NIVELES DE INTROGRESIÓN INTERRACIAL EN Liolaemus monticola (IGUANIDAE)

CH-FC 1AG-EBE

Tesis

Entregada a La

Universidad de Chile

en cumplimiento parcial de los requisitos

para optar al grado de

Magíster en Ciencias Biológicas con mención en

Ecología y Biología Evolutiva

Facultad de Ciencias

Nicolás Eduardo Aravena Muñoz

Enero, 2013

Directora de Tesis Prof. Madeleine Lamborot Ch. Co-Director de Tesis: Dr. David Veliz

FACULTAD DE CIENCIAS

UNIVERSIDAD DE CHILE

INFORME DE APROBACIÓN

TESIS DE MAGÍSTER

Se informa a la Escuela de Postgrado de la Facultad de Ciencias que la Tesis de Magíster presentada por el candidato: 10 de Septiembre del 2012

NICOLÁS EDUARDO ARAVENA MUÑOZ

Ha sido aprobada por la comisión de Evaluación de la tesis como requisito para optar al grado de Master en Ciencias con mención en Ecología y Biología Evolutiva, en el examen de Defensa Privada de Tesis rendido el día 10 de septiembre del 2012.

Directora de Tesis: Prof. Madeleine Lamborot

Co-Director de Tesis Dr. David Véliz

Comisión de Evaluación de la Tesis Dr. Elie Pouline

ulm

Dr. Marcelo Baeza

Dedicado a mis tutores: Madeleine Lamborot y David Véliz

AGRADECIMIENTOS

Luego de tres años de emocionante trabajo, culmina una investigación que no estuvo exenta de eventos que difícilmente olvidaré en mi vida, construida gracias al aporte de personas valiosas en lo académico y afectivo.

Agradezco la oportunidad por ser su alumno tesista a la profesora Madeleine Lamborot y al Dr. David Véliz, quienes de forma particular y conjunta creyeron en mí y en esta tesis, la que en un comienzo parecía imposible, pero que juntos logramos salir adelante. Gracias profesora Lamborot por su infinita paciencia, el valioso apoyo académico y emocional; sus enseñanzas y experiencias fueron piedra angular para esta hazaña. David, muchas gracias, tengo una gran estima hacia a ti como guía, como científico y como amigo, estoy muy agradecido por tu ayuda y paciencia en momentos que más lo necesité.

A Sandra Brito, por su valiosa ayuda en lo técnico y afectivo, junto a Pablo Astete y Eduardo Páez, colegas de oficio docente y científico, gracias por su paciencia y amistad dentro y fuera del laboratorio.

A la Dra. Irma Vila por sus aportes por el que hacer científico.

A Claudio Quezada por la disposición ante mis dudas y compartir junto a Juan Pablo, Caren, Pablo y Sergio conocimientos científicos, técnicos y por sobre todo su amistad.

A la Dra. Marcela Vidal, amiga y colega a quien estimo mucho por aquella "iluminación" hacia el camino científico que se fortalece aún más con esta etapa.

A mis tíos Guillermo y Nancy, junto a Fabián, Ignacia y Paola, por hacerme partícipe de su calor familiar, factor vital en los comienzos de este trabajo científico.

A Gabriel Castaño, simplemente gracias amigo por lo afortunado de habernos conocido y compartido penas y alegrías junto a Annia y Claudia.

Al apoyo otorgado por ICM P05-002 y PFB-23, del Instituto de Ecología y Biodiversidad, Universidad de Chile.

Por último, a las personas más valiosas para con mi vida: Dagoberto Aravena, Katia Muñoz, Camila Aravena y Camila Somos, pilares fundamentales de mi ser, quienes, tanto en vida o más allá de ella, son mis grandes maestros de vida, mi gratitud por lograr terminar esta tesis.

ÍNDICE DE MATERIAS

ÍNDICE DE TABLAS	viii
ÍNDICE DE FIGURAS	x
LISTA DE SÍMBOLOS, ABREVIATURAS Y NOMENCLATURA	xii
RESUMEN	xiii
SUMMARY	xv
INTRODUCCIÓN Hibridación e Introgresión Zonas de Hibridación Rearreglos Cromosómicos: implicancias en la formación de nuevas especies Marcadores cromosómicos, moleculares y morfológicos El Complejo <i>Liolaemus monticola</i> como modelo de estudio	1 2 3 4 6 8
HIPÓTESIS	11
OBJETIVOS Objetivo General Objetivos Específicos	11 11 11
MATERIALES Y METODOLOGÍA Obtención del material biológico Obtención de tejidos para los diferentes análisis genéticos Obtención de cromosomas Extracción de ADN Amplificación y Secuenciación de loci aloenzimáticos, loci de AFLP y del gen mitocondrial (cit-b) Loci Aloenzimáticos Loci de AFLP Citocromo b (cit-b) Morfología Análisis Estadísticos Citogenéticos y Aloenzimáticos AFLP ADN _{mt} Morfología	12 15 15 16 17 17 19 21 22 23 23 24 24 25
RESULTADOS Citogenéticos Aloenzimas Loci de AFLP ADN _{mt} Morfológicos (merísticos y morfométricos)	26 26 32 37 40 49

DISCUSIÓN	54
CONCLUSIÓN	62
REFERENCIAS	63
ANEXOS	71

ÍNDICE DE TABLAS

Tabla 1 : Lista de las muestras de Liolaemus monticola utilizadas en este estudio.	13
Tabla 2 : Lista de las enzimas con la nomenclatura según los criteriosde la IUBNC, sistemas de <i>buffers</i> y condiciones ideales utilizados en lascorridas electroforéticas para la revelación de las proteínas.	18
Tabla 3 : Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (<i>A</i>) e índice de deficiencia de heterocigotos (<i>Fis</i>) en base a los 7 pares cromosómicos para los 9 eco-demos de <i>Liolaemus monticola</i> .	28
Tabla 4 : Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (<i>A</i>) e índice de deficiencia de heterocigotos (<i>Fis</i>) en base a los 7 pares cromosómicos para las razas cromosómicas de <i>Liolaemus monticola</i> .	28
Tablas 5 : Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), valores de P al 95% de confianza, cálculo del número de alelos promedio por locus (A) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 loci aloenzimáticos para los 8 ecodemos de <i>Liolaemus monticola</i> .	33
Tablas 6 : Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), valores de P al 95% de confianza, cálculo del número de alelos promedio por locus (A) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 loci aloenzimáticos para las razas de <i>Liolaemus monticola</i> .	33
Tablas 7: Índices de diversidad genética resultantes de las secuencias del <i>cit-b</i> del ADN _{mt} para los 8 eco-demos de <i>Liolaemus monticola</i> .	42
Tablas 8: Índices de diversidad genética resultantes de las secuencias del <i>cit-b</i> del ADN _{mt} para las razas parentales de <i>L. monticola</i> .	42
Tabla 9: Valores de las pruebas de neutralidad para el citocromo b: n: número de individuos, Tajima ' <i>s D</i> (Tajima, 1989) y <i>Fu</i> ' <i>s Fs</i> (Fu, 1996) entre las zonas eco-geográficas propuestas para este gen en <i>Liolaemus</i> <i>monticola</i> .	43
Tablas 10: Valores de las pruebas de neutralidad para el citocromo b: Tajima ' <i>s D</i> (Tajima, 1989) y <i>Fu</i> ' <i>s Fs</i> (Fu, 1996) para las razas cromosómicas de <i>Liolaemus monticola</i> .	43
Tablas 11: Valores de <i>Fst</i> obtenidos de la comparación de pares de haplotipos del gen citocromo b entre los eco-demos de <i>Liolaemus monticola</i>	45

Tabla 12: Valores de *Fst* obtenidos de la comparación de pares de haplotipos del gen citocromo b razas de *Liolaemus monticola*

Tabla 13: Análisis Espacial de Varianza Molecular (SAMOVA) del cit b

 para Liolaemus monticola.

Tabla 14: variables morfométricas de *Liolaemus monticola* que mostraron diferencias significativas entre las localidades mediante morfometría merística.

50

45

ÍNDICE DE FIGURAS

Figura 1: Mapa representativo de las 23 localidades analizadas para este estudio.	14
Figura 2 : Dendograma de la Distancia Genética de Rogers Modificada (Wrigth 1978), obtenidos para la variación de los 7 pares cromosómicos de 21 localidades de <i>Liolaemus monticola</i>	29
Figuras 3 A y B: Detección del número de grupos basados en 7 pares cromosómicos.	30
Figura 4: Probabilidad del número de grupos individuales A) K=2 y B) K=3, para los 7 pares cromosómicos considerando 217 individuos, 9 eco-demos y un modelo de ancestralidad basado en el supuesto de mezcla entre las poblaciones, estimado con el programa <i>STRUCTURE</i>	31
Figura 5: Dendograma de la Distancia Rogers modificada (Wright, 1978) obtenidos para la variación aloenzimática de 7 loci entre 8 eco- demos de <i>L. monticola</i> .	34
Figura 6: Detección del número de grupos (K) basados en 7 loci aloenzimáticos y 8 eco-demos. (A) Promedio de L (K) \pm SD en función de K. (B) Δ K en función de K determinado a partir de Evanno y col. (2005).	35
Figura 7 : Probabilidad del número de grupos individuales (K), considerando 357 individuos, 7 loci aloenzimáticos, 8 eco-demos y un modelo de ancestralidad basado en el supuesto de mezcla entre las poblaciones, mediante <i>STRUCTURE</i> 2.33. A) K= 2 y B) K=4, según Δ K en función de K determinado a partir de Evanno y col. (2005).	36
Figura 8 : Detección del número de grupos basados en 547 loci de AFLP (A) Promedio de L (K) \pm SD en función de K. (B) Δ K en función de K determinado a partir de Evanno y col. (2005).	38
Figuras 9 : Probabilidad del número de grupos individuales A K=2 y B K=4, considerando 59 individuos, 541 loci <i>AFLP</i> y un modelo de ancestralidad basado en el supuesto de mezcla entre las poblaciones, mediante <i>STRUCTURE</i> 2.33. Colorado Sur (COS), pertenece a la raza Norte Mod. 1.	39
Figura 10: Árbol de mínima expansión de haplotipos del gen mitocondrial cit-b para los eco-demos de <i>Liolaemus monticola</i>	44
Figura 11: Reconstrucción filogenética para el gen mitocondrial citocromo b, utilizando Máxima Verosimilitud.	47
Figuras 12: Reconstrucción filogenética para el gen mitocondrial citocromo b, utilizando inferencia Bayesiana	48

Figuras 13 A, B y C : Resultado del Análisis de Componentes Principales para A) todas las variables que no presentaron dimorfismo sexual y para aquellas que si presentaron B) en machos y C) hembras.	51
	51
Lioleamus monticola utilizando Escalamiento Multidimensional.	52
Figura 15: Análisis Discriminante Lineal (ADL) para todas las variables morfológicas merísticas por individuo utilizadas en este estudio.	53
Figura 16: Porcentaje de los individuos bien y mal correspondidos por el ADL.	53

LISTA DE SÍMBOLOS, ABREVIATURAS y NOMENCLATURA

AFLP	Amplified Fragment Length Polymorphism			
ANOVA	Analysis of Variance			
BSA	Albúmina de Suero Bovino			
Cit-b	Citocromo b			
dH ₂ O	agua destilada			
ddH ₂ O	agua bi-destila			
EDTA	Ácido Etilen-Diamino-Tetra-Acético			
IUBNC	International Union of Biochemical Nomenclature Committee			
к	número de grupos			
MCMC	Markov chain Monte Carlo			
mg	miligramos			
mA	mili amperes			
mM	mili molar			
msnm	metros sobre el nivel del mar			
Nº de esc	número de escamas			
ng	nano gramo			
PCR	Reacción en Cadena de la Polimerasa			
rpm	Revoluciones por minuto			
SAMOVA	Análisis Espacial de Varianza Molecular			
TAE	Tris Acetato EDTA			
To	temperatura			
U/ μL	unidades por micro litro			
V	voltaje			
vs.	versus			
°C	grados Celsius			
ng/µL	nano gramos por micro litro			
μL	micro litro			
μΜ	micro molar			
τ	Tau			
ΔΚ	delta K			

RESUMEN

Hibridación e introgresión son fenómenos bastante documentados en plantas, pero limitada a unos pocos taxa animales. En poblaciones naturales, las zonas híbridas presentan la oportunidad de estudiar los efectos del flujo génico, selección y recombinación, proporcionando así una evaluación de los cambios genéticos y fenotípicos que ocurren en una especiación temprana. Otro punto a considerar es la variación cromosómica, la que suele producir un gran efecto al impedir o reducir la fertilidad de los híbridos, creando una barrera al intercambio genético e influyendo en la diferenciación de individuos de una población, los que eventualmente podrían alcanzar el estatus de especie.

Liolaemus monticola (von Müller y Helmich, 1932), especie endémica de Chile presenta diversas razas (a nivel cromosómico) y varias zonas de hibridación parapátricas, hechos que la convierten en un excelente modelo para caracterizar el nivel de hibridación e introgresión entre las razas cromosómicas. Esta tesis investigó dos razas de *L. monticola*: la raza Norte (2n= 38 a 40) y la raza Sur (2n= 34), más una estrecha zona de hibridación inter-racial considerada *de contacto secundario*, con gran variabilidad cromosómica y genéticas dada la presencia de híbridos cromosómicos, entre 24 localidades, repartidos en 9 eco-demos.

Mediante el empleo de un conjunto de marcadores independientes tales como polimorfismos cromosómicos, caracteres morfológicos y variantes genéticas (secuencias ADN_{mt}, loci aloenzimáticos y de *AFLP*) fueron analizados mediante estadísticos apropiados para cada marcador, por ejemplo Inferencia Bayesiana, Análisis de Componentes Principales, Análisis Discriminante Lineal, entre otros.

Es así como los análisis cromosómicos y morfológicos muestran claramente una estructuración geográfica, con la presencia de ambas razas y la zona hibrida circunscrita a una zona. Los análisis morfológicos muestran diferencias claras entre las razas cromosómicas y también con los híbridos, los cuales poseen formas intermedias. Por otro lado, los análisis del ADN_{mt} mostraron la presencia de las dos razas genéticamente muy diferentes, con la presencia de individuos de la zona hibrida con haplotipos de cada raza parental. De forma interesante, algunos individuos pertenecientes a una de las razas tienen haplotipos típicos de la otra raza, lo que indica un posible efecto de migrantes e hibridación en esa zona.

Un resultado contrastante, fueron los análisis realizados con marcadores nucleares (aloenzimas y AFLP), quienes no muestran una segregación tan clara de las razas y la zona híbrida. Si bien, los loci de AFLP muestran una cierta diferencia entre la raza norte, la raza sur y la zona híbrida, mientras tanto las aloenzimas muestran cambios en el número de alelos (intermedia en la zona híbrida) y en las heterocigocidades (aumento del He) no es posible establecer claramente los grupos.

A la luz de los resultados ,es posible indicar que las razas cromosómicas existen, la zona híbrida es geográficamente delineada y que es posible la existencia de introgresión posiblemente facilitada por la migración de machos. Además, la evidencia encontrada indica que los procesos de hibridación e introgresión son fenómenos que necesitan un análisis multidisciplinario, para una mejor comprensión de los límites entre especies y razas dentro de las especies, además de la permanencia de zonas híbridas en el tiempo.

SUMMARY

Hybridization and introgression are fairly documented phenomena in plants, but limited to a few animal taxa. In natural populations, hybrid zones have the opportunity to study the effects of gene flow, selection and recombination, thus providing an assessment of the genetic and phenotypic changes that occur in early speciation. Another point to consider is the chromosomal variation, which usually produces a great effect to prevent or reduce the fertility of hybrids, creating a barrier to genetic exchange and influencing the differentiation of individuals in a population, which could eventually reach the status species.

Liolaemus monticola (von Müller and Helmich, 1932), a species endemic to Chile has several races (at chromosome) and various areas of parapatric hybridization, facts that make it an excellent model to characterize the level of hybridization and introgression among chromosomal races. This thesis investigated two races of *L. monticola*: North race (2n = 38 to 40) and the South race (2n = 34) more a narrow area interracial hybridization secondary contact considered, with high chromosomal and genetic variability due to the presence of chromosomal hybrids between 24 sites spread over 9 eco-demos.

Through the use of a set of independent markers such as chromosomal polymorphisms, morphological and genetic variants (_{mt}DNA sequences, allozyme and *AFLP* loci) were analyzed using appropriate statistical for each marker, for example Bayesian inference, Principal Component Analysis, Discriminant Analysis linear, among others.

Thus, chromosomal and morphological analyzes clearly show a geographic structure, with the presence of both breeds and hybrid zone confined to a zone. Morphological analyzes show clear differences between the races and also chromosomal hybrids, which have intermediate forms. Furthermore, the _{mt}DNA analysis showed the presence of two genetically different races, with the presence of individuals in the area hybridizes with each race parental haplotypes. Interestingly, some individuals belonging to one of the races have haplotypes typical of the other race, indicating a possible effect of migrants and hybridization in that area.

A contrasting result, analyzes were performed with nuclear markers (allozymes and *AFLP*) who do not show such a clear segregation of the races and the hybrid zone. Although *AFLP* loci show a certain breed difference between the north, south race and the hybrid zone, while allozymes show changes in the number of alleles (hybrid intermediate zone) and in heterozigocidades (He increase) is not possible to pinpoint the groups.

In light of the results, it may indicate that chromosomal races exist, the hybrid zone is geographically delineated and it is possible that there may introgression facilitated by migration of males. Furthermore, evidence suggests that the processes found hybridization and introgression are phenomena that need Multidisciplinary analysis for a better understanding of the boundaries between species and strains within species, besides the hybrid zone residence time.

INTRODUCCIÓN

La formación de nuevas especies puede ser considerada como un proceso temporal mediante la cual algunas poblaciones se diferencian y alcanzan independencia evolutiva. Harrison (1998) ha propuesto que durante el proceso de especiación se van alcanzando varios grados de diferenciación que quedan reflejados por distintos conceptos de especie.

Aunque el concepto de *especie* es básico dentro de la biología, no hay un claro consenso para su definición, como se pone de manifiesto por el gran número de definiciones propuestas por especialistas de diversos campos de la genética, taxonomía, biogeografía, paleontología, entre otras, a lo largo de los años, ver De Queiroz (1998), y que no suelen ser aplicables a todos los seres vivos. *La elección del concepto de especie* en un estudio de delimitación de especies no es un asunto trivial, sin embargo, un consenso entre los biólogos evolucionistas es que las especies son reales y representan distintos linajes evolutivos (Sites y Moritz 1987; Wiens y Penkrot, 2002; de Queiroz, 2005).

El presente trabajo considera el concepto biológico de especie (Dobzhansky 1937, Mayr 1942, 1963) que, tal como lo plantea Noor y col. (2001), por ser general es más útil, a pesar de sus imperfecciones, debido a que todas las barreras reproductivas tienen un efecto similar en inhibir el flujo génico independiente de que se hayan originado mediante deriva, impulso meiótico, poliploidía, selección sexual o selección natural.

Un factor determinante del concepto biológico de especie es que no es aplicable cuando existe hibridación y rearreglos cromosómicos de por medio en el proceso de especiación.

Hibridación e Introgresión

La hibridación es un importante mecanismo para la transferencia y/o de origen nuevos caracteres relacionados con adaptaciones ecológicas, y por lo tanto, juega un papel importante en la facilitación de la especiación en nichos cambiantes, homogeneizando las características únicas de las poblaciones geográficamente distintas y/o especies incipientes, lo que retardaría una eventual futura especiación (Perry y col. 2002; Olden y col. 2004; Irwin y col. 2009).

La fracción de especies que hibridan es variable, en promedio alrededor de 10% de los animales y 25% de las especies de plantas conocidas hibridan con al menos otra especie (Mallet, 2005, 2008, 2010). Especies estrechamente emparentadas tienen más probabilidades de hibridación, aunque a menudo pueden persistir durante millones de años después de la divergencia inicial (Mallet, 2005).

A pesar de que los híbridos son raros en la población, unos pocos pueden ofrecer un puente para permitir que un flujo de alelos pasen entre las especies, incluso bajas tasas de hibridación pueden tener importantes consecuencias evolutivas en una alta proporción de especies (Field y col. 2010). Las posibles consecuencias evolutivas de la hibridación son numerosas, como el origen de nuevas especies a través de la recombinación o el reforzamiento (Anderson, 1949; Stebbins 1959; Lewontin y Birch 1966; Grant, 1981, Arnold 1997; Dowling y Secor, 1997), que incluyen la transferencia y producción de adaptaciones novedosas.

Un efecto directo de la hibridación es la *introgresión* (Anderson, 1949), definida como el movimiento de genes entre las formas genéticamente diferenciadas, mediadas por cruzamiento (Avise, 1994). Esta puede ser uni o bidireccional, localizada o extensa, y por este medio las especies lograrían adquirir caracteres adaptativos que permitan colonizar nuevos hábitats. Por otra parte, puede ser altamente selectiva, afectando sólo a algunas partes del genoma, mientras que otras regiones genómicas pueden ser afectadas por la selección divergente, permaneciendo virtualmente aislados (Rieseberg y Wendel, 1993; Field y col. 2010).

Zonas de Hibridación

En condiciones naturales, las Zonas Híbridas (ZH) pueden definirse como la producción de descendencia a partir del cruzamiento entre individuos pertenecientes a poblaciones, razas o especies distinguibles, en al menos, un carácter heredable, independiente de su estatus taxonómico (Barton y Hewitt, 1989; Harrison, 1990, 1993; Arnold, 1992, 1997; Avise, 1994; Barton, 2001). Presentan una gran oportunidad para estudiar los efectos del flujo génico, selección y patrones de recombinación en poblaciones naturales proporcionando una visión de los cambios genéticos y fenotípicos que ocurren tempranamente en la especiación.

Este proceso ocurre de forma natural, y los híbridos generados son viables y al menos en parte fértiles (Arnold, 1997). En la mayoría de estas áreas, habitualmente estrechas, generan un amplio rango de genotipos sobre los que pueden actuar mecanismos selectivos que contrarrestan el flujo genético y mantienen las poblaciones como unidades diferenciadas a pesar de la hibridación.

Se han propuesto dos escenarios para explicar los patrones de variación en las ZH: contacto secundario y contacto primario (Mayr, 1942; 1963; Harrison, 1990). El primero sugiere que las ZH son el resultado del contacto entre poblaciones que estuvieron previamente aisladas geográficamente. Si el aislamiento reproductivo no se ha alcanzado completamente se puede producir hibridación. Según el escenario de contacto primario, las áreas aparecen *in situ*, es decir, en poblaciones que presentan una distribución continua en parapatría y que se diferencian a lo largo de un gradiente ecológico sin una separación inicial entre ellas.

Una característica de las zonas híbridas es que pueden moverse en el espacio y tiempo (Barton y Hewitt, 1981), con consecuencias importantes en la evolución de las poblaciones involucradas. Su estabilización puede resultar de una combinación entre la dispersión constante de individuos parentales en la ZH y la selección en contra de los híbridos (Haldane, 1948; Key 1968; Bazykin 1969; Endler, 1977; Barton y Hewitt, 1985, 1989).

El reconocer que las zonas híbridas son sitios de intercambio genético de manera parcial entre especies, poblaciones o razas cromosómicas, ha llevado a describirlas como *"barreras semipermeables al intercambio de genes*" a pesar que los rearreglos cromosómicos y loci genéticos están bajo presión selectiva (Harrison 1990).

Rearreglos Cromosómicos: implicancias en la formación de nuevas especies

La variación cromosómica puede ser una fuente de información citotaxonómica, dada por diferentes mutaciones cromosómicas estructurales y/o numéricas, así como su comportamiento durante la mitosis y meiosis (Lamborot, 2008; Astete 2011). Las mutaciones estructurales documentadas tales como: inversiones (Carson y col 1967), translocaciones robertsonianas (King 1993; Garagna y col. 2001), fusiones céntricas (Capanna y col 1976; Redi y Capanna, 1988) fisiones céntricas (Todd 1970; Lamborot 1991; Kolnicki 2000) entre otras, suelen producir un gran efecto al impedir o reducir la fertilidad de los híbridos, creando una barrera al intercambio genético e influyendo en la diferenciación de individuos de una población, los que eventualmente podrían alcanzar el estatus de especie (King 1993, Lamborot 1991).

Bajo el supuesto que las mutaciones o reordenamientos cromosómicos pueden jugar un papel importante en la especiación, diversos modelos de especiación cromosómica han sido formulados (Lewis 1966; White, 1978 a y b; Hall, 1973; Grant 1981; Templeton, 1981; Baker y Bickham 1986), logrando afectar las tasas y patrones de recombinación y, así, la cantidad y distribución de intercambios génicos (Noor y col. 2001; Navarro y Barton, 2003).

Una cantidad considerable de evidencia indirecta (White 1978a; Rieseberg 2001) llevó a la idea de que los rearreglos cromosómicos (RC) juegan un papel en la especiación, con una resistencia entre investigadores dada la aceptación de modelos mal acompañados por un marco teórico formal. Además, la opinión predominante sobre la especiación debía ser con un aislamiento reproductivo total sin flujo de genes (Coyne y Orr 2004).

Tres son las evidencias que proponen que los RC pueden desempeñar un papel importante en la especiación: (1) el hecho de que la mayor parte de las plantas y animales presentan diferencias notables en sus cariotipos, incluso entre aquellas estrechamente relacionadas (King, 1993), (2) la observación de que algunos RC pueden causar problemas de fertilidad en híbridos (Orr, 1996), y (3) la asociación entre tasas de RC y tasas de especiación en diferentes phyla (Bush et al, 1977).

Para que los rearreglos cromosómicos se fijen en poblaciones conectadas por el flujo de genes, deben cumplirse por lo menos tres condiciones: (1) los RC deben suprimir la recombinación; (2) la supresión del flujo de genes dentro de un RC debe haber jugado un papel fundamental en el aislamiento reproductivo, y (3) la existencia de diferencias entre los taxones hermanos. La probabilidad de que se fije en una población depende, en primer lugar, del origen del RC para luego el establecimiento del RC en alta frecuencia en el demo, seguido de la expansión y fijación en los demos

Pocos temas dentro de la biología evolutiva han sido debatidos con más pasión que los mecanismos específicos sobre el origen de las especies, y a menudo se han centrado en dos aspectos fundamentales y relacionados: (1) la importancia relativa de la selección natural frente a la deriva genética, y (2) cómo el aislamiento reproductivo se puede completar al frente de flujo de genes (Coyne y Orr, 2004). En general, se supone que las tasas de migración de uno o más individuos por generación son suficientes para impedir la diferenciación entre poblaciones (Wright, 1931).

