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TÉCNICAS DE ANÁLISIS VARIACIONAL: FUNCIONES DE
PROBABILIDAD Y ESTIMADORES DE NO-CONVEXIDAD.

Esta tesis tiene como objetivo aplicar técnicas de análisis variacional a dos diferentes temas:
el primero es funciones de probabilidad y el segundo la medida de no-convexidad de Cassels.

Comenzamos aproximando dos diferentes formulaciones abstractas de funciones de prob-
abilidad. La primera aproximación es motivada por el hecho que las restricciones en un
problema de optimización con incertidumbre pueden resultar ser no-suaves. En este trabajo
proponemos una regularización empleando la envoltura de Moreau a una representación es-
calar de una función de probabilidad que consiste de una desigualdad vectorial, la cual cubre
la mayoría de las clases generales de restricciones probabilísticas. Demostramos, bajo leve
condiciones, la diferenciabilidad de tal regularización y además su convergencia variacional
hacia la función nominal. En consecuencia, cuando consideramos un problema apropiada-
mente estructurado con restricciones probabilisticas, podemos entonces obtener la conver-
gencia de los minimizadores de los problemas regularizados a los minimizadores del problema
original. Finalmente, ilustramos nuestros resultados con ejemplos y aplicaciones en el campo
de problemas de optimización chance constrained del tipo joint, semidefinido y probusto. La
segunda formulación es una función de probabilidad generada por multifunciones. Aquí nue-
stro objetivo principal es probar su continuidad del tipo Lipschitz. Para esto, proponemos un
enlargement, el cual, via la función distancia, puede ser demostrado que tiene tal propiedad y
en consecuencia, por aproximación, obtenemos nuestro objectivo principal. Como aplicación
de este resultado, probamos la propiedad de Lipschitz de una función de probabilidad del
tipo joint bajo la condición de cuasiconvexidad.

Para el segundo tema, recordamos que el operador proyección sobre conjuntos cerrados y
convexos en un espacio de Hilbert es siempre un singleton. La inversa también es cierta en
espacios de Hilbert finito-dimensionales, y también para conjuntos débilmente cerrados en
cualquier espacio de Hilbert. Esto es el famoso Teorema de Klee. El problema de si tal inversa
es cierta para conjuntos cerrados que no son débilmente cerrados está aún sin responder. En
esta tesis, aplicamos caracterizaciones variacionales de convexidad a la llamada función de
Asplund para obtener una respuesta positiva parcial a este problema mediante una relajación
de la proyección. Finalmente, via la medida de Cassels, estimamos la distancia de Hausdorff
entre un conjunto y su envoltura convexa en términos de las proyecciones simultáneas hacia
el conjunto y hacia su envoltura convexa. En consecuencia, obtenemos una cuantifiación del
Teorema de Klee cuando la medida de Cassels es finita.

Esta tesis termina con conclusiones y trabajo a futuro.
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TECHNIQUES OF VARIATIONAL ANALYSIS: PROBABILITY
FUNCTIONS AND ESTIMATORS OF NON-CONVEXITY.

This thesis aims to apply techniques of variational analysis to two different subjects: the
first one being probability functions and the second one, a particular nonconvexity measure
called effective standard deviation.

We approximate two different abstract formulations of probability functions. The first
approximation is motivated by the fact that the constraints in optimization problems with
uncertainty may result to be nonsmooth. We propose a regularization by applying the Moreau
envelope to a scalar representation of a probability function consisting of a vector inequality,
which covers most of the general classes of probabilistic constraints. We demostrate, under
mild assumptions, the smoothness of such a regularization and that it satisfies a type of vari-
ational convergence to the original probability function. Consequently, when considering an
appropriately structured problem involving probabilistic constraints, we can thus entail the
convergence of the minimizers of the regularized approximate problems to the minimizers
of the original problem. Finally, we illustrate our results with examples and applications
in the field of (nonsmooth) joint, semidefinite and probust chance constrained optimization
problems. The second formulation is a probability function generated by a set-valued map-
ping. Our main objective is to prove its local Lipschitz continuity. To do so, we propose
an inner enlargement that, via the distance function, can be proven to be locally Lipschitz
continuous. Subsequently, by approximation, we obtain our main result. As a consequence,
we prove the local Lipschitz continuity of a Joint probability function given by a system of
inequality constraints with a relaxed convexity assumption.

We recall that the projection operator onto closed convex subsets of Hilbert spaces is
single-valued. The converse is also true in finite-dimensional Hilbert spaces, and also for
weakly closed sets in any Hilbert space. This is the famous Theorem of Klee. The problem
of whether such a converse holds in any Hilbert space for closed sets which are not weakly
closed is still unanswered. In this thesis, we apply variational characterizations of convexity
results to the Asplund function to obtain a partial positive answer to this problem, provided
that the concept of projection is relaxed to the one of weak projections. Finally, via the
effective standard deviation measure, we estimate the Hausdorff distance between a set and
its closed convex hull in terms of the size of the simultaneous projections on the set and its
closed convex hull. Accordingly, we give a quantified version of Klee’s theorem provided that
the effective standard deviation of the set is finite. This thesis ends with conclusions and
future work.
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Chapter 1

Introduction

This manuscript is organized as follows: Chapter 2 presents an overview of basic topics, tools
from variational analysis, and generalized differentiation, followed by a section dedicated to
introduce one of the two main subjects of this thesis: probability functions. Chapter 3,
Chapter 4 and Chapter 5 expose the main contributions of this thesis.

Chapter 2: Inner Moreau envelope of probability functions

In this chapter, we consider a probability function φ : H → [0, 1] formulated by

φ(x) := P (ω ∈ Ω : Φ(x, ξ(ω)) ∈ −K) , (1.1)

where H is a separable Hilbert space, ξ : Ω → Rm is an m-dimensional random vector, K ⊂ Y
is a (nonempty) convex cone of a Banach space Y and Φ : H × Rm → Y is a function.

When solving an optimization problem by applying deterministic numerical techniques,
it is necessary to calculate both, the values of the probability constraint function and its
gradient. Nevertheless, in some cases, the probability constraint function may be nonsmooth.
This motivates us to propose a regularization employing the Moreau envelope of a scalar
representation of the probability function φ(x) given in (1.1). More precisely, to handle the
random vector inequality we consider a compact convex C ⊆ Y∗, which generates the positive
polar cone of K, that is, clw∗ cone C = K+, where clw∗ denotes the weak∗-closure, and assume
the existence of a continuously differentiable convex function h : H → R such that for all
v∗ ∈ C, the function

H × Rm ∋ (x, z) → Φh
v∗(x, z) := ⟨v∗,Φ⟩(x, z) + h(x) (1.2)

is convex in both variables, where ⟨v∗,Φ⟩(x, z) := ⟨v∗,Φ(x, z)⟩. Now we are able to rewrite
the probability function φ in (1.1) in its scalar representation as

φ(x) = P
(
ω ∈ Ω : ShΦ(x, ξ(ω)) ≤ h(x)

)
for all x ∈ H.

where ShΦ(x, z) := sup {⟨v∗,Φ⟩(x, z) + h(x) : v∗ ∈ C}. Finally, the inner regularization of φ
that we propose is

φλ(x) := P
(
ω ∈ Ω : eλ Φh(x, ξ(ω)) ≤ h(x)

)
, (1.3)

where eλ Φh(x, ξ(ω)) stands for the Moreau envelope of the function ShΦ(x, z).
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Example Let ξ ∼ N (0, 1) and considering the probability function given by the nonsmooth
single inequality

φ(x) = P (Φ(x, ξ) ≤ 0) .

where Φ : R×R → R is given by Φ(x, z) = 2f1(x) + f2(z) − 5, where f1(x) = max(|x| − 1, 0)
and

f2(z) =
{

z2 if z ≥ 0
−z otherwise.

It is clear that in this case the cone K in consideration is given by the set of nonnegative real
numbers, the generator of the positive polar cone is nothing more than the singleton C = {1}.
Also, notice that we can choose h(x) = 0 for all x ∈ H. This probability function is not
differentiable at x̄ = 1,−1 and, given λ > 0, its inner regularization is given by

φλ(x) := P (eλf2(ξ) ≤ −2e2λf1(x) + 5) .

The details of the proof, the graphs, and the formulas for the Moreau envelope are given in
Example 3.3.

Our inner regularization inherits variational properties of the Moreau envelope, for in-
stance, its smoothness and variational convergence to the original function. More precisely,
the variational convergence properties of the family φλ to the function φ is in terms of
hypoconvergence:

Corollary The sequence of regularizations φλ hypo-converges to the probability function φ.
In addition, suppose that the function h in (1.2) is weakly continuous, then the sequence of
regularizations φλ Mosco hypo-converges to the probability function φ.

The gradient formula of the inner regularization φλ is obtained assuming that H is finite-
dimensional, assuming the existence of a Slater point, and imposing a growth condition on
fξ in order to apply the gradient formula using the so-called spherical radial decomposition.

Theorem Let x̄ ∈ H be such that ShΦ(x̄, 0) < h(x̄), and assume that fξ satisfies the following
growth condition

lim
∥z∥→+∞

∥z∥m+1fξ(z) = 0. (1.4)

Then, for any given λ > 0, the probability function φλ, defined in (1.3), is continuously
differentiable on an appropriate neighbourhood U of x̄ and it holds:

∇φλ(x) =
∫

Sm−1

Gλ(x, v)dµζ(v), for all x ∈ U,

where Gλ is as in (3.16). Moreover, the gradients of eλ Φh can be computed by the formula

∇eλ Φh(x, z) = (x, z) − Proxλ(⟨v∗,Φ⟩+h)(x, z)
λ

, (1.5)

where v∗ is any active vector at (x, z), that is, v∗ ∈ C and eλΦh
v∗(x, z) = eλ Φh(x, z) in view

2



of Proposition 3.2.

Let us consider a convex proper and lower semicontinuous function ψ : H → R∞, a fixed
reliability parameter p ∈ [0, 1], and the optimization problem

minψ(x)
s.t x ∈ M(p),

(P )

where M(p) := {x ∈ H : φ(x) ≥ p} and φ is the probability function defined in (1.1).
Related to problem (P ) we consider the family of problems

min eλψ(x)
s.t x ∈ Mλ(p),

(Pλ)

where Mλ(p) := {x ∈ H : φλ(x) ≥ p} for the regularized probability function φλ. Our
main result states that the approximated probability functions, through their inner Moreau
envelope, allow us to approximate the given optimization problem (P ).

Theorem Let ψ : H → R∞ be a convex, coercive and lower semicontinuous function such
that M(p) ∩ domψ ̸= ∅. Then

a) v(P ), v(Pλ) ∈ R for all λ > 0 and v(Pλ) → v(P ).

b) If (P ) has a unique optimum x0 and xλ is any sequence of optimal solutions for (Pλ),
then xλ ⇀ x0, provided that the function h in (3.3) is sequentially weakly continuous.
If, furthermore, domψ = H and ψ∗ is Fréchet differentiable on dom ∂ψ∗, then xλ → x0.

Chapter 3: Generalized differentiation of probability functions generated by set-
valued mappings

In this chapter, we investigate a probability function formulated by

φ(x) := P(ω ∈ Ω : ξ(ω) ∈ Si(x) for all i = 1, . . . , s), (1.6)

where ξ : Ω → Rn is a random vector from a probability space (Ω,A,P), X is a separable
reflexive Banach space, and Si : X ⇒ Rm with i = 1, . . . , s is a family of set-valued mappings
satisfying : there exists a neighborhood U of x̄ such that

a) 0 ∈ Si(x) for all x ∈ U

b) Si is locally Lipschitz-like at (x, z) ∈ gph Si and x ∈ U

c) Si has closed graph and convex values
(H)

In order to prove the local Lipschitz continuity of the function φ in (1.6) we consider the
following enlargement: Given ε > 0,

φε(x) := P(ω ∈ Ω : ξ(ω) ∈ Si(x) + εB for all i = 1, . . . , s). (1.7)

Now, since our intention is to use known results about the local Lipschitz continuity of a
probability function (see Theorem 2.2) we reformulate the enlargement through the distance
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function as

φε(x) = P(ω ∈ Ω : d(ξ(ω),Si(x)) ≤ ε for all i = 1, . . . , s).

Let us notice that due to the continuity of the probability measure we have that

φ(x) = inf
ε>0

φε(x).

By applying the results exposed in Theorem 2.2 to gi(x, z) := 1
2 d2(z,Si(x)) − ε2

2 we obtain

Theorem Assume that the family of set-valued mappings Si satisfy the η-growth condition
given in Definition 4.12 at x̄ and that each Si satisfy (H) at x̄.

Then the probability function (1.7) is locally Lipschitz at x̄ and on an appropriate neigh-
borhood U ′ of x̄ it holds:

∂bφε(x) ⊆ clw∗

 ∫
v∈Sm−1

cl co Mε(x, v)dµζ(v)

 , for all x ∈ U ′, (1.8)

where Mε(x, v) are given in (4.14). In addition, if H is finite-dimensional the closure can
be omitted.

We notice that the η-growth condition and the set Mε(x, v) are given in terms of the
coderivative of the set-valued mappings Si due to Lemma 2.1.

In the sequel, we will require the following interior continuity property for set-valued
mappings to ensure the continuity of the radial functions ρε(x, v) (Lemma 4.3) and bound-
edness of Mε(x, v) (Lemma 4.6) on (ε, x, v) ∈ (0, ε′) × U ′ × Sm−1 for some ε′ > 0 and some
neighborhood U ′ of x̄.

Definition 1.1 We say that a set-valued mapping S has the interior continuity property on
U ⊆ H, if for every x ∈ U and z ∈ int(S(x)) there exists r > 0 such that

Br(z) ⊆ S(x′), for all x′ ∈ Br(x).

Since the original probability function φ(x) is the infimum of the arbitrary family {φε(x)}ε>0,
the basic subdifferential of φ can be estimated in terms of the subgradients for the basic sub-
differential of the members of the family (Lemma 4.2 )

∂bφ(x) ⊆
{
x∗ ∈ H : There exist ∃xk → x, εk → 0+

and x∗
k ∈ ∂bφεk

(xk) s.t. x∗
k ⇀ x∗

}
.

This entails our main result

Theorem Consider each Si in the family of set-valued mappings satisfying Assumption (H)
at x̄ ∈ U with 0 ∈ int(Si(x)) for all x ∈ U and having the interior continuity property on U .
Moreover, assume that the family of set-valued mappings Si satisfies the η-growth condition
at x̄ and that (2.10) holds true.

Then the probability function (1.6) is locally Lipschitz at x̄ and on an appropriate neigh-

4



borhood U ′ of x̄ it holds:

∂bφ(x) ⊆ cl

 ∫
v∈F(x)

M(x, v)dµζ(v)

 , for all x ∈ U ′

where, M(x, v) is given by,

M(x, v) =


α

⟨z∗, Lv⟩
· x∗ :

α ∈ Iθ(ρ(x, v), v), z∗ ∈ Nb
S(x)(ρ(x, v)Lv) ∩ Sm−1

i ∈ Tx(v), x∗ ∈ D∗Si(x, ρ(x, v)Lv)(−z∗)


for all v ∈ F(x) with

Tx(v) = {i ∈ {1, . . . , s} : ρi(x, v) = ρ(x, v)} ,

and by M(x, v) = {0} for all v ∈ I(x).
Finally, by considering Si(x) := {z : gi(x, z) ≤ 0} we prove the local Lipschitz continuity

of Joint probability functions given by a system of inequality constraints with a relaxed
convexity assumption.

Corollary Consider the probability function

φ(x) := P(gi(x, ξ) ≤ 0, ∀i = 1, . . . , s), (1.9)

where gi : Rn ×Rm → R are continuously differentiable, quasi-convex in z for all i = 1, . . . , s
and ξ has continuous density distribution. Suppose that a point of interest x̄ is such that
gi(x̄, 0) < 0 for all i = 1, . . . , s and that the family gi satisfies the η-growth condition given
above at x̄. Assume, moreover, that int{z ∈ Rm : gi(x, z) ≤ 0} = {z ∈ Rm : gi(x, z) < 0} for
all i = 1, . . . , s. Then the probability function (1.9) is locally Lipschitz at x ∈ U ′ and

∂bφ(x) ⊆ −
∫

v∈F (x)

⋃
i∈Tx(v)

θ(ρ(x, v), v)
⟨∇zgi(x, ρ(x, v)Lv), Lv⟩

∇xgi(x, ρ(x, v)Lv)dµζ(v), for all x ∈ U ′

Furthermore, if #Tx(v) = 1 for all x ∈ U ′, then the probability function (1.9) is continuously
differentiable for all x ∈ U ′ and

∇φ(x) = −
∫

v∈F (x̄)

θ(ρ(x, v), v)
⟨∇zgTx(v)(x, ρ(x, v)Lv), Lv⟩

∇xgTx(v)(x, ρ(x, v)Lv)dµζ(v), for all x ∈ U ′.

Chapter 4: Chebyshev sets: weak projection and nonconvexity estimates

The problem, in the context of Hilbert spaces, of whether a closed set C is convex when its
associated projection mapping PC is a single-valued mapping is still unanswered, and it is well
known to be true for finite-dimensional Hilbert spaces and weakly closed sets in any Hilbert
space. This is the famous Bunt-Klee theorem. In this chapter we give a partial positive
answer to this problem, relaxing the concept of projection by the one of weak projection:

5



Given a nonempty set C ⊂ H,

Pw
C (x) := {y : there exists a net yi ∈ C such that yi ⇀ y and ∥yi − x∥ → dC(x)}.

A crucial observation is that the subdifferential of the weak closure of the Asplund function,
defined as ψC(x) := 1

2∥x∥2 when x ∈ C and ψC(x) := +∞ otherwise, may be written in terms
of the weak projection. Hence, using a special instance of a general characterization of the
conjugate function given in [19] we obtain that

∂ψ∗
C(x) = co(Pw

C (x)).

Basing ourselves on this last formula, together with an integration criterion given in [18,
Theorem 5.2] and a Hilbert version of the variational characterization of convexity given in
[20, Corollary 11] we obtain our first main result in which we characterize the convexity of a
set in terms of the weak projection:

Theorem Let C ⊂ H be a proximinal set. Then the following are equivalent:

(i) C is convex.

(ii) Pw
C (x) is a singleton for all x ∈ H.

(iii) d2
C is Gâteaux differentiable on H.

(iv) d2
C is Fréchet differentiable on H.

(v) For all x ∈ H, there exists a selection of PC, norm-weak continuous at x.

(vi) For all x ∈ H, there exists a selection of PC, norm-norm continuous at x.

There are many concepts used to measure the nonconvexity of a set, the most natural
being the Hausdorff distance between the set and its closed convex hull. In order to quantify
the Shapley-Folkman theorem some measures of nonconvexity have been given light, for
instance, the effective standard deviation of a set C ⊂ H, v(C), due to Cassels [15], has a
very special formulation in terms of the Asplund function:

v(C) = sup{vC(x) : x ∈ coC} where v2
C = coψC − 1

2∥ · ∥2.

Due to this last formula, we are able to estimate the Hausdorff distance between a weakly
closed set and its closed convex hull in terms of simultaneous projections onto the set and its
closed convex hull with the condition v(C) < +∞. More precisely, for a given weakly closed
set C, we have that

d2(C, coC) ≤ sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
.

where Π := {x ∈ H : PcoC(x) ∈ co(PC(x))}. We call this last result a “dual estimate” of
the Hausdorff distance since our estimate involves only the projections, whereas the “primal
estimate,” d2(C, coC) ≤ sup{v2

C(x) : x ∈ coC}, concerns only the apparent shape of the set
involved and clearly, harder to visualize:

Example Consider C ⊂ R2 given by C = B4(0, 0) \ B2(0, 0). To compute v(C) we shall
consider all the points in coC and all the possible ways those points may be written as a
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convex combination of elements in C. Instead, to compute our proposed “dual” we notice
that the unique point in Π (defined above), who gives us information in order to obtain the
estimate, is the center x0 = (0, 0). Then we get

d(coC,C) ≤ ∥(2, 0) − (0, 0)∥ = 2

where we used the fact that PC(0, 0) = S2(0, 0).

Finally, we observe that the effective standard deviation provides us with the following
quantification of the Bunt-Klee theorem:

Corollary Let C ⊂ H be weakly closed and v(C) < +∞. Then

d(C, coC) ≤ sup {diam(PC(x)) : x ∈ H} .
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Chapter 2

Preliminaries

2.1. Basic results and notation
Let X be a reflexive Banach space, X ∗ its topological dual and duality product ⟨x, x∗⟩

for x ∈ X , x∗ ∈ X ∗. We use → and cl to denote the convergence and closure with respect
to the norm ∥ · ∥-topology on both X and X ∗. We also use clw (respectively clw∗) to mean
the closure with respect to the weak topology (respectively weak∗ topology) and use ⇀ to
mean the weak convergence in both topologies. B and B∗ stand for the closed unit balls of
the space and its dual, respectively. For x ∈ X and r > 0, Br(x) := x+ rB.

We denote by N, Rm, Sm−1, Rm
+ , and Rm

++ the set of natural numbers, the m-dimensional
euclidean space, the unit sphere of Rm, the non-negative orthant of Rm, and the positive
orthant of Rm, respectively. We consider R∞ := R ∪ {+∞} adopting the conventions
(+∞) + (−∞) = (−∞) + (+∞) = 0 · (+∞) = +∞.

Given C ⊂ X , we denote by coC, coneC, aff C, bdC, intC, and riC, the convex hull,
conic hull, affine hull, boundary, interior, and relative interior of the set C, respectively. More
specifically,

coC :=
{

k∑
i=1

λixi : xi ∈ C, k ∈ N, λ ∈ ∆k

}
,

where ∆k denotes the canonical simplex in Rk, i.e.,

∆k :=
{
λ ∈ Rk

+ :
k∑
i=1

λi = 1
}
.

The conic hull is coneC := R++C and the affine hull is

aff C :=
{

k∑
i=1

λixi : xi ∈ C, k ∈ N, λi ∈ R and
k∑
i=1

λi = 1
}
.

Sometimes we write coC to refer us to cl coC, the closed convex hull of C. The set riC is the
interior of C relative to cl(aff C). When X is finite-dimensional riC is the classical relative
interior, that is, the interior of C relative to aff C.
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Given a cone K ⊆ X , we denote its positive and negative dual cone by

K+ := {x∗ ∈ X ∗ : ⟨x∗, x⟩ ≥ 0 for all x ∈ K},
K− := {x∗ ∈ X ∗ : ⟨x∗, x⟩ ≤ 0 for all x ∈ K},

respectively.

The epigraph, (effective) domain, lower α-level set and upper α-level set (α ∈ R) of an
extended real-valued function ψ : X → R∞ are defined and denoted by

epiψ := {(x, α) ∈ X × R : ψ(x) ≤ α},
domψ := {x ∈ X : ψ(x) < +∞},

[ψ ≤ α] := {x ∈ X : ψ(x) ≤ α},
[ψ ≥ α] := {x ∈ X : ψ(x) ≥ α},

respectively.

Given nonempty set C ⊆ X , the indicator function δC : X → R∞ and the support function
σC : X ∗ → R∞ are given respectively by

δC(x) :=
{

0 if x ∈ C

+∞ otherwise
and σC(x∗) := sup

x∈C
⟨x∗, x⟩.

We consider the distance function dC : X → R∞ (sometimes also denoted by d(·, C)) given
by

dC(x) := inf
y∈C

∥x− y∥

and define the (metric) projection of x to C as the set

PC(x) := {y ∈ C : ∥x− y∥ = dC(x)}.

A set C ⊆ H is called proximinal when PC(x) ̸= ∅, for all x ∈ H. For instance, every
weakly closed set is proximinal and, conversely, every proximinal set is closed (see, e.g.,[24,
28]). Moreover, a proximinal set C is called a Chebyshev set when PC(x) is a singleton, for
all x ∈ H. We say that an operator T : X → X is a selection of the projection PC when
T (x) ∈ PC(x) for all x ∈ X . The projection PC is said to be norm-norm (respectively norm-
weak) continuous at x ∈ H if PC(x) is a singleton and yn → PC(x) (respectively yn ⇀ PC(x))
whenever yn ∈ PC(xn) and xn → x as n → ∞.

Given two sets C1, C2 ⊆ X we denote by C1 +C2 the (Minkowski) sum of C1 and C2, that
is, C1 + C2 := {x + y : x ∈ C1, y ∈ C2}, while for α ∈ R, αC1 = {αx : x ∈ C1}. We define
and denote the Hausdorff distance between C1 and C2 as

d(C1, C2) = max {e(C1, C2), e(C2, C1)} ,

where e(C1, C2) := sup{dC2(x) : x ∈ C1} and e(C2, C1) is defined symmetrically.
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2.1.1. Generalized differentiation
For a given closed subset C ⊆ X , the regular/Fréchet and the basic/limiting/Mor-

dukhovich normal cones to C at x are denoted and defined respectively by

Nr
C(x) :=

x∗ ∈ X ∗ | lim sup
x′

C−→x

⟨x∗, x′ − x⟩
∥x′ − x∥

≤ 0


and

Nb
C(x) :=

{
x∗ ∈ X ∗ | ∃xk

C−→ x, ∃x∗
k ⇀ x∗ : x∗

k ∈ Nr
C(xk)

}
,

where by x′ C−→ x we mean that x′ → x with x′ ∈ C. For a function ψ with closed epigraph
(i.e., ψ is lower semi-continuous) its Fréchet/regular and Mordukhovich/basic/limiting subd-
ifferentials at x ∈ X may be defined through the corresponding normal cones to its epigraph,
or more explicitly, they can be represented as (see, e.g.,[39])

∂rψ(x) =
{
x∗ ∈ X ∗ | lim inf

x′→x

ψ(x′) − ψ(x) − ⟨x∗, x′ − x⟩
∥x′ − x∥

≥ 0
}

and

∂bψ(x) := {x∗ ∈ X ∗ | ∃xk → x, with ψ(xk) → ψ(x) and ∃x∗
k ⇀ x∗ : x∗

k ∈ ∂rψ(xk)} ,

respectively.
We recall that a set-valued mapping S : X ⇒ Rm is a mapping whose value at each x ∈ X

is a subset S(x) ⊂ Rm and is uniquely defined by its graph

gph S := {(x, z) ∈ X × Rm : z ∈ S(x)}.

