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UN PROBLEMA DE RUTEO DE VEHÍCULOS EN UN MODELO DE ECONOMÍA 
COLABORATIVA 
 
En los últimos años, el desarrollo de las tecnologías de la información ha provocado importantes 
cambios en el diseño de los sistemas logísticos que las empresas utilizan para distribuir los 
productos a sus clientes. Entre los cambios más relevantes se encuentra la aparición de plataformas 
digitales que conectan a las empresas que necesitan entregar sus productos con conductores que 
pueden abordar el transporte de “última milla”. Uno de los atributos centrales de estas plataformas 
es la falta de relación contractual con los potenciales conductores y, por tanto, cuando una 
plataforma ofrece una posible ruta, los conductores aceptarán sólo aquellas rutas que les resulten 
más atractivas. Esta lógica requiere modificar los enfoques tradicionales para resolver el problema 
de enrutamiento de vehículos (VRP) resultante para generar soluciones que no sólo proporcionen 
una reducción de los costes de transporte, sino que también generen rutas atractivas para los 
conductores.  
 
En este trabajo, describimos el problema de enrutamiento de vehículos con conductores no 
contractuales (VRPNCD) y proponemos un esquema de solución que permite aprender de las 
preferencias de los conductores e incorporarlas para generar soluciones que cumplan los objetivos 
del negocio. Aplicando nuestro enfoque de solución a un problema real de una plataforma logística 
digital (Wareclouds), encontramos que podemos reducir cerca del 15,6% del tiempo de aceptación 
en comparación con la solución actual implementada. Esta reducción en tiempos está directamente 
relacionada con los costos de la empresa subastadora e indirectamente podría mejorar también el 
costo final del despacho.   
 
La integración de las preferencias de los conductores en el modelo de ruteo viene acompañada de 
un nuevo conjunto de retos que abren una nueva familia de problemas en los servicios logísticos 
de “última milla”. Esta nueva familia de modelos de despacho intercambia flexibilidad de la 
demanda con la internalización de los costos de heterogeneidad de los conductores traducidos en 
los precios de remate.   
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Abstract 

 
In recent years, the development of information technologies has led to important changes in the 
design of the logistics systems that companies use to distribute products to their customers. Among 
the most relevant changes is the emergence of digital platforms that connect firms that need to 
deliver their products with drivers who can address the transportation of the last mile. One of the 
central attributes of these platforms is the lack of contractual relationship with potential drivers and 
therefore when a platform offers a possible route, drivers will accept only those routes they find 
more attractive. This logic requires modifying traditional approaches to solve the resulting vehicle 
routing problem (VRP) to generate solutions that not only provide reduced transportation costs but 
also generate attractive routes for drivers. In this paper, we describe the vehicle routing problem 
with non-contractual drivers (VRPNCD) and propose a solution scheme that allows learning from 
drivers' preferences and incorporating them to generate solutions that meet business objectives. By 
applying our solution approach to a real problem of a digital logistics platform (Wareclouds), we 
find that we can reduce near 15.6% of the acceptance time compared to the current implemented 
solution. The integration of the driver preferences in the routing model comes with a new set of 
challenges that open a new family of problems in the last-mile logistic services. This new family 
of routing models exchanges demand flexibility with the internalization of driver heterogeneity 
costs translated into auction prices of the marketplace.   
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1. Introduction 
 
In recent years, the exponential growth of e-commerce has pushed for new and innovative ways of 
storing and delivering products. The increasing complexity to satisfy all the requirements of the 
operations in the last-mile has brought a large variety of innovative approaches. The introduction 
of new marketplace platforms for package delivery such as Ziticity1, Amazon Flex2, Wareclouds3 
among others have provided novel solutions for the increasing interest of consumers to get products 
faster and at an accessible cost. To provide an efficient operation, these platforms leverage an 
important feature of the shared economy: the use of the flexible capacity provided by a pool of 
drivers who can complete deliveries on demand. In this setting, firms could have not only more 
flexibility to accommodate variations in demand but also a lean cost structure that leads to superior 
business performance.  
 
In this new paradigm, the digital platforms rely on marketplaces of drivers who provide a 
crowdsourced fleet. The role of marketplaces is to match routes with available drivers to provide a 
solution that allows a promptly delivery of all products under an operational scheme that is 
attractive to the drivers. A major difference between this assignment to the traditional centralized 
vehicle routing problem (hereinafter denoted as VRP) is that drivers can accept or reject the 
proposed routes. This condition can induce solutions that could radically differ from those 
generated by a central planner with contractual drivers. For instance, the variability in length of the 
proposed routes can become important. In a traditional VRP, the optimal solution might include 
some long routes in distance but with only a few delivery points. However, in a non-contractual 
setting, those routes could not be accepted by any driver because they might be unattractive from 
the drivers’ perspective leading to an infeasible assignment to work in practice.  
 
In general, we pose that these new last-mile marketplaces give origin to a new family of routing 
problems that introduces new sources of uncertainty and require considering different constraints 
that do not directly fit with the traditional VRP methodologies (Fatehi & Wagner, 2021). First, 
capacity is no longer fixed, and it not only depends on external factors but also on endogenous 
decisions of the marketplace. This capacity is determined by the willingness of drivers to accept 
the proposed routes. To make these decisions, drivers evaluate the attractiveness of the route 
considering their own preferences. These preferences could depend on many factors such as the 
total distance, the proximity to home location, or if the route considers more congested areas of the 
city.  
 
Second, there is more uncertainty about the available capacity. In this two-sided form of operation, 
the main sources of uncertainty come from the imperfect knowledge about whether drivers would 
be willing to accept a proposed route. This aspect introduces a conceptual difference with respect 
to traditional VRPs that depends on the availability of transportation resources and the technical 
components of the system such as; the capacity of each vehicle or the maximum number of hours 
that drivers could work in a day. It is worth noting that driver preferences about routes can be 
heterogeneous and they change dynamically over time. While previous literature has proposed 
stochastic programming approaches to deal with variation in capacity (Noorizadegan & Chen, 
2018), the capacity depends on the proposed routing solution and therefore the platform should 

 
1 https://ziticity.com/ 
2 https://flex.amazon.com/ 
3 https://www.wareclouds.com/en/ 
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learn about the features that make a solution more attractive to drivers. Fortunately, advances in 
information technologies and in estimation methods allow for rich learning about agents (Goic & 
Olivares, 2019). 
 
Third, the platform has no control over the actual execution of a route and while it could propose 
an optimal sequence of delivery points, the drivers could optimize themselves based on their own 
requirements. For instance, some drivers might deliver some packages in the morning and the rest 
a few hours later in the afternoon. As a consequence, the evaluation of the attractiveness of a given 
route cannot longer be solely decided based on the shortest path. Certainly, drivers assign value to 
the length of the routes but providing an exact TSP is no longer a first-order concern.  
 
In this research, we address the problem of a platform who receives requests for delivery of 
products from multiple vendors, to offer them to a set of drivers who could either accept or reject 
a given request. To solve this routing problem, we propose a multi-stage framework in which the 
platform learns about driver preferences and uses that information to propose routes that are 
attractive to them while satisfying other business constraints. In this framework, we use a data-
driven approach to estimate the driver preferences, and we use those preferences to build routes 
using a Mixed Integer Linear Optimization model. To complete the cycle, we solve a matching 
problem for the route driver assignment, based on historical matching acceptance-rejection data, 
which allows us to evaluate the expected performance of each proposed solution.  
 
We illustrate the proposed framework to solve the operational problem of Wareclouds, a Chilean 
two-sided platform that provides a last-mile solution for some local ecommerce that manages the 
dispatch via a crowdsourced driver marketplace. We model and optimize using the actual 
Wareclouds dispatch instances for 25 days. We compare the solutions and estimate improvements 
in the routing solutions. Our estimates provide an average reduction in the acceptance time from 
about 15% less than the current solution. We estimate that there is a direct link between the 
acceptance time and the auction price of each route, therefore this time saving can be reflected also 
in a reduction of the auction prices for the platform. To the best of our knowledge, this is the first 
paper in providing a comprehensive methodology to solve the VRP problem with non-contractual 
drivers, which has become a mainstream logistical arrangement in recent business models. The 
solution to this problem requires additional considerations to deal with the imperfectly observed 
drivers’ preferences.  
 