La deriva genética y los eventos de extinción-recolonización son dos factores que influyen en los RC (Hedrick, 1981; Lande, 1985). Bajo extinción-recolonización, la probabilidad de fijación en demos semi-aislados se maximiza para un flujo genético intermedio (Michalakis y Olivieri, 1993). Otros dos factores relevantes son la consanguinidad, que retrasa el progreso de la fijación bajo deriva genética, y el impulso meiótico que disminuye o elimina la frecuencia de equilibrio (Hedrick, 1981).

Marcadores cromosómicos, moleculares y morfológicos

Los diferentes tipos de marcadores independientes (cromosomas, aloenzimas, AFLPs, ADN_{mt}, etc.) se distinguen por su capacidad de detectar polimorfismos en diferentes *loci*. Tanto la divergencia genética como la acumulación de nuevas mutaciones pueden ser cuantificadas con análisis que facilitan la detección de hibridación e introgresión, aún cuando los híbridos pueden ser difíciles de distinguir entre sus parentales (Allendorf y col. 2001; Field y col. 2010).

Los marcadores moleculares son una herramienta necesaria en muchos campos de la biología evolutiva, ecología y genética de poblaciones, y se utilizan para rastrear e identificar genes de interés. Hoy en día, existen varias técnicas moleculares que permiten conocer las variantes alélicas de genes en poblaciones naturales (o razas), tanto de manera indirecta, e.g. con los análisis de proteínas, o de manera directa con estudios de ADN (Simpson, 1997).

Inicialmente, la detección de polimorfismos genéticos se evidenció mediante variantes electroforéticas para proteínas. El principio básico de la técnica reside en el uso de electroforesis en gel de almidón (Smithies, 1955) y en la visualización del producto enzimático por métodos histoquímicos (Markert y Hunter 1957), aspecto que permitió la detección de zonas híbridas (Barton y Hewitt, 1985), y la revelación de electromorfos únicos, referidos a "*hybrizymes*" por Woodruff (1989), marcadores que no se encuentran en poblaciones parentales.

Los *marcadores de ADN* presentan ventajas frente a los de proteínas, por no afectarse por condiciones fisiológicas, ambientales o de crecimiento del individuo y no son específicos de ciertos tejidos (Frankham y col. 2004). Con el desarrollo de la amplificación en cadena de la polimerasa (*PCR*) (Saiki y col. 1988), se llega a la descripción de nuevas clases de marcadores moleculares, por ejemplo loci de *AFLP* (*Amplified Fragment Length Polymorphism*) (Montaño-Pérez y col. 2006), entre otros. Dentro de las particularidades de los *AFLP* tenemos que: i) no se requiere conocimiento previo de la secuencia genética; ii) existe especificidad en la resolución de la digestión con enzimas de restricción y iii) hay rapidez en la detección de polimorfismo vía *PCR* otros. La desventaja reside en la baja cantidad de información genética por *locus*, haciendo difícil discernir codominancia por ser un marcador dominante (Montaño-Pérez y col. 2006).

Los análisis más detallados de diferenciación genética pueden obtenerse secuenciando la región de interés para diferentes individuos. Actualmente la secuenciación es muy común, aplicándose en estudios de genética de poblaciones y para resolver problemas taxonómicos. La secuenciación de ADN mitocondrial (ADN_{mt}), es otra forma de detectar polimorfismos genéticos. Es altamente variable, no recombina, de herencia materna (a excepción de *Mytilus,* Zouros *et al.* 1994, y en humanos, Ankel-Simons y Cummins, 1996) y con alta tasa de mutación. Aunque, por sí solo, el ADN_{mt} ofrece muy poca información acerca de la hibridación, sin embargo, junto con la información de otros loci o de datos geográficos a menudo ha proporcionado pruebas convincentes de introgresión entre especies (Carr et al. 1986; Dowling y DeMarais, 1993).

Los métodos de análisis basados en la morfología (morfométricos y merísticos) ampliamente utilizados en sistemática, ofrecen ventajas sobre los métodos moleculares, en particular cuando estos no pueden aplicarse, e.g. a falta de tejidos vivos (Pounds y Jackson 1981; Ferreira y Grattapaglia, 1998; Frankham y col. 2004). Sin embargo, no todas las variaciones morfológicas poseen una base genética clara, y a menudo una gran variación morfológica intrapoblacional, puede suponer la presencia de individuos híbridos fenotípicamente intermedios a los parentales (Smith, 1992).

El Complejo Liolaemus monticola como modelo de estudio

El género *Liolaemus* con más de 225 especies descritas (Lobo y col. 2010) restringido al cono sur de Sudamérica, ocupa una amplia área geográfica (entre los 14º a 52º lat. S y 70º a 71º long. W, y altitudes que varían desde el nivel del mar hasta los 4500 m). Está presente en variados regímenes climáticos, incluyendo el árido desierto de Atacama o los lluviosos bosques templados de *Nothofagus* en Tierra del Fuego (Cei, 1986, 1993; Donoso-Barros, 1966; Etheridge y De Queiroz, 1988; Lobo, 2001).

Liolaemus monticola (von Müller y Helmich, 1932), especie montañosa endémica de Chile, posee un tamaño corporal mediano, logra formar comunidades relativamente numerosas y mantiene hábitos alimentarios insectívora (Donoso-Barros, 1966; Lamborot, 2008). Distribuída entre los 30° a 40° Lat. S y 70° a 71° long. W y altitudes que van desde los 400 a 1600 m (Donoso-Barros, 1966; Peters y Donoso - Barros, 1970; Lamborot y col. 2003).

Constituye una especie única en el género y en la herpetofauna de Chile (Lamborot, 1993), por presentar cualidades especiales tales como: un gradiente latitudinal de diversidad cariotípica de complejidad creciente de sur a norte (2n=32 a 2n=46), variadas mutaciones cromosómicas intra e inter razas; numerosos polimorfismos cromosómicos y varias zonas de hibridación parapátricas, entre otras (Lamborot, 2008).

Hasta la fecha, se han reportado siete razas cromosómicas: "*Primitiva* (2n= 32)"; "*Sur* (2n= 34)"; "*Norte* (2n= 38 a 40)"; "*Norte modificado 1* (2n= 38 a 40)" y "*Norte modificado 2* (2n= 38 a 40)", además de "*Múltiples Fisiones* 1 (2n= 42 a 44)" y "*Múltiples Fisiones* 2 (2n= 44 a 46)"; (Lamborot 1991, 1998, 2001; Lamborot y col. 1981, 2012) y varias zonas de hibridación (Lamborot 2008). Este estudio se centró en dos razas cromosómicas: "Sur, 2n=34" y "Norte, 2n=38 a 40" y una zona híbrida interracial descrita por Lamborot 1991.

El número diploide para la raza Sur, para ambos sexos, se compone en 12 macrocromosomas y 22 microcromosomas (Lamborot, 1991). Es así como los pares 1, 3, 4, 5 y 6 son metacéntricos; el par 2 submetacéntrico que lleva un satélite en el extremo de su brazo largo. Los pares microcromosomales 7, 8 y 9 son metacéntricos, pero la morfología de los microcromosomas restantes es difícil de establecer (Lamborot, 1991). En cambio, la raza Norte, el cariotipo oscila 38 a 40 para ambos sexos con diferentes variantes. Todas presentan una sustitución conservada del par macrocromosómico 4, más la condición polimórfico para el par macrocromosoma 3, y cerca de 24 microcromosomas.

El Río Maipo, y uno de sus afluentes el Río Yeso, separan las razas "Sur, 2n=34" y "Norte, 2n=38 a 40". Sin embargo, en la ribera sur del Río Yeso, Lamborot, (1991) describe una estrecha zona de hibridación inter-racial de aproximadamente 10.000 m² (200m de largo por 50m de ancho) considerada *de contacto secundario*, con gran variabilidad cromosómica y genéticas dada la presencia de híbridos cromosómicos (Lamborot 1991; Lamborot y col. 2003; Vásquez y col. 2007; Páez, 2010; Astete, 2011), los que suelen poseer un grado de aneuploidía cromosómica, mitóticas y meióticas, mayor que las razas parentales (Lamborot, 1991).

El reconocimiento del cariotipo de los híbridos, machos o hembras, se basa en la disposición cromosómico diploide; cuando los híbridos son machos, este diagnóstico se hace fácilmente a partir de espermatocitos en diacinesis, los cuales son reconocidos por presentar combinaciones cromosómicas que no están presentes en ninguna de las dos razas parentales.

Diversos estudios, que van desde los citogenéticos (Lamborot 1991, 1993, 1998, 2001; Lamborot y Álvarez-Sarret, 1993; Lamborot y col. 2012), morfológicos (Lamborot y Eaton, 1992, 1997; Lamborot y col. 2003), biogeográficos, genéticos (Lamborot y Vásquez 1998; Vásquez y col. 2007, Páez 2010) y filogeográficos (Torres-Pérez y col. 2007, 2009), avalan la hipótesis de una complejidad cromosómica creciente de sur a norte, concomitante a una evolución desde ambientes más húmedos a más xéricos (Lamborot, 2008).

El conocimiento acumulado para esta particular lagartija, tanto en distribución como en los diversos estudios mencionados, deja de manifiesto la necesidad de una información comparada de los procesos de introgresión genética cromosómica interracial con sus alcances y consecuencias evolutivas, mediante el empleo de marcadores independientes nucleares, citoplasmáticos y morfológicos. Por tal motivo, en este trabajo, se basa en la siguiente hipótesis:

HIPÓTESIS

"La existencia de dos razas cromosómicas "Norte, 2n= 38-40" y "Sur, 2n= 34" para *Liolaemus monticola*, más una zona de hibridación producto del contacto de ambas razas geográficamente delimitadas, presumen que los niveles de introgresión entre las razas parentales son mínimos o nulos."

OBJETIVOS

Objetivo General

Estimar el grado de introgresión inter racial y la zona de hibridación descrita para dichas razas, utilizando diferentes aproximaciones tanto cromosómicas, moleculares y morfológicas.

Objetivos Específicos

1. Evaluar la variabilidad y estructura genética mediante análisis: citogenéticos, ADN_{mt} (cit-b), loci de *AFLP* y aloenzimáticos, y caracteres morfológicos (merísticos) en y entre las razas Sur (2n=34) y Norte (2n=38-40) *de L. monticola* más la zona de hibridación interracial Sur x Norte.

2. Caracterizar el nivel de hibridación de dos razas de *Liolaemus monticola* en la zona central de Chile con énfasis en una zona de hibridación.

3. Establecer límites y relaciones espaciales entre razas parentales y zona de hibridización.

MATERIALES y MÉTODOS

Obtención del material biológico

La mayoría de las muestras utilizadas en este estudio corresponden a material preservado durante tres décadas (1980, 1990 y 2000), ya sea preparaciones citogenéticas, tejidos almacenados a -85°C o de individuos etiquetados y preservados en alcohol 70%, en las dependencias del Laboratorio de Citogenética, Facultad de Ciencias, de la Universidad de Chile.

La recolección de los ejemplares se realizó mediante lazos corredizos, y trasladados vivos al laboratorio para su sacrificio con el propósito de efectuar análisis citogenéticos, moleculares y morfológicos. Las referencias geográficas, así como el tamaño de muestra se muestran en la Tabla 1 y Fig. 1. Con el propósito de aumentar el número muestral para los análisis estadísticos, las localidades fueron agrupadas mediante eco-demos, tal como lo establecido en la Tabla 1.

Este estudio incluyó varias muestras de las razas cromosómicas de *Liolaemus monticola* Sur y Norte, más una Zona de Hibridación interracial, además algunas localidades de la Raza Norte Modificada I (2n=38-40) (ver Tabla 1 y Fig. 1) con algunos análisis previos como los de Lamborot y Eaton 1997; Lamborot 2001; Lamborot y col. 2003; Torres-Pérez y col. 2007 y 2009; y de Vásquez y col. 2007; tesis de Páez 2010 y Astete 2011.

NM	Localidad	Rango Geográfico	Posición Geográfica	Altitud	Ν
1	Siete Tazas (STA)		35°27'31" S, 71°01'34" E	960-970	3
2	Río Lontué (RLO)	Sur Andes	35°18'16" S, 70°58'17" E	1200	11
3	Los Queñes (QÑS)	3	35°06'18" S, 70°48'58" E	1200-1450	36
4	C ^o Cantillana (CAN)	Sur Costa	33°58'46" S, 70°59'14" E	1300-1600	18
5	El Volcán (VOL)		33°49'01" S, 70°10'00" E	1415-1450	3
6	El Ingenio (ING)	Sur Andes	33°46'33" S, 70°16'40" E	1200-1400	9
7	Río Clarillo (RCL)	(Cajón del Maipo)	33°43'47" S, 70°28'05" E	950-1300	8
8	Maipo Sur (MAS)		33°38'49" S, 70°21'37" E	980	22
9	Yeso Sur (YES)	Zona Híbrida	33°47'14" S, 70°13'40" E	1300-1320	45
10	Yeso Norte (YEN)		33°47'09" S, 70°13'38" E	1300-1320	24
11	San Gabriel (SGA)		33°46'45" S, 70°14'47" E	1100-1250	14
12	El Manzano (MAN)	N	33°31'29" S, 70°24'19" E	1350-1500	11
13	El Alfalfal (ALF)	Andes	33°30'16" S, 70°11'48" E	1330	27
14	El Arrayán (ARR)	(Caión del Maipo)	33°19'20" S, 70°28'20" E	1300-1500	4
15	Farellones (FAR)	(,	33°20'47" S, 70°21'41" E	1400-1500	16
16	Yerba Loca (YLO)		33°20'16" S, 70°19'58" E	1800	8
17	Saladillo (SAL)		32°54'35" S, 70°18'02" E	1400-1500	16
18	Río Blanco (RBL)	Norto Mod 1	32°54'29" S, 70°18'19" E	1400-1450	8
19	Colorado Sur (COS)	Andes	32°51'44" S, 70°25'00" E	1550	26
20	Colorado Norte (CON)	Andes	32°51'44" S, 70°25'01" E	1550	22
21	C ^{ta} Chacabuco (CHA)	Norte Trans.	32°57′46″ S, 70°42′40″ E	1000-1200	9
22	C° La Campana (CAM)	Norto	32°57'31" S, 71°07'26" E	1350-1500	14
23	C° El Roble (ROB)	Costa	33°00'39" S, 71°00'34" E	800-1650	37
_24	C ^{ta} La Dormida (DOR)	0000	33°03′43″ S, 71°00′37″ E	900-1350	30

Tabla 1. Lista de las muestras de *Liolaemus monticola* utilizadas en este estudio, indicando número en el mapa (NM), localidad y abreviatura entre paréntesis, Rango Geográfico, coordenadas geográficas, Altitud (msnm) y número de ejemplares. Trans.: Transversal.

Figura 1: Mapa representativo de las 23 localidades analizadas para este estudio. **Naranjo**: Raza Norte Modificada I (2n=38-40), **Rojo**: Raza "Norte" (2n= 38-40), **Verde**: Zona de Hibridación, **Azul**: Raza "Sur" (2n= 34). 1) Siete Tazas; 2) Río Lontué; 3) Los Queñes; 4) Co Cantillana; 5) El Volcán; 6) El Ingenio; 7) Río Clarillo; 8) Maipo Sur; 9) Yeso Sur; 10) Yeso Norte; 11) San Gabriel; 12) El Manzano; 13) El Alfalfal; 14) El Arrayán; 15) Farellones; 16) Yerba Loca; 17) Saladillo; 18) Río Blanco (se encuentra solapada con la localidad de Saladillo); 19) Colorado Sur; 20) Colorado Norte; 21) Cta. Chacabuco; 22) Cta. La Campana; 23) Co El Roble; 24) Cta. La Dormida.

Obtención de tejidos para los diferentes análisis genéticos

Cada *L. monticola* se sacrificó con una sobredosis de uretano en el ojo pineal, previa inyección de colchicina, dos horas antes de su procesamiento. Luego, se disectó y se extrajo el bazo, médula ósea (de un fémur) y testículos para la obtención de placas cromosómicas y tejidos de: hígado, intestino, músculo esquelético y corazón, los que fueron almacenados a -85° C para las electroforesis de proteínas en geles de almidón o conservadas en alcohol al 70% obtención de ADN y posterior secuenciación de *AFLP* y del citocromo b del ADN_{mt}.

Obtención de cromosomas: Técnica del goteo de Lamborot y Vásquez (1998).

A partir de muestras frescas de testículo, médula ósea y bazo, disgregadas en placas de Petri con una solución isotónica (*Ringer para reptiles*) se obtuvo una suspensión celular que se depositó en tubos de centrifugación rotulados, luego centrifugados a 800 rpm durante 8 min. El sobrenadante se descartó y se reemplazó por una solución hipotónica de *Citrato de sodio* al 0,8%, reposando aproximadamente por 17 min.; luego se centrifugó y descartó el sobrenadante, para adicionar el *fijador (metanol - acético* 3:1) y agitación manual. Se centrifugó nuevamente por 8 min. y se repitió el paso anterior con el fijador nuevo. Posteriormente, se dejó caer una gota de la suspensión sobre un portaobjeto limpio, que se seca en una plancheta termoeléctrica (Thermolyne HP-A 191), se tiñó con *solución Giemsa* al 4% ajustado a pH 7,2 por 25 min. y se dejó secar.

Se observaron las preparaciones al microscopio registrando y diagnosticando las metafases mitóticas y meióticas. Finalmente, estas preparaciones fueron montadas en DEPEX, cubiertas con un cubre objeto y secadas en una plancheta las que fueron fotografiadas con una cámara fotográfica *Nikon Optiphot FX 35ª*, adicionada al microscopio. Las fotografías fueron ampliadas para el montaje de los cariotipos mitóticos y meióticos y su posterior diagnóstico.

Una vez reconocidos los siete primeros pares cromosómicos, se diagnosticó la condición de polimorfismo (Lamborot, 1998) de los pares que podían presentar alguna modificación en su estructura producto de algún rearreglo cromosómico y puestos en una matriz de datos. Para el análisis de los polimorfismos cromosómicos, se procedió con los mismos parámetros establecidos en Lamborot 1998, quien asigna la morfología: "AA" al par cromosómico no fisionado, metacéntrico o submetacétrico; "BB" al par fisionado (par 3 y/o 4); "CC" al par con inversión pericéntrica (par 7); "EE" al cromosoma alargado del par 6.

Extracción de ADN

Una pequeña porción de tejido (apróx. 1 mg), ya sea corazón, hígado o músculo, fue usado para la extracción de ADN. Este proceso fue llevado a cabo mediante una modificación del protocolo de *extracción salina* descrito por Aljanabi y Martínez (1997), y su concentración fue cuantificada utilizando un espectrofotómetro de la marca Nanodrop.

Caracterización del polimorfismo de loci Aloenzimáticos y de *AFLP*, y secuenciación del gen mitocondrial (cit-b)

Loci Aloenzimáticos

Para la visualización de alelos aloenzimáticos se utilizó el protocolo descrito por Vásquez (2002) y Páez (2010) (Tabla 2). Los tejidos, previamente almacenados a -85° C, fueron descongelados y macerados manualmente en un mortero a baja T° adicionando un *buffer de extracción*, Tris Base 0,01 M, *EDTA* pH 6,8 0,01 M, NaCl 0,03 M y dH₂O, ajustado a pH 6,8 con HCl. La mezcla se traspasó a tubos *Eppendorf* rotulados.

Los geles de almidón hidrolizado al 11%, con *buffers*, enzimas y cofactores necesarios para visualizar las enzimas requeridas (Tabla 2), se prepararon siguiendo el protocolo del Laboratorio de Citogenética Evolutiva y el de Vásquez y col. (2007). La corrida electroforética se efectuó con el voltaje y el amperaje apropiados para la migración correcta de cada enzima (Tabla 2). Transcurrido el tiempo de corrida, se procedió a la visualización de las migraciones de las enzimas reveladas por su tinción específica (Vásquez 2002), y se incubó a 37° C, durante un tiempo relativo para cada proteína (Tabla 2). Cada gel teñido, se secó en estufa de secado (Memmert B40) a 60° C y fue fotografiado con el fin de registrar los patrones de bandas. La interpretación de patrones de bandas se llevó a cabo en base a diagramas acorde a las sub-unidades que conforman a cada proteína asignando un "*genotipo putativo*", basado en la migración electroforética, descrito en Vásquez (2002).

Enzima	Sigla	IUBNC	Sistema Buffers y condiciones ideales	
Glucosa – 6 fosfato isomerasa	PGi	EC 5.4.2.2		
Lactato Deshidrogenasa	LDH	EC 1.1.1.40	Tris Citrato	
Peptidasa-A	Pep-A	EC 3.4.11.4	pH 8,0; 75 mA; 90 V; 7 hrs	
Superóxido Dismutasa	Sod	EC 1.15.1.1		
Aspartato Aminotransferasa	Aat	EC 2.6.1.1		
α-Manosidasa	α -Man	EC 3.2.1.24	Tris Borato EDTA	
α-Esterasa	α -Est	EC 3.1.1.1	pH 8,6; 17-20 mA; 90 V; 5-6 hrs	
β-Esterasa	β-Est	EC 3.1.1.1		
Fosfoglucomutasa	Pgm	EC 5.4.2.2	2 - 27446 - 46 ADM	
α-Esterasa	α -Est	EC 3.1.1.1	Tris HCl pH 8,2; 60 mA; 130 V; 5-6 hrs	
β-Esterasa	β-Est	EC 3.1.1.1		
Adenilato Kinasa	AK	EC 2.7.4.3	Tris Borato EDTA	
Creatina Kinasa	CK	EC 2.7.3.2	pH 8,0; 35 mA; 140V; 7-8 hrs	

Tabla 2: Lista de las enzimas con la nomenclatura según los criterios de la IUBNC, sistemas de *buffers* y condiciones ideales utilizados en las corridas electroforéticas para la revelación de las proteínas.

Loci de AFLP

La amplificación de fragmentos de *AFLP* fue llevada mediante el protocolo de Vos y col. (1995), el cuál consta de tres etapas:

I) **Digestión enzimática y Ligamiento de adaptadores**, cuyo propósito es cortar el ADN en lugares específicos con enzimas de restricción y pegar adaptadores específicos al extremo de cada fragmento formado por la digestión enzimática, la que constó de una reacción de 12 μL de solución final, formado por *buffer T4 10X*, los adaptadores: *EcoRI* 5`-GACGATGAGTCCTGAG-3`; 3`-TACTCAGGACTCAT-5` y *MseI* 5`-CTCGTAGACTGCGTACC-3`; 3`-CATCTGACGCATGGTTAA-5`, NaCl 0,5 M, *BSA* 10 ng/μL, 50 ng/μL ADN, y una mezcla de enzimas, en un *buffer T4 10X*, *ADN T4 DNA ligasa* 1U, las enzimas *EcoRI* 5U y *MseI* 1U (Invitrogen ®), NaCl 0,5 M, *BSA* 10 ng/μL, y ddH2O. Completada la reacción, se incubó a T^o ambiente toda la noche y después almacenada a 4^o C. Para cerciorarse sobre la calidad de la digestión, se efectuó una electroforesis con 4 μL de la reacción enzimática en gel de agarosa al 1,5%, luego, a cada tubo de reacción se le suministró 50 μL de ddH₂O.

II) **PCR Pre-Selectivo**: se llevó a cabo en una reacción de 25,5 μL de solución final, formado por *Taq DNA polimerasa Platinum, buffer* 10X sin NH₃ (SO₄)₂ y de MgCl₂ 2 mM, y de los oligonucleótidos *Mse-presel* y *Ecori-presel* Los cuatro desoxinucleótidos fueron diluidos a una concentración de 5 mM, más dH₂O, para luego ser todo agregado a la disolución de la digestión-ligación. La mezcla se amplificó en un termociclador *Multigen* Labnet, cuyo perfil térmico constó en un precalentado de 72° C, 29 ciclos de: 30 seg. de denaturación a 94° C, 30 seg. de alineamiento a 56° C y 2 min. a 72° C, luego una extensión a 60° C y se almacenó a 4° C. Al igual que el paso anterior, se efectuó una electroforesis con 4 μL del producto PCR pre-selectivo en un gel de agarosa al 1,5%, luego se adhirió 100 μL de dH₂O a cada producto PCR.

III) **PCR Selectivo**: que consta de la amplificación de fragmentos de ADN con primers específicos, y utilizó los mismos reactivos del paso anterior salvo en los oligonucleótidos a utilizar (MseI-CAC – EcoRI-ACA; MseI-CTA – EcoRI-AAC; MseI-CTT – EcoRI-ACT y MseI-CTC – EcoRI-ACC). Esta reacción fue mezclada con el producto PCR de la reacción pre- selectiva y amplificadas utilizando el mismo termociclador descrito anteriormente, cuyas condiciones térmicas se dividieron en dos partes: 1) *Touch-down*: con un precalentado a 94° C por 2 min., seguido de 12 ciclos de: 30 seg. a 94° C, 65° C por 30 seg., reduciendo en 1° C por ciclo, seguida de una elongación a 72°C, y 2) una *PCR normal* con 23 ciclos de 94° C por 30 seg., 30 seg. a 56° C, 72° C durante 2 min. y de 10 min. a 72° C. El producto final se almacenó en freezer a 4° C. La genotipificación de *AFLP* se realizó en un secuenciador automático de la empresa MACROGEN Inc. (www.macrogen.com).

La estimación de los tamaños alélicos para los fragmentos de los loci de *AFLP* se realizó mediante el estándar LIZ500, usando el software *GeneMarker* 1.91 (SoftGenetics LLC). Sólo los peaks claros y consistentes de entre 75 a 500 pares de bases fueron usados en el análisis, codificado como 1/0 para indicar la presencia/ausencia de cada fragmento en cada individuo. Sólo se utilizaron los loci que presentaron más del 1% y menos del 99% de polimorfismo, para evitar errores de conteo.

