O_{H2O}^{36}$, entonces los valores $\delta^{18}O_{SO4}$ representarán los del reservorio. Considerando datos isotópicos de $\delta^{18}O$ disponibles del H₂O y SO₄ de aguas termales³⁷ y temperaturas menores a 200°C en los reservorios³⁸, la obtención de sulfato de las aguas proviene principalmente de la oxidación de sulfuros (Figura 17). Éstos pueden ser minerales en la roca o corresponder a fases gaseosas de H₂S. Para determinar entre estos orígenes habría que estudiar el fraccionamiento del δ^{34} S, lamentablemente aún no se ha realizado este tipo de análisis en las aguas termales en estudio.

Figura 17. Área experimental de sulfatos derivados de la oxidación de sulfuros, de Van Stempvoort y Krouse (1994), con las muestras termales de Held et al. (2015). Los colores verde y azul señalan muestras pertenecientes a LOFS o ATF, respectivamente.

³⁷ (Held et al., 2015)

³⁴ (Held et al., 2017)

³⁵ (Sánchez et al., 2013; Bucarey, 2020; Daniele et al., 2020)

³⁶ (Lloyd, 1967)

³⁸ (Nitschke et al., 2018)

Los datos isotópicos se utilizan para establecer el origen de las aguas y esclarecer si hay procesos de mezcla con otros tipos de agua isotópicamente distinta, dando una idea del tipo de reacciones químicas que sufren las aguas. Además, permiten determinar áreas de recarga para las aguas subterráneas y superficiales, es decir, desde dónde en la cuenca provienen las aguas que se analizan, ya sean aguas de lluvia a una determinada altura o de otro tipo.

Profundizando en el análisis isotópico realizado anteriormente³⁹, y comparando con datos dentro y en los alrededores del área de estudio. Los datos isotópicos de muestras de agua superficial y subterránea a lo largo de toda la cuenca del Río Toltén y de agua de lluvia de la Región de La Araucanía de DGA (2016), datos de muestras termales nombrados anteriormente y el análisis realizado por Sánchez-Murillo (2018) en series de datos de la IAEA a lo largo de Chile, se ha podido estimar la línea meteórica local, y se han establecido los procesos generales relacionados al origen y transporte de las aguas en la cuenca.

Las aguas superficiales, subterráneas y termales tienen el mismo origen en las aguas meteóricas. El agua de lluvia de la zona se alinea con la tendencia mostrada por las líneas meteóricas locales de Temuco y Puerto Montt, definidas en Sánchez-Murillo (2018) (Figura 18).

Figura 18. Líneas meteóricas locales de Temuco y Puerto Montt, definidas en Sánchez-Murillo (2018), junto con las muestras de agua superficial y subterránea de MMA-UChile (2019) y DGA (2016), y las aguas termales de Sánchez et al. (2013), Held et al. (2017), Wrage et al. (2017), Bucarey (2020) y Daniele et al. (2020).

Hay sólo una muestra de agua superficial con una significativa desviación hacia la derecha (muestra A-02 en la Figura 18). Corresponde a la laguna Pichilafquén, la cual es

³⁹ (Ministerio del Medio Ambiente & Universidad de Chile, 2019)

artificial, y está sujeta a procesos de evaporación. Se aprecia, además, que las aguas meteóricas que recargan a las aguas superficiales y subterráneas de mayor altitud también recargan a las termales. Las ligeras desviaciones hacia la derecha de las muestras termales se deben probablemente a procesos de evaporación o reacciones químicas con minerales.

Con las muestras de agua meteórica de DGA (2016) es posible establecer un gradiente altitudinal para δ^{18} O y δ^{2} H (Tabla 5).

Muestras	δ^{18} O (‰)	$\delta^2 H$ (‰)	Altitud (m s.n.m.)
PP-1	-5,1	-34,2	-2
PP-2	-7,1	-50,8	297
PP-3	-7,6	-55,8	407
PP-4	-7,0	-42,4	257
PP-5	-5,9	-35,3	83
PP-6	-8,1	-51,8	50
PP-7	-7,0	-44,3	190
PP-8	-7,8	-48,9	468
PP-9	-9,9	-65,0	1102
PP-10	-5,9	-35,8	69
PP-11	-5,9	-38,8	10
PP-12	-6,6	-44,6	190
PP-13	-8,4	-55,4	500
PP-14	-9,2	-66,8	600
PP-15	-6,0	-35,7	57
PP-16	-6,8	-40,1	38
PP-17	-6,1	-36,2	3
PP-18	-7,2	-44,9	104
PP-19	-8,8	-56,5	324

Tabla 5. Muestras de precipitaciones de DGA (2016) con los datos isotópicos y altitud.

Sin embargo, este cálculo debe considerarse como una aproximación ya que los datos son de pluviómetros que han recogido precipitaciones durante un máximo de 80 días y podrían nos ser del todo representativos de las precipitaciones del área de estudio durante un año hídrico. Estas muestras fueron tomadas entre agosto y octubre de 2014. El gradiente establecido, corresponde a -0,55 δ^{18} O y -4,30 δ^{2} H cada +100 m (Figura 19).

Figura 19. Cálculo del gradiente altitudinal isotópico con datos de agua de lluvia de DGA (2016) (rombos azules). Los triángulos anaranjados corresponden a muestras de agua superficial y los círculos morados a muestras subterránea de MMA-UChile (2019) y DGA (2016). Las cruces rojas corresponden a muestras termales de Sánchez et

al. (2013) y Held et al. (2017). Se indican muestras que han sufrido reacciones químicas que impiden el cálculo de la altura de recarga.

Las diferencias entre las alturas de muestreo y de recarga, de las muestras superficiales y subterráneas en DGA (2016) dentro del área de estudio, y en MMA-UChile (2019), muestran que las aguas subterráneas tienden a ser recargadas a menos de 200 m desde que el agua entra a la cuenca.

Para el caso de las aguas termales de Sánchez et al. (2013) y Held et al. (2017), la diferencia de altitudes es congruente, de manera general, con el modelo presentado en Sánchez et al. (2013), con LOFS asociado a fallas verticales y los tiempos de residencia calculados en Held et al. (2018), donde las muestras identificadas como LOFS presentan mayores tiempos de residencia que las muestras ATF (Tabla 6).

Tabla 6. Promedios de altitud de muestreo, de altitud de recarga y de altitud de la fuente para los datos isotópicos de las muestras de agua subterránea y superficial de DGA (2016) y MMA-UChile (2019), y las muestras de agua geotermal de Sánchez et al. (2013) y Held et al. (2017). No todas las muestras de Held et al. (2017) han podido ser identificadas dentro de un dominio geotermal específico.

Muestras	Promedio de altitud de muestreo (m)	Promedio de altitud de recarga (m)	Referencia	
Superficiales	255	681	DCA (2016)	
Subterráneas	340	467	DGA (2010)	
Superficiales	282	578	MMA UChile (2010)	
Subterráneas	278	413	MMA-001116 (2019)	
LOFS	483	708	Sánchez et al. (2013)	
ATF	580	684	y Held et al. (2017)	

Esta diferencia entre muestras de agua subterránea y termales, indica que hay sistemas distintos de flujos subterráneos. Unos más someros, como los asociados a los acuíferos en sedimentos volcánicos y morrénicos explotados en el área de estudio y al sistema geotermal en ATF, y otros más profundos, como los asociados a LOFS (Figura 20).

Figura 20. Mapa con alturas de recarga para distintas muestras.

5 Conclusiones

En atención a todo lo señalado anteriormente en la presente Tesis de Magíster, se propone un modelo que representa el comportamiento físico del sistema hidrogeológico. El cual es congruente con lo desarrollado anteriormente, en el sentido de que existe una estrecha relación entre las aguas superficiales y subterráneas. Lo que se comprueba a partir de la hidroquímica e isotopía de las aguas analizadas.

El modelo propuesto se basa en la reinterpretación estratigráfica que se realizó del área de estudio, lo que se hizo a partir de la estratigrafía señalada en los expedientes de solicitud de derechos de agua subterránea presentado ante la DGA. Lo cual permitió definir espesores aproximados de los acuíferos y qué granulometría se encuentra en los depósitos morrénicos y volcánicos presentes en el área de estudio (los cuales son en gran parte material no consolidado). Finalmente, se estimaron los posibles rangos de conductividad hidráulica, los que dependen de la granulometría que se obtuvo de las pruebas de bombeo registradas en los expedientes. Todo lo cual, permite hacer un cálculo aproximado de la transmisividad que presentan los materiales geológicos que conforman los acuíferos en los alrededores del Lago Villarrica.

Lo anterior, se complementa con la información disponible, lo que es relevante para determinar el comportamiento hidrogeológico de las aguas subterráneas. De esta manera es posible analizar: (i) las remociones en masa subacuáticas en el Lago Villarrica y su implicancia en la presencia de acuíferos confinados que comunican el lago con acuíferos; (ii) el rol del Volcán Villarrica y sus depósitos asociados en la transferencia de aguas subterráneas hacia el lago; (iii) los efectos de las glaciaciones en el entorno del lago, ya que la mayoría del área inmediata al lago ha sido labrada por los períodos de glaciaciones que han ocurrido en el área de estudio; y (iv) la información química e isotópica disponible, la cual da cuenta que las aguas superficiales y subterráneas se encuentran estrechamente relacionadas.

Este modelo hidrogeológico del Lago Villarrica consta de dos facies, una volcánica y otra glacial, que dan origen a sistemas de acuíferos multicapa (con ciertas diferencias entre ellas). En el caso del sistema volcánico, los acuicludos corresponden a roca y lavas. En cambio, en el sistema glacial, son los estratos de grano fino y till glacial los que actúan como acuicludo y/o acuitardo. En ambos casos, estos acuíferos están muchas veces conectados entre sí y también con el agua superficial.

Esta interconectividad se manifiesta en la presencia de sucesiones de acuíferos, acuitardos o acuicludos, con contactos hidráulicos horizontales y verticales que generan una complejidad adicional a la conexión que tienen éstos con el agua superficial. Lo que se encuentra corroborado por los patrones hidroquímicos e isotópicos similares entre las muestras de agua superficial y las subterráneas, analizadas en detalle anteriormente⁴⁰.

Uno de los alcances más relevantes de lo aquí propuesto, es que permite determinar conexión existente entre estos complejos sistemas acuíferos en las facies volcánica y glaciar con el Lago Villarrica. La evidencia de esta conexión, es evidencia

⁴⁰ (Valenzuela, 2019)

reinterpretando, en clave hidrogeológica, la presencia de fluidos a presión en el sector suroeste del lago.

En este sentido, lo que aquí se propone, es que perturbaciones y debilidades en los sedimentos acuíferos confinados generan estructuras que permiten la salida de agua, tanto por cambios en las condiciones hidráulicas como por eventos sísmicos y volcánicos. Un funcionamiento similar no ha sido descrito nunca para un lago, aunque existe literatura que da cuenta de un fenómeno parecido en acuíferos costeros.

Esta nueva visión, de la relación hidrodinámica entre los acuíferos y el Lago Villarrica, en parte ya constatada a través del análisis hidrogeoquímico entre las aguas superficiales y subterráneas, confirma el potencial impacto de las diversas fuentes de contaminación identificadas en estudios anteriores -sean los fertilizantes, especialmente los usados en las cercanías del lago, u otros-. Las fosas sépticas adquieren una importancia mayor a la que se le ha atribuido hasta la fecha, ya que, además de la difusión de nutrientes hacia el lago, hay que sumar la posible advección desde los flujos de agua subterránea y de los cambios generados por los numerosos bombeos de pozos en la zona. Por lo que vuelve necesario hacer una reestimación que considere todos estos elementos para determinar el aporte de contaminantes al lago desde esta fuente (Figura 21).

El trabajo realizado da cuenta que hay que considerar una nueva perspectiva para comprender las dinámicas hidrogeológicas que ocurren entre los lagos y su entorno. No deben ser entendidos como un medio estático que sólo involucra la entrada y salida de aguas superficiales. Se ha establecido que en el Lago Villarrica intervienen procesos como aportes de agua desde acuíferos -evidenciados en las estructuras de escape de fluidos en la orilla cercana a la ciudad de Villarrica-, por lo que es posible que, debido a esta conexión, los pozos bombeen agua del lago a través del acuífero. Como se ha evidenciado en el pozo 4134, que se encuentra en la orilla del lago.

Figura 21. Aportes de aguas al lago afectadas por actividades antrópicas.

En resumen, los lagos, a pesar de que podrían estar dominados por flujos superficiales, no están exentos de la influencia de procesos hidrogeológicos. El alcance y dominio de éstos deben ser correctamente estudiados y considerados para poder alcanzar una comprensión del comportamiento real de los lagos.

Por último, para mejorar el modelo conceptual propuesto, y poder ir en camino del desarrollo de un modelo numérico que refleje la dinámica hidrogeológica real entre el lago y las aguas subterráneas, es necesario definir la extensión espacial de los distintos acuíferos que se encuentran. Además, se requiere de la piezometría de cada uno, mediante un estudio a una escala más detallada, que considere la creación de pozos de bombeo y de observación. Esto con el fin de realizar un análisis granulométrico y estratigráfico de detalle de los materiales perforados y, así, realizar pruebas de bombeo que permitan calcular el almacenamiento y mejorar la información que ya se tiene sobre la transmisividad y conductividad hidráulica.

- Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., . . . Ayala, A. (2018). The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies-Chile dataset. *Hydrology and Earth System Sciences*, 22(11), 5817-5846. doi:10.5194/hess-22-5817-2018, 2018
- Arnaud, E., McGill, M., Trapp, A., & Smith, J. E. (2018). Subsurface heterogeneity in the geological and hydraulic properties of the hummocky Paris Moraine, Guelph, Ontario. *Canadian Journal of Earth Sciences*, 55(7), 768-785. doi:10.1139/cjes-2016-0161
- Blackport, R. J., Meyer, P. A., & Martin, P. J. (2014). Toward an understanding of the Waterloo Moraine hydrogeology. *Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 39*(2), 120-135. doi:10.1080/07011784.2014.914795
- Bravo, L. C. (2008). Reconstrucción de sistemas glaciares en el volcán Villarrica región de Los Lagos, Chile. Universidad de Chile.
- Bruning, M. B. (2018). Estudio de aporte de carga de nutrientes por fuentes contaminantes y análisis de escenarios de descontaminación mediante un modelo de calidad de aguas en el lago Villarrica. (Tesis de Magíster, Memoria de Título), Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Química, Biotecnología y Materiales.
- Bucarey, C. (2020). Origin of hotsprings near Villarrica volcano.
- Chorus, I., & Welker, M. (2001). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management.
- Clavero, J., & Moreno, H. (1994). Ignimbritas Licán y Pucón: Evidencias de erupciones explosivas andesítico-basálticas postglaciales del Volcán Villarrica, Andes del Sur, 39 25'S. Congreso Geológico Chileno, 7, págs. 250-254.
- Daniele, L., Taucare, M., Viguier, B., Arancibia, G., Aravena, D., Roquer, T., . . . Morata, D. (2020). Exploring the shallow geothermal resources in the Chilean Southern Volcanic Zone: insight from the Liquiñe thermal springs. *Journal of Geochemical Exploration, 218*.
- Delcamp, A., Roberti, G., & van Wyk de Vries, B. (2016). Water in volcanoes: evolution, storage and rapid release during landslides. *Bulletin of Volcanology*, *78*(12). doi:10.1007/s00445-016-1082-8
- Dirección General de Aguas. (2016). *Estudio hidrogeológico, Región de la Araucanía.* Gobierno de Chile, Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación. Realizado por ARCADIS, Santiago.
- Dugan, B., & Sheahan, T. C. (2012). Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models. *Reviews of Geophysics, 50*(3).

- Garreaud, R., Lopez, P., Minvielle, M., & Rojas, M. (2013). Large-scale control on the Patagonian climate. *Journal of Climate*, *26*(1), 215-230.
- Held, S., Nitschke, F., Schill, E., Morata, D., Eiche, E., & Kohl, T. (2017). Hydrochemistry of the hot spring fluids of Villarrica geothermal system in the andes of southern Chile. *Transactions Geothermal Resources Council, 41*, 1455-1469.
- Held, S., Schill, E., Pavez, M., Diaz, D., Morata, D., & Kohl, T. (2015). Tectonic control of the geothermal system at Mt. Villarrica—insights from geophysical and geochemical surveys. *Chilean Geological Conference.*
- Held, S., Schill, E., Schneider, J., Nitschke, F., Morata, D., Neumann, T., & Kohl, T. (2018).
 Geochemical characterization of the geothermal system at Villarrica volcano, Southern Chile; Part 1: Impacts of lithology on the geothermal reservoir. *Geothermics*, 74, 226-239.
- Jara, C., Moreno, R. H., Mella, B. M., & Duhart, O. P. (2011). *Geología del área Villarrica-Huiscapi, Regiones de la Araucanía y de los Ríos* (Vol. 128). Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica.
- Kruseman, G. P., De Ridder, N. A., & Verweij, J. M. (1970). *Analysis and evaluation of pumping test data.* Wageningen, The Netherlands: International institute for land reclamation and improvement.
- Lloyd, R. M. (1967). Oxygen-18 composition of oceanic sulfate. *Science*, *156*(3779), 1228-1231.
- Ministerio del Medio Ambiente & Universidad de Chile. (2019). Análisis y trazado hidrogeoquímico - isotópico de la contaminación del agua, como insumo para la elaboración de un Plan de Descontaminación en el Lago Villarrica. Universidad de Chile, Departamento de Geología, Santiago.
- Ministerio del Medio Ambiente & Universidad de la Frontera. (2018). Determinación de las concentraciones de nutrientes en los principales cauces aportantes al lago Villarrica, estimación de su carga y propuesta de medidas para su reducción.
- Moernaut, J., Wiemer, G., Reusch, A., Stark, N., De Batist, M., Urrutia, R., . . . Strasser, M. (2017). The influence of overpressure and focused fluid flow on subaquatic slope stability in a formerly glaciated basin: Lake Villarrica (South-Central Chile). *Marine Geology*, 383, 35-54.
- Moreno, H., & Clavero, J. (2006). *Geología del volcán Villarrica, Regiones de La Araucanía y de Los Lagos.* Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica, No. 98, 35 p., 1 mapa escala 1:50.000.