For a set-valued mapping with closed graph we define its coderivative at (x, z) ∈ gph S as
the set-valued mapping D∗S(x, z) : Rm ⇒ X ∗ such that

D∗S(x, z)(z∗) :=
{
x∗ ∈ X ∗ | (x∗,−z∗) ∈ Nb

gph S(x, z)
}
.

The following property is an extension of Lipschitz continuity to set-valued mappings intro-
duced by Aubin [6].

Definition 2.1 Let S : X ⇒ Rm be a set-valued mapping and (x, z) ∈ gph S. We say that
S is locally Lipschitz-like at (x, z) if there exist κ > 0 and δ > 0 such that

d(z′,S(x′)) ≤ κ∥x1 − x2∥, ∀x′, x′′ ∈ Bδ(x) and z ∈ S(x′′) ∩ Bδ(z).

The following lemma that the local Lipschitz-like property of a set-valued mapping implies
the local Lipschitz continuity of the distance function associated to its values.

Lemma 2.1 Let S : X ⇒ Rm be a set valued-mapping with closed graph and convex values.
Assume that there exists a neighborhood U of x̄ such that 0 ∈ S(x) and such that S has the
local Lipschitz property at (x, z) ∈ gph S with x ∈ U .

Then, the function u(x, z) = 1
2 d2(z,S(x)) is locally Lipschitz continuous at (x, z) ∈ U × Rm.
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Moreover, for all (x, z) ∈ U × Rm

∂bu(x, z) ⊆ D∗S(x, PS(x)(z))(PS(x)(z) − z) × {z − PS(x)(z)}. (2.1)

Proof. First, let us check the local Lipschitz continuity of u at (x, z) ∈ U × Rm. Indeed,
On the one hand if (x, z) ∈ gph S then S has the locally Lipschitz-like property at (x, z),
hence by [39, Theorem 1.41], the function u is locally Lipschitz at (x, z). On the other hand
if (x, z) /∈ gph S, we can apply [37, Corollary 5.4] to conclude that u is locally Lipschitz at
(x, z). Now, let us verify (2.1). The function u can be rewritten as a marginal function in
the following way:

u(x, z) = inf{ψ(x, z, y) : y ∈ T (x, z)},

where ψ(x, z, y) := 1
2∥z−y∥2, T (x, z) := S(x) and where the argminimum for u is the single-

valued mapping M(x, z) := PS(x)(z). Since u is locally Lipschitz at (x, z) ∈ U × Rm we may
apply [39, Theorem 3.38 i)] to obtain

∂bu(x, z) ⊆
⋃

(x∗,z∗,y∗)∈∂bψ(x,z,PS(x)(z))
(x∗, z∗) +D∗T (x, z, PS(x)(z))(y∗).

Finally, the definition of T together with the fact that

∂bψ(x, z, PS(x)(z)) = (0, z − PS(x)(z), PS(x)(z) − z)

allow us to rewrite the above inclusion as (2.1). □

2.1.2. (Convex) Subdifferential
In this subsection, we condensed the majority of the results we will make use of in Chapter

5. For this reason, let us consider X = H a Hilbert space.

By cl ψ, clw ψ, coψ and coψ we refer to the closed hull (i.e., the largest lower semi-
continuous function dominated by ψ), the weak convex hull (i.e., the largest weak lower
semi-continuous function dominated by ψ), the convex hull (i.e., the largest convex function
dominated by ψ) and the closed convex hull (i.e., the largest lower semi-continuous convex
function dominated by ψ) of the function ψ, respectively. Furthermore,

coψ(x) = inf
{

k∑
i=1

λiψ(xi) : xi ∈ H, k ≥ 1, λ ∈ ∆k,
k∑
i=1

λixi = x

}
.

The set of all convex, proper, and lower semi-continuous functions is denoted by Γ0(H). We
say that function ψ : H → R∞ is coercive if the sets [ψ ≤ α] are bounded for all α ∈ R.
Moreover, for ψ ∈ Γ0(H), the above is equivalent to the condition 0 ∈ int(domψ∗) (see, e.g.,
[10, Proposition 14.16]).

The (Legendre-Fenchel) conjugate of an extended real-valued function ψ : H → R∞ is the
function ψ∗ : H → R∞ given by ψ∗(x) = sup{⟨x, y⟩−ψ(y) : y ∈ H}. The notation ψ∗∗ stands
for (ψ∗)∗. The Fenchel’s inequality ⟨x, y⟩ ≤ ψ∗(x) + ψ(y) for all x, y ∈ H follows from the
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definition of conjugate. Moreover, it is easy to verify the equalities

ψ∗ = (cl ψ)∗ = (clw ψ)∗ = (coψ)∗.

Hence, by Fenchel-Moreau’s Theorem, for every function ψ with proper conjugate we have
that ψ∗∗ = coψ and, consequently,

Γ0(H) = {ψ : H → R∞ : ψ∗∗ = ψ}. (2.2)

For example, δ∗
C = σC and as a consequence of the Fenchel-Moreau’s theorem, σ∗

C = δcoC .
For two functions ψ1, ψ2 ∈ Γ0(H) such that ψ1 is continuous somewhere in domψ2, the
Moreau-Rockafellar theorem entails that (ψ1 + ψ2)∗ = ψ∗

1 + ψ∗
2.

Next, we recall the so-called Toland’s duality result. We present and prove here a slight
extension to non-necessarily convex functions.

Proposition 2.1 For functions ψ1, ψ2 : H → R∞ such that coψ2 is proper, we have that

inf{ψ1(x) − ψ2(x) : x ∈ H} = inf{ψ∗
2(x) − ψ∗

1(x) : x ∈ H},

and, consequently, provided that coψ1 is proper,

sup{ψ1(x) − ψ2(x) : x ∈ H} = sup{ψ∗
2(x) − ψ∗

1(x) : x ∈ H}.

Proof. First, we assume that ψ2 ∈ Γ0(H). By (2.2), ψ2 = ψ∗∗
2 and, so by definition of the

conjugate we have that

inf{ψ1(x) − ψ2(x) : x ∈ H} = inf{ψ1(x) − sup{⟨y, x⟩ − ψ∗
2(y) : y ∈ H} : x ∈ H}

= inf{ψ1(x) − ⟨y, x⟩ + ψ∗
2(y) : x, y ∈ H}

= inf{ψ∗
2(y) + inf{ψ1(y) − ⟨y, x⟩ : x ∈ H} : y ∈ H}

= inf{ψ∗
2(x) − ψ∗

1(x) : x ∈ H}

yielding the first part in this case. Consequently, provided that also ψ1 ∈ Γ0(H),

sup{ψ1(x) − ψ2(x) : x ∈ H} = − inf{ψ2(x) − ψ1(x) : x ∈ H}
= − inf{ψ∗

1(x) − ψ∗
2(x) : x ∈ H}

= sup{ψ∗
2(x) − ψ∗

1(x) : x ∈ H}.

Now, we assume ψ2 is a general function such that coψ2 is proper, that is, coψ2 ∈ Γ0(H).
Due to the first part and since coψ2(x) = sup{ψ3 : ψ3 ∈ Γ0(H), ψ3 ≤ ψ2} we infer that

inf{ψ1(x) − ψ2(x) : x ∈ H} = inf{inf{ψ1(x) − ψ3(x) : x ∈ H} : ψ3 ∈ Γ0, ψ3 ≤ ψ2}. (2.3)

Thus, because ψ∗
3 ≥ ψ∗

2 for all ψ3 ∈ Γ0(H) satisfying ψ3 ≤ ψ2, we deduce from (2.3) that

inf{ψ1(x) − ψ2(x) : x ∈ H} ≥ inf{ψ∗
2(x) − ψ∗

1(x) : x ∈ H}.
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Conversely, we have that ψ2 ≥ coψ2, and using again (2.3), we obtain

inf{ψ1(x) − ψ2(x) : x ∈ H} ≤ inf{ψ∗
2(x) − ψ∗

1(x) : x ∈ H}.

concluding the first part. The second part follows similarly as in the first case. □

For ε ≥ 0, the ε-subdifferential of an extended real-valued function ψ : H → R∞ is defined
and denoted by ∂εψ(x) := {z ∈ H : ⟨z, y − x⟩ ≤ ψ(y) − ψ(x) + ε, ∀y ∈ H} when x ∈ domψ.
Otherwise, ∂εψ(x) = ∅. We set ∂ψ(x) := ∂0ψ(x).

If ψ ∈ Γ0(H) then we have that ∂ψ∗ = (∂ψ)−1 where the superscript −1 denotes the
inverse image.

Proposition 2.2 Let ψ1, ψ2 ∈ Γ0(H) and x̄ be an ε-minimizer of the optimization problem

inf{ψ1(x) − ψ2(x) : x ∈ H},

that is,
inf{ψ1(x) − ψ2(x) : x ∈ H} ≥ ψ1(x̄) − ψ2(x̄) − ε.

Then
∂ψ2(x) ⊂ ∂εψ1(x).

The following characterization of the subdifferential of the conjugate function is a special
instance of the general characterization given in [19].

Proposition 2.3 Let ψ : H → R∞ be such that domψ∗ = H. Then, for every x ∈ H,

∂ψ∗(x) = co((∂ clw ψ)−1(x)).

And provided that H is finite-dimensional,

∂ψ∗(x) = co((∂ cl ψ)−1(x)).

The following integration criterion given in [18, Theorem 5.2] extends the classical Moreau-
Rockafellar integration of convex functions.

Proposition 2.4 Let ψ1 ∈ Γ0(H) be given. Then every lower semi-continuous function
ψ2 : H → R∞ satisfying

∂ψ1(x) ⊂ ∂ψ2(x) for all x ∈ H,

coincides with ψ1 up to an additive constant, and is in particular convex.

The following result gives a Hilbert version of the variational characterization of convexity
given in [20, Corollary 11]. For the sake of completeness, we give a short proof based on the
previous propositions, taking advantage of the current Hilbert context.

Proposition 2.5 Let ψ : H → R∞ be a weakly lower semi-continuous function such that
domψ∗ = H. Then ψ is convex provided that (∂ψ)−1(x) is convex for all x in some convex
dense set D ⊂ H.
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Proof. By Proposition 2.3 we have that

∂ψ∗(x) = (∂ψ)−1(x) for all x ∈ D.

Moreover, thanks to Lemma in [18], the last relation implies

∂ψ∗(x) ⊂ (∂ψ)−1(x) for all x ∈ H.

Hence,
∂ψ∗∗(x) = (∂ψ∗)−1(x) ⊂ ∂ψ(x) for all x ∈ H.

Therefore, according to Proposition 2.4, the (lower semicontinuous) function ψ is convex. □

2.1.3. Variational convergence and Moreau envelope
In this subsection, we provide variational concepts and results that play a crucial role in

Chapter 3. Consider X = H a Hilbert space.

Let us recall here the definition of epi/hypo-convergence. We refer to [3, 11, 40] for more
details and properties and also to [46] for finite-dimensional spaces.

A sequence of sets (Ck)k ⊂ H Painlevé-Kuratowski converges to a set C if the following
conditions hold:

a) C ⊂ lim inf
k→∞

Ck := {x ∈ H : ∃xk ∈ Ck with xk → x}, and

b) lim sup
k→∞

Ck := {x ∈ H : ∃xn ∈ Ckn with kn → ∞ and xn → x} ⊂ C.

The sequence (Ck)k is said to Mosco converge to C if condition a) is satisfied and b) is
replaced by the following condition:

c) w-lim sup
k→∞

Ck := {x ∈ H : ∃xn ∈ Ckn with kn → ∞ and xn ⇀ x} ⊂ C.

Moreover, the limit set of a sequence of epigraphs is again an epigraph (in both of the above
notions). Thus, we obtain two notions of convergence of functions which can be characterized
as follows: A sequence of functions ψk : H → R∞ epi-converge to ψ : H → R∞ when the
following two conditions hold:

a′) For all x ∈ H, there exist xk → x such that lim sup
k→∞

ψk(xk) ≤ ψ(x), and

b′) For all x ∈ H and for all xk → x, we have lim inf
k→∞

ψk(xk) ≥ ψ(x).

The sequence ψk is said to Mosco epi-converge to ψ when condition a′) is satisfied and b′)
is replaced by the following condition:

c′) For all x ∈ H and for all xk ⇀ x, we have lim inf
k→∞

ψk(xk) ≥ ψ(x).

Hypo-convergences notions can be obtained by applying the above notions to the functions
−ψ,−ψk. Moreover, a sequence of functions (ψk) converges continuously to ψ if (ψk)k epi-
converges and hypo-converges to ψ, i.e., limk→∞ ψk(xk) = ψ(x) for all xk → x.
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Given a function ψ ∈ Γ0(H) and λ > 0, the Moreau envelope of ψ of parameter λ is the
function eλψ : H → R∞ defined by

eλψ(x) := inf{ψ(z) + 1
2λ∥x− z∥2 : z ∈ H}.

In particular, when λ = 1 we have the following property, known as the Moreau decomposi-
tion,

e1ψ(x) + e1ψ
∗(x) = 1

2∥ · ∥2. (2.4)

The infimum in the definition of the Moreau envelope is attained at a unique point,
which is called the proximal point of ψ of index λ at x. It defines a non-expansive operator
Proxλψ : H → H given by

Proxλψ(x) := {z ∈ H : ψ(z) + 1
2λ∥x− z∥2 = eλψ(x)} = (I + λ∂ψ)−1 (x).

Moreover, the Moreau envelope of ψ ∈ Γ0(H) is convex and continuously differentiable func-
tion with

∇eλψ(x) = 1
λ
(x− Proxλψ(x)) for all x ∈ H. (2.5)

More specifically, ∇eλψ is 1
λ
−Lipschitz continuous on H. It follows moreover from the above

identification of the proximal operator with a resolvant that (see, e.g., [10, Proposition 16.44]):

∇eλψ(x) ∈ ∂ψ(Proxλψ(x)). (2.6)

The following proposition summarizes some properties of the Moreau envelope in Hilbert
spaces. We refer to [4, 5, 10] for more details.

Proposition 2.6 Let g : H → R be a convex and lower semicontinuous function. Then the
following hold.

a) Monotone convergence: eλg(x) ↗ g(x) as λ ↘ 0 for all x ∈ H.

b) Convergence of resolvents: Proxλg(x) → x as λ → 0 for all x ∈ H.

c) Lower epi-convergence: If xk ⇀ x and λk ↘ 0, then

g(x) ≤ lim inf
k→∞

eλk
g(xk).

d) Continuous convergence: If xk → x and λk ↘ 0, then

g(x) = lim
k→∞

eλk
g(xk).

Proof. Items a-c) can be found in [45, Proposition 2.2]. Let us focus on d). To this end, let
a sequence xk → x and λk ↘ 0 be given. Then, by virtue of the proximal operator being
non-expansive we have

∥Proxλkg(xk) − x∥ ≤ ∥Proxλkg(xk) − Proxλkg(x)∥ + ∥Proxλkg(x) − x∥
≤ ∥xk − x∥ + ∥Proxλkg(x) − x∥,

(2.7)
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which, by b), implies that Proxλkg(xk) → x, as k → +∞. Moreover, for all k ∈ N

g(Proxλkg(xk)) ≤ g(Proxλkg(xk)) + 1
2λk

∥xk − Proxλkg(xk)∥2

= eλk
g(xk) ≤ g(xk),

where a) was used to derive the last inequality. Thus, by using (2.7), the continuity of g
(g is lower semicontinuous with finite values) and taking the limit k → +∞ in the latter
inequality, we obtain that limk→+∞ eλk

g(xk) = g(x). □

The following proposition gives a precise (uniform) bound on the distance between a
function and its Moreau envelope in a finite dimensional setting.

Proposition 2.7 Let S be a closed, convex and bounded subset of H = Rn and let g : H → R
be a convex function. Then, there exist ℓ ≥ 0, λ0 ∈ (0, 1) and a constant C > 0 such that for
all λ ∈ (0, λ0), the function x 7→ eλg(x) is ℓ-Lipschitz on S and

sup
x∈S

|eλg(x) − g(x)| ≤ ℓ
√
λC.

Proof. Let us consider the set S̃ := {x ∈ H : dS(x) ≤ 1}. Since S̃ is closed, convex and
bounded, there exists ℓ ≥ 0 such that g is ℓ-Lipschitz on S̃. Moreover, for all x ∈ S

1
2λ∥x− Proxλg(x)∥2 ≤g(x) − g(Proxλg(x))

≤g(x) − ⟨x∗, Proxλg(x)⟩ − β

≤g(x) + ∥x∗∥ · ∥x− Proxλg(x)∥ + ∥x∗∥ · ∥x∥ − β

≤g(x) + λ∥x∗∥2 + 1
4λ∥x− Proxλg(x)∥2

+ ∥x∗∥ · ∥x∥ − β,

where x 7→ ⟨x∗, x⟩ + β is an arbitrary but fixed affine minorant of g. We have also used the
inequality ab ≤ c2

2 a
2 + 1

2c2 b
2 for c =

√
2λ. Thus, for all x ∈ S, we have

∥x− Proxλg(x)∥2 ≤ 4λ
(
g(x) + λ∥x∗∥2 + ∥x∗∥ · ∥x∥ − β

)
.

Since the right-hand side of the latter inequality is uniformly bounded in S, λ ≤ 1, it is
possible to find a constant C > 0 such that

∥x− Proxλg(x)∥ ≤
√
λC. (2.8)

In particular, it is possible to find λ0 ∈ (0, 1) such that for all λ ∈ (0, λ0)

∥x− Proxλg(x)∥ ≤ 1 for all x ∈ S,
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implying that Proxλg(x) ∈ S̃. Hence, for all λ ∈ (0, λ0) and x ∈ S

0 ≤ g(x) − eλg(x) = g(x) − g(Proxλg(x)) − 1
2λ∥x− Proxλg(x)∥2

≤ ℓ∥x− Proxλg(x)∥ ≤ ℓ
√
λC,

where we have used (2.8) and the fact that Proxλg(x) ∈ S̃ for all x ∈ S when λ ∈ (0, λ0).
Finally, since eλg is convex and differentiable, for all x ∈ S

eλg(y) ≥ eλg(x) + ⟨∇eλg(x), y − x⟩ for all y ∈ H,

where ∇eλg(x) ∈ ∂g(Proxλg(x)). Hence, since Proxλg(x) ∈ S̃ and g is ℓ-Lipschitz on S̃, it
follows that ∥∇eλg(x)∥ ≤ ℓ for all x ∈ S. Therefore, for all x, y ∈ S

eλg(x) ≤ eλg(y) + ℓ∥y − x∥,

which ends the proof, by showing that x 7→ eλg(x) is ℓ-Lipschitz on S. □

2.2. Probability functions
Optimization problems have many real-life applications. They can be classified as deter-

ministic or stochastic, depending on whether the input variables are known or random/uncer-
tain. In the latter case, an essential topic is chance-constrained programming, finding ap-
plications in water management, telecommunications, electricity network expansion, mineral
blending, chemical engineering, etc. (see, e.g., [44, 50]). Chance-constrained programming
was initiated in 1958 by Charnes, Cooper and Symonds [16] who studied an optimization
problem with a system of individual probabilistic constraints of the form

φi(x) = P(ξi ≤ Aix) ≥ pi for all i = 1, . . . , s,

where x ∈ Rn, Ai are matrices of dimension m × n, ξi are m-dimensional random vectors,
and pi ∈ [0, 1]. Later, in 1965, Miller and Wagner [35] reformulated the problem with a single
joint probabilistic constrained

φ(x) = P(ξi ≤ Aix, for all i = 1, . . . , s) ≥ p,

where x ∈ Rn, Ai are matrices of dimension m×n, ξi are m-dimensional independent random
vectors, and p ∈ [0, 1]. In 1970, Prékopa [42] generalized the latter formulation to a more
challenging one given by

φ(x) = P(ξ ≤ gi(x), for all i = 1, . . . , s) ≥ p

where x ∈ Rn, gi : Rn → R, and ξ a random variable. In the mentioned article, Prékopa,
gave the data in the problem standard optimality requirements.
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More recently, and in this thesis, constraints are considered in the form

φ(x) = P(gi(x, ξ) ≤ 0, for all i = 1, . . . , s) ≥ p, (2.9)

where gi : X × Rm → R are functions defined on a space X , ξ is a m-dimensional random
vector defined on the probability space (Ω,A,P). The function φ defined in (2.9) is called
a probability function and the value p ∈ [0, 1] is called the probability or safety level. The
meaning of the probabilistic constraint is that in order to declare a decision variable x as fea-
sible it must satisfy the random inequality system gi(x, ξ) ≤ 0 with a probability of at least p.

In this section, we recall some classical and recent results about natural properties that
probability functions may be asked to have as constituents of an optimization problem, such
as continuity, differentiability, generalized differentiability, and generalized concavity. In the
sequel, we assume X to be a reflexive separable Banach space and ξ admitting a density
fξ : Rm → R+ with respect to the Lebesgue measure λm which is is bounded on compact
sets, i.e.,

fξ ∈ L∞(K), for every compact set K ⊆ Rm. (2.10)

Let us notice that the probability function in (2.9) can be rewritten as the Lebesgue integral

φ(x) =
∫

{z∈Rm:g(x,z)≤0}

fξ(z)dλm(z), (2.11)

where
g(x, z) = max

i=1,...,s
gi(x, z). (2.12)

2.2.1. (Generalized) Differentiability of probability functions
In this subsection, we discuss and present results about some analytical properties of

probability functions, such as continuity and differentiability. The topic of understanding
the differentiability of probability functions has received great attention. Here we can indi-
cate, e.g., [31, 48, 53] for recent contributions. For a recent introductory text to the topic
with a perspective in variational analysis, we refer to [52].

The first natural question that arises is under which conditions are probability functions
continuous. As the following example shows, continuity can not be assured even when the
given data is continuous.

Example 2.1 [52, Example 2.1] Consider g1, g2 : R × R → R given by g1(x, z) = z − x,
g2(x, z) = −x and let ξ be a standard Gaussian random variable. Then for all x < 0,
φ(x) = 0, whereas φ(0) = 1

2 . It thus follows that the probability function is not continuous.

The following Lemma presents minimum requirements on the problem data ensuring con-
tinuity of the probability function, e.g., [27, eq. (3)].

Lemma 2.2 Let us consider continuous functions gi : X ×Rm → R and assume that for all
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x ∈ H,
P[g(x, ξ) = 0] = 0,

where g is given by (2.12). Then φ in (2.9) is continuous for all x ∈ H.
Proof. Consider xn → x. Due to the continuity of g we get that

lim inf
k→∞

1lAn(z) = 1lA(z), for all z ∈ Rm,

where A := {z ∈ Rm : g(x, z) > 0} and An := {z ∈ Rm : g(xn, z) > 0}. By applying Fatou’s
Lemma we obtain

1 − lim sup
n→∞

φ(xn) = lim inf
k→∞

P(ξ ∈ An) ≥ P(ξ ∈ A) = 1 − φ(x),

which proves the upper semicontinuity of φ. Now, the assumption leads us to the following
inequalities

φ(x) = P(ξ ∈ Rm \ A) ≤ lim inf
n→∞

P(ξ ∈ Rm \ An) ≤ lim inf
k→∞

φ(xn),

concluding the proof. □

The condition of the set {z ∈ Rm : g(x, z) = 0} having Lebesgue measure zero in the last
lemma is satisfied, for instance, if

bd{z ∈ Rm : g(x, z) ≤ 0} = {z ∈ Rm : g(x, z) = 0}.

This last equality is ensured, in terms of the data, when the functions gi are convex in the sec-
ond argument, admitting a common Slater point. Thus, continuity is present under not very
restrictive conditions. Meanwhile, differentiability is not guaranteed even if, furthermore, we
consider the data functions to be sufficiently smooth as the following example exposes:

Example 2.2 [31, Example 1] Consider the probability function (2.9) given by a single
inequality g : R × R2 → R defined by g(x, z1, z2) = α(x)h(z1) + z2 − 1, where

α(x) :=
{
x2, x ≥ 0
0, x < 0

and h(z1) := exp(−1 − 4 log(1 − Φ(z1)))

with Φ referring to the one-dimensional standard Gaussian distribution function. Also con-
sider, ξ1 and ξ2 being standard Gaussian random variables. It follows that the probability
function is not even locally Lipschitzian at x = 0, despite g being continuously differentiable,
convex in the second argument, and such that g(0, 0, 0) < 0.

Figure 2.1 illustrates the nonsmoothness of φ at x = 0.
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Figure 2.1: Graph of φ in Example 2.2

The failure of the compactness of the set {(z1, z2) ∈ R2 : g(0, z1, z2) ≤ 0} in Example 2.2
seems to be the cause of nonsmoothess behavior even though all input data are smooth. To
assume compactness is not ideal since it rules out problems involving random vectors with
unbounded support. So, to handle unboundedness, a growth condition on the functions gi
may be required instead. Nonetheless, with sufficiently nice data and even compactness, we
can be led to nonsmoothness:

Example 2.3 [54, Example 1.1] Consider g1(x1, x2, x3, z) = z−x1, g2(x1, x2, x3, z) = z−x2,
g3(x1, x2, x3, z) = −z + x3 and let ξ have a one-dimensional standard Gaussian distribution.
Then, with Φ referring to the one-dimensional standard Gaussian distribution function, one
has that

φ(x1, x2, x3) = max{min{Φ(x1),Φ(x2)} − Φ(x3), 0}.