Citocromo b (cit-b)

La amplificación del gen mitocondrial *cit-b*, se realizó con una reacción de 25 µL de solución final, formado por *Taq DNA polimerasa* a 5 U/µL, de *buffer* 10X sin NH₃(SO₄)₂ y de MgCl₂ 2 mM, todos Invitrogen®, más 25 µM de cada oligonucleótido: LGLUD: 5`-TGACTTGAARAACCAYCGTTG-3 (Palumbi, 1996) y HCB3: 5`-GGCAAATAGGAARTATCATTC-3` (Palumbi 1996). Los cuatro desoxinucleótidos a 200 mM, dH₂O y 10 ng de ADN genómico se amplificaron en un termociclador PTC-100 Peltier Thermal Cycler MJ Research®, con 35 ciclos con 90 seg. de desnaturación a 94° C; 25 seg. de alineamiento a 52° C y 90 seg. de extensión a 72° C, con un precalentado de 5 min. a 95° C, culminando con una extensión de 5 min. a 72° C.

Los productos de PCR, fragmentos de 700 pares de bases, se analizaron mediante electroforesis de gel de agarosa al 1 %, en TAE 1% y teñido con *SYBR® Safe DNA gel stain* (Invitrogen®), usando como estándar de tamaño molecular, un ladder de 100 pb Winkler (rango 100–1000 pb), a un voltaje constante de 100 volts durante aproximadamente 1 hr.
Morfología

Para detectar diferencias morfológicas entre las razas se utilizó treinta y siete caracteres merísticos descritos para L. monticola (Lamborot y Eaton 1992, 1997). Para cada carácter sólo se midió el lado derecho del cuerpo, pues análisis previos demostraron que la asimetría bilateral no es apreciable (Lamborot y Eaton 1992). La cuantificación y caracterización de las escamas se realizó bajo lupa binocular (Nikon Stereo Photo SMZ-10), según protocolo descrito en Lamborot y Eaton 1992, utilizando los siguientes caracteres: COR A: Circumorbitales; COR B: circumorbitales más superciliares y supraorbitales; SOR: dentro del semicírculo del circumorbital; SCI: superciliares; SOC: suboculares; TEM: temporales, entre margen posterior del ojo y la mitad del oído; CATEM: cantus temporal; SAP: bordean el parietal; POSPA: post parietales; FRON: frontales; SAF: bordean la frontal; POPR: post frontales; LOR A: loreales, entre cantales, supralabial y subocular; LASUP 1B: labial superior, segunda mitad del ojo hasta final de comisura labial; LASUP 2A: labial superior A, desde rostral hasta primera mitad del ojo (en contacto con SOC); LASUP 2B: labial superior B, segunda mitad del ojo hasta final de comisura labial; LAINF A: infralabial A, desde mental hasta primera mitad del ojo (en contacto con LASUP 1); LAINF B: infralabial B, desde mental hasta el final de comisura labial,; AURS: auriculares; TIPS: timpánicas; SARO: rodean escama rostral; SAME: rodean escama mental; INA: Internasales; SANA: rodean escama nasal; SBRF: entre frontal y rostral; INCA: intercantales; GUS: gulares; DOS: dorsales; VES: ventrales; SAB: alrededor del cuerpo; FEM: femorales, desde el codo hasta el torso (siguiendo escamas grandes); DORCA: dorsal largo de la cabeza,; AVCO: al rededor del 15º verticilo de la cola, desde el nivel de la cresta genital; LAMA: lámelas subdigitales del cuarto dedo de la pata derecha de la extremidad anterior; LAPA: lámelas subdigitales del cuarto dedo de la pata derecha de la extremidad posterior; LARCAB: largo de la cabeza (cm); LARESCA: cuociente entre LARCAB y DORCA.

Análisis estadísticos

Citogenéticos y Aloenzimáticos: Las variantes cromosómicas fueron tratadas como "alelos", por lo que se realizó el mismo análisis de frecuencias que en aloenzimas. Por ecodemos, se estimó la proporción de loci polimórficos (P); el promedio de heterocigosidades observadas (Ho) y esperadas (He), y el número de alelos por locus (A) usando el programa Genetix 4.05 (Belkhir y col. 2004). Además se analizó si estas frecuencias se encontraban bajo equilibrio Hardy-Weinberg usando un test de permutaciones de alelos implementado también en el programa Genetix.

Un análisis de cluster fue esbozado mediante el software *Biosys*-1 (Swofford y Selander 1981) para ambos marcadores, utilizando la Distancia de Rogers Corregida (Wrigth 1978) basados en la metodología *UPGMA*, aplicando la corrección de Levene (1949) para tamaños poblacionales pequeños en el análisis citogenético.

Para determinar el número de poblaciones posibles y la presencia de zona híbrida se utilizó un análisis Bayesiano descrito por Pritchard y col. (2000) e implementado en el programa *Structure* 2.33 (Falush y col. 2007). Este procedimiento no requiere conocer a priori el origen de las muestras, estimando el número más probable de poblaciones maximizando el equilibrio Hardy Weinberg entre los grupos aleatorios realizados. Siguiendo las recomendaciones de los autores, el proceso se ejecutó desde K = 1 (un grupo) a K = 10 (10 grupos) para todos los individuos, repitiendo cinco veces cada análisis, utilizando una inferencia de Lambda (λ) de la frecuencia alélica de cada individuo luego de 1.000.000 de interacciones de MCMC, después de un período de estabilización de 500.000 interacciones, bajo el modelo de ancestralidad basado en el supuesto de *mezcla entre las poblaciones*. La detección del número de grupos (K) fue determinada bajo los criterios de Evanno y col. (2005) empleado por el programa computacional *Structure Harvester* (Earl y von Holdt 2011). **AFLP.** Para analizar las razas estudiadas, los análisis estadísticos con loci AFLP fueron realizados utilizando el análisis Bayesiano implementado en el programa *Structure* 2.33 (Falush y col. 2007) con los mismos criterios del análisis cromosómico, siguiendo las recomendaciones para marcadores moleculares dominantes.

ADN_{mt}. Las diferentes secuencias se editaron manualmente y se alinearon con el programa ProSeq 2.9 (Filatov, 2002). Para este marcador, debido al bajo número muestral por localidades, se decidió a formar grupos según eco-demos, lo que resultó en 8 grupos diferentes (ver Tabla 1) y, a su vez, mediante razas cromosómicas (ladera norte y sur del río Maipo, y la Zona de Hibridación). Con ello se estimaron sus frecuencias haplotípicas (h), diversidad haplotípica (H), el número de sitios polimórficos (S), la diversidad nucleotídica (п), y el número promedio de diferencia entre pares de secuencias (II) utilizando el programa DNAsp 5.0 (Rozas y col. 2003). Con el fin de ordenar los haplotipos resultantes, se construyó una red de haplotipos con el algoritmo "median joining" del programa Network 4.61 (Bandelt y col. 1999), donde todas las redes de expansión mínima son combinados dentro de una red, siguiendo un algoritmo análogo al propuesto por Excoffier y Smouse (1994). A su vez, la búsqueda de neutralidad selectiva en la historia evolutiva de L. monticola fue determinada mediante las pruebas de Tajima's D (Tajima, 1989) y Fu's Fs (Fu, 1996). Para detectar una estructuración genética, se utilizó el programa SAMOVA 1.0 (Dupanloup y col. 2002), que aplica una estrategia para definir los grupos de poblaciones que son están geográficamente homogéneos y con un máximo de diferenciadas unas de otras, a objeto de maximizar el porcentaje de la varianza genética total debido a las diferencias entre los grupos de la población.

Los análisis filogenéticos se realizaron mediante: Máxima Verosimilitud implementado por el software *RAxML* 7.0.4 (Stamatakis, 2006) e inferencia Bayesiana a través del programa *MrBayes* 3.2 (Ronquist y col, 2012). Además, ambos alcances utilizaron los mismos grupos externos lo que fueron: *Liolaemus nigromaculatus, L. nigroviridis y L. tenuis*.

El análisis Bayesiano se realizó bajo el modelo de Tiempo Reversible General (GTR) de evolución de secuencias genéticas, más el modelo de tasa de heterogeneidad de distribución gamma (GTR + I+ G), con cuatro cadenas de Markov Montecarlo (MCMC) simultáneas con cinco millones de generaciones, y un soporte nodal mediante una metodología bootstrap noparamétrico con 100 pseudoréplicas. Los árboles de consenso y la probabilidad a posteriori de los nodos para cada enfoque se estimó con el software *FigTree* Ver. 1.3.1 (Rambaut, 2009).

Morfología. Para un total de 37 variables morfológicas (morfométricas y merísticas), se efectuó un primer análisis paramétrico para estimar el posible dimorfismo sexual en adultos de *L. monticola* aplicando la *prueba t* para muestras independientes y la prueba de Levene como test de homogeneidad de las variables del software *STATISTICA* 8 (StatSoft, Inc. 2004). En aquellas variables que presentaron una alta co-linealidad, se efectuó un Análisis de Componentes Principales (ACP), tanto para variables con o sin sesgo entre los sexos. Este análisis permite determinar el peso de cada variable en la varianza total sin considerar la procedencia de las muestras y obtener las variables realmente importantes en la segregación de los individuos en los nuevos componentes formados. Un Análisis de Escalamiento Multidimensional (EMD) se llevó a cabo entre las localidades, para detectar patrones disimilares, mediante el software *SPSS 20* (IBM SPSS Statistic 20.0, 2011) basado en Distancia Euclidiana. A su vez, se efectuó un Análisis Discriminante Lineal (ADL) para encontrar una combinación lineal de variables que permita discriminar entre los grupos previamente asignados dentro del análisis, estos son: la raza norte, sur y zona híbrida.

RESULTADOS

Citogenéticos

De los 218 individuos cromosómicamente analizados, (anexo 1), 41 corresponden a la raza Sur 2n= 34, monomórfica para los siete primeros pares (codificados AA), a excepción de algunos individuos: un individuo de MAS (2768) que resultó ser híbrido interracial para el par 4 (BB/AB); y otro del ING (3342) que resultó ser mosaico para un polimorfismo de fisión en el par 2 (anexo 1). De 21 lagartos de la localidad YES (zona híbrida), 11 individuos (52.3%) fueron diagnosticados como raza sur (AA), y 10 individuos (47.7%) como híbridos cromosómicos interraciales (AB) en los pares 3 y/o 4 (Anexo 1). Ciento cincuenta y cinco individuos coinciden con un número diploide 2n= 38 a 40 de la raza Norte, todos monomórficos para los pares 1 y 2 (AA), polimórficos para el par 3 (AA, AB y BB), y fijos para la fisión del par 4 (BB), a excepción de un individuo de SGA (3322), híbrido cromosómico interracial (F₃St₄ ó P₃P₄) y un individuo de CHA (2083) polimórfico para el par 6 (Anexo 1).

Tanto la heterocigocidad observada (H_o) y Heterocigocidad esperada (H_e) más alta entre eco-demos, correspondió al Norte Transversal (0.0952 y 0.0864), siendo monomórficos en Sur Costa y Sur Andes (Tabla 3). La mayoría de los eco-demos no presentaron desviaciones significativas al equilibrio Hardy Weinberg, excepto por los déficit en heterocigotos significativos en los eco-demos Norte Mod. 1 y Sur Cajón (Tabla 3, Anexo 2).

Al agrupar los eco-demos en los tres grandes grupos Norte, Sur y Zona Híbrida, se observan valores desviaciones significativas al Equilibrio Hardy Weinberg con déficit de heterocigotos en la zona Norte y Sur y exceso en la Zona Híbrida (Tabla 4, anexo 3).

El dendograma (Fig. 2) muestra dos grandes clusters, el primero con los eco-demos Norte y el segundo con los eco-demos Sur más la Zona de Hibridación. El primer cluster comprende dos sub clusters: el primero contiene al eco-demo Norte Mod. 1, y el segundo a los eco-demos del Norte, divididos en dos sub-cluster: uno con Norte Costa y Norte Andes, y el otro por Norte Transversal y Norte Cajón. El segundo cluster presenta dos subcluster: el primero con la Zona de Hibridación (YES) y el segundo con los eco-demos Sur, los cuales se separan en dos sub-cluster: primero el Sur Cajón y el segundo conformado por Sur Costa y Sur Andes.

El análisis bayesiano de estructuración poblacional mostró como resultado un K=3 como la división más probable entre todas las muestras analizadas, determinado por la mayor diferencia para el cálculo del promedio de L (K) \pm SD en función de K (Fig. 3 A) (según el programa Harvester). A su vez, K=2 fue el más probable según el Δ K en función de K propuesto por Evanno y col. 2005 (Fig. 3 B). Esta última agrupación (K=2) es consistente con la separación de las razas Norte y Sur, incluyendo en esta última la Zona de Hibridación (Fig. 4 A), y el K = 3 permite además reconocer y separar a la raza Norte Mod. 1 (2n=38-40).

			and the second	and the second sec	
Eco-demo	n	$Ho \pm SD$	He \pm SD	Α	Fis
N COS	27	0.0582 ± 0.1540	0.0573 ± 0.1517	1.1429	0.00348
N TRANS	9	0.0952 ± 0.2072	0.0864 ± 0.1865	1.2857	-0.04348
N MOD I	48	0.1310 ± 0.1674	0.1626 ± 0.2043	1.4286	0.20462*
N AND	38	0.0639 ± 0.1691	0.0654 ± 0.1731	1.1429	0.03675
N CAJ	33	0.0649 ± 0.1718	0.0798 ± 0.1866	1.2857	0.20133
ZH	21	0.0748 ± 0.1600	0.0727 ± 0.1330	1.2857	-0.00457
S CAJ	9	0.0317 ± 0.0542	0.0582 ± 0.0789	1.4286	0.50000**
S COS	17	0.000 ± 0.000	0.000 ± 0.000	1.000	-
S AND	15	0.000 ± 0.000	0.000 ± 0.000	1.000	(
		*D- 0.00	1. ** 0- 0.004		

Tabla 3: Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (A) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 pares cromosómicos para los 9 Eco-demos de *Liolaemus monticola*.

.

*P= 0,001; **P= 0,004

Tabla 4: Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (A) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 pares cromosómicos para las razas cromosómicas de *Liolaemus monticola*. Destacados en **negrita** indican exceso de individuos heterocigotos. No se incluyó la raza Norte Mod. 1.

Raza	n	Ho ± SD	He ± SD	A	F _{is}						
Norte	107	0.065 ± 0.178	0.071 ± 0.177	1.428	0.097*						
ZH	21	0.074 ± 0.136	0.072 ± 0.133	1.285	-0.004*						
Sur	41	0.007 ± 0.021	0.015 ± 0.020	1.428	0.500*						
*P= 0.02											

Distancia de Rogers modificada, Wright (1978)

Figura 2: Dendograma de la Distancia Genética de Rogers Modificada (Wrigth 1978), obtenidos para la variación de los 7 pares cromosómicos entre 9 eco-demos de *Liolaemus monticola*.

Figuras 3 A y B: Detección del número de grupos basados en 7 pares cromosómicos. (**A**) Promedio de L (K) \pm SD en función de K. (**B**) Δ K en función de K determinado a partir de Evanno y col. (2005).

A

В

Figura 4: Probabilidad del número de grupos individuales **A** K=2 y **B** K=3, para los 7 pares cromosómicos considerando 217 individuos, 9 eco-demos y un modelo de ancestralidad basado en el supuesto de mezcla entre las poblaciones, estimado con el programa *STRUCTURE*

Aloenzimas

De 14 loci aloenzimáticos analizados para 357 individuos repartidos en 19 localidades, siete loci (AAT, LDHa, aMAN, PEP, PGI, PGM y SOD) resultaron ser polimórficos e informativos para todas las localidades (1.66 a 2.83 alelos por loci), y a partir de estos se efectuaron los análisis. Los valores de H_o y H_e por eco-demo muestran una tendencia al déficit de heterocigotos siendo esta significativa en la mayoría de ellos (Tabla 5).

Los valores de H_o y H_e por razas cromosómicas aumentan desde la raza Sur hacia la Norte, siendo más altas en ZH, (Tabla 6). Los valores de polimorfismo entre las razas cromosómicas (Tabla 6) se incrementó de Sur a Norte, alcanzando la Zona de Hibridación un valor intermedio. El F_{is} global para las razas cromosómicas (Tabla 14) evidenció un déficit altamente significativos de heterocigotos (p< 0.0001) para ambas razas y la ZH.

El dendograma (Fig. 5) muestra la separación parcial de las razas cromosómicas, reconociéndose tres cluster: un primer cluster para el eco-demo Norte Mod. 1. El segundo cluster, el que se subdivide en dos ramas: una corresponde al eco-demo Norte Cajón y la otra a la ZH. Un tercer y último cluster compuesto por cuatro subcluster: el primer eco-demo en divergir es Norte Cajón, el segundo eco-demo Norte Andes, el tercero Sur Costa, y por último, el cuarto subcluster, lo conforman los eco-demos Sur Andes y Sur Cajón.

La inferencia bayesiana para los loci aloenzimáticos tuvo como resultado, a partir del cálculo del promedio de L (K) \pm SD en función de K (Fig. 6 A), que el número más probable de poblaciones es de K=4. A su vez, el Δ K en función de K propuesto por Evanno y col. 2005 (Fig. 6 B) confirma la mejor agrupación K=4, y además hace mención de una agrupación K=2. Los respectivos gráficos para K (Fig. 7 A y B) muestran una nula estructuración entre las razas parentales y la ZH, sólo se evidencia una separación clara de la raza Norte Mod. 1 (2n=38-40).

Tabla 5: Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (A) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 loci aloenzimáticos para los 8 eco-demos de *Liolaemus monticola*.

Localidad	n	$Ho \pm SD$	He \pm SD	A	F _{is}	
N COS	53	0.173 ± 0.171	0.250 ± 0.200	2.833	0.316*	
N MOD. 1	48	0.059 ± 0.079	0.087 ± 0.077	2.000	0.333*	
N AND	44	0.097 ± 0.126	0.115 ± 0.146	2.000	0.169	
N CAJ	45	1.000 ± 0.160	0.386 ± 0.211	2.833	0.383*	
ZH	16	0.833 ± 0.299	0.355 ± 0.211	2.666	0.306*	
S CAJ	38	1.000 ± 0.153	0.276 ± 0.149	2.500	0.280*	
S COS	18	0.226 ± 0.166	0.252 ± 0.163	2.166	0.138	
S AND	32	0.125 ± 0.164	0.162 ± 0.155	1.666 0.242*		
		*P=	0.000			

Tabla 6: Índices de heterocigocidad observada (Ho), heterocigocidad esperada (He), cálculo del número de alelos promedio por locus (*A*) e índice de deficiencia de heterocigotos (F_{is}) en base a los 7 loci aloenzimáticos para las razas de *Liolaemus monticola*. Se excluyó la raza Norte Mod. 1.

Raza	п	Ho ± SD	He ± SD	A	Fis
NORTE	169	0.157 ± 0.134	0.251 ± 0.196	3.142	0.376*
ZH	19	0.248 ± 0.295	0.352 ± 0.193	2.857	0.315*
SUR	90	0.149 ± 0.126	0.200 ± 0.141	2.571	0.259*
		*P<	0.0001		

Distancia de Rogers modificada (Wright, 1978)

Figura 5: Dendograma de la Distancia Rogers modificada (Wright, 1978) obtenidos para la variación aloenzimática de 7 loci entre 8 eco-demos de *L. monticola*.

Α

В

Figuras 6 A y B: Detección del número de grupos (K) basados en 7 loci aloenzimáticos y 8 eco-demos. (A) Promedio de L (K) \pm SD en función de K. (B) Δ K en función de K determinado a partir de Evanno y col. (2005).

Loci de AFLP

De un total de 801 loci de AFLP en 59 individuos, se seleccionaron 547 loci polimórficos (68.3%), usando el criterio de loci con 1% a 99% de polimorfismo, para los análisis. El análisis bayesiano, implementado por el software Structure 2.33 y revisado por el programa *Structure Harvester*, arrojó como resultado un K=4 como número más probable de poblaciones, determinado por la mayor diferencia encontrada por el cálculo del promedio de L (K) \pm SD en función de K (Fig. 8 A), y a su vez K=2 debido a lo encontrado por el Δ K en función de K propuesto por Evanno y col. 2005 (Fig. 8 B). Los respectivos gráficos para dichos resultados de K muestran una nula estructuración entre las razas parentales y la Zona Híbrida (Fig. 9 A) y una estructuración poco notable entre las localidades de *Liolaemus monticola* entre la raza Norte (2n=38-40) y la raza Sur (2n=34) más ZH (Fig. 9 B).

В

Α

Figuras 8 A y B: Detección del número de grupos basados en 547 loci de AFLP. (**A**) Promedio de L (K) \pm SD en función de K. (**B**) Δ K en función de K determinado a partir de Evanno y col. (2005).

Figura 9: Probabilidad del número de grupos individuales **A** K=2 y **B** K=4, considerando 59 individuos, 541 loci *AFLP* y un modelo de ancestralidad basado en el supuesto de mezcla entre las poblaciones, mediante *STRUCTURE* 2.33. Colorado Sur (COS), pertenece a la raza Norte Mod. 1.

Cuarenta y un haplotipos (h) distintos se detectaron entre 98 secuencias del *cit b*, de *Liolaemus monticola* con una diversidad haplotípica (H) total de 0,930 entre 131 sitios polimórficos (S), con una diversidad nucleotídica (π) de 0.062 y con un número promedio entre pares de secuencias (Π) de 43.165.

De la diversidad haplotípica, por eco-demo indica que Norte Andes fue el más alto (0.923, Tabla 5). A su vez, el mayor número de haplotipos se da en el Norte Cajón con 14 secuencias diferentes. El número de haplotipos exclusivos (hu) por agrupación varió entre uno en la Zona Híbrida (Yeso Sur) a 13 para Norte Cajón (Tablas 5 y 9). La mayor cantidad de sitios polimórficos se detectaron tanto en el Norte Cajón (97 sitios), Zona de Hibridación (92 sitios) y Sur Cajón (88 sitios). Dentro de la Zona Híbrida se detectó la máxima diversidad nucleotídica (0.063) y muy seguida el Sur Cajón (0.060). Con igual resultado el número promedio de diferencia entre pares de secuencias (II) resultaron ser altas en Zona Híbrida (44.147) y en el Sur Cajón (42.061) (Tabla 5).

A nivel de razas cromosómicas, los índices de diversidad genética resultaron ser similares entre las razas parentales raza y más bajos en la ZH (Tabla 6). Entre los índices de diversidad genética (Tabla 6) tanto el número de haplotipos (h) y la cantidad de sitios polimórficos (S) fueron mayores de norte a sur, con los menores valores en la ZH; en cambio la diversidad nucleotídica (π) y el número promedio entre pares de secuencias (π), la situación resultó lo inverso: mayores en la ZH, intermedio en el Sur y bajos en el Norte, (Tabla 6).

Tanto las pruebas de *D* de *Tajima*, como la de Fu`s *Fs* (Tabla 7 y 8), para buscar neutralidad selectiva en la historia evolutiva de *L. monticola*, detectaron a lo menos una señal de expansión poblacional. Sólo *D* de *Tajima* mostró resultados significativos para la localidad de Río Lontué (-1.224) y para la raza "Norte" (-1.534).

El árbol de mínima expansión de los haplotipos muestra dos grupos correspondientes a las dos razas parentales (Sur y Norte), separadas por cuarenta pasos mutacionales (Fig. 5). Ambas razas e individuos de la zona de hibridación comparten cuatro haplotipos, H17, H18, H30 y H32. Una mirada más detallada de los haplotipos, muestra sub-agrupaciones bien definidas dentro de las razas parentales (haplotipos coloreados) correspondiendo, en gran medida, a su rango geográfico (Tabla 1), con distancias entre dos haplotipos que oscilan entre 2 a 17 pasos mutacionales.

Los valores de F_{st} entre eco-demos resultaron en diferenciaciones altamente significativas entre la mayoría de ellos, desde una escasa diferenciación entre los eco-demos del norte (tabla 10) y una gran diferenciación entre los eco-demos Sur. La Zona de Hibridación presenta una gran estructuración entre los eco-demos Norte, Norte Mod. 1 y con la mayoría de los del Sur, no así con el eco-demo Sur Cajón, con el cual evidenció una nula estructuración (ver Tabla 10). Entre razas (Tabla 11), los valores de F_{st} resultaron significativos en todas las comparaciones. El análisis de *SAMOVA* (Tabla 12) estimó un 56.05 % de la varianza entre grupos lo que equivale a la formación de dos grupos. Esta agrupación es congruente a la separación de los dos eco-demos mayores: uno sur y otro norte del Río Maipo. Al igual que otros análisis la Zona de Hibridación está incluida junto al eco-demo Sur.

Las reconstrucciones filogenéticas realizadas con Máxima Verosimilitud (Fig. 6) e inferencia Bayesiana (Fig. 7), con similares topologías, ponen de manifiesto la separación de las dos razas. A su vez, se evidencia la ubicación de individuos pertenecientes a la Zona de Hibridación en ambos clusters de las razas parentales más individuos de la raza "Sur" (MAS, ING y VOL) asociados a clusters de la raza "Norte", así como individuos de la raza "Norte" (YEN) en cluster "Sur".

Tablas 7: Índices de diversidad genética resultantes de las secuencias del *cit-b* del ADN_{mt} para los 8 ecodemos de *Liolaemus monticola*. Número de individuos (*n*); número de sitios polimórficos (*S*), número de haplotipos (*h*); número de haplotipos únicos (*hu*); diversidad haplotípica (*H*); diversidad nucleotídica (π) y número promedio de diferencia entre pares de secuencias (*II*).