Moreno, T., & Gibbons, W. (2007). The geology of Chile. Geological Society of London.

- Nitschke, F., Held, S., Neumann, T., & Kohl, T. (2018). Geochemical characterization of the Villarrica geothermal system, Southern Chile, part II: site-specific re-evaluation of SiO2 and Na-K solute geothermometers. *Geothermics, 74*, 217-225.
- Pavez, M., Schill, E., Held, S., Díaz, D., & Kohl, T. (2020). Visualizing preferential magmatic and geothermal fluid pathways via electric conductivity at Villarrica

Volcano, S-Chile. *Journal of Volcanology and Geothermal Research, 400.* doi:10.1016/j.jvolgeores.2020.106913

- Sánchez, P., Pérez-Flores, P., Arancibia, G., Cembrano, J., & Reich, M. (2013). Crustal deformation effects on the chemical evolution of geothermal systems: The intra-arc Liqui{\~{n}}e-Ofqui fault system, Southern Andes. *International Geology Review*, 55(11), 1384-1400. doi:10.1080/00206814.2013.775731
- Selles, A. (2014). Multi-disciplinary study on the hydrogeological behaviour of the Eastern flank of the Merapi Volcano, Central Java, Indonesia. Paris 6. doi:https://doi.org/10.13140/RG.2.2.33280.23041
- Sharpe, D. R., Pugin, A., Pullan, S. E., & Gorrell, G. (2003). Application of seismic stratigraphy and sedimentology to regional hydrogeological investigations: An example from Oak Ridges Moraine, southern Ontario, Canada. *Canadian Geotechnical Journal*, 40(4), 711-730. doi:10.1139/t03-020
- Steffen, W., Campos, H., & Villagran, H. (1995). *Caracterización hidrodinámica preliminar del lago Villarrica*. Dirección General de Aguas; Universidad Austral de Chile, Instituto de Zoología. Obtenido de https://snia.mop.gob.cl/sad/LGO1767.djvu
- Talling, P. J., Clare, M., Urlaub, M., Pope, E., Hunt, J. E., & Watt, S. F. (2014). Large submarine landslides on continental slopes: Geohazards, methane release, and climate change. *Oceanography*, *27*(2), 32-45. doi:10.5670/oceanog.2014.38
- Valenzuela, A. (2019). Las aguas del lago Villarrica: Calidad y procesos fisicoquímicos de los recursos hídricos que lo alimentan. Memoria de Título, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Santiago.

Anexos

Anexo A: Análisis de la información estratigráfica

Para el estudio de las propiedades hidrogeológicas de la zona de estudio a un nivel detallado, se han analizado las descripciones de las perforaciones hechas para la construcción de pozos y las pruebas de bombeo realizadas, las cuales se encuentran en los expedientes de la DGA. Se nombró a cada pozo con los últimos cuatro dígitos de su respectivo expediente, el código completo de los expedientes es ND-0902-X, donde X es el número del pozo al que se hará referencia.

La información de cada pozo está resumida en una figura que contiene, de izquierda a derecha:

- 1. Estratigrafía⁴¹.
- 2. Escala en metros
- 3. Habilitación del pozo (en blanco tubería ciega, en negro las cribas)
- 4. Acuíferos identificados durante la perforación, en azul.⁴²
- 5. Nivel estático (NE) y nivel dinámico en régimen permanente (NDRP) para las pruebas de bombeo registradas y su caudal y año correspondiente.

Bajo lo anterior se encuentran dos gráficos, correspondientes a la prueba de bombeo más reciente realizada en el pozo:

- 6. Prueba de bombeo en régimen permanente (PBRP), con tiempo (min) y descenso (m) en gráfico log-log, con línea azul.
- 7. PBRP, con tiempo (min) y descenso (m) en gráfico semilog.

⁴¹ La leyenda se encuentra en la Figura 5.

⁴² Esto es sólo si se indica la extensión del acuífero en el expediente.

\$

4714-1

ID Pozo: 11065 - q = 5.5 [l/s]

t

53

log(t)

ID Pozo: 1768 - q = 100 [l/s]

ID Pozo: 8883 - q = 4 [l/s]

t

ŝ

Anexo B: Análisis de las pruebas de bombeo realizadas

Para acceder a derechos de agua subterránea se requiere realizar una prueba de bombeo en un pozo previamente construido y enviar la información a la DGA. Utilizando la información de las pruebas de bombeo realizadas en el área de estudio se puede tener una idea de las propiedades hidráulicas que se tienen en los lugares donde se han construido pozos en el área de estudio.

Se ha realizado un análisis de las pruebas de bombeo para poder calcular la transmisividad del acuífero en cada una, y así poder estimar la conductividad hidráulica de los sedimentos que componen el acuífero. Este análisis se ha realizado utilizando AquiferTest 2011.1.

En base a las pruebas de bombeo analizadas se deduce que en el área de estudio hay acuíferos confinados, semiconfinados y/o bordes de recarga. Los confinados se adecuan a la curva de Theis, los semiconfinados siguen la curva de Hantush.

Otros pozos tienen bordes de recarga, aunque es posible que actúen junto a aportes de otros acuíferos a través de acuitardos, es decir, los aportes pueden ser tanto a través de los límites horizontales como de los verticales de los acuíferos analizados. Este mismo fenómeno se ve en la orilla del Lago Villarrica, donde algunos pozos muestran este comportamiento.

Anexo B.1. Acuíferos confinados

Los acuíferos confinados son los que se encuentran limitados superior e inferiormente por acuicludos y usualmente la presión del agua es superior a la atmosférica. En cuanto a las pruebas de bombeo, generalmente se utiliza el método de Theis para el estudio de este tipo de acuíferos.

Las condiciones que cumplen las pruebas de bombeo en acuíferos confinados para su análisis con el método de Theis son las siguientes (Kruseman et al., 1970):

- 1. El acuífero es confinado.
- 2. El acuífero tiene una extensión de área aparentemente infinita.
- 3. El acuífero es homogéneo, isotrópico y de espesor uniforme en el área afectada por la prueba de bombeo.
- 4. Antes del bombeo, la superficie piezométrica es horizontal en el área afectada por la prueba de bombeo.
- 5. El acuífero es bombeado a una tasa constante.
- 6. El pozo penetra el espesor completo del acuífero y recibe agua a través de un flujo horizontal.
- 7. El agua removida del almacenamiento es descargada instantáneamente con el decrecimiento en la carga hidráulica.
- 8. El diámetro del pozo es negligible en comparación con el espesor del acuífero.
- El flujo hacia el pozo está en un estado transiente, es decir, las diferencias del descenso del nivel no son negligibles y el gradiente hidráulico no es constante en el tiempo.

Estas condiciones son ideales y satisfacen el uso correcto del modelo matemático. Sin embargo, en la realidad no siempre es posible asegurar todas las condiciones.

A pesar de realizar una selección con los pozos que representan mejor la situación ideal no es posible asegurar que la extensión del acuífero sea virtualmente infinita para efectos prácticos de la prueba, que se cumpla que el acuífero es homogéneo, isotrópico y de espesor constante, ni que la superficie piezométrica sea horizontal. Esto debido a la gran heterogeneidad en los distintos depósitos estudiados, y a que es posible que se tengan otras extracciones dentro del mismo acuífero.

Las pruebas de bombeo que mejor cumplen con las condiciones y satisfacen la ecuación de Theis son las de los pozos 4787, 4976, 12529 y 13790.

2	Contact Info		Pumping Test An	alysis Report				
	Address Company Name		Project:					
	City, State/Province		Number:					
-			Client:					
Location:		Pumping Test: Régin	nen permanente	Pumping Well: 125	529			
Test Conducted	d by:			Test Date: 16-06-2	020			
Analysis Perfor	med by:	New analysis 1		Analysis Date: 16-	06-2020			
Aquifer Thickne	ess: 21,00 m	Discharge Rate: 14 [l	Discharge Rate: 14 [l/s]					
7,00-								
Calculation using Th	1el6	Linden die Genetuelische	Chargen anofficiant	Radal Distance in Dill	1			
Observation well	[m³/d]	[m/d]	Storage coemcient	[m]				
12529	2,03 × 10 ²	9,66 × 10 ⁰	8,89 × 10 ⁻²	0,13				

Contact Info		Pumping Test An	alysis Report				
	Address Company Name		Project: Villarrica				
	City, State/Province		Number:				
-			Client:				
Location:		Pumping Test: Régin	nen permanente	Pumping Well: 137	'90		
Test Conducted	l by:			Test Date: 01-05-2	013		
Analysis Perfor	med by:	Theis RP		Analysis Date: 12-0	05-2020		
Aquifer Thickne	ess: 3,00 m	Discharge Rate: 4 [l/s	5]				
0,00		Tin 100	ne [min]		1000		
1,40- [u] 2,80- umopmer 4,20- 5,60-	0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	- <u>8 - 8 - 8 - 8 - 8 - 8</u>			^{4.0} 2 ⁻⁰ -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		
7,00	uais.						
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Radial Distance to PW			
	[m²/d]	[m/d]	-	[m]			
13790	5,75 × 10 ¹	1,92 × 10 ¹	5,00 × 10 ⁻¹	0,08			

Anexo B.2. Acuíferos semiconfinados

Los acuíferos semiconfinados son los que tienen al menos un acuitardo en su límite superior o inferior a través del cual ocurre flujo de agua, ya sea hacia arriba o hacia abajo.

Dependiendo de las condiciones de recarga, la presión del agua puede ser superior, igual o inferior a la atmosférica. También, se puede entender como dos acuíferos conectados a través de un acuitardo, donde un acuífero otorga agua al otro.

Para un análisis correcto se requieren piezómetros o pozos de observación en el acuífero semiconfinado, en el acuitardo y en el acuífero desde el que viene el flujo (Kruseman et al., 1970).

Los supuestos sobre los que se trabaja son los siguientes (Kruseman et al., 1970):

- 1. El acuífero y el acuitardo tienen un área aparente infinita.
- 2. Tanto el acuífero como el acuitardo son homogéneos, isótropos y de espesor uniforme en el área afectada por la prueba de bombeo.
- 3. Previo al bombeo, el nivel del agua y el nivel piezométrico son horizontales en el área afectada por el bombeo.
- 4. El acuífero es bombeado a una tasa constante.
- 5. El acuífero penetra completamente al acuífero y recibe agua a través de un flujo horizontal.
- 6. El flujo a través del acuitardo es vertical.
- 7. El descenso en el acuífero no bombeado o en el acuitardo si es que no hay otro acuífero es negligible.
- 8. El agua removida del almacenamiento en el acuífero y de agua proporcionada por el acuitardo son descargadas instantáneamente con el decrecimiento en la carga hidráulica.
- 9. El diámetro del pozo es negligible en comparación con el espesor del acuífero.
- 10. El flujo al pozo está en un estado estacionario.
- 11.El factor de fuga (L) cumple L>3D; donde D es el espesor saturado del acuífero.

Las pruebas de los pozos que mejor cumplen las condiciones y se adecuan a la curva son: 4714-1, 4974, 11698, 12965, 13726 y 13727.

Contact Info Address		Pumping Test A	nalysis Report					
	Address Company Name		Project:					
	City, State/Province		Number:					
			Client:					
Location:		Pumping Test: Pump	ing Test 1	Pumping Well: 4	714-1			
Test Conducted	by:			Test Date: 17-06	5-2020			
Analysis Perfor	med by:	New analysis 1	(-1	Analysis Date: 1	7-06-2020			
Aquiter Thickne	SS.	Discharge Rate: 20 [I	/sj					
1	10	Tin	ne [min] 100	1000	1000	00		
0,00					· · · · · · · · · · · · · · · · · · ·			
1,40- 2,80- 4,20- 5,60- 7,00-								
Calculation using Ha	ntush							
Observation Well	Transmissivity	Storage coefficient	Hydr. resistance	Leakage factor	Radial Distance to PW			
	[m³/d]		[min]	[m]	[m]			
4714-1	1,62 × 10 ²	5,00 × 10 ⁻¹	6,60 × 10 ¹	2,72 × 10 ⁰	0,13			

2	Contact Info		Pumping T	est Analysis	Report			
	Address Company Name		Project:					
	City, State/Province		Number:					
			Client:					
Location:		Pumping Test: Ré	gimen permaner	nte P	umping Well: 12965			
Test Conducted	by:			Te	est Date: 16-06-2020			
Analysis Perform	med by:	Hantush (1 - 1440 min) Analysis Date: 16-06-2020						
Aquifer Thickne	ss: 18,00 m	Discharge Rate: 36 [l/s]						
0,00	10	т	ime [min] 100		1000	10000		
1,00- 2,00- E 3,00- 4,00-		a a da a		hub-0-0-00a	10(11111))nnnn			
5,00	ntush							
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Hydr. resistand	e Leakage factor	Radial Distance to PW		
	[m²/d]	[m/d]		[min]	[m]	[m]		
12965	6,07 × 10 ²	3,37 × 10 ¹	5,00 × 10 ⁻¹	3,68 × 10 ²	1,24 × 10 ¹	0,1		

Contact Info		Pumping T	Pumping Test Analysis Report				
	Address Company Name		Project: Vil	larrica			
	City, State/Province		Number:				
-			Client:				
Location:		Pumping Test: Re	egimen Permaner	nte Pump	ing Well: 13726		
Test Conducted	by:			Test I	Date: 20-05-2020		
Analysis Perform	ned by:	Hantush		Analy	sis Date: 20-05-20)20	
Aquifer Thickne	ss: 26,00 m	Discharge Rate: 9	∮[l/s]				
	10	1	Time [min]			10000	
1,00	10				1000		
,		8-000000-0-00000					
Ξ							
10,00							
■ 13	726						
Calculation using Ha	ntush	1					
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Hydr. resistance	Leakage factor	Radial Distance to PW	
	[m²/d]	[m/d]		[min]	[m]	[m]	
13726	2,72 × 10 ²	1,04 × 10 ¹	4,77 × 10 ⁻³	1,79 × 10 ³	1,84 × 10 ¹	0,13	

Contact Info		Pumping T	est Analys	is Report			
	Address Company Name		Project: Vil	larrica	-		
	City, State/Province		Number:				
			Client:				
Location:		Pumping Test: Reg	gimen permaner	nte l	Pumping W	/ell: 13727	
Test Conducted	by:			-	Test Date:	20-05-2020	
Analysis Perforr	med by:	Hantush Analysis Date: 20-05-2020					.0
Aquifer Thickne	ss: 9,00 m	Discharge Rate: 25 [l/s]					
0,00 ¹ 4,00-	10	T.	ime [min] 100		1000	·	10000
8,00- E 12,00-	0 0 0 0 0 000000	9-000-0-0-0-000-0	-				
				000-0-0-0-0			
16,00-							
20,00							
Calculation using Ha	ntush	Lunder and La	0	Liveta englater		-hann familia	Restal Distance to
Observation weil	папылкытку	Conductivity	sorage opendent	nyai. tesistai	ice Le	akage lacor	PW
	[m³/d]	[m/d]		[min]	[m]]	[m]
13727	2,13 × 10 ²	2,37 × 10 ¹ 7	7,61 × 10 ⁻⁶	3,28 × 10 ⁶	6,9	96 × 10 ²	0,1

Anexo B.3. Influencia de bordes de recarga

Hay pozos donde se ve la influencia de bordes de recarga o de un proceso mixto entre aportes por bordes de recarga y acuíferos semiconfinados.

Estos pozos no se adecúan a una curva en particular, y los numerosos puntos de inflexión que presentan pueden señalar que están conectados con más de una fuente que aporte a los acuíferos donde se encuentran estos pozos.

De especial atención son los pozos que se encuentran en la orilla del Lago Villarrica, 4134 y 4863, con una curva muy pronunciada, y es posible que el lago sea el que aporta. Para los demás pozos los aportes vienen de otros acuíferos, ya sea vertical u horizontalmente, y estos son 1644, 1768, 3270, 3324, 4134, 4354, 4485, 4863, 4915, 9887, 10270, 11000, 11065, 11431, 12094, 12786, 13378 y 13789.