The rest of the article is organized as follows. In Section 2, we revise the relevant literature. In 
Section 3, we present the conceptual framework whereas in Section 4 we describe de technical 
details we use to address each component of the framework. Section 5 is devoted to presenting the 
result and Section 6 elaborates on some relevant extensions and sensibility analysis. We close in 
Section 7 with a discussion about the results and some ideas for future research.  
 
2. Literature Review 
 
Our paper is related to the two main research streams. First, we have the dense literature on Vehicle 
Routing, where we focus on those developments that deal with routing for last-mile parcels 
delivery. The second stream is associated with nascent literature on routing in sharing-economy 
platforms.  
 
Traditional vehicle routing problem (VRP) publications (Dessouky, Ordóñez, & Sungur, 2008) 
studied a capacitated vehicle routing problem (CVRP) in the context of demand uncertainty. 
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(Gounaris, Wiesemann, & Floudas, 2013) similarly studied a CVRP but refined the demand 
uncertainty estimation. (Liu, He, & Max Shen, 2021) studied a last-mile delivery service with time 
travel estimations and the impact of the order assignment on the network time, they use a robust 
optimization approach to solve this problem. The traditional VRP research has included uncertainty 
in diverse forms, however, the literature on shared economy uncertainties, such as the drivers’ 
preferences or supply uncertainty has not been applied to the problem until very recently. 
 
VRP in the context of the sharing economy has been studied in some recent publications, (Fatehi 
& Wagner, 2021) presents a similar problem to the one studied in this research; they model this 
problem using robust optimization, time windows, and queuing. Additionally, the work of (Qi, Li, 
Liu, & Shen, 2018) was a pioneer in the crowdsourcing last-mile problem. They study the ride-
sharing industry and the adoption of the last-mile logistic firms to the crowdsourcing model, 
establishing many of the tradeoffs of this new business model.  
 
In a more recent publication, (Zhen, Baldacci, Tan, Wang, & Lyu, 2022) studied a mixed delivery 
platform with dedicated vehicles and occasional crowdsourced drivers, which provides a modern 
view of the optimization problem behind the crowdsourced drivers' marketplace. Similarly, In the 
context of the ridesharing and parcels marketplace, another type of mixed market (Li, Krushinsky, 
Reijers, & Van Woensel, 2014) presented a theoretical formulation of an optimization problem of 
a shared network of parcels and ridesharing. Most of this literature, VRP in a shared economy 
context, is focused on the routing problem and its own specific constraints in a sharing-economy 
marketplace, our research however doesn’t optimize based only on the constraints of the problem 
and the uncertainty of the drivers' supply, but rather to design the routes considering the drivers’ 
preferences when grouping the parcels into routes.  
 
There is some research related to VRP and drivers’ preferences heterogeneity (Srivatsa Srinivas & 
Gajanand, 2016) studied the driver heterogeneity in the routing preferences and their impact on the 
network cost in routing in a VRP, a more recent publication (Guo, Yang, Hu, Jensen, & Chen, 
2020) also studied the routing preferences heterogeneity of the drivers and use it to optimize the 
network routing. Both publications study the drivers’ heterogeneity when they decide their own 
routing, however, we studied the preferences of the drivers before solving the routing and 
assignment.  
 
A closer problem when routing and preferences are part of the same problem is a publication from 
(Karels, Veelenturf, & Van Woensel, 2020) that studied a collaborative auction mechanism 
between carriers in an auction model, this publication describes a similar problem but when carriers 
design the routes as a result of a parcel-drop auction. This mechanism is a different approach to the 
one that we describe in this publication when the auction is based on routes rather than parcels, 
however, the underlying problem is very similar.  
 
3. Solving for the VRP with crowdsourced drivers (VRPNCD). 

 
3.1 Problem Setting 

 
We consider the case of a two-sided platform that receives orders from several vendors and needs 
to find drivers to conduct the corresponding deliveries. Our framework captures what we believe 
are the key components of this type of platform, but the empirical application is tailored to 
accommodate the business situation of Wareclouds. Wareclouds is a last-mile logistic firm that 



  5 

serves small and mid-sized companies by providing them with storage and last-mile dispatch 
performed by non-contractual drivers. In each city they serve, the company has a series of 
warehouses and a list of drivers who connect to a digital marketplace to auction each route every 
day. Then, the platform offers routes to drivers, but as they do not have a contractual obligation 
with the platform, they could decide whether to accept or reject the delivery of a given route. Once 
a route is accepted, the driver is responsible for picking-up all products from each warehouse and 
delivering the goods requested to final customers. These drivers, who the company internally calls 
clouders, are not forced to deliver in any given order as far as they complete the assigned task 
during the day. Furthermore, they have no obligation about their availability for delivery implying 
that in the models we consider the drivers' supply as unknown.  
 
Similar to other platforms, the company receives a list of requirements of products that must be 
dispatched the next day. They handled the list to all warehouses so they can prepare orders to be 
collected the next day. Before dispatching, in the early morning, the platform defines the routes to 
be offered to the potential drivers. As the final customers might be clustered together, there are 
important savings in offering drivers sets of products that must be delivered. However, several 
considerations should be taken into consideration when defining these routes. 
  

- As there is no obligation for drivers to be available, the platform should have an estimation 
of the number of drivers who will be available and willing to accept the proposed routes.  

- In practice, there is a minimum and a maximum length for the proposed routes. The 
minimum is justified because short routes would not be economically viable for drivers. 
The maximum is justified because extremely long routes would be infeasible to be 
dispatched within the same day. 

- Unlike the traditional centralized planning where the time and distance of the routes 
captures all the relevant transportation costs, in this case, drivers could find that delivering 
to a different part of the city could be either more or less attractive. For instance, they could 
find some areas unsafe, or on the contrary, they could prefer to deliver products around 
their residences.    
 

Once the routes are defined, the platform posts these routes to a subset of drivers. The platform 
decides the level of exposure of the routes to drivers based on geographical considerations and the 
historical compliance of previous orders. These criteria allow the platform to prioritize drivers in 
cases of excess supply. In these scenarios, the platform prioritizes drivers with longer tenure 
offering them routes that span areas in which they have often delivered products in the past.  
 
After observing the proposed routes, the drivers decide whether to accept each route or not and 
upon observing acceptances, the platform can run a few additional rounds with new proposals until 
every route is accepted by some driver. While most of the routes are accepted in less than an hour, 
if some routes are not being assigned the platform can exert additional effort to convert drivers. 
For instance, they could engage in direct communications with selected drivers. In some 
exceptional cases, the platform can manually modify the proposed routes by either splitting them 
into two shorter routes in case they appear to be too long or merging short routes to create a longer 
one that could become more attractive to drivers.  
 
The decision of drivers to accept or not a given route depends on a potentially large number of 
factors including the expected income, the duration of the route, the estimated time/location of the 
end of the proposed route, the perceived safety of the neighborhood that must be visited, the 
expected congestion and their own availability of time to complete the whole sequence to name a 
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few. It is worth noting that drivers’ preferences can be highly heterogeneous. While some routes 
might be attractive to some drivers, the same routes can be not attractive at all to others even for 
the same price.  
 
Once a driver accepts a route, s/he is not required to follow any specific order to complete the route. 
The platform only observes the time at which the packages are delivered and therefore the driver 
is entitled to use the route s/he prefers. In this regard, drivers could even split the route to do a 
fraction in the morning and the remaining fraction in the afternoon. The only requirement is to 
complete the route before the end of the day.  
 
To empirically validate our methodology, we use the data of a complete month of operation of 
Wareclouds in Santiago, Chile. In this city, the company has 6 warehouses during the whole 
evaluation period. Table 1 reports descriptive statistics of demand for the demand in those days, 
and the proposed routes implemented by the company. At the time of the analysis, Wareclouds 
decide routes purely based on geographic segmentation and we will use it as a benchmark for our 
proposed solution.    
 