Zona	n	S	h	hu	н	π	П
Norte Costa	8	19	6	6	0.893 ± 0.111	0.008 ± 0.005	5.679 ± 3.045
Norte Mod. 1	3	15	3	3	1.000 ±0.272	0.014 ±0.011	10 ± 6.324
Norte Andes	13	48	7	6	0.923 ± 0.05	0.021 ± 0.011	14.692 ± 7.039
Norte Cajón	29	97	14	13	0.894 ± 0.039	0.021 ± 0.011	14.679 ± 6.722
Zona Híbrida	20	92	5	1	0.653 ± 0.076	0.063 ± 0.032	44.147 ± 19.989
Sur Cajón	12	88	6	2	0.803 ± 0.959	0.060 ± 0.032	42.061 ± 19.663
Sur Costa	4	1	2	1	0.667 ± 0.204	0.001 ± 0.001	0.667 ± 0.626
Sur Andes	9	19	5	4	0.806 ± 0.119	0.007 ± 0.004	4.556 ± 2.470
TODOS	98	131	41	-	0.930 ± 0.016	0.062 ± 0.029	43.165 ± 18.881

Tablas 8: Índices de diversidad genética resultantes de las secuencias del *cit-b* del ADN_{mt} para las razas parentales de *L. monticola*. Número de individuos (*n*); número de sitios polimórficos (*S*), número de haplotipos (*h*); número de haplotipos únicos (*hu*); diversidad haplotípica (*H*); diversidad nucleotídica (n) y número promedio de diferencia entre pares de secuencias (Π). Se excluyó la raza Norte Mod. 1.

Children and Child		Statement and a statement of the				the second s	
Raza	n	S	h	hu	Н	П	П
NORTE	53	122	31	25	0.962 ± 0.013	0.021 ± 0.010	15.258 ± 6.927
ZH	20	92	5	1	0.653 ± 0.075	0.063 ± 0.031	44.147 ± 19.989
SUR	25	96	12	8	0.920 ± 0.029	0.040 ± 0.020	28.360 ± 12.841
TODOS	98	131	41	-	0.930 ± 0.015	0.061 ± 0.029	43.165 ± 18.881

Zona	n	D	Fs
Norte Costa	7	-1.169 ± 3.899 (0.139)	-0.221 ± 1.24 (0.391)
Norte Mod. 1	3	-	
Norte Andes	12	-0.962 ± 0.883 (0.166)	2.315 ± 1.524 (0.857)
Norte Cajón	29	-1.573 ± 0.878 (0.035)	1.912 ± 2.479 (0.7959
Zona Híbrida	20	2.881 ± 0.878 (1.000)	23.404 ± 1.588 (1.000)
Sur Cajón	12	2.062 ± 0.880 (0.995)	9.918 ± 1.063 (0.999)
Sur Costa	4	1.633 ± 0.734 (0.963)	0.540 ± 0.751 (0.478)
Sur Andes	9	-1.708 ± 0.898 (0.024)	0.987 ± 1.341 (0.681)
TODOS	98	2.326 ± 0.887 (0.992)	4.817 ± 4.608 (0.885)

Tablas 9: Valores de las pruebas de neutralidad para el citocromo b: n: número de individuos, Tajima '*s D* (Tajima, 1989) y *Fu* '*s Fs* (Fu, 1996) entre las zonas eco-geográficas propuestas para este gen en *Liolaemus monticola*. Valores de P entre paréntesis, y en negrita valores significativos. Casillas en blanco se debe al bajo número muestral.

Tablas 10: Valores de las pruebas de neutralidad para el citocromo b: Tajima 's D (Tajima, 1989) y Fu 's Fs (Fu, 1996) para las razas cromosómicas de *Liolaemus monticola*. Valores de P entre paréntesis, y en negrita valores significativos.

Raza	n	D	Fs
NORTE	33	-1.612 ± 0.884 (0.028)	-3.011 ± 3.223 (0.201)
ZH	20	2.881 ± 0.879 (0.999)	23.404 ± 1.608 (1.000)
SUR	27	0.454 ± 0.879 (0.742)	6.626 ± 2.113 (0.984)

Figure 10: Anol de minima expansión de haplotipos del gen mitocondrial cit-b para los distintos eco-demos formados en L. monticola. El tamaño de los haplotipos es aproximadamente proporcional a sus frecuencias. Norte Costa y Sur Andes Individuos que forman parte de la raza Sur (2n= 36). Zona 38-40); Norte Modificado I a la raza que lleva el mismo nombre; Sur Cajón, Sur Costa y Sur Andes Individuos que forman parte de la raza Sur (2n= 36). Zona Hibrida, individuos que resultan en el contacto secundario entre las razas Sur (2n= 36) y Norte (2n=38-40).

	Norte Costa	Norte Mod. I	Norte Andes	Norte Cajón	Zona Híbrida	Sur Cajón	Sur Costa	Sur Andes
Norte Costa		0.0671	0.0909	0.1064	0.1064 0.2480		0.1988	0.1518
Norte Mod. I		**	0.0499	0.0714	0.2473	0.1304	0.1864	0.1253
Norte Andes	0.0045 ± 0.001		*	0.0925	0.2218	0.1362	0.1722	0.1323
Norte Cajón	0.0049 ± 0.001		0.0008 ± 0.000	- 0.1000		0.0470	0.1822	0.1436
Zona Híbrida	0.0012 ± 0.000	0.0285 ± 0.002	0.0001 ± 0.000	0.0035 ± 0.001	*	-0.0369	0.3262	0.2832
Sur Cajón	0.0049 ± 0.001		0.0001 ± 0.000		E.		0.2463	0.1806
Sur Costa	0.0205 ± 0.002		0.0099 ± 0.001	0.0058 ± 0.001	0058 ± 0.001 0.0043 ± 0.001 0.0079 ± 0.001 -		-	0.2482
Sur Andes	0.0084 ± 0.001		0.0005 ± 0.000	0.0004 ± 0.000	0004 ± 0.000 0.0001 ± 0.000		0.0055 ± 0.001	ç. * *

Tablas 11: Valores de *Fst* obtenidos de la comparación de pares de haplotipos del gen citocromo b entre los eco-demos de *Liolaemus monticola* (bajo la diagonal) y valores de P significativos (sobre la diagonal) para 1023 permutaciones y α = 0,05.

Tablas 12: Valores de *Fst* obtenidos de la comparación de pares de haplotipos del gen citocromo b razas de *Liolaemus monticola* (bajo la diagonal) y valores de P significativos (sobre la diagonal) para 1023 permutaciones y $\alpha = 0,05$.

RAZA	NORTE	ZONA HÍBRIDA	SUR				
NORTE	÷	0.00000 ± 0.0000	0.00293 ± 0.0016				
ZONA HÍBRIDA	0.11399		0.01262 ± 0.0042				
SUR	0.03113	0.07425	2				

Modelo de agrupación	Eco-Demo	Índices de fijación	% de variación
2	NCosta-NmodI-NAndes-NCajón ZH-SCajón-SCosta-SAndes	F _{SC} : 0.178** F _{ST} : 0.639* F _{CT} : 0.561^	ER: 56.05 EEDR: 7.87 DE: 36.13
3	NCosta-NmodI-NAndes-NCajón ZH-SCajón SCosta-SAndes	F _{sC} : 0.084^* F _{ST} : 0.614* F _{CT} : 0.578°	ER: 57.83 EEDR: 3.53 DE: 38.64
4	SCosta ZH-SCajón NCosta-NmodI-NAndes-NCajón SAndes	F _{sc} : 0.061* F _{st} : 0.612* F _{ct} : 0.587°°	ER: 58.74 EEDR: 2.50 DE: 38.76
5	NmodI ZH-SCajón NCosta-NAndes-NCajón SAndes SCosta	F _{sc} : 0.031* F _{st} : 0.602* F _{ct} : 0.590°°	ER: 58.95 EEDR: 1.27 DE: 39.78
6	SCosta NCosta ZH-SCajón NAndes-NCajón NmodI SAndes	F _{SC} : 0.002* F _{ST} : 0.578* F _{CT} : 0.577⁰*	ER: 57.70 EEDR: 0.10 DE: 42.20

Tabla 13: Análisis Espacial de Varianza Molecular (*SAMOVA*) realizados con secuencias del citocromo b para *Liolaemus monticola*. Componentes de la varianza: entre razas (*ER*); entre eco-demos dentro de una raza (*EEDR*); dentro de los eco-demos (*DE*). Destacado en negrita el mejor modelo de agrupación. En azul eco-demos Sur, verde: Zona Híbrida, rojo: eco-demos Norte y naranjo: eco-demo Norte mod. 1.

*P= 0,000 ± 0,000 **P= 0,012 ± 0,000 ^P= 0,033 ± 0,000 ^*P= 0,037 ± 0,004 °P= 0,002 ± 0,000 °°P= 0,001 ± 0,000 °*P= 0,003 ± 0,000

Figura 11: Reconstrucción filogenética para el gen mitocondrial *citocromo b*, utilizando *Máxima Verosimilitud*. Destacado en **azul** grupo externo, en **verde** individuos de la zona de hibridación y en **rojo** individuos mal ubicados de las razas cromosómicas.

Figura 12: Reconstrucción filogenética para el gen mitocondrial *citocromo b*, utilizando *inferencia Bayesiana* Destacado en **azul** grupo externo, en **verde** individuos de la zona de hibridación y en **rojo** individuos mal ubicados de las razas cromosómicas.

Morfológicos (merísticos y morfométricos)

El análisis de componentes principales (ACP) para un total de 313 individuos (Tabla 15), reveló que, al emplear 20 variables que no presentaron dimorfismo, los dos primeros ejes representaron el 68.6% de la varianza total; siendo el 52.1% para el primer componente y 16.47% para el segundo (Fig. 13 A). Para aquellas variables que presentaron dimorfismo sexual: en los machos, el 63 % de la varianza total se explica por los dos primeros componentes (40.99% y 22.06% para el primero y segundo respectivamente) (Fig. 13 B); y en las hembras el 60.8% de la varianza total se explica por los dos primeros (37.64% y 23.13% respectivamente) (Fig. 13 C). Los tres ACP separaron las localidades acorde a cada raza cromosómica y la Zona de Hibridación en una posición central entre las razas parentales.

Con la ordenación bidimensional a través del EMD (Stress: 0.037), empleando sólo las variables que no presentaron dimorfismo sexual, se evidenció una fuerte separación (Stress < 0.005) en dos grupos, correspondiente a las localidades de cada raza cromosómica (Norte y Sur), más la Zona de Hibridación (YES) (Fig. 14).

El Análisis de Discriminante Lineal (ADL) indica que el 89.7% de la varianza puede ser explicada en el primer eje, en el cual se puede observar la posición segregada de los individuos provenientes desde las razas y la zona híbrida (Fig. 15). La función predictora del Análisis de Discriminantes indica que existe una alta asignación de individuos a su grupo original siendo 88%, 94% y 82% de individuos bien asignados a la raza Sur, Norte y Zona Híbrida respectivamente (Fig. 16). **Tabla 14**: variables morfométricas de *Liolaemus monticola* que mostraron diferencias significativas entre las localidades mediante morfometría merística. Los datos se muestran como promedios y error estándar en paréntesis. Para el significado de las variables ver materiales y métodos: morfología.

COR ACOR B SOR SCI TEM CATEMPOSPA FRON SAF POFR LOR	ALASUP 1	3LASUP 2A	LASUP 2B	LAINF A	LAINF B	AURS	TIPS	SARO	INA	SANA	INCA	GUS	DOS	VES	SAB	FEM	DORC	A AVCC	LAMA	LARCAB	LARESCA
ROB 11.432 18.459 16,486 6.973 7,405 4,351 2,135 1,784 10,676 2,054 2,56	8 7,676	6,189	12,297	3,919	10,378	2,568	4,108	7,919	3,973	7,568	5,027	31,243	74,054	97,216	61,243	17,189	19,108	26,56	3 19,378	1,299	0,068
(1,094)(1,726)(3,271)(0,440)(0,498)(0,978)(0,347)(0,630)(1,415)(0,229)(1,46	3) (1,564)	(0,701)	(1,561)	(0,433)	(1,754) ((0,555) ((1,350)((0.547)	(0,164)	(0,603)	(0,164)	(1,801)	(3,511)	(3,973)	(2,565)	(1,647)	(1,868)	1 (1,214)(1,277)	(0,104)	(0,007)
TAM 11,846 18,769 16,692 6,923 7,769 4,462 2,077 2,692 10,385 2,000 2,61	5 7,154	6,231	12,154	3,769	9,692	2,462	4,538	8,077	4,077	7,615	5.077	31,077	77,000	96,308	61,923	16,385	19,077	27,462	2 19,615	1,279	0,087
(0,899)(1,013)(2,529)(0,277)(0,599)(0,519)(0,277)(0,947)(1,044)(0,000)(0,87	0) (0,376)	(0, 439)	(1,214)	(0,439)	(0,947) ((0,660) ((1,050)((0,494)	(0,277)	(0.506)	(0.277)	(1,256)	(3,028)	(3,199)	(2,691)	(1,193)	(1,188)	(1.127)(1,044)	(0.061)	0,005
DOP 11,136 18,818 15,909 7,000 8,045 5,364 2,182 2,227 10,273 2,000 2,40	9 8,273	5,727	12,909	3,545	11,000	2,273	3,909	8.000	4,273	7,682	5.000	31,227	78,591	100,727	60,136	15,182	20,636	26,682	2 19,045	1,257	0,061
(1,082) (2,519) (3,322) (0,617) (0,899) (1,093) (0,501) (0,869) (0,935) (0,000) (0,66	6) (1,453)	(0,631)	(2,408)	(0,510)	(2,526) (0,767)(1,540)((0.000)	(0,456)	(0,568)	(0,000)	(2, 287)	(3, 984)	(6,348)	(2,274)	(2,771)	(1,677)	(0.945)(1,362)	(0, 108)	0,006
CAL 11.571 18,786 15,429 6,571 7,357 7,143 2,071 2,143 11,143 2,143 2,07	1 11,714	5,429	15,429	3,429	13,214	2,357	5,071	8,000	4,000	7,429	4,857	29,143	74,929	99,286	58,286	18,786	19,929	25,929	19,143	1,316	0,066
0,915) (1,568) (2,197) (0,617) (0,737) (0,834) (0,258) (0,743) (0,862) (0,352) (0,88	4) (1,146)	(0,737)	(2,165)	(0,516)	(2,588) (0,507)(1,000)((0,378)	(0,000)	(1,060)	(0,352)	(2,840)	(3,595)	(3,173)	(2,350)	(2,225)	(1,474)	(1,792	(1,146)	(0,129)	0,007
11,167 18,833 15,583 6,417 6,750 5,167 2,083 1,583 9,917 1,917 2,16	8,167	5,917	11,917	3,917	11,000	1,833	4,083	7.833	3,917	7,917	4,750	31,083	74,167	95,500	60,583	16,000	20,000	26,333	19,250	1,165	0.060
(1,030) (2,082) (2,843) (0,900) (1,485) (0,835) (0,289) (0,900) (1,240) (0,289) (0,57	7) (1,528)	(0,900)	(2,275)	(0,996)	(1,706) (0,389)(1,165)(0,389)	(0, 289)	(0,669)	(0,452)	(1,443)	(3,973)	(5,854)	(3,118)	(1,954)	(2,523)	(2,015)	(1,960)	(0,217)	0,015
EAD 11,313 19,250 16,938 7,000 7,500 4,813 2,000 1,938 10,625 2,000 2,31	8,125	6,188	13,000	4,313	11,250	2,000	3,563	8,000	4,000	7,500	4,750	30,500	76,813	97,000	59,625	15,938	19,563	26,063	18.563	1,281	0,066
(0,873) (1,390) (3,415) (0,632) (1,549) (0,750) (0,365) (0,574) (0,885) (0,000) (1,250)) (1,544)	(0,655)	(1,549)	(0,873)	(2,113) (0,516)(1,315)(0.894)	(0.000)	(0,730)	(0,447)	2,066)	5,419)	(4,243)	(1,928)	(1,948)	(1,209)	(1,482)	(2,032)	(0,132)	0,007
ALE 11,519 19,407 16,481 7,259 7,630 5,185 2,000 1,963 11,111 2,037 1,920	5 7,778	6,111	12,704	4,000	10,741	2,037	3,074	7,741	4,037	7,370	4,926	30,185	76,926	96,704	60,481	14,704	18,704	25,407	18,556	1,313	0,071
(1.087)(1.647)(2,343)(0.526)(0.926)(1.075)(0.000)(0.808)(1.502)(0.192)(0.556))) (1,396)	(0,641)	(1,918)	(0,480)	(1,583) (1	0,587)(1,072)(0.813)	(0,338)	(0,792)	0.385)(2,661)	4,976)	(4,268)	(2,940) ((1,815)	(1,636)	(1,279)	(1,188)	(0,107)	0,008
SGA 10,929 18,071 15,000 7,000 7,357 4,571 2,071 1,857 11,143 2,000 1,643	7,500	5,929	12,071	3,929	10,714	2,071	2,929	7,857	4,071	7,857	4,929	29,286	74,214	94,214	58,714	14,071	20,429	25,786	17,929	1,143	0,057
(0,829)(1,207)(2,572)(0,392)(1,008)(0,646)(0,267)(0,535)(1,351)(0,000)(0,745)	6) (0,855)	(0,475)	(0,730)	(0,267)	(2,525) (0	0,475)(*	1,207)((0.949)	(0,267)	(0,663)	0,267)(1,383)	4,246)	(4,061)	(1,684) (1,492)	(1,697)	(1,424)	(1,492)	(0,137)	0,010
YEN 11.130 18,391 14,913 7,304 7,304 4,609 2,043 1,913 11,000 2,000 1,870	8,391	5,913	12,739	3,739	10,435	2,043 3	3,957	7,696	4,000	8,087	5,043 1	29,043	76,435	93,783	58,783	14.870	19,000	25,304	18,304	1,252	0,066
(1,517)(1,207)(2,572)(0,392)(1,008)(0,646)(0,267)(0,535)(1,351)(0,000)(0,745	6) (0,855)	(0,475)	(0,730)	(0,267)	(2,525) (0	0,475)(1	1,207)((0,949)	(0,267)	(0,663)(0,267)(1,383)(4,246)	(4.061)	1,684)(1,492)	(1,697)	(1,424)	(1.492)	(0,137)	0.010
YES 11,444 18,422 16,222 6,711 7,133 5,067 2,400 1,311 9,667 2,156 2,711	8,733	5,667	12.933	3,778	11,333 2	2,333 3	3,933 8	8,267	4,067	7,800	4,956 :	31,711 (30,533	99,644	63,800	16,356	20,911	26,467	18,422	1,238	0,060
(1,271)(1,983)(3,169)(0,895)(0,786)(1,355)(0,495)(0,733)(1,651)(0,367)(1,121)) (1,789)	(0,977)	(1,776)	(0,599)	(2,286) (0	0,640)(1	1,232)((0,654)	(0,252)	(0,548) (0,424)(3,050)(3,703)	(4,190) (2,573)(2,227)	(1,676)	(1, 325)	(1,454)	(0,104)	0,006
MAS 10,478 17,565 15,478 6,696 7,174 5,217 2,652 1,261 9,565 2,217 3,391	8,739	5,739	13,478	3,739	12,261 2	2,043 3	3,478 8	8,087	3,913	7,522	4,435 3	1,000 8	32,783	101,0431	34,348 1	4,739	22,870	26,696	19.043	1,167	0,051
(1,702)(2,107)(3,383)(0,559)(0,717)(1,242)(0,573)(0,619)(1,237)(0,422)(1,588) (1,936)	(0,619)	(2,794)	(0,449)	(3,264) (0	0,562)(1	1,275)((0,848)((0,417)((0,846)(0,843)(2,174)(3,044)	(5,423) (3,113)(2,359)	(1,576)	(1,769)	(1,331)	(0,116)	0,005
ING 11,222 18,556 16,222 6,889 7,222 5,000 2,667 1,111 9,222 2,222 2,333	8,000	5.444	11,778	3,889	10,556 2	2,000 3	3,222 7	7,556	4,000	7,444	4,556 3	30,111 8	11,667	97,333 (\$6,222 1	4,444	22,000	27,667	18,333	1,128	0,053
(0,972)(1,130)(3,073)(0,333)(0,441)(0,000)(0,707)(0,333)(0,833)(0,441)(0,707)) (0,707)	(0,726)	(1,481)	(0,333)	(0,527) (0),000)(1	1,093)(0),726)(0,000)(0.527)(0,726)(1,453)(3,082)	(2,449) (2,279)(1,130) ((3,464)	(0,500)	(1,225)	0,146)	0.013
CAN 9,929 17,429 15,929 6,786 6,714 6,857 2,643 1,500 9,857 2,143 2,857	10,857	4,857	14,000	3,857	14,786 2	2,143 4	1,714 8	3,071	4,000	7,714	4,929 3	13,000 8	7,0711	05,8570	37,429 1	8,429	21,929	28,571	19,929	1,176	0,054
(1,269)(1,342)(2,200)(0,699)(0,469)(0,535)(0,633)(0,855)(1,351)(0,363)(1,562) (1,099)	(1,027)	(1,617)	(0,770) ((2,392) (0),363)(0),825)(0),267)(0,000)(0,611)(0,267)(2,219)(3,385) ((2,476) {	2,821)(1,950) ((2,269)	(1,158)	(1,685)	0,129)	0,007
ONS 10,361 17,250 15,028 6,778 7,611 4,611 2,639 1,056 9,556 2,139 3,056	7,556	5,806	12,028	4,222	10,500 1	1,667 3	3,389 8	3,250	4,056	7,861	4,639 3	82,111 8	2,8331	01.8066	6,444 1	4,833	20,972	27,472	19,861	1,248	0,060
(0,931)(1.442)(2,372)(0,681)(0,766)(0,994)(0,762)(0,232)(1,362)(0,351)(1,194) (1,297)	(0,577)	(1,765)	(0.540) ((2,007) (0),717)(1	,358)(0),500)(0,232)(0,593)(0,593)(3,437)(2,962)	(3,311) (2,335)(2	2,547) (1,540)	(1,207)	(1,417) (0,098)	0,006
RLO 11,429 18,571 15,571 7,000 6,714 5,000 2,714 1,143 9,857 2,143 2,857	7,286	5,571	10.714	3,857	11,000 1	,571 3	1,571 7	,857	4,143	7,857	4,571 3	1,1438	1,4291	01,2866	5,143 1	5,143	21,143	27,286	18,857	1,219	0.058
(1,272) (2,225) (3,047) (0,577) (0,488) (0,816) (0,488) (0,378) (1,345) (0,378) (0,900) (0,488)	(0.787)	(1,496)	(0,690) ((1,414) (0	,787)(1	,618) (0).378)(0,378)(0,900)(0,787)(1,215)(5,381) (3,638) (4,259)(1,574) (2,035)	(1,704)	(1.952)	0.117)	0.010

Figuras 13 A, B y C: Resultado del Análisis de Componentes Principales para A) todas las variables que no presentaron dimorfismo sexual y para aquellas que si presentaron B) en machos y C) hembras. Cuadros en **rojo**: localidades de la Raza Norte (2n=38-40), en **azul**: localidades de la Raza Sur (2n=34) de *L. monticola*.

A

С

В

Figura 14: Ordenación bi-dimensional para las localidades de *Lioleamus monticola* utilizando Escalamiento Multidimensional. Cuadros **azules**: localidades de la Raza Sur (2n=34); Círculos **rojos**: localidades de la Raza Norte (2n=38-40). Rombo **azul-rojo**: YES= Zona de Hibridación.

Figura 15: Análisis Discriminante Lineal (ADL) para todas las variables morfológicas merísticas de *Liolaemus monticola* por individuo utilizadas en este estudio.

Figura 16: Porcentaje de los individuos bien y mal correspondidos por el ADL.

DISCUSIÓN

Esta tesis, al tomar los beneficios de cada marcador, da una visión más global de los diferentes niveles de variabilidad dentro y entre las razas y/o eco-demos, al incluir, por una parte nuevos individuos, nuevas localidades, agrupaciones por eco-demos y la zona de hibridación interracial. A esto, debemos sumar un vasto número de individuos con nuevas mutaciones cromosómicas, con nuevas mutaciones genéticas, otros con haplotipos únicos de citocromo b y rasgos fenotípicos únicos.

Patrones de variabilidad: Una visión multidisciplinaria

La variabilidad en términos generales, se da por la hibridación entre citotipos diferentes, por la recombinación e introgresión. Todo este conjunto da cuenta de una gran variabilidad cromosómica y genética encontrada en esta especie que a continuación se detallan.

Variabilidad Cromosómica

Los resultados cromosómicos, concuerdan con las caracterizaciones previas para las razas Sur (2n= 34), Norte (2n= 38 a 40), la zona de hibridación interracial y la raza Norte mod. 1 (2n=38-40). Sin embargo, las desviaciones a las fórmulas cariotípicas presentadas en las razas Sur que daría origen a la Raza Norte y la Norte mod. 1, más la zona híbrida, implicarían en primer lugar hibridación entre citotipos por introgresión cromosómica entre diversos individuos, luego expansión y, posteriormente una eventual fijación. Además esta variabilidad cromosómica estaría dada por el origen de nuevas mutaciones. Así por ejemplo, para la raza Sur 2n=34, el individuo L3342 de El Ingenio, resultó ser mosaico para una fisión del par 2, detectada tanto a nivel mitótico como meiótico, hecho que evidenciaría el origen de una nueva mutación, similar a la analizada por Lamborot, 1991 en un individuo de El Volcán (Raza Sur, Cajón del Maipo); en tanto, el individuo L2768 de Maipo Sur, resultó ser híbrido cromosómico, con cromosomas introgresados a partir de un citotipo "raza Norte" o producto de una migración desde la zona de hibridación.

Para la raza Norte, el individuo L3322 de San Gabriel, es híbrido interracial producto de introgresión cromosómica de un individuo probablemente de la raza Sur hacia la rivera norte del Río Maipo. A este ejemplo se sumarían tres individuos más, reportados por Lamborot en 1991., no incluidos en esta tesis. El individuo L2083 de Cuesta Chacabuco, Cordón Trasversal, presentaría introgresión de un cromosoma del par 6, desde la raza Norte mod. 1, descrito en Lamborot y col. (2012). Estas situaciones contribuyen, por una parte, al incremento novedades cromosómicas que reflejan un incremento de la tasa mutacional cromosómica y de la recombinación. Ejemplo de incremento en la tasa de mutación cromosómica tanto en poblaciones naturales híbridas como en híbridos experimentales se da en *Drosophila* (Naviera y Fontdevila 1985).