Contact Info Address	Pumping Test Analysis Report										
	Address Company Name		Project:								
	City, State/Province		Number:								
			Client:								
Location:		Pumping Test: Rég	imen permanente	imen permanente Pumping Well: 1644							
Test Conducted	by:			Tes	st Date: 16-06-2020						
Analysis Perform	ned by:	New analysis 4	11/21	Ana	alysis Date: 16-06-20	20					
Aquiler Thickne	ss. 11,00 m	Discharge Rate. 22	. [//S]								
0.00		Ti 10	ime [min]	100		1000					
0,00											
0,60-											
IN OP	•										
1,80-	· ·	•••									
2,40-			_								
3,00		3,00-									
3,00				-							
3,00 Calculation using Ha	ntush										
3,00 Calculation using Ha	ntush Transmissivity	Hydraulic S Conductvity	torage coefficient	Hydr. resistance	Leakage factor	Radial Distance to					
3,00	ntush Transmissivity [m²/d]	Hydraulic S Conductvity [m/d]	torage coefficient	Hydr. resistance	Leakage factor	Radial Distance to PW [m]					
3,00 Calculation using Ha Observation Well	ntush Transmissivity [m²/d] 4,73 × 10 ²	Hydraulic S Conductvity [m/d] 4,30 × 10 ⁴ 5	storage coefficient	Hydr. resistance (min) 2,38 × 10 ²	Leakage factor [m] 8,84 × 10 ⁰	Radiai Distance to PW [m] 0,08					

Contact Info	Pumping Te	Pumping Test Analysis Report						
	Address Company Name		Project:					
	City, State/Province		Number:					
-			Client:	Client:				
Location:		Pumping Test: Re	gimen permanen	nte P	umping Well: 3270			
Test Conducted	l by:			Т	est Date: 03-06-2020			
Analysis Perfor	med by:	New analysis 3	FI/_1	A	nalysis Date: 08-06-2	020		
Aquifer Thickne	ss: 13,00 m	Discharge Rate: 6	[l/s]					
1	10	т	ime [min] 100		1000	10000		
0,00								
1,40- [w] 2,80- 4,20- 5,60- 7,00			0-0-0-0	84000000000				
Calculation using Ha	intush							
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Hydr. resistand	e Leakage factor	Radial Distance to PW		
	[m²/d]	[m/d]	4	[min]	[m]	[m]		
3270	3,89 × 10'	2,99 × 10"	5,00 × 10"	1,04 × 10*	1,68 × 10°	0,08		

Contact Info		Pumping T	est Analys	sis Repo	rt		
	Address Company Name		Project: Vil	larrica			
	City, State/Province		Number:				
			Client:				
Location:		Pumping Test: Re	gimen permaner	nte	Pumping	Well: 4134	
Test Conducted	i by:				Test Dat	e: 19-05-2020	
Analysis Perfor	med by:	Hantush (10 - 1440 min) Analysis Date: 19-05-2020					20
Aquiter Thickne	ss: 6,00 m	Discharge Rate: 4	,4 [l/s]				
		1	ime [min]				
0.00	10		100		10(10000
0,00							
I I	_						
0,40-	-						
Ξ							
5 0,80							
op	•						
a 1,20-	•						
۵ (
	•						
1,607							
			HO-0-0-0-0-0-0-0-0-	-0-000000000000000000000000000000000000			
2,00							
Calculation using Ha	antush						
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Hydr. resista	ince	Leakage factor	Radial Distance to PW
	[m²/d]	[m/d]		[min]		[m]	[m]
4134	2,16 × 10 ²	3,61 × 10 ¹	1,85 × 10 ⁻⁴	3,04 × 10 ⁴		6,76 × 10 ¹	0,1

Contact Info		F	Pumping Test Analysis Report					
	Address Company Name		F	Project:				
	City, State/Province		1	Number:				
			0	Client:				
Location:		Pumping Tes	st: Regime	n permanente	Pumping We	ell: 4354		
Test Conducted	by:				Test Date: 1	5-06-2020		
Analysis Perform	med by:	New analysis	s 2		Analysis Dat	e: 15-06-2020		
Aquifer Thickne	ss: 51,00 m	Discharge R	ate: 21 [l/s]]				
1		10	Time	[min]	<u>00</u>		1000	
0,00					II		· · · ·	
4,00-	• .							
E 12,00-		I						
16,00-					0			
20,00								
Calculation using Ha	ntush							
Observation Well	Transmissivity	Hydraulic	Storage	Ratio K(v)/K(h)	Hydr. resistance	Leakage factor	Radial Distance to	
	[m³/d]	[m/d]	openioene		[min]	[m]	[m]	
4354	4,60 × 10 ¹	9,02 × 10 ⁻¹	5,00 × 10 ⁻¹	3,43 × 10 ⁻¹	4,66 × 10 ¹	1,22 × 10 ⁰	0,1	

Contact Info			Pumping Test Analysis Report						
	Address Company Name		Project:						
	City, State/Province		Number:						
			Client:						
Location:		Pumping Test: Cauda	al cosntante	Pumping Wel	: 4863				
Test Conducted	d by:		Test Date: 20-06-2020						
Analysis Perfor	med by:	New analysis 2		Analysis Date	: 20-06-2020				
Aquifer Thickne	ess: 18,00 m	Discharge Rate: 7 [l/s	s]						
1	10	Tin	ne [min] 100	1000	10000				
0,04- 0,08- E 0,12- 0,16- 0,20		0000-0-0-0-0000-0-	000-0-0-0-00000						
Calculation using Theis with Jacob Correction									
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Р	Radial Distance to PW				
	[m³/d]	[m/d]			[m]				
4863	2,80 × 10 ³	1,56 × 10 ²	5,00 × 10 ⁻¹	1,09 × 10 ²	0,08				

Contact Info		Pumping T	est Analysi	s Report					
3	-	Compan	y Name		Project: Vil	llarrica			
		City, Sta	te/Province		Number:				
					Client:				
Loo	cation:			Pumping Test: Re	nping Test: Regimen permanente Pumping Well: 9887				
Test Conducted by:						T	est Date:	19-05-2020	-
Ana	alysis Perfor	med by:	~	Hantush (20 - 144)	Hantush (20 - 1440 min) Analysis Date: 20-05-2020				
Aq		255. 12,001	n	Discharge Rate. I	o,2 [i/s]				
	1		10	т	ime [min] 100		1000		10000
	0,00								· · · · · · · · · · · · · · · · · · ·
[m]	4,00-	•••	•••••						
Drawdown									
	16,00-								
	20,00								
Cald	culation using H	antush	Transmission	Libratum Co.	Olerana esettelezt	Linete engleting		the second second	Radial Distance in
006	ervalion well		папыпнынку	Conductivity	Storage coencient	nyur. resistani	ce Lea	akage ractor	PW
			[m²/d]	[m/d]		[min]	[m]		[m]
988	7		1,06 × 10 ²	8,82 × 10 ⁹	3,64 × 10 ⁻²	5,71 × 10 ³	2,0	5 × 10 ¹	0,08

2. 	Contact Info		Pumping T	Pumping Test Analysis Report					
	Address Company Name		Project:	Project:					
City, State/Province			Number:	Number:					
			Client:						
Location:		Pumping Test: Caudal constante		Pump	Pumping Well: 11000				
Test Conducted	by:	1			Test Date: 17-06-2020				
Analysis Perform	med by:	New analysis 1			Analysis Date: 17-06-2020				
Aquiter Thickne	ss: 34,00 m	Discharge Rate: 3 [l/s]							
1	10	1	Fime [min] 100		1000	10000			
0,00									
1,00- 2,00- E 3.00-		D D D D D D D D D D D D D D D D D D D							
4,00-	4,00-								
5,00									
Calculation using Ha	ntush					D-d-D-b			
Observation Weil Transmissivity		Conductivity	Storage coemcient	Hydr. resistance	Leakage factor	PW			
	[m³/d]	[m/d]		[min]	[m]	[m]			
11000	5,25 × 10 ¹	1,54 × 10 ⁰	5,00 × 10 ⁻¹	4,05 × 10 ⁸	3,84 × 10 ³	0,08			

Contact Info				Pumping Test Analysis Report							
Address Company Name				Project: Villarrica Number:							
City, State/Province											
Client:											
Location:			Pumping Te	Pumping Test: Régimen permanente			Pumping Well: 11065				
Tes	t Conducted	l by:			-			Test Date: 18-05-2020			
Ana	alysis Perfor	med by:		Hantush (70	Hantush (700 - 1442 min)			e: 30-05-2020			
Aqu		ss: 19,00 n	n	Discharge R	ate: 5,5 [l/s]						
	Time [min] 1 10 1000 10000										
	-,										
2,00-											
m] nwo	£ 4,00-										
Drawdo	6,00-										
	8,00-										
	10,00										
Calo	ulažion usina Hi	which									
Obse	ervation Well	aniu-bri	Transmissivity	Hydraulic	Storage	Ratio K(v)/K(h)	Hydr. resistance	Leakage factor	Radial Distance to		
			[m²/d]	[m/d]	coenicient		[min]	[m]	[m]		
1106	11065 6,40 × 10 ¹		3,37 × 10 ⁰	1,05 × 10 ⁻²	1,86 × 10 ⁻¹	6,91 × 10 ⁵	1,75 × 10 ²	0,08			

84	Contact Info		Pumping Test Analysis Report				
	Address Company Name	Project:					
	City, State/Province		Number:				
			Client:				
Location:		Pumping Test: Pumping Test 1			Pumping Well: 12094		
Test Conducted	l by:				Test Date: 19-06-2020		
Analysis Perform	med by:	New analysis 1			Analysis Date: 19-06-2020		
Aquifer Thickness: 6,00 m		Discharge Rate: 2 [l/s]					
1		10	ne [min]	100)		1000
0,00							· · · · · ·
0,02-							
0,04- E	•						
0,06-	• •			e e	-001		
0,08-							
0,10							
Calculation using Ha	ntush						
Observation Weil Transmissivity		Hydraulic Str Conductivity	orage coefficient	Hydr. resista	ince	Leakage factor	Radial Distance to PW
	[m²/d]	[m/d]		[min]		[m]	[m]
12094	8,25 × 10 ²	1,37 × 10 ² 5,0	10 × 10 ⁻¹	2,33 × 10 ¹		3,66 × 10 ⁰	0,5

Anexo C: Ubicaciones de los pozos e información hidroquímica e isotópica utilizada

ID_Pozo	UTM_N	UTM_E	Huso	Datum	Expediente
1016	5649215	221518	19H	1984	ND-0902-1016
1644	5645422	225539	19H	1984	ND-0902-1644
1768	5647846	244821	19H	1984	ND-0902-1768
2050	5645373	224038	19H	1984	ND-0902-2050
2496	5649525	221958	19H	1984	ND-0902-2496
2868	5643930	235678	19H	1984	ND-0902-2868
3270	5643674	240606	19H	1984	ND-0902-3270
3291	5643940	235708	19H	1984	ND-0902-3291
3324	5648953	243538	19H	1984	ND-0902-3324
3444	5644913	221803	19H	1984	ND-0902-3444
3453	5646023	223838	19H	1984	ND-0902-3453
3754	5645430	227395	19H	1984	ND-0902-3754
3838	5646181	226390	19H	1984	ND-0902-3838
4139	5647803	244024	19H	1984	ND-0902-4139
4179	5644300	227508	19H	1984	ND-0902-4179
4243	5656882	222252	19H	1984	ND-0902-4243
4329	5654114	224654	19H	1984	ND-0902-4329
4354	5645492	225835	19H	1984	ND-0902-4354
4355	5647403	253153	19H	1984	ND-0902-4355
4407	5642294	240877	19H	1984	ND-0902-4407
4485	5651615	218407	19H	1984	ND-0902-4485
4787	5644952	233723	19H	1984	ND-0902-4787
4789	5656305	218374	19H	1984	ND-0902-4789
4863	5649153	243314	19H	1984	ND-0902-4863
4915	5645303	247154	19H	1984	ND-0902-4915
4974	5645786	224242	19H	1984	ND-0902-4974
4976	5644743	235685	19H	1984	ND-0902-4976
5450	5651979	220576	19H	1984	ND-0902-5450
5633	5646093	240194	19H	1984	ND-0902-5633
5874	5645813	223887	19H	1984	ND-0902-5874
8883	5645010	241989	19H	1984	ND-0902-8883
9032	5645885	223549	19H	1984	ND-0902-9032
9289	5644903	236922	19H	1984	ND-0902-9289
9724	5645207	227576	19H	1984	ND-0902-9724
9887	5642809	238323	19H	1984	ND-0902-9887
10085	5651956	217265	19H	1984	ND-0902-10085
10270	5642271	240796	19H	1984	ND-0902-10270
10881	5643670	220908	19H	1984	ND-0902-10881
10993	5644899	239409	19H	1984	ND-0902-10993
11000	5650202	221544	19H	1984	ND-0902-11000
11065	5644468	238682	19H	1984	ND-0902-11065
11278	5644845	236619	19H	1984	ND-0902-11278
11315	5653496	218617	19H	1984	ND-0902-11315
11408	5642240	230449	19H	1984	ND-0902-11408

Tabla 7. Ubicación de los pozos en el área de estudio.

11431	5641913	241969	19H	1984	ND-0902-11431
11675	5646988	247092	19H	1984	ND-0902-11675
11698	5649818	221701	19H	1984	ND-0902-11698
12238	5645223	235539	19H	1984	ND-0902-12238
12529	5642712	228607	19H	1984	ND-0902-12529
12708	5643685	239670	19H	1984	ND-0902-12708
12786	5645477	224598	19H	1984	ND-0902-12786
12863	5645349	227340	19H	1984	ND-0902-12863
12965	5640702	223183	19H	1984	ND-0902-12965
13042	5645727	224508	19H	1984	ND-0902-13042
13165	5645175	248388	19H	1984	ND-0902-13165
13275	5645242	246930	19H	1984	ND-0902-13275
13378	5642348	240634	19H	1984	ND-0902-13378
13713	5643056	236306	19H	1984	ND-0902-13713
13726	5645146	237669	19H	1984	ND-0902-13726
13789	5641121	240655	19H	1984	ND-0902-13789
13790	5641474	241181	19H	1984	ND-0902-13790
14084	5651086	257001	19H	1984	ND-0902-14084
14827	5650958	254942	19H	1984	ND-0902-14827
4134-1	5645389	233710	19H	1984	ND-0902-4134-1
4134-2	5645369	233712	19H	1984	ND-0902-4134-2
4714-1	5653728	218532	19H	1984	ND-0902-4714-1
4714-2	5653955	218476	19H	1984	ND-0902-4714-2
13055	5646883	742123	18H	1984	ND-0902-13055
15163	5644987	755271	18H	1984	ND-0902-15163

Tabla 8. Ubicación de los pozos del muestreo de hidroquímica de 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	Тіро	UTME	UTMN	Descripción
1	Superficial	795540	5635757.256	Río Trancura antes de descargas de aguas servidas de Curarrehue
2	Superficial	794573	5638016.459	Río Trancura, después de descargas de aguas servidas de Curarrehue
3	Superficial	779558	5641264.142	Río Palguín
4	Superficial	785862	5634118.705	Río Cabedaña, antes de piscicultura Hendrix Genetics
5	Superficial	783058	5637450.366	Después de confluencia entre ríos Cabedaña y Uampoe
6	Superficial	773537	5651963.209	Río Caburgua antes de las pisciculturas
7	Superficial	772376	5651298.499	Río Caburgua, después de las pisciculturas
8	Superficial	773798	5649537.141	Río Liucura
9	Superficial	768404	5649234.777	Después de confluencia entre ríos Liucura y Caburgua
10	Superficial	768000	5645699.372	Río Turbio
11	Superficial	750008	5646060	Estero Molco
12	Superficial	750357	5643871	Estero Chosco antes de Piscicultura Chehuilco
13	Superficial	751691	5644387	Estero Loncotraro antes de Piscicultura Loncotraro
14	Superficial	752057	5645588	Estero Loncotraro, después de Piscicultura Loncotraro
15	Superficial	752760	5645471	Estero Correntoso antes de piscicultura Fundo La Cascada
16	Superficial	752668	5645700	Estero Las Chilcas

17	Subterránea	760684	5647565.625	Estanque del Hotel Gran Pucón. Toma agua de un pozo automática y continuamente.
18	Subterránea	761001	5646995.347	Llave en planta de agua potable. El agua se extrae de pozo O-91 (código DGA).
19	Subterránea	761556	5647598.886	Pozo Aguas Araucanías en plaza Colo-Colo. O-138 (código DGA)
20	Subterránea	757183	5645921	Pozo Camping Soraya Eltit
21	Subterránea	747574	5643026	Noria casa Lefún 77. O-410 (código DGA)
22	Subterránea	742948	5646406	Pozo Condominio Alto Pinar. O-80 (código DGA)
23	Subterránea	736039	5651052	Pozo en PTAS de Villarrica. Pozo O-313 (código DGA).
24	Superficial	738855	5649056	Río Toltén, en la desembocadura del lago Villarrica
25	Subterránea	740441	5658110	Pozo O-139 (código DGA)
26	Subterránea	739155	5646144	Pozo O-119 (código DGA)
27	Subterránea	739393	5651044	Pozo Condominio Jardines de Villarrica. O-435 (código DGA)
28	Superficial	760186	5648088.759	Lago Villarrica, cercano a muelle La Poza
29	Superficial	759104	5647444.065	Lago Villarrica, ribera este. Antes de entrada de La Poza, desde el sur.
30	Superficial	760777	5649211.102	Lago Villarrica, cercano a Playa Grande
31	Superficial	753044	5649832	Centro del Lago Villarrica
32	Superficial	765471	5648413.254	Río Pucón, antes de la desembocadura al lago Villarrica.
33	Subterránea	759120	5641874.732	Pozo Fundo el Volcán. O-412 (código DGA).
34	Superficial	762412	5649886.245	Río Claro antes de la descarga de la PTAS de Pucón
35	Superficial	762287	5649886.545	Río Claro después de la descarga de la PTAS de Pucón
36	Superficial	773030	5642390	Río Trancura, antes de vertedero Pucón
37	Superficial	771756	5645520	Río Trancura, después de vertedero Pucón
38	Subterránea	784772	5639980	Pozo O-144 (código DGA)
39	Subterránea	736524	5655140	Pozo O-148 (código DGA)
40	Superficial	741070	5655010	Laguna Pichilafquén

Tabla 9. Ubicación de los pozos del muestreo de hidroquímica de 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Тіро	UTME	UTMN	Descripción
A01	Superficial	750020	5655331	Fundo Don Enrique (Playa ribera norte del lago)
A02	Superficial	741353	5654706	Laguna Pichilafquén
A03	Subterránea	752525	5656561	Fundo los Roblíes (casa La Tobiana, pozo de 30m, nivel freatico a 20-25m)
A04	Subterránea	740050	5653488	Fundo Caleuche (Noria de 1-1.5 m)
A05	Subterránea	736039	5651052	Pozo Aguas Araucanía en PTAS Villarrica. Código DGA O-313
A06	Subterránea	741202	5657804	La Pradera, Fundo Pedregoso (Cuñado Jose Alarcon) (Pozo de 100m)

