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Resumen

In a rcccnt papel by lrl. \Ián¡oiu aud \1. RrLzl.ranskl.a global pseuclo-rlifferenrial
c¿rlculus h¿s been de'eloped for .rrimodlrlar gro.ps ,f trpe L II rhe prcsent thesis
u'e generalize thc main results to arbitrar¡' locall1' compacr gr-oups of tvpe I. Our
methods in'olr'e defining s,ital¡le \\ieyl s\-stems. \[igner tralrsforns ancl tbe use of
Plancherel's theorem for lon-ulilnodulal groups. \\c also gir-e erplicit constnrctiols
fol the grorrp of atilrre tr arrsformatiolr-c of the real ljne ¿.lrj Ch.élaud ,s group.
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Introduction

N{. \Iántoiu and \,1. Ruzhansliy clevelopecl f33l a global pseud,r-differ errtial r'alcr-L}us.

or qnantization, {or ¡he class of seconc.l countable localll cornpact unimodulal t¡-pe I

groups. Our airn is to generalize their main results to the mole general class of non-

rrnirrrotfular groups. Thcre are n.lan]: itrlportant, examples of non-unimodular grorqrs.

the simplest orre is perhaps the affine group cotrsisrirrg of ail affirre transfbrmatio¡,s

of the real iine, the onll' non-rr modular Lie group in dimensjon trro. In dimen-

sion three there are man¡'infrr'rite lamilies ol non-isomorphic non-urrinodul¿r' Lie

groups. N{any other exaurples arise in the study of parabolir: subgroups of semisim

ple Lie groups that are used to stud¡ irreducible replesentatiorrs thrrmgli erl.ensiorrs

of \,Iacke1''s nrachine 119 23].

Let G bc a locall¡, compact gloup. It t'ill be assumed th¿rt G is second countable

and of t1'pe L Let G l:c its unitarl. dual. lhat is, the spnce of a1l classes oI unitarl

equir.alelcc of (strolgl¡' conirinuous) ilreducible unitarv represent ations. The fc¡rrnul¿r

(cl. eq. (1.1) l33l fbr the sirnpier ur.iimoduiar ca-qe)

Opia1,, 1,1 - [ [ l(or, €tD.-r ry ','):, u)-:u( rJ!,J,1. (0.t,,' JcJi \ '' - /

is the stalting point fol a global pseudo-cliffererrtial c,a,lcLrlus on G. It irrvoh'es special

measrlres on G aricl G, laurel¡'. the Haar and Plancherel neasures. operator-r,alued



symbols deflned on G x G. the modular function A of the group and a family of

unbounded operators; tlre formal dimension operators D6 introduced by Duflo and

Moore ín [8, §3]. Formula (0.1) also makes use of the Haár and Plancherel measures

on G and d respectir,-e1y. In order to make sense of formula (0.1), we also have

to fix a measurable field of irreducible representations (r6)a.6 such that n5 is a

representations in the class of ( that acts on a Hilbert space 11g. For the moment

the symbols are essentially chosen so that the compositions a(x,{D}/'zare trace-

class operators on the Hilbert space ?11 almost everyrvhere. We also require the map

sending { to the trace-class norm of o(r, 6) D!/' to b" absolutely integrable for almost

all r € G.

The notion of quantization comes from the passage from classical mechanics

to quantum mechanics. It is a rigorous formalism in which.one passes from abelian

C.-algebras of observables, as in Hamiltonian mechanics, to non-abelian ones, as in

quant[m mechanics where the observables are operators on an infinite-dimensionai

Hilbert space. Quantizations have been proven useful in the study of partial differen-

tial equations, quantum optics and signal processing. It also has many connections

to Lie theory, as it is directly connected [11] to the Heisenberg group and to the

metaplectic group, which is the double covering of the symplectic group.

Formula (0.1) is a generalization of the one derived in [33, eq. (1.1)] to the class

of unimoduiar groups, but our formula has a difference in the order of the factors

that has to do with the choice of a convention for the Fourier transform (cf. Remark

1.4) our quantization will give rise to right-invariant operators whereas the one in [33]

gives rise to left-ínvariant operators.

Particular cases of compact Lie groups have been extensively studied in [35,

37] for example, and in the references cited therein. The class of nilpotent Lie



groups is treated in 110] and in other relérences. For a general treaiuent of pseudo-

diffelential operarors in a gronp-theoretic setting see 110. 361. The idea ol using

the ilreduclble replesentations of a group to deline such calculus seens to co[re

from 1.12, §1.2], but it rvas not devcloped in this abstr¡rct ,sertirg. All the ¿rrticles

cited above contain historical backgrouncl and references to the existing iitcr.ature

treatilg- pseudo differential operators and quanLization in a grotp-theoretic corrtext.

For a historical survev on h¿r.rmonic anall.sis see 1321, for example.

One of tire advantages of using operator ralued s¡.mbols is that one gets a

global approach. Er.en for compact Lie groups there is no notion of full scal¿r-

r.airred s¡-n-ibo1s for a pseudo-differ:ential oper¿1tol u.sing local coordinates. For ¿

more detailed discussion ol tlie adr,anta,ges of this approach see 133].

\\rhen our group is G: R", formula (0.1) boils dol.n to the extensile1""-' studied

Xohn-\irenberg quantization rule. In that case t}rere is a much bigger cla.ss of

svmbols, r'ralnel¡. ¡|16 Hiirnrarrcler sr.nbol classes Sfu(R") \16¡r, general c1¿sses of

svmbols har.e been studied, bu¡ definrtivel¡' the Hór¡narrde¡ classes ale the niost

important ones. the¡'are extensir.ell' studied in but noi on1¡" 125,41,111, atrd tlie

spectral theor\.' of p-qeudo-di$eleniial operators is studiccl ir 138]. For G: R" thcre

are also ¡-quantizations given bv

fOp'',rl', :[ [rr,i-:].¡ -:t.i'p2-' u.ulrJleJs. (0 1,' /t Jk

rvith ¡ É i0. 1] rnostl-v'' related to ordering issues. Thc Kohl-Nirenberg case amounts

to take r : 0. Another interesting case is r : 1/2, the so-called \Vev1 quantization.

rvhich is a mote symmetric qu:rntization that has the desirabie property Op(a) :
Op(a).. It is possible to exten(i the idea of r-quantizations to our pseudo-differential

calcrrlus on lrvpe I groups with a fixecl lneasurablc furrction r : G -+ G ilstead of a



real nrunller, € i0, il. For a r-quanrization the r'1¡;ht moc1ilication of formula (tt.1)

turns out to be

fop-1a)ul1z1 - I l^t(a(t(r1r '1r,11D,+r¿(r;,t-')") A(r) iu(y)rl€tty, (0.3)' ./,;Jc \ /

fi'orn rvhich one recovers (0.1) after setting r(.) : e to be the constant fu¡rction.

rvhcre e is thc identity elenent of the group. Another iirtetesiing example is t'hen

r(r) - r. In the simplest case of G : R' this amounts to takirig ¡ : 1 and one gets

the quantization in r.hich deri\.ati1.es are composed to the lef¡ and position operators

to the right. An1'hor.. the forrr.-i¿lisrns correspondirrg to different choices of ¡ a¡e

actualll' isomorphic s'hen rr e restrict to ¡he classes of svmbols we arc considerilg in

thc present thesis.

If G - R.'', then one can rvrite the qua,ntizaticr il,s

upa : Iu'-..,. 11 Í./ J., Ji.
Jc

rvhele the \\re¡1 st'stern is the firmil¡'

{n'(€, z) - 1'({)t'.(z) ({ z) e R:'}'

of unit¿ry operators in /,'?(R") obtained bv putting together the operators of trarrs-

lation and moclulation. The \Ve1{ s}'-<Lem ofTers a precise wa¡'to codifl'the cir.nonical

commut¿tion relations betrveen position and momelltum operators from quanl,LrÍr

mcchanics, and the quantization Op can be seen as ¿ rron-commLltatir.e filnctional

calcnlus on tllese operat,ors. Besir.les t]ie phvsir:al intere-st. this opens tire rl'¿¡,\. to sorne

nerv topics or tools such as the Bargmann transform. th-. anri-\\r'ick quantization. co-

orbit spaces. and others. Jn Section 2.,1 r'e sholr, horv to carr¡. rhis point of vier. to

the general categor) of locall¡, compa,ct t1'pe I groups, l¡ut one oI tiie drarvbacks of

nr¡n-unimodul¿ir groups is that the resr,rlting olerator-,r are onl¡ rlelineri irr a rlelse



subspace.

\\ie¡-} s,l.stems \\:!óre one of the first ex:r.mples of proj ectlve 1 epresertation,,{ . The

studr. of projective rcpresentations of R2" r'as one of the mo.ct important prolllems

in the 20¡h centurv anC had i¡s roots deep in the forutdatiorl of quantum mechan_

ics. One can see that tlie projective representations of R2" can t¡e scen a.s unit¿r,rv

representatiors of the Heinsenberg group r,ith n degrces oI freedom 11] and the rcp_

resentations of the latter rvere settled do§n with the Stone-von Ne¡rmann thec¡rem,

s,hich -.ays that under some hvpothesisj ¿nd up to equivaience. there is onlv one

possible lepreselrtatiotr that satisfies the canorrical con]rr]utation relatiorrs.

Another approach to a quantization consisis of using the formalism of C*-

algebras. Gir.er a locall]'compact group G there is an action bv left (or righr) trans-

lations on rarious C--algebras of functio¡rs orr G. In such situations there are natural

crossed proclucts associated to them (cf. Chapter 4): Among the non-degenerate rep-

resentatlons of these C--algebras u.'e nrention the Schródinger representation, acting

on the Hilbert space 2,2(G). This formalism ailorvs us to take full aclvantage,:f the

theorv of C* algebras. extendilg to ttre higger class of compact opera¡ors on 12(G).

In the present thesis rve are not going to rel¡. on properties sucli as cornpact-

ncss. semisimplicit-v, nilpotencv or srnootlLness. Almost all hypotheses shall be on

the meastr.^ theoretic side. The categorl of second-coultable typc I locall¡- compact

groups has a nice integr¿ltion theo[, ¿lnd their unitary duals ha .c an amenabie inte-

gration theori.. This framelork allon's for a gcncral forrn of Planchcrel's 'Iheorern,

rvhich is all that is neecled to der.elop the basic fealures of a quantization. even fbr

non-unimodular groups. The non ,.rnino¡lular Planche¡el theorem is originallv duc

to l40l ancl had man1. contributions b1,'Duflo, \foole fE], Lipsman ancl Iilcppner. 127i,

To appl¡, lhe theorem one neerls to }¡rorv the complcte rinitary dual of a group,



incluciing its Pl¿rncherel meas.re. Later H. Fiihr 
f 
1 1i fou.cl the exact domain in

r'ltich the irtversion fortlula holds in the non-unirnodll¿rr case. For an irtrocluction

to abstract halrnorric anah.sis rrc refer to i12].

\\'e lorv sum¡rarize the present thesis.

In Chapter 1 rve introduce notarion used throrghout the thesis and the general

iheorl' and rools required to properl-v clevelop a quantization. including tools

frotn abstr¿rct harmonic analysis and functional anal1.-c15, the main tool being

the non unirnodular Plancherel transform.

In Chapter 2 r'e make i: preliminarv constrLtction cif the quantization Op on

¿ denselv definecl subspace rLsürg foltrula (0.1). \\¡e include a disr:ussion on

the differences bett,een the lefi and right quantizations which comes from the

non-colrrrrutatiYitl of the group, al]d \1'e srud1. ho\1i to reco\-eu ihe lámilies of

conlolution arrd multiplicarioli opera¡ors using our quantization.

In Section 2..1 r,e introduce lhe notion of a \\ie-v'.l svslelr. a measurable familv

oI derrsell, defined closcd oper¿itors. Ihen ri,e rlefine a ., -qLuantiz¿1tion lor an

arbitrarv measurable function r : G + G th¿rt ]ras to do rvith ordering issrrcs

of the operators. In Section 2.5 l.e introduce a more general r-quantization.

and pror.e th¿rt it is a unitall map lrom our class of svmhols onto the Hilbert-

Schmidt operators on I':(G) .

In Sectiols 3.1 and 3.2 u'e work out tlie explicit formulas ofthe quantizar,ion lor

the gror-rp of affine transfbr'lnatiorls of R and Gré1aud's gtoup. two examples of

nor¡ulimodnlar solr'zir.le Lie groups. \\¡e compute the unitarl'dual of Gr.Álaud's

group rtsing rhe N{acke¡'machine revierved in § 1.,1.