Patrones de especiación cromósomica

El complejo *Liolaemus monticola* en Chile, ha sido comparado en muchos aspectos con el complejo *Sceloporus grammicus* en México (Lamborot 1993; Sites y Reed, 1994), puesto que ambos exhiben fenómenos muy similares a niveles jerárquicos equivalentes, es decir, mantenimiento de polimorfismos dentro de razas cromosómicas, zonas híbridas parapátricas entre las razas, etc. (Sites y Reed, 1994, Vásquez et al 2007). Estos aspectos permiten reconocerlas como modelos de especiación cromosómica.

El patrón de variación cromosómica clinal de *L. monticola* es, en varios aspectos, comparable con tres modelos de especiación cromosómica: i) "modelo de especiación en cascada de Hall" en *Sceloporus* (Hall, 1973, 1980, 1983), ii) "proceso en cadena" de White (White 1978 a y b) o iii) "el modelo de alopatría cromosómica primaria" (King 1981, en Lamborot, 1993).

Un punto interesante en relación a los modelos de especiación cromosómica, es la estimación de las aneuploidías en machos. Ambas razas de *L. monticola* presentan tasas normales de aneuploidías, sin embargo, esta se incrementa en grados variables según los citotipos recombinantes de la zona de hibridación (Lamborot 1991, 1993), fenómeno que indicaría que es evidente que han logrado traspasar la barrera al flujo de genes (ver resultados de marcadores nucleares). El origen de una mutación cromosómica para *L. monticola* sería de origen espontáneo, la cual puede pasar a la población como heterocigoto, para luego tener la posibilidad de fijarse o no dentro de la población (Lamborot 1991) con un efecto tanto sobre el fitness de los híbridos heterocigóticos (Lamborot 1993) así como sobre la introgresión interracial, los cuales aumentarían la variabilidad inter-cromosómica mediante la recombinación, conservando las secuencias de genes relativamente bien adaptados a un nuevo entorno (Lamborot 1991).

Variabilidad en loci Aloenzimáticos y de AFLP

Un escenario diferente es lo planteado por los marcadores moleculares nucleares. Las dos razas se distinguen muy bien por los cromosomas, sin embargo a nivel de loci aloenzimáticos y de *AFLP*, el gran flujo génico entre razas hace imposible sus distinciones. La gran introgresión sería un indicativo que los híbridos son sexualmente compatibles con otros *L. monticola*, a pesar de la baja a moderada fertilidad que tendrían algunas combinaciones cromosómicas estimadas por el grado de aneuploidía, Lamborot (1991 y 1993), por lo que bastaría con sólo un bajo número de individuos machos viables para ser posible el flujo de alelos (introgresión) de una zona a otra.

Vásquez y colaboradores en el 2007, analizaron cuatro razas cromosómicas de *Liolaemus monticola*, incluyendo a las razas parentales de esta tesis, y descubrieron estructuración entre razas y, a su vez, alelos propios. Lo destacable de estos resultados es que, al ser comparados con los obtenidos en esta tesis difieren en el reconocimiento y separación de las razas parentales, debido a que el trabajo de Vásquez y col. (2007) no incluyeron localidades del Cajón del Maipo, lo que pone de manifiesto una mayor cantidad de mutaciones aloenzimáticos, para dicha zona.

Es así como resalta la gran cantidad de alelos aloenzimáticos nuevos y únicos en la ZH y localidades aledañas al Cajón del Maipo. Dichos alelos de origen mutacional o "*hybridzymes*" (Woodruff, 1989) incrementan la variabilidad genética y son útiles para evaluar cuán divergentes son los parentales. Este aspecto se documenta en Vásquez y col. (2007) para la raza Norte mod. 1, considerada por Lamborot y col. (2012) como una zona de hibridación secundaria, la cual es cromosómica, genética y geográficamente intermedia entre las razas Norte y Múltiple Fisiones, (Lamborot 1998).

Lo interesante de los marcadores *AFLP* radica en el alto número de loci analizables en estudios poblacionales capaces de detectar zonas híbridas (Berlsford y col 2011; Muñoz y col 2012; Kunte y col. 2012; Placyk y col 2012). Sin embargo, en esta tesis no lograron identificar a cabalidad a las razas cromosómicas en cuestión, tan sólo demostraron tendencias a agrupaciones (figuras 9 B) lo que podría ser interpretado como una importante introgresión de genes entre ambas razas, debido a un alto flujo de machos entre ambas razas; o dado a el bajo número de individuos y el alto número de loci detectados, no se podría determinar una real estructuración interracial.

En suma, estos marcadores nucleares entregaron datos convincentes de que las razas cromosómicas de *Liolaemus monticola*: i) no mantienen una estructuración poblacional clara, ii) la mayor variabilidad se concentraría entre las localidades aledañas a la zona de hibridación, y iii) la ausencia de estructuración se debería al flujo génico que mantienen los eco-demos de ambas razas a pesar de los ríos que hoy visualizamos.
Variabilidad para el gen mitocondrial: Citocromo b

La confirmación de la separación entre las razas Sur (2n=34) y Norte (2n=38-40) por más de cuarenta pasos mutacionales, es un aspecto que se contrasta por una parte con la presencia de haplotipos compartidos, y por otra con la gran cantidad de mutaciones acumuladas en algunos individuos, desde la última o penúltima glaciación, en el marco de los posibles eventos de expansión y contracción poblacionales.

Las reconstrucciones filogenéticas son coincidentes para las inferencias Bayesiana y Máxima Verosimilitud, Figuras 7 y 8, ponen de manifiesto la existencia de una introgresión bidireccional y asimétrica, con una mayor contribución de individuos provenientes desde la ribera sur hacia la ribera norte que desde la norte a la del sur. Dichos individuos se destacan por ADN_{mt} no concordantes a su estatus cromosómico, y de provenir de localidades próximas a la zona de hibridación en EL Cajón del Maipo. La introgresión de ADN_{mt} entre las razas Sur (2n=34) y Norte (2n=38-40), se dio a conocer por primera vez en Torres-Pérez y col. (2007) basado en una pequeña muestra de sólo dos a tres individuos elegidos por localidad y cariotipo.

Una explicación posible de cómo el ADN_{mt} explica patrones de introgresión en el eco-demo o raza, estaría mediada por el paso de hembras con una mutación favorable que surgió en una ladera, se eleva en frecuencia y luego, se traslada a la otra ladera a través de la Zona Híbrida. Estas mutaciones serán detectables en los miembros de una raza tengan dos formas muy divergentes de ADN_{mt} (Plotner y col., 2008). Cuando el reemplazo es completo, no hay ejemplos sobrevivientes para revelar la presencia de introgresión mitocondrial (Irwin y col., 2009).

Los numerosos pasos mutacionales que separan las razas Norte y Sur de *L. monticola*, también se han reportado para la herpetofauna del cono Sur de Sudamérica con ejemplos tales como *Liolaemus pictus* (Vidal y col. 2012), *Liolaemus gracilis* y *Liolaemus bibronii* (Olave y col. 2011) y en *Philodryas*, (Sallaberry-Pincheira y col. 2011). Morando y col. en 2004, encontraron introgresión entre especies estrechamente relacionadas como *Liolaemus darwinii* y *L. laurenti* en el sur de la Argentina.

La literatura hace mención que por regla general, el ADN_{mt} introgresa de manera más fácil y más frecuente que los loci nucleares después de una expansión del rango de distribución (ver Currat y col. 2008).

Variación Morfológica

Una gran sorpresa se encontró entre la variación de los caracteres morfológicos, independiente del alcance estadístico utilizado, si bien son congruentes con trabajos anteriores (Lamborot y Eaton 1992, 1997; Lamborot et al 2003), revelan y avalan la separación de las razas cromosómicas y el reconocimiento de los individuos pertenecientes a la ZH, pese a que la literatura hace mención de que la detección de los híbridos que utilizan caracteres morfológicos generalmente asumen que los individuos híbridos serán fenotípicamente intermedios a los individuos parentales (Smith 1992). Un fenómeno destacable al usar este marcador es la subestructuración que existe entre algunas localidades de cada raza cromosómica. Es así como la localidad de Cantillana, perteneciente al eco-demo Sur, se separa del resto de las localidades del Sur, esto podría deberse tanto a las diferencias cromosómicas como genéticas acumuladas, logrando así una adaptación al entorno circunscrito.

Congruencia e Incongruencias entre marcadores

Las razas cromosómicas, presentan una distribución geográfica, bastante acotada por los ríos Maipo y Aconcagua, así como la Zona de Hibridación entre la ladera Sur del río Maipo, salvo los híbridos cromosómicos o mutantes. En general, existe una tendencia de un 14.3% de no concordancia con ADN_{mt}, interpretado como individuos que, cromosómicamente presentan rearreglos de una raza pero un ADN_{mt} de la otra; situación similar propuesta en razas cromosómicas de ratones (Boissinot y Boursot 1997), evidencia de que los rearreglos cromosómicos estarían fuertemente seleccionados y los genes en un menor grado.

Tanto las variaciones en loci aloenzimáticos así como de *AFLP*, y ADN_{mt} evidencian que la zona de hibridación e híbridos aledaños al Cajón del Maipo serían un puente entre estas dos razas cromosómicas, puesto que esta mantendría los acervos de ambas razas parentales y permitiría el libre flujo genético entre ellas revelando una importante introgresión bidireccional.

Al comparar las localidades más australes de la raza Sur como Los Queñes, Río Lontué y Siete Tazas, distantes a más de 200 Km. de los sitios próximos al Cajón del Maipo, siguen manteniendo similares características cromosómicas y morfológicas sugerentes que la distribución geográfica desde el Río Maipo hacia el sur es probablemente más continua, a pesar del hecho de que actualmente varios ríos importantes separan estas localidades, hecho coincidente que se respalda de manera robusta en esta tesis.

La vasta documentación sobre las razas cromosómicas de *L. monticola*, y los resultados obtenidos en esta tesis, permitieron encontrar congruencia entre algunos marcadores. Es así como los polimorfismos cromosómicos, las secuencias de ADN_{mt} y los caracteres morfológicos y merísticos, i) separan las razas cromosómicas Norte (2n=38-40) y Sur (2n=34), como también reconocer la zona de hibridación descrita para dichas razas, ii) introgresión en todos los marcadores, iii) la introgresión cromosómica y genética serían bidireccionales y asimétricas, destacando la importancia de la zona de hibridación como nexo entre las dos razas cromosómicas, y iv) la zona de hibridación parece ser más extensa de lo que se tenía documentado.

Una discordancia entre algunos de los cinco marcadores independientes en esta tesis, implica la falta de un desarrollo completo de aislamiento reproductivo con evidencia de introgresión de cromosomas y de genes, lo que hace difícil definir los límites exactos del rango para una o más especies nuevas dentro de la actual distribución de *L. monticola*. Esto añade una nueva disyuntiva en elevar de categoría a esta especie de lagarto; en contraposición a lo sugerido en Torres-Pérez y col. (2007), ya que el argumento expuesto por los autores se basa en el análisis de unos pocos individuos de localidades aledañas a la zona de hibridación, sin tomar en cuenta la complejidad del conjunto de razas cromosómicas de esta especie.

Los ríos Maipo y Yeso como barreras al flujo génico

El Río Maipo y su afluente el Río Yeso han sido considerados como excelentes barreras al flujo de marcadores cromosómicos mitocondriales y morfológicos, los que limitarían la expansión y recolonización de algunas localidades parapátricas (Lamborot y Eaton 1992, 1997, Lamborot 1991), a excepción de la localidad de Yeso Sur que resulta ser un punto crucial para el flujo genético desde la ladera sur del río Maipo hacia el norte de este y viceversa.

Sin embargo, a la luz de los presentes resultados, estos ríos no funcionarían como barreras perfectas, ya que el grado de la barrera varía según el marcador. Así, en esta tesis, es posible reconocer que son excelentes barreras al flujo cromosómico, con excepciones de la ZH y localidades aledañas, sólo parciales al flujo mitocondrial y caracteres morfológicos, pero barreras débiles para alelos aloenzimáticos y loci de *AFLP* utilizados.

Los datos geológicos para la zona de Cajón del Maipo indican que las glaciaciones del Pleistoceno se han desarrollado a lo menos tres o cuatro eventos diferentes, en los que las "lenguas" glaciares desde los Andes alcanzaron los valles centrales (Brüggen, 1950). Aunque hay algunas discrepancias en la datación de las lenguas glaciares en Chile central, el desarrollo de estas lenguas podrían haber actuado como barreras e interrumpido el flujo génico entre los eco-demos Norte y Sur, antes del origen de los ríos. Es por ello que la ZH podría haber cambiado dramáticamente con los factores históricos y geográficos (Lamborot 1991), permitiendo, en algunas instancias, a las razas estar separadas alopátricamente y en otras de manera parapátricamente por los ríos Maipo y Yeso.

CONCLUSIONES

 Análisis cromosómicos y morfológicos son bastante claros para mostrar la presencia de una estructuración geográfica, con la presencia de razas y una zona hibrida en un inicio circunscrita a una zona.

2.- Análisis del ADN_{mt} muestran la presencia de las dos razas genéticamente muy diferentes, existiendo en la zona hibrida individuos con haplotipos de cada región. De forma interesante, algunos individuos de las zonas donde están las razas tienen haplotipos típicos de la otra raza lo que indica un posible efecto de migrantes e hibridación en esa zona.

3.- Los análisis morfológicos muestran diferencias claras entre las razas cromosómicas y también con los híbridos, los cuales poseen formas intermedias. Esto refuerza la idea de las razas delineadas genéticamente con una zona híbrida.

4.- Los análisis realizados con marcadores nucleares (aloenzimas y *AFLP*) no muestran una segregación tan clara de las razas y la zona híbrida. Si bien, los loci de *AFLP* muestran una cierta diferencia que separa la raza norte con la raza sur-híbrido y las aloenzimas muestran cambios en el número de alelos (intermedia en la zona híbrida) y en las heterocigocidades (aumento del He) no es posible establecer claramente los grupos.

5.- A la luz de los resultados es posible indicar que las razas cromosómicas existen, la zona híbrida es geográficamente delineada y que es posible la existencia de introgresión posiblemente facilitada por la migración de machos.

REFERENCIAS

Aljanabi, **S.M. y Martínez**, **I. 1997**. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nuc. Ac. Res. 25, 4692–4693.

Allendorf, F.W. Leary, R.F., Spruell, P. y Wenburg, J.K. 2001. The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution Vol.16 No.11.

Anderson, E. 1949. Introgressive Hybridization. John Wiley and Sons: New York.

Ankel-Simons, F. y Cummins, J.M. 1996. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. *Proc. Natl. Acad. Sci. 93*: 13859-13863.

Arnold, M.L 1992. Natural hybridization as an evolutionary process. Ann Rev EcolSyst23:237–261. **Arnold, M.L. 1997**. Natural hybridization and evolution. Oxford: Oxford University Press.

Arnold, M. 2004. Transfer and origin of adaptations through natural hybridization: Were Anderson and Stebbins right?. *Plant Cell* 2004;16;562-570

Astete, P. 2011. Estudio comparativo de los patrones de recombinación vía quiasmática en poblaciones de dos razas cromosómicas de *Liolaemus monticola* (Sauria: Iguanidae) y una zona de hibridación. Memoria para optar al Título de Profesor de Biología y Ciencias Naturales, Universidad Metropolitana de Ciencias de la Educación.

Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman & Hall, New York Baker, R.J. y Bickham J.W. 1986. Speciation by monobrachial centric fusions. *Proc. Natl. Acad. Sci.* 83, 8245–8248

Bandelt, H.J. Forster, P. y Röhl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molec. Biol Evol 16: 37-48.

Barton, N.H. 2001. The role of hybridization in evolution. Mol. Ecol. 10, 551–568.

Barton, N.H. y Hewitt, G.M. 1981. The genetic-basis of hybrid inviability in the grasshopper Podisma pedestris. Heredity 47: 367–383.

Barton, N.H. y Hewitt, G.M. 1985. Analysis of hybrid zones. Ann Rev Eco Syst 16: 113–148.

Barton, N.H. y Hewitt, G. 1989. Adaptation, speciation and hybrid zones. Nature, 341, 497-503. **Bazykin, A.D. 1969**. Hypothetical mechanism of speciation. Evolution, 23, 685–687.

Belkhir, K. Borsa, P., Chikhi, L., Raufaste, N. y Bonhomme, F. 2004. GENETIX 4.03, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France.

Berlsford, A., Milá, B. y Irwin, D. 2011. Hybrid origin of Audubon's warbler. Mol Ecol. 20, 2380– 2389

Boissinot, S. y Boursot, P. 1997. Discordant Phylogeographic Patterns Between the Y Chromosome and Mitochondrial DNA in the House Mouse: Selection on the Y Chromosome? Genetics 146 1019-1034

Brüggen, J. 1950. Fundamentos de la Geología de Chile. Ins. Geográfico Militar, Santiago, Chile.

Bush, G.L., Case, S.M., Wilson, A.C. 1977. Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences of the USA 74: 3942–3946.

Capanna, E., A. Gropp, H. Winking, G. Noack, y Civitelli M.V. 1976. Robertsonian metacentrics in the mouse. Chromosoma 58: 341-353.

Carr, S.M. y col. 1986. Mitochondrial DNA analysis of hybridization between sympatric whitetailed deer and mule deer in west Texas. Proc. Natl. Acad. Sci. U. S. A. 83, 9576–9580

Carson, H.L., Clayton, J., F.E. y Stalker, H.D.1967. Karyotypic stability and speciation in hawaiian *Drosophila* PNAS, vol. 57 no. 5 1280-1285

Cei, J.M. 1986. Reptiles del centro, centro-oeste y sur de la Argentina. Mus. reg. Sci. nat. Torino Monogr. 4: 527 pp.

Cei, J.M. 1993. Reptiles del noroeste, nordeste y este de la Argentina. Mus. reg. Sci. nat. Torino, Monogr. 14: 949 pp.

Coyne, J.A. y Orr, H.A. 2004. Speciation. Sinauer Associates, Sunderland, MA, 545 pp.

Currat, M. Ruedi, M., Petit, R.J. y Excoffier, L. 2008. The hidden side of invasions: massive introgression by local genes. Evolution 62: 1908–1920.

De Queiroz, K. 1998. The general lineage concept of species, species criteria, and the process of speciation. En D.J. Howard y S.H. Berlocher: Endless Forms: Species and speciation. Pg: 57-75. Oxford University Press. New York.

De Queiroz, K. 2005. Different species problems and their resolution. Bioessays 27: 1263–1269.

Dobzhansky, T. 1937. Genetics and the Origin of Species. Columbia University Press. New York.

Donoso-Barros, R. 1966. Reptiles de Chile. Ediciones de la Universidad de Chile, Santiago, Chile. 606 pp.

Dowling, T.E. y De Marais, B.D. 1993. Evolutionary significance of introgressive hybridization in cyprinid fishes. Nature 362, 444–446

Dowling, T.E. y Secor, C.L. 1997. The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:5 93–619.

Dupanloup, I. Schneider, S., Excoffier, L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11(12): 2571-81.

Earl, D.A. y von Holdt, B.M. 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources DOI: 10.1007/s12686-011-9548-7 Version: v0.6.8 Oct 2011.

Endler, J. A. 1977. Geographic variation, speciation and clines. Pp. 246. Princeton University Press, New Jersey.

Etheridge, R. y De Queiroz, K. 1988. A phylogeny of Iguanidae. Edición R. Estes & G. Pregill. Pp. 283–368.

Evanno, G. Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molec. Ecol., 14, 2611–2620.

Excoffier, L. y Smouse, P. 1994. "Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony" Genetics 136: 343-359.

Falush, D. Stephens, M. y Pritchard, J.K. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574–578.

Ferreira, M. y Grattapaglia, D. 1998. Introducción al uso de Marcadores Moleculares en el Análisis Genético, 1ra ed. Brasilia: EMBRAPACENARGEN 1998.

Field, D.L. Ayre, D.J., Whelan, R.J. y Young, A.G. 2010. Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare *Eucalyptus aggregata* and common *E. rubida*. Heredity, 1–13

Filatov, D.A. 2002. ProSeq: A software for preparation and evolutionary analysis of DNA sequence data sets. Molec. Ecol. Not. 2, 621-624.

Frankham, R., Ballou, J., Briscoe, D. 2004. Introduction to conservation genetics. Cambridge University Press, Cambridge, 2° ed. United Kingdom.

Fu, Y.X. 1996. New statistical tests of neutrality of mutations. Genetics 143: 557–570.

Garagna, S., Marziliano, N., Zuccotti, M., Searle, J.B., Capanna, E. y Redi, C.A. 2001. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. PNAS vol. 98 (1) 171–175

Grant, V. 1981 Plant Speciation, Columbia University Press

Haldane, J.B.S. 1948. The theory of cline. Journal of Genetics, 48: 277-284.

Hall, W.P. 1973. Comparative population cytogenetics, speciation and evolution of the crevice using species of *Sceloporus* (Sauria: Iguanidae). Tesis de Doctorado, Harvard University, Cambridge, Massachusetts. 215 pp.

Hall, W.P. 1980. Chromosome, speciation and evolution of Mexican iguanid lizards. Nat. Geo. Soc. Res. Rep. 12, 309–329.

Hall, W.P. 1983. Mode of speciation and evolution in the sceloporine iguanid lizards. I. Epistemology of the comparative approach and introduction to the problem. In: Rhodin AGJ, Miyata K, eds. Advances in Herpetology and Evolutionary Biology. Cambridge, Massachusetts: Mus Comp Zool. 643-679.

Harrison, R.G. 1990. Hybrid zones: windows on the evolutionary process. Oxford Surveys en Evol. Biol. 7: 69– 128.

Harrison, R.G. 1993. Hybrids and hybrid zones: Historical Perspective. En: R.G. Harrison, (ed.). Hybrid zones and the Evolutionary Process. Oxford University Press.

Harrison, R.G. 1998. Linking evolutionary pattern and process. En D.J. Howard y S.H. Berlocher: Endless Forms: Species and speciation. 19-31. Oxford University Press. New York.

Hedrick, P.W. 1981. The establishment of chromosomal variants. Evolution, 35: 322-332

Irwin, D. Rubtsov, A.S y Panov, E.N. 2009. Mitochondrial introgression and replacement between yellowhammers (*Emberiza citrinella*) and pine buntings (*Emberiza leucocephalos*) (Aves: Passeriformes) Biol. Jour. Linn. Soc., 98, 422–438.

Key, K.H. 1968. The concept of stasipatric speciation. Syst. Zoo., 17, 14-22.

Cambridge University Press.

King, M. 1981. Chromosome Change and speciation in lizards. In Atchley, W. and Woodruff, D. eds. Essays on Evolution and Speciation in Honour of M.J. White, Camb. Univ. Press, pp. 262–285. **King, M. 1993**. Species Evolution: the Role of Chromosome Change. Cambridge/ New York:

Kolnicki, R. 2000. Kinetochore reproduction in animal evolution: Cell biological explanation of karyotypic fission theory. PNAS. vol. 97, no. 17, 9493–9497

Kunte, K., Shea, C., Aardema, M.L., Scriber, J.M., Juenger, T.E., Gilbert, L.E. y Kronforst, M.R. 2012. Sex Chromosome Mosaicism and Hybrid Speciation among Tiger Swallowtail Butterflies. Plos Genetics. 7, 9: e1002274

Lamborot, M. 1991. Karyotypic variation among populations of *Liolaemus monticola* (Tropiduridae), separated by riverine barriers at the Andes range. Copeia 1991: 1044-1059.

Lamborot, M. 1993. Chromosomal evolution and speciation in some Chilean lizards. Evol. Bio 7: 133-151.

Lamborot, M. 1998. A new and highly polymorphic chromosomal race of *Liolaemus monticola* (Iguanidae) from the "Norte Chico" of Chile. Chromosome Research 6: 247-254.

Lamborot, M. 2001. Karyotypic polymorphism and evolution within and between the *Liolaemus monticola* (Iguanidae) "northern 2n=38-40" chromosome race populations in central Chile. Rev Chil Hist Nat 74: 121-138.

Lamborot, M. 2008. Herpetología de Chile, Capítulo 6: Evolución cromosómica en Reptiles de Chile. Editores: Vidal, M. y A. Labra. Sciencie Verlag.

Lamborot, M. Álvarez, E., Campos, I. y Espinoza, A. 1981. Karyotypic characterization of three Chilean subspecies of *Liolaemus monticola*. Jour. Hered. 72: 328–334.

Lamborot, M. Eaton, L. y Carrasco, B.A. 2003. The Aconcagua River as another barrier to *Liolaemus monticola* (Sauria: Iguanidae) chromosomal races of central Chile. Rev Chil Hist Nat 76: 23-34.

Lamborot, M. y Álvarez-Sarret, E. 1993. Karyotypic variation within and between populations of *Liolaemus monticola* (Tropiduridae) separated by the Maipo River in the coastal range of central Chile. Herpetologica 49: 435-449.

Lamborot, M. y Eaton, L.C. 1992. Concordance of morphological variation and chromosomal races in *Liolaemus monticola* (Tropiduridae) separated by riverine barriers in the Andes. Zeits Zool Syst Evol 30: 189-200.

Lamborot, M. y Eaton, L.C. 1997. The Maipo River as a biogeographical barrier to *Liolaemus monticola* (Tropiduridae) in the mountain ranges of central Chile. J. Zoo Syst Evol Res 35: 105-111.

Lamborot, M. y Vásquez, M. 1998. A triploid of *Liolaemus gravenhorsti* (Tropiduridae) in central Chile. Journal of Herpetotology 32:617-620.

Lamborot, M., Ossa, C.G. y Vásquez M. 2012. Population cytogenetics of the "Northern Mod 1" chromosomal race of *Liolaemus monticola* Müller & Helmich (Iguanidae) from Central Chile. Gayana 76 (1).

Lande, R. 1985. The fixation chromosomal rearrangements in a subdivided population with local extinction and colonization. *Heredity*, 54: 323-332.

Levene, H, 1949. On a matching problem arising in genetics. Ann. Math. Stat. 20:91-94.

Lewis, H. 1966. Speciation in flowering plants. Science 152, 167–172

Lewontin, R. y Birch, L. 1996. Hybridization as a source of variation for adaptation to a new environment. Evolution 20: 315–336.