 Mean Min Max 
Number of Drops 314.9 193 503 
Number of routes 19.4 15 27 
Number of nodes by route 19.9 2 50 
Number of pickups by route 3.8 1 7 

 
Table 1. Descriptive Statistics of the daily instances used to calibrate the preferences and design 

routes. 
 
To illustrate the spatial distribution of the problem, Figure 1 displays the location of warehouses 
and drops for a representative instance. Although most of the demand is concentrated in the more 
densely populated center of the city, there are a significant fraction of packages that must be 
delivered in more peripherical areas. The sparsity of the location of the drop points provides a 
preliminary indication of the value of grouping multiple products to be delivered in a single 
route.  
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Figure 1. Map of a typical instance in the dataset, on black the drop points on red the warehouses 

3.2 Conceptual Framework 
 
Our research focuses on how to design and optimize the routes considering the preferences of the 
drivers. We aim to provide a workable methodology that considers the key elements of the problem. 
Among them, we consider learning about how drivers evaluate if a route is worth enough to be 
accepted, the provision of routes that are consistent with driver preferences, and the evaluation of 
how those routes perform in terms of business objectives. Unlike the traditional centralized 
planning that mostly focuses on cost reductions, our methodology should also lead to a better 
acceptance rate from the drivers and therefore fewer negotiation efforts from the company to 
achieve their service levels.  
 
 
To address this problem, we propose a conceptual framework that considers its three main 
components. (i) a data-driven approach to learn from drivers’ preferences, (ii) an optimization 
routine to generate routes that are consistent with drivers’ preferences, and (iii) a matching model 
to determine the assignments of routes to drivers. These models interact with each other over time. 
In Figure 2 we provide a schematic representation of the framework along with the sequence in 
which they interact to provide a workable solution for the platform.   
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Figure 2. Conceptual Framework to Solve for the Routing Problem with non-contractual drivers.  

The Driver preference model uses a matching data log that registers the historical acceptances of 
drivers. Using this data, we estimate a regression model to understand what are the relative weights 
that drivers’ give to different features when deciding to accept a given route. In our case, we assume 
that more attractive routes are accepted earlier, and we regress acceptance time on a list of features 
characterizing the route. The output of this model is a vector indicating the relative importance of 
different features.  
 
The vector of relative preference of features is instrumental to populate the objective function for 
the routing model. Using these parameters, we can estimate how desirable is each route providing 
a proxy for the auction cost of a particular routing solution in the marketplace. Considering the 
precision and solution times are important in practice, in this stage we consider both heuristic and 
exact methods to provide the set of optimal rules. Once optimized we have a set of routes to be 
matched in the next model.  
 
The matching model takes the proposed routes and the set of active drivers’ to allocate drivers’ to 
routes. Using a probabilistic acceptance model, we can assess the likelihood that drivers’ have to 
accept the routes, which is the final goal of the platform. This matching runs iteratively until all the 
routes are accepted and allow the evaluation of different mechanisms to incentivize the acceptance 
of less attractive routes. After the matching, we have a new log that can be used to update the 
training of the preference model and to use the new parameters for the next day. 
 
This theoretical framework separates the prediction problem, “Drivers’ preference Model”, from 
both optimization problems; “Matching Model” and “Routing Model”. More modern approaches, 
such as “predict then optimize” from (Bertsimas & Kallus, 2020) or “smart predict and optimize” 
(Grigas & Elmachtoub, 2022) argue that a unified approach presents high improvements in 
performance, depending on the misspecification of the prediction model. We used a separated 
approach here for the simplicity of this approach and some limitations in the matching data, but 
this opens an opportunity for a future extension of this framework.   
 
The details of the models that we use to solve all the three components of the methodology are 
discussed next.  
 
4. Models 
 
4.1 Driver Preferences Model 
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The learning model to elicit preference parameters depends on the available data. We model the 
driver’s preferences using actual data provided by Wareclouds. In this case, we observe a basic 
description of the route including the number and location of pickups and the number and location 
of delivery points. In general, and based on this basic information, we can derive several features, 
𝑓𝑡(𝑟) ∈ 𝐹, that characterize drivers’ preferences. For instance, we can compute the length of the 
route, the expected time to deliver, and the geographic dispersion of the delivery points among 
others. In addition, we observe whether drivers accepted the route and the elapsed time for 
acceptance. To estimate preferences, we assume that more attractive routes 𝑟 ∈ 𝑅 are accepted 
earlier and we use the time to accept 𝑡!(𝑟) as the main dependent variable of the regression 
analysis.  
 

𝑡!(𝑟) =&𝛽"# ∗ 𝑓𝑡(𝑟)	
"#

+ 		𝜖 (1) 

 
In these preference models, we consider several features 𝑓𝑡(𝑟) ∈ 𝐹 that might affect the 
attractiveness of a route. There are a large number of features that can influence the likelihood of 
a driver accepting a route. However, given the availability of data, in the empirical application, we 
restrict our attention to the characteristics of the route itself. Although we do not consider driver 
characteristics or the intensity of the interaction with the app, these and other features can be easily 
incorporated into the methodology in a future application.  
 
Before presenting the complete list of features considered in our application, let us introduce some 
notation. Let 𝑌",$ be a binary variable that takes the value 1 if the node 𝑖 belongs to the route 𝑟 and 
0 otherwise. Next, if we consider a city tessellation 𝐺 (details in the appendix Annexed A. City 
Tessellation (Geos/Polygons)), then 𝐴(𝑔) represents the total area of a polygon (or “geo”) 𝑔 ∈ 𝐺.  
Similarly, 𝐼(𝑔, 𝑟)	is a binary variable taking the value 1 if at least one drop of the route 𝑟 belongs 
to the polygon 𝑔. 𝑊 = {𝑤%. . 𝑤&'} it’s the set of all warehouses.  𝐷	 = 	 {𝑑%. . 𝑑&(} the set of drops. 
Finally, 𝑑𝑟$ is the linear distance between a drop 𝑖 and its corresponding warehouse.  With these 
definitions, the full list of features is displayed in Table 2.  
 
 
 

Feature Description Formal Definition 

Num. of pickups 
Number of pickups (warehouses) along the 
route 𝑟 

𝑛𝑝(𝑟) = '𝑌!,#
#∈%

 

Num. of drops Number of drops nodes along the route 𝑟 𝑛𝑑(𝑟) ='𝑌!,#
#∈&

 

Dist. all to depot 
The sum of all distances 𝑑𝑟# (km) from each 
drop 𝑖 to their warehouse 

𝑑𝑟(𝑟) ='𝑑𝑟# ∗ 𝑌!,#
#

	 

Cover area 
The sum of all cover area 𝐴(𝑔) due to a 
given city tessellation 𝑔 ∈ 𝐺 

𝑎(𝑟) ='𝐴(𝑔) ∗ 𝐼(𝑔, 𝑟)
'
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Inter geo distance 

The sum of all distances 𝑑(𝑔(, 𝑔)) (km) 
between the centroids of all polygons where 
the route has a node 𝑍*,'!,'". This is a route 
concentration/dispersion measure  

𝑑𝑔(𝑟) = ' 𝑍𝑘,𝑔1,𝑔2 ∗ 𝑑(𝑔1, 𝑔2)
!",!$

 

Includes polygon 
𝑔 

Binary indicator if the route has a node in 
the polygon 𝑔 ∈ 𝐺  

𝐼(𝑔, 𝑟) 

Number of 
polygons 

Total number of polygons where the route 
has one pickup or drop 

𝑛𝑔(𝑟) ='𝐼(𝑔, 𝑟)
'

	 

Route length  
Total length in km of a route based on a 
linear approximation described on 0 𝑡𝑜𝑡𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟) 

Table 2. Features Driver Preferences Model 

Using these features, we fit a linear model using the acceptance time 𝑡!(𝑟), in minutes as the 
dependent variable. From the results of this regression model, we get an estimate of the preference 
parameters vector 𝛽)* representing the relative importance of each component in driving 
acceptance of routes. These estimates will be used in the routing model to create more routes that 
are more likely to be accepted in a short time. 
 