Clearly φ fails to be differentiable at x = (0, 0,−1), while {z ∈ R : g(0, 0,−1, z)} = [−1, 0] is
compact and satisfies Slater’s condition.

The growth condition that may be imposed will lead us to local Lipschitz continuity of φ.
Thus, the motivation to obtain subdifferential formulas for φ. In turn, the differentiability of
probability functions with single inequalities is guaranteed in the finite-dimensional setting
by assuming that the density is continuous (see Corollary 2.1below).

As discussed in [52] differentiability has been studied through two paths. In this thesis
we consider the path that focuses on a representation of the probability function in (2.11)
relying on a parametrization via polar coordinates (see [29, Theorem 2.49 and Proposition
2.51]) of the random vector ξ ∈ Rm.

Theorem 2.1 (spherical-radial decomposition [26, 31, 53, 55]) The probability function in
(2.11) can be rewritten as

φ(x) =
∫

v∈Sm−1

e(x, v)dµζ(v),
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where µζ is the uniform distribution on Sm−1 and e : X × Sm−1 → R∞ is given by

e(x, v) = 2πm
2 | det(L)|
Γ(m2 )

∫
{r≥0:g(x,rLv)≤0}

rm−1fξ(rLv)dr. (2.13)

where L is an arbitrary nonsingular matrix of dimension m×m.

Following the terminology in [57] we refer to the function e in Theorem 2.1 as the radial
probability-like function and, to simplify the notation, the density-like function to refer us to

θ(r, v) := 2πm
2 |det(L)|
Γ(m2 ) rm−1fξ(rLv). (2.14)

The density-like function is independent of v when we consider the random vector ξ ∈ Rm

to be elliptical symmetrically distributed. To see this, let us first define the family of such
distributions and give some examples.

Definition 2.2 We say that the random vector ξ ∈ Rm is elliptical symmetrically distributed
with mean µ, positive definite covariance matrix Σ, and generator θ̃ : R+ → R+, which is
denoted by ξ ∼ E(µ,Σ, θ̃), if and only if its density is given by

fξ(z) = det(Σ)−1/2θ̃((z − µ)TΣ−1(z − µ)),

where the generator θ̃ : R+ → R+ must satisfy
∫∞

0 t
m
2 θ̃(t)dt < ∞.

The family of elliptical random vectors includes the Gaussian random vectors and Student
random vectors with the respective generators

θ̃Gauss(t) = exp(−t/2)/(2π)m/2,

θ̃Student(t) =
Γ(m+ν

2 )
Γ(ν2 ) (νπ)−m/2

(
1 + t

ν

)− m+ν
2
.

For more examples, see [26] and [34].

Let us now notice that when ξ ∼ E(µ,Σ, θ̃) we can always assume it with µ = 0 and Σ
a correlation matrix by passing to the standardized vector ξ̃ := D(ξ − µ) where D is the
diagonal matrix with elements Dii := 1/

√
Σii, and consider g̃(x, z) := g(x,D−1z + µ). Thus,

ξ̃ ∼ (0, R, θ̃) and P(g̃(x, ξ̃)) = P(g(x, ξ)),

where R is the correlation matrix associated with Σ. Therefore, if ξ is elliptical symmetrically
distributed and if the matrix L in Theorem 2.1 is the lower triangle matrix that satisfies
R = LLT (the so-called Cholesky decomposition of R) we obtain that

fξ(rLv) = det(L)−1θ̃(r2).
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For instance, when ξ ∼ N (0, R), the radial probability-like function takes the form

e(x, v) = µR({r ≥ 0 : g(x, rLv) ≤ 0}),

where µR is the one-dimensional Chi-distribution with m degrees of freedom.

Given a point of interest x̄ we assume that on a neighborhood U of x̄ the functions gi are
locally Lipschitz at any (x, z) ∈ U × Rm, convex in the second variable and satisfy

gi(x, 0) < 0, for all x ∈ U and all i = 1, . . . , s. (2.15)

We now address the generalized differentiability of the probability function. To do this,
let us give some preliminary definitions and results. For x ∈ U the sets of finite and infinite
directions with respect to gi are the sets

Fi(x) := {v ∈ Sm−1 | ∃r ≥ 0 : gi(x, rLv) = 0}, (2.16)
Ii(x) := {v ∈ Sm−1 | ∀r ≥ 0 : gi(x, rLv) < 0}, (2.17)

respectively. The finite and infinite directions with respect to g can be defined analogously
and in fact they identify with F (x) = ∪s

i=1Fi(x) and I(x) = ∩s
i=1Ii(x). Now, let us define the

radial functions

ρi (x, v) := sup {r > 0 : gi(x, rLv) ≤ 0} for all i = 1, . . . , s (2.18)

and the set of active indexes at (x, v), Tx(v) := {i = 1, . . . , s : ρi(x, v) = ρ(x, v)}, where

ρ(x, v) = min
i=1,...,s

ρi(x, v). (2.19)

The following two lemmas collect some elementary properties of the objects defined above
that can be found in, e.g., [31, 53, 54].

Lemma 2.3 Let x ∈ U . Then the following hold:

1. {r ≥ 0 : gi(x, rLv) ≤ 0} = [0, ρi(x, v)] where ρi(x, v) = +∞ is allowed, with the
convention [0,+∞] = [0,+∞).

2. Ii(x) ∪ Fi(x) = Sm−1.

3. ρi(x, v) = {r such that gi(x, rLv) = 0} when v ∈ Fi(x).

4. dom(ρi(x, ·)) = Fi(x).

5. For z∗ ∈ ∂zgi(x, ρ(x, v)Lv),

⟨z∗, Lv⟩ ≥ −gi(x, 0)
ρ(x, v) > 0.

Lemma 2.4 The radial functions ρi are continuous at (x, v) ∈ U × Sm−1. In consequence,
ρ is continuous at (x, v) ∈ U × Sm−1.
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The following lemma corresponds to a generalization of [57, Lemma 3.4].

Lemma 2.5 For x ∈ U , v ∈ Fi(x), we have

∂b
xρi(x, v) ⊆ cl co

{
−1

⟨z∗, Lv⟩
x∗ : (x∗, z∗) ∈ ∂bgi(x, ρi(x, v)Lv)

}
. (2.20)

for all i = 1, . . . , s. Moreover,

∂b
xρ(x, v) ⊆ cl co

{
−1

⟨z∗, Lv⟩
x∗ : (x∗, z∗) ∈ ∂bgi(x, ρ(x, v)Lv)

and i ∈ Tx(v)

}
. (2.21)

Proof. Fix x̄ ∈ U , i ∈ {1, . . . , s} and v̄ ∈ Fi(x̄). To obtain (2.20) let us first prove that for
every y∗ ∈ ∂b

xρi(x̄, v̄) and every w ∈ X , there exists (x∗, z∗) ∈ ∂bgi(x̄, ρi(x̄, v̄)Lv̄) such that

⟨y∗, w⟩ ≤ −1
⟨z∗, Lv̄⟩

⟨x∗, w⟩.

By continuity of ρi and since gi is locally Lipschitz there exists ε′ > 0 such that
B(x̄, ε′) ⊆ U and for every x ∈ B(x̄, ε′) and z ∈ B(ρi(x̄, v̄)Lv̄, ε′) we have that v̄ ∈ Fi(x),
gi(x, 0) < 0 and

∂bgi(x, z) ⊆ rB∗ (2.22)

for some r > 0.
We claim that for every y∗ ∈ ∂r

xρi(x, v̄) with x ∈ B(x̄, ε′/2) and every w ∈ X there exists
(x∗, z∗) ∈ ∂bgi(x, ρi(x, v̄)Lv̄) such that

⟨y∗, w⟩ ≤ −1
⟨z∗, Lv̄⟩

⟨x∗, w⟩.

To see this, let w ∈ X and consider tk → 0+ such that

x+ tkw ∈ B(x̄, ε′/2) and ρi(x+ tkw, v̄)Lv̄ ∈ B(ρi(x, v̄)Lv̄, ε′/2), for all k.

Applying the mean value inequality in [39, Corollary 3.51] we get

gi(x+tkw, ρi(x+tkw, v̄)Lv̄)−gi(x, ρi(x, v̄)Lv̄) ≤ −tk⟨x∗
k, w⟩+[ρi(x, v̄)−ρi(x+tkw, v̄)]⟨z∗

k, Lv̄⟩,

for some
(x∗

k, z
∗
k) ∈ ∂bgi(xk, zk) (2.23)

with
xk ∈ [x+ tkw, x) and zk ∈ [ρi(x+ tkw, v̄)Lv̄, ρi(x, v̄)Lv̄).

Hence, taking into account that

gi(x, ρ(x, v̄)Lv̄) = 0 and gi(x+ tkw, ρi(x+ tkw, v̄)Lv̄) = 0,

it follows that
[ρi(x+ tkw, v̄) − ρi(x, v̄)]⟨z∗

k, Lv̄⟩ ≤ −tk⟨x∗
k, w⟩.

Now, by [38, Lemma 4.8], z∗
k ∈ ∂zgi(xk, ρi(xk, v̄)Lv̄) and hence ⟨z∗

k, Lv̄⟩ > 0 (recall Lemma
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2.3). Therefore,
ρi(x+ tkw, v̄) − ρi(x, v̄)

tk
≤ −1

⟨z∗
k, Lv̄⟩

⟨x∗
k, w⟩.

Considering εk → 0+ with εk < ε′/2 for all k, by definition of the basic subdifferential, we
have that there exists (x̂∗

k, ẑ
∗
k) ∈ ∂rgi(x̂k, ẑk) with ∥x̂k−xk∥ ≤ εk, ∥ẑk−zk∥ ≤ εk, ∥ẑ∗

k−z∗
k∥ ≤ εk

and such that
⟨z∗
k, Lv̄⟩ρi(x+ tkw, v̄) − ρi(x, v̄)

tk
≤ −(⟨x̂∗

k, w⟩ − εk). (2.24)

Now using (2.22), we have that ∥x̂∗
k∥ ≤ r and ∥ẑ∗

k∥ ≤ r. Since X is reflexive there exists
a subsequence (x̂∗

nk
, ẑ∗
nk

) and some (x∗, z∗) ∈ X × Rm such that x∗
nk
⇀k x

∗ and z∗
nk

→ z∗.
By definition of the basic subdifferential (x∗, z∗) ∈ ∂bgi(x, ρi(x, v̄)Lv̄). Again by [38, Lemma
4.8], z∗ ∈ ∂zgi(x, ρi(x, v̄)Lv̄)) and thus ⟨z∗, Lv̄⟩ > 0 (recall Lemma 2.3). Thus, by applying
inferior limit in (2.24), we conclude the proof of the claim by recalling the definition of the
regular subdifferential.

Now, let y∗ ∈ ∂b
xρi(x̄, v̄). Then there exist y∗

l → y∗ and xl → x̄ with y∗
l ∈ ∂r

xρi(xl, v̄). For
l large enough such that

∥xl − x̄∥ ≤ ε′/2 and ∥ρi(xl, v̄)Lv̄ − ρi(x̄, v̄)Lv̄∥ ≤ ε′/2,

we apply the claim proved above to obtain that there exists (x∗
l , z

∗
l ) ∈ ∂bgi(xl, ρi(xl, v̄)Lv̄)

such that
⟨y∗
l , w⟩ ≤ −1

⟨z∗
l , Lv̄⟩

⟨x∗
l , w⟩.

By definition of the basic subdifferential and considering εl → 0+ with εl < ε′/2 for all l,
there exists (x̂∗

l , ẑ
∗
l ) ∈ ∂rgi(x̂l, ẑl) with ∥x̂l−xl∥ ≤ εl, ∥ẑl−ρi(xl, v̄)Lv̄+ z̄∥ ≤ εl, ∥ẑ∗

l −z∗
l ∥ ≤ εl

and such that
⟨y∗
l , w⟩ ≤ −1

⟨z∗
l , Lv̄⟩

(⟨x̂∗
l , w⟩ − εl). (2.25)

Again, using (2.22) we obtain that (under subsequence) that

(x̂∗
l , ẑ

∗
l ) ⇀l (x∗, z∗) ∈ ∂bgi(x̄, ρi(x̄, v̄)Lv̄).

Therefore, letting l → ∞ in (2.25), we conclude that

⟨y∗, w⟩ ≤ −1
⟨z∗, Lv̄⟩

⟨x∗, w⟩,

for some (x∗, z∗) ∈ ∂bgi(x̄, ρi(x̄, v̄)Lv̄). Let us notice that this last result implies that

⟨y∗, w⟩ ≤ σA(x̄,v̄)(w) for all y∗ ∈ ∂b
xρi(x̄, v̄) and for all w ∈ X

where
A(x̄, v̄) :=

{
−1

⟨z∗, Lv̄⟩
x∗ : (x∗, z∗) ∈ ∂bgi(x̄, ρi(x̄, v̄)Lv̄)

}
.

Therefore, σ∂b
xρ(x̄,v̄)(w) ≤ σA(x̄,v̄)(w), for all w ∈ X , which entails (2.20) (see, e.g. [60]). Fi-

nally, (2.21) follows from [39, Proposition 1.113]. □
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Following [57], we define the function Iθ : R+ × Sm−1 ⇒ R+ by

Iθ(r, v) := [θ(r, v), θ+(r, v)] ∪ [θ−(r, v), θ(r, v)], (2.26)

where

θ(r, v) := inf {k > 0 : ∃ε > 0 such that θ(u, v) ≤ k a.e. for u ∈ [r − ε, r + ε]} ,
θ̄+(r, v) := inf{k > 0 : ∃ε > 0 such that θ(u, v) ≤ k a.e. for u ∈ [r, r + ε]},
θ(r, v) := sup{k > 0 : ∃ε > 0 such that θ(u, v) ≥ k a.e. for u ∈ [r − ε, r + ε]},
θ−(r, v) := sup{k > 0 : ∃ε > 0 such that θ(u, v) ≥ k a.e. for u ∈ [r − ε, r]}.

(2.27)

As it was deduced in [57], property (2.10) implies that

Iθ(r, v) ⊆ [0, θ(r, v)] ⊆ [0,+∞). (2.28)

Furthermore, from the definition of θ(r, v), we have

θ(r, v) ≤ Mθ, ∀r ≤ M, and v ∈ Sm−1, (2.29)

where Mθ is the (finite) constant defined by

Mθ := ess sup
(r,v)∈[0,M+1]×Sm−1

θ(r, v).

To obtain a generalized differentiability result we require the following growth condition:

Definition 2.3 (ηθ-growth condition for nonsmooth functions) Consider x̄ ∈ U and
v̄ ∈ I(x̄). Let ηθ : R × Sm−1 → [0,+∞] be a mapping such that

lim
x→x̄
v→v̄

ρ(x, v)θ̄(ρ(x, v), v)ηθ(ρ(x, v), v) = 0. (2.30)

We say that the family of mappings {gi}si=1 satisfies the ηθ-growth condition at (x̄, v̄) if for
some l > 0

∥πx(∂bgi(x, ρ(x, v)Lv))∥ ≤ lηθ(ρ(x, v), v), ∀(x, v) ∈ B1/l(x̄)×B1/l(v̄), v ∈ F (x) and i ∈ Tx(v);
(2.31)

where ∥πx(∂bgi(x, ρ(x, v)Lv))∥ := sup{∥x∗∥ : (x∗, z∗) ∈ ∂bgi(x, ρ(x, v)Lv) for all z∗}.

The following theorem provides an extension of [57, Theorem 3.1] to the infinite-dimensional
nonsmooth setting.

Theorem 2.2 Let x̄ ∈ U be given and assume that the family of mappings {gi}si=1 satisfies
the ηθ-growth condition at (x̄, v) for all v ∈ I(x̄) and that (2.15) holds true.

Then the probability function (2.9) is locally Lipschitz at x̄ and on an appropriate neigh-
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borhood U ′ of x̄ it holds:

∂bφ(x) ⊆ clw∗

 ∫
v∈Sm−1

∂b
xe(x, v)dµζ(v)

 , for all x ∈ U ′ (2.32)

where, ∂b
xe(x, v) ⊆ {0} if v ∈ I(x) and

∂b
xe(x, v) ⊆ cl co

{
−α

⟨z∗, Lv⟩
x∗ : (x∗, z∗) ∈ ∂bgi(x, ρ (x, v)Lv)

i ∈ Tx(v), α ∈ Iθ(ρ(x, v), v)

}
if v ∈ F (x) (2.33)

where Iθ is given by (2.26). Moreover, the closure operator can be omitted in (2.32) if X is
finite-dimensional.
Proof. First, let us show that for every fixed v̄ ∈ Sm−1, there exist neighborhoods Uv̄ of x̄
and Vv̄ of v̄ and Kv̄ > 0 such that

∂b
xe(x, v) ⊂ Kv̄B∗ for all (x, v) ∈ Uv̄ × Vv̄. (2.34)

To this end we consider the following two cases:

1. Let v̄ ∈ F (x̄). By continuity of ρ there exist neighborhoods Uv̄ of x̄, Vv̄ of v̄ and a
constant M > 0 such that ρ(x, v) ≤ M and g(x, 0) < 0 for all (x, v) ∈ Uv̄ × Vv̄. Hence,
we may apply Lemma 2.5 to such neighborhoods and by using [57, Proposition 3.2] we
obtain

∂b
xe(x, v) ⊆ cl co

{
−α

⟨z∗, Lv⟩
x∗ : (x∗, z∗) ∈ ∂bgi(x, ρ (x, v)Lv)

i ∈ Tx(v), α ∈ Iθ(ρ(x, v), v)

}
, for all (x, v) ∈ Uv̄×Vv̄.

(2.35)
Now, for each (x∗, z∗) ∈ ∂bgi(x, ρ (x, v)Lv) in (2.35) we have that z∗ ∈ ∂zgi(x, ρ (x, v)Lv)
(see [38, Lemma 4.8]) and in consequence (recall Lemma 2.3)

⟨z∗, Lv⟩ ≥ −gi(x, 0)
ρ(x, v) > 0.

Hence, by (2.35) and (2.28), for each y∗ ∈ ∂b
xe(x, v) and i ∈ Tx(v) there exists

(x∗, z∗) ∈ ∂bgi(x, ρ (x, v)Lv) such that

∥y∗∥ ≤ −1
|gi(x, 0)|ρ(x, v)θ(ρ(x, v), v)∥x∗∥. (2.36)

Therefore, by the fact that gi’s are locally Lipschitz together with the continuity of ρ
and (2.29) we may derive the estimate (2.34).

2. Let v̄ ∈ I(x̄). Consider l > 0 given by the ηθ-growth condition in Definition 2.3 and let
ε > 0 be arbitrary. By continuity of ρ, there exist neighborhoods Uv̄ of x̄ and Vv̄ of v̄,
contained in B1/l(x̄) and B1/l(v̄) respectively, such that

ρ(x, v) ≥ l and ρ(x, v)θ̄(ρ(x, v), v)ηθ(ρ(x, v), v) ≤ ε for all (x, v) ∈ Uv̄ × Vv̄.

We consider the following two further cases:
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a) If v ∈ F (x), we continue as in Item 1. until we obtain (2.36). Then from (2.31), for
each for each y∗ ∈ ∂b

xe(x, v) we have that

∥y∗∥ ≤ l

|g(x, 0)| θ̄(ρ(x, v), v)ρ(x, v)ηθ(ρ(x, v), v) ≤ εl sup
x∈U

1
|g(x, 0)| =: Kv̄.

b) If v ∈ I(x), similarly as in [57, Proposition 3.4 i)] we obtain that ∂r
xe(x, v) ⊆ {0}.

Now let y∗ ∈ ∂b
xe(x, v) and choose xn → x and y∗

n ⇀ y∗ with y∗
n ∈ ∂r

xe(xn, v). If
v ∈ I(xn) for all n then y∗ = 0. Instead, if v ∈ F (xn) for all n, we consider a
sequence εn → 0+, hence, from part a) with εn instead of ε we obtain that y∗ = 0.

From a) and b) we obtain the estimate (2.34) in this case.

Now, since Sm−1 is compact and the family of neighborhoods Vv̄ covers Sm−1, we can pick
a finite subcover, that is, there exists N ∈ N and some v1, . . . , vN ∈ Sm−1 such that

Sm−1 ⊂
N⋃
i=1

Vvi
.

Therefore, we choose a neighborhood U ′ of x̄ such that

U ′ ⊂
N⋂
i=1

Uvi

and define κ := max{Kvi
: i = 1 . . . , N} to conclude that

∂b
xe(x, v) ⊂ κB∗ for all x ∈ U ′ and v ∈ Sm−1. (2.37)

Finally, (2.32) follows from [22, Corollary 4.4] □

By considering a single inequality in (2.9) we obtain a gradient formula for the probability
function under stronger assumptions than in Theorem 2.2. We refer to [57] for similar results.

Corollary 2.1 (Corollary 3.2 [57]) Consider X = Rn, x̄ ∈ U and assume that g is continu-
ously differentiable and satisfies the ηθ-growth condition at (x̄, v̄) for all v̄ ∈ I(x̄). Moreover,
assume that fξ is continuous.

Then the probability function φ defined in (2.9) is continuously differentiable on an ap-
propriate neighbourhood U ′ of x̄ with

∇φ(x) =
∫

Sm−1

∇xe(x, v)dµζ(v) for all x ∈ U ′,

where,

∇xe(x, v) =


− θ(ρ(x,v),v)

⟨∇zg(x,ρ(x,v)Lv),Lv⟩∇xg(x, ρ(x, v)Lv) if v ∈ F (x),

0 if v ∈ I(x).
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Proof. Since fξ is continuous, the set Iθ(r, v) = {θ(r, v)} and satisfies (2.10). Therefore, the
result follows from the fact that X = Rn together with [36, Theorem 4.17] upon noticing
that the right-hand side of (2.33) is a singleton. □

The following example exposes that the ηθ-growth condition holds for a continuously dif-
ferentiable function g when ξ is a standard Gaussian random variable and when the gradients
∇xg satisfy an exponential growth condition.

Example 2.4 Let ξ ∼ N (0, R) and suppose that at x there exists ε, C > 0 such that

∥∇xg(x, z)∥ ≤ Cexp(∥z∥), ∀x ∈ Bε(x̄) ∀z : ∥z∥ ≥ C.

Defining ηθ(r, v) := exp(r∥Lv∥) we observe that

rθ(r, v)ηθ(r, v) = 21− m
2 rmexp(−1

2r
2)exp(r∥Lv∥) →r→+∞ 0.

Furthermore, since L is nonsingular we may find l ≥ C such that r ≥ l implies that
r∥Lv∥ ≥ C for all v ∈ Sm−1. Thus, when r ≥ l and x ∈ Bε(x̄),

∥∇xg(x, rLv)∥ ≤ Cexp(r∥Lv∥) ≤ lexp(r∥Lv∥) = lηθ(r, v).

That is, g satisfies the ηθ-growth condition above.

2.2.2. (Generalized) Concavity of probability functions
Along with continuity and differentiability, a fundamental question for an optimization prob-
lem is about the convexity of the feasible set M(p) := [φ ≥ p]. It is well-known that M(p) is
convex if and only if φ is quasi-concave (see definition below). Investigations regarding the
concavity of φ, based on the underlying probability distributions, start with classical works
by Prékopa, e.g., [43]. To state the most general result we need the following generalized
concavity definition.

Definition 2.4 (α-concavity) A nonnegative function f defined on a convex set D ⊂ X is
α-concave, where α ∈ [−∞,∞], if for all x, y ∈ D and all λ ∈ [0, 1] the following inequality
holds:

f(λx+ (1 − λ)y) ≥ mα(f(x), f(y), λ),

where mα : R+ × R+ × [0, 1] → R is defined as follows:

mα(a, b, λ) = 0 if ab = 0, and α ≤ 0

and for any other value of a and b,

mα(a, b, λ) =


aλb1−λ if α = 0,

max{a, b} if α = ∞,

min{a, b} if α = −∞,

(λaα + (1 − λ)bα)1/α otherwise.
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In the case α = 0, the function is called log-concave, for α = 1 concave, and α = −∞
quasi-concave.

Remark 2.1 The mapping α 7→ mα(a, b, λ), being nondecreasing (see [50, Lemma 4.8]),
implies that all α-concave functions are quasi-concave.

Example 2.5 The density function fξ of ξ ∼ N (0, R), with R a positive definite matrix, is
a log-concave function. Indeed, the function

log fξ(z) = −(1
2z

TRz + ln
√

(2π)m det(R))

is concave.

Definition 2.5 A random vector ξ has α-concave probability distribution if the probability
measure Pξ(A) := P(ξ ∈ A) induced by ξ on Rm satisfies that for any Borel measurable sets
A,B ⊆ Rm and for all λ ∈ [0, 1]

Pξ(λA+ (1 − λ)B) ≥ mα(Pξ(A),Pξ(B), λ).

Example 2.6 Random variables having log-concave density probability function have log-
concave probability distribution (see [50, Theorem 4.15]). In particular, by Example 2.5,
ξ ∼ N (0, R) has log-concave probability distribution.
One of the most general results is the following theorem.

Theorem 2.3 [50, Theorem 4.39] Let g : X × Rm → R be quasi-convex1 on both variables
and ξ ∈ Rm be a random vector having an α-concave probability distribution. Then the
function φ in (2.9) is α-concave on the set {x ∈ X : ∃z ∈ Rm s.t. g(x, z) ≤ 0}.

1 meaning −g is quasi-concave.
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Chapter 3

Inner Moreau envelope of probability
functions

In convex analysis, the Moreau envelope (also called Moreau-Yosida regularization) is a useful
regularization for general nonsmooth convex functions. The applications of such an envelope
cover a variety of theoretical developments, and it is at the core of many numerical optimiza-
tion methods. Nowadays, there are plenty of explicit formulations for the computation of
the Moreau envelope of most common convex functions, and there are efficient algorithms to
compute the envelope numerically for more complex data (see, e.g., [10] and the references
therein).