Lobo, F. 2001. A phylogenetic analysis of lizards of the *Liolaemus chilensis* group (Iguania: Tropiduridae). Herpet J. 11, 137–150.

Lobo, F. Espinoza, R.E. y Quinteros, S. 2010. A critical review and systematic discussion of recent classification proposals for Liolaemidae lizards. Zootaxa 2549, 1–30.

Mallet, J. 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237.

Mallet, J. 2008. Hybrid speciation. Nature. Vol 446:15

Mallet, J. 2010. Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecol Ent. 35: 90–104.

Markert C. y Hunter R.L. 1957. The distribution of esterases in mouse tissues. J Histochem Cytochem 1959 7: 42

Mayr, E. 1942. Systematics and the Origin of Species. Columbia University Press. New York.

Mayr, E. 1963. Animal Species and Evolution. Belknap Press, Cambridge, MA, 797 pp.

Michalakis, Y. y Olivieri I. 1993. The influence of local extinctions on the probability of fixation of chromosomal rearrangements. *J. Evol. Bio.*, 6: 153-170.

Montaño-Pérez, K. Villalpando-Canchola, E. y Vargas-Albores, F. 2006. AFLP (Amplified Fragment Length Polymorphism) y su aplicación en acuicultura. Interciencia. 31: 563-569.

Morando, M. Avila, L.J., Baker, J. y Sites, J.W. 2004. Phylogeny and phylogeography of the *Liolaemus darwinii* complex (Squamata: Liolaemidae): evidence for introgression and incomplete lineage sorting. Evolution, 58 (4), 842–861.

Muñoz, A.G., Baxter, S.W., Linares, M. y Jiggins, C.D. 2012. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. Evolutionary Biology, 11:358

Navarro, A. y Barton, N. 2003. Accumulating post zygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57: 447–459.

Naviera, H. y Fontdevila, A. 1985. The evolutionary history of *Drosophila buzzatii*. IX. High frequencies of new chromosome rearrangement induced by introgressive hybridization. Chromosoma 91: 87-94.

Noor M.A., Grams, K.L, Bertucci, L.A. y Reiland, J. 2001. Chromosomal inversions and the reproductive isolation of species. Proc. Nat. Acad. Scie. 98: 12084–12088.

Olave, M. Martinez, L.E., Avila, L.J., Sites, J.W. y Morando, M. 2011. Evidence of hybridization in the Argentinean lizards *Liolaemus gracilisand L. bibronii* (Iguania: Liolaemini): an integrative approach based on genes and morphology. Molec. Phylo Evol. 61(2): 381-391.

Olden, J.D. Poff, N.L., Douglas, M.R., Douglas, M.E. y Fausch, K.D. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.

Orr, H.A. 1996. Dobzhansky, Bateson and the genetics of speciation. Genetics 144: 1331–1335.

Páez, E. 2010. Variación genética aloenzimática en una zona de hibridación, entre dos razas cromosómicas de *Liolaemus monticola*. Memoria para optar al Título de Profesor de Biología y Ciencias Naturales, Universidad Metropolitana de Ciencias de la Educación.

Palumbi, **S.R. 1996**. The polymerase chain reaction. In Molecular systematics, 2nd edn (ed. D. M. Hillis, C. Moritz & B. K. Mable), pp. 205–247. Sunderland, MA: Sinauer.

Perry, W.L. Lodge D.M. y Feder J.E. 2002. Importance of hybridization between indigenous and non-indigenous freshwater species: An overlooked threat to North American biodiversity. Syst Biol 51:255–275.

Peters, I.A. y Donoso-Barros, R. 1970. Catalogue of Neotropical Squamata: Part II. Lizards and amphibians. Bulletin of the United States National Museum 297: 170-195.

Placyk, J.S., Fitzpatrick, B.M. y Casper, G.S. 2012. Hybridization between two gartersnake species (Thamnophis) of conservation concern: a threat or an important natural interaction? Conserv Genet. Publicación online DOI 10.1007

Plotner, J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex G-D, Reyer H-U, Hotz H. 2008. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J. Evol Bio 21: 668–681.

Pounds, J.A. y Jackson, J.F. 1981. Riverie barriers to gene flow and differentiation of fence lizard populations" Evolution 35: 516-528.

Pritchard, J.K. Stephens M, y Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 115:945-959.

Rambaut, A. 2009. FigTree versión 1.3.1. disponible en http://tree.bio.ed.ac.uk/software/figtree.

Redi, C.A. y Capanna, E. 1988. Robertsonian heterozygotes in the house mouse and the fate of their germ cells. In: Daniel A, ed. The Cytogenetics of Mammalian Autosomal Rearrangements. New York: Alan R. Liss. pp. 315-359

Rieseberg, L. 2001. Chromosomal rearrangements and speciation. Trends Eco Evol 16: 351-358.

Rieseberg, L. y Wendel, J. 1993. Introgression and its consequences in plants. In: Harrison RG ed. Hybrid Zones and the Evolutionary Process. Oxford University Press: New York, pp 70–109.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling A., Höhna, S.H., Larget, B., Liu, L., Suchard, M.A. y Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3): 539–542

Rozas, J. Sanchez-Del Barrio X. y Rozas R.2003. "DnaSP, DNA polymorphism analyses by the coalescent and other methods". Bioinfor. 19: 2496-2497.

Saiki, R.K. Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. y Erlich, H.A. 1988. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Sallaberry-Pincheira, N., Garin, C.F., González-Acuña D., Sallaberry, M.A. y Vianna, J.A. **2011**. Genetic divergence of Chilean long-tailed snake (*Philodryas chamissonis*) across latitudes: conservation threats for different lineales. Diver Distrib, 17, 152–162.

Simpson, J. 1997. Amplified fragment length polymorphisms. B. Soc. Bot. Méx. 60:73-76.

Sites, J.W. y Moritz, C. 1987. Chromosomal evolution and speciation revisited. Syst Zoo 36: 153-174.

Sites, J.W. y Reed, K.M. 1994. Chromosomal evolution, speciation, and systematics: some relevant issues. Herpetologica 50: 237- 249.

Smith, **G.R. 1992**. Introgression in fishes – significance for paleontology, cladistics, and evolutionary rates. Syst. Biol. 41, 41–57.

Smithies, O. 1955. Zone Electrophoresis in Starch Gels: Group Variationsin the Serum Proteins of Normal Human Adults. Biochem. J. 61. 629–641.

Soft Genetics LLC GeneMarker® Version 1.95 software, State College, PA, USA.

StatSoft, Inc. STATISTICA, 2004. (data analysis software system), version 8. www.statsoft.com **Stebbins, G.L. 1959**. The role of hybridization in evolution. Proc Amer Philos Soc 103: 213–251.

Stamatakis, A.2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinf. 22 (21): 2688–2690

Swofford, D.L. y Selander, R.B. 1981. BIOSYS-1. A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered., 72 :281-283.

Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

Templeton, A.R. 1981. Mechanisms of speciation a population genetic approach. *Annu. Rev. Ecol. Syst.* 12, 23–48

Todd, N.B. 1970. Karyotypic fissioning and Canid phylogeny. J. Theor. Biol. 26, 445-480

Torres-Pérez, F. Lamborot, M., Boric-Bargetto, D, Hernández, C.E., Ortiz, J.C. y Palma. R.E. 2007. Phylogeography of a mountain lizard species: an ancient fragmentation process mediated by riverine barriers in the *Liolaemus monticola* complex (Sauria: Liolaemidae). J. Zoo. Syst Evo Res 45: 72–81.

Torres-Pérez, F. Méndez, M.A., Benavides, E., Moreno, R.A., Lamborot, M., Palma, R.E., Y Ortiz, J.C. 2009. Systematics and evolutionary relationships of the mountain lizard *Liolaemus monticola* (Liolaemini): how morphological and molecular evidence contributes to reveal hidden species diversity. Bio. J.Lin. Soc, 96, 635–650.

Vásquez, M. 2002. Genética Biogeográfica de *Liolaemus monticola* (Iguanidae) en Chile central. Tesis para optar al grado de Magíster en Ciencias Biológicas con mención en Genética. U. de Chile.

Vásquez, M., Torres-Pérez, F. y Lamborot, M. 2007. Genetic variation within and between four chromosomal races of *Liolaemus monticola* (Tropiduridae) in Chile. Herpeto. J. 17: 149-160.

Vidal, M. Moreno, P.I. y Poulin, E. 2012. Genetic diversity and insular colonization of *Liolaemus pictus* (Squamata, Liolaeminae) in northwestern Patagonia. Aust Ecol. 37, 67–77.

Von Müller, L. y Hellmich, Y. 1932. Beitrag zur Kenntnis der Herpetofauna Chiles. IV. *Liolaemus monticola*, ein weiterer neurer Rassenkreis aus den Hochanden Chiles. Zool Anz 99: 177-192.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. y Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nuc. Ac. Res. 23: 4407-4414.

White, M.J.D. 1978a. Chain processes in chromosomal speciation. Syst Zool 27: 285-298.

White, M.J.D. 1978b. Modes of Speciation. San Francisco: WH Freeman.

Wiens, J.J. y Penkrot, T.A. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69–91.

Woodruff, D.S. 1989. Genetic anomalies associated with Cerion hybrid zones: the origin and maintenance of new electromorphic variants called hybridzymes. Bio. J. Linn Soc 36, 281–294.

Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

Wright, S. 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

Zouros, E. y col. 1994. Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel *Mytilus. Nature 359*: 412- 414.

Listado con las localidades, individuo y diagnóstico cromosómico sólo para los pares cromosómicos polimórficos de *Liolaemus monticola*. Destacado en negro individuos híbridos cromosómicos. MRI= MAS, RCL e ING; QST= QÑS y STA

2.636.231064.2012 2.454	Individuo	PAR 1	PAR 2	PAR 3	PAR	4 PAR 5	PAR 6	PAR 7	Localidad	Individuo	PARS	PAR 2	-	PAR 4	240 K		
5.00M	1.181	AA	AA	A A.	66	AA	AA	AA	CON	2620	AA	AA	88	1	26	FAR D	PAR /
1000 CA21	1.182	AA	ÂA	AB	08	AA	AA	AA	COM	2622	AA	AA	44	100	~~~		AA AA
CAN I	1.58.5	AA	AA	BE	68	AA	AA	AA	CON	2621	84	2.4	245	6232	and the second		248
- teres and the states	1.523.4	AA	AA .	86	88	AA	AA	AA	008	2840	84	AA	-	5812	in a second second	han Star	in a finite
CAM	1.585	AA	ÂĂ	88	845	AA	AA	AA	205	25.63	2.8	A.A.		1983	AA	AA	AA
CAM	1.386	AA	AA	AB		AA	. Jufa	AA	2000	25.42	3.8	849 2 X	20	1333	AA	Ab	AA
CAM	1.387	AA	AA	AB	80	AA .	AA	AA	1975	25.255	2.5			1265	AA	AA	AA
CAM	1.53575	AA	AA	AB	88	24	AA	AA	700	26.40	2.8			1545	AA	EE	AA
CAM	1389	AA	AA	AB	88	AA	ÅÅ	44	1	2660	incol Charge	- 49		1343	ÂĂ	AE	AA
CAM	1.1993	AA	AA	88	08	24	ÂÂ	44	2000	0.000	<u> </u>		- 2585	138	ÂĂ	AA.	CC .
CAM	1.191	AA	AA	1969	1985	8.6	44	44		4000	AA		AA	88	AA	AA	AC
CAM	1,192	A,A	AA	88	1455	A.A				4300	88	89	88	88	ÂÂ	AA	CC
(XOR	2492	AA	AA	88	88	25	- m-		3462	2303	88	AA.	AS	88	AA	AA	AC
DOR	245)4	AA	44	88	-	and the second second	- T		200	2002	AA.	AA.	AA	88	AA	AA	AC
DOR	2495	AA	ÅÅ	BB	1232	A.			5.625	2564		AA	AA	88	AA	AA.	AA
COR	2531	AA	AA	613	200	AA		144	505	2565	AA	AA	AB	88	AA	AE	AA
OOR	2532	ÂĂ	***		102		24	~	5,625	2557	AA	AA	Aß	BB	AA	AE	CC
CXCIR	2534	44	85	1050	200		A A	~^A		2569	AA	ÂΑ .	AA	BB	AA	AE	AA
(XOR	26.88	25	**	333	00	44	AA.	- AA	COS	2570	AA	A A	As	88	ÂĂ	AA	AA
(XC)R	285,883	2.5			042		88	AA.		2372	AA	ÂĂ	2325	88	AA	AA	AA
()OS	26.003	2.2	64	1960	(30)			AA	COS	2572	A.A.	A A	56	88	ÄÄ	AA	AA
DOR	26.91	***	· · · · · ·	C787	2005	AA	AA	AA	CC5	2523	AA	AA	86	88	44	AA	AA
008	26.9.2			AD	86	AA	AA	AA	COS	2529	AA	AA	88	6 88	AA	ÂĔ	CC
ive	25.03	**			88	AA	AA	· AA	C05	2582	AA	AA	88	88	68	AF	20
EV30	7600		<u></u>	3B	88	AA	AA	AA	Res	387	AA	AA	AB	BB	8.4	84	4.
000	2003			1365	88	AA	ÂĂ	AA	RR.	388	AA	AA	56	BB	44	85	3.5
The second	20040	AA.	AA	AB	68	AA	AA	AA.	865	2137	AA	AA	28	RB	8.8	88	100
Class.	27003	AA.	AA	AB	88	.AA	AA	AA.	REE.	2138	AA	AA	86	80	4.4		Section of the sectio
C.F.M.	2078	AA	<u>.</u>	28	68	AA	AA	AA	\$8 <u>8</u>	2139	AA	44	283	80	2.4	~	A 10
C.PSA	2079	AA	AA	AB	68	A.A.	AA	AA	RBL	144	44	44	8.63	00		Second Street	AL.
CHA	2080	ÅÅ	AA.	AB	88	AA	AA	AA	RAR	3dda	4.5	22		00		. <u>AA</u>	AC
CMA	2081	ÂA	AA	BB	88	AA	AA	AA	SA.	3448	5.5		00	00			AC
CHA	2082	AA	AA.	AB	88	AA	AA	AA	NAL	2440	2.8	in	20		AA	AA	. 44
CHA	2083	AA	AA.	AB	88	AA	AE	84	SAL	2450	A_A	- 1948 A.A	00	60	AA	RA.	AA .
CHA	2084	AA	AA	AA	88	AA	AA	AA	CAL	3453	2.5	10,04	00	00	AA	AA	AA
CHA	2288	AA	AA	AB	68	AA	AA	88	C 2.	3453		1998	40		AA	AA	AA .
CHA	2213	AA	AA	AA	68	AA	ΔA	AA	6.65	2454	74.4		- ^^ .	825	AA	AA	AA
CON	2539	AA	ДД	88	88	AA	84	A A A A A A A A A A A A A A A A A A A	0.55	2000	1496	9.94	AA.		AA	AA	AA
CON	2543	AA	AA	AB	88	AA	1111	AA	42.45	2402		- <u>AA</u>	88		AA	AA	AA
CON	2544	AA	AA	88	80	44	5.5		2000.	2630	AA	AA.	88	88	AA	AA	AA
CON	2545	AA	AA	88	14,14	60	80		0.85	69637		RA	A8	88	AA	AA	AA
CON	2546	AA	44	RR	1243	84						AA	AB	88	AA	AA	AA
CON	2551	84	44	AB	2313		2.8	-	2092	49.33	- AA	AA.	- 88	- 88	AA	ÅÅ	AA
CON	2552	88		90	0.0		1949	A	346	2460	AA	AA	AB	BB	AA	ÅÅ	AA
CON	2553	AA	AA		200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-		2467	AA	AA.	AB	BB	AA	ÂA	AA
CON	2554	44		500	00	<u> </u>	- 78	AC	SAL	2468	AA	AA	88	88	AA	AA	AA
CON	2555	44	AA.	500 600	00	44		. M	FAR.	1425	AA.	AA	88	88	AA	AA	AA
CON	2555	25	44		645	AA	AA	AC	RAR	2428	AA	AA	Aß	88	AA	AA	AA
(1194	1000	2.2		88		AA	AA	AC	PAR	1435	AA	AA	88	88	AA	AA	AA
2"T'SA	26.1.2	792		60	88	AA	ă.	AA	FAR	1438	AA	AA	AB	88	AA	AA	44
CT182	6913	<i>116</i>	AA	55	88	AA	AA.	AA	FAR	1660	AA	AA	66	88	AA	AA	88
C C C AN	2024 10250	AA	bo.AA	AÐ	EB	AA	AA.	AA	AAR	1661	AA	AA	88	BB	AA	AA	AA
1.6.293	69.23	AA	AA	68	68	AA	ă.	AA	FAR	1662	AA	AA	AB	BR	3.5	AA .	
106019	site Res	AA	AA	68	88	AA	AE	AA	FAR	1663	AA	44	A.5.	BB	3.5		· · · · · ·
S.124	2617	AA	AA	68	88	AA	AE:	AA	FAR	1422	84	24	20	DO	A.A.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 8 184	100 100	in	: AA	- AP1	88	8.8	5.6	10	28.0	5000	Common of the heres	Same and the second		an Erren State	24.9%	MA	AA

.

Continuación anexo 1

Localidad	Individuo	PAR 1	PAR 2	PAR 3	PAR 4	PARS	PAR 6	PAR 7	Localidad	Individuo	PARI	PAG 2		0.68 4	-		
Tex.	1009	AA	ÀÀ	AA	88	AA	A A	ÂÅ.	YES	\$246	AA	84	AA		FAR 3	PARD	PAR 7
TRN Fall	1070	- AA	AA.	Aß	86	AA	AA	AA	YES	2709	AA	-	- <u>- 2</u> 2	48		- M	<u>~</u>
EX D	1070	AA	AA .	58	66	AA	44	AA.	YES	2710	AA			48	-	- 77	and the second
CA19	10/10	AA	AA .	A8	08	ÂA	AA.	AA.	YES	2711	An	AA	AA	44	4.4	A.8	
finn finn	1079	AA	AA	AB	88	AA.	AA.	AA.	YES	2712	AA	AA	24	4.4	5.5	2.3	**
CAR	1043	- AA	AA	8 8	88	AA	ÂĂ	A A	YES	2758	AA	AA	AA	AA	22	2.2	5.0
SAC SAC	1004	AA.	AA.	A8	88	ÂĂ	AA	AA.	YES	2759	AA	AA	44	5.5	44		6.5
HAD	4983	AA .	AA	月日	88	AA.	AA.	: AA	VES	2260	AA	AA	AA	44	AA	8.8	
ENG	3000	8A.	AA	Að	88	44	ÂÂ.	44	YES	2762	AA	AA	AA	AR	44		····
Rao I	3083	AA	AA.		Bitt	AA	,8A	A ;A	YES	2763	AA	ÂA	AA	AR	AA	1	A.8
889	14.13		RR	AB	86	ÂÂ.	A.A.	AA	YES	2764	AA	AA	AA	AA	44	6.5	
FAS	3440		AA.	88	ee.	. AA	AA.	- A _c A	YES	2779	AA	AA	ĂĂ	2.5	44	A.A.	A.A.
EAD	Tuesday.	MA	RA	AB	56	4.12	,AA	A.A.	YES	2780	AA	6.4	80	44	8.6	5.3	
5 A. 2	2999	AA	AA	AB	88	ÅΛ	.44	AA	MRI	2665	AA	AA	AA		(MA		22
ALE	2840		AA -	Aß	86	AA	.44	AA .	MRI	2666	AA	AA	AA	44	44	2.2	AA
ALC.	2041	20	AA	Aß	88	ÂĂ	AA	<u> </u>	MRI	2766	AA	44	44	44	34	22	
At C	2040		AA	AB	88	AA.	Añ	ÅÅ	MRI	2768	AA	AA	88	48	24		general de la composition de la composi
At C	2031			A8	88		44	AA	RR	3353	AA	AA	AA	44	22		
ALE	20.24	AA	AA	AA .	88	AA	ÅÅ	44	NR)	2656	AA	AA	AA	44	22	84	~~~~
61.5	2003	759		- 44	88		ÂÂ.	AA	NR.	3338	AA	AA	AA	AA	44	34	and the second
ALE	2004	15 8	AA	08	88	AA.	AA.	AA	KR:	3341	AA	AA	44	44	2.0	44	
ALE	20.10			AB	BB	AA .	AA.	AA	MRI	3342	AA	AS	8.6	24	44		
ANERS	5750	·····	AA	AB	BB	AA	AA.	44	CAN	3343	AA	AA	AA	AA DO	64	24	- 22
88.2.85	1730	200	19.9%	88	88	AA.	. AA	AA	CAN	1311	AA	AA	AA	66	84	22	66
MAN	1725		99,94	AD	88	AA	AA	AA	CAN	1312	AA	AA	AA	AA	AA	**	44
MAN	1222		2424	300	00	AA.		:ÀÀ	CAN	1313	AA	AA	AA	ÅÅ	84	84	66
MAN	1722		222	20	86	6	. AA	AA.	CAN	1314	AA	AA	AA	AA	AA	64	22
SGA	3323		den fille	200 200	00	A.A.	AR.	AA	CAN	1316	AA	AA	AA	AA	AA	AA	AA
SGA	3324	1	10	20	AD		AA	AA	CAN	1318	AA	AA	AA	AA	AA	AA	AA
SCA	3325	2.2	88		00		<u>nn</u>	<u> </u>	CAN	1322	AA	AA	AA	AA	AA	AA	84
SGA	8824	44	generation	20	6363	SCA		AB	CAN	1323	AA	AA	AA	AA	AA	AA	88
SGA	3331	44	84	88	68		A 2	AA.	CAN	1326	AA	AA	AA	AA	AA	AA	AA
SGA	3349	44	60		6363	344		<i>AA</i>	CAN	1327	AA	AA	AA	AA	AA	AA	AA
YEN	1644	44	20	202	6262			AA	CAN	1331	AA	AA.	AA	AA	AA	AA	AA
YEN	1645	ÅÅ	84	 	88		**	<i>P</i> (4)	CAN	1332	AA	AA	AA	AA.	AA	AA	AA
YEN	2776	AA	24	22	80	6.6		<i></i>	CAN	1333	AA	AA	AA	AA	AA	ÂĂ	AA
YEN	2858	ÂÂ	44	22	88	5.5 S			CAN	1335	AA	AA	AA	AA	AA	AA	AA
YEA	2859	AA	aa.	44	86	8.8			CAN	1336	AA	AA	AA	AA	AA	AA	AA
YEN	2860	AA	AA	AR	AA	2.5	4.0	<u></u>	CAN	1341	AA	AA	AA	AA	AA	AA	AA
YEN	2861	AA	ÅÅ	AA	AR.	2.5	25/5 X.IX	<u>.</u>	QST	1461	AA	AA	ÂA	AA	AA	AA	AA
YEN	2914	AA	ĂĂ	AA	6464	24			QST	1465	AA	AA	ÂĂ	AA	AA	AA	AA
YEN	2915	AA	AA	48	84	2.3	4.4		QST	1466	AA	AA	AA	AA	AA	44	AA
YEN	2916	AA	AA	ÂÂ	88	0000	100 C	3.5	QST	1469	AA	AA	AA	AA	AA	AA	AA
YEN	2919	AA	AA	44	56	23	AE	- <u>m</u>	Q31	1470	AA	AA	AA	AA	AA	AA	AA
YEN	2920	AA	AA	AB	88	84	22	22	QST	2637	AA	AA	AA	AA	AA	AA	AA
YES	1646	AA	AA	AA	AB	84		- TA	QST	2638	AA	AA	AA	: AA	AA	AA	AA
YES	1646b	AA	AA	AB	AB	84			QST	2639	AA	: AA	AA	AA	AA	AA	AA
YES	1647	AA	-	AA	AB	AA	As	23	QST	2640	AA	AA .	AA	AA	AA	AA	AA
YES	1648	AA	AA	5B	AB	24	-		QST	2643	AA	AA	AA	AA.	AA	AA	AA
YES	1655	AA	AA	AA	AA	AA	22	1	QS7	2642	A:A	AA	ÅÅ	AA	AA	AA	AA
YES	1656	AA	44	AA	AA	22		1	QST	2546	AA	AA	ΔA.	AA	AA	AA	AA
YES	1744	AA	AA	AB	AA	AA	**		QST	330\$	AA	: AA	AA	AA	A A	AA	AA
YES	1744b	AA	AA	AA	AB	AA		44	QST		AA	AA	AA	AA	AA	AA	AA
		a contra conservativos d	eren i historia	erenii Châum	and a second second second	discussion of the	ADDA X ZAMANA	and the second	QST	3314	AA	AA	AA	AA	AA	AA	44

Frecuencias alélicas de los 7 pares de cromosomas polimórficos de *Lioleamus monticola* para los 9 eco-demos. Heterocigocidad esperada (**H exp.**); heterocigosidad observada (**H obs.**); Zona Híbrida (**ZH**). En negro las localidades que presentan polimorfismos únicos. Pares 1 y 5 resultaron ser monomórficos.