Tabla 10. Parámetros medidos in situ para las muestras de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	Temperatura (°C)	рН	Conductividad eléctrica (µS/cm)	Eh (mV)
1	17,9	7,02	48,6	180,9
2	18,3	7,03	49,5	181,2
3	15,8	7,21	51,1	202,4
4	14,5	6,77	24,3	215,7
5	18,5	6,96	75,6	107,1
6	20,5	7,54	90,0	203,0
7	17,7	7,16	47,1	216,9
8	20,3	7,46	62,3	220,7
9	20,5	7,3	65,5	235,5
10	20,1	6,41	29,0	216,1
11	13,0	7,29	67,5	221,4
12	14,8	7,00	79,8	213,6
13	14,5	7,00	99,8	224,8
14	14,2	7,31	68,7	228,5
15	15,0	7,32	71,9	218,3
16	13,5	7,06	59,5	226,7
17	12,4	7,14	110,1	596,9
18	15,8	7,06	84,8	237,5
19	15,7	7,32	140,5	240,1
20	18,8	6,83	175,1	236,2
21	16,4	6,22	76,5	196,4
22	15,2	7,56	89,2	236,0
23	16,3	7,94	219	166,2
24	22,3	8,73	68,5	171,8
25	17,5	8,73	112,2	203,5
26	17,5	7,19	112,2	203,5
27	16,4	7,68	109,9	138,1
28	22,1	8,43	64,6	141,9
29	22,7	8,66	63,4	110,2
30	22,2	8,8	63,6	91,7
31	21,2	8,92	62,2	96,0
32	19,6	7,56	68,4	91,1
33	14,7	6,67	78,3	81,7
34	15,6	7,21	59,1	131,2
35	14,3	7,14	62,7	119,9

Tabla 11. Aniones mayores para las muestras de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	F ⁻ mg/L	Cl ⁻ mg/L	SO₄⁻² mg/L	Br mg/L	NO ₃ ⁻ mg/L	PO₄ ⁻ mg/L	HCO₃ ⁻ mg/L
1	0,05	3,66	1,15	< 0,05	< 0,1	< 0,2	24,84
2	0,05	1,12	0,87	< 0,05	0,09	< 0,2	23,20
3	0,05	1,24	2,25	< 0,05	< 0,1	< 0,2	23,48
4	0,05	0,41	2,34	< 0,05	< 0,1	< 0,2	7,61
5	0,09	2,98	8,71	< 0,05	< 0,1	< 0,2	24,39
6	0,06	0,91	0,23	< 0,05	< 0,1	< 0,2	50,13
7	0,04	0,98	1,08	< 0,05	0,21	< 0,2	22,40
8	0,06	1,53	2,53	< 0,05	< 0,1	< 0,2	27,16
9	0,05	2,96	1,96	< 0,05	0,30	< 0,2	27,56
10	0,06	0,91	0,64	< 0,05	< 0,1	< 0,2	12,24
11	0,05	3,31	0,42	< 0,05	1,13	< 0,2	28,01
12	0,05	3,21	0,30	< 0,05	< 0,1	< 0,2	39,53
13	0,05	3,26	0,31	< 0,05	1,09	< 0,2	51,42
14	0,04	1,63	0,32	< 0,05	0,96	< 0,2	35,48
15	0,04	4,93	0,33	< 0,05	0,66	< 0,2	30,45
16	0,04	1,58	0,30	< 0,05	0,43	< 0,2	24,56
17	0,07	1,60	0,87	< 0,05	0,89	< 0,2	56,34
18	0,05	1,16	0,81	< 0,05	0,26	< 0,2	43,84
19	0,11	1,98	0,98	< 0,05	1,07	< 0,2	73,17
20	0,04	2,84	1,13	< 0,05	1,23	< 0,2	88,93
21	< 0.03	1,32	7,10	< 0,05	0,10	< 0,2	30,37
22	0,07	1,39	0,62	< 0,05	0,64	0,27	45,08
23	0,15	8,13	23,68	< 0,05	< 0,1	0,93	64,64
24	0,03	1,82	1,46	< 0,05	< 0,1	< 0,2	26,37
25	0,05	2,77	0,75	< 0,05	5,99	< 0,2	52,07
26	0,08	1,59	0,69	< 0,05	1,21	0,29	48,26
27	0,07	2,04	0,82	< 0,05	0,46	0,26	51,43
28	0,05	1,75	1,47	< 0,05	< 0,1	< 0,2	27,32
29	0,05	1,73	1,52	< 0,05	0,10	< 0,2	26,24
30	0,05	1,75	1,95	< 0,05	< 0,1	< 0,2	21,09
31	0,06	1,72	1,88	< 0,05	< 0,1	< 0,2	21,61
32	0,07	2,18	2,71	< 0,05	< 0,1	< 0,2	29,57
33	0,04	1,35	0,34	< 0,05	0,89	< 0,2	40,74
34	0,03	1,26	0,47	< 0,06	< 0,1	< 0,2	30,06
35	0,03	1,52	0,55	< 0,05	0,11	< 0,2	29,78

Tabla 12. Cationes mayores para las muestras de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	Na⁺ mg/L	K⁺ mg/L	Ca ²⁺ mg/L	Mg ²⁺ mg/L	SiO ₂ mg/L
1	4,65	0,98	4,35	1,62	31,00
2	3,45	0,90	4,33	1,57	40,00
3	3,58	1,02	4,34	1,44	29,00
4	2,00	0,48	2,47	0,62	31,00
5	7,20	1,54	4,10	1,90	30,00
6	5,40	1,63	6,78	3,40	41,00
7	2,95	0,84	4,68	1,16	21,00
8	3,90	0,75	5,74	1,63	26,00
9	4,75	0,89	5,22	1,67	28,00
10	1,68	0,33	2,37	0,78	19,50
11	5,45	1,01	5,59	1,86	40,00
12	6,25	1,12	5,97	2,53	38,00
13	5,95	1,86	8,70	3,44	56,00
14	4,20	1,21	5,87	2,20	42,00
15	5,95	1,06	5,10	1,74	40,00
16	3,50	0,87	4,31	1,48	36,00
17	6,30	1,59	8,90	3,54	47,00
18	4,95	1,17	7,21	2,70	40,00
19	8,45	1,59	10,62	4,86	46,00
20	7,28	2,86	15,62	5,44	72,00
21	4,75	0,64	6,46	2,02	29,00
22	5,80	1,50	6,05	3,24	51,00
23	11,00	2,16	11,84	2,97	45,00
24	4,05	0,95	5,24	1,77	24,00
25	5,95	1,81	9,53	3,36	47,00
26	6,45	1,92	6,42	3,61	53,00
27	6,50	1,31	8,98	3,21	46,00
28	3,85	0,89	5,01	1,82	22,00
29	3,80	0,86	4,91	1,76	23,00
30	3,85	0,88	5,06	1,78	21,00
31	3,80	0,82	5,13	1,71	23,00
32	4,55	1,05	5,92	1,90	21,00
33	4,10	1,61	8,04	2,00	50,00
34	3,90	0,78	5,09	2,04	34,50
35	4,35	0,85	5,40	2,04	33,00

Punto de muestreo	Li µg/L	Be µg/L	Β μg/L	Al µg/L	V µg/L	Cr µg/L	Fe µg/L	Mn μg/L	Co µg/L	Ni µg/L
1	4,20	< 0,01	4,92	5,32	1,56	< 0,07	60,61	5,47	0,05	0,35
2	2,33	< 0,01	3,51	7,69	1,50	< 0,07	65,44	5,00	0,04	0,23
3	1,57	< 0,01	10,29	9,53	6,56	< 0,07	10,94	0,67	< 0,02	0,20
4	0,57	< 0,01	1,74	39,31	1,93	< 0,07	25,87	1,01	< 0,02	0,15
5	4,72	< 0,01	37,06	10,32	6,35	< 0,07	43,39	2,79	0,04	0,22
6	0,44	< 0,01	3,76	13,55	9,81	< 0,07	37,79	2,86	0,05	0,34
7	0,82	< 0,01	5,36	5,40	3,91	< 0,07	145,94	0,67	0,02	0,19
8	1,28	< 0,01	8,94	10,00	4,87	< 0,07	25,61	2,37	0,04	0,22
9	1,11	< 0,01	8,72	8,46	6,75	< 0,07	17,16	0,98	0,03	0,23
10	< 0,06	< 0,01	3,60	61,89	5,94	< 0,07	24,62	1,79	0,03	< 0,10
11	0,62	< 0,01	6,44	15,42	16,58	< 0,07	34,02	1,08	0,03	0,39
12	0,56	< 0,01	6,23	7,75	6,28	< 0,07	57,07	3,73	0,05	0,34
13	0,54	< 0,01	8,83	16,61	12,40	< 0,07	26,84	0,50	0,04	0,33
14	< 0,06	< 0,01	6,36	14,93	10,13	< 0,07	27,68	0,79	0,03	0,32
15	< 0,06	< 0,01	5,87	11,52	8,21	< 0,07	13,47	1,13	0,03	0,21
16	0,59	< 0,01	5,63	5,15	10,98	< 0,07	< 3	0,22	< 0,02	< 0,10
17	0,70	< 0,01	10,44	5,90	24,22	< 0,07	6,57	0,37	0,04	0,38
18	1,01	< 0,01	9,04	2,44	19,18	< 0,07	< 3	< 0,01	< 0,02	0,26
19	0,97	< 0,01	13,52	3,00	20,75	< 0,07	< 3	< 0,01	0,04	0,51
20	0,79	< 0,01	10,39	12,84	21,71	< 0,07	8,33	0,45	0,05	0,77
21	0,02	< 0,01	10,96	3,79	1,13	< 0,07	19,05	7,88	0,07	0,35
22	0,97	< 0,01	8,22	4,54	17,78	< 0,07	10,33	0,28	< 0,02	0,40
23	1,10	< 0,01	118,12	7,37	21,09	< 0,07	11,65	7,98	0,03	0,37
24	1,20	< 0,01	9,67	7,83	3,85	< 0,07	8,70	0,51	< 0,02	0,26
25	0,60	< 0,01	6,29	7,68	7,80	< 0,07	10,26	1,29	0,04	0,41
26	0,71	< 0,01	12,68	8,99	12,79	< 0,07	11,75	2,01	0,03	0,38
27	0,76	< 0,01	6,70	11,38	13,73	< 0,07	9,35	0,45	0,03	0,42
28	1,20	< 0,01	9,43	9,51	4,64	< 0,07	12,09	0,96	0,02	0,25
29	1,19	< 0,01	9,32	15,45	4,26	< 0,07	12,64	1,25	0,03	0,24
30	1,18	< 0,01	9,32	9,70	4,12	< 0,07	10,71	0,46	< 0,02	0,24
31	1,19	< 0,01	9,24	6,21	3,72	< 0,07	6,37	0,37	< 0,02	0,22
32	1,71	< 0,01	12,29	11,17	6,48	< 0,07	47,89	1,77	0,03	0,25
33	0,33	< 0,01	6,06	3,59	4,16	< 0,07	103,93	77,29	0,25	0,63
34	0,30	< 0,01	4,56	11,55	5,05	< 0,07	21,14	2,01	0,03	0,25
35	0.31	< 0.01	4.67	11.43	5.16	< 0.07	22.21	2.08	0.04	0.26

Tabla 13. Cationes trazas para las muestras de enero 2018. Tabla 1 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	Cu µg/L	Zn µg/L	As µg/L	Se µg/L	Rb µg/L	Sr µg/L	Zr µg/L	Mo µg/L	Ag µg/L	Cd µg/L
1	0,74	6,68	0,22	< 0,30	3,35	33,10	< 0,008	0,68	< 0,003	0,07
2	0,40	12,17	0,19	< 0,30	2,92	21,86	< 0,008	0,57	< 0,003	< 0,004
3	0,97	10,45	0,86	< 0,30	2,66	18,85	< 0,008	0,26	< 0,003	< 0,004
4	< 0,2	11,74	0,41	< 0,30	1,12	7,71	< 0,008	< 0,006	< 0,003	< 0,004
5	2,12	7,96	1,10	< 0,30	4,63	17,67	< 0,008	0,58	< 0,003	< 0,004
6	< 0,2	6,29	0,20	< 0,30	3,35	41,36	< 0,008	< 0,006	< 0,003	< 0,004
7	< 0,2	9,98	< 0,06	< 0,30	1,62	24,49	< 0,008	0,55	< 0,003	< 0,004
8	< 0,2	8,55	0,84	< 0,30	1,50	30,78	< 0,008	0,99	< 0,003	< 0,004
9	< 0,20	8,82	0,67	< 0,30	1,90	25,88	< 0,008	0,73	< 0,003	< 0,004
10	< 0,20	5,16	0,56	< 0,30	0,94	10,43	< 0,008	< 0,006	< 0,003	< 0,004
11	< 0,20	22,40	1,49	< 0,30	2,60	21,76	< 0,008	0,21	< 0,003	< 0,004
12	< 0,20	14,96	0,41	< 0,30	3,01	32,83	< 0,008	< 0,006	< 0,003	< 0,004
13	< 0,20	9,58	0,84	< 0,30	4,18	45,35	< 0,008	< 0,006	< 0,003	< 0,004
14	< 0,20	24,97	0,75	< 0,30	3,08	29,07	< 0,008	< 0,006	< 0,003	< 0,004
15	< 0,20	4,83	0,66	< 0,30	2,94	26,44	< 0,008	< 0,006	< 0,003	< 0,004
16	< 0,20	4,94	0,85	< 0,30	2,59	19,99	< 0,008	< 0,006	< 0,003	< 0,004
17	0,60	29,45	1,63	< 0,30	3,87	35,21	< 0,008	0,25	< 0,003	< 0,004
18	6,11	9,53	1,23	< 0,30	3,15	23,93	< 0,008	< 0,006	< 0,003	< 0,004
19	0,68	13,98	1,41	< 0,30	3,47	36,48	< 0,008	0,31	< 0,003	< 0,004
20	1,44	7,04	1,14	< 0,30	4,16	67,10	< 0,008	< 0,006	< 0,003	< 0,004
21	< 0,20	16,11	< 0,06	< 0,30	1,55	37,95	< 0,008	< 0,006	< 0,003	< 0,004
22	0,72	16,31	1,93	< 0,30	0,65	23,15	< 0,008	0,74	< 0,003	< 0,004
23	< 0,20	7,21	10,10	< 0,30	0,57	47,65	< 0,008	1,72	< 0,003	< 0,004
24	< 0,20	15,46	0,50	< 0,30	2,16	23,54	< 0,008	0,46	< 0,003	< 0,004
25	< 0,20	85,06	0,94	< 0,30	1,39	49,51	< 0,008	0,21	< 0,003	< 0,004
26	0,54	76,48	1,53	< 0,30	1,14	29,36	< 0,008	0,27	< 0,003	< 0,004
27	< 0,20	32,25	1,83	< 0,30	0,80	33,19	< 0,008	0,34	< 0,003	< 0,004
28	< 0,20	24,73	0,53	< 0,30	2,17	24,14	< 0,008	0,43	< 0,003	< 0,004
29	< 0,20	28,29	0,52	< 0,30	2,12	24,04	< 0,008	0,42	< 0,003	< 0,004
30	< 0,20	9,31	0,51	< 0,30	2,08	24,97	< 0,008	0,43	< 0,003	< 0,004
31	< 0,20	9,40	0,47	< 0,30	2,05	23,69	< 0,008	0,43	< 0,003	< 0,004
32	< 0,20	13,44	0,75	< 0,30	2,49	25,15	< 0,008	0,61	< 0,003	< 0,004
33	< 0,20	15,15	0,33	< 0,30	4,23	38,46	< 0,008	< 0,006	< 0,003	< 0,004
34	< 0,20	14,69	0,35	< 0,30	1,72	28,94	< 0,008	< 0,006	< 0,003	< 0,004
35	< 0,20	15,62	0,35	< 0,30	1,82	28,64	< 0,008	< 0,006	< 0,003	< 0,004