6



. In Chapter -1 s'c reviet' the ba,sic theor¡. of crossed products of C*-algebras

and we shorv hoir it, relates to our theor1.. This formalÍsm is also usecl tr-¡

co1¡er a bigger class ol corrp,,rct operators using the Schródinger representation

associated to a natrral crossed nrodnct.

In the fu¡ure it is our goal to extend formula (0.1) for more general classes of

denseh,deflned opelator-r,a"Iued s-vnrbois. to cover for exampie differeiltial oper.ators

on Lie groups, or er.en the class of boundecl operators. Nlan¡..' developrnents h¿ve

been done in this direction for connecred nilpotcnt Lie groups lI0] and corirpact

groups i37].



Chapter 1

Flamework

In this chapter rve set up the gcneral fra.,re*'o¡k of this thesis.ancl also recall some

knorvn results in the Fourie¡ theorl' of non-uni¡nodular groups of t'pe I. \\:e also

briefll' discruss the theor¡' of sc|r:rrc-iltegrarble repre-sentatior.rs, for.. v¡.hich rve ha'e

manv explicit constructions. \\¡e also rer-ie1l. the basic aspects of tlie \Iacke1, riachine

that rvill I¡e usecl to cornpute the unitarl. du¿i of Grélaud's group in Section 3. 1.

1.1 General remarks from functional analysis and

measure theory

\\¡e r.lenote Hilbert spaces. over the field of conplex nurnber.s. r,ith the lette¡ ?1.

using the convention that their scalar product. denoted by (...)1. rvili be linear in

the list rariable ancl anti-linear in ir.s ser;ond. In the follor-ing \\,e assune al1 Hilberi

spaces to be septrrable. If fl is a, Hilbert space s,e denote its conjrigate Hilbert

space by ?li, rvhose elements are tlie same as those of ?/ bu¡ the scalar product i-s



cleji¡ ec1 as a.u. = d'tL. alid its in¡rer pr-orirrr:t is conjugate to the one from ?1. i.e.

(,u. u'iHi - (t,u)¡ B(.?l't denotes ihe C--algebra of all bounded linear operators on

H, arLcl E¡(.H'1 stauds for the tr.o slded '-ideal of compact op€rators on fo. \\-e al.so

rnake use of the Schatten-von Neumann classes 6r(?l) for p ) 1t ithese ale Ba.nach

"-algebras rvith the norm

l7 6, - rr ((.r.r1oe7tto

The most importalit cases are Br('11). th. space of tracc-class operarors. and 82(11¡,

the space of Hilbert-Schmidt operators. The latter *,hen endor.cd wirh the inner

product

lI, s)r, - Tr (j-S').

becomes a ÍI*-algebra. As a Hilbert space it is r:nÍrarilf isomorphic rr'ith rhc Hillre¡t

tensor product 11 a 'l7i in a natural rva¡.. Both 8.,(.H) and 1321?7) are tr,o-sided

-'ideals in 6(?l) r.hosc closure in the operaior norm is 6¡(?l).

Let 
"-¿l 

be a set of bounded operators on a Hilbert space ?1. Bv ;t/ rr.c denote

the familv of all }¡ounded operators on ?l that commute r.vith all the elernents of ,4.

This set is a r.on Neumann algebra, i.e. a C.-algebra u,liich is closerl in the strong

operator topoiog"1.. There is a celebrated theorem due to von \eurnann f-1. Chapter

IX, Theorem 6.,11 thal sa-vs that if ;t i-s a C*-subalgebra of El1l) containing the

identity. then "4" coincides s,ith tlrc closulc of "4 in thc wcak oporatol topolog¡,-.

A Borel space is a set -f endo\1:ed u'ith a o-algebra of subsets of X. called

Borel sets or measurable sets. \\¡e are going to refer interchangeablr. to Borel space

a-. measurablc sptrces.

Definition 1.1. .{ measu¡able space X is called countably separated if there

is a countable familr, {Q;}¡6u of measurable sets such lhat lbr all r € X orre has



{r} : f-],.n, Q¿. The space ,Y is cailed a standard Borel space if t}rere is a

measurable isomorphism r -+ r. rvhere r is a conplete second couniable nretric

sp¿1ce, end.rwed n'ith the Bolel o-,r1gebra ¡¡ererated b¡. its topoiog¡..

Clearll, being a standard Borel space implics being countably generated. ancl

tl.ic former is a much stronger hvpothesis that one nia¡. inirialll. think. In a far:ious

classification due to Knrator,,'sk¡- it is shot n that everv stand¿rd Bor el space is Bor-ei

isomorphic either to thc intervai 10, 1] or to a cr¡untable discrete set 13,1, Theorem

2.14]. \\:e say that a measLlre t., is countably separ.ated (or standard) if there

is a measurable u-conull subset O C -Y that is countablv separated (standard).

\fuch of the interest of studf irig these properties coüres from the study of quo-

tients of measurable spaces. Let - be an equiralelce rel¿tion on a rneasurable space

X. The quotient Borel structurc on X/ - is ihe flnest o-algebra making the nat-

urai projection X -+ Xii- a measuraL¡le nap. Sometirnes rre shall need measurable

transversals Q C X. that is a mea.surable set that contaits exactl]. one elernent of

each equivalence class irr I/ -. .A.notherr constnLctiorl comes as follou-s. Let X. l- be

Borel spaces. and let /:X + ]' be a Borel rnap, let I be a given measure in X.

\\¡e sa,r. that a rneasure ¡i on l- is a pseudo-image of r,, if i is equiralent to the

lneasure u/ given on measurable sets by'--¡(0) : ,(/-t(f¿)), this rneans that for any

measural¡le set O C y one has tllai ,(O) : 0 if arid onl¡'lf r-.(/ 1(0)) - 0.

Definition 1.2. Trvo measures ¡t: ¡,2 on a Borcl space X are called strongly equiv-

alent if the¡e is a corrtinur¡lrs funr:tion g : X -- (0, oo) such ¡h¿rt for each compactl-r,

supported continuous functicn J:X + C onc has

t, t
lx .t ..r'),1, ,t - L I -,.\y r\ .t,.,1.r).

This does not implies eqldl.alent, since the fuliction g docs not need to be integrable.

10



(i)

(i,

1.2 Direct integrals of Hilbert spaces

Let X be a Borel space. A field of Hilbert spaces ol'er.{ is just a famill, (}7,),u,

of separable Hilbert spaces 11,. A furrction s : X -';' Il,,=x 11,, is calied a sectiorr

over X. or a vector field if s" e 'H, for all¡eX. A rneasurable field of Hilbert

spaces over ¡r fielcl X is a fie1d r¡f Hilbert spaces (?1").s,a together n.ilh a countable

set {d}}-, of sections over X $,ith the follor.ving propcrties:

The functions r a (e,'r. el,) are measurable lor ¿11 ,, j € N.

for each z e -Y, the set {ei}r:ru is a total subset of ?/,.

\\'¡e say that a section -. over X is a measurable section if the map r ++ (s,, e|) is

measur¿bIe for ali i e N.

Defirrition 1.3. Let I be ¿ Bolel space ald let (fl,).6_r.be a me¿sur¿blc field of

Hilbert spaces over f . Suppose ttLa.t ¿' is ¿ rneasrLre on -{. The ciirect integral oI

the spaces 'H,, denoted b1'

l= H.,1,1-,1.Jr
i-s the Hilbert space consisting the al1 the ureasurable sections s over -{ such that

p.=[.;d.,.,. .c.
J\.

ín r.r.hele tr.r.o sections ale identifieil if they coincicle irr a ¿,-r.ro¡¡.ull set. The inner

product of tv-o sections s, s' is gir.en b1'

t -' : 
/. -.. c. ¡,- r/c ..r ,

Example 1.1. Let (-Y. z) be a rneasure space. Then, it 11, -'11 is a fi;<eil Hilber¡

11



space for all J € X, then

[* u' ou(') : L2 (x 
' 
t ;'tl) 'Jx

This space is also naturally isomorphic to the Hilbert tensor product 'H e L2(X,u)

unde¡ the identification (ry S z)(¿) - u(r) rl.

Definition 1.4. A measurable field of operators (4),ex over X is a family of

(not necessarily bounded) operators T, :'17, .+ ?J,, where (11"),ex is a measu¡able

field of Hilbert spaces, such that the section ([s,),.¡ is measurable wheneve¡ s is

a measurable section orer X.

Suppose that r,, is a measure on a Borel space X, thelt if 7 : ([),6¡ is a

measurable field of operators such that esssupc€xllfl | Ís finite, then ? deflnes a

bounded operator on the direct 1lúegro"l J§ 11, du(r) with operator norm bounded

by the essential supremum of the norms ll", ; *" denote this operator by

ffi,"^a\").:r,,.

1.3 Basic representation theory

Let G be a Hausdorff second countable locally compact group. For the most part

this means that the product and inversion laws of the group are continuous maps,

and as a topological space G is both second countable and locally compact. We

denote its unit by e e G.

Remark 1.I. Recall that a second countable group is separable. Hausdorff, d-compact

and completely metrizable. In particular, as a measurable space it will be standard.

Since el'ery i¡reducible representation is cyclic, it must act on a separable Hilbert

space.
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Le¡ 11 be a closed subgroup of G. Then tire quotient G,/I1. endol,ed lÁ,i¡h

the cluoLierrt topologv, is a locallv compact topological space. It is even a lo¡¿lly
compact group *hen ,9 is a ni¡rmal s,bgroup. The spaces G and G I H are completel]-

metrizable. \\,-hcn ther. are endor.rred rvith ¡he Borel o-algebra generatecl b¡. their
topology thev become standard Bi-,rcl spaces. The follo\l,ing proposition (cf. f2g]

Lcrnma 1.1) is due to G. Ilacke¡..

Proposition 1.1. Let G be o, seco,nd cottntable grotLp a,nrl let H be a c.:losed s,bgraup.

Then there erist a nte.o,surattle trarLs.t,ersal of G / H

Definition 1.5. -t representation of a group G on a H bert space ?/. is a functirn

¡ : G --+ 6(?l-). such that for each pair oI elements it.!1 a G

r(tY'¡ : r(x)r (y'¡.

The .cpresentarion is calied u,itary if ;i(r). : ;(r 1) fo, all z € G. It is called

a strongly continLtous representation if for each u a,11, themap z .+ ;r(z)z

is continuous Everv unitarr" representation cor'isidered in this thesis is strongly

continuous. even if it is nol, explicitly nientioned.

Definition 1.6. A projective representation on a llilbert space ?1" is a map

r:G + ?1, such that there exi.ct a m,.asurable map u:G xG -+ 51 into the unit

circle satisfr,.inti

r(r)t(Y) : u(.r, !t)r(rA).

and thai for each pair of r,cctors u. u €'J1-. the map : r+ (u.;r(,)r) is measurable.

\\¡e sarv tirat n is a projectir.e representation r,ith multiplier c¡. or that it is a
o-projectir,-e representalion.

Definitio, 1.7. A representation r o. a Hirbert space ?1, is calred irreducibre if



there are no propff closed linear subspaces t C '17" such that r(r)€ e t for all

Z e Lr.

Deffnition 1.8. Let r, o be trvo representations. An intertwining operator 7 :

1Ln +'11,, is a bounded operator such that for each r € G one has

T r(x) : s¡'¡7 7

We say that two representations a¡e unitarily equivalent if there exist an unitary

intertwining operator between them.

The most basic, and perhaps, the most important result about irreducible rep-

resentations is the following.

Proposition 1.2 (Schur's lemma). A uni,tary (project'iue) representat'ion ¡ is zrre-

d,ucible íf and only if tr(G)' : C ' Id?/-. Suppose that Tr,r2 are i,rreduc'ible unítary

(projecti,ue) representations of G . If they are equiualent, then there erists a unique

(up to multi,plication by a constant) intertwíníng operator. Otherwise there are no

n on -triui a L in (, e rl winin g o pe mtors.

Let ¡'be a strongly continuous unitary representation of G on a Hilbert space

'11*. Fot any such representation we also have its contragradient ¡'t acting on fl,,i

by i (r)u: r(r)u. Note that in general ;r is not equivalent to ri.

We say that T -' is a subrepresentation of ¡ if it is unitarily equivalent to the

restriction a'15, where t is a closed invariant subspace of fl,,-

Definition 1,9. We say that t§'o representations ?r, p are quasi-equiralent if for

every subrepresentation zrl of ¡' there is a non-trivial operator intertwining r' and p,

and for every subrepresentatiot y' of p there is a non-t¡ivia1 operator intertwining

p' arrd r. This is an equi lence relation among representations- Tr*-o equivalent
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representatioN are clearly quasi-equivalent and the notions coincide when we refer

ro irreducible reprcsenrations.