Par 2	NCOS	NTRAN	NMODI	NAND	NCAJ	ZH	SCAJ	SCOS	SAND
* 1923	1.000	1.000	1.000	1.000	1.000	1.000	0.9444	1.000	1.000
100	(-)	.(-)	(-)	(-)	(2)	.(-)	(0.000)	(2)	.(.).
200	1.000	1.000	1.000	1.000	1.000	1.000	0.0556	1.000	1.000
H exp.	0.000	0.606	0.000	6.000	0.000	0.000	0.1049	0.000	0.000
Hobs	0.000	0.000	0.000	0.000	0:000	0.000	0.1111	0.000	0.000
IT WERE	0.000		54.550 M SE	0-00000	50000	0.000	W.4444	10.00 10.00	013335
Par 3	NCOS	NTRAN	NMODI	NAND	NCAJ	ZH	SCAI	SCOS	SAND
100	0.2778	0.5000	0.2708	0.3553	0.5000	0.9048	0.8889	1.0000	1.0000
	0.7222	0.5000	6 7362	0 64447	0.1000	0.0043	0.3383	6 0000	0.000
200	(0.003)	(-0.053)	(0.271)	(0.037)	(0.106)	(0.467)	(1.000)	(-)	(-)
H exp.	0.4012	0.5000	0.3950	0.4581	0.5000	0.1723	0.1975	0.000	0.600
H abs.	0.4574	0.5556	0.2917	0.4474	0.4545	0.0952	0.0000	0.000	0.000
						iolomacon vende			
Mar 4	NCOS	NIKAN	NMODI	NAND	NCAJ	ZH	SCAJ	SUDS	SANO
100	0.000	0.000	0.000	0.000	0.0303	0.7857	0.9444	1.000	1.000
81.05.05	1.000	1.000	1.000	1.000	0.9697	0.2143	0.0556	0.000	0.000
200	(v)	(-)	(-)	(-)	(1.000)	(-0.250) (-0.000) (-)	(-)
H exp.	0.000	0.000	0.000	6.000	0.0588	0.3367	0.1049	0.000	0.000
H obs.	0.000	0.000	0.000	0.000	9.000	0.4286	5 0.1111	6.000	0.050
Par 6	NCOS	S NTRAN	i NMO	NI NA	ND NC	AJ Zł	H SCAJ	SCOS	SAND
* 5.5	1.000	0.944	0.79	7 1.0	00 1.0	00 1.0	00 1.000	1.000	1.000
100	(-)	(-)	(0.00	0) () () (*) (*)	(*)	(•)
500	0.000	0.0558	5 0.204	13 O.(0.0 0.0	0.0 0.0	00 0.000	0.000	0.000
Herr	5. 0.000	0.000	0.25	2 6.6	2 0.0	2 10 100 0.0	00 0.000	1-1	0.000
H obs	s. 0.000	5 -0,000	0.25	2 0.0	0.0	06 0.0	60 0.00	0.000	0.000
Par 7	P NCOS	NTRAN	NMODE	NANE	NC	A)	ZH S	CAJ SCI	os sand
100	1.000	1.000	0.7083	1.000	1.0	00 1	.000 1.	000 1.0	00 1.000
300	0.000	0.000	0.2917	0.000	0.0	60 0	000 0.	000 0.0	
Hexp	a. 0.000	0.000	0.4132	¢.00	0.0	00 0	.000 0.	000 0.0	00 0.000
Hob	s. 0.000	0.000	0.3750	0.001) 0.0	00 0	.000 0.	000 0.0	00 0.000

Frecuencias alélicas de los 7 pares de cromosomas polimórficos para las razas de *Lioleamus monticola*. Heterocigocidad esperada (**H exp.**); heterocigosidad observada (**H obs.**); Zona Híbrida (**ZH**). En negro alelos únicos para cada raza cromosómica. Pares 1 y 5 resultaron ser monomórficos.

Par 2	Norte mod. 1	Norte	ZH	Sur	Par 3	Norte mod. 1	Norte	ZH	Sur
100	1.000 (-)	1.000 (-)	1.000 (-)	0.986 (-0.000)	100	0.270 (0.271)	0.385 (0.060)	0.904 (0.467)	0.973 (-1.000)
200	0.000 (-)	0. 0 00 (-)	0.000 (-)	0.013 (-0.000)	200	0.729 (0.271)	0.614 (0.060)	0.095 (0.467)	0.027 (-1.000)
H esp.	0.000	0.000	0.000	0.026	H esp.	0.395	0.473	0.172	0.052
H obs.	0.000	0.000	0.000	0.027	H obs.	0.291	0.447	0.095	0.000

	Par 4	Norte mod. 1	Norte	ZH	Sur	
	100	0.000 (-)	0.009 (-1.000)	0.785 (-0.250)	0.986 (-0.000)	
	200	1.000 (-)	0.990 (-1.000)	0.214 (-0.250)	0.013 (-0.000)	
	H esp.	0.000	0.018	0.336	0.026	
	H obs.	0.000	0.000	0.428	0.027	
 Norte					lorte	

Par 6	mod. 1	Norte	ZH	Sur	Par 7	mod. 1	Norte	ZH	Sur
100	0.791 (0.252)	0.995 (0.000)	1.000 (-)	1.000 (-)	100	0.708 (0.103)	1.000 (-)	1.000 (-)	1.000 (-)
500	0.208 (0.252)	0.004 (-0.000)	0.000 (-)	0.000 (-)	300	0.291 (0.103)	0.000 (-)	0.000 (-)	0.000 (-)
H esp.	0.329	0.009	0.000	0.000	H esp.	0.413	0.000	0.000	0.000
H obs.	0.250	0.009	0.000	0.000	H obs.	0.305	0.000	0.000	0.000

Listado de las localidades, individuos y los 7 loci aloenzimáticos para *Liolaemus monticola* utilizados en este estudio

808	1479	83	88	CC	CC	AA	BB	BB	SAL	2456	AAT	aman DG	PGH	PGI	LOHa	PEP	SO
808	2375	88	- 88 80	20 20	20 CC	AA AA	22 88	BB BB	SAL	3459	88	88	cc	œ	AA	66	00
ROB	2722	68	84	ČČ	88	AA	68	88	54L	2460	88	88	22	CC	AA	68	88
ROD	2389	190	SC .	. 22	88	. <u>Añ</u>	66	88	SAL	2467	68		CC	cc	AA	AA	56
ROB	2790	86	86	čč	BB	AA	58	88	FAR	2468	88	88	CC.	CC.	AA .	AB	00
ROB	2793	88	AB	QC.	CC.	AA	00	88	FAR	1670	88	88	à	a. CC	AA	88	58 88
ROB	2793	83	20	cc	00	AA ãa	BC	66	FAR	1671	88	AB	ÇĽ.	α	AA	80	88
ROB	2795	88	88	00	00	AA	AA	88	FAR	1672	80	A8	20	20	AA	88	88
RCB	2796	AB	58	00	60	A.4	88	88	FAR	1676	88	00	QC.	č	AA	86	88
RÓB	2682	88	58	00	00	AA	88	BE	FAR	1678	88	68	- <u>22</u>	22	AA	88	8F
808	2803	88	AB	00	00	AA	EC.	BB	FAR	1679	68	AB	cc	cc	AA	àA.	38
RICHA	2805	88	AB	00	00	AA	00	88 88	FAR	1681	HQ. HQ	88	10	CC	AA	1585	818
CAM	1381	88	AB	20	86	AS.	36	BS	FAR	1683	88	89	čč	CC	AA	BB	88
CAM	1383	BC BC	200	cc.	AB BB	AA AA	AB	CC 88	FAR	1684	88	RB	CC	cc	AA	AS	88
CAM	1384	88	SK,	CC 1	88	AA	56	88	FAR	1686	88	80 A8	a.	20	AA AA	AA	60
CASI	1385	88	88	CC.	88	AA	88	88	FAR	1691	ec.	88	CC	CC	AA	00	88
Case	1357	149	AB	cc	CC	AA	AB	HS	ARR	1439	80	AS	8	SC.	AA AA	00	88
CAM	1389	88	AB	CC	20	AA.	AB	86	ARS	1448	88	\$0	à	čč	AA	80	88
CAM	1390	68	38	õ	CC.	AA	AB	86	ARR	1449	88	68	22	CC	AA	88	80
CAM :	1391	BB	00	CC.	CD	A A	88	88	VLO	1428	88	00	CC	cc	AA	85	50
CAM	1393	BB	38	CC CC	cc	AA	BB	88	YLO	1435	88	88	CC.	CC	AA	88	88
CAN	37.93	88	240	QC.	co	A A	AB	88	10	1666	88	AB	CC	ar ar	AA 84	AB	88
DOR .	1410	88 AB	A8 58	00	CO IT	AA	68	BB	YLQ	1061	88	AB	CC	œ	00	86	88
OOR	1450	88	SB	CC	cc	AA	AB	1313	10	1863	88	AB	20	20	AA	AB	88
DOR .	1451	88. 88	88 an	33	88	Å Å	80	88	\$1.5	2833	HB	RA	čč	ŝ	AA	86	68 88
DOR	1453	86	58 58	CC	015 88	AA AA	AB	98 88	ALF	2832	AB PR	68	00	00	AA	AC	80
DOR	1455	88	BC.	SC.	BB	AA.	BIS	88	ALF	2836	AA	00	00	181 (30)	AA	00	88
OCR	2156	88	AB	CIC.	CC CC	AA AA	88 58	68 88	ALP	2837	AB	(aú	00	00	AA	cc	80
DOR	2158	83	56	00	60	AA	00	88	ALF	2840	66 88	00	00	00	AA AA	23	88
DOR .	2492	88	AB	00	00	AA	AB	88	ALF	2841	AB	00	00	00	AA	88	90 88
NOR	2494	89	88	do	200	AA	3435 845	081 138	ALF	2850	AB	00	00	00	AA AX	68	68
306	2495	88	AB	æ	22	AA.	68	88	ALF	2851	AB	00	00	00	AA	BC BC	20
OOR	2499	66	AB	00	CC	AS	88 88	88	ALP	2853	AB	00	00	00	AA	BC	ĦØ
DOR	2524	BC	AB	CC	BB	AA	BC.	86	ALF	2383	AC	00	œ	BC	AA	20	88
DOR	2526	83	88	CC.	CC CC	AA AA	BB	BB	ALF	2884	AG	AA	00	88	AA	BC	88
DOR	2529	63	EB	CD	86	AA	ßC	68	ALF	2891	AB	AB	AK: CC	CO.	AA AA	AS	88
DOR	2530	BB PA	8C 5N	20	85	AA	88	86	ALF	2695	99	\$90	QÇ,	co	AA	50	88
DOR	2532	88	AR	čč	CC 23	AA AA	EK.	1985	ALF	2896	AA	00	20	CO	AA	84	88
DOR	2533	.98	88	98	60	AA.	00	88	ALS	289B	00	\$0	čč	CC	AA	88	00
DOR	2535	88	86	00	00	AA AA	58	88	ALF	2899	00	00	00	8C	AA	00	88
DOR	2688	88	38	ÇC	86	AA	œ	68	ALF	2918	AA	00	à	BC	AA	80	88 68
DOR	26390	AB	00	CC	20	AA 13	00	00	ALF	2912	88	86	CC	CD	AA	cc	88
OOR	2693	68	60	ĊĊ	66	00	00	80	MAN	1701	88	BB	CC C	CC	AA	AN:	86
CON	2543	807	58 68	- 90 - 20	00 88	AA A8	68	186	MAN	1702	83	60	¢¢,	00	AA	AB	88
CON	2544	80	¢0	CD	68	AA	88	80	MAN	1703	AB	00	a	DG BC	AA 0.5	AB	BB
CON	2545	80	86	CC .	86	AA	86	RB	MAN	3.738	00	60	cr.	00	AA	88	88
CON	2551	80	BB	CC	88	AA	88	BB	MAN	1719	88	AA AB	22	00	AA SA	88 94	88
CON	2552	88	35	CC	8168	ÂA	86	88	MAN	1721	80	00	¢¢	00	AA	AB	BR
CON	2554	88	58	ã	88	AA	68	88	MAN	1722	AA	AA	22	60	AA	90	AB
CON	2555	88	88	CC	88	AA	68	00	MAN	1724	58	00	à	00	AA	80	88
CCIN	2857	88	88	CD CC	BB BB	AA AA	88	883 (X)	SGA	3321	00	AA	CC.	CC:	AA	88	88
CON	2558	88	88	CC	BB	AA	88	88	SGA	3323	BC	AA	CC.	ac .	AA	88 CF	AA BA
CON	2013	8D BR	88	CC.	BB	ĂĂ	88	60	SGA	3/324	88	00	22	66	AA	88	88
CON	2616	80	36	ec.	48	ÂA	88 88	00	504	3325	00	00	32	00	AA A*	36	88
CN	2617	88	BB BB	00	88	AA	66	88	SGA	3329	88	AA	AC	BC	AA	88	518 88
-CONN	3619	8B	an Sið	cc	88 88	ад Дд	885 643	88	SGA SGA	3330	88 64	AA DA	CC N	88	. AA	86	88
City :	2620	88	AA	22	Bie	<u>A</u> Ä	88	88	SGA	3332	CC.	AA	CX:	ыс. 88	AA	88	88 88
CON	2622	88	88	50	88	44 44	8B SR	88	SGA	3349	88	00	20	60	AA	BC	80
2005	2540	866 0~	86	SC	88	ĂĂ	Aß	88	\$GA	3353	HA	85	CC.	23	AA AA	BC	88 88
COS	2592	88	58 58	à	88	AA	56 88	88	SGA	3358	88 44	AS	20	CC.	ÀA	38	88
COS	2559	88	36	¢r;	88	AA	86	1510	YER	1645	00 00	00 (20)	00	22	AA	AA	88
cos	2561	88	5B 5B	32	88	AA	AB	00	YEN	2775	AA	88	CX.	CC.	ÂA	AB	80
005	2562	80	58	čč	BB	AA	88	88	YEN	2856	28	88	8	20	AA	6A	88
cos ms	2563	00	58	ac .	88	AA	68	00	YEN	2857	AC	\$90	cc	ěč.	AA	00	AB
05	2567	88	38	č	88	ĂĂ	548 545	88	YEN	2858	AA	88	<u>a</u>	SC.	AB	88	88
COS	2568	80	88	CC.	88	AA	BB	00	YEN	2850	AC	68	00	čč	AA	AB	88
COS	2521	88	88	cc	ISE .	AA AA	BA	BS-	YEN	2881	AC	00	20	CC.	AA.	88	AA
COS	2572	88	00	CC	88	AA	AA	00	YEN	2915	AB	88	CC :	BC	AA	00	88
005	2573	88	88 88	CC CC	88	AA AA	BB .	88	YEN	2916	88	48	00	Q.	AA	(10)	AS
cos	2578	88	53	cc	88	AA	68	RB	VEN	315	90	00 às	00	20	AB	BC	198
COS	2579	83	88	SC.	68	AA	85	86	YEN	2919	AA	68	α	cc	XA	00	60
COS	2581	88	36	CC	1315 1515	AA	BB	BEL :	YER	2921	28 00	60	a	BC a	AA.	CC	88
cos	2582	Re	35	CC .	88	AA	BB	88	YEN	2924	AS	AB	à.	23	AA AA	00	88 88
cos	2592	100	38 38	ur Gr	88 BB	AA AA	BB	00	YES	1646	AB	BC	20	22	AA	AA	AA
COS	2599	-	00	cc	BB	AA	BB	NB	VES	1648	00	20 (x)	CC C	CC.	AA	86	88
COS	2600	88	88 88	22	88	AA 42	88 62	88	YES	\$554	68	600	CC.	00	ÂA	88	88
sal	2448	88	90	de	CC .	AA AA	98 AB	86	YES	1655	00	00	22	00	AA	AB	AA
SAL	2449	858	AB	CC.	CC :	AA	68	1983	YES	1657	00	60	če.	00	AA	AA AA	28
SAL	2451	80	SB	20	20	AA AA	88	88	YES	1735	00	00	CC.	80	AA	80	86
SAL	2452	88	AB	CC.	cc	AA	86	88	YES	1740	90 48	00 8C	8	00	AA AA	68	AA
sal	2453 2454	Re Aa	88	CC	cc	AA	88	88	YES	1742	80	00	00	00	AA	86	88
	1455	5144	8.6	00	CC	AA .	88 36	08 88	YES	1743	AB	8C	CC	00	AA	AA	AB
SAL	8435	N007		~~~ :	C	and a second second second second							and the second sec				

Continuación anexo 4

 Ibocalidad
 Individuo
 AAT
 IMAN
 PGN
 PGI
 LDHa
 PEP
 SOD

 YES
 2305
 A6
 AA
 CC
 CC
 AA
 BB
 BB

 YES
 2710
 AB
 BC
 CC
 CC
 AA
 BB
 BB

 YES
 2711
 AB
 BB
 CC
 CC
 AA
 BB
 BB

 YES
 2711
 AB
 BB
 CC
 CC
 AA
 BB
 BB
 BB
 CC
 CC
 AB
 BB
 BB
 CC
 CC
 AB
 BB
 BB
 BB
 BB
 BB
 CD
 DO
 AA
 DO
 BB
 AA
 DB
 CC
 CC
 AB
 BB
 AA
 DC
 DO
 DO
 AA
 DO
 BB
 AA
 DC
 DC
 AA

