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Lower bound for the discriminant of octic
number fieIds having six real places

Matias Atria *

Abstract

We improve on the known bounds for the discriminant D of an octic

fiel<I with 6 real places, lrom lDl > 8'978 to l,l > 9'058' The methods

shorvn here should apply to other signatures'

1 Introduction
In this thesis we prove the following

Theorem 1 If K is a number field, of d'egree I haaing exactly si'x real places'

then its d,iscri,minant D¡ satisfies lDnl > 9'058 '

The best previously known bound was lD¡l > 8'97498 [Ma, DyD]' Assuming

the Generalized Riemann Hypothesisl (GRH), Odlvzko obtained lDol >
9.268 [Ma, Od4]. The point of this thesis is to introduce analytic techniques

aliowing u, to i'*p.orrá the known bounds without assuming the GRH'

The"main ."u.o. fo" studying these octic fields, is that {or number fields

of degree seven or less, or for iotally real or totally complex octic fields'

the riinimal discriminants have been found through exhaustive computer

@l support provided bv Tl-d:"-v'granis 194-0353 and

196-0867 aná' European Community-CONICYT grant CI1--CT93-0353 We are also grate-

ful to H. Coh"o aoá collaborators, at Université Bordeaux I, for the development ofPARI'

without which this work would have been impossible'
rThe GRH states that all the zeros of ihe Dedekind zeta funciion (6 of /( rithin the

critical strip 0 < Re(s) < 1 actually lie on the c¡itical line cle'fined by Re(s) = |'



searches [Ma, Oda]. Tlie ¡nethods presented here make nc¡ rrse r.¡f any com-
puter searches of nunber fields and are expected to provide improved bounds
for other degrees as well.2

The interest in finding lower l¡orrnds for the discriminant began when
Kronecker conjectured that lD¡ | > 1 for all numbe¡ fields 1( I Q. This
was first proved by Minkowski [Mi], wiio also proved a lower bound for lD¡¡l
growing exponentially with z = [1( : Q]. Until the mid 1970's, most of the
work on this subject still used Minkowski's geometry of numbers. The best
of these results is the lower bound, due to Rogers [Ro] and Mulholland [Mu],

lDol* > (32.561...)?(15 .77b...)* ¡,g1,
as n r oo, where r'1 (resp., 12) denotes the numl¡er of real (resp., complex)
places of 11.

Following a suggestion of H. Stark [St], Odlyzko introduced in 1976 a
new analytic method for obtaining lower bounds for discrirninants [Odl-3].
He was able to improve noticeably on tlie previously obtained bor.¡nds of
Rogers and Mulholland. Further improvements came frorn the introduction
by Serre [Se] of the explicit forrnulas of Guinand [Gui] and Weil [Wel, We2] to
discriminant bounds under the GRH. Odlyzko extencle<l the ideas of Serre to
obtain unconditiona'l bounds (i.e., bounds that ¿re valid without the GRH),
the best known one being

lD"l* > (60.88s5...)+(22.s816...)? 1 ¿11¡,

as ?2 --+ oo. On the other hand, assuming the GRH, Orllyzko aud Serre
obtained the far better bound

lDKl* > (215.3325...)+(4 a.76J2...)? ¡ 11¡,
as r¿ -r m. To understand these results, we rnust look at Weil's explicit
formulas more closely, This formula states that if F: m --+ R is a real even
function, normalized so that I(0) = 1 and satisfying some sirnple conditions
which insure convergerce of certain series and integrals, then [Po, Wel]

L^rro*l: c,1 l¡ne(o¡(p)) .lnffiF@ttosNp), (1)

2Theo¡em I is also used in a recent paper [Ohi] whcre the a¡ithmetic hyperbolic 3-
manifold of smallest vohrme is found.



wliere the "archirnedean" tcrnt Cp clepends ouly on F, rr anrl r'1, the first
sum is taken over the non-trivial zeros p of (¡¡, and in tlre second sum p and
m run over the prime ideals of ,l( and the positive integers, respectively. 'l'he
transforrn é¡ is defined by

o¡(s) = l*_"r'-it' t,@)a*.