In this chapter, we propose and investigate a general regularization of probabilistic func-
tions, which employs the Moreau envelope of some functions. Formally, we consider a prob-
ability function φ : H → [0, 1] given by

φ(x) := P (ω ∈ Ω : Φ(x, ξ(ω)) ∈ −K) , (3.1)

where H is a Hilbert space, ξ : Ω → Rm is an m-dimensional random vector, K ⊂ Y is a
(nonempty) convex cone of a Banach space Y and Φ : H × Rm → Y is a function. The
formulation of the probability function φ in (3.1) covers several of the most general classes
of probabilistic constraints arising in chance constrained, joint-chance constrained, and even
probabilistic/robust (probust) chance constrained optimization problems, as we will show in
this work. Here, it is worth mentioning that the inclusion can be represented as an abstract
inequality given by the cone order x ⪯ y if and only if y − x ∈ K. A particular example
covered is one wherein K is the cone of positive definite matrices, and thus Φ(x, ξ) ∈ K rep-
resents that our (random) decision matrix Φ(x, ξ) should be positive semidefinite for most
possible cases (see Section 3.5 for more details on such an application).

Since the random (possibly infinite-dimensional) constraint Φ(x, ξ(ω)) ∈ −K is challeng-
ing to handle, we propose a Moreau regularization of a (nonsmooth) scalarization of the
function Φ. Then our regularization will be given by the probability function generated by
the Moreau envelope of that regularization (see Section 3.1 for more details). Surprisingly,
and under mild assumptions, such regularization inherits variational properties of the Moreau
envelope, for instance, its smoothness and variational convergence to the original function.
Those properties are used to provide a regularization of (general) chance constrained opti-
mization problems and the convergence of the minimizers of the regularized problems to the
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minimizers of the original formulation. It is natural to understand such convergence as a
naive form to propose a toolbox for solving general classes of nonsmooth chance constraints
optimization problems. Consequently, our developments open a gate to study further im-
provements using the ideas exploited in deterministic optimization algorithms, which use
Moreau envelops of functions in a future research project.

This chapter is organized as follows: section 3.1 suggests the setting of the work. Section
3.2 examines the convergence of the inner Moreau envelope of the probability function to-
wards the nominal probability function (3.1). Differentiability of the approximating function
is investigated in section 3.3. The manner in which the use of approximated probability func-
tions, through their inner Moreau envelope, allows us to approximate a given optimization
problem is investigated in section 3.4. Section 3.5 provides several examples and possible
applications of the developed results.

3.1. Inner scalarization
In this section, we describe our inner regularization of the probability function (3.1). In

order to set up a suitable framework to use the properties of the Moreau envelope, we need to
impose that our nominal function Φ in (3.1) satisfies some convexity properties. A common
assumption in the study of probability functions is that the inequality systems satisfy some
property of convexity with respect to the random variable ξ ∈ Rm, but not necessarily in
the decision variable x ∈ H. Since our function Φ is vector-valued, we propose an inner
scalarization as the following: let us consider a (weak∗-)compact convex set C ⊆ Y∗, which
generates the positive polar cone of K, that is,

clw∗ cone C = K+, (3.2)

where clw∗ denotes the weak∗-closure. In what follows, we assume that there is a continuously
differentiable convex function h : H → R such that for all v∗ ∈ C, the function

H × Rm ∋ (x, z) → Φh
v∗(x, z) := ⟨v∗,Φ⟩(x, z) + h(x) (3.3)

is convex in both variables, where ⟨v∗,Φ⟩(x, z) := ⟨v∗,Φ(x, z)⟩.

Example 3.1 (Separated variables in joint chance constrained optimization) Let us consider
the probability function φ(x) = P(ω ∈ Ω: g(x, ξ(ω)) ≤ 0), where g : Rn × Rm → Rs is the
function defined by g(x, ξ) = Ψ(x)+Aξ, where A is a matrix and Ψ: Rn → Rs a C2 function.
If we set Φ(x, z) = Ψ(x)+Az, K := Rs

+, and C is any convex compact set with cl cone C = Rs
+,

then Φ satisfies (3.3). Indeed, since Ψ = (Ψ1, . . . ,Ψs) is C2, there are C2 convex functions
ψk1 and ψk2 , for k = 1, . . . , s, such that Ψk = ψk1 −ψk2 (see, e.g., [23, 32, 41]). Hence, since C
is compact, there exists C > 0 such that Φ satisfies (3.3) with h = C

∑s
k=1 ψ

k
2 .

Next, let us introduce the supremum function ShΦ : H × Rm → R given by

ShΦ(x, z) := sup {⟨v∗,Φ⟩(x, z) + h(x) : v∗ ∈ C} . (3.4)

Moreover, for h = 0, we simply write SΦ := S0
Φ.
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The next proposition enables us to rewrite the probability function (3.1) in terms of the
supremum function (3.4).

Proposition 3.1 Let H be a separable Hilbert space, ξ : Ω → Rm be a random vector, K ⊂ Y
be a (nonempty) convex cone of a (possibly nonseparable) Banach space and Φ : H×Rm → Y
be a function such that (3.3) holds. Then,

φ(x) = P
(
ω ∈ Ω : ShΦ(x, ξ(ω)) ≤ h(x)

)
for all x ∈ H. (3.5)

Proof. Fix x ∈ H and ω ∈ Ω. Then, by the bipolar theorem (see, e.g., [25, Theorem 3.38
p.99]) we have that

Φ(x, ξ(ω)) ∈ −K ⇔ −Φ(x, ξ(ω)) ∈ (K−)−

⇔ ⟨v∗,−Φ⟩(x, ξ(ω)) ≤ 0,∀v∗ ∈ K−

⇔ ⟨v∗,Φ⟩(x, ξ(ω)) ≤ 0, ∀v∗ ∈ K+

⇔ ⟨v∗,Φ⟩(x, ξ(ω)) ≤ 0, ∀v∗ ∈ C
⇔ ⟨v∗,Φ⟩(x, ξ(ω)) + h(x) ≤ h(x),∀v∗ ∈ C
⇔ ShΦ(x, ξ(ω)) ≤ h(x),

where we used the fact that C generates the positive polar cone of K (see (3.2)), which proves
(3.5). □

The previous formula (3.5) for the probability function (3.1) allows us to propose an inner
regularization based on the Moreau envelope. Given λ > 0, we define the inner regularization
of φ as

φλ(x) := P
(
ω ∈ Ω : eλ Φh(x, ξ(ω)) ≤ h(x)

)
, (3.6)

where eλ Φh := eλShΦ is the Moreau envelope of the supremum function (3.4). It is worth
to emphasize that the Moreau envelope of the supremum function (3.4) is the supremum of
Moreau envelopes of the scalarizations (3.3), which is established in the next result.

Proposition 3.2 Let Φ : H × Rm → Y be a continuous functions satisfying (3.3) for some
continuously differentiable convex function h. Then, for all λ > 0

eλ Φh(x, z) = max
v∗∈C

eλΦh
v∗(x, z) for all (x, z) ∈ H × Rm.

Proof. By virtue of (3.3), it is clear that the function (x, z, v∗) → Φh
v∗(x, z) is, by assump-

tion, convex with respect to (x, z), and readily seen to be concave with respect to v∗ ∈ C.
Moreover, the set C is (weak∗-)compact and the function v∗ → Φv∗(x, z) is continuous for
fixed (x, z). Thus, the result follows from [45, Theorem 3.1]. □
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3.2. Variational convergence of φλ
In this section, we show that our inner regularization of the probability function (3.1)

inherits similar variational properties from the Moreau envelope (see Proposition 2.6).

Theorem 3.1 Let H be a separable Hilbert space, ξ : Ω → Rm be a random vector having
density with respect to the Lebesgue measure, K ⊂ Y be a (nonempty) convex cone of a
(possible nonseparable) Banach space and Φ : H × Rm → Y be a continuous function such
that (3.3) holds. Then, the probability function φ given in (3.1) and the regularization φλ
given in (3.6) satisfy the following properties:

a) For all λ1 > λ2 > 0, φλ1(x) ≥ φλ2(x) and inf
λ>0

φλ(x) = φ(x) for all x ∈ H.

b) For any sequence λk → 0 and xk → x we have that

lim sup
k→∞

φλk
(xk) ≤ φ(x). (3.7)

Furthermore, if the function h from (3.3) is sequentially weakly continuous on H, then
for any sequence λk → 0 and xk ⇀ x we have that (3.7) also holds.

c) For any sequence λk → 0 and any sequence xk → x ∈ D, we have

lim
k→∞

φλk
(xk) = φ(x). (3.8)

where D is the open set D := {x ∈ H : ∃z s.t. ShΦ(x, z) < h(x)}.

d) The functions φ and φλ are sequentially weakly upper semicontinuous on H provided
that the function h is sequentially weakly continuous on H.

e) The functions φ and φλ are continuous on D.

Proof. To prove a), let λ1 > λ2 > 0. Then, for any fixed (x, z) we have the inequalities
eλ1 Φh(x, z) ≤ eλ2 Φh(x, z) ≤ ShΦ(x, z). Hence, φλ1(x) ≥ φλ2(x) ≥ φ(x) and, by virtue of
Proposition 2.6, item a), it follows that

lim
λ↘0

φλ(x) = inf
λ>0

φλ(x) ≥ φ(x).

Let λk → 0 and fix x ∈ H. By Proposition 2.6, item a) we have that

lim
k→∞

eλk
Φh(x, z) = ShΦ(x, z), for all z ∈ Rm.

Thus, for all z ∈ Rm, lim inf
k→∞

1lÂk
(z) ≥ 1lÂ(z), where

Âk := {z ∈ Rm : eλk
Φh(x, z) > h(x)}, Â := {z ∈ Rm : ShΦ(x, z) > h(x)}.

Then, by using the fact that ξ has a density with respect to the Lebesgue measure and
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applying Fatou’s Lemma, we get

1 − lim
k→∞

φλk
(x) = lim

k→∞
P(ξ−1(Âk)) = lim inf

k→∞
P(ξ−1(Âk))

≥ P(ξ−1(Â)) = 1 − φ(x).

Therefore, lim
k→∞

φλk
(x) ≤ φ(x), which concludes the proof of a).

To prove b), consider λk → 0, xk → x (xk ⇀ x, respectively) and the sets

Ak := {z ∈ Rm : eλk
Φh(xk, z) > h(xk)}, A := {z ∈ Rm : ShΦ(x, z) > h(x)}.

Now, due to Proposition 2.6, item c) and the continuity of h (sequentially weak continuity
of h on H, respectively) we get for any z ∈ Rm that

lim inf
k→∞

(
eλk

Φh(xk, z) − h(xk)
)

≥ ShΦ(x, z) − h(x),

which implies

lim inf
k→∞

1lAk
(z) ≥ 1lA(z), for all z ∈ Rm.

Then using again the fact that ξ has a density and applying Fatou’s Lemma we get

1 − lim sup
k→∞

φλk
(xk) = lim inf

k→∞
P(ξ−1(Ak)) ≥ P(ξ−1(A)) = 1 − φ(x),

which proves (3.7).
Now, let us show c). Assume that xk → x, so by Proposition 2.6, item d) and the

continuity of h we have that

lim
k→∞

(eλk
Φh(xk, z) − h(xk)) = ShΦ(x, z) − h(x) for all z ∈ Rm. (3.9)

Hence, by using the sets Ak and A defined above and by similar arguments as before, we
obtain

lim sup
k→∞

φλk
(xk) ≤ φ(x). (3.10)

On the other hand, we consider the sets

Bk := {z ∈ Rm : eλk
Φ(xk, z) < h(xk)}, B := {z ∈ Rm : ShΦ(x, z) < h(x)}.

Then, mimicking the last proof, we obtain that

lim inf
k→∞

P(ξ−1(Bk)) ≥ P(ξ−1(B)). (3.11)

Since x ∈ D (and recalling that ξ has density), we have that P(ShΦ(x, ξ) = h(x)) = 0. Hence,
by using (3.10) and (3.11), it follows that

lim sup
k→∞

φλk
(xk) ≤ φ(x) = P(ξ−1(B)) ≤ lim inf

k→∞
P(ξ−1(Bk)) ≤ lim inf

k→∞
φ(xk),

which completes the proof of (3.8).
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To prove d), we consider xn ⇀ x and the sets

Cn := {z ∈ Rm : ShΦ(xn, z) > h(xn)}, C := {z ∈ Rm : ShΦ(x, z) > h(x)}.

From the weak lower semicontinuity of ShΦ and the sequentially weak continuity of h,

lim inf
n→∞

(
ShΦ(xn, z) − h(xn)

)
≥ ShΦ(x, z) − h(x).

Hence, following an analogous argumentation, we can conclude that

lim inf
n→∞

P(ξ−1(Cn)) ≥ P(ξ−1(C)).

Thus, applying Fatou’s Lemma, we get

1 − lim sup
n→∞

φ(xn) = lim inf
n→∞

P(ξ−1(Cn)) ≥ P(ξ−1(C)) = 1 − φ(x).

Therefore, lim sup
n→∞

φ(xn) ≤ φ(x). Now for a fixed λ > 0, the upper semicontinuity of φλ
follows from similar arguments as before but upon considering the sets

Ĉn := {z ∈ Rm : eλ Φh(xn, z) > h(xn)}, Ĉ := {z ∈ Rm : eλ Φh(x, z) > h(x)},

Finally, let us prove e). Assume that xn → x. By the continuity of ShΦ and continuity of
h, we have (3.9) holds. Thus, by using, once again, similar arguments but with the sets

Dn := {z ∈ Rm : ShΦ(xn, z) < h(xn)}, D := {z ∈ Rm : ShΦ(x, z) < h(x)},

we get that

lim inf
n→∞

P(ξ−1(Dn)) ≥ P(ξ−1(D)). (3.12)

Now, since x ∈ D we have that P(ShΦ(x, ξ) = h(x)) = 0. Hence, by using part d) and (3.12),
we have

lim sup
n→∞

φ(xn) ≤ φ(x) = P(ξ−1(D)) ≤ lim inf
n→∞

P(ξ−1(Dn)) ≤ lim inf
n→∞

φ(xn),

which yields the continuity of φ. The continuity of φλ follows from similar arguments. □

Remark 3.1 (Slater condition for ShΦ) It is worth mentioning that, in order to have the
existence of a point (x, z) such that ShΦ(x, z) < h(x), the set C cannot contain the zero vector.
Indeed, if 0 ∈ C, then from (3.4) it follows that ShΦ(x, z) ≥ h(x), for all (x, z) ∈ H ×Rm. On
the other hand, if C is such that inf{∥v∗∥ : v∗ ∈ C} > 0 and (x, z) satisfy Φ(x, z) ∈ int(−K),
then ⟨v∗,Φ(x, z)⟩ < −η∥v∗∥ holds for all v∗ ∈ C with some η > 0, and, thus, ShΦ(x, z) < h(x).

Now, we formally describe the convergence properties of the family φλ to the function φ
in terms of hypo-convergence.

Corollary 3.1 Under the assumptions of Theorem 3.1, the sequence of regularizations φλ
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hypo-converges to the probability function φ. In addition, suppose that the function h in
(3.3) is weakly continuous, then the sequence of regularizations φλ Mosco hypo-converges to
the probability function φ.
Proof. The constant sequence xk = x together with the pointwise convergence in Theorem
3.1 Item a) gives us the existence of a sequence xk → x such that

lim inf
k→∞

φλk
(xk) ≥ φ(x).

The remaining second condition to obtain hypo-convergence follows from (3.10) obtained
in the proof of Theorem 3.1 Item c). If we suppose that the function h in (3.3) is weakly
continuous, then the remaining second condition to obtain Mosco hypo-convergence is given
by Theorem 3.1 Item b). □

3.3. Differentiability and gradient formula for φλ
In this section, we assume that H is finite-dimensional. Here we apply the results of sub-

section 2.2.1 to give a formula for the gradients of our inner regularization of the probability
function (3.1), and later we provide the consistency of the gradients of our inner regulariza-
tion.

First, we provide the following lemma, which shows that the gradients of eλ Φh−h satisfies
a growth condition.

Lemma 3.1 Let λ > 0 be given but fixed. Let x̄ be a point such that ShΦ(x̄, 0) < h(x̄). Then,
there exists Cλ, ε > 0 such that

∥∇xeλ Φh(x, z) − ∇h(x)∥ ≤ Cλ(∥z∥ + 1), for all x ∈ Bε(x̄) and all z ∈ Rm. (3.13)

Proof. We have, by (2.5) and the triangle inequality, that

∥∇xeλ Φh(x, z) − ∇h(x)∥ ≤ 1
λ

(
∥x∥ + ∥ProxλSh

Φ
(x, z)∥

)
+ ∥∇h(x)∥,

for all x ∈ H and all z ∈ Rm. By the nonexpansiveness of the proximal mapping we get

∥∇xeλ Φh(x, z) − ∇h(x)∥ ≤ 1
λ

(
2∥x∥ + ∥z∥ + ∥ProxλSh

Φ
(0, 0)∥

)
+ ∥∇h(x)∥,

for all x ∈ H and all z ∈ Rm. Since ∇h is locally bounded at x̄ (h is continuously differen-
tiable), there exists ε > 0 and M > 0 such that

∥∇xeλ Φh(x, z) − ∇h(x)∥ ≤ 1
λ

(
2ε+ 2∥x̄∥ + ∥z∥ + ∥ProxλSh

Φ
(0, 0)∥

)
+M,

for all x ∈ Bε(x̄) and all z ∈ Rm. By defining

Cλ := max{ 1
λ

(
2ε+ 2∥x̄∥ + ∥ProxλSh

Φ
(0, 0)∥

)
+M,

1
λ

},
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we conclude the proof. □

In order to apply the gradient formula given in Corollary 2.1 it will be convenient to
introduce the following notation. Given a parameter λ > 0, let us assume x belonging to
an appropriate neighbourhood of x̄ such that eλ Φh(x, 0) < h(x). Then, we define the set of
finite and infinite directions for the function eλ Φh by

Fλ(x) := {v ∈ Sm−1 : ∃r > 0 : eλ Φh(x, rLv) = h(x)}, Iλ(x) := Sm−1\Fλ(x), (3.14)

respectively, and its associated radial function is given by

ρλ (x, v) := sup
{
r > 0 : eλ Φh(x, rLv) ≤ h(x)

}
(3.15)

Remark 3.2 (Characterization of radial function) It is important to recall that when we
have eλ Φh(x, 0) < h(x), then the radial function ρλ(x, v) can be characterized as the

ρλ(x, v) = inf{r > 0 : eλ Φh(x, rLv) > h(x)},

with the convention inf ∅ = +∞. Furthermore, it also can be characterized as the unique
solution of the equation

eλ Φh(x, rLv) = h(x)

for any finite direction v ∈ Fλ(x). We refer to [56, Proposition 2.6] for more details of the
proof, which uses essentially the convexity and continuity. Nevertheless, it is clear that the
continuity of the convex function is necessary, as was illustrated in [56, Example 2.7].

Finally, let us introduce the gradient-like mapping Gλ : H × Sm−1 → H defined as

Gλ(x, v) :=


−θ(ρλ(x, v), v)

(
∇xeλ Φh(x,ρλ(x,v)Lv)−∇h(x)
⟨∇zeλ Φh(x,ρλ(x,v)Lv,Lv⟩

)
if v ∈ Fλ(x)

0 if v ∈ Iλ(x)
(3.16)

and the factor θ is defined in (2.14). Using the above notation we are able to provide a
gradient formula for the probability function φλ

Theorem 3.2 Let x̄ ∈ H be such that ShΦ(x̄, 0) < h(x̄), and assume that fξ satisfies the
following growth condition

lim
∥z∥→+∞

∥z∥m+1fξ(z) = 0. (3.17)

Then, for any given λ > 0, the probability function φλ, defined in (3.6), is continuously
differentiable on an appropriate neighbourhood U of x̄ and it holds:

∇φλ(x) =
∫

Sm−1

Gλ(x, v)dµζ(v), for all x ∈ U,
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where Gλ is as in (3.16). Moreover, the gradients of eλ Φh can be computed by the formula

∇eλ Φh(x, z) = (x, z) − Proxλ(⟨v∗,Φ⟩+h)(x, z)
λ

, (3.18)

where v∗ is any active vector at (x, z), that is, v∗ ∈ C and eλΦh
v∗(x, z) = eλ Φh(x, z) in view

of Proposition 3.2.
Proof. Let λ > 0 be given but fixed. Due to Proposition 2.6, eλΦh ≤ ShΦ. Thus,
eλΦh(x̄, 0) < h(x̄). Therefore, due to continuity, we can set aside an appropriate neigh-
bourhood U of x̄ on which this continues to hold and on which the objects in equations
(3.14), (3.15) and (3.16) are well defined. This neighborhood can be taken independently of
λ > 0.

Thus to prove the first part, by Corollary 2.1, it is enough to prove the ηθ-growth condition.
To this end let us pick an arbitrary v̄ ∈ Iλ(x̄). In view of (3.13), we define

ηθ(r, v) := Cλ (r∥Lv∥ + 1) ,

choose l ≥ 1/ε and notice, by (2.14), that

rθ(r, v)ηθ(r, v) = 2πm
2 |det(L)|
Γ(m2 ) Cλ(rm+1∥Lv∥fξ(rLv) + rmfξ(rLv))

= 2πm
2 |det(L)|
Γ(m2 ) Cλ∥rLv∥m+1fξ(rLv)

(
1

∥Lv∥m
+ 1
r∥Lv∥m+1

)
−−−−→
r→+∞
v→v̄

0,

where the last limit follows from assumption (3.17). Therefore, as a result of (2.30), the
ηθ-growth condition is satisfied. The computation for the gradient (3.18) follows from [45,
Theorem 3.5]. □
The so-called radial function ρλ is used in the last gradient formula. The following proposition
shows that this mapping is continuous on the three parameters (λ, x, v), which is a key
property for numerical computations, and provides the asymptotic behavior of the gradients
of the probability function φλ to the (sub-)gradients to the nominal function φ.

Proposition 3.3 Let us consider the radial function in (3.15) and the open set defined by
U := {x ∈ H : ShΦ(x, 0) < h(x)}. Then, for every sequence (λk, xk, vk) → (λ, x, v) with
(λ, x, v) ∈ [0,+∞) × U × Sm−1 we have that ρλk

(xk, vk) → ρλ(x, v), where ρ0 is defined by
ρ0(x, v) := sup {r > 0 : SΦ(x, rLv) ≤ h(x)}.
Proof. Let us focus on the case (λk, xk, vk) → (0, x, v) since the proof for λ > 0 is analogous.
Let us first assume that the sequence {ρλk

(xk, vk)} admits a cluster point called r. Then for
some subsequence of {ρλk

(xk, vk)} we have ρλk
(xkl

, vkl
) →l r. By Proposition 2.6 Item d),

continuity of h and again by the characterization of the radial function as the unique solution
(see Remark 3.2) we have that

0 = eλkl
Φh(xkl

, ρλk
(xkl

, vkl
)Lvkl

) − h(xkl
) →l S

h
Φ(x, rLv) − h(x),

then r = ρ0(x, v). Since this holds true for all possible cluster points, we have in fact that
ρλk

(xk, vk) converges to ρ(x, v), whenever the sequence (ρλk
(xk, vk))k∈N has a cluster point.

Next let us assume that, ρλk
(xk, vk) → +∞, and by contradiction suppose that

r := ρ(x, v) < +∞.
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Then, by Proposition 2.6 Item d), we have that for all large enough k

0 < eλk
Φh(xk, (r + 1)Lvk) − h(xk),

which implies that ρλk
(xk, vk) < (r + 1) for all large enough k (see Remark 3.2), which con-

tradicts our assumption, and concludes the proof. □

The next proposition shows that the radial function ρλ, given in (3.15), can be computed
using the associated radial function to the function eλΦh

v∗ , defined in (3.3), that is, for a given
v∗ ∈ C, and λ > 0 we set

ρv
∗

λ (x, v) := sup{r > 0 : eλΦh
v∗(x, rLv) ≤ h(x)}.

Proposition 3.4 In the setting of Proposition 3.3, we have that

ρλ(x, v) := min{ρv∗

λ (x, v) : v∗ ∈ C}.

Proof. The proof follows the same lines of arguments that [56, Proposition 2.6], which only
uses the supremum structure of the function. □

Now, we focus on well-posedness of the gradient approximation, that is, the study of
convergence properties of the gradients of the regularized probability functions φλ. The
following proposition provides a (sub-)differential variational principle for the (not necessarily
smooth) probability function φ using the inner regularized functions φλ.

Proposition 3.5 Under the assumption of Theorem 3.2 we have that for every x∗ ∈ ∂rφ(x̄)
and every ε > 0 there exists λ > 0, xλ ∈ H such that

∥x̄− xλ∥ + ∥x∗ − ∇φλ(xλ)∥ + |φ(x̄) − φ(xλ)| ≤ ε.

Particularly, we have that ∂bφ(x̄) ⊆ lim supx→x̄, λ→0+{∇φλ(x)}.
Proof. The first part follows from a direct application of [56, Lemma 2.1]. For the second
part, consider a point x∗ ∈ ∂bφ(x̄), by definition there are x∗

k ∈ ∂rφ(xk) with xk → x̄,
φ(xk) → φ(x̄) and x∗

k → x∗. By the last part applied to xk (for large enough k) we have
that each x∗

k can be approximated by gradients of the probability functions φλ, which by a
classical diagonal argument shows the desire inclusion. □

The last result shows that the basic subdifferential of the probability function φ can be
upper-estimated by using the gradients of the probability function φλ. In the rest of this
subsection, we will focus on providing the opposite inclusion, that is to say, the accumulations
points of gradients are points in the basic subdifferential.