Definition 1.10- A unitary representation r¡ is called primary, or a factor ¡sp-

resentation, if the center of the von lieumann algebra generated by a(G) I B(11")

consist only of multipies of the identity i.e.

r(G)'nr(G)": C Ida,.

Definition 1.11. A unitary rep¡esentation r of G ls cal1ed multiplicity-free if the

von Neummarln algebra zr(G)'is commutative. It is called a type I representation

if it is quasi-equivalent to a rnultiplicity-free representation.

By Schur's lemma one has that any irreducible representation is a multiplicity-

free primary representation, but the converse is not necessarily true, this is the

content of the following definitions.

Definition 1.12. We say that a topological group G is type I if every primary

representation is quasi-equivalent to an irreducible representation, or equivalently,

if it is a direct sum of copies of some irreducible representation. If G is second

countable, another characterization is that the group is type I if and only if every

representation is type I [14, Theorem 3.23].

Example 1.2. Some examples of type I groups are:

Compact groups.

Connected semisimple Lie groups [20].

Abelian groups.

- Exponentially sohable Lie groups [2], in particular connected simply connected

nilpotent Lie groups.
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- Real algebraic groups [6].

It is knorvn that a disc¡ete group is of type I if and only if it possesses an abelian

normal subgroup of linite indcx [43].

Fix a left Haar measure p on G, that is, a Radon measure p such that

f"iQilaltü - l"f tutau\il.

for all / € C"(G) and z € G. We will denote this choice of left Haa¡ measure by

dp(r) = dt; Every locally compact groups admits a ieft Haar measure, and it is

unique up to a positive constant. Once p is fixed we get a right Haar measure ¡_r.

defined by the formula ¿l' (0) : p(0 1).

Let A : G -+ (0, oo) be the modular function of G, defined by the formula

p(Ar) : A(r)p(fl) for all measurable sets O C G and r € G. This implies in

particular that d¡.t' : L-r dp,. Hence the left and right Haar measures are strongly

equivalent.

The modular function is a continuous (smooth if G is a Lie group) homomor-

phism into the multipiicatir€ group (0, oo). We say that a group is unimodular if

the modula¡ function is a constant function. If G is a connected Lie group then

A(z) : ldet Ad(z-1)1,

where Ad is the adjoint representation of G on its Lie algebra [24, Chapter 10,

Lemma 1.21.

Remark 1.2. The the following classes of groups are unimodular:

- Connected semisimple Lie grorrps.

Abelian groups.
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Connected nilpotent Lie groups.

- CompacL groups.

Discrete groups.

We also note that G is unimodular provided that the abelianization of G is a compact

group.

Let lr' be the kernel of the modular function; it is a closed normal subgroup of

G, which is itself a unimodular group [12, Theorem 2.49]. We also note that since

our groups are locally compact the image of the modular function is a subgroup of

iRr6. It may be either dense in (0, co) or a closed discrete subset.

The spaces U (G) : If (G, p) of pintegrable complex-valued functions on G

will always refer to the left Haar measure. These are separable Banach spaces for

p € [1, co). By C"(G) we denote the space of continuous complex-valued functions

on G with compact support, a dense subspace of U(G). The space Cs(G) denotes

the C--algebra of all continuous complex-valued functions defined on G that vanish

at infinity.

1.3.1 The left and right regular representations

Every group naturally comes with a pair of unitary representations, namely, the left

and right regulat representations, defined on 12(G) by

)'rf(x): f(y-tx)

pof @): 
^@)+t@ú.
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These are unitary strongly continuous representations of G 112, §2.5] It ls a. deep

fact [39] that one has the following equality of von Neunann algebras

),(G)tt : p(G)t, p(G)" : A(G)'.

There is also the two-sided regular representation I I p of G x G given by

)ap(x,y)f:^,paf f e L'z(G).

For the convenience of the reader u.e recall that the modula¡ function plays the

following role in integration by substitution of variables

l"toar: 1"n1,¡¡1v,1ar: /.o(r) 'f (g-\av. (1.1)

The modular function implements a Banach *-algebra structure on Z1(G): the con-

volution of two functions defined by the integral

1/xe)(r) : l"t{rtnl, 
,,)or,

and the involution is given b¡,

/.(z): a(r)-1J@!.

In general, one has a pdependent involution on U (G) grven by

f"(r): 
^@fif@n.

(1.2)

In the following we reserve the notation /* for functions in the Hilbert space -L2(G).

Definition 1.13. Let X be a Borel space. A measurable field of representa-

tions of G over X is a measurable field of operators (rr)16¡ such that each z, is a

unitary representation of G. A measurable field of representations induces a unitary
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representation on the direct integral !fi't7o d,u(y) given on sections s over X by

(llf 
"awo,]r,: 

ro(x)s,

An important result due to G. Nlackey [30, Theorem 10.2] is that for each mea-

surable subset O C á on which the Mackey Borel structure is standard, there exist

a measurable field of irreducible representations (r6)6eo over Q, acting on canonical

Hilbert spaces 716, such that zr'1 € { for each ( e 0.

Consider the Banach *-algebra .L1(G) endowed with the universal norrn

ll /ll'.rci : suPllP(/) ll'

*-here the supremum is taken over the set of all non-degenerate .-representations of

Il(G). The completion of LI(G) with respect to the universal no¡m is called the

group algebra of G. We denote this C.-algebra as C.(G). It is a standard fact

that the irreducible unitary representations of G are in one-tcone correspondence

with the non-degenerate *-representations of C-(G), the correspondence being given

by

t ", . .
1t\¡ )- Jcf ty)ltly)dy

for functions in the dense subspace trl(G).

Remark'1,.3. For a type I group G, its C*-enveloping algebra is postliminal. An equiv-

alent formulation of the type I hypothesis is that for all irreducible representations

zr one has that a'(C"(G)) contains all the compact operators on ?1,,.

Given a localiy compact group G, its unitary dual G is the cotlection ofall ofits

irreducible unitary representation modulo unitary equivalence. For a representative

r'€ € € of an element of the unitary dual of G, we denote the Hilbert space on which

it acts by 'l1t:'11"r. The unitary dual is known completely for various classes of
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g.oups, including abeliar, cornpact and connecred nilpotent Lie groups. It is knorn
up to a set of measure zero in ¡he case of connecteil semisimpie Lie groups. rn the

case r¡f abelian g.oups. G is also a second cr¡untable locall¡. ccrtpacr group. Lr¡1 ¿5

soon one lear-es the abelian rvorld. tliore does not seen to be ¿-¡ natural l,ar.in rvhich

this space is a group. even for the case of courpact groups.

\\Ie endorv d rvirh the lr,{ackey Borel srructure introcluced in i29. §9]. This

is done as follor.s: Let lrr"(G) be ¡he set of all irred.cible ,nitar) rep.eserrtation

:rcting on a fixed Hilbert space ?1, of dimension n € N U {oc} and let lrr(G) :
lJ[o Irr"(G). \\ie cndou, each Irr,,iG) t'ith the weakest a algebra such that r]re

maps ,: + (2. r(z)."") are measurable for all z, r e 11,,, r € G. Then a scr f) C

Irr(G) is saitl to be measural¡lc if and only if 0 ¡ Irr, (G) is measurable for all

n € N U {m}. The N[ackey Borel structure is t].re quolient Borel structu¡c

induced b¡. the map Irr(G) -+ á th¿t sends earh represe,tatio, ro irs equir,alence

class. Thc next proposition ícf. i14l Lemma 3.15) sheds some lishl on the l,l¿:_cker,

Borel structure.

Proposition 1.3. Assume that X .is a sta,ndo,rd Borel space and let (.ir,),¡¡ be a

rneasurable Jleld of írred,ucible representations of G. Then tlLe map X ) r ++ l;,].
uhere lr) denotes the ettrui:lalene:e cLu.ss oJ r , is a nteasurable map inlct A.

A consequence of G beiLrg of trpe I is that G is a srandarcl Borel space 118].

It is knorvn 17] that being of t¡-pc I is e,¡rivalent t, Ó being countabiy separatecl

and is also equil-alent to being a stald¿rcl Borel space, Since spaces rvhich cloes not

satisf¡' thc former hypothcsis are bacll1,. beh¿ved, it is r.e¡v hard to expect to have a

reasonable irfegration theory for non-type I groups.

One also provides G rvith the lell topologli This topologv is I0 provided that G
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is of type I, and then the Nlackey Borel structure coincides with the Borel o-algebra

generated by this topology. For semisimple and nilpotent connected Lie groups this

topology is 7r. but in general this space is not Hausdo¡ff. For a proof of trhsss

assertions see [7, 18]. and for more information on the Fell topology see [9, Chapter

vr §11.

Definition 1.14. \\¡e say that a standard measure ¿/ on d is a Plancherel measu¡e

(cf. [14] DefinÍtion 3.30 and Theorem 3.24) if it yields a direct integral central de-

composition of the left regular representations into irreducible representations. That

is to say, z is a Planche¡el measure if the following conditions hold

(z) There is á measurable map m : é -+ NU {0,oo}, a r¡reasurable field of ir-

reducible representations (16),.¿ with 1tt € €, and a unitary isomorphism

U : L2(G) n I|*G).?ladu(() such that such that for each element r € G

one has

u 4 -- f! *¡q¡' ra@) du(() u.

More precisely, let 1" be a set with n elements endowed with the counting

measure, then rn(() 'lle : L2(I^C)A71a arldm(().ra(r) : Id¿,1¡_,r,¡ 8ra(z).

(ii) I/ implements an equivalence of von Neumann algebras

.\(G)', n.\(c)" = l: o rd,,-1E¡4, du({).

Plancherel measures do exist for separable locally compact groups of type I and

in fact they are all mutually equil.alent (cf. Theorem 1.3 below). From now on we

adopt the notation d"(€) : d( for a Plancherel measure ru. If necessary, we will

denote by ru6 the Plancherel measure of a group G.

There are ya¡ious cases in which the Plancherel measure can be given explicitl¡,.
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Fo¡ abeliall groups their unitarl'dual is also an abelian group il a canonical u,¿r]¡ and

the Plancherel rteasure coincides l itli a mulliple ol its Haar rneasule. For connecter,l

-simplv connected nilpotenti Lie groups it corresponds to a rne.s,re on the space of

coadjoint orbits arÍsi.g from rlie Lebesgue measure on g= i26. Chapter 3 §2.7] For

colrpact groups the Peter-\\'e1'l theorem says that the irreclucible reprcse,,tations

forrn a discrete set ¿nd that the Plancherel measure of an irreducible representation

is equal to l Note that this is onll' rarid using our cor\.entio, of the prancherer

transform iu *'hich the Dnflo-\Ioore operato.s are taken irito account (cf. Theo.err

1.1,. Fo. r prool .-o ,12. Tn.or, m .,.12 .

Induced representations and the Mackey rna-

chine

7.4

Ttre \fackel'machine is one of the most irnpoltant ¡ools for compuiilg the uriitar¡,,

drial of a general locall' compact group. it consist of ir.rducing representations from

a closcd normal subgroup and a famil¡, of ',small subgroups,! that a,ppear in the

quotient group. This methocl is de'eloped mainly in I30] and is ¡he basis of a rnore

geometric stud.v of the unitarl. dual. This poinl has been proven to Lre r.ery f¡titlul, it
is drrectll'' connectecl to ](irillov's orbii rrre¡hod, rvhich is the tool cl choice to cornpute

the unitar¡'dual of a connected simpl¡, connected nilpotent Lie group, This methoii

can be even extended to exponentiall¡. solvable Lie groups r,,,ithout lralv cha¡ges.

It is everi possibie to extend tliis me¡hod for the ciass ol connectecl semisimpie Lie

groups, since they do not have proper.closed nornral subgroups, one h¿is to stud¡, the

parabolic subgronps instead, and there is ¿r similar result in this case allo,,,.iug o,e

to compute at least itlte support of the Plancherel measLlle.



1,-4.1 Induced representations

Let o be a Borel measure ou a locally compact Hausdorff G-space X, defir¡e the

measures u,(C¿) : u(z-1Q) for each Bo¡el subset O C X, and al¡ r € G. Note that

for all integrable functions / one has

(1.3)

Definition 1 . 1 5 . A measure r,' on a G-space X is said to be inwariant if the measures

u, coincide. It is called quasi-invariant if the measures u, are all mutually abso-

Iutely continuous. We will call u strongly quasiinvariant if the Radon-Nikodym

derivative (r,p) ,-+ (d.u,ldu)(fl is a continuous function defined on G x X. This is

a stronger assumption than the hypothesis of having all the measures u, mutually

strongly equirralent, since the Radon-Nikodym derivative must be jointly continuous.