As long as we want ¿ lower bound depencling only on the signature of ,li, we

cannot use any infornration on the distribution of zeros of (¡¡ or the prirne
ideals of /(. Thus, we would like to get from (l) an expression involving only
Cr. This can be done if we take .F so that the sums in (1) a,re non-negative,
obtaining the lower bound

I log lD,{l ¿ r-¡. (2)
n

For tlie sum over the prime ideals, it is enough to take F non-negative.
For the sum over the zeros, the condition on f varies according to whether
we assu¡ne the GRH or not. In the first case, all the zeros lie on the line
Re(s) - |, .o *" must insure that Re(é¡) is non-negative on this linc, which
is equivalent to requiring that the Fourier transfor- F1f¡ tr" non-negative
for all real f. If we do not assume the GRH, Re(O¡) rnust be non-negative
on the full critical strip, but as Re(O¡) is harmonic, and symmetric respect
to the line Re(s) : |, it is enough to have Re(O¡(l + i¿)) > 0 for all real
f. This is the usual approach to get unconditional [¡ounrls. Note that if we
do not impose this last condition, the bound (2) is still valid as long as the
only violations of the GRH are in the region where Re(O¡(s)) ) 0. In this
thesis we exploit this idea, using the hypothetical presence of zeros outside
the critical line to get an additional contribution to (2) that sulfices to prove
theorem l.

We start with a function 11 such that úrs gives the best bound for l/J¡l
under the GRH. Namely, take y :0.25495 and let H to be the even function
or l-Ily,1/yl defined on [0, 1/y] by

H(;r) : (1 - yr) cos(ryx)* I sin1z.y.r),
T

and vanishing for lzl > 1/y. Then we fomr ñ - 6H, + (l - á)/1, where H1
is a function carefully chosen so that Re(O;) is negative in a region as srn¿ll



as possible, and á > 0 is chosen small enough as to give CH > lo8(9.207).

Thus, if there is no zero in the region where Re(Og) is negative, we get an

even better bound than the one given irt theorem 1. Therefore, we can ancl

do assume that there is at least one zero in this region. Thetr, using other
auxiliary functions, we exploit the presence of this zero to obtain the desired
bound.

A natural question arising at this point is how close can the unconclitional
bourrd get to that obtained under the GRH. It is certainly far harder to obtaiu
unconditional bounds, as one has to account for the many possible positions
of a zero that could violate the GRH. Nevertheless, theorem I suggests that
there is no reason to think that the unconditional bouncls are intrinsically
weaker than those assuming the GRH.

Another natural question is how close the bounds obtained under the
GRH are to being optinial. M¿rtirret [Ma] gives tables compa,ring the small-
est knowl values of lO¡l* for 21n 18 with both the unconditional and
GR.H bounds. Similar tables can be founcl in [Od4] and [DyD]. It is worth
noting how small in general the discrepancies between tlie GRII bounds and
the minimal values of lD¡¡ | are, and how far from optimal the ctrreltt un-
conditional b<-runds remain, especially as n grows.

We now describe the organization of this thesis. In §2 we state Weil's
formula in detail, ald give the proof of theorem l. We explain in §3 the
method used to co¡rstruct the auxiliary functions used 'in §2. In §4 we give
the tedious details that are reeded to insure th¿t ihe numeric¿l results given
at each step are indeed correct to the precision claimetl.

2 Proof of theorem 1

We keep the notation of section 1. 1l is a number field with discriminant
D - Dy,, having r1 and r'2 real and complex places, respectively, n : 11l2r2.
If l7: m --+ lR is an even function, we set

exp((.s - 1 l2)r\ F(r)th,o"(,)= /_:

4



whcrever this integral coll\¡erples. TLcn, é¡(s) : Óp(1 - s) ar)(l OF(; + if ) :

F1t; ir tlr" Irourier trausform of f', defined hy

/.(/) - /- titt 1..Í.r\¡r¡.
J _*,

Tb sirnplifv the forn.tulas, we lvill introtlucc the fttnctiolts

r(r) -2.#(r4'li,r-*7,
ancl

¡ r, r -,# r, l - li z ...1.r,,1 4.2¡

Now we are irI positiou to state Wcil's formrrla [We1, ]'o]

Tlreorern 2 (Weit) L¿l I : R -+ lR üe ¿ reol tt¡ett funcliott, u;fh l7(0) = I

and satisfyinq the t'ollouittg contlilio¡ts:

1 . 'I'h,ere crtlsfs á > I such th.at F(r) exp(ár) i.s Lcbe sgue inl'rgro'blt '

2. Thcre erisls ó > ! such that I(.r)exp(áz) is o.f bounrled t¡ario'lion antl

its tsahLe at each poin,t is the mcan of its lateral lirn'its'