It is worth noting that, except for the total length of the route, all the remaining features presented 
in Table 1 can be estimated without solving the TSP explicitly, and therefore, to impute the 
attractiveness of a given route there is no need to solve the exact VRP. To define routes, we can 
search for partitions of the list of drops that maximize their attractiveness based on driver 
preferences.  
 
Not having to solve the exact VRP brings large reductions in computational complexity allowing 
us to solve real-sized problems with hundreds of drops in a matter of minutes. However, an 
important downside of not solving the TSP of each route is that we do not have access to the optimal 
order of the nodes nor the length of the route. We believe the length of the route is a relevant feature 
that drivers’ use to decide to accept a proposed route. Nevertheless, literature on subjective 
evaluation of distances suggests that drivers do not necessarily evaluate on precise estimates of 
distances but on approximated constructs (Montello, 1997; Li, Kang, and Ba, 2020). Thus, to 
include the evaluation that drivers might have about distances without incurring in the prohibitive 
computational cost of the exact VRP, in this research we use an approximation based on Daganzo, 
(2005). This approximation is explained in the following sub-section and allows us to estimate the 
length of each possible route without solving the TSP. 
 
4.2 Daganzo TSP approximation  
 
To estimate the total distance of a route without solving the TSP, we adapt the approach proposed 
by Daganzo (2005) who addresses a similar approximation problem. In his work, Daganzo 
demonstrates that the length of a route r can be approximated using some aggregated statistics of 
the problem. The approximation equation is presented in Equation (2).  
 
 

𝑇𝑜𝑡𝑎𝑙	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 ≈
2𝐸(𝑟)
𝐶 ∗ 𝑁 + 𝑘<|𝑅|𝑁 (2) 
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Here, C represents the total number of drops (or stops) and N the total number of customers on the 
route. In our application, each drop is associated with a single customer and therefore we assume 
that C=N. In this equation 𝐸(𝑟) represents the expected value of all the distances from the drops to 
the warehouse and, |𝑅| represents the area covered by the route and 𝑘 is a constant that varies in 
the range of (0.82, 0.57) depending on the type of distance used (e.g. L1, Euclidian).  
 
To implement this idea in our setting, we use a regression model to find the relative weights of the 
distances and areas to properly represent the actual length of a route. The regression equation is 
presented in Equation (3) and is calibrated using the distances derived from the Christofides’ 
Algorithm (1976)4 to solve the underlying TSP’s.  
 
 

𝑇𝑜𝑡𝑎𝑙	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	(r) 	≈ 𝛾& ∗ A 𝑑𝑟' ∗ 𝑌',(
)∈+∪-

+	𝛾. ∗A𝐴(𝑔) ∗ 𝐼(𝑔, 𝑟)
/∈0

 (3) 

 
The first term includes the linear distances dri of every drop in the route to its corresponding 
warehouse. As they are multiplied by the dummies 𝑌$,", the summation only includes the drops 
associated with that route. The second term is associated with the geographical dispersion of the 
drops and includes the areas A(g) of all polygons considered in the route. For instance, if all drops 
are located in the same polygon, the binary indicators I(g,r) guarantee that only the area of that 
polygon is included. Under this specification, the calibration of the parameters γ1 and γ2 provides 
the best linear estimate of the length of the route. Results of this approximation are available in 
Appendix 9.2 and they confirm that this approach leads to a good approximation of the total length 
implied by the resolution of the TSP.  
 
4.3 Routing Model  
 
Following the previous discussion, our decision task consists of the definition of subsets of drops 
that define a route that can be offered to drivers. In principle, this problem could be viewed as a 
clustering problem where several locations should be grouped. However, traditional clustering 
techniques ignore some important features of our problem. For instance, to be operationally 
feasible the routes should consider a minimum and a maximum length. In addition, we are not only 
interested in grouping drops that are close geographically, but also in creating routes that are 
attractive to drivers. Thus, to address this problem we use a mixed-integer programming model as 
explained below. 
 
To introduce some notation, let us define a set of features F, a set of routes R (clusters), a city 
tessellation5 𝑔 ∈ 𝐺, a set of warehouses 𝑊 = {𝑤%. . 𝑤&'} for picking up the products, a set of drops 
𝐷	 = 	 {𝑑%. . . 𝑑&(} where the demand must be satisfied, a set 𝐷𝑊 = {=𝑑$ , 𝑤+>, … } that contains all 
corresponding pairs (𝑑$ , 𝑤+) where 𝑤+ is the warehouse that stored the goods for the drop 𝑑$. To 
simplify notation, we will say that the node 𝑖 belongs to the polygon 𝑔 ∈ 𝐺 (𝑖 ∈ 𝑔) if the node 𝑖 is 
located inside the polygon 𝑔 ∈ 𝐺. Then, we define the following decision variables: 
 

𝑌$,& = (bin)	1	if	node	𝑖	to	route	𝑟, 0	otherwise 
𝑍$,'%,'& = (𝑏𝑖𝑛)	1	if	polygon	𝑔(	and	polygon	𝑔)	had	nodes	belonging	to	route	𝑟 

 
4 In our computational Christofides’ implementation, we used Networkx (Schult, Hagberg, & Swart, 2008).  
5 For details about city tessellation review appendix 0 



  12 

𝐼(𝑔, 𝑟) = (𝑏𝑖𝑛)1	if	at	least	one	node	in	route	𝑟	belongs	to	polygon	𝑔 
𝑌_𝑠𝑑_𝑐𝑜𝑑( 	=		 (𝑏𝑖𝑛)		1	𝑖𝑓	𝑡ℎ𝑒	𝑟𝑜𝑢𝑡𝑒	ℎ𝑎𝑠	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑛𝑜𝑑𝑒	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑛𝑑(𝑟) = (ℝ*+)	number	of	drops	in	the	route	𝑟 
𝑛𝑝(𝑟) = (ℝ*+)	number	of	pickups	in	the	route	𝑟 
𝑛𝑔(𝑟) = (ℝ*+)	number	of	polygons	in	the	route	𝑟 
𝑑𝑔(𝑟) = (ℝ*+)	sum	of	all	distances	between	polygons	in	the	route	𝑟 
𝑑𝑟(𝑟) = (ℝ0+)	sum	of	all	distance	(km)	from	each	drop	to	the	warehouse 
𝑎(𝑟) = (ℝ*+)	sum	of	all	covering	area	(all	polygons	covered	area) 

 
Thus, the optimization problem can be expressed as.   
 

min C 𝛽)* ∗ 𝑓𝑡(𝑟)	
"	∈	.,∀)*	∈0

					(4.1) 

 
Features codification  
 

𝑛𝑑(𝑟) = & 𝑌$,&
&	∈	0

		∀𝑟 ∈ 𝑅 (cod	ft_size_drops) (4.2) 

𝑛𝑝(𝑟) = & 𝑌$,&
&	∈	1

		∀𝑟 ∈ 𝑅 (cod	ft_size_pickups) (4.3) 

𝑀 ∗ 𝐼(𝑔, 𝑟) ≥ & 𝑌$,&
&	∈	0	∶	&	∈	'

		∀𝑟 ∈ 𝑅 (cod	ft_has_geo_min) (4.4) 

𝐼(𝑔, 𝑟) ≤ & 𝑌$,&
&	∈0:	&∈	'

		∀𝑟 ∈ 𝑅 (cod	ft_has_geo_max) (4.5) 

𝑛𝑔(𝑟) = & 𝐼(𝑔, 𝑟)
'	∈	4

		∀𝑟 ∈ 𝑅 (cod	ft_size_geo) (4.6) 

𝑎(𝑟) = & 𝐼(𝑔, 𝑟) ∗ 𝐴(𝑔)
'	∈4

		∀𝑟 ∈ 𝑅 (cod	ft_cover_area) (4.7) 