Tabla 14. Cationes trazas para las muestras de enero 2018. Tabla 2 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Punto de muestreo	Sn µg/L	Sb µg/L	Cs µg/L	Ba µg/L	W μg/L	Hg µg/L	Pb µg/L	U µg/L
1	< 0,01	< 0,009	0,38	5,23	< 0,01	< 0,004	1,67	0,01
2	< 0,01	< 0,009	0,23	5,06	< 0,01	< 0,004	< 0,008	0,02
3	< 0,01	< 0,009	0,16	1,51	< 0,01	< 0,004	< 0,008	0,01
4	< 0,01	< 0,009	0,02	0,90	< 0,01	< 0,004	< 0,008	< 0,001
5	< 0,01	< 0,009	0,57	1,85	< 0,01	< 0,004	< 0,008	< 0,001
6	< 0,01	< 0,009	0,05	2,20	< 0,01	< 0,004	< 0,008	0,01
7	< 0,01	< 0,009	0,06	1,90	< 0,01	< 0,004	< 0,008	< 0,001
8	< 0,01	< 0,009	0,19	2,48	0,18	< 0,004	< 0,008	0,04
9	< 0,01	0,23	0,13	1,87	< 0,01	< 0,004	< 0,008	0,01
10	< 0,01	< 0,009	0,03	0,77	< 0,01	< 0,004	< 0,008	< 0,001
11	< 0,01	0,30	0,11	1,30	< 0,01	< 0,004	< 0,008	< 0,001
12	< 0,01	< 0,009	0,11	2,19	< 0,01	< 0,004	< 0,008	< 0,001
13	< 0,01	< 0,009	0,06	1,78	< 0,01	< 0,004	< 0,008	< 0,001
14	< 0,01	< 0,009	0,09	1,51	< 0,01	< 0,004	< 0,008	< 0,001
15	< 0,01	< 0,009	0,10	1,46	< 0,01	< 0,004	< 0,008	< 0,001
16	< 0,01	< 0,009	0,11	0,81	< 0,01	< 0,004	< 0,008	< 0,001
17	< 0,01	< 0,009	0,14	1,39	< 0,01	< 0,004	< 0,008	0,02
18	< 0,01	< 0,009	0,24	0,72	< 0,01	< 0,004	< 0,008	0,02
19	< 0,01	< 0,009	0,14	1,53	< 0,01	< 0,004	< 0,008	0,04
20	< 0,01	< 0,009	0,02	2,19	< 0,01	< 0,004	0,11	0,03
21	< 0,01	< 0,009	0,06	4,74	< 0,01	< 0,004	< 0,008	< 0,001
22	< 0,01	0,25	< 0,001	0,80	0,16	< 0,004	0,10	0,03
23	< 0,01	0,28	< 0,001	1,05	1,07	< 0,004	<0,008	0,05
24	0,51	< 0,009	0,13	2,19	< 0,01	< 0,004	< 0,008	0,01
25	< 0,01	< 0,009	< 0,001	1,42	< 0,01	< 0,004	0,15	0,05
26	< 0,01	< 0,009	< 0,001	1,01	< 0,01	< 0,004	0,20	0,02
27	< 0,01	< 0,009	< 0,001	0,84	< 0,01	< 0,004	< 0,008	0,09
28	< 0,01	< 0,009	0,12	2,01	< 0,01	< 0,004	< 0,008	0,01
29	< 0,01	< 0,009	0,13	2,05	< 0,01	< 0,004	< 0,008	0,01
30	< 0,01	< 0,009	0,12	2,04	< 0,01	< 0,004	< 0,008	0,01
31	< 0,01	< 0,009	0,12	2,09	< 0,01	< 0,004	< 0,008	0,01
32	< 0,01	< 0,009	0,18	2,42	< 0,01	< 0,004	< 0,008	0,02
33	1,47	< 0,009	0,08	1,36	< 0,01	< 0,004	< 0,008	< 0,001
34	< 0,01	< 0,009	0,06	2,94	< 0,01	< 0,004	< 0,008	< 0,001
35	< 0,01	< 0,009	0,06	2,57	< 0,01	< 0,004	< 0,008	< 0,001

Tabla 15. Cationes trazas para las muestras de enero 2018. Tabla 3 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Tabla 16. . Parámetros medidos in situ para las muestras de enero 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Temperatura (°C)	рН	Conductividad eléctrica (µs/cm)	Eh (mV)
A01	23,3	8,26	60,4	146,6
A02	24,4	7,07	41,0	140,0
A03	14,9	7,34	105,2	101,5
A04	20,6	6,70	58,7	130,7
A05	22,7	7,87	188,4	111,3
A06	17,3	7,49	122,7	122,7

Tabla 17. Aniones mayores para las muestras de enero 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	F ⁻ mg/L	Cl ⁻ mg/L	SO₄ ⁻² mg/L	Br ⁻ mg/L	NO3 ⁻ mg/L	PO4 ⁻ mg/L	HCO ₃ - mg/L
A01	0,05	2,74	2,53	<0,05	0,10	<0,2	27,1
A02	<0,03	11,82	0,36	<0,05	0,14	<0,2	5,1
A03	0,07	10,06	4,83	<0,05	0,16	<0,2	52,3
A04	0,03	8,24	0,59	<0,05	0,16	<0,2	27,3
A05	0,20	14,68	20,39	<0,05	0,28	0,65	63,7
A06	0,07	8,10	1,05	<0,05	0,80	<0,2	42,8

Tabla 18. Cationes mayores para las muestras de enero 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Na⁺ mg/L	K⁺ mg/L	Ca ²⁺ mg/L	Mg ²⁺ mg/L	SiO ₂ mg/L
A01	3,94	10,19	5,30	1,76	17,1
A02	1,96	12,13	1,92	0,49	4,1
A03	6,00	11,42	10,57	3,97	37,1
A04	3,54	6,45	4,99	1,52	25,6
A05	23,00	8,61	9,70	3,01	50,6
A06	5,36	6,25	7,01	2,79	48,8

Tabla 19. Cationes trazas para las muestras de enero 2019. Tabla 1 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Li µg/L	Be µg/L	Β μg/L	Al µg/L	V µg/L	Cr µg/L	Fe µg/L	Mn µg/L	Co µg/L	Ni µg/L
A01	1,08	<0,01	9,70	5,03	4,21	<0,07	7,79	0,92	<0,02	0,33
A02	0,06	<0,01	3,56	201,29	2,71	<0,07	109,94	13,65	0,08	0,37
A03	0,20	<0,01	5,22	5,09	13,18	<0,07	20,47	0,97	0,05	0,52
A04	0,12	<0,01	2,59	4,81	0,23	<0,07	104,48	190,61	1,13	0,57
A05	0,95	<0,01	108,22	8,61	22,95	<0,07	7,59	3,72	0,04	0,47
A06	0,53	<0,01	5,93	4,40	10,58	<0,07	4,39	0,54	<0,02	0,42

Tabla 20. Cationes trazas para las muestras de enero 2019. Tabla 2 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Cu µg/L	Zn µg/L	As µg/L	Se µg/L	Rb µg/L	Sr µg/L	Zr µg/L	Mo µg/L	Ag µg/L	Cd µg/L
A01	0,83	2,74	0,53	<0,30	2,40	26,31	<0,01	0,92	0,19	<0,004
A02	1,18	4,30	0,26	<0,30	1,80	12,00	0,11	0,14	0,14	<0,004
A03	0,71	5,87	1,70	<0,30	1,72	19,32	<0,01	0,35	0,35	<0,004
A04	1,32	7,98	0,13	<0,30	1,13	30,97	<0,01	0,11	0,11	<0,004
A05	0,44	55,54	9,32	<0,30	0,90	46,29	<0,01	0,35	0,35	<0,004
A06	0,60	7,53	1,03	<0,30	0,62	28,57	<0,01	0,32	0,32	<0,004

Tabla 21. Cationes trazas para las muestras de enero 2019. Tabla 3 de 3. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	Sn µg/L	Sb µg/L	Cs µg/L	Ba µg/L	W µg/L	Pb µg/L	U µg/L
A01	<0,01	<0,01	0,109	1,88	<0,01	<0,01	0,010
A02	<0,01	<0,01	0,055	3,31	<0,01	<0,01	0,004
A03	<0,01	<0,01	0,013	1,03	<0,01	<0,01	0,198
A04	<0,01	<0,01	0,031	3,48	<0,01	<0,01	0,002
A05	<0,01	<0,01	0,009	1,08	<0,01	1,41	0,055
A06	<0,01	<0,01	0,002	1,24	<0,01	<0,01	0,044

Muestra	Тіро	δ ² H-H ₂ O (‰)	Desviación estándar δ²Η (‰)	δ ¹⁸ O-H ₂ O (‰)	Desviación estándar δ¹ ⁸ O (‰)
I-01	Superficial	-69,2	0,3	-10,2	0,1
I-02	Superficial	-69,4	0,1	-10,3	0,0
I-03	Superficial	-69,4	0,2	-10,4	0,0
I-04	Superficial	-71,5	0,2	-10,6	0,0
I-05	Superficial	-69,8	0,1	-10,5	0,0
I-06	Superficial	-59,7	0,3	-8,9	0,0
I-07	Superficial	-58,3	0,1	-8,4	0,0
I-08	Superficial	-62,3	0,2	-9,4	0,0
I-09	Superficial	-60,5	0,2	-9,0	0,0
I-10	Superficial	-60,4	0,1	-9,2	0,1
I-11	Superficial	-55,1	0,1	-8,7	0,0
I-12	Superficial	-52,1	0,2	-8,3	0,0
I-13	Superficial	-50,3	0,4	-7,7	0,0
I-14	Superficial	-53,3	0,2	-8,5	0,0
I-15	Superficial	-52,5	0,1	-8,4	0,0
I-16	Superficial	-55,4	0,1	-8,8	0,0
I-17	Subterránea	-55,7	0,1	-8,8	0,0
I-18	Subterránea	-58,3	0,2	-9,2	0,0
I-19	Subterránea	-54,8	0,3	-8,5	0,0
I-20	Subterránea	-51,6	0,1	-7,8	0,0
I-21	Subterránea	-50,7	0,1	-8,0	0,0
I-22	Subterránea	-52,6	0,1	-8,3	0,0
I-23	Subterránea	-52,0	0,2	-8,3	0,0
I-24	Superficial	-60,0	0,1	-9,0	0,0
I-25	Subterránea	-51,6	0,3	-8,0	0,0
I-26	Subterránea	-53,2	0,0	-8,4	0,0
I-27	Subterránea	-50,3	0,1	-7,9	0,0
I-28	Superficial	-59,7	0,1	-8,9	0,0
I-29	Superficial	-59,8	0,0	-8,8	0,0
I-30	Superficial	-59,8	0,3	-8,8	0,0
I-31	Superficial	-59,6	0,2	-8,8	0,0
I-32	Superficial	-64,5	0,2	-9,6	0,0
I-33	Subterránea	-52,1	0,1	-8,3	0,0
I-34	Superficial	-51,5	0,2	-8,2	0,0
I-35	Superficial	-51,6	0,2	-8,2	0,0

Tabla 22. Análisis de isótopos para las muestras de agua de enero 2018. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Muestra	δ^2 H-H ₂ O	SD δ²H	δ^{18} O-H ₂ O	SD δ ¹⁸ O
	(‰)	(‰)	(‰)	(‰)
A01	-62,9	0,3	-9,4	0,1
A02	-24,6	0,2	-2,4	0,1
A03	-53,6	0,0	-8,2	0,0
A04	-46,9	0,1	-7,2	0,1
A05	-52,5	0,1	-8,3	0,0
A06	-52,2	0,2	-7,9	0,1

Tabla 23. Resultados del análisis isotópico para las muestras de agua de enero 2019. Tomado de Ministerio del Medio Ambiente & Universidad de Chile (2019).

Tabla 24. Ubicación y datos isotópicos de muestras de agua de lluvia, agua subterránea, agua superficial y aguas termales.

ID	Х	Y	Z	Тіро	δ ¹⁸ Ο	δ²Η	Referencia
PP-1	658843	5655385	-2	Agua de lluvia	-5,1	-34,2	DGA (2016)
PP-10	699088	5706263	69	Agua de lluvia	-5,9	-35,8	DGA (2016)
PP-11	673493	5710062	10	Agua de lluvia	-5,9	-38,8	DGA (2016)
PP-12	710117	5743001	190	Agua de lluvia	-6,6	-44,6	DGA (2016)
PP-13	752548	5756103	500	Agua de lluvia	-8,4	-55,4	DGA (2016)
PP-14	790108,611	5698849	600	Agua de lluvia	-9,2	-66,8	DGA (2016)
PP-15	679002	5671191	57	Agua de lluvia	-6,0	-35,7	DGA (2016)
PP-16	665777	5680084	38	Agua de lluvia	-6,8	-40,1	DGA (2016)
PP-17	651713	5694608	3	Agua de lluvia	-6,1	-36,2	DGA (2016)
PP-18	706996	5685097	104	Agua de lluvia	-7,2	-44,9	DGA (2016)
PP-19	709138	5729131	324	Agua de lluvia	-8,8	-56,5	DGA (2016)
PP-2	752912	5684213	297	Agua de lluvia	-7,1	-50,8	DGA (2016)
PP-3	785910,784	5634586	407	Agua de lluvia	-7,6	-55,8	DGA (2016)
PP-4	723549	5649799	257	Agua de lluvia	-7,0	-42,4	DGA (2016)
PP-5	642014	5716756	83	Agua de lluvia	-5,9	-35,3	DGA (2016)
PP-6	673860	5747068	50	Agua de lluvia	-8,1	-51,8	DGA (2016)
PP-7	726242	5714349	190	Agua de lluvia	-7,0	-44,3	DGA (2016)
PP-8	759090	5717844	468	Agua de lluvia	-7,8	-48,9	DGA (2016)
PP-9	775584,986	5715302	1102	Agua de lluvia	-9,9	-65,0	DGA (2016)
O-186-2	785903,2619	5634440	406	Subterránea IN	-10,57	-72,09	DGA (2016)
O-224-2	794479,7379	5637408	393	Subterránea IN	-9,81	-63,81	DGA (2016)
O-281-2	755545,4168	5642932	464	Subterránea IN	-8,53	-51,70	DGA (2016)
O-296-2	735645,5407	5661213	235	Subterránea IN	-8,10	-50,19	DGA (2016)
O-309-2	749101,425	5636588	451	Subterránea IN	-9,02	-54,52	DGA (2016)

O-323-2	738223	5644922	295	Subterránea IN	-7,50	-46,73	DGA (2016)
O-435-2	739426,5005	5651027	265	Subterránea IN	-7,94	-48,47	DGA (2016)
O-457-2	722261	5671585	208	Subterránea IN	-7,47	-44,11	DGA (2016)
DGA CUNCO	758720	5686793	371	Subterránea OUT	-7,96	-53,30	DGA (2016)
DGA Teodoro Schmidt	664929	5681181	42	Subterránea OUT	-6,47	-38,29	DGA (2016)
O-172-2	681361,7839	5682779	66	Subterránea OUT	-6,91	-41,49	DGA (2016)
O-299-2	787764,91	5695393	500	Subterránea OUT	-10,24	-69,91	DGA (2016)
O-326-2	681293	5671883	40	Subterránea OUT	-6,98	-40,77	DGA (2016)
O-328-2	741063	5682888	425	Subterránea OUT	-7,84	-48,77	DGA (2016)
O-329-2	656413,8421	5665763	2	Subterránea OUT	-6,20	-37,07	DGA (2016)
O-99-2	699672,4135	5677233	84	Subterránea OUT	-7,06	-44,41	DGA (2016)
S-69-4	767950,7784	5646392	310	Superficial IN	-10,13	-62,90	DGA (2016)
S-71-2	788496	5638302	371	Superficial IN	-10,67	-70,10	DGA (2016)
S-72-4	659554	5697519	18	Superficial IN	-11,19	-73,40	DGA (2016)
S-88-2	736666	5650818	202	Superficial IN	-9,26	-60,43	DGA (2016)
S-91-2	776858,5941	5656166	452	Superficial IN	-8,77	-57,99	DGA (2016)
S-91-4	775864,0581	5657997	176	Superficial IN	-8,44	-56,40	DGA (2016)
S-45-2	790276	5695751	600	Superficial OUT	-10,24	-67,57	DGA (2016)
S-45-4	790069,1724	5698507	502	Superficial OUT	-9,01	-57,70	DGA (2016)
S-49-4	694023	5756291	338	Superficial OUT	-9,06	-58,10	DGA (2016)
S-50-2	746353	5684216	255	Superficial OUT	-9,81	-64,03	DGA (2016)
S-54-2	741613	5674400	241	Superficial OUT	-8,13	-51,50	DGA (2016)
S-54-4	741610	5674813	246	Superficial OUT	-8,10	-50,50	DGA (2016)
S-55-2	713110	5679031	103	Superficial OUT	-9,31	-59,60	DGA (2016)
S-55-4	712136	5679567	102	Superficial OUT	-10,53	-67,60	DGA (2016)
S-59-2	672951	5679400	25	Superficial OUT	-8,74	-55,70	DGA (2016)
S-59-4	672563	5678994	32	Superficial OUT	-9,53	-60,90	DGA (2016)
S-62-2	656943	5660527	17	Superficial OUT	-8,87	-57,40	DGA (2016)
S-62-4	656958	5660537	15	Superficial OUT	-9,47	-60,20	DGA (2016)
S-64-2	697862	5674346	66	Superficial OUT	-7,59	-46,20	DGA (2016)
S-64-4	697961	5674363	93	Superficial OUT	-9,58	-61,40	DGA (2016)
S-65-4	703189	5649179	58	Superficial OUT	-7,78	-44,90	DGA (2016)
S-78-4	656398	5641336	9	Superficial OUT	-2,12	-14,20	DGA (2016)
S-79-4	657133	5652124	1	Superficial OUT	-5,69	-33,10	DGA (2016)
S-80-2	666848	5664795	15	Superficial OUT	-6,30	-36,16	DGA (2016)
S-80-4	666873	5665027	11	Superficial OUT	-6,76	-39,10	DGA (2016)
S-81-4	764939,936	5669766	342	Superficial OUT	-9,87	-62,30	DGA (2016)
Palguin	260427	5632951	477	ATF IN	-9,87	-69,8	Held et al. (2017)
Rincon	254598	5622990	939	ATF IN	-9,74	-69,1	Held et al. (2017)
Rinconada	270196	5633046	605	ATF IN	-11,08	-73,3	Held et al. (2017)
Coñaripe	249072	5608678	260	ATF OUT	-8,1	-56,1	Held et al. (2017)
Liucura	259050	5650708	618	LOFS IN	-9,07	-61,4	Held et al. (2017)
Los Pozones	271136	5654760	736	LOFS IN	-10,24	-67,2	Held et al. (2017)
Menetue	265608	5643175	336	LOFS IN	-9,04	-62,2	Held et al. (2017)