1310 BE BE CC CD AA BE BB 1311 BC BE 00 CD AA BE BB 1311 BC D0 AC BB AA BB BB 1313 BC D0 AC BB AA BB BB 1314 BB BB BC CD AA AB BB 1314 BB BB BB CD AA AB BB 1315 BC AB CC CD AA AB BB 1316 BC AB CC CC AA BB BB 1322 BB AB CC CC AA BB BB 1322 BB AB BC CC AA BB BB 1333 BB BB CC CC AA BB BB 1333 BB	ING	3346	BC	AB	CC	CC	AA	BC	BR
4 1311 BC BB 00 CD AA BB BB 1312 BB 00 AC BB AA BB BB 1313 BC 00 AC BB AA BB BB 1314 BB BB BB BC CD AA AB BB 1314 BB BB BC CD AA 00 BB 1314 BB BC AB CC AA 00 BB 1312 BB BC AB CC CA AB BB 1322 BB BB BB CC CA AB BB 1327 BB BB BB CC CA AB BB 1331 BB BB BB AC CA AB BB 1333 BB BB AC CA AB BB BB BB	CAN	1310	BB	68	CC	CD	AA	BB	140
1312 DB OO AC BB AA BB BB 1313 BC DO BC CD AA BB BB 1314 BC DO BC CD AA AB BB 1314 BB BA AO CC AA AB BB 1314 BB AB CC CD AA AO BB 1314 BB BB BB CC CD AA AO BB 1314 BB BB BB CC CC AA BB BB 1322 BB AB CC CC AA BB BB 1333 BB BB CC CC AA BB BB 1333 BB BB CC CC AA BB BB 1333 BB BB CC CC AA BB BB	CAN	1311	BC	88	00	CD	AA	88	88
N 1313 BC 00 BC CD AA BB BB 1314 B6 BA 00 BC CD AA AB BB 1315 B6 AA 00 CC AA 00 BB 1315 B6 AB CC CD AA 00 BB 1312 B6 AB CC CD AA 00 BB 1322 B6 AB CC CA AB BB BB NC CC AA BB BB DC CC AA BB BB DC CC AA BB BB DC CC AA BB BB DA AB BB BB DA CC AA BB <	CAN	1312	88	00	AC	88	AA	BR	\$3.52
1314 98 98 8C CD AA AB BB 1315 86 AA 00 CC AA 00 BB 1316 85 88 00 CC AA 00 BB 1316 85 88 00 CC AA BB BB 1322 86 88 CC CA AB BB BC 1322 86 88 BC CC AA BB BB 1323 86 BB BC CC AA BB BB 1333 86 BB BB CC CC AA BB BB 1333 86 BB AC CC AA BB BB 1333 86 BB AB CC AA BB BB 1333 86 BB AC CC AA BB BB 1334	CAN	1313	BC	00	BC	cn	55	BR	80
N 1315 BB AA 00 CC AA 00 BB 1316 BC AB CC CD AA 00 BB 1316 BE AB CC CD AA 00 BB 1312 BE BB BB CC CC AA BB BB 1322 BE AB BC CC CA AB BB 1327 BE DO AC CA AB BB BC CC CA AB BB BB DC CC AA BB BB BC CC CA AB BB BC CC CA AB BB BB BB BB BC CC CA AB BB <	CAN	1314	88	BB	BC	CD	a A	28	88
13146 BC AB CC CD AA CD BB 13146 BC AB BC CC CA AB BB 13122 BE AB CC CC AA BB BB 13123 BE BB BB CC CC AA BB BB 13123 BB BB CC CC AA BB BB 13131 BB BB BB CC CC AA BB BB 13331 BB BB BB AC CC AA BB BB 13333 BB BB BB AC CC AA BB BB BB AC CC AA BB BB BB AC CC AA BB BB BB BB BB BC CC AA BB BB BB BB BB BB BB BB <td>CAN</td> <td>1315</td> <td>BB</td> <td>AA</td> <td>00</td> <td>CC</td> <td>AA</td> <td>00</td> <td>20</td>	CAN	1315	BB	AA	00	CC	AA	00	20
1316 BB BB CO CC AA BB BB 1322 B6 AB CC CC AA BB BB 1323 B6 BB BC CC AA BB BB 1327 BB DO AC CC AA BB BB 1327 BB DO AC CC AA BB BB 1333 BB BB CC CC AA BB BB 1333 BB BB AC CC AA BB BB 1333 BB BB AC CC AA BB BB 1334 BB AB BB CC CC AA BB BB 1464 BC DO CC CC AA AO BB 1464 BC BC CC CC AA BB BB AA BC	CAN	1316	BC	AB	CC	co	84	00	88
I I	CAN	1318	88	88	00	CC	44	88	88
N 1323 88 68 8C CC AA 88 88 N 1326 88 00 8C CC AA 88 68 N 1327 68 00 8C CC AA 88 68 N 1331 BE BB CC CC AA 88 68 N 1333 BC DB 00 CC CC AA 88 68 N 1333 BC DB 00 CC CA AB 88 1333 BC DB OC CC AA 88 68 1334 BB BC OC CC CA AB 88 1454 BC OD CC CC AA BB 88 1457 BC BC BB CC CC AA BB 88 1464 BC BC <	CAN	1322	88	AB	CC	CC	AA	BR	AA
N 1326 BB 00 BC CC AA BB BB 1331 B5 BB OO AC CC AA AB BB 1331 B5 BB CC CC AA AB BB 1332 CC OO CC CC AA BB BB 1333 BB BB AC CC AA BB BB 1335 BC BB AC CC AA BB BB 1334 BB BB AC CC AA BB BB 1341 BB AB CC CC AA BB BB 1454 BC DO CC CC AA BB BB 1464 BC BB CC CC AA BB BB 1446 BC BB CC CC AA BB BB	CAN	1323	88	88	BC	CC	AA	BR	88
N 1327 98 00 AC CC AA AB 98 N 1331 BB BB CC CC AA BB BB N 1332 CC 00 CC CC AA BB BB N 1332 BC BB GC CC AA BB BB N 1335 BC BB BB GC CC AA BB BB N 13341 BB AB CC CC AA BB BB 1454 BC 00 CC CC AA BB BB 1459 BC BC CC CC AA BB BB 1464 BC BB CC CC CC AA BB BB 1464 BC BB CC CC CC AA BB BB BB BB BB <	CAN	1326	88	00	BC	CC	AA	88	RB
N 1331 BB BB CC CC CA ABB BB N 1332 CC 00 CC CA ABB BB N 1333 BC BB AC CC AA BB BB 1333 BC BB AC CC AA BB BB 1334 BB BB CC CA AB BB BB 1341 BB AB CC CA AB BB BB 1454 BC DO CC CA AB BB BB 1464 BC BC CC CC AA BB BB 1464 BC BC DB CC CC AA BB BB 1464 BC BC CC CC AA BB BB 2312 BC BB CC CE AA BB BB	CAN	1327	88	00	AC	CC	AA	AB	88
N 1332 OC 00 CC CC AA BB BB AC CC AA BB CC CC AA BB	CAN	1331	88	BB	CC	CC	AA	BR	88
N 1333 86 BB AC CC AA BB BB 1335 BC BB BB CC CC AA BB BB 1335 BC BB BC CC CA AB BB 1336 BB BB CC CC AA BB BB 1341 BC BB CO CC CA AB BB 1460 BB BB CC CA AO BB BB CC CA AO BB BB CC CC AA BB BB CC BB AD AO BB SC CC AA BB BB CC BB <	CAN	1332	CC I	00	CC	CC	AA	88	88
1335 BC BE OO CC AA BB BB 1334 BB AB BB CC CC AA BB BB BB BB AB BB CC CC AA BB	CAN	1333	88	88	AC	cc	AA	BA	88
1.336 086 086 CC CC CA AB BB 1.141 086 A8 CC 88 AA 85 86 1.1454 BC 00 CC CC AA 00 88 1.1454 BC BC B8 CC CC AA 00 68 1.1454 BC BC B8 CC CC AA 00 68 1.1454 BC BC CC CC AA 00 68 1.1454 BC BC DO CC CC AA 00 68 1.1454 BC DO DO CC CC AA 00 88 1.1451 BC DO CC CC AA 00 88 1.2312 BC BC DO CC CC AA 00 88 2.2312 BC BE DO CC	CAN	1335	BC	88	00	cc	AA	88	na
N 1341 88 A8 CC 88 AA 85 88 1454 BC 00 CC CC AA 00 BB 1454 BC 00 CC CC AA 00 BB 1460 BB BB 00 00 AA 00 BB 1464 BC BC CC CC AA 00 BB 1464 BC BC BB CC CC AA 00 BB 1464 BC BB CC CC AA 00 BB 1464 BC BB DO CC CC AA 00 BB 17446 BB DO CC CC AA BB BB 2312 BC BC BB CC BB AA BB BB 2318 BC BB CC CC AA BB	CAN	1336	88	88	CC	CC	AA	88	- BB
1454 BC 00 CC CC AA 00 BB 5 1459 BC BB CC CC AA 00 BB 5 1459 BC BB CC CC AA 00 BB 5 1460 BB BB CC CC AA BC BB 5 1464 BC BB CC CC AA BB BB 5 1464 BC D0 CC CC AA BB BB CC CC AA BB BB BB CC CC AA BB BB BB BB BB CC CC AA BB B	CAN	1341	88	AB	CC	88	AA	88	88
5 1459 BC BE CC CC CC AA OO BB 5 1466 BE BE OO OA AO BE 5 1466 BC BE CC CC BB AA BC BE 5 1464 BC BE CC CC AA BB BE 5 1464 BC BB CC CC AA BB BE 5 1464 BE DO CC CC AA BB BE 5 1464 BE DO CC CC AA BB BE 5 1446 BE DO CC CC AA BB BE 2312 BC BE BE CC CC AA BB BE 2358 BE BE DO CC CC AA BB BE S253 <t< td=""><td>QNS</td><td>1454</td><td>BC</td><td>00</td><td>CC</td><td>CC</td><td>AA</td><td>00</td><td>130</td></t<>	QNS	1454	BC	00	CC	CC	AA	00	130
5 1460 98 98 90 00 00 AA 00 98 5 1464 BC BB CC BB CC BB AA BC BB CC CC BB BB CC CC AA BB BB CC CC AA BB BB CC CC AA BB BB BB CC CC AA BB BB BB DD DD CC CC AA BB BB BB DD DD CC CC AA BB BB BB DD CD CC CC AA BB	QNS	1459	BC	BB	CC	CC	AA	00	949
5 1464 BC BC CC BB CA BC BB 5 1468 BC DB CC CC AA BB BB 5 1468 BC DB CC CC AA BB BB 5 1468 BC DD CC CC AA BB BB 5 1741 DO DD CC CC AA BB BB 21746 BB DO CC CC AA BB BB 22813 BB BB BB CC CC AA BB BB 5 2585 BB BB OC CC AA BB BB 5 2585 BB BB BB CC CA AB BB BB <t< td=""><td>QNS</td><td>1460</td><td>88</td><td>88</td><td>00</td><td>00</td><td>AA</td><td>00</td><td>-</td></t<>	QNS	1460	88	88	00	00	AA	00	-
5 1468 BC DB CC CC AA BB BB 5 1657 BC D0 CC CC AA BB BB 5 1741 D0 D0 CC CC AA 00 BB 5 1741 D0 D0 CC CC AA 00 BB 2312 BC BB CC CC AA 00 BB 2312 BC BB CC CC AA BB BB 2312 BC BB CC CC CA AB BB 25848 BB OD CC CC AA BB BB 25846 BB BC CC BB AA BB BB 2635 BC BC DO CC CC AA BB BB 2637 BC BC DO CC CC	QNS	1464	BC	BC	CC	88	AA	BC	สต
5 1657 BC 00 CC CC AA 00 BB 5 1741 00 00 CC CC AA 00 BB 5 1746 95 00 00 CC CC AA 00 BB 5 1746 95 00 00 CC AA 00 BB 5 2583 96 86 CC CA AB 86 2585 96 86 CC CA AB 86 86 2585 96 88 CC CC AA 60 88 2635 96 88 86 CC CC AA 88 88 2635 96 86 96 00 0A 00 84 96 2635 96 86 97 88 90 00 AA 00 86 2635 96	ONS	1468	BC	BB	CC	CC	AA	BB	Re
5 1741 00 00 0C CC CC AA 00 BB 5 1746 85 09 06 CC AA 00 BB 5 1746 85 09 06 CC AA 00 BB 5 2585 B6 BE CC CE AA BB BB 5 2585 B6 BB BC CC CC AA BB BB 5 2586 B6 D0 CC CC AA BB BB 5 2586 B6 B0 CC CC AA BB BB 5 2635 B6 B8 CC BB AA BB BB 5 2635 B6 B8 B0 O0 AA AO BB 5 2640 BC CC CC AA B8 BB 264	QNS	1657	BC	00	cc	CC	AA	00	88
5 1746 BB 00 00 CC AA 00 BB 2312 BC BB CC GB AA BB BB 22564 BB OC CC AA BB BB 22564 BB OC CC CA AB BB 22585 BB BC CB CC CC AA BB BB 22585 BB BC BB BC CC CC AA BB BB CC CC CA AB BB BB BB CC CC CA AB BB BB CC CC CC AA BB BB CC CC CC	QNS	1741	00	00	CC	CC	AA	00	BB
5 2312 BC B8 B8 B8 CC B8 AA B8 B8 2583 B8 B8 B8 CC CC AA B8 B8 2583 B8 B8 CC CC AA B8 B8 2585 B8 B8 CC CC AA B8 B8 2585 B8 B8 CC CB AA B8 B8 2585 B8 B8 CC CC AA B8 B8 2637 B8 B8 BC CC CC CA A8 B8 2637 B8 BC DC CC CA A8 B8 26437 B6 BC D0 CC CC AA B8 B8 26437 B2 B2 D0 CC CC AA B8 B8 CC CC AA B8 B8	QNS	1746	88	00	00	CC	AA	00	88
5 2583 B8 68 CC CC AA 00 B8 5 2584 B8 00 CC CC AA B8 B8 5 2585 BC B8 CC CC AA B8 B8 5 2585 BC B8 CC CC AA B8 B8 24585 B8 B8 CC CC AA B8 B8 2635 BC B8 CC CC CA A8 B8 2637 B6 BC OO OA OO B8 B8 2637 B6 BC CC CC AA B8 B8 26638 B5 BC OO CC CC AA B8 B8 26439 BC OO CC CC AA B8 B8 26441 BC B8 BC CC AA	QNS	2312	BC	88	CC	68	AA	88	135
5 2584 BB 00 CC CC AA BE BB 00 25855 BC BB CC CC AA BB BB BB CC CC AA BB BB BB CC CC AA BB	QNS	2583	BB	BB	CC	CC	AA	00	88
5 2585 BC BE CC BE AA BE BE 5 2585 BE BA BB BO CC CC CA AE BE BE CC BE AA BB BE CC BE AA BE BE SC CC CC AA BE BE SC CC CC AA BE BE BE CC CC AA BE BE CC CC	QNS	2584	86	00	CC	CC	AA	88	88
5 2586 B8 00 CC CC CA CC B8 B8 CC B8 AA CC B8	QNS	2585	BC	88	CC	BB	AA	88	86
5 2636 BB 68 CC BB AA BB BB 5 2635 BC BB BB CC BB AA BB BB 5 2637 BB BC 00 OA AO BB 5 2637 BB BC 00 OA AO BB 5 2638 BB BB CC CC CA AB BB 5 2640 BC OO CC CC AA BB BB 5 2641 BB BD CC CC AA BB BB 5 2642 BB BB CC CC CA AB BB 5 2644 BC BC CC CC AA BC BB 5 2644 BC BB CC CC AA BB BB 2646 BB B	QNS	2586	B8	00	CC	CC	AA	CC	BE
5 2635 BC B8 BC CC CC CA AA B8 B8 B5 OO OA OO BA OO BB CC CC CC AA BB BB CB CC CC CA AA BB BB CC CC CC AA BB BB BB CC CC CA AB BB BB CB CC CC CA AB BB BB CC CC CA AB BB BB BC BB BC CC CC AA BB BB	QNS	2636	88	88	CC	88	AA	88	88
S 2637 BB BC 00 00 AA 00 BB 5 2638 BB BB BB 00 00 AA 00 BB 5 2639 BC 0C CC CC AA 88 BB 5 2640 BC 00 CC CC AA 88 BB 5 2644 BB 00 CC CC AA 88 BE 5 2644 BB 00 CC CC AA BB BB 5 2643 BC BB 68 CC CC AA BB BB 52 2643 BC BB BC CC CC AA BB BB CC CC AA BB BB BB BB CC CC AA BB BB BB BB CC CC AA BB BB BB	QNS	2635	BC	88	CC	CC	AA	88	BE
5 2638 BB BB BB CO CC CC AA OD BB BB CC CC CC AA BB BB BB BC CC CC CA AB BB BB BC CC CC CA AB BB BB BB CC CC CC AA BB BB BB CC CC CC AA BB BB BB CC CC CA AA BB BB BB BB BB CC CC AA BB BB BB	QNS	2637	88	BC	00	00	AA	00	68
2639 BC BC BC CC CC CC AA B8 B8 B8 B8 B8 B8 B8 B8 B8 CC CC AA B8 B8 B8 CC CC AA B8 B8 B8 CC CC AA B8 B8 B8 B6 CC CC AA B8 B8 B8 B8 B8 B6 B	QNS	2638	BB	BB	00	00	AA	00	88
5 2640 BC 00 CC CC AA 88 00 CC CC AA 88 08 88 00 CC CC AA 88 08 88 88 85 2641 BB 00 CC CC AA 88 BB 00 CC CC AA BB BB BB 00 00 AA 00 BC 5 2644 BC BB BB CC CC AA BB BC CC CC AA BB BB CC CC AA BB BB CC CC AA BB BB BB BB BB BB CC CC AA BB BB BB CC CC AA	QNS	2639	BC	BC	CC	CC	AA	88	BE
5 2641 88 00 CC CC AA 86 88 CC CC AA 86 86 CC CC AA 86 86 87 87 86 87 87 86 88 66 90 AA 90 88 88 66 90 AA 90 86 88 86 66 67 CC AA 86 88 86 86 66 67 CC AA 86 88 86 86 87 67 CC AA 86 88 86 86 67 CC AA 86 88 86 87 67 64 88 88 86 67 67 64 88 88 88 86 67 67 67 64 88 88 86 67 67 67 67 68 88 88 86 86 86 86 86 88	QNS	2640	BC	00	CC	CC	AA	88	68
5 2642 BB BB BB CC CC AA BE BB CC CC AA BE BB CE CC AA BE BB CC CC AA BC BB BB CC CC AA BC BB BB CC CC AA BC BB BB CC CC AA BB BB CC CC AA BB BB BB BB BB BB BB CC CC AA BB CC CC AA BB	QNS	2641	88	00	CC	CC	AA	88	86
5 2643 BC BB OB OD OD AA OD BE 5 2644 BC BB CB CC CC AA BC BB 5 2644 BB BB CC CC AA BC BB 5 2644 BB BB CC CC AA BB BB 5 2644 BB BB CC CC AA BB BB 5 2647 00 BB BB CC CC AA BB BB 2109 BC BB CC CC AA BB BB 2118 00 00 CC CC AA BB BB 2384 BB BB CC CC AA BB BB 2384 BB BB BC CC CC AA BB BB BB BB <t< td=""><td>QNS</td><td>2642</td><td>68</td><td>88</td><td>CC</td><td>CC</td><td>AA</td><td>88</td><td>86</td></t<>	QNS	2642	68	88	CC	CC	AA	88	86
5 2644 BC BB CC CC AA BC BB 5 2645 BB BB BB CC CC AA BB BB 5 2645 BB BB BB CC CC AA BB BB 5 2645 BB BB BB CC CC AA BB BB 2109 BB BB BB CC CC AA BB BB DC CC CA AB BB BB DC CC CA AB BB BB BB DC CC CA AB BB BB DC CC CA AB BB BB DC CC CC AA BB BB BB BB BB BB CC CC AA BB BB BB BC CC CC AA BB BB BB BB B	QNS	2643	BC	88	00	00	AA	00	88
S 2645 B8 B8 CC CC AA B8 B8 B5 CC CC AA B8 B8 B6 CC CC AA B8 B8 B6 CC CC AA B8 B8 B0 CC CC AA B8 B8 B2 CC CA AA B8 B8 B2 C21109 BC B8 CC CC AA B8 B8 B2 C2130 B0 CC CC AA B8 B8 D2 C2133 B8 B0 CC CC AA B8 B8 B2 C333 B8 B0 CC CC AA B8 B8 B2 C334 B8 B8 B6 CC CC AA B8 B8 B2 C2	QNS	2644	BC	BB	CC	CC	AA	BC	86
2 2 2 6 8 8 6 CC CC A 8 8 6 2 2646 00 88 CC CC AA 00 88 2 2105 88 68 CC CC AA 88 88 2 2105 88 68 CC CC AA 88 88 2 2118 00 00 CC CC AA 88 86 2 2383 88 60 CC CC AA 88 86 2 2384 88 86 CC CC AA 88 86 2 2382 88 86 CC CC AA 88 88 2 2382 88 88 CC CC AA 88 88 2 2385 88 88 CC CC AA 88	QNS	2645	68	88	CC	CC	AA	88	BE
S 2647 00 BB CC CC AA 00 BB 0 2109 BC BB CC BB AA 00 BB 0 2109 BC BB CC CC AA BB BB 0 2118 00 00 CC CC AA BB BB 0 2138 BB 00 CC CC AA BB BB DC CC CA AB BB BB BB DC CC CA AB BB BB DC CC CA AB BB BB BB DC CC CA AB BB BB BB BB BB CC CC AA BB BB BB BB CC CC AA BB BB BB BB CC CC AA BB BB BB BB BB CC CC	QNS	2646	68	88	CC	CC	AA	88	88
2109 88 68 CC 88 AA 86 88 CC 88 88 CC 70 7	QNS	2647	00	BB	CC	CC	ĀA	00	BE
2109 BC BB CC CC AA BB BB BC BB BC CC AA BC BB BC BB BC BC BB BC CC CA AB BE BC BC BC CC AA BC BE BC CC CC AA BC BE BE CC CC AA BE BE BE CC CC AA BE BE BE CC CC AA BE BE CC CC AA BE BE CC CC AA BE C	RLO	2108	88	88	CC	88	AA	88	88
2118 00 00 0CC CC AA BC BE 21383 B8 B0 CC CC AA BE BE 22384 B8 BB CC CC AA BC BE 22384 B8 BB CC CC AA BE BE 22385 BB BB CC CC AA BE BE 22385 BB BB BB CC CC AA BB BE 22385 BB BB BB CC CC AA BB BE 22385 BB BB BB CC CC AA BB BE 22387 BB BB CC CC AA BB BE CL BC AA </td <td>RLO</td> <td>2109</td> <td>BC</td> <td>88</td> <td>ÇC.</td> <td>CC</td> <td>ÂĂ</td> <td>88</td> <td>BE</td>	RLO	2109	BC	88	ÇC.	CC	ÂĂ	88	BE
2383 88 00 CC CC AA 88 88 2384 88 88 68 CC CC AA 88 88 2384 88 88 68 CC CC AA 88 88 2382 88 88 CC CC AA 88 88 2385 88 88 CC CC AA 88 88 2387 88 88 CC 86 AA 86 88	RLO	2118	00	00	CC .	CC	AA	BC	88
2384 88 89 CC CC AA BC 2384 88 88 65 CC CA AB 88 2385 88 88 CC CC AA 88 88 2387 88 88 CC CC AA 86 88	RLO	2383	88	00	CC	CC	AA	88	66
2382 88 85 CC CC AA 88 88 2385 88 88 86 CC CC AA 88 88 2385 88 88 CC CC AA 86 88 2386 88 88 CC CC AA 86 88 2387 88 88 CC BC AA 85 88	RLO	2384	88	88	CC	CC	AA	BC	88
2385 BB BB CC CC AA BB BE 2336 BB BB BB CC CC AA BB BE 2337 BS BB CC BC AA BC BE	RLO	2382	88	88	CC	CC	AA	88	88
2386 BB BB CC CC AA BB BB 2387 BS BB CC BC AA BC 58	KLO	2385	68	88	CC .	CC	AA	88	88
2.187 BB BB CC BC AA BC BB	RLO	2386	68	88	CC	CC	AA	88	BE
	RLO	2387	88	. 88	CC	BC	AA	BC	86
2 2395 86 88 CC 68 AA 88 88	RLO	2388	86	88	CC	68	AA	88	88
2993 BB BB CC CC AA BB BB	RLO	2993	88	88	CC	CC	AA	88	88
3304 BB BB CC CC AA BC BB	STA	3304	88	86	CC	20	AA	BC	88
3305 BC BB CC 00 AA 88 88	STA	3305	BC	88	CC	00	AA	88	88
3306 BB BB CC CC AA BC BB	STA	3306	BB	88	CC	CC	AA	BC	20

Frecuencias alélicas de los 7 loci aloenzimáticos para las localidades de *Lioleamus monticola*. Heterocigocidad esperada (H exp.); heterocigosidad observada (H obs.); Zona Híbrida (ZH). Destacado en negrita alelos únicos por localidad (hibridizimas).

AAT	NCOS	NMOD	NAND	NCAJ	ZH	SCAJ	SCOS	SAND	aMAN	NCOS	NMOD	NAND	NCAJ	ZH	SCAJ	SCOS	SAND
100	0.025	0.000	0.000	0.409	0.434	0.105	0.000	0.000	100	0.140	0.045	0.2162	0.445	0.120	0.230	0.192	0.000
	(-0.018)	(-)	(-)	(0.219)	(-0.578)	(0.175)	(-)	(-)	100	(-0.009)	(1.000)	(0.057)	(0.733)	(0.262)	(0.153)	(0.294)	(-)
200	0.932	0.875	0.988	0.509	0.478	0.723	0.833	0.810	200	0.780	0.954	0.783	0.554	0.680	0.769	0.807	0.950
	(-0.064)	(0.058)	(-0.000)	(0.426)	(-0.3/5)	(0.156)	(0.227) ((-0.220)		(-0.170)	(1.000)	(0.057)	(0.733)	(0.101)	(0.153)	(0.294)	(-0.036)
300	(-0.036)	(0,000)	(-0.000)	(0.167)	(-0.049)	(0.178)	(0.100	(-0.220)	300	(-0.075)	0.000	0.000	0.000	(-0.140)	0.000	0.000	(-0.035)
	0.000	0.125	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0 000	0.020	0.000	0.000	0.000
400	(-)	(0.058)	(-)	(-)	(-)	(-)	(-)	(-)	400	(-)	(-)	(-)	(-)	(0.000)	(-)	(-)	(-)
500	0.000	0.000	0.000	0.000	0.021	0.000	0.000	0.000	500	0.000	0.000	0.000	0.000	0.040	0.000	0.000	0.000
500	(-)	(-)	(-)	(-)	(-0.000)	(-)	(-)	(-)	500	(-)	(-)	(-)	(-)	(1.000)	(-)	(-)	(-)
Hexp.	0.128	0.218	0.022	0.566	0.577	0.435	0.277	0.306	Hexp.	0.364	0.086	0.338	0.494	0.501	0.355	0.310	0.095
H obs.	0.135	0.208	0.022	0.400	0.826	0.368	0.222	0.378	H obs.	0.403	0.000	0.324	0.135	0.440	0.307	0.231	0.100
PGM	NCOS	NMOD	NAND	NCAJ	ZH	SCAJ	SCOS	SAND	PGI	ROB	CAM	DOR	CON	COS	SAL	FAR	ARR
100	0.000	0.000	0.000	0.019	0.000	0.000	0.107	0.000	100	0.500	0.010	0.011	0.000	0.000	0.000	0.000	0.000
100	(-)	(-)	(-)	(-0.010)	(-)	(-)	(-0.083)	(-)	100	(0.000)	(0.000)	(-0.000)	(-)	(-)	(-)	(-)	(-)
200	0.000	0.010	0.011	0.019	0.000	0.051	0.143	0.000	200	0.404	0.989	0.011	0.202	0.267	0.077	0.111	0.186
230	(-)	(-0.000)	(-0.000)	(-0.010)	(-)	(0.483)	(-0.130)	(-)	200	(0.913)	(-0.000)	(-0.000)	(0.153)	(0.678)	(0.290)	(1.000)	(0.908)
200	0.989	0.958	0.999	0.961	0.963	0.949	0.750	1.000	200	0.553	0.000	0.977	0.755	0.733	0.872	0.750	0.814
300	(0.000)	(-0.033)	(-0.000)	(-0.041)	(1.000)	(0.483)	(-0.300)	(-)	300	(0.831)	(-)	(-0.012)	(0.032)	(0.678)	(0.323)	(0.286)	(0.908)
400	0.011	0.031	0.000	0.010	0.037	0.000	0.000	0.000	400	0.032	0.000	0.000	0.043	0.000	0.051	0.139	0.000
400	(-0.000)	(-0.022)	(-)	(-0.000)	(1.000)	(-)	(-)	(-)	400	(-0.022)	(-)	(-)	(-0.034) (-)	(0.483)	(-0.133)) (-)
H exp.	0.022	0.081	0.023	0.093	0.071	0.097	0.4056	0.000	Hexp.	0.529	0.021	0.045	0.387	0.391	0.231	0.406	0.302
H obs.	0.022	0.083	0.023	0.096	0.000	0.051	0.500	0.000	H obs.	0.106	0.021	0.046	0.362	0.133	0,154	0.278	0.029
SOD	NCOS	s nm	OD NAN	ID NCAJ	ZH	SCA	J SCO	S SAND	PEP	NCOS	NMOD	NAND	NCAJ	ZH	SCAJ	SCOS	SAND
100	0.000	0.0	00 0.00	0 0.064	0.181	0.06	8 0.00	0.000	100	0.120	0.063	0.155	0.136	0.278	0.029	0.063	0.000
100	(-)	(-) (-)	(0.648)	(0.909) (0.79	1) (-)	(-)	100	(0.063)	(0.651)	(0.373)	(0.285)	(0.732)	(-0.015)	(-0.034)	(-)
200	0.963	7 1.0	00 1.00	0.936	0.819	0.93	2 1.00	1.000	200	0.790	0.938	0.845	0.483	0.667	0.721	0.938	0.845
200	(1.000)) (-) (-)	(0.648)	(0.909) (0.79	1) (-)	(-)	200	(-0.015)	(0.651)	(0.373)	(0.092)	(0.677)	(0.211)	(-0.034)	(0.097)
200	0.03	3 0.0	00 0.00	000.0	0.000	0.00	0 0.00	0.000 0	222	0.090	0.000	0.000	0.381	0.056	0.250	0.000	0.155
	(1.00	0) (•) (-)) (-)	(-)	(-)	(-)	(-)	300	(0.155)	(-)	(-)	(0.325)	(0.658)	(0.308)	(-)	(0.097)
Hexp	. 0.06	3 0.0	00 0.00	0 0.120	0.296	0.12	6 0.00	0.000	Hexp.	0.353	0.117	0.262	0.603	0.475	0.417	0.117	0.262
H obs	. 0.00	0.0	0.0	00 0.043	0.028	0.02	7 0.00	0 0.000	H obs.	0.340	0.042	0.167	0.475	0.148	0.324	0.125	0.241
								****				******					

LDHa	NCOS	NMOD	NAND	NCAJ	ZH	SCAJ	SCOS	SAND
100	1.000	1.000	1.000	0.979 (-0.015)	0.931 (-0.061)	1.000	1.000	1.000
200	0.000	0.000	0.000	0.021 (-0.015)	0.069 (-0.061)	0.000	0.000	0.000
H exp.	0.000	0.000	0.000	0.042	0.129	0.000	0.000	0.000
H obs.	0.000	0.000	0.000	0.043	0.139	0.000	0.000	0.000

Frecuencias alélicas de los 7 loci aloenzimáticos para las razas cromosómicas descritas de *Lioleamus monticola*. Heterocigocidad esperada (H exp.); heterocigosidad observada (H obs.); Zona Híbrida (ZH). Destacado en negro alelos únicos (hibridizimas) por raza.

AAT	Norte Mod.	Norte	ZH	Sur	aMAN	Norte Mod.	Norte	ZH	Sur
100	0.000	0.152	0.434	0.043	100	0.045	0.250	0.125	0.123
100	(-)	(0.412)	(-0.578)	(0.221)	100	(-1.000)	(0.367)	(0.258)	(0.269)
200	0.875	0.799	0.478	0.779	200	0.954	0.719	0.666	0.855
200	(0.058)	(0.506)	(-0.375)	(0.036)	200	(-1.000)	(0.261)	(0.084)	(0.188)
300	0.000	0.047	0.065	0.177	200	0.000	0.030	0.145	0.021
- 140	(-)	(0.093)	(-0.048)	(0.011)	300	(-)	(-0.028)	(-0.150)	(-0.015)
400	0.125	0.000	0.000	0.000	400	0.000	0.000	0.020	0.000
	(0.058)	(-)	(-)	(-)	400	(-)	(-)	(-0.000)	(-)
500	0.000	0.000	0.021	0.000	500	0.000	0.000	0.041	0.000
	(-)	(~)	(-0.000)	(-)	500	(-)	(-)	-1.000	(-)
H exp.	0.218	0.335	0.577	0.358	H exp.	0.086	0.419	0.516	0.253
H obs.	0.208	0.197	0.826	0.344	H obs.	0.000	0.300	0.458	0.202
PGM	Norte Mod.	Norte	ZH	Sur	PGI	Norte Mod.	Norte	2H	Sur
100	0.000	0.007	0.000	0.017	İ	0.010	0.007	0.000	0.000
100	(-)	(-0.004)	(-)	(-0.012)	100	(0.000)	(-0.004)	(-)	(-)
200	0.010	0.010	0.000	0.046		0 989	0.210	0.766	0 176
200	(-0.000)	(-0.007)	(-)	(0.219)	200	(-0.000)	(0.653)	(0.678)	(0.754)
200	0.958	0.975	0.963	0.936		0.000	0.757	0 733	0.024
300	(-0.033)	(-0.022)	-1.000	(0.132)	300	(-)	(0.549)	(0.678)	(0.549)
400	0.031	0.007	0.037	0.000		0.000	0.025	0.000	0.040
400	(-0.022)	(-0.004)	-1.000	(-)	400	(-)	(-0.022)	(-)	(0.187)
H exp.	0.080	0.048	0.071	0.120	H exp.	0.021	0.381	0.391	0 302
H obs.	0.083	0.049	0.000	0.103	H obs.	0.021	0.173	0.133	0.131
									0.1.01
PEP	Norte Mod.	Norte	ZH	Sur	SOD	Norte Mod.	Norte	ZH	Sur
100	0.062	0.136	0.277	0.025	100	0.000	0.026	0.185	0.026
	(0.651)	(0.240)	(0.732)	(-0.020)	100	(-)	(0.659)	(0.908)	(0.797)
200	0.937	0.683	0.666	0.810	200	1.000	0.961	0.814	0.973
	(0.651)	(0.218)	(0.677)	(0.183)	200	(-)	(0.761)	(0.908)	(0.797)
200	0.000	0.180	0.055	0.164	200	0.000	0.011	0.000	0.000
500	(-)	(0.416)	(0.658)	(0.269)	300	(-)	-1.000	(-)	(-)
H exp.	0.117	0.482	0.475	0.316	H exp.	0.000	0.075	0.302	0.051
H obs.	0.041	0.346	0.148	0.253	H obs.	0.000	0.017	0.028	0.010

LDHa	Norte Mod.	Norte	ZH	Sur
100	1.000	0.991	0.928	1.000
100	(-)	(-0.006)	(-0.062)	(-)
200	0.000	0.008	0.071	0.000
200	(-)	(-0.006)	(-0.063)	(-)
H exp.	0.000	0.017	0.132	0.000
H obs.	0.000	0.017	0.142	0.000

Variación de 131 sitios polimórficos entre 41 haplotipos obtenidos a partir de la secuencia del cit b de *L. monticola*, mostrando sólo sitios variables. Por cada haplotipo (H) se indica el número de individuos que presentan cada forma haplotípica (N). Las razas cromosómicas están separadas por una línea horizontal.