𝑑𝑟(𝑟) = & 𝑌$,& ∗ 𝑑𝑟&
&	∈	0

		∀𝑟 ∈ 𝑅 (cod	ft_cover_area) (4.8) 

𝑍$,'(,') ≤ 𝐼(𝑔(, 𝑟)			∀𝑟 ∈ 𝑅, ∀𝑔1	 ∈ 𝐺 (cod	intergeo	g1) (4.9) 

𝑍$,'(,') ≤ 𝐼(𝑔), 𝑟)				∀𝑟 ∈ 𝑅, ∀𝑔2	 ∈ 𝐺 (cod	intergeo	g2) (4.10) 

𝑍$,'(,') ≥ 𝐼(𝑔(, 𝑟) + 	𝐼(𝑔), 𝑟) − 1			∀𝑟 ∈ 𝑅 (cod	intergeo	max) (4.11) 

𝑛𝑑(𝑟) 	≤ 𝑀 ∗ 𝑌_𝑠𝑑_𝑐𝑜𝑑$ 	 ∗ 𝑚𝑖𝑛_𝑠𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒𝑠		∀𝑟	 ∈ 𝑅 (size	drops	min	cod	) (4.12) 
 
 
Model Constraints 
 

& 𝑌$,&
$	∈	5

= 1		∀𝑖 ∈ 𝐷 (demand	fulfillment) (4.13) 
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𝑌$,&	 ≤ 𝑌$,6 		∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑊:	(𝑖, 𝑗) ∈ 𝐷𝑊 (drop − warehouse	pairs) (4.14) 

& 𝑌$,6
$	∈	5

= 0		∀𝑗 ∈ 	𝑊: (𝑖, 𝑗) ∉ 𝐷𝑊		∀𝑖 ∈ 𝐷 (unused	warehouses) (4.15) 

𝑛𝑑(𝑟) ≥ 𝑌_𝑠𝑑_𝑐𝑜𝑑$ 	 ∗ 𝑚𝑖𝑛_𝑠𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒𝑠		∀𝑟	 ∈ 𝑅 (size	min	drops	) (4.16) 

𝑛𝑑(𝑟) ≤ 𝑚𝑎𝑥_𝑠𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒𝑠		∀𝑘	 ∈ 𝑅 (size	max	drops	) (4.17) 

 
 
The first set of constraints (4.2 - 4.12) in this model corresponds to linear feature codifications. For 
instance, (4.2) defines the number of drops and (4.3) the number of pickups respectively as a 
function of the decision variable Yr,i.  
 
The second group of constraints (4.13 – 4.17) corresponds to business constraints, (4.13 – 4.15) 
configure basic solution codifications. (4.16, 4.17) add a minimum and a maximum number of 
drops per route. Certainly, the model enables us to include a variety of operational constraints, but 
in this empirical analysis we focus on these two for the following reasons:  

 
- The drivers’ preference model is built using the routes that have been implemented by the 

platform. By restricting the decision space to routes that are similar to those offered 
historically, we reduce the potential forecasting errors. 
 

- In practice, extremely short routes are not attractive to drivers because stopping by 
warehouses involves a fixed cost associated not only with the physical movement of 
products but also the coordination with the personnel at the depots. Similarly, extremely 
long routes are not accepted by drivers because they cannot be completed in a single day as 
is requested by the platform.  
 

 
In theory, these considerations could be controlled in the objective function such that short and 
long routes are not selected because they are not attractive. We prefer this specification because it 
leads to better computational performance.  
 
To solve this model, we use an exact approach via a MIP solver. In addition, we develop an ad-hoc 
heuristic to provide a faster solution that might be attractive for practical implementations. As we 
use this heuristic as a warm start for the solver, it also leads to faster and better-quality solutions in 
the exact approach. To complete the analysis, we compare the solution of these two approaches 
against those implemented by the company. 
 
 
4.3.1 A Heuristic Approach 
 
To solve the optimization problem described above, we considered a heuristic procedure that 
provides a fast approximation to the problem. The heuristic proceeds as follows: 
 

1. We initialize the heuristic by generating feasible solutions through the division of the set of 
drops of a given instance in clusters/routes with sizes between 𝑚𝑖𝑛_𝑠𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒 and 
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𝑚𝑎𝑥_𝑠𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒. To find these clusters/routes, we use the constrained-k-means 
implementation of Levy-Kramer & Klaber (2021) based on the methodology described in 
Bradley (2000) this model finds clusters with sizes within certain bounds. We iterate over 
all possible values of 𝑘 (number of clusters/routes) keeping the sizes of the clusters 
constrained with the same bounds, we finally keep the solution with the lowest cost. 
 

2. For each cluster/route, we evaluate local changes by evaluating how they impact the total 
cost of each route. While the impact of some changes can be computed directly, others 
depend on the composition of the whole route and therefore we need to impute them. Using 
these cost estimates, we implement two sub-routines, a transfer routine, and a swap 
routine.  
 

3. The transfer routine identifies costly drops from the longest routes and evaluates if 
transferring that node to the closer routes with available space would improve the solution. 
To illustrate the logic of the transfer routine, Figure 3 shows two routes, 𝑟%(in gray) and 
𝑟1(in white). The numbers in each node represent its cost in the route. The figure illustrates 
a potential transfer of the last node of the white route (𝑟%), with cost 3, to the gray route 
(𝑟1). If the transfer induces a total cost reduction (of the new routing), we kept that node in 
the new route. Otherwise, we transfer it back. We iterate over all drops of the solution from 
the longest route to the shortest and then from the more expensive to the cheapest drop.   
 

 
Figure 3. Illustration of the transfer routine. 

 
4. The swap routine will trade the costly nodes from a route 𝑟1  with the closest node to 

another route 𝑟%  and verify if that swap of drops contributes to the cost reduction of the 
overall solution. We illustrate the swap routine in Figure 4 where we evaluate the potential 
interchange of a node with a cost of 2 in route 𝑟1 (gray) to another with cost 1 in route 𝑟% 
(white). If the cost of this new solution is lower than the previous solution, we consolidate 
the trade. Otherwise, we do not and continue searching for alternative swaps.   
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Figure 4. Illustration of the swap routine.  

 
5. We execute the transfer and the swap routine in all routes once. After we complete both 

routines, we exit the heuristic having a feasible routing instance  
  
4.4 The matching problem  
 
Beyond the value of the objective function, to assess the operational performance of the solution, 
we consider a matching problem that allows us to simulate how drivers would accept the proposed 
routes. In this matching problem, we first compute the likelihood of each driver 𝑐 ∈ Ω of accepting 
a certain route 𝑟 ∈ 𝑅. We model this problem using features from both, the routes {𝑓𝑡(𝑟)}, and the 
drivers {𝑓𝑡_𝑐𝑙𝑜𝑢𝑑𝑒𝑟(𝑐)}. In addition, we consider a price 𝑝 than can be adjusted to clear the 
market. We label this probability of acceptance as 𝑄(𝑟, 𝑐, 𝑝) 
 

𝑄(𝑟, 𝑐, 𝑝) 	= 	ℙ(𝑐	𝑎𝑐𝑐𝑒𝑝𝑡	𝑟𝑜𝑢𝑡𝑒	𝑟	|	{𝑓𝑡(𝑟)}, {𝑓𝑡_𝑐𝑙𝑜𝑢𝑑𝑒𝑟(𝑐)}, 𝑝) (5) 
 
To fit that model, we need historical data from past matchings, such as the offer price, and some 
Clouders features. Once we have that model fitted, using a classification model such as XGBoost, 
we can estimate the price of a match. This price, between a clouder and a route 𝑝∗(𝑐, 𝑟|𝛼), is 
defined as the minimum price where the probability of acceptance is equal to or higher than a 
certain threshold 𝛼. Given all prices of all pairs of clouders and routes, we can solve the min weight 
matching problem which provides us the assignments of routes to drivers. Let 𝑋3,"	 be a binary 
variable that takes the value 1 if the route 𝑟 is assigned to the driver 𝑐. Then, this assignment can 
be determined by solving the following min-cost matching problem. 
 