		1					
Panqui	281640	5652050	926	LOFS IN	-10,38	-71,4	Held et al. (2017)
Rio Blanco	274014	5667919	733	LOFS IN	-10,13	-68	Held et al. (2017)
San Luis	268118	5642039	429	LOFS IN	-9,25	-63,4	Held et al. (2017)
Toledo	276722	5660043	920	LOFS IN	-10,41	-71,4	Held et al. (2017)
Trancura	267774	5642007	372	LOFS IN	-9,21	-62,6	Held et al. (2017)
Carranco	260828	5594551	450	LOFS OUT	-9,92	-66,5	Held et al. (2017)
Chihuio	250203	5546591	312	LOFS OUT	-10,25	-69,2	Held et al. (2017)
Liquine	256392	5597301	328	LOFS OUT	-9,45	-63,9	Held et al. (2017)
Lake Villarrica	242925	5648771	240	Superficial IN	-8,57	-59,2	Held et al. (2017)
A-03	752525	5656561	291	Subterránea IN	-8,2	-53,6	MMA-Uchile (2019)
A-04	740050	5653488	307	Subterránea IN	-7,2	-46,9	MMA-Uchile (2019)
A-05	736039	5651052	308	Subterránea IN	-8,3	-52,5	MMA-Uchile (2019)
A-06	741202	5657804	262	Subterránea IN	-7,9	-52,2	MMA-Uchile (2019)
I-17	760684	5647566	253	Subterránea IN	-8,8	-55,7	MMA-Uchile (2019)
I-18	761001	5646995	287	Subterránea IN	-9,2	-58,3	MMA-Uchile (2019)
I-19	761556	5647599	230	Subterránea IN	-8,5	-54,8	MMA-Uchile (2019)
I-20	757183	5645921	235	Subterránea IN	-7,8	-51,6	MMA-Uchile (2019)
I-21	747574	5643026	303	Subterránea IN	-8	-50,7	MMA-Uchile (2019)
I-22	742948	5646406	298	Subterránea IN	-8,3	-52,6	MMA-Uchile (2019)
I-23	736039	5651052	236	Subterránea IN	-8,3	-52	MMA-Uchile (2019)
I-25	740441	5658110	308	Subterránea IN	-8	-51,6	MMA-Uchile (2019)
I-26	739155	5646144	303	Subterránea IN	-8,4	-53,2	MMA-Uchile (2019)
I-27	739393	5651044	264	Subterránea IN	-7,9	-50,3	MMA-Uchile (2019)
I-33	759120	5641875	629	Subterránea IN	-8,3	-52,1	MMA-Uchile (2019)
A-01	750020	5655331	279	Superficial IN	-9,4	-62,9	MMA-Uchile (2019)
A-02	741353	5654706	291	Superficial IN	-2,4	-24,6	MMA-Uchile (2019)
I-01	795540	5635757	388	Superficial IN	-10,2	-69,2	MMA-Uchile (2019)
I-02	794573	5638016	386	Superficial IN	-10,3	-69,4	MMA-Uchile (2019)
I-03	779558	5641264	371	Superficial IN	-10,4	-69,4	MMA-Uchile (2019)
I-04	785862	5634119	426	Superficial IN	-10,6	-71,5	MMA-Uchile (2019)
I-05	783058	5637450	373	Superficial IN	-10,5	-69,8	MMA-Uchile (2019)
I-06	773537	5651963	325	Superficial IN	-8,9	-59,7	MMA-Uchile (2019)
I-07	772376	5651298	307	Superficial IN	-8,4	-58,3	MMA-Uchile (2019)
I-08	773798	5649537	284	Superficial IN	-9,4	-62,3	MMA-Uchile (2019)
I-09	768404	5649235	269	Superficial IN	-9	-60,5	MMA-Uchile (2019)
I-10	768000	5645699	299	Superficial IN	-9,2	-60,4	MMA-Uchile (2019)
I-11	750008	5646060	230	Superficial IN	-8,7	-55,1	MMA-Uchile (2019)
I-12	750357	5643871	296	Superficial IN	-8,3	-52,1	MMA-Uchile (2019)
I-13	751691	5644387	317	Superficial IN	-7,7	-50,3	MMA-Uchile (2019)
I-14	752057	5645588	224	Superficial IN	-8,5	-53,3	MMA-Uchile (2019)
I-15	752760	5645471	246	Superficial IN	-8,4	-52,5	MMA-Uchile (2019)
I-16	752668	5645700	218	Superficial IN	-8,8	-55,4	MMA-Uchile (2019)
I-24	738855	5649056	232	Superficial IN	-9	-60	MMA-Uchile (2019)
I-28	760186	5648089	220	Superficial IN	-8,9	-59,7	MMA-Uchile (2019)

I-29	759104	5647444	220	Superficial IN	-8,8	-59,8	MMA-Uchile (2019)
I-30	760777	5649211	218	Superficial IN	-8,8	-59,8	MMA-Uchile (2019)
I-31	753044	5649832	218	Superficial IN	-8,8	-59,6	MMA-Uchile (2019)
I-32	765471	5648413	240	Superficial IN	-9,6	-64,5	MMA-Uchile (2019)
I-34	762412	5649886	230	Superficial IN	-8,2	-51,5	MMA-Uchile (2019)
I-35	762287	5649887	224	Superficial IN	-8,2	-51,6	MMA-Uchile (2019)
Geométricas	252934	5623775	888	ATF IN	-10,1	-70,0	Sánchez et al. (2013)
Palguin	260245	5632782	761	ATF IN	-9,7	-67,4	Sánchez et al. (2013)
Palguin	260245	5632782	761	ATF IN	-10,3	-71,9	Sánchez et al. (2013)
Palguin	260245	5632782	761	ATF IN	-10,2	-69,0	Sánchez et al. (2013)
Vergara	251584	5622935	758	ATF IN	-9,9	-70,1	Sánchez et al. (2013)
Coñaripe	249064	5608666	251	ATF OUT	-8,5	-55,5	Sánchez et al. (2013)
Coñaripe	249064	5608666	251	ATF OUT	-8,5	-56,5	Sánchez et al. (2013)
Coñaripe	249064	5608666	251	ATF OUT	-8,5	-57,0	Sánchez et al. (2013)
San Luis	268075	5641871	390	LOFS IN	-9,7	-65,1	Sánchez et al. (2013)
San Luis	268075	5641871	390	LOFS IN	-9,6	-67,1	Sánchez et al. (2013)
Cerrillos	231636	5556170	314	LOFS OUT	-9,6	-65,3	Sánchez et al. (2013)
Chihuio	250204	5546580	339	LOFS OUT	-10,1	-68,5	Sánchez et al. (2013)
Liquiñe	256382	5597363	312	LOFS OUT	-9,8	-65,0	Sánchez et al. (2013)
Liquiñe	256382	5597363	312	LOFS OUT	-9,5	-63,0	Sánchez et al. (2013)
Chihuio River	250204	5546580	339	Superficial OUT	-10,0	-68,0	Sánchez et al. (2013)

Tabla 25. Información química e isotópica en muestras de Held et al. (2015).

ld	Nombre	Тіро	δ ¹⁸ O - H ₂ O	δ ¹⁸ O - SO ₄	SO ₄ (mg/L)	SO ₄ (meq/L)
Pal	Palguin	ATF IN	-9,87	0,74	79,4	1,65
Rin	Rincón	ATF IN	-9,74	0,33	115	2,40
RinCo	Rinconada	ATF IN	-11,08	0,56	151	3,15
Con	Coñaripe	ATF OUT	-8,10	0,63	103	2,15
Men	Menetue	LOFS IN	-9,04	1,55	65,9	1,37
Bla	Río Blanco	LOFS IN	-10,13	0,85	103	2,15
SL	San Luis	LOFS IN	-9,25	0,04	72,4	1,51
Liu	Liucura	LOFS IN	-9,07	2,55	76,3	1,59
Poz	Los Pozones	LOFS IN	-10,24	-0,68	79,1	1,65
Pan	Panqui	LOFS IN	-10,38	-1,99	164	3,42
Tol	Toledo	LOFS IN	-10,41	-1,95	382	7,96
Tra	Trancura	LOFS IN	-9,21	0,14	68,8	1,43
Chi	Chihuio	LOFS OUT	-10,25	2,11	190	3,96
Liq	Liquiñe	LOFS OUT	-9,45	3,78	80,3	1,67
Car	Carranco	LOFS OUT	-9,92	3,14	59,1	1,23

Sample	°C in situ	pH in situ	SiO2 (mg/L)	CI (mg/L)	SO4 (mg/L)	HCO3 (mg/l)	Referencia
Trafipan	36,9	8,65	46,1	20,78	58,04	54,9	Daniele et al. (2020)
La Armada	68,3	9,05	96,3	17,74	66,86	91,5	Daniele et al. (2020)
La Armada	60	9,15	87	16,07	60,22	85,4	Daniele et al. (2020)
La Armada	32,3	7,9	33,4	4,27	17,11	48,8	Daniele et al. (2020)
La Armada	52,9	8,93	80	14,44	58,76	61	Daniele et al. (2020)
Rayen-Co	61,7	9,2	95,9	16,29	68,96	73,2	Daniele et al. (2020)
Fucha	19,1	7,29	25	4,61	16,59	54,9	Daniele et al. (2020)
Fucha	43,5	9,68	58,2	19,39	68,35	79,3	Daniele et al. (2020)
Fucha	24,9	9,49	44,4	15,16	47,19	67,1	Daniele et al. (2020)
Fucha	38,9	9,71	57,7	19,45	68,32	79,3	Daniele et al. (2020)
Fucha	31,8	9,06	44,3	14,64	47,06	54,9	Daniele et al. (2020)
Fucha	24,1	9,79	53,8	17,51	62,55	54,9	Daniele et al. (2020)
Hipolito Muñoz	60,8	8,93	90,4	32,71	57,93	128,1	Daniele et al. (2020)
Hipolito Muñoz	79,4	8,89	86,3	29,74	50,48	128,1	Daniele et al. (2020)
Hipolito Muñoz	75,1	8,8	83,9	30,18	48,64	128,1	Daniele et al. (2020)
Nevado de Chillan Vn.	68	3,9	370	0,25	552	18	Wrage et al. (2017)
Nevado de Chillan Vn.	82	2,6	178	16,62	293,76	0,005	Wrage et al. (2017)
Nevado de Chillan Vn.	91	2,4	290	11,82	881,79	0,005	Wrage et al. (2017)
Trapa Trapa	45	7,8	50	178	14,4	76,88	Wrage et al. (2017)
Copahue Vn.	87	2,7	152	0,22	2258	0,005	Wrage et al. (2017)
Copahue Vn.	93	3,6	310	0,32	414,52	0,005	Wrage et al. (2017)
Copahue Vn.	88	2,2	134	2,5	1336,19	0,005	Wrage et al. (2017)
Pucon Mahuida	47	7,9	156	274	841	1550	Wrage et al. (2017)
Termas del Avellano	78	7,7	45	273	173	52	Wrage et al. (2017)
Termas de Pemehue	38,5	7,5	95	876	155	32	Wrage et al. (2017)
Pelehue	82	3,3	79	0,24	320	0,005	Wrage et al. (2017)
Termas de Coyuco	36	6,2	156	10,5	17,4	892	Wrage et al. (2017)
Termas Malleco	85,5	8,4	87,6	82,1	40,4	88,5	Wrage et al. (2017)
Tolhuaca Vn.	92	2,4	82	0,5	645	0,005	Wrage et al. (2017)
Sierra Nevada Vn.	87	3,4	120	0,22	174	0,005	Wrage et al. (2017)
Agua de la Vaca	35	7,2	84	138	110	56,74	Wrage et al. (2017)
Termas de Balboa	45	7,3	110	157	28,6	84,1	Wrage et al. (2017)
Termas de Rio Blanco	51	7,7	53	17,1	78,6	80,2	Wrage et al. (2017)
Termas Quimey-Có	45	8,1	53	15,8	44,4	37,5	Wrage et al. (2017)
Parque Termal Menetùe	42	9,2	64	22,2	49,7	50,34	Wrage et al. (2017)
Termas de San Luis	40	9,3	61	9,07	70,6	39,2	Wrage et al. (2017)
Termas de Palguin	50	8,9	65	19,2	72,2	60,03	Wrage et al. (2017)
Termas El Rincón	37	7,7	84	20,2	109	50,3	Wrage et al. (2017)
Eco Termas Pellaifa	50	8	63	73,4	74,8	71,7	Wrage et al. (2017)
Termas de Coñaripe	74,6	8,5	91	79,6	98,8	82,4	Wrage et al. (2017)
Termas de Trafipan	37,2	8,7	48	23,6	73,2	39,4	Wrage et al. (2017)
Termas de Chihuio	82,5	9,3	90,2	14,4	188	21,3	Wrage et al. (2017)

Tabla 26. Datos in situ, SiO2 y de aniones de muestras termales.

Termas de Puyehue	60	8,3	87	148	116	63,46	Wrage et al. (2017)
Termas de Aguas Calientes	66	7,8	95	191	118	53,08	Wrage et al. (2017)
Termas de Rupanco	80	7,9	109	245	113	78,71	Wrage et al. (2017)
Coñaripe	71	8,3	7,5	84	100	123	Bucarey (2020)
Culán	48	8,7	15	27	65	82	Bucarey (2020)
El Rincon	33	8,4	19	21	108	65	Bucarey (2020)
Geometricas	66	8	60	44	342	44	Bucarey (2020)
Huife	52	7,9	9	49	82	36	Bucarey (2020)
Liucura	30	8,6	41	40	86	63	Bucarey (2020)
Posones	42	7,2	11	51	78	52	Bucarey (2020)
Menetue	40	8,5	90	23	133	69	Bucarey (2020)
Montevivo	43	7,1	28	4,4	30	68	Bucarey (2020)
Palguín	42	8,6	51	12	33	102	Bucarey (2020)
Panqui	52	8,3	47	27	170	45	Bucarey (2020)
Pellaifa	62	7,8	47	56	55	72	Bucarey (2020)
Peumayen	35	9,2	32	25	65	51	Bucarey (2020)
San Luis	35	9,3	60	7,4	65	36	Bucarey (2020)
Trancura	37	8,9	43	7,5	58	35	Bucarey (2020)
Cofre	33	9		35	267	37	Bucarey (2020)
Carranco	79,4	8,9	84	34,1	59,1	65,5	Held et al. (2017)
Chihuio	80,7	8,9	102	13,9	190	23,8	Held et al. (2017)
Coñaripe	71,7	7,8	93,9	82,9	103	101	Held et al. (2017)
Liquine	71	9,1	107	17,4	80,3	24,4	Held et al. (2017)
Liucura	29,5	7,9	51	35,3	76,3	58	Held et al. (2017)
Los Pozones	53,1	9,1	50,4	46,2	79,1	15,3	Held et al. (2017)
Menetue	50,5	9,3	82,1	26,2	65,9	18,3	Held et al. (2017)
Palguin	47,5	8,7	67,9	21,1	79,4	24,4	Held et al. (2017)
Panqui	50,8	8	46,1	25,5	164	42,7	Held et al. (2017)
Rincon	37,5	7,6	83,9	20,9	115	67,1	Held et al. (2017)
Rinconada	27,6	6,1	118	40,6	151	296	Held et al. (2017)
Rio Blanco	54,1	7,7	64,9	21,8	103	104	Held et al. (2017)
San Luis	41	9,1	59,4	7,86	72,4	18,3	Held et al. (2017)
Toledo	42,5	7,8	69,4	109	382	36,6	Held et al. (2017)
Trancura	36	9	57,1	8,08	68,8	1,5	Held et al. (2017)
Geometricas	72,4	8,4	83	48,7	421	29	Held et al. (2017)
SanLuis	39,3	9,4	49,2	8	76,8	29,3	Sánchez et al. (2013)
Palguin	35,4	8,7	46,6	10	31,6	66,8	Sánchez et al. (2013)
Palguin	35,5	8,7	52,2	12,2	37,9	80,5	Sánchez et al. (2013)
Geométricas	72,4	8,4	83	48,7	421,3	29	Sánchez et al. (2013)
Rincón	35,7	8	69,1	17,3	103,3	52	Sanchez et al. (2013)
Vergara	40,7	7,8	68	18,1	150,8	48	Sanchez et al. (2013)
Coñaripe	55	7,9	55	49,7	60,9	77,6	Sancnez et al. (2013)

Coñaripe	68	8,6	78,3	81,4	102,5	93,5	Sánchez et al. (2013)
Coñaripe	60	8,3	61,4	61,6	77,9	83,3	Sánchez et al. (2013)
Trifupán	37,3	8,9	42,4	22,8	77,3	41,7	Sánchez et al. (2013)
Liquiñe	71,1	9,4	82,6	15,6	78,4	24	Sánchez et al. (2013)
Liquiñe	71,4	9,5	87,1	16	80,5	66,9	Sánchez et al. (2013)
Liquiñe	70	8,8	40,9	7,1	29,5	35,1	Sánchez et al. (2013)
Liquiñe	70,4	9,4	84,1	15,6	80,2	39,7	Sánchez et al. (2013)
Rio Florín	54,4	9,7	56,9	25,7	78,1	26,1	Sánchez et al. (2013)
Cerrillos	41,2	9,4	53,7	21,4	75,1	29,3	Sánchez et al. (2013)
Cerrillos	32	8	42,1	14,9	57,5	46,6	Sánchez et al. (2013)
Chihuio	82	9,4	95,8	13,5	212,6	23,5	Sánchez et al. (2013)
Chihuio	82,4	9,4	96,9	12,6	212,2	24,4	Sánchez et al. (2013)

Tabla 27. Datos de cationes y trazas de muestras termales.