It is a standard fact lI2, §2.6] that any transitive locally compact G-space

admits a strongly quasi-inariant measure and in fact it is unique up to strong

equivalence. Moreover if X : GIH is a transitive G-space, there is a G-inva,riant

R¡don measure u on X if and only if the modular functions on G and I1 satisfy the

relation Acl, : A¡¡. In such a case, u unique up to a positive factor.

Let 11 be a closed subgroup of G, and assume that X : GIH admits a strongly

quasi-equivalent measure u. Lef o be a representation of Il on a Hilbert space

?1o. 'Ihe induced representation r : TrLdcE@) acts on the Hilbert space ?1" :

L2 (G, H , o, u) consisting of classes of equiralence of functions f : G + 7lo such that

(i) The maps r ,+ (f (r),u) are measurable for al\ u e '11o.

(;'t') f(rh): o(h)" f(x) for all r € G,h e E, except for a possible set of pairs (c,ñ)

such that the corresponding products ch's belong to a u-null set in G/IJ.

I f@tau,r.p¡: I tgplduqpl.JX JX



liii) The follorvilg ciuaiiiit-r, is Énite

l/ l'

As rrsual. r.e irnpose the -^quir.alence relat:ion /:9 if and only if l.,f !l): O (cf.

il6l §+. theorem 9). The inner prodLlo of fo- is given bv

(f 'gt: l. ..\.f (d,gQ)'tx.du(rH).
.tG. tl

Thanks to condition (zil) the r¡ranrities t,f Q), g(x)'¡4 depends onlv on the right É1

coset. of :r. s, the for¡nulas above are *'ell defined. The incluced represerrt¿1tion .,r is

gir en l,r iorrr_ul"

..,1..t lt . - \7, ,,H, f..r 1;1,.

Tharrk-q to forni,la (1.3). and the fact rhat the Radon Nikodl-m are jointl¡' contimr-

ous. ; is a strongh continuous unitarl. replesentation of G.

1.4.2 The Nlackey \'fachine

Let ,\ be a clo.sed.ormal subg.ouir o[ G. T]re dual action of G on rhe u,itarr- cl,al

of .\¡ is gir.en br'

x.o(n,\: o(t lnr) r€G.ne -\¡.

\\ritir this action Ñ becornes a Borel G-space. \\'e clenote by G" the stabilizer i. G

of o -. ñ. Le\ H : G,/_\. since r\ acts triviall¡.on ñ. ¡ire rlual action gir.es rise to an

action of ,?. \\ie deno'¡e by 11, tho stabilizp' nL H ol o € ,\-. These eroups are usuaily

called 'small groups" in the literature. \\ié denote the orbit ol an element o e ñ as

0,. tlie tlpe I h¡'pothesis irnplics thar d" = Si,ry" as Borcl spaces 114. §3.21.

Definitiorr 1..16. Let ,\r bi: a closed norrnal subgroup of G anrl let 1J : G/N.

t^
- I lf(tt l, rLt(¡H).

lc H '
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endowed wíth the Borel quotient structure. We say that .|y' is regularly embedded

in G if the orbit space Ñ 1 U is u countably separated Borel space.

Let Ir': ker(A) and let H - GlN. It is proved in [8, Theorem 6] that the Ieft

regular representation of G is type I if and only if the left regular representation of

1{ is type I and the orbit space Ñ1n i, " standard Borel space. In particular since

our groups are type I, lf is automatically regllarly embedded in G.

Definition 1.L7. We say that a representation a e fr has trivial Mackey ob-

struction if it can be extended to a unitary representation of Go.

The¡e a¡e two very simple cases in which a representation o e fr has trivial

lVlackey obstruction. Namely when Go : N or when G: -lf x 11 is a semi-direct

product and Iy' is abelian. Nevertheless. these cases cover a great number of exam-

ples.

In generai it is possible to extend o to a projectiye representation of Go in the

following *'ay. If z € /1, stabilizes a, there is a unitary operator [/, such that

/ -l \Uroln)Ua: ognr -).

This choice is unique up to a factor of norm 1. Without loss of generality we choose

them so that t/" is the identity and r é Ur is a measurable map, that is to say r r+

(u., tJ,u) is a measurable map for al1 u,u e 716. Let O be a measurable tiansversai of

G, / N. An element g e Go can be written in a unique way as g : sn, where s € f,)

and ¿ € Ir'. We deine a(y) : U"¡¡o(n). Then one sees that for a1l r,y € Go

U"t too(n)UlU| : 
"@an(ra)-').

Hence, by the uniqueness of the operators 7,'s. there is a constant c.,(2, E) of norm

1 such that Ll,tJ, : ula,r¡U,, for all r,a e Go. Since LI is measurable, one sees
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that cu is measu¡able. Hence á is a projective representation that extends o to G,

with multiplier r,,,. The Mackey obstruction is trivial precisely when we can chose a

so that úr : 1.

We cite the celebrated theorem of G. Mackey [30] which is the main tool for

computing the unitary dual of a group in terms of a normal subgroup N and a family

of "small groups" that depend on the dual action. For simplicity we restrict oursel',.es

to unitary representations. The hypothesis of having trivial Mackey obstruction can

be removed, but the resulting induced representations turn out to be projective

representations instead of unitary.

Theorem 1.1 (The Mackey machine), Let N C G be a regularly ernbedded closed

norrnal subgroup and, suppose that each o eÑ has tríuial Mackey obstruction. Giuen

a representation o e Ñ, d,enote a fired e:rtension to Go by 6. Giuen a unitary

representation p efi, we define the unitary representation o x p of G", which acts

on the Hilbett tensor product 71" 8'H, by

(o x p)(r): o(r) I p(xN).

Then one has that

(1,) The,;nduced representation Indfi"(o x p) is a unítary irreduci.ble represp,ntati,on

of G.

(i,i) Suppose that N 'is of tgpe I. Then euery 'irreducíble un'itary representation of G

í,s of the aboue fot-m.

(ii.i,) Moreouer, if we fi,r a measurable transuersal O C Ñ ¿.e. a set that conta'ins

exactly one representatiue for each orbit Ln Ñ lH, then the map

f(o,p) l" e Ñ,p efr,j -+ G si,uen by (r,p),+Indfi"(o x p¡,
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'is a bijection.

We also cite an extension of the theorem due to Kleppner and Lipsman 127]

that allox¡s us to compute the Plancherel measure of the unitary dua1. And only

requires the Mackey obstruction to be trivial z¡¿-almost everywhere.

Proposition I.4. Let G be a locally cornpact group and let N be a closed normal

type I unimodular subgroup. Suppose tlt at N 'is regularly embedded, and that there is

a G -inaariant tneasurable u¡¡-conull subsct Q C Ñ such that all o e Q haue trfui,al

Mackey obstructi,on. Then the se,t

U {rnd[,(oxd pe4],
O,€OiH

'is a u-conull subset of G and the Plancherel measure maA be obtained as follows:

Pick a pseud,o-'í,mage D¡, of the Plancherel measure oJ Ñ on Qf H. Then there is

for D¡¡-almost all Oo € Qf H , a normal'ized, PLancherel measllre u¡¡, süch that íf we

.. ,.. - .c
ídentify lndf"(o x p) as the point (o, p) one has that the Plancherel measure of G is

qiuen by

d.u(o. p) = d.u¡."(P) dD¡¡(O").

1.5 Square-integrable representations

Given a representation z on a Hilbert space 71,,, and tw-o vectors u,u €Hn, we define

the matrix coefficient of r at the pair (2, u) as

C".,(t): (u,tr(z)u).

Note that Cu, is a uniformly continuous bounded function and the algebra gen-

erated by all the matrix coefficients of a given representation depends only on its
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equivalence class. If a matrix coefficient C,,u is square-integrable for some non_zero

u,a e 14Í v/e say that zr is a square-integrable representation. If z¡ is an irreducible

representation it is known [Z] that the representation is square integrable if and only

if. C"p e tr2(G) holds for allu,u €11*.

Theorem 1.2. Suppose n ís a square i,ntegrable irred,ucible un,itary representation.

There is a densely d,ef,ned, positiue self-ad,joint operator D" : Dom(D") -+ ?1* ui,th

dense image, called, the Dufio-Moore operat or, satisfyi,ng:

(i,) For all uectors u, u' e ')l,,u,u' e Dom(D|/21

(" u''1'' u' c'"o"r"') 
"',", 

: \u' u') (u" u)'

In particular thís implements an ísometric linear map C : ?1" e ?11 -+ L2 (G) .

(ll) Up to normali,zation by a positi.ae constant, D, ís uni.quelg determi,ned bg the

relation

r (t) D"n(x). : L(r)-r D^. (1 1)

W-e presented this result as it is stated in 114. p. 97], in which an explicit con-

struction of the operators Do is made for square integrable representations. When

the group is unimodular the operators D, are just multiplication by a positive scalar

d, that coincides with the dimension of fl" when the latter is finite. An operator sat-

isfying (1.4) is called semi-invariant wittr weight A-1. In general not all irreducible

representations admit a semi-invariant operator, they only exist /-a,e. (cf. Theorem

1.3)
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l-.6 The Fourier and Plancherel transformations

suppose s'e have fixed a Plancherel measure z in G, a measurable field of representa-

tions (rq)a.6 and there is a family of densely defined self-adjoint positive operators

De , ?le -+ ?16 satisfying relation (1.4) for ¡u-almost ail 6 e G. We deflne (in the

weak sense) the operator-valued Fourier transform of a function ¡ e ZI(G) as

r(.f)r€) : f. Ítut"y' ut aa.

This is the unique operator "f(/)(() such that for all u,u e L2 (G) one has

V (f)t€)u. u) : l. f @) batul,, ü au.

The Fourier t¡ansform is a non-degenerate *-representation of tr1(G), but in the

non-unimodular case it fails to intertwine the t*.o-sided regular representation of G

with ,f( I €td{ and it also fails to be a unitary map. So we also introduce the

Plancherel transform of J e Lr (G) ñ L2 (G) as the operator

P(flc) = Ffl«)D¿.

In the following we denote by P(f): f, tUe Plancherel transform of a function /.

The Plancherel transfo¡m satisfies the following identities for functions /,9 €
L'z(G)r L|(G),

it c¡. - 7i t,:
J rLS,i -./ rL(1,

l;]rEl - 
"e 

(/)?(0.

When 11 is square integrable, /({) extends to a Hilbert-schmidt operator on ?16.

It turns out that this will hold for z-almost every { e d and not only for the

rq@)fe)Í6fu).:G¡ (€),
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representations rvhich are square-integrable (cf. Theorem 1.3 below); for a proof

see [8, Theorem 5.1].

We are going to present a formulation of the Plancherel Theorem for non-

unimodular groups. For a proof in the unimodular case we refer to [7]. The non-

u¡imodular Plancherel Theorem was developed by N. Tatsuuma [40] and later an

extension of his theory, including a clariñcation ofthe role ofthe hypothesis required.

v'as obtained by Duflo and Moore [8]. Similar results were obtained by Kleppner

and Lipsman in [27]. We state the following theorem as it was derived in the article

of Duflo and Moore and in the spirit of [14, Theorem 3.48].

Theorem L.3. Let G be a type I second countable localLy compact group. Then

there erists a o -fi,nite Plancherel tneasure , on G, a measurable field, of Hitbert spaces

(14e) er1, a measurable fi,eld. of irretlucible representations (,r1) rr¿ with rs e {, and

a measurab\e field, (D)rr¿ of densely defi,ned se$-adjoint posit'iue operators on '171

uith d,ense ímage sat'isfyi.ng (1.4) for u -almost eaery € € G , uhi.ch haue the foLlowing

properties:

(i,) Let f € LI(G) ñ L2(G). For u-almost all ( < G, the operator f$) ertends to

a Hilbert-Schmidt operator on'111 and,

(1 5)

(ii) The Plancherel transformatíon ertends ín a un'ique way to a uni,tary operator

P : L,(G) - f! n,lu)ae. (1.6)

(iii,) P implements the followi,ng uni,tary equiualences of representati,ons arul aon

|fli: Íetf(€)tld€
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Neumann algebras

», = lÍ ry(r)s Id?{i d(,

p,= 
Éur,s?r¿(r)d{,

>,¡c¡' = l! a: .rdjl, I B(it¿) d,€,

)(c)" . É urrrr& c.rd*r d(.

(i 7)

(1.8)

(1e)

( 1.10)

D"fi-In particular these relations shou that u satisfies the ariotr¿s requi,red bg

n'it'ion 1.11 to be a PLancherel meas,ure.