minC𝑋3,"	 ∗ 𝑝∗(𝑐, 𝑟|𝛼) 

𝑠𝑡:C𝑋3,"
3∈4

= 1	∀𝑟 ∈ 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑋3," ∈ {0,1} 

𝑝∗(𝑐, 𝑟|𝛼) = 𝑎𝑟𝑔𝑚𝑖𝑛5	{𝑄(𝑟, 𝑐, 𝑝)	|𝑄(𝑟, 𝑐, 𝑝) ≥ 𝛼	}	 
 
This problem can be easily solved by a bipartite m x n matching algorithm (Karp, 1980). To solve 
it computationally, we use the NetworkX Implementation (Schult, Hagberg, & Swart, 2008). In 
our empirical application, we do not observe individual acceptances and therefore we perform the 
matching using simulated data that mimics aggregated acceptance behavior. The details of these 
simulations are explained in 0 Annexed C. Estimating the cost by drop 
 



  16 

To implement the heuristic, we need to estimate the impact of having a node on the total cost of a 
particular route. These costs allow us to prioritize more costly nodes to be swapped or transferred 
to other routes in a greedy approach. 
 
We base the estimation of this cost on the objective function formula, which estimates the cost of 
each route given certain features that describe that route (e.g, number of drops in the route, number 
of warehouses in the route). We group these features into two groups: non-separable features and 
separable features. A separable feature is a feature that can directly separate the contribution of 
each drop to the final cost. For example, for the feature that sums all distances from the drops to 
their warehouse dr(r) = ∑ dr+ ∗ Y,,++ , we can simply assume that the contribution of drop i is the 
distance from i to its warehouse dr6. Similarly, for the number of drops nd(r), each drop contributes 
one unit to the total.  
 
A non-separable feature is a feature for which the contribution of each drop depends on other drops 
in the route. Consider for example the case of dummies I(g, r), that account for the presence of the 
route on a drop in a given polygon g.  Even if the node i: geo(i) = gis removed, the corresponding 
cost could still be accrued by the route because there might be another node in the same polygon. 
To deal with this type of feature, we divide the cost of this feature between the drops that participate 
in that feature. In the example of the feature I(g, r), we simply divide the cost by all the nodes in 
that feature. We operate with the rest of the features using the same approach.   
 
Finally, we approximate the cost of each drop i (in a particular route r) by: 
 

cost7(i) = & β89
	89	:;	;<=>7>?@<

∗ ft(i) + &
β89

|{i ∈ r: i	contrib	to	ft}|
89	ABAC;<=>7>?@<

	 

 
That formula provides us with an approximation that can be used in the heuristic for prioritization 
purposes. 
 
 
5. Results 
 
To present the results we start with the preferences model and then we show a detailed 
characterization of the routes derived from the different solution methods. We conclude with an 
evaluation of the performance of the proposed routes in terms of business performance.   
 
5.1 Results from the Driver Preferences Model 
 
Before estimating the model, we discarded a few outliers with disproportionally long acceptance 
times. These cases typically correspond to some packages that must be delivered to suburban areas 
and therefore require some spatial treatment. In fact, those cases are typically consolidated and 
delivered separately with a different compensation scheme for the drivers. The results of the Driver 
Preferences Model, using a standard linear regression and 515 observations, had an adjusted R-
Squared of 0.148, and an AIC of 4326.  The resulting coefficients are described in Table 3. We 
keep only some geo features, the ones that were more significant in a reduced model, otherwise, 
that will add 52 more variables.  
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 coef P>|t| 

𝐼(𝑔 = 3, 𝑟) 0.1740 0.952 

𝐼(𝑔 = 33, 𝑟) 24.1430 0.134 

𝐼(𝑔 = 4, 𝑟) 3.5513 0.257 

𝐼(𝑔 = 41, 𝑟) -17.8391 0.279 

Inter geo distance -0.0384 0.054 

Num. of drops -0.0573 0.620 

Number of polygons 0.7512 0.379 

Num. of pickups 0.7547 0.152 

Route length 0.1253 0.008 
Table 3. Regression results for drivers’ preferences 

 
According to the results of Table 3, only a few features are significantly different from zero. The 
smallest p-value is associated with the approximated length of the route, followed by the spatial 
concentration of the points captured by the distance between geos (polygons). Although we expect 
that with a longer history of acceptances more details about drivers’ preferences could be revealed, 
these results provide preliminary evidence that previous acceptances can be informative about 
which routes might be more attractive. Furthermore, this is a useful exercise to illustrate how these 
preferences can be incorporated into a vehicle routing problem.  
 
In terms of the direction of the effects, the large majority of the coefficients had the expected sign. 
For instance, the number of different geos (polygons) in the route and the approximated length 
according to Daganzo’s approximations have all positive signs, implying that longest routes (in 
distance) are less preferred and therefore have longer acceptance times. Similarly, routes with more 
pickups are less likely to be accepted. While there is a monetary compensation for each additional 
pickup, this positive sign implies that drivers internalize that there is value in aggregating routes 
with only a few pickup points. 
 
There are other features with a less intuitive interpretation that require further discussion. This is 
for example the case of the number of drops, where we find that “larger” routes (number of drops) 
are associated with lower acceptance times. We believe that an important reason why is that the 
payment formula is directly related to the number of drops, therefore, a larger route (in drops) 
means a higher price route. The negative sign for the distance between geos (polygons) considered 
in the route reinforces this observation, but this will not be intuitive when we also consider that this 
probably increases the route length (in distance). There is a strong correlation between those three 
variables (number of drops, inter geo distance, and route length), these effects are not easy to 
separate in a standard linear regression model therefore it's expected that some coefficients are not 
significant when we fit in a small number of samples without controlling for the price (for 
example).  
 
5.2 Result of the VRP Problem 
 
We have a set of 29 real instances of the problem. Each instance represents a day of operation of 
the platform in Santiago. Along with the location of the drop points and the corresponding pickup, 
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points for each instance we observe the manual solution implemented by the platform and the 
acceptance time of each of those routes. We run both, the heuristic and the optimization model over 
all the instances. As indicated in the description of the methodology we use the heuristic solution 
as the warm start for the optimization routine. The heuristic constrained k-means is solved using 
COIN-OR (taking on average 5 minutes), but the MILP of the full model is solved using Gurobi. 
In the numerical results, we impose a maximum execution time of 5:30 hours obtaining an average 
optimality gap of 4.78%.    
 
In Figure 4 we display a comparison of the value of the objective function for the three solution 
approaches. In the right panel, we exhibit the detailed values for all the 29 instances we used in the 
analysis, whereas the left panel shows a boxplot summarizing those results. According to these 
figures, the heuristic solution results is, on average, +3.66% worse than the manual solution, but it 
outperforms it in 25% of the scenarios. The MILP model solution results in a -15.59% improvement 
in the total cost in comparison with the manual solution currently implemented by the company.  
 

 
Figure 4. Cost of solutions by type of solution. Sorted by manual solution cost. 

Overall, these results indicate that while the MILP consistently leads the best solution, the heuristic 
can provide quick results with relatively good performance. For these instances, the manual 
solution implemented by the company presents competitive performance. However, we would be 
cautious of the generalizability of this result. In fact, the manual solution is mostly based on 
aggregation at the county level which works well in this case because in our preference model we 
only identify weak effects for the majority of the proposed features. We expect that with a more 
sophisticated vector of preferences, the manual solution could more dramatically deviate from the 
optimal solution. As we discuss in the next subsection, the manual solution leads to route profiles 
that are significantly different from those implied by the optimal model.  
 
 
 
5.3 Characterization of Proposed Routes 
 
Here we study how the different methods lead to different route configurations and we compare 
them against those resulting from the manual solutions. We first compare how many routes are 
used by each model to cover the demand of each instance. Results are presented in Figure 5. 
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Figure 5. Number of Routes by type of solution 

 
Results from Figure 5 indicate that the number of routes used by the full model and the heuristic is 
consistently smaller than those demanded by the manual solutions generated by the company. We 
believe this is because the model has more flexibility to search for spatial synergies to define routes, 
in comparison to the more static approach used by the firm that creates routes based on aggregations 
at the geo (polygon) level.  
 