3. Thc ftnt,ctiort. (1 - F'(r))lr is of botnttlerl tariation.

Th,en, tltc limtt
»o/,(r)= ll,l » ór(p).
P ' -- llJn(¡)l' r

uth.cre p runs oaer l,lrc tton-trittial zeros of (¡¡, etists and tte ho'ttt' the cqualit'y

I-rI
''loslD¡¡l = lalog(8n)++-1O,.(t)t 'IO.(n) -
lt '¿n tt tt;

l-«r - F (x))k(r)d,x- 
3 H ol#bF(rn rog ¡rp) (3)

where 1 : 0.57721566... is Euler's conslanl, and p an,d nt run o?tcr lhe primc

i¡leo.ls o.f Ii and the posilite inl.egcrs rcspectiuely.

lr



Remarks

1. Multiple zeros p in the surn are repeated according to their multiplicity.

2, lf p is a non-trivial zero of (¡1, then so are p, 1- p and I -1, sothe
contribution to (3) is 3 R"(O.(p)) if Re(p) = | 12 or Im(p) - ¡, ¿"¿

* Re(op(p)) if not.

3. If the function F is positive, the sum over the prime ideals is also
positive, so we call drop it from (3) and get the lower bo¡rnd

!roglo/,.1 > 7* tos(8zr) *'# *|»*t*rfrll -
, ¡,v)

;o.tr) - J, (, - F(r))*(r)d.r (4)

This is the l¡ound we will use in the proof of theorem 1.

4. If we put ,F(c) - f(x)l cosh@12), with / non-negative, then

Re(o¡(l +ir)) - i(t),
so the requirernent of Re(é¡) being non-negative on this line is equiv-
alent to /(r) > 0 for all real f. If we make this assumption, and keep
only the zeros p in the sum satisfying ll-(p)l < L, for some I > 0, the
formula (4) takes the {orm

lr, l

-loglD¡l ) 7+log4z'+r+- » Or(p)-n n n ¡r-fi¡.r,

* l"* ,a)0" - l"*t, - !(x))h(x)dc (5)

which is obtained by direct substitution. The only term that deserves
some attertion is the integral involving fr(r) in (3)

l"* a -, {*»l,(r)tu = l"* a : ilr»nt4* + l"* to"t {}) - t)n{iao,

This last integral can be easily evaluated to be log2 + fri - f. This
modification to (4) will be specially useful for numerical álculitions.



5. The constartt C¡ appearing in (l ) is gir«:n hv

(ip : 1 *logRzr * 1 - loo(tl - ¡o,

whcre .I¡ - JA (l - F(;r:))Á.(r)dr.

\Vr: nolv begin the prool of theorem l. Throlrgholrt l'lre proof we ttse the

ruurnerical ulllr" ,, = 8 and 11 : 6. Suppose that theoret¡l I is false' i e''

lrKl* < 9.05. For y ) 0, aud reral a and r, let

1 * c"s (a.' )
7,,,(r) : to.dr(r,z) 

¡(Yrr,

lvhete
9 (sin( r) - rcos(.r))2

r1.r¡: -- 
-le-

The function f(o), introduced by L. Tartar [Po], just fails to satisfy the

first hypothesis'of th"o."- 2, since f : |, but inequality (5) still holds

[P., Pr"p. 5]. We let Or,. : O7r,". In ihe next section we prove that

ir"(or,.t"ll > 0 fo. all s in the ciitical strip. Take fl : 1r.urn62,6 in in-

"q"rfiiv 
(í),1"d assume for the moment that there are 1{ > 1 zeros p with

O < Im(f)'< 2.77 arLd. I . n"(p) < 1. By evaluating the minimum of the

harmonic function Re(O7(p)) in this rectangle, we obtain

4¡iiCr.,.u,,"",o*T' Re(éz.szssz,6(p)))log9'05,

so we can assume that there is at most one zero p of (¡¡ in the region 0 <

I-(p) < 2.77 and | < ne(p) < t.
'irlow let 11, as ií §1, be tÍre even function onl*lly,llvl defined on [0, i/v]

bYr
I1(r) : (t - Yx) cos(rYt\ * : sin( nYz),

with g : 0.25495 and vanishing outside [-1/v,1/v]' This function clearly

satisfies the hypothesis of theorem 2, since it is continuous and has compact

support. This was the function used by Odlyzko to get his GRH bounds'