(iu) The Plancherel measure and the operator f,eld may be chosen to sati,sfy the

'inaersi,on f ormula

r@): f r(ialr;'*t"l-) ,<, ( 1.11)

Jor aLl I i.n the Fourier atgebra of G (cf. S ecti,on 1.6.1 below). The integral i,n

the inuersion fonnula conuerges absolutely in the sense that fG)Di erten d,s to

a trace-class operator u-a.e. and, the integral ouer G of the trace-class nortns ,is

f"nite .

(a) The choice o¡ (",1O11r..6) is essentially unique: The sernt-inuarzance relation

(1,.4) fi"res each De up to a muLtiplicatiue constant, and once we fit these, u is

fired. by (1.1L). On the other hand i,f we fir u, (which,is unique up to equiua-

lence) the operators De are completely determined by u.

(ui) G is un'imod,ular i.f and onlg if there erist positiue constants d.¿ such that D¿ :

dld11, for u-almost all {. IJG ís non-u,nimodular, Dq'is an unboundnd, operator

f or u-almost all ( (this can be seen from equation (1.4)).

(uii,) Suppose there í,s another Plancherel rneasztre u' on 0 and, measurable f,eld,s
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(1í€', D€')€€C that share the properti.es i)-i,ii). Thenu and, u, are equiualent mea_

sures, and there i,s a measurable fi.eld of unitary operators (Llq),.¿, ,¡nterfwi,n¡ng

rq and 14', such that for u almost att { e G the Radon-Nikodym d,eriuat,iue of

ut w'ith respect to u satisfi,es

ffcloi: ue Deut (1.12)

The operators D5 are called the formal dimension operators, or the Duflo-

Moore operators. When ¡ is induced from a subgroup f1 on which the modular

function is trivial, the Hilbe¡t space ?1,, is then formed by vector-valued functions on

G, and tlie Duflo-X,{oore operators have the very simple expression (cf. 112] Theorem

7.42)

(o"f )(r) : a(r) f (x).

Moreover, if we require for If to be type I, then z-a.e. the representation ( e G is

induced from a representation of 1{ (cf. [40]).

In the unimodular case, if one replaces the Plancherel transform with the usual

Fourier transform, then formula (1.11) reads

¡¡t1: [^a, rr(fte)n.(¿)-) a€.
JG

IVIost books that treat the unimodular case refer to d4. u as the Planche¡el mea-

sure. This explains how to recover the unimodular theory using the non-unimodular

Plancherel theo¡em.

Remark 1,.4. Alternatively, '¡'e could also deflne the Plancherel transform of a inte-

grable function / as

it¡ltt) = oi [ ¡p¡,qry az._ JC

Using the semi-invariance relation of D6 and the involution given in (1.2), w-e get the



follou,ing relatior.r

so the two definitions rliffer by an automorphism of L2(G). Another thing to have

in mind is that the inversion formula (1.11) takes the form

/(r) : f (r-1)a(r)-*

P(Í)(€) : l.ttrt"d,t' o! L@)-i ¿2

: 
[^ I {r-' ltqry *nr(r) oi ¿,

:Pe)@,

: lu* (rtfXL)D¿"((,-').) \fl-i ¿q

- [ n(n'' \

¡ -- y-íe(f)(€)tak)) dq.

For simplicity we make use of the following notation

8G): I s,1x¡at, ' r$1
6r(G) : J¿ B,(?lc)De' a€,

s(q : L'z(q e B?G), s@) : B?(G),s L2(G).

5(G) will be the natural space for our symbols. It comes with a natural inner product

given by

(o, b)srq : l" lur, AA, {b(r, {).) g ar.

Remark 1.5. By formula (1-7), a representation 16 € 6 is sübrepresentation of the

left regular representation if and only if the singleton {{} has positive Planche¡el

measure. It is known that a representation appears as a summand in the decompo-

sition of .\ only if it is square-integrable. In addition one chects that for unimodular

groups, all the square-integrable representations satisfy "({(}) : i [14, pp. 84], for

some no¡malization. When the Hilbert space has finite dimensiol d,, the lormal-

ization is given by D": d".Id.



1.6.1 The Fourier algebra and Plancherel inversion

Most of the results of this sect:lon are presented in the wo¡ks [13, 1a] ol H. Führ. In

order to shed some light on the trace-class hypothesis imposed on our syrnbols. we

elaborate a little on the natural domain of the Plancherel transform in such a way

that formula (1.11) holds. We also give the natural domain on the Plancherel side

for the inversion formula (1.11).

Definition 1.18. The Fourier algebra A(G) of a locally compact group G is

defined as the closure of the linear span of

{,f*g')f,g€¿'?(G)},

v'here 9'(e) : S@-1), with the norm

ll"ll¿rcr : rnf{ll/ll,llsll, I u : J * sb}.

It becomes a Banach t-algebra with convolution as the product law and b as the

involution. This is the space of matrix coefficient functions of the left regular repre-

sentation of G (cf. (1.13) below).

We record some calculations for further use in the following lemma (cf. [14]

Lemma 4.14).

Lemma 7.4. Let f ,g be two square integrable funct'ions on G. Suppose that gb <

Ll(G), then i.f

h(r): (f,A"s): ff * sb)(r) (1.13)

Is a matríx coefficient of ),, we haue that

1ñ(o:/({)?({)-De, (1.14)

^1
Hence h(() Di ertend,s to a trace-class operator v-almost eueryuhere.



For a function in Lr(G)ñA(G), by the previous lemma, its plancherel. transform
is in BP(G) a ry@) for ¿,-almost every ( € G. A straightforward calculation s|¡eq-g

that the inve¡sion formula holds for such a function.

In [14, Theorem 4.12] it is shown that the plancherel transform induces an

isomorphism between the Banach spaces ,4(G) ana sf (G). This induces an isomor-
phism of Hilbert spaces

P: A(G)nL2(q -+ 6fl(G) aBP@)

The next proposition (ct 114] Theorem 4.r5) shows rhat A(G) ñ L2 (G) is the natural
domain of the Plancherel t¡ansform in such a w-ay that the inversion formura hords.

Considering the preceding paragraph it also sho.ws that, on the plancherel side, the

natural domain for the inversion formula is B? (G) o By (G).

Proposition !,5. Let F e Bf (C) and, suppose that Jor u_almost euerylwhere the
1

operator F({)Dl ertends to a trace-class operator. Suppose moreouer that

l^ilrcloil,d( < oo.

If f is the ,inuerse Plancherel transform of F , then we haae for p,_almost euerywhere

(1.15)f(,) : f^r, (rCloi",Af) oE



Chapter 2

Quantization on locally compact

groups of type I

rn this chapter *'e introduce ¿i cluantization learling ro a pseudo-clifferential caLclrlus

fo,. oper ator-r'alued s}'mbols defined olr tLe *'hole group times its d,al. I, o.der to

do so n'e take adi artage of thc irreducible representarions of the grorrp. In sec¡io,

2.J 
''e 

develop the nótion ol a \\:e11 svste,r *{rich *ill be rised Lo r¡r¿ke a sense of

the formulas in a rigorous rval'for more ge,eral sv,rbols. This lvill also makes thir.rss

clearer ri'hen dealing ir,-ith a general ¡,quarltization.

in the follorving rve fix a Plancherel measure and choice of a neasurable lield of

i¡reducible representation-< (r5),.6 ald formal dimension operators (D6),-6 so rhar

Theorem 1.3 holds. 81'(aiz) ol rheorem 1.3. differert choices of the measurable fieids

of r-^ilresenIation o¡ forma] dimension opera¡ors ri'ill leacl to isomorphic fo¡mnlatiors.
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2.7 The quantization

Giveu a sr.mbot a e il(G) S (6P(G) : Bi e)'1 u,e clefine rhe operator Op(,,,) :

L'.lc) -+ I:(G) r,i,ith s),mbol a to be

o¡ n i, , l"J t,(o,, :.o'! ,,.,,- .)t u ü u./!rt,t

l'here ¿ is a square integrable functiol. The operator Op(a) is called the pseudo_

differential oper-ator rvith symbol a. Let

kor,,¡ 1l, _\.u, : f t(, , e,D. r,¡,¡ ) ,.

Sinre a is in the domain of the inr,.erse Plancl1erel transfor.malion in iis seco¡d,iariable

22. the abor.e integral conr.erges absolutelv and

kero(2,3i) : lp;1ale.rs-rllf e¡-i

Bl' Plancherel's theo¡em an,l the change of ra¡iabres gir.en br- cquariorr (1.1). we

conclude that ker. is a square integrable function on G x Ci. Hence Op(a) is a
Hilbert-Schniidt operator r-ith kernel kero and Hi jberr_Schmirlt norm

ilOp(r) r, - lker"ll¿,¡c*c; : ll¿ -s6r.

Nor,rve are ieacll' ¡6 ertend ihe definition of Op(a) Ior an arbitrary sl.mbol a e S(G)
using the prer.ious formula and the fact tha¡ Lr(G) (6f ¡G1 n 6f ¡G); is a clense

srrbspace of S(G). Hence Op extenrls to a unitary map Op : S(G) + E.¿(.L2(,G)) tt
a rrrriquc rva¡-.



2.2 Left and right quantizations

Haüng in mind the familiar Kohn-Nirenberg quantization for G : R" (cf (0 2)

with r:0), one notes that for non-abelian groups there are at least two possible

generalizations; a left quantization Op, (the one used so far in this thesis)and a right

quantization given bY

[op¡(a)z] (,) : l.l^r, (a@,q)n!"{t-ta).) u@ aCaa

Actually, these two quantizations are related in the following sense: let ¿ be a symbol,

and consider the symbol defined bY

a(r,€) : rr(r)i,P;1a(r,()"e (").

It is an easy exercise to check that op,(a) : op¡(a) using symbols of the form

a : f & !. For unimodular groups the assignment a *+ á is isometric, but for

general non-unimodular groups this is not the case since the modular function is not

bounded.

2.3 Some operators arrising from the calculus

One of the most important families of operators in -L2(G) is the one given by convo-

lution operators. In this section we show hor¡'- to recover the usual convolution and

multiplication operators using pseudo-differential calcuius'

For [. g C¿2(G) define the oPelators

[Mult¡a](a) : J@)u(r),

[convf z](r) : l"s@) f @-'") au.
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In general Ivfult¡ and Convr¿ are not bounded operators. In fact, Mult¡ is bounded
if and only if / is essentially bounded. Similarly. Con.,r¿ is bounded if and o¡ly 1f
ess supe .a ll0(€) ll ( oo nevertheless, for general non-unimodula¡ groups the co¡np6
sition Mult¡ Convf extends to a Hilbert-schmidt operator.

Suppose norv that G is unimodula,r, and let f ,S < Lz(G). Define the symbol ¿by

a(x,{): f(x)fG)
using the planche¡er inversion formura one gets that the quantizations give us a very
simple way to ¡ecover these families of operators. l{amel¡

Op¿(o) : N1ulr¡ Convr¿, Op p(a)u: lfult¡ Convf ,

where Convf is the operator given by Convf(z) = z x o.

Fo¡ non-unimodular groups the picture changes dramatically, the main ¡eason
being that the compositions Mult¡ convj are no longer llilbe¡t-schmidt ope¡ators
under the assumption that f ,g € Lr(q,In fact one has that

11Mutt¡ conv,¿ llr" : jla-i/ll,llA¿slir.

For general non-unimodular groups Mult¡ conve is not er.en a bouncled operator if
f and g are not chosen in a suitable manner.

One way to flx this is to take functions in an appropriate dense subspace. Chose
f,S e L2 (G) such that the functions t_L¡,ñgare square iategrable, and set

a(x, {) - ¿-á(,lrt,lÁüte).
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Then for u e L2 (G) we have that Op(o)z - f .b * z) for every u€ L2(G).lndeed,

'Opta)u](r) : / ¡t¡)-ilf¡)A(ry-r 1) gtry-l¡Lt!)'-iu(u¡ d-a' " "' Jc

: f @ l.Nü-1s(rv-1)u@)av
: f(r)(s *u)(r).

Another way to express the relation bet¡¡,'een symbols of the form a : f I O and

operators of multiplication and convolution is given in the formulas

op¿(/ 8 O) : Mult¡ Convá lMulta,r, (21)

: MultarTz¡ Cond-r7zr,

opft(/ I A) : Mult¡ Convfi,

here 9d(r) : S@-1). We also note that the left regular representation of G induces

a representation actin§ on 5(G): let o, be a symbol and y e G, then ,\, Op(a) is a

Hilbert-Schmidt operator. Hence by Proposition 2.3 below there is some symbol z.a

such that

), Op(a) : Op(s o)

It is easy to see that this defines an action of G and that

a'a(r' €) : "e@)a(Y'r' €)
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2.3.7 other c.nvorution operators that appear i, trre liter-
ature

In 15. §1.21 the autho¡ irl,r.oduces ¿ ti.rrnih, of ccnvolutior.r {l.c the ¡ight) operators

given bv

HI
Uorn', u(z) - J.tt(t,r Jt¡7;iq1, ¡a,, : iu r .9,.)(r).