The number of routes is also useful to discuss an important difference between traditional VRPs 
and the operations in a shared economy. While in centralized planning, there is an important fixed 
cost of labor that motivates the platform to have a relatively constant number of routes, in the 
sharing economy there are more degrees of freedom to use an uneven number of drivers on different 
days. It is worth noting that, although the company mostly decides routes based on predefined 
regions, they can consider additional business considerations that we do not include in our model. 
For instance, they could have a sense bout the number of drivers that are not being assigned to any 
route, and based on that information they could decide to split the demand among a larger number 
of drivers to keep them engaged.  
 
We now compare solutions in terms of the length of the routes, which we summarize in Figure 6. 
According to these results, the average number of drops per instance route is consistently larger for 
the heuristic and the MILP models. The MILP model is, on average, +10 drops larger, whereas the 
heuristic is on average +6 drops longer than the manual solution. This is expected because solutions 
with more routes are naturally associated with a smaller number of drops per route. Notice that the 
heuristic and the MILP models are already constrained to select routes in a range of values for the 
number of drops, which implicitly restricts the number of drops that can be assigned to a route. It 
is also interesting to note that, the optimization routines generate longer routes (in distance and 
nodes) despite having a positive coefficient for the driver preferences for longer routes (in distance) 
but a negative in longer routes (in nodes), this probably means that in the objective function the 
size of the route in drops weights higher than the distance length of the routes.  
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Figure 6. Average number of drops by route. 

 
A third metric that we are interested in evaluating is the number of pickups by route. They are 
important in terms of both, the operational efficiency of the process and the attractiveness of the 
routes. Although most routes have only a few pickups, they are typically associated with longer 
waiting times and they require additional coordination with other agents.  
 
Unlike the number of drops, here we observe that the heuristic solution departs from the MILP and 
consistently generates routes with more pickups. This result indicates that the heuristic could be 
improved by creating specialized refinements focusing on pickups. In fact, our implementation of 
transfers and swaps routines mostly focuses on the number of drops, and the number of pickups is 
only considered indirectly when evaluating the cost function. The difference with the solution 
implemented by the firm is also expected because they do explicitly consider this feature when 
manually designing routes.   
 

 
Figure 7: Average number of pickups by type of solution. 

 
We complete this comparison with the total distance of the route. To compute this metric, we use 
the linear TSP approximation (Daganzo). Results are displayed in Figure 8. As the total distance is 
very closely related to the number of drops, the results presented here are similar to those reported 
in Figure 6. For instance, compared to the other two, the solution implemented by the firm have 
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consistently shorter distances. Interestingly, the distances that the heuristic generates routes that 
are only marginally longer than the current solutions.  
 

 
Figure 8: Routes average distance using TSP linear estimation. 

To summarize, compared to the current solutions implemented by the firm, the proposed solutions 
generate a smaller number of routes that consider more drops and pickups. In the following 
subsection, we evaluate to which extent these new routes are associated with better acceptance 
times.  
 
5.4 The gain of accounting for driver preferences. 
 
To complete the analysis, we evaluate the impact of the proposed solution on business performance. 
A basic premise of our approach is that the speed at which drivers choose to accept to serve a route 
can be mapped into a finite number of features. In this section, we evaluate the impact on the 
performance of the solution by not properly accounting for the relationship between the features of 
the solution and the rate of acceptance.  
 
As we pointed out in section 5.2 the MILP model leads to an average improvement in the cost 
function of -15.59% with respect to the manual solution. This translates into faster acceptances of 
nearly 50 min of saving on total by instance. Both routing methodologies have a high variation in 
acceptance times. In general, given that the objective function minimizes the sum, the reduction in 
the number of routes is the main reason behind these savings rather than a reduction on cost-per-
route.  
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Figure 9: Objective function savings with the optimization model. 

 
To gain perspective on the importance of these changes, we estimate how much the company would 
need to pay for those routes to achieve a similar reduction in acceptance time. Here we find that a 
decrease of 15% translates into a decrease in the auction price of a similar magnitude.  
 
 
6. Discussion and Future Research 
 
This investigation has a few major improvement opportunities that were not able to solve due to 
the technical capabilities of the data collection in the current marketplace, both are related and very 
important for future research and to make the results of this research more robust.  
 
This dataset is a “partial matching data log” because we don’t have access to what routes were 
offered to what clouders, what routes were accepted what routes were declined, how much time 
the offer was active until re-send, what were the contact medium, how the route was priced, how 
many routes were sent to a particular driver, what is the driver tenure, etc. The available data is 
way more aggregated and with several unknown variables. 
 
In the driver preferences model, we couldn’t archive good accuracy or reliability of the model, the 
reasons for this are well explained in section 5.1 but we attribute this to two major limitations, 
unobservable variables (such as price), and the lack of operative consistency during the data 
collection period. Both factors limit a lot of the possibilities to build a stronger model here and 
probably in future research this data should be re-collected using stronger experimental conditions 
and a wider number of variables. 
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The link between the preferences vector and the auction cost is not easy to argue, our model is 
based on the acceptance times of the marketplace, and we assume that a more desirable route (with 
a lower acceptance time) will be translated into a lower auction cost of a route, but we know that 
this auction cost is a condition by other external effects such as marketplace conditions, the 
matching algorithm, supply conditions, traffic conditions, payment formula, auction mechanics, 
etc. Again, to study this link we should have the “full matching data log”. With this information, 
the study of that link would provide insightful information about the matching and marketplace 
conditions.  
 
On the Routing model, we prioritize the overall cost of the solution rather than the cost-per-route 
minimization, this led to fewer and longer routes, which has direct effects on the supply side of the 
marketplace; the heterogeneity of the drivers might lead to losing drivers that are more interested 
in shorter routes, or providing fewer routes will reduce the overall interest to connect to the 
marketplace. This might be solved, in future research, by studying different objective functions, 
taking into consideration some heterogeneity variables in the expected auction cost.  
 
Given that the routing model was built based on the preferences vector a natural extension will be 
to study the reliability of the solutions based on a robust optimization, considering multiples values 
of the preferences vector or their distributions, which also opens the opportunity to study further 
the heterogeneity of the drivers and his effect on the routing solutions. 
 
In this first study, we integrate the heterogeneity of the drivers’ preferences in a routing model. 
This problem has become more interesting with the irruption of shared-economy marketplaces to 
the last-mile delivery business. This is quite novel, even in mature shared economy marketplaces 
(Jin, 2021) (Lyft, 2018) (Uber, 2021) where the driver preferences are barely adopted. This is more 
relevant when the routing design is a previous step to the auction, given that the final cost will rely 
heavily on the driver's preferences. Building more heterogeneity-aware models will lead to a new 
family of problems and might become an important piece of the future of last-mile delivery 
logistics.  
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8. Annexes  
 

Annexed A. City Tessellation (Geos/Polygons)  
 
All the instances used are in the same city: Santiago CL, for this city there is a geopolitical 
tessellation that is very informative in terms of socioeconomic distribution, accessibility, 
population density, and other variables. There are 52 geo-zones called “comunas'' that we use to 
model this problem. The caveat of using a geopolitical tessellation is that this is not extrapolated 
to other cities, the cover area varies vastly from the city-core geos to the city outskirts geos, 
probably a more scalable approach is to use a more standardized tessellation system such as S26 or 
H37.  
 

 
Figure 3. Santiago City Tessellation based on geopolitical zones  

 
Annexed B.  Daganzo TSP linear Approximation results  
 

 
6 S2 Geometry. (n.d.). S2 Geometry. Retrieved January 15, 2022, from http://s2geometry.io/ 
 
7 H3 geospatial indexing system. (n.d.). H3 Geospatial Indexing System. Retrieved January 15, 
2022, from https://h3geo.org/ 
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Using the model described in 0 we estimate the parameters on the linear regression to estimate the 
distance of the TSP of the routes that we had in the dataset generated by Wareclouds. The results 
of this standard regression are the following, an Adjuster R-Squared of 0.919, and an AIC of 3957 
with 515 samples. The coefficient values are in the following table.  
 