One can obtain, after an elementary calculation, the fonnula

4zr2 cosh(u) + I
O¡7(s) : u Or\ u)rf ,



where rtl = (s - | 12)ly. Lel

5

81,.¡ : o.oor,,t9038i, H(r) + 0.00103 P'r(r) -l-!ó¿ 7; r'rur,"'(''),
i=1

whcre

&(,)

and the ¡rararneters o;, Ú; ancl fot'

r -'l" l:;.tI;7r'
1 < i < 5, are givett in thc following tahle'

Z b; 0,i

1 0.00280436622 3.8305

2 0.00062013984 5.4870

0.00021474837 7.1r70
4 0.00009329940 8.7361

5 0.00004706117 10.3497

As explained in the introduction, the function F is chostn close to the GRH

optimal 11, but so that Re(O;) > 0 for llm(s)l > 2'6 and 0 < Re('s) < 1'

Áko, Cg > 1os9.207 ana f n"(o61p)) > log 9.05 - log 9.207 for I S n"(r) <
I and hi(p) ) 0, as long as p lies áutside the region shaded in figure 1 (we give

in the nexí two sections the proof of this claim, and of analogous numerical

statements below). As we saw above, there is at most one zero p in the region

* < R"(-r) ( 1 and 0 < lm(s) < 2.6. In view of inequality (4) and Remark

á p."."áirg it, we conclude that if lD6l < 9.058, then (¡(s) has exactly one



zero in the shaded region of figure 1,

Figure I : Region containing a hypothetic al zero p of (¡(s)

Now, and henc.eforth, we assume that p lies inside the region shaded in figure
1. If we take F = ?r.sruu,o , we find that Cr,.,,uu,o + f Re(o, 

"ruu,o1p¡¡ 
;'

1og9.05, except for p in the region shaded in figure 2. Next we repeat this
process with the function F : Tt¡xsot,o.zq, assuming that the zero lies in the
region shaded in figure 2, obtainiug the region of figure 3. Again, taking
F : To."zezs,z.z7 we obtain that the zero must be in the shaded region of
figure 4. The final region is obtained with fl: %.ssuzs,z.s, and is shown in
figure 5.

9
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To exploit a zero iuthe region shaderl in figure J-r, we rrsc tltc {ollowittg

function. Let /¿ : 0.0575 = 2.3/40, and 9. be tlie evcu sinrPle ftrnction on

[-2.3,2.3], defined on [0,2.3] as

40

9.(,r,) : !,,¡1¡(r:)

rvhere ¡¡ is the cha,racteristic fturction of the iniclval [(i-l)Á,l/¿], | <i'< 40'

and !f91 r:f : 1 . 1ry" talte the couvolutit¡n

r,, (rr - ),,ru " s.lt.,¡.

arrd .I"(:r) : t;t.r)lcosh(r:/2) in (1-r), where ,, : ("r, ' , r:¡,' ) is given bv

1 c; ?, C,i

1 0.205343795727 2T 0.169342818146

2 0.205354559903 z'.) 0.163005723531

J 0.205368887355 23 0.156094679777

4 0.20537254t340 n,1 0.148630446879

5 0.205344576053 0.140643038736

6 0.205257818499 26 0.13217t622316
0.205079495678 27 0.123264273056

8 0.204771994407 28 0.1 13977599470

9 0.204293738353 ,a 0.10437625611 1

10 0.203600164563 30 0.094532371825

11 0.202644779715 31 0.084524930960

12 0.20t380274779 32 0.074439161438

13 0.199759675578 ,)J 0.064366010597

t4 0.197737506095 34 0.054401839319

15 0.195270941161 0.044648565072

16 0.192320925429 36 0.035214710178

t7 0.188853236340 0.026218395361

18 0.184839470019 38 0,017795157 477

19 0.180257930755 39 0.0rc1.21443481
20 0.175094406846 40 0.003525971673

1.2



Note that 4(0): D;4: l. This function was found by searching for the

c; } 0, subject to l;c!: 1, that maximize

c* +lan(po),
n,

where p¡ : 0.92 + 2.33 ' i is near the lower vertex of the region shaded in
figure 5. It turns out that

Ca + lo p.1¿ > log 9'o5l

for p in the region shaded in figure 5. As Re(ép"(s)) ) 0 for all s in the

critical strip, this implies that lD¡¡l > 9.058, which proves theorem 1.

3 Auxiliary functions
Here we discuss the auxiliary functions used in the proof of theorem 1. We

keep the notation of the previous sections.