These op-^rators are then ri-qed to si,u.l). the spacc of ieft._im,a¡iani operarors. Jf \y_^

rr¿nt to follol,'thls path there arc tllo u¡avs to strt.]v thcse operators. One consi.srs

of definü:Lg

á(z) A(r) 1o(e-1).

\ote th¿'rt ñ is absolutelv integrable if anri only if g is. Then. formali. ore iras

ot", I . j : r,tul \ ir(.¡'/
The other possibilit¡-is t.ci put

ñ(r) -- A(,r) '\q¡r-" : s'(t).

In this case. b1.tLe delilition of ,h arrl eqri¿rliion (2.2) ore gets

Opr(.i ¡ ñ) : lt.,tt., Cnn. f \{oito,.,, .

2.4 Quantization by a Weyl system

In this section l.e irrtrr¡ducc thc nolir¡l of a \\,er,l s),sterr for a geleral locall¡. ¡61¡-

pact group. 'rl:is is then used to defrre pesnclo-diffurenti:rl operators throrigh r-
quantizatidr fb¡ an arbitr¿r' meas.rirbl{i ftrnction t : G + G. Tbr: eoal in r}ris

se.tión is ro nlake sensc of Í'o¡mulas (0.i) and (0.a) in a iigorous *,a.v a,d to clarifi.
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the ¡ole of the required hypothesis. Throughout this section we fix a Plancherel

measure / and a measurable field (16, Da)c€e as in Theorem 1.3.

We start by defining a family of integral kernels that rvill turn out to be very

useful for thc rest ol this s^ction.

Definition 2.1. Given two square integrable functions u, u, we defi.ne the -Weyl

kernel associated to z, u b;,

K,,,(r,il : Lfu-1d+;G:rñu@): uq,¡u.¡r-to, (2 3)

We aiso introduce the r-Weyl kernels associated to the pair (u, u) as

t{ i,,'@, il : K 
".,1r ls- t 

)-t t, u).

which just amounts to a left t¡anslation in the first variable of -K.

Remark 2.1. Fubini's theorem yields

f . l.tn,,a, ü12 d., ds : f 
" 

l.lx.,,{", úl' a, ao

: [ |lurl,"(r 1y),2drdy
JcJc' ' '

: ll"ll3ll,ll3.

(2.4)

Hetce K[,, is square integrable. On the other hand if we identify -L2-functions of two

variables with tensors of the form u & u € L2 (G)i e L'z (G) under the identification

(uAu)(x,y): u" (a)u(r), then the adjoint of K'maybe identified with the operator

[(zr').s](2, s) : s("(@a)-L)r,ry)

acting on L2 (G x G). This operator is injective, hence K' defines a unitary isomor-

phism

K' : L2(G)i I L2(G) -+ L2(G x G)'



that rre will denote by the same letter.

Rernark 2.2. Note that u'being integrable is equivarent to a-áz being integrable,

moreover llA-+ull1 : ll"-llr By equation (2.2), [6 Ki.,@,y) d,c : (u * u.)(s) so, if
a,u* are integrable, then

l" l"tn,a*llar au: f. f 
" 

t@)-a lu@-t)u(t)l d,a dr

f I ^, t,- J. J.n{ul 
';lu(E)u(t)ldy dt

,, 1: lll\ ,¿jlr ll?rllr.

AIso note that for an arbitrary g € G, by Hólde¡'s inequality

| 
"lU,A, 

úl dr < 
ll ai ull2llull,.

By the previous remarks we see that if t,l,r,r belong to an appropriate dense suL

space, like C"(G) for example, then it makes sense to take the plancherel transform

of K[,u in both its first and second variables.

Definition 2.2. Let r'. G -+ G be given a measurable function, , € G and a

representatior z16 in the class of { e G. For nice enongh O e L2(G;?la), in a sense

we specify below, defrne the r-Weyl System by

lW" (tr ¿, y) ol(x ) = L ( y-' r)i ¡ 
e Í ly- 

t 
) r ) Di @ @- 

1 r)).

We drop the index ¡ in the notation when the choice r(.) : e is made. It ís important

to note that these operators are only defined fo¡ elements in

{o < L2(G;1tt) | o(r) e Dom(Dil ,-u.". u,ra ¡io}o e L2(Gi't7c)}.

The domain of W'(tra,fi contains the space of vectors of the form 4gu, where
.I

4 e Dom(D5") and u € Dom(N{ult¡r7,). Here i\,Íult¡ denotes the operator of multi-

plication by /, so in particular W'(ne,y) is a densely defined operator.

43



Proposition 2.7. Let u be a fi:ted, pLa.ncherel m.asu..e ana, kt (na. Di)eed be a

measurable field as in Theorem i.S. The operatorc (W, (n' 
, ú) c,¡16r. form a mea_

surable field of d,ensely d,efined, closed, operators on tfi ?16 d,{ g L2(G). If ra and, ri
are unitaríly equ,iualent representations uith intertwining operator [), thert

W"(ne',a): (U 8Idft€) W"(ne,ü (¿/. 8ld?i€).

Because of this, once we fix a measurable field of representations and Duflo-

Nloore operators, we will just write tr{z'((, y) instead of W,(oe ,A)

Proof. Let (Ac),.6 b" a measurable secrion of Í3 Xra.e such that 4, e Dom(D.+) for

z-almost everl.where, and let u be a square integrable function such that Lr/2u is

also square integrable, then

w' (n a, ü he & u) :, r¡, ¡r t¡ . 
¡ o! nte [.\, Murto¿ z], (2 5)

is clearly a measurable section of 1lqe L2 (G) = L2(G;71¿). In particular rlqg u e

Dom(W'(n6, E)). Let {(4!)ru6},re¡ be a toral subset of Í31le de such that u-a.e. each
,1

r{ is in the domain of Df , and let {zj}¡Ex e C.(G) be a rotal subset of tr2(G). Then

{(ni 8 ui) rr¿l¿¡6¡ is a total subset of /§ ?16 d{ I L'z (G) contained in the domain of

(fV'Qra,y))rr,o.áxci and the map

((,y) .> (w' (ra, il\tt a ur, {qi' I uj' ))

is measurable Íor each i,, j,i', jl € N. Hence the Weyl system fo¡ms a measurable field

of densely defined operators. By equation (2.5), one sees that it is a composition

of closed operators, hence closed for each pair ((, g) e G x G. Let [.¡ be a unitarv

operator such that

ra'@) : utra@)u-
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for each x € G. Let Dt : UO1U.. By the semi-invariance relation and eq*ation

(1.12), this is the Duflo-lvfoore operator associated to n!. Then one has

w" (r'r,ú(ne 6 v¡ : luÍq(r(y-') .)u. o'rirrla [te Mu1ro4 z]

: luraj@-I).)olu-nr)a [], Multoi zl

: (U e Id1.) W' (rq,y)(U-na I u)

and therefore the required relation

W' (tra' , t) : (¿/ I Idn€ ) W' (trq, r) (¿/' s IdH, ).

tr

Given two square integrable functions z, u such that Alu e L2(G), and a given

vector d e Oom(D,'/'), deflne the operator Wtr,,: L2 (G) -+ L2 (G) by

wi,,"G, üÓ : f" {w' {C,ü, I Q) (r)u(x) d,x.

\4¡e defined this operator on a dense subspace, but it can be extended to a Hilbert-

Schmidt operator (cf. Proposition 2.2 below). Note that

wi",,(€,y) ó: "et@-\) l"1láa) (v rr)u(a)ra(x)D! 
ód,x

: n €(r (a't)) P1(x 
",,)G, a) ó

: (P,x:",,) G,úo

Herc Pt denotes the Plancherel transform in the ñrst variable. This short remark

leads to the following proposition.

Proposition 2.2. The assignment ¿ I u F+ W[,, extend,s to a unique unitary map

W' I L'z(G)t 8 L'z (G) -+ 5(e) calted the Fouri.er-Wigner r -tra,nsf orrnation.

Proof. Given two square integrable functions z,u such that L1/2u is also square
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integrable, applying Plancherel theorem one gets

))wi" Át'" e¡ 
: | 

" 
I uttu,"re, il|.'u, d€ du

: | 
" 
I une, n,,) (€, úil's, ü da

: 
l" l"txt,,a, u)!2 d.r d,y

: ll"llZll,ll3,

which shows that W extends to a unitary isomorphism.

\A/e introduce the Wigner z-transformation of two functions u,u < L2(G) as

Vtr,,: PzPttWI, : PzKI., e S(G).

I\'lore explicitly,

vl ,r,r.{) : J"t¡y-trqu 
i) rr)i;ü-r¡(y{)t) u(r(a-.t) 1x¡ra¡y1D! dy.

We record for furthe¡ use the orthogonality relations, r,alid for LL,u',L,,rr' < L, (G)

(W",.,W",,¡)s@, = (u,u')(u',u) : \V",",V",,,,) s*.¡. (2.0)

2.5 Pseudo-differential operators

As before, fix a measurable map r : G -+ G. In th" n"*t definition rve formalize the

r-quantization Op"(a) introduced in equation (0.1). When r is the constant function

r(x) : ¿ we drop the superscript in the notation.

Deflnition 2.3. Let a e §(G) be a symbol with Plancherel transform in both

r,ariables G. : PtPll a e S(G) Define Op' (a) to be the unique bound.ed linear

,16



operator iD L'z(G) defined by the relation

(op'(a)u.'"-) : (a, wi,) sret

Or equivalently,

(op"(a)o, u) : \a,ri",") stc¡

Op'(a) is then called the r-pseudo-differential operator with symbol a, while

the map a '+ Op"(o) will be called the r-pseudo-differential calculus or r-

quantization.

Note that

I (Op' (o)u, u) I I jl o llsrcr I I 
W",, llsiar : ll, llsrq ll "llrllullr.

So in particular llOp'(o)ll < lirlirtci ByTheorem 1.3. a different choice of Plancherel

measure and tuple (re , D)rce gives rise to an equivalent calculus.

We have the following proposition. With only small its proof follows that of [33.

Theorem 3.8].

Proposition 2.3. Let us def,ne

lt,.,(w):\w,u)u, V u e L2(G),

the mnk-one operator associated to the pair (u,u). Then one has

L"p: oP'(ví."), v u,u e L'z(G)'

In part'icular, the mappi.ng Op' send,s S(G) uni,tarily onto the Hilbert space of all

Hi,lbe'rt- S chmi.dt operators 'in L2(G).
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Proof Note that relation (2.6) gives

(oP" (v[,,)u', u') = <vtr,",vr,",)

- /", ",t\ /",t ^,\_ \u, u /\u tu/

= (1.,,,{u,),a,),

for all square integrable functions. Hence 4,,, : Op,(yJ,,) Since the rank-one

operators are dense in the space of Hilbert-Schmidt operators, the desired conclusion

holds. n

After working out the formulas and assuming that z.o belong to an appropri¿te

dense subset, and that for ¡.r-almost a\l ¡ € G the operator a(2, () satisñes ihe

hypothesis of Proposition 1.5, one has

(Op'(a)u, u) : (P;1 a, K[,,) * p,c1

I I t- / -L \: 
J. J. JeT (o(r, €)Dr, r{ (y)" 

)Ktr,,tr,a)d€drdy.

Thu; by making the substitution g t+ ya and using (2.4)

[op' ra)u] rr) = l" l^r (ro t u-, s r, €1 oi n,qyr.) aly',,; i, 1, - 
r r ) tt{ dy

ttl1\
- J c J ^T la(r l@s 1- 

t 
) "c. q ¡ D! r r@ y y 

) 
t¡ y¡- i 

"qa- 
t) ü d.e

: l. | ̂ * ("r, ls x- t 
) r, o D! r 

6 
(u,-, ¡) ag1- i u(a) ü ¿u

Thus, the kernel of Op'(a) is the square integrable function

keri@,y):¡(y)-á l^r(,{,{ur-)x,q)oi,raky-1¡") aq e.T\

= L@) |fp;1al(r(?tr-t)x,xy-L). (2.8)

Fo¡mula (2.8) shows in another way that op? is unitary. Indeed by consecutive use

48



of Ft-rbiní's theorem,

l, l"lurú(", u)l' d., dy - i" l. ofr' lP;, a(, (cy-t),,, y-' 1l' d, ds

: l.l.lri,t tu)r,fil' axas

: ll,ll3r"r.