Lemma 3.2 Let us suppose the mapping ShΦ defined in (3.4) is bounded from below by an
affine linear function h̄ : H → R, let x̄ ∈ H such that ShΦ(x̄, 0) < h(x̄). Given ε > 0, there
exists λ0, ε0 > 0 such that for all (λ, x, v) ∈ (0, λ0) × Bε0(x̄) × Sm−1 with v ∈ Fλ(x)

∥x− x̂∥ + ∥ρλ(x, v)Lv − ẑ∥ ≤ ε, (3.19)
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where (x̂, ẑ) := ProxλSh
Φ
(x, ρλ(x, v)Lv).

Proof. Let ε0 ∈ (0, ε) such that Bε0(x̄) ⊂ U , and pick (λ, x, v) with x ∈ Bε0(x̄), λ ∈ (0, 1)
and v ∈ Fλ(x). We first notice that

ShΦ(x̂, ẑ) + 1
2λ∥x̂− x∥2 + 1

2λ∥ẑ − z∥2 = eλ Φh(x, z) = h(x)

where z := ρλ(x, v)Lv and the last equality follows from the definition of the latter term.
Now, let us suppose that h̄ = ⟨x∗, ·⟩ + β, so

⟨x∗, x̂⟩ + β + 1
2λ∥x̂− x∥2 + 1

2λ∥ẑ − z∥2 ≤ h(x). (3.20)

On the other hand, the inequality

|⟨x∗, x̂− x⟩| ≤ 1
2∥x∗∥2 + 1

2∥x̂− x∥2

implies
|⟨x∗, x̂⟩| ≤ 1

2∥x∗∥2 + 1
2∥x̂− x∥2 + 1

2∥x∗∥2 + 1
2∥x∥2. (3.21)

From (3.20) and (3.21) we have that(
1

2λ − 1
2

)
∥x̂− x∥2 + 1

2λ∥ẑ − z∥2 ≤ h(x) − β + ∥x∗∥2 + 1
2∥x∥2.

Since 1
1−λ > 1, and due to continuity of h, a constant M > 0 such that

∥x̂− x∥2 + ∥ẑ − z∥2 ≤
(

2λ
1 − λ

)
M.

Now, considering λ0 > 0 small enough, we can conclude that

∥x̂− x∥2 + ∥ẑ − z∥2 ≤ ε2,

for all λ ∈ (0, λ0) and x ∈ Bε0(x̄), which shows that (3.19) holds. □

In the following lemma we will require that the mapping ShΦ defined in (3.4) satisfies the
following growth condition at x̄: there exist constants ε, ℓ > 0 such that

∥∂xShΦ(x, z)∥ ≤ η(∥z∥), ∀x ∈ Bε(x̄), ∀∥z∥ ≥ ℓ, (3.22)

for some nondecreasing function η satisfying

lim
∥z∥→∞

∥z∥mfξ(z)η(∥z∥ + α) = 0

for some α > 0. Here, the norm of a sub-differential set is defined as follows:

∥∂xShΦ(x, z)∥ := sup{∥x∗∥ : x∗ ∈ ∂xS
h
Φ(x, z)}

Lemma 3.3 Let us suppose the mapping ShΦ defined in (3.4) is bounded from below by an
affine linear function h̄ : H → R and satisfies the growth condition (3.22) at x̄, where
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ShΦ(x̄, 0) < h(x̄). Then there exists γ > 0 and κ > 0 such that

∥Gλ(x, v)∥ ≤ κ, ∀(λ, x, v) ∈ (0, γ) × Bγ(x̄) × Sm−1 (3.23)

where Gλ is defined in (3.16). Moreover, for all v ∈ I(x̄) and all ε > 0 there exists γ > 0
such that

∥Gλ(x, v)∥ ≤ ε, ∀(λ, x, v) ∈ (0, γ) × Bγ(x̄) × Bγ(v̄). (3.24)

Proof. First, let us show that for every v̄ ∈ Sm−1 there exist εv̄ > 0 and Mv̄ > 0 such that

∥Gλ(x, v)∥ ≤ Mv̄, for all (λ, x, v) ∈ (0, εv̄) × Bεv̄(x̄) × Bεv̄(v̄).

First we notice that there exist ε1 > 0 and β1 > 0 such that we have ShΦ(x, 0)−h(x) ≤ −β1
for all x ∈ Bε1(x̄). Then, for all v ∈ Fλ(x), (see, e.g., [54, Lemma 2.1 item 2])

−ρλ(x,v)
2 ⟨∇zeλ Φh(x, ρλ(x, v)Lv), Lv⟩

=⟨∇zeλ Φh(x, ρλ(x, v)Lv), ρλ(x,v)
2 Lv − ρλ(x, v)Lv⟩

≤eλ Φh(x, ρλ(x,v)
2 Lv) − eλ Φh(x, ρλ(x, v)Lv)

=eλ Φh(x, ρλ(x,v)
2 Lv) − h(x)

≤1
2eλ Φh(x, 0) + 1

2eλ Φh(x, ρλ(x, v)Lv) − h(x)
=1

2eλ Φh(x, 0) − 1
2h(x)

≤1
2S

h
Φ(x, 0) − 1

2h(x)
≤ − β1

2 .

Since ∇h is locally bounded we have

∥Gλ(x, v)∥ ≤2πm/2det(L)
Γ(m/2)β1

ρλ(x, v)mfξ(ρλ(x, v)Lv)

×
(
∥∇xeλ Φh(x, ρλ(x, v)Lv)∥ + β2

) (3.25)

for some β2 > 0 and for all x ∈ Bε1(x̄) and v ∈ Fλ(x).
Now let v̄ ∈ Sm−1 be fixed. If v̄ /∈ I(x̄) then there exist εv̄ > 0 such that v /∈ Iλ(x) for all

(λ, x, v) ∈ (0, εv̄)×Bεv̄(x̄)×Bεv̄(v̄) where Iλ(x) was defined in (3.14). Indeed, if it is not true,
then there exists a sequence (λk, xk, vk) → (0, x̄, v̄) with vk ∈ Iλk

(xk). Hence, ρλk
(xk, vk) = ∞

and so ρ0(x̄, v̄) = ∞ by Proposition 3.3. This yields a contradiction with v̄ /∈ I(x̄).
Since ShΦ is continuous at (x̄, z̄), where z̄ := ρ0(x̄, v̄)Lv̄, there exist ε2 > 0 and β3 > 0 such

that for all (x, z) ∈ Bε2(x̄, z̄)

∥(u∗, v∗)∥ ≤ β3, for all (u∗, v∗) ∈ ∂ShΦ(x, z). (3.26)

Now, by Proposition 3.3 and Lemma 3.2, and considering εv̄ small enough, we get that

∥(x̄, ρ0(x̄, v̄)Lv̄) − ProxλSh
Φ
(x̄, ρ0(x̄, v̄)Lv̄)∥ ≤ ε2

2

and
∥(x̄, ρ0(x̄, v̄)Lv̄) − (x, ρλ(x, v)Lv)∥ ≤ ε2

2
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for all (λ, x, v) ∈ (0, εv̄)×Bεv̄(x̄)×Bεv̄(v̄). Thus, since the proximal mapping is nonexpansive
we have that

∥(x̄, ρ0(x̄, v̄)Lv̄)−ProxλSh
Φ
(x, ρλ(x, v)Lv)∥

≤∥(x̄, ρ0(x̄, v̄)Lv̄) − ProxλSh
Φ
(x̄, ρ0(x̄, v̄)Lv̄)∥

+ ∥(x̄, ρ0(x̄, v̄)Lv̄) − (x, ρλ(x, v)Lv)∥ ≤ ε2 (3.27)

for all (λ, x, v) ∈ (0, εv̄) × Bεv̄(x̄) × Bεv̄(v̄). Now, by (3.26), (3.27) and since due to (2.6)

∇eλ Φh(x, ρλ(x, v)Lv) ∈ ∂ShΦ(ProxλSh
Φ
(x, ρλ(x, v)Lv))

we have that

∥∇xeλ Φh(x, ρλ(x, v)Lv)∥ ≤ ∥∇eλ Φh(x, ρλ(x, v)Lv)∥ ≤ β3 (3.28)

for all (λ, x, v) ∈ (0, εv̄) ×Bεv̄(x̄) ×Bεv̄(v̄). By (3.28), Proposition 3.3, (3.25) and considering
εv̄ < ε1 smaller if needed, we get that

∥Gλ(x, v)∥ ≤ M1

for all (λ, x, v) ∈ (0, εv̄) × Bεv̄(x̄) × Bεv̄(v̄).
Now, let us assume v̄ ∈ I(x̄) and consider γ > 0. By the growth condition, we have that

there exists ℓ, ε > 0 such that

ρλ(x, v)mfξ(ρλ(x, v)Lv)η(ρλ(x, v)∥Lv∥ + α) ≤ γ (3.29)

whenever ρλ(x, v)∥Lv∥ ≥ ℓ, and

∥∂xShΦ(x, z)∥ ≤ η(∥z∥), ∀x ∈ Bε(x̄), ∀∥z∥ ≥ ℓ; (3.30)

Now, by Lemma 3.2, we can consider ε0, λ0 > 0 such that x̂ ∈ Bε(x̄) and

ρλ(x, v)∥Lv∥ + α ≥ ∥ẑ∥ ≥ ρλ(x, v)∥Lv∥ − α, (3.31)

for all (λ, x, v) ∈ (0, λ0)×Bε0(x̄)×Sm−1 with v ∈ Fλ(x), where (x̂, ẑ) := ProxλSh
Φ
(x, ρλ(x, v)Lv).

Moreover, using Proposition 3.3, when considering a small enough ε3 ∈ (0,min{ε0, λ0}) it
follows that:

ρλ(x, v) ≥ ℓ+ α

∥Lv∥
, for all (λ, x, v) ∈ (0, ε3) × Bε3(x̄) × Bε3(v̄). (3.32)

Now, mixing equations (3.30), (3.31) and (3.32), we conclude that for all

(λ, x, v) ∈ (0, ε3) × Bε3(x̄) × Bε3(v̄),

we have
∥∇xeλ Φh(x, ρλ(x, v)Lv)∥ ≤ η(∥ẑ∥) ≤ η(ρλ(x, v)∥Lv∥ + α),

where we have used the fact that η is non-decreasing and ∇eλ Φh(x, ρλ(x, v)Lv) belongs to
the set ∂ShΦ(ProxλSh

Φ
(x, ρλ(x, v)Lv)). Then, replacing this into (3.25), and using (3.29), we

42



get that

∥Gλ(x, v)∥ ≤ γ, for all (λ, x, v) ∈ (0, ε3) × Bε3(x̄) × Bε3(v̄). (3.33)

Since Sm−1 is compact and the family of neighborhoods Bεv̄(v̄) covers Sm−1, we can pick
a finite subcover, that is, there exists N ∈ N and some v1, . . . , vN ∈ Sm−1 such that

Sm−1 ⊂
N⋃
i=1

Bεvi
(vi).

Therefore, we choose γ > 0 such that

(0, γ) ⊂ min{εvi
: i = 1 . . . , N} and Bγ(x̄) ⊂

N⋂
i=1

Bεvi
(x̄)

and define κ := max{Mvi
: i = 1 . . . , N} to conclude the proof of (3.23). Finally, the proof

of (3.24) follows from the more precise estimation (3.33). □

Theorem 3.3 (Gradient Consistency) Let us suppose the mapping ShΦ defined in (3.4) sat-
isfies the ηθ-growth condition at (x̄, v̄) for all v̄ ∈ I(x), and assume that

∂ShΦ(x̄, ρ(x̄, v)Lv) is single valued for almost all v ∈ Sm−1.

Then, the probability function φ, given in (3.1) is Locally Lipschitzian at x̄ and in fact
Fréchet différentiable at x̄. Moreover, any accumulation point of sequences {∇φλk

(xk)}k≥0
with λk → 0+ and xk → x̄ are equal to ∇φ(x̄).
Proof. First, let us notice that by Proposition 3.5 we have that for all x close enough to x̄

∂bφ(x) ⊂ lim sup
λ→0+,x′→x

∇φλ(x′).

Now, by Lemma 3.3 we have that the right-hand side set of the above inclusion is bounded,
and consequently, the function φ is locally Lipschitz at x̄ (see, [36, Theorem 4.15]). Then,
due to [36, Theorem 4.17] it is enough to show that lim supλ→0+,x′→x̄ ∇φλ(x′) is single valued.
Indeed, by Lemma 3.3 we can apply Fatou’s type theorem (see, e.g., [9, Corollary 4.1]) and
obtain that

lim sup
λ→0+,x′→x̄

∇φλ(x′) ⊂
∫
Sm−1

lim sup
λ→0+,x′→x̄

Gλ(x′, v)dµζ(v). (3.34)

Now, let v ∈ F (x̄) and consider

w ∈ lim sup
λ→0+,x′→x̄

Gλ(x′, v).

Then there exist xk → x̄ and λk → 0+ such that Gλk
(xk, v) → w. By Proposition 3.3, (3.16)

and since
lim sup
λ→0+,x′→x̄

∇eλ Φh(x′, ρλ(x′, v)Lv) = ∂ShΦ(x̄, ρ(x̄, v)Lv)
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(see, e.g., [3, Theorem 3.66, p. 373 ]), we have that

w = −θ(ρ(x̄, v), v)
(
x∗ − ∇h(x)

⟨z∗, Lv⟩

)
for some (x∗, z∗) ∈ ∂ShΦ(x̄, ρ(x̄, v)Lv).

On the other hand, if v ∈ I(x̄) and

w ∈ lim sup
λ→0+,x′→x̄

Gλ(x′, v),

we can conclude from (3.24) that w = 0. Therefore,

lim sup
λ→0+,x′→x̄

Gλ(x′, v)

⊂


{
−θ(ρ(x̄, v), v)

(
x∗−∇h(x̄)

⟨z∗,Lv⟩

)
s.t (x∗, z∗) ∈ ∂ShΦ(x̄, ρ(x̄, v)Lv)

}
if v ∈ F (x̄)

{0} if v ∈ I(x̄),

and since ∂ShΦ(x̄, ρ(x̄, v)Lv) is single valued, we conclude the proof from (3.34). □

3.4. Consistency in nonsmooth conic chance constrained
optimization problems

In this section, we study the convergence of the solutions of optimization problems gener-
ated by replacing the probability function with our Moreau regularized versions. Formally,
for a fixed reliability parameter p ∈ [0, 1], let us consider a convex proper and lsc function
ψ : H → R∞ and the optimization problem

minψ(x)
s.t x ∈ M(p)

(P )

where M(p) := [φ ≥ p] = {x ∈ H : φ(x) ≥ p} and φ is the probability function defined in
(3.1). Furthermore, we consider the family of problems

min eλψ(x)
s.t x ∈ Mλ(p),

(Pλ)

where Mλ(p) := {x ∈ H : φλ(x) ≥ p} for the regularized probability function φλ given in
(3.6). In the same spirit, the objective function of problem (P ) is replaced by its Moreau
regularization to have that the optimization problems (Pλ) have smooth data. Let us denote
by v(P ) and v(Pλ) the values of the problems (P ) and (Pλ), respectively.

The first result provides the Painlevé-Kuratowski and Mosco convergence of the feasible
sets of problem (Pλ) to the feasible set given in the original optimization problem (P ).

Proposition 3.6 Consider p ∈ [0, 1]. Then,

a) The sets Mλ(p) Painlevé-Kuratowski converge to M(p).
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b) The sets Mλ(p) Mosco converge to M(p), provided that the function h in (3.3) is se-
quentially weakly continuous.

Proof. Let us consider a sequence xk ∈ Mλk
(p) with λk → 0 and xk → x (xk ⇀ x, respec-

tively). Then by Item b) of Theorem 3.1 we have that

p ≤ lim sup
k→∞

φλk
(xk) ≤ φ(x),

which shows that x ∈ M(p). Now, by Item a) of Theorem 3.1 we have that M(p) ⊂ Mλ(p),
which particularly implies that item a) holds ( item b) holds, respectively). □

It is worth mentioning that Mosco convergence is commonly related to convex sets because
of the weak convergence needed in the definition. Nevertheless, a probability function cannot
be convex (unless it is a constant mapping) because it takes values on [0, 1]. Furthermore,
the sets Mλ(p) are not necessarily convex even in finite dimension, as the following example
shows.

Example 3.2 Let ξ ∼ N (0, 1) and consider the probability function φ : R2 → R given by

φ(x1, x2) = P(g(x1, x2, ξ) ≤ 0)

where g : R2 × R → R is the nonconvex function g(x1, x2, z) = z + f(x1) + 1
2x

2
2 and

f(x1) =
{

−1
2x

2
1 if x1 ≤ 0

0 otherwise.

Consider the convex and differentiable function h(x1, x2) = 1
2x

2
1 and notice that

g(x1, x2, z) + h(x1, x2) = z + f̂(x1) + 1
2x

2
2

is convex, where

f̂(x1) =
{ 1

2x
2
1 if x1 > 0

0 otherwise.

The regularized probability function is

φλ(x) = P
(
ξ − 1

2λ+ eλf̂(x1) + 1
2(λ+1)x

2
2 ≤ 1

2x
2
1

)
where

eλf̂(x1) =


1

2(λ+1)x
2
1 if x1 > 0

0 otherwise.

The upper level sets Mλ(p) of φλ(x) with λ = 0.5 are not all convex: Figure 3.1 illustrates
the graph of φλ for λ = 0.5 and Figure 3.2 illustrates its contour plot.
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Figure 3.1: Graph of φλ for λ = 0.5
in Example 3.2
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Figure 3.2: Contour plot of φλ for
λ = 0.5 in Example 3.2

Here, it is important to notice that our regularized feasible set contains the initial one.
Nevertheless, the next proposition shows that under a small enlargement it is possible to
show a partial appositive inclusion, which measures how far we are from our initial feasible
set in terms of the random inequality.

Proposition 3.7 Let H be finite-dimensional space, and ε, η > 0 be given and C ⊆ H be a
bounded closed convex set. Let us define the following enlargements:

M ε(p) := {x ∈ H : φε(x) ≥ p} and φε(x) = P(SΦ(x, ξ) ≤ h(x) + ε).

Then there exists λ0 > 0 such that for all p ∈ R and all λ ∈ (0, λ0)

M ε(p− η) ⊇ Mλ(p) ∩ C, (3.35)

In addition, if fξ has bounded support we have

M ε(p) ⊇ Mλ(p) ∩ C.

Proof. We recall that the probability measure induced by ξ is Borellian and hence tight.
Therefore, for any η > 0, we can find r > 0 such that P(∥ξ∥ > r) ≤ η. Let us define the set
K = C × Br.

Then, by Proposition 2.7, we can find ℓ > 0 and λ1 such that for all λ ∈ (0, λ1)

sup
(x,z)∈K

|eλΦ(x, z) − SΦ(x, z)| ≤ ℓ
√
λ.

Now, consider λ0 < λ1 such that ℓ
√
λ0 < ε. So, for every x ∈ C, the following inclusion is

valid:

{z ∈ Br : eλΦ(x, z) ≤ h(x)} ⊂ {z ∈ Br : SΦ(x, z) ≤ h(x) + ε}.
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As a result, for x ∈ Mλ(p) ∩ C, we have

p ≤ φλ(x) = P(eλΦ(x, ξ) ≤ h(x))
= P(∥ξ∥ ≤ r, eλΦ(x, ξ) ≤ h(x)) + P(∥ξ∥ > r, eλΦ(x, ξ) ≤ h(x))
≤ P(∥ξ∥ ≤ r, eλΦ(x, ξ) ≤ h(x)) + P(∥ξ∥ > r) ≤ φε(x) + P(∥ξ∥ > r).

From this we can deduce φε(x) ≥ p− η, i.e., x ∈ M ε(p− η). If fξ has bounded support, we
may in particular find an appropriate r when η = 0 is chosen, since then there is r > 0 such
that P(∥ξ∥ > r) = 0. Then (3.35) allows us to conclude. □

Now, we provide the main result of this section which establishes a relation between
problems (P ) and (Pλ).

Theorem 3.4 Let ψ : H → R∞ be a convex, coercive and lower semicontinuous function
such that M(p) ∩ domψ ̸= ∅. Then

a) v(P ), v(Pλ) ∈ R for all λ > 0 and v(Pλ) → v(P ).

b) If (P ) has a unique optimum x0 and xλ is any sequence of optimal solutions for (Pλ),
then xλ ⇀ x0, provided that the function h in (3.3) is sequentially weakly continuous.
If, furthermore, domψ = H and ψ∗ is Fréchet differentiable on dom ∂ψ∗, then xλ → x0.

Proof. a) Let x̄ ∈ M(p) ∩ domψ be given. By Item d) of Theorem 3.1, the set M(p)
is weakly closed, then the nonempty set M := M(p) ∩ {x ∈ H : ψ(x) ≤ ψ(x̄)} is weakly
compact. Since ψ is weakly lower semicontinuous, by Weierstrass’ theorem, ψ has a minimizer
in M . Therefore, v(P ) ∈ R. Similarly, since the Moreau envelope eλψ is convex, coercive
(0 ∈ int domψ∗ = int dom(eλψ)∗), lower semicontinuous and

M(p) ∩ domψ ⊂ Mλ(p) ∩ dom eλψ

for all λ, we have, similarly, that v(Pλ) ∈ R for all λ.
To prove

lim inf
λ→0

v(Pλ) ≥ v(P ),

let us proceed by contradiction. That is, for some α < v(P ), there is a subsequence
xλk

∈ Mλk
(p) with

eλk
ψ(xλk

) ≤ α (3.36)

for all k. Since by Item a) of Proposition 2.6, eλ1ψ(xλk
) ≤ eλk

ψ(xλk
) ≤ α for all k and eλ1ψ

is coercive, convex and lower semicontinuous, there is a subsequence xλki
⇀ x. Indeed the

level set of eλ1ψ is bounded. By (3.36) and Item c) of Proposition 2.6 we get ψ(x) ≤ α, and
on the other hand, by Proposition 3.6, x ∈ M(p). Thus, v(P ) ≤ α, which is a contradiction.

Now, to prove

lim sup
λ→0

v(Pλ) ≤ v(P ),

notice that, by Item a) of Theorem 3.1, M(p) ⊂ Mλ(p) for all λ and since eλψ ≤ ψ for all λ
we get v(Pλ) ≤ v(P ) for all λ.
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b) Suppose x0 is the unique optimum of (P ), but that the statement of b) is false. Then
for some, ε > 0, u ∈ H and some subsequence ⟨xλk

− x0, u⟩ ≥ ε for all k. Notice that, by
Proposition 2.6 item a) and optimality of xλk

we have

eλk
ψ(xλk

) ≤ eλk
ψ(x0) ≤ ψ(x0) (3.37)

for all k. Then, reproducing some of the above arguments with α = ψ(x0), we deduce that
eλ1ψ(xλk

) ≤ ψ(x0) for all k and since eλ1ψ is coercive, convex and lower semicontinuous, there
is a subsequence xλk

⇀ x. By (3.37) and Item c) of Proposition 2.6 we get ψ(x) ≤ ψ(x0), and
on the other hand, by Proposition 3.6 x ∈ M(p). By uniqueness x = x0, which contradicts
⟨xλk

− x0, u⟩ ≥ ε for all k. Therefore, xλ ⇀ x0.
Now suppose, furthermore, that domψ = H and ψ∗ is Fréchet differentiable on dom ∂ψ∗.

It follows that dom ∂ψ = H. Hence there exists u ∈ ∂ψ(x0), which implies x0 = ∇ψ∗(u).
Particularly, due to [13, Theorem 5.2.3], the function ψ(·) − ⟨u, ·⟩ attains a strong minimum
at x0. We claim that

ψ(x̂λ) − ⟨u, x̂λ⟩ → ψ(x0) − ⟨u, x0⟩,

where x̂λ = Proxλψ(xλ). Indeed, since infz∈H ψ(z) > −∞ as a result of ψ being convex,
coercive and l.s.c., and

inf
z∈H

ψ(z) + 1
2λ∥xλ − x̂λ∥2 ≤ ψ(x̂λ) + 1

2λ∥xλ − x̂λ∥2 = eλψ(xλ) ≤ ψ(x0),

we have that
∥xλ − x̂λ∥ ≤

√
λC, (3.38)

for C ≥
√

(ψ(x0) − infz∈H ψ(z)) ∈ R. Thus also x̂λ ⇀ x0 and

ψ(x0) ≤ lim inf
λ→0

ψ(x̂λ) ≤ lim sup
λ→0

ψ(x̂λ)

≤ lim sup
λ→0

ψ(x̂λ) + 1
2λ∥xλ − x̂λ∥2 = lim sup

λ→0
eλψ(xλ) = ψ(x0),

and together yields ψ(x̂λ) − ⟨u, x̂λ⟩ → ψ(x0) − ⟨u, x0⟩. Therefore, ∥x̂λ − x0∥ → 0 because
x0 is a strong minimum of ψ(·)−⟨u, ·⟩, so by (3.38), we can then conclude ∥xλ−x0∥ → 0. □

The uniqueness of the minimizer is intrinsically related to the convexity of the optimization
problems. The following result provides conditions under the problems optimization problems
(P ) and (Pλ) are convex and consequently all the assumptions of Theorem 3.4 hold.