S.L Construction of É
The transfo¡m Ov,o of the function 4,0 "., be calculate<l explicitly on the

iine Re(s) :1, and is given by

Re(@s,o(l +ia) --!¡él:3,(/9), (c € m)
a'y' 8y \y)

where tt.¡ is the evel function on [-2,2] clefiled on [0,2] by

-1,¡ : -fi1r' - 20,3+40* _ J2l: -fir, -2)'(,'*6¿*4)

and u(o) :0 for ¿ > 2. This function has its maximum at o :0 and
decreases monotonically for c € [0,2]. Note that R"(ér,o(s)) ) 0, as it is

harmonic and symmetric with respect to the line Re(s) : |.
For the function P" appearing in F, the transform O¿ is given by [P B-M]

o¿(s) - z{p(s + c) + A0 - s + c)}

1jl



where B(s) : ,/((, + t)12) - rh(slz), and ry'(s) = f'(s)/l(s). For Re(s) : 1

this expression simplifies to

o&(r + it):;+ 
P

On the other hand, for ?3,,o we have the following identity
'l 1l

ér,"(s) : ,or.o{r) + ;o,,o(s 
+ ,r¿) + 

;ov,o(s - tr¿) (6)

which, for s : 1* if, has its maximur.n near f : a' Thus, on the line

Re(s) : 1, the efect of using 7s,. insteacl of Tartar's ?vp, is to rnove the

maximum of Re(O) to a point near 1 -| ia. In defining 11, we chose the a¡

nea¡ the first few local minima of Re(O¡¡(l + if)) for t > 2.4. The á¿ were

chosen to just cancel the negative contribution from Re(O¡¡(1 + i¿)) at these

minima, and the P12 was chosen so as to cancel the remaining minima for
¿>11.

The result is a function Re(O6) close to Re(O¡a), but which is negative

only in a small region of the critical strip. This region is contained in the

region lIm(s)l < 2.6.

3.2 Construction of .4
To produce the function F'", we fix an interval [-4, A] and a number 1[ of
subdivisions of [0, A]. Define the even and piecewise constant function g" as

in the previous section, where we took A:2.3, ¡¿:40' Leth: A/N. Note

that 
I

Re(oa(1 + ir)) : G"(r): fiñ,tr)',
so Re(O¡i(s)) ) 0 for all s in the critical strip. Also, the support of ,F" is

l-2A,2Al and we have

Cp" - t*los8n +T -* * [.* k(x)d.x -t f "n,0,,'¿n n Jh i,j= I

where á;.¡ : üj; and

0,,: l^ (,- k(r)ik. I l2i-1
l2

!
l,l,(

h

cosh ,)

l4



and, lbri<j,

with

b;j : I¡+;-t I Ij-;

(/¿ l;r - á71)A(r)I¡:
r:osh(r/2)

Also, iD6.(s) can be written as a quadratic form
As a result, we can write the bound (4) given by
zero p in the interior of the critical strip as

Ii t, + I NI (p)c

where

tlr. U > l)

crgc,wherep:(v;¡G)),
this function, with a given

I //,(¡+r)
I

2h ln1¡-t¡

rit, = 1 +togsr .l- .^',a - + + 1,,- 
t {,,¡a,,,

ail. M(p): (M;¡(p)), with

M¡¡tp):b,,-**,,(p).

Here we used !; cl - 1, so 06"(1) : ñ. Thus, we sought to maximize the
quadratic form cr M (p)c,, under the constraints D¡ c? = 1 , and q ) 0, to
insure the positivity of G". The maximum of this form subject to L¡.? -- |
is given by the maximum eigenvalue o{ the matrix M(p), afi, the vector c

is its associated eigenvector. Experimentally, we found that taking A:2.3
and 1[:40, the restriction e ] 0 is satisfied automatically.

A major disadvantage of this method is that when we increase ,4 (as we

would like), we find positive and negative entries in the eigenvecior c.

4 Numerical calculations
This section is devoted to the justification of the numerieal resultc whieh
involve numerical integration and showing that, for various functions 1,
Re(O¡(s)) stays above a certain value in some regions inside the critical
strip. All the calculations we are about to describe were done in a Sun
SPARCstation 20, using PARI version 1.39.03.