We summa¡ize the most importánt properties of Op" in the following theorem

(cf. Section 2.6 for the defrnition of an I1.-algebra).

Theorem 2.1. The r -quantizati,on Op" : §(G) -+ B, (L'z(G)) is a unitary ilomor-

phism of Hilbert spaces. Add.iti,onally Op" has the following properties

(t') If r (x) : e, then op'(,f a ?) : Mult¡ Convg Mult6r7,.

(ii) fhe integral kernel of Op'(a) ís gi,uen by

ker "(r, 
y) : L@)- + lP;t a)(.r (y x-l ) r, xy-t).

Remark 2.3. Suppose G is unimodular . If r(r) : e for all r € G, then formula (2.7)

reads

ker"(z,E) : ludt'' T(a@,()r¿(cy-'1.) d{ :@;la)(x,ry-t).

Remarh 2.4. When G : lR", rnder the rdentification of G with lR" defined by {(z) :

.-ztt(€,t\, with Haar measure as the Plancherel measure, and setting D€ : Id¿,1p),

we recover the Kohn-Nirenberg calcu.lus (cf. eq. (0.2)).

2,5.t Relations between different r.quantizations

The choice of measurable function r : G -+ G has to do with ordering issues in

the quantization arising frorn the non-commutaiivity of the operatorc invoh,-ed. One



may ask for is the exact relation between the quantizations given by Op and Op,.

Let a € S(G) be a sy:r'rbol deflned on the group, and conside¡ the unitary map

Q : L2 (G x G) -+ I'(G x G) given by

a S@,s) : S(r(a)-r,,a).

Then if r.e consider the symbol

a' : Pz (Q'). Plta,

after successive uses of the changes of variables shorvn in equation (1.1) we arrive at

the relation bet¡¡'een the quantizations

Op(a') : Op'(o).

This relation show's how to pass from the quantization where r(:) : e to an arbitrary

r-quantization. Note that a ++ a' is a unitary isomorphism.

Example 2.1. Consider r (x) : a. Then if o : / @ p we have

op"(o) : convf Mult¡ lvlulto,T, .

With formula (2.1) in mind one sees that this choice of r changes the order in r.vhich

the operators of multiplication and convolution are composed.

Example 2.2. We implement a right r-quantization via the formula

tr/l-\
lop[(a)u](z) = J..leT (a(r(y"r')r.()Din¿(r's)' )u(y) 

dEds.

As in the previous example, if we take r (x) : a the operator with symbol a : f e0
is

Op-h(a) : Convfi Mult¡.
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2.6 Involutive algebras of symbols

The fact that Opr is an isomorphisms allows us to define a product x,, which we

will call the Moyal product, and an involution.' on .S(G) by the formula

OP'(a *' b) : OP'(a) OP'(b)'

Op"(r-') : Op'(a)..

With this extra structure S(G) becomes an ff*-algebra [7, Appendix A], i.e. a

complete Hilbert algebra, which we will denote by H-(G). Being an ÉI--algebra

means that the following relations hold.

r *' 

ro or" u'r' r''.,'.', :' r' r: -: . .:' ro r:::'
for all a,á,c e H-(G). These relations follow from Proposition 2.3 and the fact

that the Hilbert-Schmidt operators are a Í1*-algebra v¡ith the usual composition and

involution.
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Chapter 3

Some concrete examples of

non-unimodular groups

h this chapter u,e rvorh cut in rlet¿ii the represent;,r.tion tlteor¡'of ttLe aflile gloup

and of Grélaud's group. ix'o simpie ex:Lrnples of notr-unimodular groups Ther ¡'e

shor, hos' quanLization rvorks iu tl.leses examples

3.1 A pseudo-differential calculus for the affine

group

In this section ri,e <.leveiop r. pseudo-dilfr:renlial calculus on thc aflitle group of thc

real 1ine. The theorl' of unitary representations of thc' ¿rllioe group is rvorkecl oul

; , ll;] or ir, Ll. o6.i'. h Lh'. " , i ,r,

G:{(a,o)€R'?lalo},
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deirotes the Affrne gloup. with product law

(b,a) . (b'.,a') : (ab' 1-b,aat).

The group G is a Lie group and the connected component of the identit], is a simply

connected Lie group; it is also the semi-direct product 1R x 1R.', where R" : IR \ {0}

is the multiplicative group of IR acting on lR. by multiplication. Since it is also a real

algebraic group, it is type I.

Let g : lpz be the Lie algebra of G u¡Íth bracket defined by

l(A, a), (0', 
"')l 

: (uB' - at 8,0).

The left Haar measure is lal-2 da db, and its right Haar measure is given by lal'ld'a db.

Hence the modular function is

a(b, a) : lal-1.

The Haar measures of G are a product of a continuous function on G and the

Lebesgue measure of R2. Hence they are strongly equivalent measures. The con-

nected component of the affine group is the only connected simply connected (non-

unimodular) Lie group of dimension 2 with Lie algebra g.

One important fact is that the exponential map exp : g -+ G is a difleomorphism

of g onto the connected component of the identity. The exponential and logarithm

maps are given by

exp(6.o) :(1t"-1),e")
\a /

log(b, a) : (- ¿ 
- ¡"g1";,1og1r¡) ,

\(¿ - 1 /

with the limit case being used if a : !.



3.1.1 Representation theory of the Affine group

one of the special properties of G is that its .nitary dual consists of a point with

positive Plancherel measure equal to 1 and a z-null set of one-dimensional repre-

sentations (cf. [t2, §6.2] where the Mackey machine is useci to compute the unitary

duat).

Up to a set of zero measure, G consist of a single representation r called the

quasi-regular representation. It acts on71¿: ¿2(R) via

tr (b, a) f (r) : lalL/z e-z"t'o ¡ 1or1.

We denote the equivalence class of r in á by the G¡eek lette¡ (. This is a square-

integrable irreducible representation since it has positive Plancherel measure.

The Duflo-Moore operator corresponding to the representation ( is given, on

its natura.l domain, by

Daf @): lrlf (x).

An explicit calculation of the matrix coefficient functions for f , g e Z2(lR) shou,'s that

c ¡,nQ, o) : 1olt, lo ¡ 
qr1 sGñe2n,b' d.r.

|c¡.n|z: l.lat-uPw
t,^.. 

-"dbda: 
lclJ(b)s\ab)l'-da

: ltf |Z|D;t sti,

This is another way of seeing that ,r is a square-integrable representation. The

Let u"(a) : f (r){ax). Then
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Plancherel t¡ansform is given by

[/(q,9l1rt : tl" l"f(t ots¡or)""'o'ff

:l¡lt2 [ !t, f (r.a)o(a da' Jc lal
, '-!¡ I rl,: l"ff"¡ \t':) s@aa'

This is a Hilbert-Schmidt operator rvith integral kernel

K¡(r,a): $n., (,,1) , (3.r)l(¿l \ tr/

where fi denotes the usual Fourier transform on the real line acting in the first

r.ariable. A calcuiation in [12, §6.7] shows that the Plancherel formula implies

llK ¡¡21,¡w1 : I l_, #lr, t (,, 1)l' * o.

: ll*,r,rcapff
:IfllT,s.

So, as required by the general theory, the Plancherel transform implements a unitary

isomorphism

? : L2(G) -+ &(¿'?(R)).

Note that the center of the right-hand side von Neumann algebra is C . Id¿:¡6.1, so the

Plancherel transform implements a central decomposition of. L2(G). In particular,

this calculation shows that the support of the Plancherel measure is {(}. There is

not enough room in Z2(G) for another representation, hence we identify the unitary

dual of G with the singleton {(}.
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3,1"2 The quantization for the affine group

Let r(b, a) : (0, 1) for úl (b,a) € G, For a symbol a formula (0.1) reads

[op (a 
) z] (a, ó) : I l*" !", ¡r,r, (.¡u, "¡ o!, (, - 

":r, *). ) 
u(b', o;) dd d,a' .

If we identify symbols on G rvith functions J e L2(G x G) via the unitary map

defined by equation (3.1) we may think of symbols as integral operators of the form

[o(r, ()z](y) : 
loK,a.la, ')u(s) 

ds = lPzf (.t,€)u)(ü.

Using formula (2.8) for kero, formula (0.1) boils down to

[op(o)u](b,a) : ll-,ffir (ra,,l, (a - *r,*))u(b',a')db'da'

In particular the map

L2(G x G) > f + kerp,¡ < Br(L'z(G)),

is a unitary equivalence.

3.1,3 Operators that arise from the representation

Let A : (0, 1) and B : (1,0) be the generators of g; they satisfy the commutation

relation [.4, B] : B. Then lf dtr(X)u: f;r (etx)u i¿=0, denotes the (densely defrned)

induced representation of g on the Hilbert space Z2(R.) r'e have that

[dn(A)/](r) - lt l + rJ'(t).

fd.n (B) fl(t) : znir f (x) .

Clearly [dzr(A), ar@)): d;r(B). Note also that

d¡(A\=!(, !-¿,).
2\- dr dr*)'



is the infinitesimal generator of dilations of JR, a well-studied operator on IR.

3.2 Grélaud's group

Grélaud's group is one of the non-unimodular Lie groups that a¡ises from Bianchi's

classification of 3-dimensional Lie algebras l3]. Let d e R \ {0} and let

( , d\
A=Ae= |-,I\ "'/

We endow Ga: lR x lR2 with the multipLication law

(s,u) . (s',u') : (s + s',e-"'Aut u').

Here

( 
"ns(t|\ sinltBl \

"'' - tt[ .rr,rr, .*),r, ,l\ ' "/
G6 is a semi-direct product R x R2 with unit e : (0,0) and inverse given by

(s, u)-1 : (-s, -e"Az).

The left Haar measure coincides with ihe Lebesgle measure on JR3, but the group is

not unimodular. Indeed, the modular function is given by

A(s, u) : s-2'.

The Lie algebra ge of G6 is, as a vector space, R x IR2 with the Lie bracket

l@, p), ("', p')l : (0, o A¡-r.' - o' Ap).

Since the commutato¡ [St, go] it contained in {0} x JR.2, a commutative subalgebra,

then 96 is a two-step solvable Lie algebra. Its exponential map exp : gs + G6 is



given by

e.\p(d. !) : (o ! r' ("-" - ta) ¡ 
\

\ o ' ,'')
The exponential map is clearly a dÍffeomorphim. In particular Ge is an exponentially

solvable Lie group, connected and simply connected as a topological space. Recall

that exponentially solvable groups are iype I. N4ost of the representation theory of

G¡élaud's group is worked out in detail in [15, §a.a], but we calculate it in Section

3.2.2 to show how Theorem 1.1 wo¡ks.

3.2.L Representation theory of G6

There are two farnilies of representations of G6. Let ) e R, then

\r (s' u) : ¿;r'

is a one-dimensional unitary representation, Let p e St be a unit vector in the plane.

Then we have the unitary representation on ?1, : ¿'(R)

rr(s,u)f(t) : e-¿\e'J"-n"") Í(t - s).

The following proposition is proven in [15, §4.4]. We also give a proof of this propo-

sition in Section 3.2.2 using Proposition 1.1.

Proposition 3.7, Eaery irred,ucible i,nf,nite-dimensionaL un'itary representatian oJ

G6 is unitarily equi,ualent to r, Jor sorne p e S\. Moreouer the set of classes oJ these

representati,ons i,s a u - corrull set on G6, and the Plancherel rnel¡ur-e coinci.des --ith a

multiple of the Haar measure on the ci,rcle.

From now on we identify the Pl¿ncherel measure of 4 with the Haar rneasure

on the unit circle having total measure zz(S1) : 1. We also identify zr, with p e ,51.
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The map .F2 denotes the usual Fourier transform on 1R.2 on the secoud variable.