Corollary 3.2 Let us suppose that ξ has an α-concave probability distribution and Φ satisfies
(3.3) with h = 0. Then, for every λ > 0, and any p ∈ (0, 1) the functions φλ and φ are
α-concave on the sets

{x ∈ H : ∃z ∈ Rm s.t eλΦ(x, z) ≤ 0} and {x ∈ H : ∃z ∈ Rm s.t Φ(x, z) ≤ 0},

respectively. Consequently, for any p ∈ (0, 1] the sets Mλ(p) and M(p) are convex. Moreover,
suppose that the objective function ψ in the optimization problem (P ) is convex, coercive,
lower semicontinuous, M(p) ∩ int(domψ) ̸= ∅ and ψ∗ is Fréchet differentiable on dom ∂ψ∗.
Then, the sequence of unique solutions of problems (Pλ) converges to the unique minimizer
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of (P ).
Proof. The α-concavity of the functions φ and φλ follows from a direct application of [50,
Theorem 4.39, p. 108]. In particular, φ and φλ are quasi-concave, hence the sets M(p) and
Mλ(p), being upper level sets of these functions, are convex. Now suppose that the objective
function ψ in the optimization problem (P ) is convex, coercive, lower semicontinuous and
M(p) ∩ int(domψ) ̸= ∅. Then Item a) of Theorem 3.4 follows and by [10, Corollary 16.38]
we have

0 ∈ ∂(ψ + δM(p))(x0) = ∂ψ(x0) + ∂δM(p)(x0),

where δM(p) is the indicator function of M(p) and x0 is an optimal solution of (P ). Thus
∂ψ(x0) ̸= ∅, so the set of optimal solutions of (P ) is a convex subset of dom ∂ψ. By the
differentiability assumption over ψ∗, the function ψ must be strictly convex on this set (see,
e.g., [13, section 7.3]). Then (P ) has a unique optimal solution. Similarly, since the ob-
jective functions eλψ satisfy the same hypothesis as ψ, the problems (Pλ) also have unique
optimal solutions. Then, the convergence of optimal solutions follows from Theorem 3.4. □

3.5. Examples and applications
In this section, we review some examples of the potential applications of our results.

Formally, we discuss how our approach can be used to rewrite several classes of probabil-
ity functions arising in (nonsmooth) optimizing models, and consequently, it illustrates the
versatility of our research. Our first examples will demonstrate the smoothing effect of the
suggested regularization. Then we will examine the situation of a so-called “joint chance
constraint”. The section will end with the investigation of a situation wherein K is the cone
of positive definite matrices as well as the case wherein K describes infinitely many inequal-
ities. In each situation, we will carefully investigate how (3.3) can be concretely shown to
hold true.

3.5.1. Nonsmooth inequality constraint
First, we start our analysis considering a probability function given by a nonsmooth single

inequality, that is,
φ(x) := P (g(x, ξ) ≤ 0) .

where g : H × Rm → R is a (possible nonsmooth) function. It is clear that in that case the
cone K in consideration is given by the set of nonnegative real numbers, the generator of the
positive polar cone is nothing more than the singleton C = {1}, and our function Φ is nothing
more than the same function g. Moreover, in this setting assumption (3.3) is equivalent to
the existence of a continuously differentiable function h such that (x, z) → g(x, z) + h(x) is
convex. For simplicity, in the following two examples we chose h(x) = 0 for all x ∈ H.

Example 3.3 Let ξ ∼ N (0, 1) and consider the nonsmooth function g : R×R → R given by

g(x, z) = 2f1(x) + f2(z) − 5,
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where f1(x) = max(|x| − 1, 0) and

f2(z) =
{

z2 if z ≥ 0
−z otherwise.

The probability function

φ(x) = P
(

2f1(x) − 5 ≤ ξ ≤
√

−2f1(x) + 5
)

is not differentiable at x̄ = 1,−1. Indeed, the left derivative of φ at x̄ = 1 is φ′
−(1) = 0 and

the right derivative of φ at x̄ = 1 is

φ′
+(1) = − 1√

2π

[
1√
5exp(−5/2) + 2exp(−25/2)

]
< 0.

Similarly, φ is not differentiable at x̄ = −1. Given λ > 0, we have

φλ(x) := P (eλf2(ξ) ≤ −2e2λf1(x) + 5) ,

where

eλf1(x) =


f1(x) if |x| ≤ 1

|x| − λ
2 − 1 if |x| ≥ λ+ 1

1
2λ(|x| − 1)2 otherwise

and

eλf2(ξ) =


−ξ − λ

2 if ξ ≤ λ
1

2λ+1ξ
2 if ξ ≥ 0

1
2λξ

2 otherwise.

Figure 3.3 illustrates the graph of the functions φλ for λ ∈ {0, 0.03, 0.1, 0.3} where φ0 := φ
and Figure 3.4 illustrates a zoomed version for λ ∈ {0, 0.0001, 0.0005} where we can clearly
see the smoothness of the regularized probability function φλ at x̄ = −1.
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Example 3.4 Let ξ1, ξ2 ∼ N (0, 1) and consider the nonsmooth function g : R2 × R2 → R
given by g(x1, x2, z1, z2) = f(x1, x2) + |z1| + z2 − 3 where f(x1, x2) = max(

√
x2

1 + x2
2 − 2, 0).

The function
φ(x1, x2) = P (ξ2 ≤ −f(x1, x2) − |ξ1| + 3)

does not have a directional derivative at (2, 0) in the direction (x1, x2) = (1, 0) since the left
derivative is

φ′
−(2, 0) := lim

t→0−

φ(2 + t, 0) − φ(2, 0)
t

= 0

and the right derivative is

φ′
+(2, 0) := lim

t→0+

φ(2 + t, 0) − φ(2, 0)
t

= − 1
2π

∫ ∞

−∞
exp(−z2

1 + 3|z1| − 9
2)dz1 < 0.

Given λ > 0, we have

φλ(x1, x2) = P (ξ2 ≤ −eλf(x1, x2) − eλ|ξ1| + 3)

where

eλf(x1, x2) =


f(x1, x2) if

√
x2

1 + x2
2 ≤ 2√

x2
1 + x2

2 − λ
2 − 2 if

√
x2

1 + x2
2 ≥ λ+ 2

1
2λ(
√
x2

1 + x2
2 − 2)2 otherwise

and

eλ|ξ1| =
{ 1

2λ |ξ1|2 if |ξ1| ≤ λ

|ξ1| − λ
2 otherwise.

.

Figure 3.5 illustrates the nonsmoothness of φ on {(x1, x2) : x2
1 + x2

2 = 2}.

51



Figure 3.5: Graph of φ in Example 3.4

3.5.2. Joint Chance constraint
Let us consider a family of functions gi : H×Rm → R with i = 1, . . . , s and the probability

function
φ(x) := P (gi(x, ξ) ≤ 0, for all i = 1, . . . , s) . (3.39)

Then, considering Φ : H × Rm → Rs given by

Φ(x, z) :=


g1(x, z)

...
gs(x, z)

 (3.40)

and the cone K := Rs
+, the probability function in (3.39) can be rewritten in the form

φ(x) = P(Φ(x, ξ) ∈ −K), which places us in the framework of (3.1). It is easy to see that
for a given function h : H → R, and considering the unit simplex C := ∆s, effectively
“generating” the positive polar cone of K, we have that ShΦ(x, z) = maxi=1,...,s gi(x, z) + h(x).
Furthermore, the next proposition gives us a simple characterization of the condition (3.3)
in terms of the nominal data gi.

Proposition 3.8 Let gi : H ×Rm → R be a family of functions for i = 1, . . . , s and consider
the vector-valued function Φ given in (3.40). Then the following are equivalent

a) There exists a continuously differentiable convex function h : H → R such that Φ satisfies
(3.3).

b) For every i = 1, . . . , s there exists a continuously differentiable convex function
hi : H → R such that (x, z) → gi(x, z) + hi(x) is convex.

Proof. To prove a) implies b) consider w∗ = ei in (3.3) where ei is the i-th standard basic
vector of Rs. To prove the converse, let w∗ ∈ C and set h(x) := ∑s

i=1 hi(x). Then since
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0 ≤ w∗
i ≤ 1 and the functions gi(x, z) + hi(x) and hi(x) are convex we have that

⟨w∗,Φ⟩(x, z) + h(x) =
s∑
i=1

w∗
i (gi(x, z) + hi(x)) + (1 − w∗

i )hi(x)

is convex. □

The final example in this subsection illustrates the convergence of the solution and mini-
mizers established in Corollary 3.2.

Example 3.5 (Illustrative example) Let ξ1, ξ2 ∼ N (0, 1) and consider problem (P ) of section
3.4 with p = 0.95 and the nonsmooth functions ψ, φ : R2 → R given by

ψ(x1, x2) = |x1 − 5| + 1
2x

2
2 + x2 + 8

φ(x1, x2) = P(
√
x2

1 + x2
2 + |ξ1| + ξ2 ≤ 5, and |ξ1| + ξ2 ≤ 3)

In this case, we can consider the vector valued function Φ : R2 × R2 → R2 given by

Φ(x1, x2, z1, z2) =
√x2

1 + x2
2 + |ξ1| + ξ2 − 5

|ξ1| + ξ2 − 3


Then, the probability function can be recast as

φ(x1, x2) = P
(
Φ(x1, x2, ξ1, ξ2) ∈ −R2

+

)
.

In Table 3.5 we give the optimal values and the minimizers of (Pλ) associated with problem
(P ).

Table 3.1: Results obtained by MatLab’s optimization algorithm fmincon

λ v(Pλ) xλ

1 8.19472 (2.96739,-1.19475)
0.1 10.19347 (2.21702,-0.73521)
0.01 10.39840 (2.13857,-0.68601)
0.001 10.41892 (2.13071,-0.68105)
0.0001 10.42098 (2.12992,-0.68055)
0.00001 10.42118 (2.12985,-0.68050)

v(P ) =10.42121 x0 =(2.12984,-0.68049)

3.5.3. Semidefinite chance constraint
In this section, we consider the following probability function

φ(x) := P (Φ(x, ξ) ⪯ 0) , (3.41)
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where Φ : H × Rs → Sp is a function with Sp the set of p × p symmetric matrices, and the
symbol A ⪯ 0 means that the matrix A is negative semidefinite. It is important to notice
that the probability function (3.41) appears as a natural alternative to deal with semidefinite
mathematical programs where there exists a random inflow in the model.

It is well known that the partial order ⪯ can be characterized by the cone of negative
definite matrices Sp

−. Let us recall that the space Sp is a Hilbert space endowed with the inner
product ⟨A,B⟩ := Tr(AB), where Tr represents the trace operator (see, e.g., [12]). Using
this topological structure, the positive polar cone of Sp

− is given by the set of positive definite
symmetric matrices Sp

+. It is straightforward to see that the set C := {A ∈ Sp
+ : Tr(A) = 1}

generates the cone Sp
+. Furthermore, in order to fulfill (3.3), we need to assume an appropriate

notion of convexity for this precise setting. The following result establishes an equivalent
characterization of (3.3) through simpler quadratic scalarizations.

Proposition 3.9 Let Φ : H × Rm → Sp be a function and h : H × R be a convex and
continuously differentiable function. Then, the following are equivalent:

a) For every A ∈ C = {A ∈ Sp
+ : Tr(A) = 1} the function (x, z) → ⟨A,Φ(x, z)⟩ + h(x) is

convex.

b) For every v ∈ Sp−1 the function (x, z) → v⊤Φ(x, z)v + h(x) is convex.

Proof. On the one hand, let us suppose that a) holds, and consider a vector v ∈ Sp−1, that
is v ∈ Rp with ∥v∥ = 1, then let us define the symmetric matrix A := vv⊤, which has
Tr(A) = ∥v∥2 = 1. Moreover, the matrix A is positive semidefinite as is clear. Finally,
⟨A,Φ(x, z)⟩ = v⊤Φ(x, z)v, which shows that the function x → v⊤Φ(x, z)v + h(x) is convex
and that hence b) holds true.

On the other hand, let us assume that b) holds, and consider A ∈ Sp
+ with Tr(A) = 1. Using

the spectral decomposition we have that the matrix A can be decomposed into
A = PDP⊤ = ∑p

i=1 λi(A)viv⊤
i , where P is a p × p orthogonal matrix, and its columns

are the vector vi ∈ Rp with ∥vi∥ = 1, and D is a diagonal given by the eigenvalues of the
matrix A, denoted by λ1(A), . . . , λp(A), allowing for multiplicity. Then, we can compute the
inner product of this matrix and Φ(x, z) by

⟨A,Φ(x, z)⟩ =
p∑
i=1

λi(A)⟨viv⊤
i ,Φ(x, z)⟩ =

p∑
i=1

λi(A)v⊤
i Φ(x, z)vi.

Finally, since ∑p
i=1 λi(A) = Tr(A) = 1 and λi(A) ≥ 0, we get that

⟨A,Φ(x)⟩ + h(x) =
p∑
i=1

λi(A)
(
v⊤
i Φ(x)vi + h(x)

)
,

consequently, the above function is convex, and that concludes the proof. □

Remark 3.3 (Matrix convexity) It is important to mention that Proposition 3.9 establishes
that our desired assumptions hold under the so-called matrix convexity, that is, the assumption
that for every v ∈ Sp−1 the function (x, z) → v⊤Φ(x, z)v is convex. We refer to [12, Section
5.3.2] for more details and references to these properties.
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Example 3.6 Let us consider a family of matrices Bj ∈ Sp for j = 0, . . . ,m and C2 functions
gi : Rs → R for i = 1, . . . , s. Define the mapping Φ : Rs × Rm → Sp given by

Φ(x, z) :=
s∑
i=1

gi(x)Ai +
m∑
j=1

ziBi +B0.

For i = 1, . . . , s, consider a convex and continuously differentiable function hi such that
±gi(x) + hi(x) are convex.

Let C > 0 be a constant greater than any of the absolute values of the eigenvalues of the
matrices Ai. Then, defining h := C

∑s
i=1 hi, we have that for any v ∈ Sp−1, we have that

v⊤Φ(x, z)v + h(x) =
s∑
i=1

(
v⊤Aivgi(x) + |v⊤Aiv|h(x)) + (C − |v⊤Aiv|)hi(x)

)
,

is a convex function, which due to Proposition 3.9 shows that the mapping Φ satisfies (3.3).

3.5.4. Probabilistic/Robust (Probust) Chance Constraint
Let us consider a compact Hausdorff space T and a function g : T × H × Rm → R such

that t → g(t, x, z) is continuous for all (x, z) ∈ H × Rm. Consider the probability function

φ(x) := P (gt(x, ξ) ≤ 0, for all t ∈ T ) . (3.42)

Then, let us define Φ: H × Rm → C(T ) given by

(x, z) → Φ(x, z) ∈ C(T ) defined by t → Φ(x, z)(t) := g(t, x, z), (3.43)

where C(T ) is the space of continuous functions from T to R and considering the closed
convex cone K := {f ∈ C(T ) : f(t) ≥ 0 for all t ∈ T}. Using this setting, we have that the
probability function (3.42) can be expressed as (3.1), that is, φ(x) = P(Φ(x, ξ) ∈ −K).

Now, we are going to write the probability function (3.42) using a suitable cone C, which
generates the positive polar cone of K. In order to do that let us recall some concepts of
measure theory. Let us denote by B(T ) the Borel σ-algebra, which is the smallest σ-algebra
generated by open sets, a signed measure µ : B(T ) → R is called regular if for every A ∈ B(T )

µ(A) = inf {µ(U) : U is open and A ⊂ U} = sup {µ(F ) : F is closed and F ⊂ A} .

By Riesz representation theorem (see, e.g., [1, Theorem 14.14]) the dual space of C(T )
can be identified as the linear space of regular signed measures. Moreover, in this framework
the positive polar cone of the set of positive functions is given by the set of (positive) regular
measures µ : B(T ) → R (see, e.g., [1, Theorem 14.12]). Consequently, a suitable generator of
that cone corresponds to the set C of probability measures on (T,B(T )), which means that
our supremum function is given by

ShΦ(x, z) = sup
{∫

T
g(t, x, z)dµ(t) + h(x) : µ ∈ C

}
. (3.44)

The next proposition establishes formally that the general supremum function provided
in (3.44) of the vector function (3.43) with scalarization over the set of probability measures
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is indeed nothing more than the pointwise supremum of the function g with respect to the
parameter t ∈ T plus the function h.

Proposition 3.10 Let T be a compact Hausdorff space and g : T ×H×Rm → R be such that
t → g(t, x, z) is continuous for all (x, z) ∈ H × Rm. Then, for a given function h : H → R
the following holds true:

ShΦ(x, z) = sup
t∈T

g(t, x, z) + h(x) for all (x, z) ∈ H × Rm

Proof. Defining C of probability measures on (T,B(T )). First, we have that

ShΦ(x, z) ≤ sup
t∈T

g(t, x, z) + h(x) (3.45)

for all (x, z) ∈ H ×Rm. Moreover, given a point (x, z) ∈ H ×Rm, we can take t̄ ∈ T (since T
is a compact Hausdorff space) such that g(t̄, x, z) = supt∈T g(t, x, z), then if we considering
the Dirac measure over t̄, that is,

µ{t̄}(A) =
{

1 if t̄ ∈ A

0 otherwise.

we obtain the equality in (3.45), which ends the proof. □

The final result of this section shows a sufficient condition to ensure condition (3.3) in the
setting of probust chance constrained optimization.

Proposition 3.11 Let T be a compact Hausdorff space and g : T × H × Rm → R be
such that t → g(t, x, z) is continuous for all (x, z) ∈ H × Rm. Suppose the existence of a
convex continuously differentiable function h : H → R, such that for all t ∈ T , the function
(x, z) → g(t, x, z) +h(x) is convex. Then, the function Φ defined in (3.43) satisfies condition
(3.3).
Proof. For all positive regular measures µ : B(T ) → R we have that (3.3) is given by

⟨µ,Φ⟩(x, z) + h(x) =
∫
T
(g(t, x, z) + h(x))dµ(t) for all (x, z) ∈ H × Rm,

thus its convexity follows from the convexity of the function g(t, x, z) + h(x) for all
(x, z) ∈ H × Rm, which is preserved under the integral sign (see, e.g., [17, 21] and the
references therin for more details). □
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Chapter 4

Generalized differentiation of
probability functions generated by
set-valued mappings

In this chapter, we investigate a probability function formulated by

φ(x) := P(ω ∈ Ω : ξ(ω) ∈ Si(x) for all i = 1, . . . , s), (4.1)

where ξ : Ω → Rn is a random vector from a probability space (Ω,A,P) and Si : X ⇒ Rm

with i = 1, . . . , s is a family of set-valued mappings. It is clear that φ can also be represented
as follows:

φ(x) =
∫

{z∈Rm:z∈Si(x)∀i=1,...,s}

fξ(z)dλm(z). (4.2)

Throughout this work we will make the assumption that fξ satisfies (2.10).
In order to derive analytical properties of φ we will assume that given a point of interest

x̄ ∈ X the following basic assumptions for each set-valued mapping Si hold: There exists a
neighborhood U of x̄ such that

a) 0 ∈ Si(x) for all x ∈ U

b) Si is locally Lipschitz-like at (x, z) ∈ gph Si and x ∈ U

c) Si has closed graph and convex values
(H)

We notice that when z̄ ∈ S(x) for all x ∈ U and S satisifes conditions b) and c) on (H),
we may consider the set-valued mapping S̃(x) = S(x) − z̄ satisfying (H).

This chapter is organized as follows: Section 4.1 presents and investigates properties of
the inner enlargement of the probability function (4.1). The local Lipschitz continuity of the
probability function (4.1) is exposed in Section 4.2.
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4.1. Inner enlargement of probability function (4.1)
In this section, we present the inner enlargement of the probability function (4.1): Given

ε > 0 we define the probability function

φε(x) := P(ω ∈ Ω : ξ(ω) ∈ Si(x) + εB for all i = 1, . . . , s). (4.3)

The aim of this section is to prove the local Lipschitz continuity of the enlargement by
applying Theorem 2.2. To that end, we rewrite as a joint probability function given by an
inequality system, this is done through the distance function. We notice that z ∈ Si(x) + εB
if and only if d(z,Si(x)) ≤ ε. Therefore, the probability function (4.3) can be reformulated
as

φε(x) = P(ω ∈ Ω : d(ξ(ω),Si(x)) ≤ ε for all i = 1, . . . , s).

According to this reformulation, we define on U the finite and infinite directions with respect
to Si as the sets defined by

Fi(x) := {v ∈ Sm−1 | ∃r > 0 : d(rLv,Si(x)) > 0}, (4.4)
Ii(x) := {v ∈ Sm−1 | ∀r ≥ 0 : d(rLv,Si(x)) = 0}, (4.5)

respectively. We also define

F(x) := {v ∈ Sm−1 | ∃r > 0 : max
i=1,...,s

d(rLv,Si(x)) > 0}, (4.6)

I(x) := {v ∈ Sm−1 | ∀r ≥ 0 : max
i=1,...,s

d(rLv,Si(x)) = 0}. (4.7)

Now, let us define the radial functions associated with the spherical radial decomposition of
our enlargement. Given ε ≥ 0 we define ρεi : U × Sm−1 → R ∪ {+∞} by

ρεi (x, v) := sup {r > 0 : d(rLv,Si(x)) ≤ ε} (4.8)

and set

ρε(x, v) := min
1≤i≤s

ρεi (x, v). (4.9)

Particularly, we simply denote ρi (x, v) := ρεi (x, v) and ρ (x, v) := ρε (x, v), for ε = 0.

The next lemma establishes some basic properties of the radial functions defined above,
which allows us to understand better the behavior of these functions.

Lemma 4.1 Let each Si of the of the family of set-valued mappings satisfy (H) at x̄. Then,
we have that:

a) For all ε ≥ 0 and all x ∈ U , Fi(x) = dom ρεi (x, ·) and F(x) = dom ρε(x, ·).

b) For all v ∈ Fi(x),

d(r1Lv,Si(x)) < d(r2Lv,Si(x)), for all r2 > r1 > ρi(x, v). (4.10)
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c) For all v ∈ Fi(x), lim
r→∞

d(rLv,Si(x)) = +∞.

d) For all v ∈ Fi(x) and all r > ρεi (x, v) we have d(rLv,Si(x)) > ε.

e) For all ε ≥ 0, we have ρεi (x, v) = inf{r > 0 : d(rLv,Si(x)) > ε} with the convention
inf ∅ = +∞.

f) For all v ∈ Fi(x), and all ε > 0, ρεi (x, v) is the unique r > 0 such that d(rLv,Si(x)) = ε.

Proof. Let us first prove b). Fix i, let r, β ∈ R and consider the function
γr,β(t) := d((t + r)Lv,Si(x)) − β for t ≥ 0. This function is convex, and so, whenever
γr,β(0) < 0 and γr,β(t2) ≥ 0, we have that

γr,β(t1) <
t1
t2
γr,β(t2), for all 0 < t1 < t2. (4.11)

Now, if v ∈ Fi(x), then, for some r′ > 0, we have that d(r′Lv,Si(x)) > 0. Hence, by
convexity of the distance function we have that r0 := ρi(x, v) < r′ < +∞. Now, consider
r2 > r1 > r0 and fix β ∈ (0, d(r2Lv,Si(x))). Then, using inequality (4.11) with t1 = r1 − r0,
t2 = r2 − r0 and r = r0 we have that (4.10) holds proving part b) and in consequence part
c) follows. Now, let us prove a). If v ∈ F(x) then v ∈ Fi(x) for some i ∈ {1, . . . , s} and by
Item b) the set {r ≥ 0 : d(rLv,Si(x)) ≤ ε} must be bounded yielding ρεi (x, v) < +∞ and in
consequence ρε(x, v) < +∞. On the other hand if v ∈ I(x) we have that ρεi (x, v) = +∞ for
all i and so ρε(x, v) = +∞ concluding the proof of Item a). Item d) follows by using (4.10)
with r1 = ρεi (x, v) and r2 = r. Item e) follows from Item d) and the continuity of the distance
function. Finally, Item f) follows from Items d) and e). □

Definition 4.1 (η-growth condition for a family of set-valued mappings) Consider x̄ ∈ U .
Let η : R → [0,+∞] be a non-decreasing mapping such that

lim
∥z∥→+∞

∥z∥mf̄ξ(z)η(∥z∥) = 0. (4.12)

We say that the family of set-valued mappings Si satisfies the η-growth condition at x̄ if
for some l > 0

∥D∗Si(x, z)∥ ≤ lη(∥z∥), ∀x ∈ B1/l(x̄), ∀z ∈ Rm, (4.13)

where ∥D∗Si(x, z)∥ := sup {∥x∗∥ : x∗ ∈ D∗Si(x, z)(z∗) and ∥z∗∥ ≤ 1}.

Let us define, for x ∈ U , ε > 0 and v ∈ F(x)

Mε(x, v) :=

 −α〈
zx,vε − PSi(x)(zx,vε ), Lv

〉 · x∗ : i ∈ T εx(v), α ∈ Iθ(ρε(x, v), v)
x∗ ∈ D∗Si(x, PSi(x)(zx,vε ))(PSi(x)(zx,vε ) − zx,vε )


(4.14)

where zx,vε := ρε(x, v)Lv and T εx(v) = {i ∈ {1, . . . , s} : ρεi (x, v) = ρε(x, v)}. For convenience
we define Mε(x, v) = {0} for all v ∈ I(x).
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Theorem 4.1 Let x̄ ∈ U be given and assume that (2.10) holds true. Moreover, assume that
the family of set-valued mappings Si satisfy the η-growth condition for set-valued mappings
at x̄ and that each Si satisfy (H) at x̄.

Then the probability function (4.3) is locally Lipschitz at x̄ and on an appropriate neigh-
borhood U ′ of x̄ it holds:

∂bφε(x) ⊆ clw∗

 ∫
v∈F(x)

∂b
xeε(x, v)dµζ(v)

 , for all x ∈ U ′ (4.15)

where, eε refers to the radial probability-like function defined in (2.13) associated to the sub-
level {z ∈ Rm : d(z,Si(x)) ≤ ε for all i = 1, . . . , s}. Moreover, we have that

∂b
xeε(x, v) ⊆ cl co Mε(x, v) (4.16)

for all v ∈ Sm−1. In addition, if X is finite-dimensional the closure can be omitted.
Proof. Let us notice that the probability function (4.3) can be written as

φε(x) := P(ω ∈ Ω : g(x, ξ(ω)) ≤ 0) (4.17)

where g(x, z) := max{gi(x, z) : i = 1, . . . , s} and

gi(x, z) = 1
2 d2(z,Si(x)) − ε2

2 .