Throughout this section, we fix the precision of our final results to 6

decimals.

t5



Consider first l¡ - Tr,". By Relnark 4, wc need to cornpute the inttgral

L(y, a) _ 
l"* A _cos(o.r)/,(.r))á(z)rtu

sin ce

t*,, I J cos(¿rt I I

Jo l, - ---T-f,(..))/¿(¡)d.r = ,t,ta,al * :rLtr,Ol

I" .:1.:1i,." Z(y, a) using Sirnpsol,s rule. We split this iniegral in the in_

lll-lil. Io,lll [l,.vJ.and [N,m], where ¡¿ ir,,l,o"ln""o rhat, in rhis lasr in-
liLll'^ilj,l rnte¡ral is negligible ro 6 places. In rhe inrerval [l, tf], we use)rmpson s rute, estinrating the.fourth dorivative of (l _ .os(a.r)frir¡¡A1r¡.This is used to choose tlre gritl fo.. tl,. .on,¡rl" *,,',.. ," L(y. c) be the
:),".,*:, ,o*lllg Lly,,"¡.raki,r in ,r," in,..uir-¡oii¡.'"i,_ 

" a,rct y, and lerI t¿,/ - r - ( os(a.r)¿v(:r.). We cot)lpllte L l,.y exparrtling r,(.r) irr its .laylor
sefles

,¡r7 -1,' nrurr* ¡,!t)(o),r,íi '" QM)t " ',

Ih:1" 
0.Í 

1,1., .S l. Using tlre For¡rier trar¡sfor¡n of /r. we get a bounrl R¡ator the M-th derivat ive of r. Then we have

M-t
L(y, a) : 

D 
o,o(o,r + *p*) + R;M

where
¡1 ,2k.,z¡ = Jo 

"i,rrr1¡dr,

¡l -2k
ou = J, ;"nq,¿ra,.

and R!r, <
calculated il
bounds [Ab].

(2M)l-1 R¡(a2¡,1 ! *\ru). The integrals a2¿ and B2¡ can beterrns of Bernoulli a,nd Euler polynoÁial", *i,i.t, t,.* tu"*nThus, we choose M such that

Rru rl
@fi.ln,r+¡iizul<10-A

.,. To calculate Or,.(.s), we use (6). Thus, we only need Oy,o for ¿:0. Inthis case. using parseval's fornruia

/14,,{,).*o « -}toa, :# l:;, *¡#hd,,
I {:;



where z = -i(-r - i). t1"." we used the Fourier transform of llc.osb(rl2).
This integral conve.rges for Re(s) < l. In practice, it was userl tor | <
Re(s) < 0.99 and is easily calculated, for the values of y used here, with
the Trapezoid rule. For 0.99 < Re(..) ( l, we compute the integral tlirectly
using Simpson's rnethod. In this case we estirnate the fourth derivative of
Ty,o using its Fourier transforrn, and obtain ¿ crude upper bound for the
fourth derivative of 7r,o(r) exl((s - |),r) usiug Leibuiz's rule.

For the function 11, the only numerical integral is (l - Il(u))[(;r), since
O¡7 is given explicitly. We write tliis integral as

lr*,t - H(r))k(r)rtx: l,i,nr,ro* - * 1,"' ffir, *;,
wherey:0.25495,al]d

, [r/o 1 - H(r) ,I = I 

-ñ.r

Jo sinh(z/2)

: 
lo"u *i#i#*+/'/'rr:::(ot9d'+t lo'/u ffi"

and calculate these integrals in the intervals [0, 1] and [1,1/y], using the
Taylor's series and the Trapezoid mle respectively, with estirnations similar
to those for l(y, c).

Finally, lor P", we only need to compute

lo* o - e-'")h(.r)tu= l- ffir, * 7 * 
^ 

l,* # ¡oa,.
The last integral is calculated explicitly as the Laplace transform of cosh(z/2)-,,
ald for the first we proceed as for ,L(y, o).

To obtaiu the regions shown in §2, we proceed as follows. As Re(ép) is
harmonic, to insure that it stays above a certain value ¡n in regions inside the
critical strip it is enough to check that Re(é¡(.s)) ) rn for s on the border
of these regions. By using polygons to approximate these borders, we are
reduced to showing that Re(ép) ) n¿ is satisfied in the se¡1ment joining 2
points z1 and 22. To do this, let p(t):tz2 * (1 -t)z1,with0<f(1,bea
point in this segrnent, and 9(f ) - Re(Oa(p(¿))). We put

vU): v@) + te,(o) +f;v,,G),
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where 0 < i < t. Then, with an estimate of 9"(i\, it is enouglr to take z1

and z2 close enough to get gQ) > rn.
The a,ctual points used to approxirnate the regions, as well as the pro-

grams used to rlo all the calculations described here, are available upon re-

quest.
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