The Duflo-Moore operators, appiied to a function / lying on a dense subset of

Z2(R;, ar" give¡ l,
1

Def ft): *r-" f lt).
With this in mind. we find that the Plancherel transformation on Ga is given by

t/tplgl(r) : + tt fft - s.u\e-¡t'-'^'p")e''s(s)dsdu
r,/2n JJm.n: ' '

I t - -/ 1 -,, \- ;E lwt'zf lt - s' ;e-"^" o ) 
e-" s(s) d's'

where .4t denotes the transpose of the matrix A. Lef p($: (cos(rp), sin(tp)). Then

Plancherel's formula reads

l,,l itall, *: * 1,, l*ln,r,J (r - , .4" 
*'r¡ ',' 

"-'" 
dt d,,dp

: h l,^ l_l_lr,r (,,fi"-"*r@))l' ,-,"ata,ae
ff: ll lF2flt,u)12 dt du

J JlRx tR,

: ll/11;,

where the second equality comes from the fact that the Jacobian of the transfo¡ma-

tion

3.2.2 Computing the unitary dual

Here we compute the unitary dual of G : Gd using the Nlackey machine (Theorerr

1.1). Let ¡f : {0} x lR2 and let 11 : G/¡¿ = R. Note that ly' is a type I normal

/\
tt'(s'e) :l'-"^ f 'ot(P) I'zir 

\sin(5r)/
is e-2" 14r2, i.e. e-2'dsdp:4tr2du.



closed subgroup of G6 since

(s, z) . (0, t) . (r, r)-' = (0, e"Az,).

We identify an el.ement p € R2 with a representátion a, € fr via

ot (O,u) : e-i(P'"| '

After the above identification, the dual action of G on lR2 Ís given by

(s,u).¡r: ¿"t" ,.

Since lle'A'¡z]l : e"ll,¿ll, one can see that the orbits are spirals towards the origin,

and the origin itself. Hence ÑlH may be identified with the unit circle 51 and

a point {0}, which is a countably separated Borel space. Let p, € 51. Note that

the stabilizer rn G of ¡t is I{. Let ¡, : Ind?,(o r) be the induced representation

acting on the space L2 (G, N . o r, pe), where pq is the Lebesgue measure on IR. Thus,

J e L2(G,.rtr, or.pp) satisfies

f((",,) ' (0, o)) = o,l0,u)' f (r) a.e and f,l/{r, o)l'a, . *.

Note that the Hilbert space on which n, acts is unitarily isomorphic io ¿2(lR) with

the following unitary isomorphism: identify a function / € ¿'z(R) rvith the function

J¡ < L2(G,N,or,tn) given by

,fo(s, u) = 
";-lu'") 

¡ $).

Abusing notation, n, is given on tr'?(R) by

rr(s,u)f(t) -- "-i(u'e<"-'tAu) ¡7, - ,¡.
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Ha'i.q in mind that the rnorr,i¡.r frr¡ctic¡n coinrides *iLh rhe .,,ultipiic:-,tion br, ¡.
one ¿iso has ¡h¿t rhc Duflo-\.{oo¡e o!er¿tors are. Lrp to norrn.lliza,l ion. gir.eu b.1.

Drf (t,\: e 2t¡i.t,:.

ll *'c start *'ith the orbit of ¿r - 0, the, the s[abi]izer oi this poirii: is aI of the group.
alrd tho tril'rar reprosertaiiion exterds to the -.r,hore group. Herrce th-^ representiltions

l'e ale looking at are of th-^ forrn .\.\ : IndS(1 x o¡). ril.rere o.)1(.\. ,lf.j : e ,.\., is a

rLnitarv represelta¡ion of H, 3 R for some ) € R. It is ea.sr. ¡o ¡r.e tha¡ IndE(or ) is
unitaril¡' cquiralent to the one-dirnensional reDresentatir¡l

Xr (s, z) : 
"-';'r'.

No\Y we see that

4 : {", i /, € ^9'i u{r^ I ¡ € F.} = 51.rrR.

Tc, use Proposition 1.4 r,e chose e : [r, 1{0} as our G,irrrariant ]/_v,conull subset of
.1'. rl , t. rn. har. trr- follo,rirr¿ ¡ - o,rul, 

"uL"p¡ ,f rl

si,ce for each a € lr. rhe d.a1 of the stal¡ izcr fl r:o'sist or c,,r¡- a point. re calcu-
lation of the Pla¡Lcherer l,easure amounts to fi.d a ¡rcsucro,image cf tlie pra,lcherel

rreas.rrc of Ñ = R: ot elH = 51 (i.e. the Lebesgue rreasure on Rz). The Haar_

me¿su¡e of the cirr:le is a fine choii:e of pseu<10-image. Hence the pl¿,cherer me¿ls..ie

of á¿ is jrLst the Ha¿rr measure on the cir.cle.

U {Ind¡t(o xp)lpe@}: {r,,, ipe ,S,i.
o" €t) /
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3,2.3 The quantization

Let a e §(Ga) beasymboland let r :G -+ G be the map riefinerl by ?(5, u) : (0,0)

for all the elements ofthe group. Then, the kernel ofthe pseudo-differential operato¡

with symbol a is given by

kero(u,s,u',s') -- lr,r, (aQ,",e)Dlno(s - s,,e"'Au - "-"'^r,)) "r"'dp.

An the symbol space can be identified with

s(G)-1,(c)a f n¡C6¡1aa

= L2lG) I L2(e) I Br(¿r(R))

= L2(G x 51) s 6r(¿r(R))

= ¿2(R5 x [0, r]),

tbe last space endowed with rhe Lebesgue measure.
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Chapter 4

Crossed products of C*-algebras

We introduce some tools from rhe theory of crossed. products of C.-algebras, rhis in

turn shall help us to cover the bigger class of compact operators on .Lz(G), using

the Schródinger representation of a natu¡al crossed product associated to G, narrrely

C6(G) x G.

4.L C*-dynamicalsystems

Definition 4.1. A C*-dynamical system is a triplet (A,G,a), whereGisalocally

compact group, -4 is a C*-algebra and. a : G -+ ALrt(" ) is a strongly continuous

representation of G.

Lef (A,G,a) be a C*-dynamical system, to it rvhich we associate the space

L'(G; A) ofall Bochner-integrable functions f:G -+.4. This space has the structure
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of a Banach *-algebra with convolution and involution laws given b¡, formulas

(f * d@) = l.ttú",(s{u-',)) aa,

i-@) = L(r) '",(tt -').) .

The Banach.-a1gebra L1(G; A) is naturally isomorphic to the projecti!-e tensor prod-

uct .4 8 .L1(G). Consider the universal norm on Lt (G; A) given by

llf ll.q"c : supllp(/)ll,

where the supremum is taken over the set of all non-degenerate *-representations of

.4. The crossed product 
"4 

x G is the en'eloping C--algebra of .L1(G; .4), that is,

its completion under the norm ll.ll¡"6.

Example 4.1. Let A be a C.-algebra, take G to be the trivial group and o to
be the trivial representation, then ,4 x G is naturally isomorphic to ,¿1. Another

more interesting example is when rve have a continuous action of G on a topological

space X. This induces a map o , G -+ Co(X) given by a"(f)(p): /(c 1p). Then

(C¡(X).G,a) is a C--dynamical system and it encapsulates all the information of

the group action.

Definition 4.2. A cor,aniant representation of a C*-dynamical system (,.4, G, a)

is composed of: a unitary representation fi of G and a non-degenerate *-representation

p of ",4, both acting on a Hilbe¡t spa,ce fl in such a way that they satisfy the relation

n (c)p(f)r(c)- : p(a,f)

\AIe denote this data as the triplet (p,",?l).

!eA,reG.

Example 4.2. Lel (C¡(X),G,a) be the C.-dynamical system induced by an action

of G on X. Then a covaria¡t representations of Cs(X) x G is exactly the same as a
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system of imprimitivity (cf. [3t] §3.7). In fact there is a one-to-one corresponde¡Ce

between continuous actions of a group G and C*-dynamical systems ("4, G, a) where

the C"-algebra 
"4 

is an abelian one. This can be easily seen from the fac! that sys¡y

abelian C"-algebra is of the form C¡(X) for some Iocally compact space and there is

a correspondence between strongly continuous representations a : G -+ Aut(Ce (X))

and continuous actions of C on X [45, Proposition 2.7]. In particular, a system of

imprimitivity is the same as a covariant representation of a C.-dynamical system

where the C.-algebra is abelian.

Every covariant representation (p,",11) of a C.-dynamical system naturally

induces a non-degenerate *-representation pxt of the crossed product AxG on ?1,

which is the unique extension of the representation of 11(G; 
"4) 

given by the integral

p < lr(i) : l"o Utilt ,ls!ay. (1 1)

This process sets up a bijection between the covariant representations of a CL

dynamical system and the non-degenerate *-representations of the crossed product

associated to it [45, Proposition 2.40].

4.2 The Schródinger representation

There is a natural covariant representation associated to any left-invariant C*-algebra

of functions defined on G. We show some of its properties and how it relates to our

quantization.

Let "4 be a left-invariant C--subalgebra of the space of bounded left uniformly

continuous functions on G. For an 
"A-valued 

function F on G and elements r, z e G
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1r,e make the convenient identification

F(x)(z): r¡r,¡1

The triplet (A,G,a) is a C-dynamical system when endowed with the action a :

G -+ Aut(,4) given by a"F(z,y) : F(z,x-la).Then our convolution and involution

Iaws are given by

(F * G)(z, x) : l"r*,,r, G(y 1 z.y-1 r) d,y,

F. (z' x) : L(1)-|F@w, r\'

Let 7l denote the space of square integrable functions on G. Then we have a natural

corariant representation of the triplet (A,G,a) given by

^,u(a) 
: u(c-'a), MultTz(s) : f(u)"(a).

The Schródinger representation is the integrated representation Sch: Mult x)
of Ax G. More explicitly for a function F e L|(G;A),

lsch(r)¿l(o) : frr(r,y)u(s-tx) dy

: 
f" r ¡r, ru-1 ttls)-tu(a)du.

The good thing about the Schródinger representation is that, formally, one gets the

following reiation

Op(/ s 0) : Sch(/ I e) o Mult¡,7, .
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We can estimate the norm

(scn(/) (u),,) s f"ll"ru,O"A-'r)u(fl dyldx

< | 
"l 

l.t I al' *ulv- | r) u( r) d sldr

< f.xlttlt*," u)(x)u(x)l d.x

< il.f ll¿,rc,¡rllzllz llullz.

But much more is true, from the integrated form formula (4.1) one sees that in fact

one has a better estimate of this norm:

llsch(/)rl < ll/ll¡,c.

4.2.L Interlude on Amenable groups

Let r1,r2 be unitary representations of G. Each one lifts to a non-degenerate *-

representation frt and ftz ofthe C*-algebra C- (G) ofthe group. We say that ni is

weakly contained in z'2 if and only if ker;, C keq, .

A locally compact group G is called amenable if the trivial representation is

weakly contained in the left regular representation.

We recall some of the equivalent definitions for amenability [7].

Proposition 4.1. The Jollou'ing cond,i,tions are all equ,iualent.

(i) The group G is amenable.

(íí) There i,s a bound,ed linear functional L* (G) -+ lR fáaf is pos,itiue and left-

inuariant.

(iii) All of the irred.ucible representat[ons of G are weakly contaíned in the teft regular



(i.u)

representat'ion.

The support oJ any Plancherel measure is alt of G.

In general a connected Lie group i,s amenable iJ and, only if i,t has a closed normal

soluable subgroup such that the quotient i,s conlpact.

By Proposition 4.1 non-compact semisimple Lie groups are not amenable.

Example 4.3. Some examples of amenable groups are: ñnite groups, abelian groups

a¡rd connected solvable Lie groups. An exbension of an amenable group by another

amenable group is also amenable. Every quotient by a closed norrnal subgroup and

every closed subgroup of an amenable group is amenable.

Exa:rrple 4.4. Since Grélaud's group is a connected solvable Lie $oup, it is amenable.

Similarly the affi¡re gloup is an extension of lR by IR", hence it is also amenable.

Remark 4.1.In [a5, §a.a] it is shown that there is epimorphism of C*-algebras b+

tveen the space of compact operators in L2 (G) into C6(G) x G. Part of the result

is that this morphism is an isomorphism if and only if the group is amenable. Il
padicular, for each / € C6(G) x G, the operator Sch(/) is a compact operator with

operator norm equal to the universal norm of /. This gives us a way to extend our

quantization so that lve cover the more general case of compact operators. In the

general case that G is not amenable, we still have that Sch : C¡(G) x G -+ Bo@2 (G))

is an onto contraction.
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Chapter 5

Conclusions

There is still much room for more general quantization. For example, one could

drop the type I hypothesis since the non-unimodular Plancherel theorem still w-orks

partially in this setting [8]. Another, more important aspect to improve is the gen-

erality of the symbols involved, and to get an analogue of the Hórm.ander sln¡bol

classes, for at least conrected simply connected Lie groups. This has already been

done for compact and nilpotent connected Lie groups [10,37]. This is particularly

important since almost all the operators that appear in mathematics and physics

are unbounded, and our class only covers the much smaller class of Hilbert-Schmidt

operators. And the usual Koh¡-Nirenberg covers a big class of unbounded operators

rvhich a¡e needed for applications.
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