Let us prove that the assumptions of Theorem 2.2 in Appendix are satisfied. Indeed, by
Assumption (H) we have that gi(x, 0) = − ε2

2 < 0 and that gi′s are convex on the second
variable. Due to Lemma 2.1 the functions gi′s are locally Lipschitz at (x, z) ∈ U ×Rm. Also,
by Lemma 4.1 Item f), the sets of finite direction Fi defined in (4.4) coincide with the sets
of finite directions Fi(x) defined in Appendix (Eq. (2.16)). That is, Fi(x) = Fi(x), and
so, by taking complements we also have that Ii(x) = Ii(x) where Ii(x) is the set of infinite
directions defined in Appendix (Eq. (2.17)). In consequence F(x) = F (x) and I(x) = I(x).
The radial functions ρεi (x, v) are equal to the radial functions defined in Appendix Eq. (2.18),
and so, ρε(x, v) is equal to the radial function defined in Appendix Eq. (2.19). Now, let us
prove that the family of functions g′

is that we defined above satisfy the ηθ-growth condition
given in Appendix (Definition 2.3) for all v ∈ I(x̄). Consider v̄ ∈ I(x̄). Since, the family of
set-valued mappings Si satisfy the η-growth condition for set-valued mappings at x̄, we have
that there exists l̂ > 0 such that the family Si satisfy (4.13). Let us set l := l̂ε and consider
(x, v) ∈ B1/l(x̄) × B1/l(v̄) with v ∈ F(x) and ρiε(x, v) ≥ l with i ∈ T εx(v). By Lemma 2.1,
the fact that η is non-decreasing and by the nonexpansiveness of the projection mapping we
obtain the following sequence of inequalities

∥πx(∂b
xgi(x, zx,vε ))∥ ≤ ∥D∗Si(x, PSi(x)(zx,vε ))∥ε ≤ l̂εη(∥PSi(x)(zx,vε )∥) ≤ lη(∥zx,vε ∥).

Hence it is enough to consider ηθ(ρε(x, v), v) = η(∥zx,vε ∥). Therefore, the proof follows from
Theorem 2.2 in Appendix, upon noticing that the inclusion (4.16) is obtained using Appendix
Eq. (2.33) together with Lemma 2.1 when v ∈ F(x) and that ∂b

xeε(x, v) ⊆ {0} = Mε(x, v)
when v ∈ I(x). □
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Remark 4.1 In Theorem 4.1 we have, furthermore, the inclusion

∂bφε(x) ⊆ clw∗

 ∫
v∈Sm−1

Mε(x, v)dµζ(v)

 for all x ∈ U ′,

as a consequence of [8, Theorem 8.6.4] since X is a separable reflexive Banach space, Mε(x, v)
is integrably bounded (see Lemma 4.6 below) and µζ is nonatomic.

4.2. Lipschitz continuity of probability function (4.1)
In this section, we show that the probability function (4.1) is locally Lipschitz continuous.

First, we provide the following lemma which establishes a variational upper-estimate for the
basic subdifferential of the probability function (4.1) in terms of the subgradients for the
basic subdifferential of the enlargements.

Lemma 4.2 (Approximation of subgradients) Consider the probability function φ defined in
(4.1), and the family of probability functions φε given by (4.3).Then, for all x ∈ U

φ(x) = inf
ε>0

φε(x). (4.18)

∂bφ(x) ⊆
{
x∗ ∈ X ∗ : There exist ∃xk → x, εk → 0+

and x∗
k ∈ ∂bφεk

(xk) s.t. x∗
k ⇀ x∗

}
. (4.19)

Proof. A direct application of the continuity of the probability measure shows (4.18). Now,
consider a point x∗ ∈ ∂bφ(x), it follows from definition that there are sequences xk → x
with φ(xk) → φ(x) and x∗

k ⇀ x∗ such that x∗
k ∈ ∂rφ(xk). Hence, using [56, Lemma 2.1] for

each point x∗
k we can get sequences xk,j → xk with φ(xk,j) → φ(xk) and x∗

k,j → x∗
k such that

x∗
k,j ∈ ∂rφεk,j

(xk,j). Now, since X is reflexive and separable we have that the weak∗-topology
is metrizable on bounded sets (see, e.g., [25]), and it allows us to use a diagonal argument to
conclude the result. □

In order to establish continuity of the radial functions (4.8) and (4.9) and consequently,
boundedness of the sets Mε(x, v) we define the following continuity property for set-valued
mappings.

Definition 4.2 We say that a set-valued mapping S has the interior continuity property on
U ⊆ X , if for every x ∈ U and z ∈ int(S(x)) there exists r > 0 such that

Br(z) ⊆ S(x′), for all x′ ∈ Br(x).

Remark 4.2 We notice that when S has the interior continuity property then
• we can replace Assumption (H) Item b) by S being locally Lipschitz-like at z ∈ bd S(x)

while maintaining Lemma 2.1 and the subsequent results. Indeed, if z ∈ int S(x) we
have thus that d(z′,S(x′)) = 0 for all (x′, z′) close enough to (x, z), and consequently
the function u defined in Lemma 2.1 is trivially locally Lipschitz.

• when computing ∥D∗S(x, z)∥ in the η-growth condition in Definition 4.1, the nontrivial
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points are when z ∈ bd S(x) since if z ∈ int S(x), due to the interior continuity property
of S, we have that (x, z) ∈ int(gph S) and in consequence D∗S(x, z)(z∗) is either empty
or 0 ∈ X .

Lemma 4.3 Let each Si in the family of set-valued mappings satisfy Assumption (H) and
have the interior continuity property on U . Then, there is an open neighborhood U ′ ⊆ U , such
that for every sequence [0,+∞) × U ′ × Sm−1 ∋ (εk, xk, vk) → (ε, x, v) ∈ [0,+∞) × U ′ × Sm−1

we have that

ρεi (x, v) = lim
k→+∞

ρεk
i (xk, vk) for each i = 1, . . . , s. (4.20)

Furthermore,

ρε(x, v) = lim
k→+∞

ρεk
(xk, vk). (4.21)

Proof. Fix i and consider (εk, xk, vk) → (ε, x, v). Let us first prove equality (4.20) by assuming
that the sequence ρεk

i (xk, vk) diverges. Suppose by contradiction that ρεi (x, v) < +∞ and
consider r > ρεi (x, v). By Lemma 4.1 we have that d(rLv,Si(x)) > ε, so by continuity of the
distance function (recall Lemma 2.1) we have that d(rLvk,Si(xk)) > ε for k large enough,
which, again by Lemma 4.1 means that r ≥ ρεk

i (xk, vk) for k large enough. A contradiction.
Thus, we assume that the sequence ρεk

i (xk, vk) admits a cluster point r′. Then for some
subsequence we have that ρεkl

i (xkl
, vkl

) →l r
′. Let us prove that r′ = ρεi (x, v). By Lemma 4.1

we have the equality d(ρεkl

i (xkl
, vkl

)Lvkl
,Si(xkl

)) = εkl
which by continuity of the distance

function yield us to the equality d(r′Lv,Si(x)) = ε. From the uniqueness shown in Lemma
4.1 the result for the case ε > 0 follows. Thus it remains to prove it for ε = 0. In this case,
by definition of the radial function we have that r′ ≤ ρi(x, v). Suppose by contradiction that
r′ < ρi(x, v). Therefore, r′Lv ∈ int(Si(x)) and hence ρεkl

i (xkl
, vkl

)Lv ∈ int(Si(x)) for l large
enough. By the interior continuity property of Si (recall Definition 4.2) we have that there
exists γ > 0 such that (ρεkl

i (xkl
, vkl

) + γ)Lv ∈ int(Si(xk)), which particularly, by definition of
the radial function, implies that ρεkl

i (xkl
, vkl

) + γ ≤ ρi(xkl
, vkl

) for l large enough, which is a
contradiction. Therefore, we have that r′ = ρi(x, v) and since this holds true for all possible
cluster points we conclude (4.20).

Now let us prove (4.21). On the one hand, there is some i ∈ {1, . . . , s} such that
ρε(x, v) = ρεi (x, v) which together with (4.20) lead us to ρε(x, v) = limk ρ

εk
i (xk, vk). Since,

by definition, ρεk
i (xk, vk) ≥ ρεk

(xk, vk) for all k, we conclude that ρε(x, v) ≥ limk ρ
εk
i (xk, vk).

On the other hand, for each k there exists ik ∈ {1, . . . , s} such that ρεk
(xk, vk) = ρεk

ik
(xk, vk).

Under subsequence, we may assume that ρεk
(xk, vk) = ρεk

i (xk, vk) for some fixed i. By taking
limits on this last equality and thus by (4.20) we obtain that limk ρεk

(xk, vk) = ρεi (x, v) which
by definition of ρε(x, v) lead us to limk ρεk

(xk, vk) ≥ ρε(x, v), concluding the proof of (4.21)
and thus of the lemma. □

Before addressing the boundedness of Mε(x, v) we need the following two lemmas con-
cerning the projection mapping.

Lemma 4.4 Under assumptions (H) the mapping (x, z) → PS(x)(z) is continuous on U×Rm.
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Proof. Consider a sequence (xk, zk) → (x, z) ∈ U × Rm. We have that

∥PS(xk)(zk) − PS(x)(z)∥ ≤ ∥PS(xk)(zk) − PS(xk)(z)∥ + ∥PS(xk)(z) − PS(x)(z)∥
≤ ∥zk − z∥ + ∥PS(xk)(z) − PS(x)(z)∥,

where in the second inequality we used the nonexpansiveness of the projection mapping (see,
e.g., []). Now, define yk := PS(xk)(z). By continuity of the distance function (see Lemma
2.1) we can assume that the sequence (yk) is bounded. Hence, it is enough to show that
each cluster point of (yk) is equal to PS(x)(z). Indeed, let ykl

→ y. By closedness of the
graph of S we have that y ∈ S(x). Furthermore, by definition of projection we have that
∥ykl

− z∥ = d(z,S(xkl
)) which by continuity of the distance function (Lemma 2.1) yield us

to ∥y − z∥ = d(z,S(x)). Finally, from the uniqueness of the projection onto convex sets we
conclude that y = PS(x)(z), and that ends the proof. □

Lemma 4.5 Consider S satisfying Assumption (H) with 0 ∈ int S(x) for all x ∈ U . Then
there exists a neighborhood of U ′ of x̄ and r > 0 such that for all x ∈ U ′ we have that

⟨z − PS(x)(z), z⟩ ≥ r d(z,S(x)), for all (x, z) ∈ U ′ × Rm (4.22)

Proof. Let U ′ and r > 0 be such that rB ⊆ S(x) for all x ∈ U ′. On the one hand, if z ∈ S(x)
the inequality holds trivially. On the other hand, take y := r

z−PS(x)(z)
∥z−PS(x)(z)∥ , so

⟨z − PS(x)(z), z⟩ = ⟨z − PS(x)(z), z − PS(x)(z)⟩ + ⟨z − PS(x)(z), PS(x)(z)⟩
= ∥z − PS(x)(z)∥2 + ⟨z − PS(x)(z), PS(x)(z) − y⟩ + ⟨z − PS(x)(z), y⟩
= ∥z − PS(x)(z)∥2 + ⟨z − PS(x)(z), PS(x)(z) − y⟩ + r∥z − PS(x)(z)∥

Now, we notice that ⟨z − PS(x)(z), PS(x)(z) −w⟩ ≥ 0 since w ∈ S(x) and by definition of the
projection onto convex sets. Therefore,

⟨z − PS(x)(z), z⟩ ≥ r∥z − PS(x)(z)∥ = r d(z,S(x)),

concluding the proof. □

Lemma 4.6 Let each Si of the family of set-valued mappings satisfy Assumption (H) at
x̄ ∈ U with 0 ∈ int(Si(x)) for all x ∈ U , and have the interior continuity property on U .
Moreover, assume that the family of set-valued mappings satisfy the η-growth condition at x̄
and that (2.10) holds true.

Then, there is a neighborhood U ′ of x̄ and ε′ > 0 such that

sup{∥x∗∥ : x∗ ∈ Mε(x, v), v ∈ Sm−1, x ∈ U ′, ε ∈ (0, ε′)} < ∞.

Moreover, lim sup
(ε,x,v)→(0,x̄,v̄)

Mε(x, v) = {0} for all v̄ ∈ I(x̄).

Proof. Due to the compactness of Sm−1 it is enough to show that for all v ∈ Sm−1 there are
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neighbourhoods Uv of x̄, Vv of v, and εv > 0 such that

sup {∥x∗∥ : x∗ ∈ Mε(x, v), v ∈ Vv, x ∈ Uv, ε ∈ (0, ε′
v)} < ∞. (4.23)

Fix v̄ ∈ Sm−1 and let us suppose first that v̄ ∈ F(x̄). By Lemma 4.3, there are neighbourhoods
Uv̄ of x̄, Vv̄ of v̄, and εv̄ > 0 such that

sup{ρε(x, v) : (ε, x, v) ∈ W := [0, εv̄] × Uv̄ × Vv̄} < +∞.

Particularly, v ∈ F(x) for all (x, v) ∈ Uv̄ × Vv̄. Now, fix (ε, x, v) ∈ W and consider a point
w∗ ∈ Mε(x, v) of the form:

−α〈
zx,vε − PSi(x)(zx,vε ), Lv

〉 · x∗, (4.24)

for some i ∈ T εx(v), α ∈ Iθ(ρε(x, v), v), x∗ ∈ D∗Si(x, PSi(x)(zx,vε ))(PSi(x)(zx,vε ) − zx,vε ) where
zx,vε := ρε(x, v)Lv. Since the set Iθ(ρε(x, v), v) remains bounded on W , we have that α is
uniformly bounded on W , let us say by ᾱ. Now, since Si has the local Lipschitz-Like property
at (x, PSi(x)(zx,vε )) we have that there exists κi ≥ 0 such that

∥x∗∥ ≤ κi∥zx,vε − PSi(x)(zx,vε )∥.

On the other hand, by Lemma 4.5 (shrinking enough the neighborhood Uv̄) there exists some
ri > 0 such that 〈

zx,vε − PSi(x)(zx,vε ), Lv
〉

≥ ri
ρε(x, v)∥zx,vε − PSi(x)(zx,vε )∥. (4.25)

Therefore, we obtain that ∥w∗∥ ≤ ᾱκρ̄
r

, where κ := max κi, r := min ri and
ρ̄ := sup{ρε(x, v) : (ε, x, v) ∈ W} which means that (4.23) holds for v̄ ∈ F(x̄).

Now, consider the case when v̄ ∈ I(x̄). Let γ > 0 and let l > 0 be such that the family of
Si satisfy the η-growth condition at x̄ (see Definition 4.1). By Lemma 4.3 we have that there
are neighborhoods Uv̄ of x̄, Vv̄ of v̄ and εv̄ > 0 such that ρε(x, v) > l for all (ε, x, v) ∈ W .
Moreover, by Lemma 4.5, there exists r > 0 such that (4.25) holds. Therefore, w∗ ∈ Mε(x, v)
in the form of (4.24) satisfies

∥w∗∥ ≤ θ̄(ρε(x, v), v) ρε(x, v)
r∥zx,vε − PSi(x)(zx,vε )∥ lη(∥zx,vε ∥)∥zx,vε − PSi(x)(zx,vε )∥.

Furthermore, for some constant C > 0 we have that θ̄(ρε(x, v), v) ≤ C(2ρε(x, v))m−1f̄ξ(zx,vε )
and thus

∥w∗∥ ≤ Cl2m−1

r∥Lv∥m−1 ∥zx,vε ∥mf̄ξ(zx,vε )η(∥zx,vε ∥).

Since, ρε(x, v) can be chosen arbitrarily large (shrinking W if it is necessary) we can assume
that ∥w∗∥ ≤ γ, and that ends the proof. □

Now, we provide the main result of this chapter.

Theorem 4.2 Consider each Si in the family of set-valued mappings satisfying Assumption
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(H) at x̄ ∈ U with 0 ∈ int(Si(x)) for all x ∈ U and having the interior continuity property
on U . Moreover, assume that the family of set-valued mappings Si satisfies the η-growth
condition at x̄ and that (2.10) holds true.

Then the probability function (4.1) is locally Lipschitz at x̄ and on an appropriate neigh-
borhood U ′ of x̄ it holds:

∂bφ(x) ⊆ cl

 ∫
v∈F(x)

M(x, v)dµζ(v)

 , for all x ∈ U ′ (4.26)

where, M(x, v) is given by,

M(x, v) =


−α

⟨z∗, Lv⟩
· x∗ :

α ∈ Iθ(ρ(x, v), v), z∗ ∈ Nb
S(x)(ρ(x, v)Lv) ∩ Sm−1

i ∈ Tx(v), x∗ ∈ D∗Si(x, ρ(x, v)Lv)(−z∗)


for all v ∈ F(x) with

Tx(v) = {i ∈ {1, . . . , s} : ρi(x, v) = ρ(x, v)} ,

and by M(x, v) = {0} for all v ∈ I(x).
Proof. Consider x∗ ∈ ∂bφ(x). We divide the proof into four claims.

Claim 1: There exist sequences xk → x, εk → 0+ and x∗
k ⇀ x∗ with

x∗
k ∈

∫
v∈Sm−1

Mεk
(xk, v)dµζ(v)

Indeed, by Lemma 4.2 there exists x∗
k ∈ ∂bφεk

(xk) with xk → x, εk → 0+ and x∗
k ⇀ x∗.

Furthermore, by Remark 4.1, we have that (for large enough k)

x∗
k ∈ Ck := clw∗

 ∫
v∈Sm−1

Mεk
(xk, v)dµζ(v)

 .
Let us notice that by Lemma 4.6 there is some k0 ∈ N such that the set ∪k≥k0Ck is bounded.
Since X is separable and reflexive, the weak∗-topology is metrizable on bounded sets allowing
us to take sequences x∗

j,k ⇀ x∗
k with x∗

j,k ∈
∫
v∈Sm−1 Mεk

(xk, v)dµζ(v) as well as to use a
diagonal argument so we can construct the desired sequence.

Claim 2: There exists a sequence of (Bochner) integrable functions yk : Sm−1 → X such
that

y∗
k(v) ∈ Mεk

(xk, v) µζ-a.e. and x∗
k =

∫
Sm−1

y∗
k(v)dµζ(v).

Using the definition of the integral of a set-valued mapping we get the existence of such a
sequence.

Claim 3: We have that x∗ ∈ cl (
∫
Sm−1 F (v)dµζ(v)), where F (v) is the set of sequential

weak∗ limits of {y∗
k(v)}. Moreover, the closure can be omitted when X is finite-dimensional.

Indeed, by Lemma 4.6, we have that there exists M > 0 such that ∥y∗
k(v)∥ ≤ M for almost
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all v ∈ Sm−1. Now, by [9, Corollary 4.1], we have that x∗ ∈ clw∗ (
∫
Sm−1 F (v)dµζ(v)), where

the closure operation can be omitted if the space X is finite-dimensional. Furthermore, by
Lyapunov convexity theorem, we have that cl (

∫
Sm−1 F (v)µζ) is convex, so

clw∗
(∫

Sm−1
F (v)dµζ

)
= cl

(∫
Sm−1

F (v)dµζ
)
,

and that ends the proof of our claim.
Claim 4: We have that F (v) ⊆ M(x, v) for almost all v ∈ Sm−1.
Indeed, consider a set of full measure S ⊆ Sm−1 such that y∗

k(v) ∈ Mεk
(xk, v) for all

k ∈ N and v ∈ S. Then, fix v ∈ S. First, if v ∈ I(x), we have by Lemma 4.6 that
F (v) ⊆ lim sup Mεk

(xk, v) ⊆ {0}. Now, assume that v ∈ F(x) and consider y∗
v ∈ F (v).

Then there exists a sequence y∗
kj

(v) such that y∗
kj

(v) ⇀ y∗
v and

y∗
kj

(v) = αj〈
zj − PSij

(xj)(zj), Lv
〉 · x∗

j ,

for some ij ∈ T
εj
xj (v), αj ∈ Iθ(ρεj(xj ,v), v) and x∗

j ∈ D∗Sij (xj, PSij
(xj)(zj))(PSij

(xj)(zj) − zj),
where zj := ρεj

(xj, v)Lv. Now, we may assume (by passing to a subsequence), that for some
fixed i ∈ T

εj
xj (v),

y∗
kj

(v) = · αj〈
zj − PSi(xj)(zj), Lv

〉 · x∗
j , (4.27)

with αj ∈ Iθ(ρεj
(xj, v), v) and x∗

j ∈ D∗Si(xj, PSi(xj)(zj))(PSi(xj)(zj) − zj), where
zj := ρεj

(xj, v)Lv.
First we notice that, by Lemma 4.3, we have ρi(x, v) = ρ(x, v), that is, i ∈ Tx(v).

Moreover, the functions θ̄, θ, defined in (2.27), are upper semicontinuous and lower semi-
continuous, respectively. Therefore, we can assume (by passing to a subsequence) that
αj → α ∈ I(ρ(x, v), v). Now, define w∗

j :=
zj−PSi(xj )(zj)

∥zj−PSi(xj )(zj)∥ , v∗
j := x∗

j

∥zj−PSi(xj )(zj)∥ . Since,
w∗
j ∈ Rm and it has unit norm, we can assume that w∗

j → z∗. Now, using the fact that Si is
locally Lipschitz-like at (xj, PSi(xj)(zj)), we have that the sequence v∗

j is bounded, and from
the fact that X is reflexive, we can assume that v∗

j ⇀ v∗ for some v∗ ∈ X ∗. Let us now prove
that z∗ ∈ NSi(x)(ρ(x, v)Lv) and x∗ ∈ D∗Si(x, ρ(x, v)Lv)(−z∗). Indeed,

i) z∗ ∈ NSi(x)(ρ(x, v)Lv): Since Si(xj) is closed and convex, we can apply [39, Corollary
1.96] to get that w∗

j ∈ ∂zd(zj,Si(xj)) for all j ∈ N. Now, we have that for all j ∈ N and
all w ∈ Rm

⟨w∗
j , w − xj⟩ ≤ d(w,Si(xj)) − d(zj,Si(xj)).

Hence, taking limits in the above inequality and recalling that the distance function is
Lipschitz continuous (see Lemma 2.1) we can conclude that z∗ ∈ ∂zd(ρ(x, v)Lv,Si(x)).
Finally, using again [39, Corollary 1.96], we get that z∗ ∈ NSi(x)(ρ(x, v)Lv).

ii) v∗ ∈ D∗Si(x, ρ(x, v)Lv)(−z∗): First, by definition of coderivative, we have that the
sequence (v∗

j , w
∗
j ) ∈ Nb

gphSi
(xj, zj). Moreover, by [39, Theorem 3.60] the graph of the

mapping (u, v) → Nb
gph Si

(u, v) is locally closed with respect to the ∥ · ∥ × w∗-topology
at (x, ρ(x, v)Lv) provided that the SNC property holds at (x, ρ(x, v)Lv). Since, Si
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is Lipschitz-like at (x, ρ(x, v)Lv) we can apply [39, Proposition 1.68] to get that the
mapping Si is SNC at (x, ρ(x, v)Lv) (see also [39, Definition 1.67]). Therefore, we have
that (v∗, z∗) ∈ Nb

gph Si
(x, ρ(x, v)Lv), and we can conclude by definition of coderivative.

Finally, by taking limits on (4.27) we get that y∗
v ∈ M(x, v). □

For the last result of the section, we apply Theorem 4.2 to prove the local Lipschitz
continuity of the following joint probability function

φ(x) := P(gi(x, ξ) ≤ 0, ∀i = 1, . . . , s), (4.28)

with continuously differentiable functions gi which are quasi-convex on the second argument.
To that end, it will be convenient to recall the following: associated with a point of interest
x̄ such that gi(x̄, 0) < 0, we define the finite and infinite directions with respect to gi by

Fi(x̄) := {v ∈ Sm−1 | ∃r ≥ 0 : gi(x̄, rLv) = 0},
Ii(x̄) := {v ∈ Sm−1 | ∀r ≥ 0 : gi(x̄, rLv) < 0},

respectively. The finite and infinite directions with respect to g can be defined analogously.
The so-called radial functions are defined by

ρi (x, v) := sup {r > 0 : gi(x, rLv) ≤ 0} for all i = 1, . . . , s

and ρ(x, v) = mini=1,...,s ρi(x, v). Finally, Tx(v) := {i = 1, . . . , s : ρi(x, v) = ρ(x, v)} is called
the set of active indexes at (x, v).

Definition 4.3 (η-growth condition for smooth functions) Let η : R → [0,+∞) be a non-
decreasing mapping such that

lim
∥z∥→+∞

∥z∥mf̄ξ(z)η(∥z∥) = 0.