Sample	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Li (mg/L)	B (mg/L)	Referencia
Trafipan	51,66	1,58	8,9	0,723	0,01968	0,27151	Daniele et al. (2020)
La Armada	68,5	2,34	3,81	0,002	0,05558	0,12872	Daniele et al. (2020)
La Armada	61,11	2,12	4,59	0,002	0,05201	0,11908	Daniele et al. (2020)
La Armada	14,1	0,81	6,22	0,892	0,01199	0,03255	Daniele et al. (2020)
La Armada	54,18	2,02	4,55	0,118	0,04676	0,11007	Daniele et al. (2020)
Rayen-Co	69,75	2,82	3,4	0,002	0,05987	0,13471	Daniele et al. (2020)
Fucha	12,95	2,46	9,91	0,989	0,00438	0,02976	Daniele et al. (2020)
Fucha	63,25	2,48	4,69	0,002	0,02037	0,13805	Daniele et al. (2020)
Fucha	43,68	2,33	7,1	0,33	0,0155	0,0981	Daniele et al. (2020)
Fucha	63,25	0,53	4,3	0,002	0,02039	0,13955	Daniele et al. (2020)
Fucha	42	1,06	6,89	0,448	0,01461	0,09674	Daniele et al. (2020)
Fucha	55,23	1,18	5,65	0,119	0,01805	0,1244	Daniele et al. (2020)
Hipolito Muñoz	92,5	1,04	2,39	0,002	0,11905	0,31162	Daniele et al. (2020)
Hipolito Muñoz	100	0,82	2,37	0,002	0,11182	0,28482	Daniele et al. (2020)
Hipolito Muñoz	82	0,92	2,77	0,1	0,11909	0,30817	Daniele et al. (2020)
Nevado de Chillan Vn.	56	21,48	105,4	33,1	0,0643	0,44	Wrage et al. (2017)
Nevado de Chillan Vn.	20	4,45	10	6,18	0,0239	0,0157	Wrage et al. (2017)
Nevado de Chillan Vn.	58,1	26,6	81,3	52	0,0117	0,0885	Wrage et al. (2017)
Trapa Trapa	134	1,7	29	3,2	0,0748	0,276	Wrage et al. (2017)
Copahue Vn.	22,9	12,5	35,5	24,2	0,00588	0,0827	Wrage et al. (2017)
Copahue Vn.	27,7	12,4	20,9	2,4	0,00885	0,45	Wrage et al. (2017)
Copahue Vn.	4,75	2,75	2,34	1,88	0,00217	0,773	Wrage et al. (2017)
Pucon Mahuida	440	108	172	294	0,81	0,549	Wrage et al. (2017)
Termas del Avellano	246	12,3	34	0,2	0,691	0,437	Wrage et al. (2017)

Termas de Pemehue	325	45,8	122	0,44	2,78	17,2	Wrage et al. (2017)
Pelehue	45,3	3,39	13,9	2,71	0,119	0,9893	Wrage et al. (2017)
Termas de Coyuco	135	13,1	82,2	69,5	0,11	0,644	Wrage et al. (2017)
Termas Malleco	108	4,8	6,68	0,08	0,703	72,6	Wrage et al. (2017)
Tolhuaca Vn.	17,3	5,2	31,4	16	0,0117	0,177	Wrage et al. (2017)
Sierra Nevada Vn.	4,1	0,5	13,9	3,96	0,00447	0,127	Wrage et al. (2017)
Agua de la Vaca	99,1	14,9	52,2	2,98	0,786	11,4	Wrage et al. (2017)
Termas de Balboa	135	10,9	13,4	2,7	0,542	1,84	Wrage et al. (2017)
Termas de Rio Blanco	71,8	1,79	10,6	0,46	0,132	0,115	Wrage et al. (2017)
Termas Quimey-Có	39	1,09	8,38	0,6	0,0297	0,103	Wrage et al. (2017)
Parque Termal Menetùe	64	1,16	5,04	0,57	0,131	0,304	Wrage et al. (2017)
Termas de San Luis	60,4	1,11	5,12	0,12	0,0521	0,126	Wrage et al. (2017)
Termas de Palguin	67,8	2,13	5,65	0,6	0,0962	0,67	Wrage et al. (2017)
Termas El Rincón	71,7	4,98	10,9	1,77	0,0997	0,851	Wrage et al. (2017)
Eco Termas Pellaifa	111	3,18	6,85	0,28	0,191	3,2	Wrage et al. (2017)
Termas de Coñaripe	132	3,97	6,15	0,26	0,229	3,74	Wrage et al. (2017)
Termas de Trafipan	57,6	1,61	9,82	0,82	0,0259	0,33	Wrage et al. (2017)
Termas de Chihuio	103	4,74	13,1	0,01	0,0391	0,076	Wrage et al. (2017)
Termas de Puyehue	160	5,64	8,78	0,79	0,392	16,1	Wrage et al. (2017)
Termas de Aguas Calientes	179	8	23,2	1,04	0,583	18	Wrage et al. (2017)
Termas de Rupanco	184	7,53	23,6	0,3	0,152	19,5	Wrage et al. (2017)
Coñaripe	140	4,8	5	0,5	0,1	3,2	Bucarey (2020)
Culán	75	2,2	2	0,4	0,04	0,5	Bucarey (2020)
El Rincon	73	5	11	1,8	0,06	0,8	Bucarey (2020)
Geometricas	160	5,4	47	0,5	0,1	2,2	Bucarey (2020)
Huife	73	1,6	12	0,5	0,06	0,5	Bucarey (2020)
Liucura	69	3,6	12	1,9	0,02	0,5	Bucarey (2020)
Posones	72	1,7	12	0,9	0,06	0,6	Bucarey (2020)
Menetue	71	1,8	20	5	0,08	0,2	Bucarey (2020)
Montevivo	29	1,7	7	1,5	0,02	0,1	Bucarey (2020)
Palguín	51	2,6	3,3	1,3	0,02	0,3	Bucarey (2020)
Panqui	64	2,2	39	0,6	0,06	0,4	Bucarey (2020)
Pellaifa	80	2,4	5,5	0,3	0,14	1,8	Bucarey (2020)
Peumayen	58	1,3	7,1	0,2	0,02	0,1	Bucarey (2020)
San Luis	54	1,2	6,1	0,6	0,02	0,1	Bucarey (2020)
Trancura	52	0,9	5,8	0,5	0,02	0,1	Bucarey (2020)
Cofre	137	4,6	33	0,3	0,2	2,4	Bucarey (2020)
Carranco	90,3	2,54	4,42	0,025	0,155	0,39	Held et al. (2017)
Chihuio	110	4,17	12,97	0,034	0,045	0,072	Held et al. (2017)
Coñaripe	126	3,93	7,25	0,566	0,181	3,68	Held et al. (2017)
Liquine	68,9	2,22	4,4	0,037	0,073	0,193	Held et al. (2017)
Liucura	65,6	3,47	11	1,57	0,018	0,531	Held et al. (2017)
Los Pozones	71,7	1,57	11,6	0,144	0,098	0,634	Held et al. (2017)
Menetue	73,6	1,27	6,74	0,393	0,146	0,354	Held et al. (2017)

Palguin	67,2	1,82	5,61	0,481	0,102	0,617	Held et al. (2017)
Panqui	63,9	2,2	42,9	0,396	0,12	0,551	Held et al. (2017)
Rincon	68,1	4,57	12	1,91	0,095	0,83	Held et al. (2017)
Rinconada	113	16,5	27	22,9	0,133	1,59	Held et al. (2017)
Rio Blanco	87,4	2,49	14,1	0,589	0,162	0,133	Held et al. (2017)
San Luis	50,4	1,05	6,64	0,416	0,044	0,11	Held et al. (2017)
Toledo	181	5,99	81,4	0,26	0,361	1,11	Held et al. (2017)
Trancura	50,4	1,12	7,86	0,418	0,041	0,117	Held et al. (2017)
Geometricas	160	9,63	46,5	0,129	0,143	5,02	Held et al. (2017)
SanLuis	55,2	0,96	5,17	0,153	0,085	0,11	Sánchez et al. (2013)
Palguin	42	1,87	4,19	1,33	0,079	0,434	Sánchez et al. (2013)
Palguin	52,6	2,51	4,17	1,5	0,058	0,69	Sánchez et al. (2013)
Geométricas	160	9,63	46,54	0,129	0,286	5,02	Sánchez et al. (2013)
Rincón	62	4,02	10,21	1,95	0,143	1,42	Sánchez et al. (2013)
Vergara	72,4	5	16,96	2,59	0,118	1,9	Sánchez et al. (2013)
Coñaripe	82,3	2,66	7,17	0,873	0,177	4,7	Sánchez et al. (2013)
Coñaripe	136	3,64	5,61	0,335	0,255	7,34	Sánchez et al. (2013)
Coñaripe	98,9	3,15	6,89	0,215	0,198	5,35	Sánchez et al. (2013)
Trifupán	59,7	1,38	9,75	0,883	0,07	0,518	Sánchez et al. (2013)
Liquiñe	73,4	2,23	3,65	0,031	0,115	0,213	Sánchez et al. (2013)
Liquiñe	71,1	2,21	3,75	0,014	0,134	0,197	Sánchez et al. (2013)
Liquiñe	26	1,14	5,19	0,708	0,067	0,01	Sánchez et al. (2013)
Liquiñe	69,3	2,16	3,78	0,072	0,133	0,164	Sánchez et al. (2013)
Rio Florín	59,8	0,99	7,66	0,025	0,066	0,509	Sánchez et al. (2013)
Cerrillos	55,2	0,81	8,29	0,092	0,061	0,435	Sánchez et al. (2013)
Cerrillos	42,1	0,66	11,83	0,69	0,077	0,232	Sánchez et al. (2013)
Chihuio	107	4,15	9,93	0,055	0,114	0,008	Sánchez et al. (2013)
Chihuio	106	4	9,87	0,017	0,108	0,005	Sánchez et al. (2013)

SampleID	Тіро	°C in situ	pH in situ	SiO2 (mg/L)	HCO3 (mg/L)	SO4 (mg/L)	Cl (mg/L)	Referencia
O-172-2	Subterránea	13,12	7,14		73,2	0,5	6,5	DGA (2016)
O-172-2	Subterránea	14,7	7,8		70,8	0,5	6,86	DGA (2016)
O-186-2	Subterránea	11,1	7,76		50	14,2	4,27	DGA (2016)
O-281-2	Subterránea	9,45	7,68		36,6	0,5	3	DGA (2016)
O-296-2	Subterránea	12,87	7,11		76,9	0,5	2,01	DGA (2016)
O-323-2	Subterránea	11,58	6,69		61	2,2	6,87	DGA (2016)
O-435-2	Subterránea	11,92	7,32		58,6	0,5	0,25	DGA (2016)
O-457-2	Subterránea	12,4	7,13		41,5	0,5	2,1	DGA (2016)
DGA CUNCO	Subterránea	12,45	7,78		36,6	0,5	1,43	DGA (2016)
DGA Teodoro Schmidt	Subterránea	15,29	6,72		35,4	4,9	20	DGA (2016)
O-224-2	Subterránea	10,74	7,43		43,9	5,7	4,85	DGA (2016)
O-279-2	Subterránea	13,56	7,09		111	0,5	11	DGA (2016)
O-299-2	Subterránea	10,02	7,78		53,7	3,5	1,41	DGA (2016)
O-309-2	Subterránea	8,74	7,84		34,2	0,5	6,4	DGA (2016)
O-326-2	Subterránea	13,1	7,5		59,8	0,5	1,88	DGA (2016)
O-328-2	Subterránea	9,85	7,75		30,5	0,5	2,11	DGA (2016)
O-329-2	Subterránea	11,62	6,6		20,7	11,4	10	DGA (2016)
O-329-2	Subterránea	11,98	7,25		123	0,5	7,49	DGA (2016)
O-99-2	Subterránea	12,6	6,63		63,4	2	3,49	DGA (2016)
1	Superficial	17,9	7,02	31	24,8	1,2	3,7	Valenzuela (2019)
S-45-2	Superficial	8,96	7,95		36,6	0,5	3,6	DGA (2016)
S-45-4	Superficial	10,66	8,23		41,5	3	5,5	DGA (2016)
S-49-4	Superficial	10,9	8,52		43,9	6	6,5	DGA (2016)
S-50-2	Superficial	9,27	7,63		40,3	3	4	DGA (2016)
S-54-2	Superficial	10,8	7,82		19,5	0,5	3,25	DGA (2016)
S-54-4	Superficial	15,71	7,61		28,1	4	5,75	DGA (2016)
S-55-2	Superficial	10,61	7,41		36,6	2,5	2,36	DGA (2016)
S-55-4	Superficial	16,03	7,98		48,2	7	7,5	DGA (2016)
S-59-2	Superficial	10,1	6,6		29,3	2	3,6	DGA (2016)
S-59-4	Superficial	20,43	8,3		34,8	4	7	DGA (2016)
S-62-2	Superficial	10,93	7,09		26,8	2	4	DGA (2016)
S-62-4	Superficial	19,59	7,62		24,4	4,1	7,25	DGA (2016)
S-64-2	Superficial	11,01	6,6		7,3	2	3	DGA (2016)
S-64-4	Superficial	17,05	7,23		22,6	1	4,5	DGA (2016)
S-65-4	Superficial	11,7	7,47		11	1	5	DGA (2016)
S-69-4	Superficial	16,31	7,16		25	4,4	6,49	DGA (2016)
S-71-2	Superficial	6,78	7,47		32,9	2,3	1,88	DGA (2016)
S-72-4	Superficial	19,71	7,81		19,5	4,7	5,5	DGA (2016)
S-76-2	Superficial	11,68	6,3		14,6	0,5	8,2	DGA (2016)
S-76-4	Superficial	14,01	7,57		36,6	7,4	40,2	DGA (2016)
S-78-4	Superficial	17,16	7,86		84,8	1661	11946	DGA (2016)

Tabla 28. Datos in situ, SiO2 y de aniones de las muestras de agua superficial y subterránea.

S-79-2	Superficial	11,4	7,06		14,6	8	5,75	DGA (2016)
S-79-4	Superficial	19,92	8,53		17,1	18	49,5	DGA (2016)
S-80-2	Superficial	10,12	6,5		8,5	1,6	3,8	DGA (2016)
S-80-4	Superficial	13,6	7,7		17,1	2	5	DGA (2016)
S-81-4	Superficial	16,15	8,3		36,6	1	3,75	DGA (2016)
S-88-2	Superficial	10,31	6,79		41,5	2	4	DGA (2016)
S-91-2	Superficial	10,72	7,54		22	2,1	1,78	DGA (2016)
S-91-4	Superficial	22,34	7,74		32,9	4,5	7,09	DGA (2016)
2	Superficial	18,3	7,03	40	23,2	0,9	1,1	Valenzuela (2019)
3	Superficial	15,8	7,21	29	23,5	2,2	1,2	Valenzuela (2019)
4	Superficial	14,5	6,77	31	7,6	2,3	0,4	Valenzuela (2019)
5	Superficial	18,5	6,96	30	24,4	8,7	3,0	Valenzuela (2019)
6	Superficial	20,5	7,54	41	50,1	0,2	0,9	Valenzuela (2019)
7	Superficial	17,7	7,16	21	22,4	1,1	1,0	Valenzuela (2019)
8	Superficial	20,3	7,46	26	27,2	2,5	1,5	Valenzuela (2019)
9	Superficial	20,5	7,3	28	27,6	2,0	3,0	Valenzuela (2019)
10	Superficial	20,1	6,41	19,5	12,2	0,6	0,9	Valenzuela (2019)
11	Superficial	13	7,29	40	28,0	0,4	3,3	Valenzuela (2019)
12	Superficial	14,8	7	38	39,5	0,3	3,2	Valenzuela (2019)
13	Superficial	14,5	7	56	51,4	0,3	3,3	Valenzuela (2019)
14	Superficial	14,2	7,31	42	35,5	0,3	1,6	Valenzuela (2019)
15	Superficial	15	7,32	40	30,5	0,3	4,9	Valenzuela (2019)
16	Superficial	13,5	7,06	36	24,6	0,3	1,6	Valenzuela (2019)
17	Subterránea	12,4	7,14	47	56,3	0,9	1,6	Valenzuela (2019)
18	Subterránea	15,8	7,06	40	43,8	0,8	1,2	Valenzuela (2019)
19	Subterránea	15,7	7,32	46	73,2	1,0	2,0	Valenzuela (2019)
20	Subterránea	18,8	6,83	72	88,9	1,1	2,8	Valenzuela (2019)
21	Subterránea	16,4	6,22	29	30,4	7,1	1,3	Valenzuela (2019)
22	Subterránea	15,2	7,56	51	45,1	0,6	1,4	Valenzuela (2019)
23	Subterránea	16,3	7,94	45	64,6	23,7	8,1	Valenzuela (2019)
24	Superficial	22,3	8,73	24	26,4	1,5	1,8	Valenzuela (2019)
25	Subterránea	17,5	8,73	47	52,1	0,8	2,8	Valenzuela (2019)
26	Subterránea	17,5	7,19	53	48,3	0,7	1,6	Valenzuela (2019)
27	Subterránea	16,4	7,68	46	51,4	0,8	2,0	Valenzuela (2019)
28	Superficial	22,1	8,43	22	27,3	1,5	1,8	Valenzuela (2019)
29	Superficial	22,7	8,66	23	26,2	1,5	1,7	Valenzuela (2019)
30	Superficial	22,2	8,8	21	21,1	1,9	1,8	Valenzuela (2019)

31	Superficial	21,2	8,92	23	21,6	1,9	1,7	Valenzuela (2019)
32	Superficial	19,6	7,56	21	29,6	2,7	2,2	Valenzuela (2019)
33	Subterránea	14,7	6,67	50	40,7	0,3	1,4	Valenzuela (2019)
34	Superficial	15,6	7,21	34,5	30,1	0,5	1,3	Valenzuela (2019)
35	Superficial	14,3	7,14	33	29,8	0,5	1,5	Valenzuela (2019)
A01	Superficial	23,3	8,26	17,1	27,1	2,53	2,74	Valenzuela (2019)
A02	Superficial	24,4	7,07	4,1	5,1	0,36	11,82	Valenzuela (2019)
A03	Subterránea	14,9	7,34	37,1	52,3	4,83	10,06	Valenzuela (2019)
A04	Subterránea	20,6	6,7	25,6	27,3	0,59	8,24	Valenzuela (2019)
A05	Subterránea	22,7	7,87	50,6	63,7	20,39	14,68	Valenzuela (2019)
A06	Subterránea	17,3	7,49	48,8	42,8	1,05	8,1	Valenzuela (2019)

Tabla 29. Datos de cationes y trazas de muestras de agua superficial y subterránea.