 
 

 coef P>|t| 

cover area 0.0190 0.000 

Sum linear distances to depot 0.1201 0.000 
Table 4. Daganzo Coefficients estimation regression 

 
We use the coefficients from the regression above to estimate the TSP distance in most of this 
paper 
 
Annexed C. Estimating the cost by drop 

 
To implement the heuristic, we need to estimate the impact of having a node on the total cost of a 
particular route. These costs allow us to prioritize more costly nodes to be swapped or transferred 
to other routes in a greedy approach.  
 
We base the estimation of this cost on the objective function formula, which estimates the cost of 
each route given certain features that describe that route (e.g, number of drops in the route, number 
of warehouses in the route). We group these features into two groups: non-separable features and 
separable features. A separable feature is a feature that can directly separate the contribution of 
each drop to the final cost. For example, for the feature that sums all distances from the drops to 
their warehouse 𝑑𝑟(𝑟) = ∑ 𝑑𝑟# ∗ 𝑌!,## , we can simply assume that the contribution of drop 𝑖 is the 
distance from 𝑖 to its warehouse 𝑑𝑟$. Similarly, for the number of drops 𝑛𝑑(𝑟), each drop 
contributes one unit to the total.  
 
A non-separable feature is a feature for which the contribution of each drop depends on other drops 
in the route. Consider for example the case of dummies 𝐼(𝑔, 𝑟), that account for the presence of the 
route on a drop in a given polygon g.  Even if the node 𝑖: 𝑔𝑒𝑜(𝑖) = 𝑔is removed, the corresponding 
cost could still be accrued by the route because there might be another node in the same polygon. 
To deal with this type of feature, we divide the cost of this feature between the drops that participate 
in that feature. In the example of the feature 𝐼(𝑔, 𝑟), we simply divide the cost by all the nodes in 
that feature. We operate with the rest of the features using the same approach.   
 
Finally, we approximate the cost of each drop 𝑖 (in a particular route 𝑟) by: 
 

𝑐𝑜𝑠𝑡$(𝑖) = & 𝛽"#
	"#	&D	DEF!$!GHE

∗ 𝑓𝑡(𝑖) + &
𝛽"#

|{𝑖 ∈ 𝑟: 𝑖	𝑐𝑜𝑛𝑡𝑟𝑖𝑏	𝑡𝑜	𝑓𝑡}|
"#	IJICDEF!$!GHE

	 

 
That formula provides us with an approximation that can be used in the heuristic for prioritization 
purposes. 
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Annexed D. Simulation dataset for the matching algorithm.  
 
We simulated 𝑛 clouders building a custom random utility function based on the market beta 
features solved on the driver preferences regression. We assume that the market preferences were 
a good approximation of the individual driver's preferences. 
 
We assume that the clouder 𝑐 has a utility function given by 𝜋3(𝑟) which is modeled as a linear 
function where each coefficient (𝑤3,)7!*) has the same variance as the original 𝛽)7!* in the market 
regression. Just to maintain some consistency we simulate each new parameter 𝑤3,)7!* with the 
gamma distribution keeping the sign of each parameter with its corresponding 𝛽)7!* sign. We 
manually adjusted 𝑤3,5"$37 considering the actual range of price per node offered by Wareclouds 
and the normal acceptance rate that we had from the data, we tweak that value until the simulation 
log looks like the aggregated logs that we have from real instances.  
 

𝜋3(𝑟) = C 𝑤3,)7!* ∗ 𝑓𝑒𝑎𝑡(𝑟)
)7!*

+𝑤3,5"$37 ∗ 𝑝𝑟𝑖𝑐𝑒(𝑟) 

 
In the clouders features, we only add the following variable, due to data limitations.  
 
Feature Name Description 

origin distance 
Distance between route centroid, and clouder origin 
polygon centroid in km  
Table 5. Clouder features 

 
We transform this utility function to a probability using a sigmoid function.  
 

8 
 
The sigmoid function goes from -6 to 6 in his domine; therefore, we normalize the utility function 
creating a “worst route” and a “best route” for each simulated clouder. The “worst route” 𝑟89":*(𝑐) 
will be the longest available route, with the lowest registered price by node, with nodes spread 
among all far polygons. The “best route”  𝑟;7:*(𝑐) will be the average number of nodes with all 

 
8 Logistic curve. (n.d.). [Graph]. Wikipedia. https://commons.wikimedia.org/wiki/File:Logistic-curve.svg 
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nodes only in one polygon close to the clouder origin polygon, and the highest pay by node declared 
by Wareclouds. We estimate then the utilities for each clouder using this synthetic route: 
 

𝜋3=𝑟89":*(𝑐)> = 𝜋_𝑤𝑜𝑟𝑠𝑡3 
𝜋3=𝑟;7:*(𝑐)> = 𝜋_𝑏𝑒𝑠𝑡3 

 
Using these extreme values, we normalize the utility function 𝜋f3(𝑟) to be contained in the domine 
of (−6,6) using that we can simulate a probability of acceptance using the sigmoid function on top 
of this normalized utility: 
 

ℙ(𝑐	𝑎𝑐𝑐𝑒𝑝𝑡𝑠	𝑟) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜋f3(𝑟)) 
 
 
Whit these probabilities we can simulate a daily marketplace request acceptance log for a routing 
instance, we simulate using a random matching algorithm (each route is offered to a random 
clouder) and we simulate the acceptance using the probability value determined by the formula 
above. We increase the price each time the route is rejected with a parametrized growth rate. We 
also tested an origin-based matching, considering that that’s a fairer representation of the current 
matching algorithm used by Wareclouds. As we mentioned with the price parameter, we tweak all 
the manual parameters until our simulated scenarios were similar to the scenarios that we got from 
the real data. With this simulated log, we can finally fit out the probability model for the market 
𝑄(𝑟, 𝑐, 𝑝) and then implement the matching algorithm.  
 
Annexed E. Table with results of all instances  
 
This table has all the scenarios and their corresponding cost (Estimated Time of acceptance). 
 

Instance size Manual Solution Cost Heuristic Solution Cost Model Solution 
Cost 

Runtime 
Hours 

Scenario id 

585 258.2 360.1 244.1 5.5 S0 

378 222.4 245.0 195.5 5.5 S1 

597 323.6 409.1 315.3 5.5 S2 

384 252.7 279.7 203.1 5.5 S3 

578 309.2 390.1 274.1 5.5 S4 

344 223.3 245.1 196.4 5.5 S5 

336 213.2 251.5 188.6 5.5 S6 

363 240.4 296.8 209.6 5.5 S7 

306 234.3 235.7 204.0 5.5 S8 

587 292.5 359.8 265.5 5.5 S9 

453 341.8 354.7 283.0 5.5 S10 

352 195.9 242.0 174.4 5.5 S11 

340 226.9 232.5 193.4 5.5 S12 

373 260.0 278.9 232.9 5.5 S13 

455 284.9 286.7 196.3 5.5 S14 

414 301.9 313.4 249.1 5.5 S15 
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374 258.0 274.3 210.4 5.5 S16 

336 206.7 222.8 175.3 5.5 S17 

369 274.3 345.6 187.1 5.5 S18 

515 253.9 320.3 219.7 5.5 S19 

337 239.9 254.7 201.1 5.5 S20 

269 178.6 224.9 154.8 5.5 S21 

254 231.4 248.5 212.7 5.5 S22 

309 208.6 240.4 191.7 5.5 S23 

519 293.8 351.3 254.4 5.5 S24 

252 150.4 153.6 121.7 5.5 S25 

358 214.7 258.7 195.2 5.5 S26 

269 207.0 214.4 181.5 5.5 S27 

297 227.2 227.4 188.3 5.5 S28 

Table 6. Instances summary 