We say that a family of continuously differentiable mappings {gi}si=1 satisfies the η-growth
condition for smooth functions at x̄ if for some l > 0

∇zgi(x, z) ̸= 0 and ∥∇xgi(x, z)∥ ≤ lη(∥z∥)∥∇zgi(x, z)∥, ∀x ∈ B1/l(x̄), ∀z ∈ {z : gi(x, z) = 0}.
(4.29)

Corollary 4.1 Consider the probability function (4.28) where gi : Rn × Rm → R are con-
tinuously differentiable, quasi-convex in z for all i = 1, . . . , s and ξ has continuous density
distribution. Suppose that a point of interest x̄ is such that gi(x̄, 0) < 0 for all i = 1, . . . , s
and that the family gi satisfies the η-growth condition given above at x̄. Assume, moreover,
that int{z ∈ Rm : gi(x, z) ≤ 0} = {z ∈ Rm : gi(x, z) < 0} for all i = 1, . . . , s. Then the
probability function (4.28) is locally Lipschitz at x ∈ U ′ and

∂bφ(x) ⊆ −
∫

v∈F (x)

⋃
i∈Tx(v)

θ(ρ(x, v), v)
⟨∇zgi(x, ρ(x, v)Lv), Lv⟩

∇xgi(x, ρ(x, v)Lv)dµζ(v), for all x ∈ U ′

(4.30)
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Furthermore, if #Tx(v) = 1 µζ-almost all v ∈ Sm−1 for all x ∈ U ′, then the probability
function (4.28) is continuously differentiable for all x ∈ U ′ and

∇φ(x) = −
∫

v∈F (x̄)

θ(ρ(x, v), v)
⟨∇zgTx(v)(x, ρ(x, v)Lv), Lv⟩

∇xgTx(v)(x, ρ(x, v)Lv)dµζ(v), for all x ∈ U ′.

(4.31)

Proof. Let us consider Si(x) := {z : gi(x, z) ≤ 0}. By continuity of gi, quasi-convexity of gi
in z and since gi(x̄, 0) < 0 there exists a neighborhood U of x̄ such that Si satisfies Item c)
in Assumption (H), 0 ∈ int(Si(x)) for all x ∈ U and such that Si has the interior continuity
property on U . Let us prove that Si is locally Lipschitz-like at (x, z) ∈ gph Si with x ∈ U .
Since Si has the interior continuity property on U it is enough to prove it for (x, z) such
that x ∈ U and z ∈ bd Si(x) = {z ∈ Rm : gi(x, z) = 0} (Recall Remark 4.2) then the result
follows from [39, Corollary 4.39] upon noting that the assumptions therein are satisfied since
in our case the constraint system on Si is given by a unique function gi satisfying (4.29).
Now, let us prove that Si satisfies the η-growth condition for set-valued mappings at x̄. Since
gi satisfies the growth condition in Definition 4.3 at x̄, we have that there exists l > 0 such
that gi satisfies (4.29). By [39, Corollary 4.35] we have that

D∗Si(x, z)(−z∗) = {x∗ : x∗ = λ∇xgi(x, z), z∗ = λ∇zgi(x, z), λ ≥ 0},

and thus when z ∈ bd Si(x) (recall Remark 4.2) we have that

∥D∗Si(x, z)∥ ≤ ∥∇xgi(x, z)∥
∥∇zgi(x, z)∥

≤ lη(∥z∥).

Hence the η-growth condition for set-valued mappings follows by considering the same non-
decreasing mapping η. Therefore, since the family Si satisfies the assumptions of Theorem
4.2, we have that φ is locally Lipschitz at x ∈ U . Now let us verify (4.30). We have that

NSi(x)(ρ(x, v)Lv) = {λ∇zgi(x, ρ(x, v)Lv) : λ ≥ 0}

and, again by [39, Corollary 4.35],

D∗Si(x, ρ(x, v)Lv)(−z∗)
= {x∗ : x∗ = λ∇xgi(x, ρ(x, v)Lv), z∗ = λ∇zgi(x, ρ(x, v)Lv) and λ ≥ 0}.

Hence, when ∥z∗∥ = 1 and z∗ ∈ NS(x)(ρ(x, v)Lv), we obtain that

D∗S(x, ρ(x, v)Lv)(−z∗) = ∥∇zg(x, ρ(x, v)Lv)∥−1∇xg(x, ρ(x, v)Lv).

Clearly Ii(x) = Ii(x) entailing Fi(x) = F(x). And as was stated in [57] when fξ is contin-
uous, θ̄ = θ and Iθ(ρ(x, v), v) = {θ(ρ(x, v), v)}. Hence (4.30) follows from (4.26) where we
omitted the closure operator due to X = Rn. When #Tx(v) = 1 then (4.31) follows due to
X = Rn and [36, Theorem 4.17]. □
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Chapter 5

Chebyshev sets: weak projection and
nonconvexity estimates

It is well-known, in the context of Hilbert spaces, that nonempty closed convex sets are
Chebyshev sets (see, e.g., [10]). What about the converse? It is known that every Chebyshev
set is convex provided that the underlying space is finite-dimensional (Bunt’s Theorem [14]).

In 1966, Klee [33] proposed the conjecture that non-convex Chebyshev sets exist in (some)
infinite-dimensional Hilbert space. In the same work, Klee gave the following partial positive
answer.

Theorem 5.1 (Klee (1966)) If C is Chebyshev and weakly closed, then C is convex.

In 1969, Asplund [2] gave the following criterion for the convexity of a Chebyshev set in
terms of the continuity of the projection.

Theorem 5.2 (Asplund (1969)) If C is Chebyshev and PC is norm-weak continuous, then
C is convex.

For more results of this kind and historical details we recommend the book [24].

In the first section of this chapter, we give a partial positive answer to Klee’s problem
in Theorem 5.7 where we relaxed the concept of projection to the one of weak projection.
More specifically, we prove that a closed subset of a Hilbert space is convex if and only if the
associated weak projection mapping is single-valued. To this end, we based ourselves on the
variational characterization of the convexity given in propositions 2.3, 2.4, and 2.5 exposed
in Chapter 2.

In relation to the non-convexity of sets, there are many concepts used to measure the non-
convexity of sets, including naturally the Hausdorff distance between the set and its closed
convex hull. The effective standard deviation (see Definition 5.1) regards the deviation of
the elements of the convex combinations of every given point in the convex hull from the
point itself. All these concepts and other classical ones (see [30] and references therein) are
then based on the shape of the convex hull of the set. On the side of convex analysis and
approximation theory, Klee’s Theorem provides criteria for convexity of sets based on the
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size (indeed, uniqueness) of the associated projections onto the involved set.

In the second section of this chapter, the main theorem is Theorem 5.8 where we show
that the Hausdorff distance between the set and its closed convex hull can be fully charac-
terized by means of the simultaneous projection onto the set and its closed convex envelope,
by appealing exclusively to convex combinations composed of projections onto the set. The
most explicit form of this result is Corollary 5.1 which confirms that the Hausdorff distance
between the set and its closed convex hull is proportional to the size (diameter) of the pro-
jections onto the set, establishing a quantified version of the Bunt-Klee Theorem.

In this line, the standard deviation function provides a primal estimate of the non-
convexity, since it concerns only the apparent shape of the set involved, whereas our estimates
are rather of dual type because only the projections are solicited, so it can be calculated rel-
atively easily.

5.1. Nonconvexity estimators
The Shapley-Folkman Theorem was derived by Shapley and Folkman in private communica-
tions and was introduced by Starr [51]. In [49], Schneider interprets the theorem by saying
that the Minkowski sum is, in some sense, a convexifying operation. A simple proof of this
Theorem, involving the conic version of Carathéodory’s theorem (see, e.g. [47]), can be found
in [59].

Theorem 5.3 (Shapley-Folkman) Let Ci ⊂ Rm, i = 1, . . . , k. If

x ∈ co
(

k∑
i=1

Ci

)
=

k∑
i=1

co(Ci)

then
x ∈

∑
[1,m]\Ix

Ci +
∑
Ix

co(Ci)

where |Ix| ≤ m.

The Shapley-Folkman theorem has been used, for example, to deal with non-convexity in
economic models of large but finite agents [] and to produce a priori bounds on the duality
gap [7]. Quantitatively, the relation between the Minkowski sum of many nonconvex sets and
its convex hull is possible in terms of a nonconvexity measure as the following, introduced
by Cassels [15].

Definition 5.1 (Effective standard deviation) For a set C ⊂ H we define the function
v2
C : H → R∞ as

v2
C(x) = inf

{
k∑
i=1

λi∥xi − x∥2 : xi ∈ H, k ≥ 1, λ ∈ ∆k,
k∑
i=1

λixi = x

}
,

then the Effective standard deviation of C is v2(C) = sup{v2(x) : x ∈ coC}.
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Equivalently, by the parallelogram’s identity, the function v2
C can be expressed as

v2
C = coψC − 1

2∥ · ∥2 with ψC(x) := δC + 1
2∥ · ∥2. (5.1)

The function ψC defined above is called Asplund’s function (see [2]). This function reflects
many topological and geometric properties of its associated set C as we show in the following
result.

Proposition 5.1 Let C ⊂ H be nonempty. Then the following assertions hold:

(i) ψC is convex if, and only if, C is convex.

(ii) ψC is lower semi-continuous if, and only if, C is closed.

(iii) cl ψC is convex if, and only if, cl C is convex.

(iv) clw ψC is convex only if clw C is convex.

Proof. The “if” part of (i) and (ii) follows from noticing that epiψC = (C×R+)∩epi(1
2∥ ·∥2).

To prove the “only if” part of (i) consider x1, x2 ∈ C, λ ∈ [0, 1] and xλ := λx1 + (1 − λ)x2.
Hence, by convexity of ψC ,

δC(xλ) ≤ ψC(xλ) ≤ λψC(x1) + (1 − λ)ψC(x2) = λ
2 ∥x1∥2 + 1−λ

2 ∥x2∥2 < ∞.

That is, xλ ∈ C. To prove the “only if” part of (ii) consider xn ∈ C with xn → x. Hence, by
lower semi-continuity of ψC ,

δC(x) ≤ ψC(x) ≤ lim inf
n→∞

ψC(xn) = lim inf
n→∞

1
2∥xn∥2 = 1

2∥x∥2 < ∞.

That is, x ∈ C. Now (iii) follows from (i) upon noticing that cl ψC = ψcl C thanks to the
continuity of the norm. Finally, to prove (iv) we notice that δclw C ≤ ψclw C ≤ clw ψC . First
we consider x1, x2 ∈ C, λ ∈ [0, 1] and xλ := λx1 + (1 − λ)x2. Hence,

δclw C(xλ) ≤ λ clw ψC(x1) + (1 − λ) clw ψC(x2) ≤ λ
2 ∥x1∥2 + 1−λ

2 ∥x2∥2 < ∞,

that is, xλ ∈ clw C. Now consider x1, x2 ∈ clw C and nets (x1
i )i, (x2

j)j ⊂ C such that x1
i ⇀ x1

and x2
j ⇀ x2. By the first part of the argmunt, λx1

i + (1 − λ)x2
j ∈ clw C for all i, j. Hence by

taking weak limits on i and j, we obtain λx1 + (1 − λ)x2 ∈ clw C, concluding the proof.
□

Also, in relation to the Hausdorff distance, we always have that

d2(C, coC) ≤ v2(C) (5.2)

since
d2
C(x) ≤ v2

C(x) for all x ∈ H. (5.3)

This last inequality can be proven by observing that (see, e.g, [13, Exercise 2.3.20])

1
2d

2
C = 1

2∥ · ∥2 − ψ∗
C for all x ∈ H (5.4)
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and hence applying Fenchel’s inequality.

The following Theorem is due to Wegmann [58]. A proof, in the case of C compact, can
be found in [30].

Theorem 5.4 Let H = Rm. If v(C) = v(x0) for some x0 ∈ riC, then d(C, coC) = v(C).
An important property of the effective standard deviation is its subadditivity (see [15, 30]),
that is, for C,D ⊂ H,

v2(C +D) ≤ v2(C) + v2(D), (5.5)

which follows from the fact that for x = x1 + x2 ∈ co(C +D), we have that

v2
C+D(x) ≤ v2

C(x1) + v2
D(x2). (5.6)

The following Theorem follows from the subadditivity property of the effective standard
deviation stated above for arbitrary Hilbert spaces and from the Shapley-Folkman theorem
for finite-dimensional Hilbert spaces.

Theorem 5.5 [15, 30] Let C1, . . . , Ck ⊂ H. Then

d

(
1
k

k∑
i=1

Ci, co
(

1
k

k∑
i=1

Ci

))
≤ 1√

k
max
1≤1≤k

v(Ci).

If H = Rm, then

d

(
1
k

k∑
i=1

Ci, co
(

1
k

k∑
i=1

Ci

))
≤

√
min{k,m}

k
max
1≤1≤k

v(Ci).

In particular, we can observe from the theorem above, that when C1 = . . . = Ck = C,
v(C) < ∞, and k → ∞

1
k
(C + . . .+ C) → co(C)

in the Hausdorff distance with rate O( 1
k
).

5.2. Weak projection and a partial positive answer to
Klee’s conjecture

In this section we consider a set C ⊂ H to be non-empty.

Definition 5.2 (weak projection) Given a non-empty set C ⊂ H, we define

Pw
C (x) := {y : there exists a net yi ∈ C such that yi ⇀ y and ∥yi − x∥ → dC(x)}

and call the set Pw
C (x) the weak projection of x onto the set C.

Remark 5.1 Clearly from the definition the set Pw
C (x) is weakly closed and PC(x) ⊂ Pw

C (x)
for all x ∈ H. This last inclusion is (possibly) strict in the infinite-dimensional case. For
example, consider H = ℓ2, the space of square-summable sequences, and C = S1(0) the unit
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sphere in ℓ2. Then PC(0) = C ⊊ Pw
C (0) = B = clw C.

The following proposition exposes the subdifferential of the conjugate and weakly lower
semi-continuous hull of the Asplund function in terms of the weak projection.

Proposition 5.2 Let C ⊂ H be non-empty. Then ψ∗
C is continuous on H and

∂ψ∗
C(x) = co(Pw

C (x)) and (∂ clw ψC)−1(x) = Pw
C (x) (5.7)

for all x ∈ H. Moreover, provided that H is finite-dimensional, we can omit the closure in
the first equality.
Proof. From the continuity of the distance function and (5.4) we obtain the continuity of ψ∗

C

for all x ∈ H. Now, y ∈ (∂ clw ψC)−1(x) is equivalent to

⟨x, y⟩ = clw ψC(y) + ψ∗
C(x) = clw ψC(y) + 1

2∥x∥2 − 1
2d

2
C(x)

Upon completing squares, this last equality is equivalent to the existence of a net yi ∈ C
with yi ⇀ y such that ∥yi − x∥ → dC(x). That is, y ∈ Pw

C (x), yielding the second equality
on (5.7). Finally, the first equality in (5.7) and the moreover part follows from the second
together with Proposition 2.3. □

The following two results resume the state of the art on Chebyshev sets. The latter one is
our main result.

Theorem 5.6 Let C ⊂ H be a nonempty set. Then the following are equivalent, and each
implies the convexity of clw C:

(i) Pw
C (x) is convex for all x ∈ H.

(ii) Pw
C (x) is convex for all x in a convex dense subset of H.

(iii) The function clw ψC is convex.

Proof. That (i) implies (ii) is clear. If Pw
C (x) is convex for all x ∈ D, where D is a convex

dense subset of H, then, by the second equality in (5.7) we have that (∂ clw ψC)−1(x) is convex
for all x ∈ D and from Proposition 2.5 we obtain the convexity of clw ψC . Now, if clw ψC is
convex, then ∂ψ∗

C(x) = (∂ clw ψC)−1(x) for all x ∈ H. Hence, we obtain (i) by (5.7). Finally,
from Proposition 2.5, each of the statements of the theorem implies the convexity of clw C.
□

Theorem 5.7 Let C ⊂ H be a proximinal set. Then the following are equivalent:

(i) C is convex.

(ii) Pw
C (x) is a singleton for all x ∈ H.

(iii) d2
C is Gâteaux differentiable on H.

(iv) d2
C is Fréchet differentiable on H.
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(v) For all x ∈ H, there exists a selection of PC, norm-weak continuous at x.

(vi) For all x ∈ H, there exists a selection of PC, norm-norm continuous at x.

Proof. Obviously, (vi) implies (v) and (iv) implies (iii). To prove (v) implies (iv), notice
that any selection of PC(x) is also a selection of ∂ψ∗

C(x), hence, by [60, Theorem 3.2.2], ψ∗
C

is Fréchet differentiable. Thus, by formula (5.4) we get that d2
C is Fréchet differentiable. (iii)

implies (ii) follows from (5.4) and the first equality in (5.7). Now, due to Proposition (5.7),
(ii) implies that ∂ψ∗

C(x) = PC(x) = (∂ψC)−1(x) for all x ∈ H. Thus, since ψ∗
C ∈ Γ0(H),

∂ψ∗∗
C (x) = (∂ψ∗

C)−1(x) = ∂ψC(x) for all x ∈ H.

By proposition 2.4 we conclude that the (lower semi-continuous) function ψC is convex, hence,
by Proposition 5.1, we obtain (i). The proof is complete since the convexity of the closed
set C implies the continuity of the (single-valued) mapping PC(x) for all x ∈ H (see, e.g.,
[60]). □

Remark 5.2 It is still unknown whether we can replace the weak projection Pw
C in condition

(ii) of the theorem 5.7 by PC.

5.3. Quantification of Klee’s theorem
In this section we consider a set C ⊂ H to be non-empty and such that v(C) < ∞.

Theorem 5.8 Let C ⊂ H be weakly closed. Then

d2(C, coC) ≤ v2(C) = sup
{
d2
C(x) − d2

coC(x) : x ∈ H
}

= sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
,

(5.8)
where Π := {x ∈ H : PcoC(x) ∈ co(PC(x))}.
Proof. By (5.1), we can rewrite the effective standard deviation as the following

v2(C) = −2 inf
{
δcoC(x) + 1

2 ∥x∥2 − coψC(x) : x ∈ H
}
.

Now, Proposition 2.1 and Moreau-Rockafellar theorem leads us to

v2(C) = −2 inf
{
ψ∗
C(x) − (δcoC + 1

2∥ · ∥2)∗(x) : x ∈ H
}

= −2 inf {ψ∗
C(x) − e1σC(x) : x ∈ H} .

By Moreau’s decomposition (2.4) and since e1δcoC = 1
2d

2
coC , it follows that

v2(C) = −2 inf
{
ψ∗
C(x) + 1

2d
2
coC(x) − 1

2∥x∥2 : x ∈ H
}
, (5.9)

yielding the first equality in (5.8) by recalling (5.4). Now, suppose that the right-hand-side
of (5.9) is attained at x̄ ∈ H. Then 0 ∈ ∂ψ∗

C(x̄) −PcoC(x̄). That is, x̄ ∈ Π, by recalling (5.7).
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Rewritting PcoC(x̄) = ∑k
i=1 λiyi with yi ∈ PC(x̄) and λ ∈ ∆k, we notice that since

⟨x̄− PcoC(x̄), yi − PcoC(x̄)⟩ ≤ 0 ∀i = 1, . . . , k and
k∑
i=1

⟨x̄− PcoC(x̄), λiyi − PcoC(x̄)⟩ = 0,

we have that ⟨x̄− PcoC(x̄), yi − PcoC(x̄)⟩ = 0 for all i = 1, . . . , k. Consequently,

v2(C) = −2ψ∗
C(x̄) − d2

coC(x̄) + ∥x̄∥2 = d2
C(x̄) − d2

coC(x̄) = ∥x̄− PC(x̄)∥2 − ∥x̄− PcoC(x̄)∥2

= ∥PC(x̄) − PcoC(x̄)∥2 ≤ sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
.

Moreover, by the first equality, we have that

sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
≤ sup

{
d2
C(x) − d2

coC(x) : x ∈ H
}

= v2(C),

concluding the proof. □

Theorem 5.8 entails the following quantification of the Blunt-Klee Theorem.

Corollary 5.1 Let C ⊂ H be weakly closed. Then

d(C, coC) ≤ sup {diam(PC(x)) : x ∈ H} .

Proof. By the previous theorem, we have that

d(C, coC) ≤ sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
.

By the definition of Π, the elements in x ∈ Π can be rewritten as PcoC(x) = ∑k
i=1 λiyi where

yi ∈ PC(x) and λ ∈ ∆k, hence, the last equality yields

d(C, coC) ≤ sup
{

k∑
i=1

λi∥PC(x) − yi∥2 : x ∈ Π
}

≤ sup {diam(PC(x)) : x ∈ Π} ,

from which we can conclude the proof. □

We present below an attainment result of the “dual” and “primal” problems of Theorem
5.8 and, as a corollary, we obtain Theorem 5.4.

Theorem 5.9 Let C ⊂ H be weakly closed. Then the following two assertions are equivalent:

(i) v2(C) is attained at x̄ ∈ dom ∂(coψC).

(ii) sup {∥PC(x) − PcoC(x)∥2 : x ∈ Π} is attained at ȳ ∈ Π such that PcoC(ȳ) = x̄.

Proof. Assume first (i). Since there exists some ȳ ∈ ∂(coψC)(x̄), by Proposition 5.4, we have
that

x̄ ∈ ∂ψ∗
C(ȳ) = co(PC(ȳ))

as well as the equality ⟨x̄, ȳ⟩ = coψC(x̄) +ψ∗
C(ȳ). Therefore, using Theorem 5.8 and the fact
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that x̄ ∈ coC, we obtain the following

sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
= v2

C(x̄) = coψC(x̄) − 1
2∥x̄∥2 = ⟨x̄, ȳ⟩ − ψ∗

C(ȳ) − 1
2∥x̄∥2

= ⟨x̄, ȳ⟩ − 1
2∥ȳ∥2 + 1

2d
2
C(ȳ) − 1

2∥x̄∥2 = 1
2d

2
C(ȳ) − 1

2∥x̄− ȳ∥2

≤ d2
C(ȳ) − d2

coC(ȳ) ≤ sup
{
d2
C(x) − d2

coC(x) : x ∈ H
}

= v2(C),

from which we deduce d2
coC(ȳ) = ∥ȳ − x̄∥2, that is, x̄ = PcoC(ȳ) and ȳ ∈ Π. Hence, assertion

(ii) follows. Now, we assume (ii). We have that,

sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
= ∥PC(ȳ) − x̄∥2.

where x̄ = PcoC(ȳ) ∈ co(PC(ȳ))(= ∂ψ∗
C(ȳ)). Then, again by Theorem 5.8, we have that

v2(C) ≤ ∥PC(ȳ) − PcoC(ȳ)∥2 = ∥PC(ȳ) − ȳ∥2 − ∥ȳ − PcoC(ȳ)∥2

= −2ψ∗
C(ȳ) + ∥ȳ∥2 − d2

coC(ȳ) = 2coψC(x̄) − 2⟨x̄, ȳ⟩ + ∥ȳ∥2 − d2
coC(ȳ)

≤ 2coψC(x̄) − ∥x̄∥2 = v2
C(x̄).

That is, we have that v2
C is attained at x̄, concluding the proof. □

Corollary 5.2 Let H = Rm and C be a closed set such that v(C) is attained for some
x̄ ∈ ri(C). Then v2(C) = d2(C, coC).
Proof. Assume now that vC(x̄) = v(C) for some x̄ ∈ ri(C). Then v(C) = d(C, coC). We
may restrict ourselves to aff C. Since coC = cl(dom coψC) = co(domψ) and ri(coC) =
ri(dom coψC) we have that x̄ ∈ ri(dom coψC) and so x̄ ∈ dom ∂(coψC). Thus, according to
Theorem 5.9, The supremum supx∈Π ∥PC(x)−PcoC(x)∥ is attained at ȳ ∈ Π∩aff C such that
PcoC(ȳ) = x̄. More precisely, because x̄ ∈ ri(coC), we must have that ȳ ∈ coC and we obtain
that

v2(C) = sup
{
∥PC(x) − PcoC(x)∥2 : x ∈ Π

}
= ∥PC(ȳ) − ȳ∥2 = d2

C(ȳ) ≤ d2(C, coC).

Since the opposite inequality always holds, we conclude the proof. □
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Chapter 6

Conclusions and future work

In Chapter 3 we have suggested a regularization (3.6) of the probability function given in
(3.1) employing the Moreau envelope. We have shown that this regularization inherits prop-
erties of the Moreau envelope itself, namely convergence to the original probability function.
Under appropriate, yet mild conditions, convergence can be understood in the Painlevé-
Kuratowski or Mosco sense. Furthermore, in a finite-dimensional setting, we established
continuous differentiability of the regularized probability functions and asymptotic consis-
tency of the resulting gradients which guarantees that accumulation points of sequences of
critical points converge to critical points of the original probability function. Once again
in infinite-dimensions, we managed to establish convergence of approximated optimization
problems to original problems. Furthermore, the abstract initial conic formulation allows
representing general inequality systems inside the probability function, for example, semidef-
inite constraints.

It is expected that our convergence results established in Section 3.4 provide the first steps
in the development of general algorithms for solving probabilistic constraint programming
problems. Besides, the available gradient formula given in Theorem 3.2 provides a suitable
representation of the gradient to implement (nonlinear) first descent methods.

In Chapter 4 we considered an enlargement (4.3) of the probability function generated by
a set-valued mapping (4.1). We proved that this enlargement is locally Lipschitz continu-
ous and, by approximation, we established the local Lipschitz continuity of the probability
function (4.1). In addition, we proved the local Lipschitz continuity of a joint probability
function given by a inequality system with relaxed convexity assumption, and subsequently
by assuming smooth data, its continuous differentiability with relaxed convexity assumption.

In Chapter 5 we gave a partial positive answer to Klee’s conjecture in terms of a re-
laxed concept of the metric projection, by applying known variational characterizations of
the convexity of a function to the Asplund function of a given set. Furthermore, via the
nonconvexity measure called effective standard deviation, we achieved an estimate of the
Hausdorff distance between a set and its closed convex envelope only in terms of the metric
projection, and at the same time we obtained a quantification of Bunt-Klee’s Theorem, all
this under the condition that the effective standard deviation of the given set is finite.

Moreover, we expect to continue the research of the chapter 5 by defining the following
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truncated version of the effective standard deviation,

vρ(C) := sup{vC(x) : x ∈ coC ∩ ρB} < +∞

for all ρ > 0, similar to the truncated Hausdorff distance (see, e.g., [46]), and relax the
condition of finite standard effective deviation.
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