SampleID	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Li (mg/L)	B (mg/L)	Referencia
0-172-2	10,5	2,24	10,8	5,65	0,0015	0,001	DGA (2016)
0-172-2	12,8	3,05	9,16	4,96	0,0015	0,024	DGA (2016)
O-186-2	15,5	2,44	6,77	2,83	0,009	0,124	DGA (2016)
O-281-2	4,98	1,5	6,15	1,74	0,0015	0,076	DGA (2016)
O-296-2	14	4,22	12,3	2,05	0,0015	0,081	DGA (2016)
O-323-2	8,26	1,84	13,1	4,94	0,0015	0,059	DGA (2016)
O-435-2	6,96	1,49	8,34	3,58	0,0015	0,153	DGA (2016)
O-457-2	6,16	1,13	6,22	2,67	0,0015	0,079	DGA (2016)
DGA CUNCO	4,85	1,68	5,5	2,21	0,0015	0,112	DGA (2016)
DGA Teodoro Schmidt	14,2	3,07	8,55	3,62	0,0015	0,047	DGA (2016)
O-224-2	7,27	0,829	11,3	1,68	0,004	0,097	DGA (2016)
O-279-2	15	3,75	11,5	7,55	0,0015	0,108	DGA (2016)
O-299-2	9,25	1,38	7,04	3,18	0,006	0,033	DGA (2016)
O-309-2	5,6	1,05	6,98	2,04	0,0015	0,014	DGA (2016)
O-326-2	6,61	2,16	6,96	3,6	0,0015	0,001	DGA (2016)
O-328-2	4,09	1,16	6,07	1,78	0,0015	0,03	DGA (2016)
O-329-2	8,36	0,846	5,35	3,39	0,0015	0,118	DGA (2016)
O-329-2	15	4,24	11,2	9,28	0,0015	0,426	DGA (2016)
O-99-2	7,99	2,67	8,59	4,37	0,0015	0,001	DGA (2016)
1	4,65	0,98	4,35	1,62	0,0042	0,004917	DGA (2016)
S-45-2	4,61	0,1	6,4	2,04	0,0015	0,001	DGA (2016)
S-45-4	7,5	2,23	5,94	1,95	0,0015	0,001	DGA (2016)
S-49-4	9,79	2,4	6,75	3,07	0,0015	0,001	DGA (2016)
S-50-2	8,17	0,1	5,97	2,99	0,0015	0,087	DGA (2016)
S-54-2	1,47	0,1	3,56	1,8	0,0015	0,001	DGA (2016)

S-54-4	6,61	0,923	5,16	1,6	0,0015	0,065	DGA (2016)
S-55-2	4,96	0,603	5,78	1,99	0,0015	0,001	DGA (2016)
S-55-4	9,6	1,53	7,68	3,12	0,0015	0,06	DGA (2016)
S-59-2	4,44	0,1	5,33	2,1	0,0015	0,041	DGA (2016)
S-59-4	6,6	1,49	7,21	2,53	0,0015	0,004	DGA (2016)
S-62-2	4,07	0,1	4,72	2,38	0,0015	0,001	DGA (2016)
S-62-4	4,7	0,94	4,96	1,89	0,0015	0,077	DGA (2016)
S-64-2	1,55	0,1	1,71	0,853	0,0015	0,029	DGA (2016)
S-64-4	4,57	0,731	2,97	1,26	0,0015	0,093	DGA (2016)
S-65-4	3,31	0,473	2,29	1	0,0015	0,069	DGA (2016)
S-69-4	4,85	2,15	5,4	2,11	0,0015	0,148	DGA (2016)
S-71-2	3,32	2,23	6,03	2,44	0,006	0,091	DGA (2016)
S-72-4	2,85	1,87	2,9	3,92	0,0015	0,069	DGA (2016)
S-76-2	5,9	0,707	1,16	0,887	0,0015	0,146	DGA (2016)
S-76-4	23,3	3,61	9,5	5,96	0,0015	0,071	DGA (2016)
S-78-4	7434	290	287	837	0,082	2,05	DGA (2016)
S-79-2	6,77	0,1	4,48	1,1	0,0015	0,448	DGA (2016)
S-79-4	24,2	1,31	13,6	3,6	0,0015	0,074	DGA (2016)
S-80-2	2,96	0,1	2,04	0,875	0,0015	0,375	DGA (2016)
S-80-4	4,35	0,636	3,4	1,34	0,0015	0,049	DGA (2016)
S-81-4	4,99	1,67	6,71	1,78	0,0015	0,001	DGA (2016)
S-88-2	5,61	1,1	7,02	2,27	0,0015	0,055	DGA (2016)
S-91-2	2,76	1,31	4,93	0,996	0,0015	0,046	DGA (2016)
S-91-4	6,58	1,64	6,44	1,87	0,0015	0,023	DGA (2016)
2	3,45	0,90	4,33	1,57	0,002328	0,00351	Valenzuela (2019)
3	3,58	1,02	4,34	1,44	0,001572	0,010293	Valenzuela (2019)
4	2	0,48	2,47	0,62	0,000574	0,001737	Valenzuela (2019)
5	7,2	1,54	4,10	1,90	0,004722	0,037056	Valenzuela (2019)
6	5,4	1,63	6,78	3,40	0,000444	0,003761	Valenzuela (2019)
7	2,95	0,84	4,68	1,16	0,000822	0,005355	Valenzuela (2019)
8	3,9	0,75	5,74	1,63	0,001281	0,008944	Valenzuela (2019)
9	4,75	0,89	5,22	1,67	0,001114	0,008716	Valenzuela (2019)
10	1,68	0,33	2,37	0,78	0,00003	0,003604	Valenzuela (2019)
11	5,45	1,01	5,59	1,86	0,000622	0,006441	Valenzuela (2019)
12	6,25	1,12	5,97	2,53	0,000556	0,006227	Valenzuela (2019)
13	5,95	1,86	8,70	3,44	0,000543	0,008834	Valenzuela (2019)
14	4,2	1,21	5,87	2,20	0,00003	0,006355	Valenzuela (2019)
15	5,95	1,06	5,10	1,74	0,00003	0,005868	Valenzuela (2019)
16	3,5	0,87	4,31	1,48	0,000591	0,005628	Valenzuela (2019)
17	6,3	1,59	8,90	3,54	0,000696	0,010443	Valenzuela (2019)
18	4,95	1,17	7,21	2,70	0,001009	0,009036	Valenzuela (2019)
19	8,45	1,59	10,62	4,86	0,00097	0,013521	Valenzuela (2019)
20	7,28	2,86	15,62	5,44	0,000786	0,010393	Valenzuela (2019)
21	4,75	0,64	6,46	2,02	0,00002	0,010956	Valenzuela (2019)

22	5,8	1,50	6,05	3,24	0,000967	0,008216	Valenzuela (2019)
23	11	2,16	11,84	2,97	0,001096	0,118123	Valenzuela (2019)
24	4,05	0,95	5,24	1,77	0,001201	0,009668	Valenzuela (2019)
25	5,95	1,81	9,53	3,36	0,000596	0,006288	Valenzuela (2019)
26	6,45	1,92	6,42	3,61	0,000715	0,012678	Valenzuela (2019)
27	6,5	1,31	8,98	3,21	0,00076	0,006699	Valenzuela (2019)
28	3,85	0,89	5,01	1,82	0,001198	0,009434	Valenzuela (2019)
29	3,8	0,86	4,91	1,76	0,00119	0,009321	Valenzuela (2019)
30	3,85	0,88	5,06	1,78	0,001178	0,009322	Valenzuela (2019)
31	3,8	0,82	5,13	1,71	0,00119	0,009241	Valenzuela (2019)
32	4,55	1,05	5,92	1,90	0,001715	0,012288	Valenzuela (2019)
33	4,1	1,61	8,04	2,00	0,000327	0,006063	Valenzuela (2019)
34	3,9	0,78	5,09	2,04	0,000304	0,004555	Valenzuela (2019)
35	4,35	0,85	5,40	2,04	0,000307	0,004671	Valenzuela (2019)
A01	3,94	10,19	5,3	1,76	0,00108	0,0097	Valenzuela (2019)
A02	1,96	12,13	1,92	0,49	0,00006	0,00356	Valenzuela (2019)
A03	6	11,42	10,57	3,97	0,0002	0,00522	Valenzuela (2019)
A04	3,54	6,45	4,99	1,52	0,00012	0,00259	Valenzuela (2019)
A05	23	8,61	9,7	3,01	0,00095	0,10822	Valenzuela (2019)
A06	5,36	6,25	7,01	2,79	0,00053	0,00593	Valenzuela (2019)

Tabla 30. Datos Rb y Sr de muestras de aguas termales, superficiales y subterráneas.

Punto de muestreo	Тіро	Rb ug/L	Sr ug/L	Referencia
Palguin	ATF IN	9,39	27,2	Held et al. (2017)
Rincon	ATF IN	21,1	35,9	Held et al. (2017)
Termas de Palguin	ATF IN	9,27	31,1	Wrage et al. (2017)
Termas El Rincón	ATF IN	21,8	34,4	Wrage et al. (2017)
Rinconada	ATF IN	28,3	105	Held et al. (2017)
Coñaripe	ATF OUT	23,9	60,4	Held et al. (2017)
Nevado de Chillan Vn.	ATF OUT	12,2	78,6	Wrage et al. (2017)
Nevado de Chillan Vn.	ATF OUT	16,1	47,5	Wrage et al. (2017)
Nevado de Chillan Vn.	ATF OUT	54,3	143	Wrage et al. (2017)
Termas Malleco	ATF OUT	39,5	51,9	Wrage et al. (2017)
Tolhuaca Vn.	ATF OUT	29,2	68,1	Wrage et al. (2017)
Eco Termas Pellaifa	ATF OUT	16,8	44,2	Wrage et al. (2017)
Termas de Coñaripe	ATF OUT	24,5	56,7	Wrage et al. (2017)
Liucura	LOFS IN	6,81	83,9	Held et al. (2017)
Los Pozones	LOFS IN	12,9	168	Held et al. (2017)
Panqui	LOFS IN	13,6	313	Held et al. (2017)
Toledo	LOFS IN	51,9	1100	Held et al. (2017)
Trancura	LOFS IN	5,49	70	Held et al. (2017)
Menetue	LOFS IN	14	58,6	Held et al. (2017)

Rio Blanco	LOFS IN	9,3	339	Held et al. (2017)
San Luis	LOFS IN	6,67	72,6	Held et al. (2017)
Termas de Rio Blanco	LOFS IN	7,05	278	Wrage et al. (2017)
Termas Quimey-Có	LOFS IN	6,24	110	Wrage et al. (2017)
Parque Termal Menetùe	LOFS IN	11	56,9	Wrage et al. (2017)
Termas de San Luis	LOFS IN	7,4	74	Wrage et al. (2017)
Carranco	LOFS OUT	23,5	74	Held et al. (2017)
Chihuio	LOFS OUT	15,8	331	Held et al. (2017)
Liquine	LOFS OUT	23,8	65,9	Held et al. (2017)
Trapa Trapa	LOFS OUT	4,25	305	Wrage et al. (2017)
Copahue Vn.	LOFS OUT	56,9	141	Wrage et al. (2017)
Copahue Vn.	LOFS OUT	40,3	87,2	Wrage et al. (2017)
Copahue Vn.	LOFS OUT	24	27,4	Wrage et al. (2017)
Pucon Mahuida	LOFS OUT	285	816	Wrage et al. (2017)
Termas del Avellano	LOFS OUT	70,8	756	Wrage et al. (2017)
Termas de Pemehue	LOFS OUT	331	2820	Wrage et al. (2017)
Pelehue	LOFS OUT	18,5	130	Wrage et al. (2017)
Termas de Coyuco	LOFS OUT	28,8	548	Wrage et al. (2017)
Sierra Nevada Vn.	LOFS OUT	1,29	128	Wrage et al. (2017)
Agua de la Vaca	LOFS OUT	111	297	Wrage et al. (2017)
Termas de Balboa	LOFS OUT	62,5	106	Wrage et al. (2017)
Termas de Trafipan	LOFS OUT	8,26	71,2	Wrage et al. (2017)
Termas de Chihuio	LOFS OUT	15,3	294	Wrage et al. (2017)
Termas de Puyehue	LOFS OUT	31,1	138	Wrage et al. (2017)
Termas de Aguas Calientes	LOFS OUT	78,1	251	Wrage et al. (2017)
Termas de Rupanco	LOFS OUT	30,8	184	Wrage et al. (2017)
17	Subterránea	3,87	35,21	Valenzuela (2019)
18	Subterránea	3,15	23,93	Valenzuela (2019)
19	Subterránea	3,47	36,48	Valenzuela (2019)
20	Subterránea	4,16	67,10	Valenzuela (2019)
21	Subterránea	1,55	37,95	Valenzuela (2019)
22	Subterránea	0,65	23,15	Valenzuela (2019)
23	Subterránea	0,57	47,65	Valenzuela (2019)
25	Subterránea	1,39	49,51	Valenzuela (2019)
26	Subterránea	1,14	29,36	Valenzuela (2019)
27	Subterránea	0,80	33,19	Valenzuela (2019)
33	Subterránea	4,23	38,46	Valenzuela (2019)
A03	Subterránea	1,72	19,32	Valenzuela (2019)
A04	Subterránea	1,13	30,97	Valenzuela (2019)
A05	Subterránea	0,90	46,29	Valenzuela (2019)
A06	Subterránea	0,62	28,57	Valenzuela (2019)
1	Superficial	3,35	33,10	Valenzuela (2019)
2	Superficial	2,92	21,86	Valenzuela (2019)
3	Superficial	2,66	18,85	Valenzuela (2019)

4	Superficial	1,12	7,71	Valenzuela (2019)
5	Superficial	4,63	17,67	Valenzuela (2019)
6	Superficial	3,35	41,36	Valenzuela (2019)
7	Superficial	1,62	24,49	Valenzuela (2019)
8	Superficial	1,50	30,78	Valenzuela (2019)
9	Superficial	1,90	25,88	Valenzuela (2019)
10	Superficial	0,94	10,43	Valenzuela (2019)
11	Superficial	2,60	21,76	Valenzuela (2019)
12	Superficial	3,01	32,83	Valenzuela (2019)
13	Superficial	4,18	45,35	Valenzuela (2019)
14	Superficial	3,08	29,07	Valenzuela (2019)
15	Superficial	2,94	26,44	Valenzuela (2019)
16	Superficial	2,59	19,99	Valenzuela (2019)
24	Superficial	2,16	23,54	Valenzuela (2019)
28	Superficial	2,17	24,14	Valenzuela (2019)
29	Superficial	2,12	24,04	Valenzuela (2019)
30	Superficial	2,08	24,97	Valenzuela (2019)
31	Superficial	2,05	23,69	Valenzuela (2019)
32	Superficial	2,49	25,15	Valenzuela (2019)
34	Superficial	1,72	28,94	Valenzuela (2019)
35	Superficial	1,82	28,64	Valenzuela (2019)
A01	Superficial	2,40	26,31	Valenzuela (2019)
A02	Superficial	1,80	12,00	Valenzuela (2019)

Tabla 31. Datos Rb y Sr para muestras en roca del área de estudio.

Muestra	Тіро	Rb_ppm	Sr_ppm	Referencia
S42	Metamórfica	75,5	164,6	Held et al. (2018)
S2	Plutónica	15	161,7	Held et al. (2018)
S3	Plutónica	148,5	213,7	Held et al. (2018)
S7	Plutónica	75,6	209,7	Held et al. (2018)
S8	Plutónica	75	291,2	Held et al. (2018)
S13	Plutónica	27,6	500,7	Held et al. (2018)
S14	Plutónica	88,5	374	Held et al. (2018)
S20	Plutónica	54,8	201,9	Held et al. (2018)
S21	Plutónica	138	265,2	Held et al. (2018)
S22	Plutónica	55,7	576,2	Held et al. (2018)
S41	Plutónica	72	290,8	Held et al. (2018)
S43	Plutónica	156,2	166,2	Held et al. (2018)
S6	Volcánica	15,8	416,4	Held et al. (2018)
S9	Volcánica	18,9	421,7	Held et al. (2018)
S11	Volcánica	33,7	664,9	Held et al. (2018)
S16	Volcánica	35,6	550,4	Held et al. (2018)

XS-624	Volcánica	12	175	Jara et al. (2011)
XS-625	Volcánica	8	229	Jara et al. (2011)
XS-626	Volcánica	7	227	Jara et al. (2011)
XS-627	Volcánica	7	219	Jara et al. (2011)
XS-630	Volcánica	11	69	Jara et al. (2011)
XO-2081	Volcánica	18	834	Jara et al. (2011)
XO-2084A	Volcánica	16	416	Jara et al. (2011)
XO-2086	Volcánica	30	388	Jara et al. (2011)
XO-2092	Volcánica	24	538	Jara et al. (2011)
XO-2093	Volcánica	19	458	Jara et al. (2011)
XO-2085	Volcanosedimentaria	22	861	Jara et al. (2011)
S10	Volcanosedimentaria	36,3	549	Held et al. (2018)
S12	Volcanosedimentaria	124,8	152,2	Held et al. (2018)
S17	Volcanosedimentaria	118,6	190,8	Held et al. (2018)
S30	Volcanosedimentaria	16,5	384,5	Held et al. (2018)
11	Volcanosedimentaria	23,5	417,2	Held et al. (2018)
15	Volcanosedimentaria	35,8	597,5	Held et al. (2018)
16	Volcanosedimentaria	136,6	221,1	Held et al. (2018)
17	Volcanosedimentaria	71,4	175,8	Held et al. (2018)
18	Volcanosedimentaria	14,7	547,6	Held et al. (2018)
19	Volcanosedimentaria	18,3	352	Held et al. (2018)